Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorCaudill, Sarah
dc.contributor.advisorDirksen, Sjoerd
dc.contributor.authorLaag, R.P. van der
dc.date.accessioned2021-09-07T18:02:13Z
dc.date.available2021-09-07T18:02:13Z
dc.date.issued2021
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/1149
dc.description.abstractThe field of Gravitational Wave (GW) astronomy has only just started and with the construction of third-generation detectors there is a lot of work being done in developing faster and more robust data analysis methods. Machine learning has emerged as a powerful addition or even alternative for the data analysis involved in GW detection. In this thesis we explore two separate machine learning methods for two different type of GW signals. The first being a Convolution Neural Network (CNN) for the detection of GW from core-collapse supernovae (CCSNe). Our results here corroborate those of previous work done, where we were able to identify signals from a phenomenological template bank and numerical 3D simulations of CCSNe with similar efficiencies and false alarm rates. For the second method we construct two fully connected neural networks that are equivalent to the traditional matched filtering approach based on previous work for the detection of GW signals generated by Compact Binary Coalescences (CBCs). These networks can theoretically approach the performance of an optimal classifier with knowledge of a prior of the parameter distribution. By training these networks on training data consisting of real LIGO data and simulated injections of GW signals we can outperform the basic matched filter and even approach the theoretically predicted optimal classifier.
dc.description.sponsorshipUtrecht University
dc.format.extent7270899
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleGravitational-wave Signal Detection with Machine Learning
dc.type.contentBachelor Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsgravitational-waves,gravity,wave,signal,detection,matched filtering,general relativity,machine learning,neural network,convolutional neural network,CNN,supernova,CBC, gravitational waves,black hole, neutron star, hypothesis testing, Neyman-Pearson,
dc.subject.courseuuNatuur- en Sterrenkunde


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record