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Abstract

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality. Unlike Com-
puted Tomography (CT), MRI does not use ionizing radiation. Over the years, MRI has
improved dramatically in both imaging quality and imaging speed. This revolutionized
the field of diagnostic medicine. However, imaging speed, which is essential to many of the
MRI applications, remains a major challenge. Imaging speed can be improved by faster
collection of data. This can be achieved by using sophisticated non-Cartesian k-space tra-
jectories. Popular non-Cartesian schemes include encoding along a radial line or spirals.
The point has nearly been reached in which fundamental physical and physiological effects
limits the ability to simply encode data more quickly. This fundamental limit has led many
researchers to look for methods to reduce the amount of acquired data without degrading
image quality. In order to address this issue, various reconstruction techniques have been
proposed; in this paper three of them are discussed. Beginning with SENSE(proposed in
1997), followed by k-t BLAST /k-t SENSE, nonlinear inverse reconstruction and ending
with a combination of techniques very recently proposed(August 2010). We will also eval-
uate two of the three above mentioned techniques with one application i.e. cardiac cine
imaging.
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1 Introduction

Magnetic Resonance Imaging (MRI) is an imaging tool widely used in clinical diagnosis of
disease processes throughout the body.

Since the conception of MRI by Lauterbur [24], there has been a quest for speed which acted
as a major driving force for further clinical, technical and scientific development. In clinical
MRI, there has always been a great need to increase imaging speed. Relatively long scanning
times in combination with the motion of organs are inducing artifacts in the imaging process,
especially around moving organs like the heart.

The desire to visualize physiological processes, such as cardiac cine imaging, at high spatio-
temporal resolution, has been a driving force behind the development of real time MRI.
Today’s fastest imaging sequences and state of the art scanners are continuously approaching
certain basic limits on imaging speed. The limits are technical and physiological, which are
related to the maximum gradient field switching rate and the pattern how this can be applied
to increase speed. This has to do with limitation to what humans can tolerate because ex-
tremely fast gradient switching might cause unwanted neuromuscular stimulation and dense
radiofrequency pulses can lead to high energy deposits in the body, causing damaging tissue
heating[20].

In order to address this issue of damaging heating tissue and neuromuscular stimulation, var-
ious reconstruction techniques have been proposed:

The first technique is sensitivity encoding(SENSE, see section 2.1), in which the data is
acquired by parallel imaging. This means that the MR signal is acquired with more than
one detector (receive coil)simultaneously from different positions and stored separately. The
SENSE technique then makes it possible to gain time by reducing the number of repetitions
i.e. sampling fewer data per receive coil. Such undersampling, however, leads to aliasing and
superimposed pixel values when the inverse Fourier transform is applied. To unfold the image
values, the spatial sensitivity profile from each coil is exploited.

The second technique is k-t BLAST /k-t SENSE(see section 2.2), a reconstruction technique
which is based on the quasi-periodicity of the imaged content, such as cardiac cine imaging.
This approach uses a diagonal form of the covariance matrix obtained from trained data and
imposes it as a prior information for the acquisition phase.

The third technique is a nonlinear inverse reconstruction technique(see section 2.3). High
quality reconstruction is now possible even when sampling densities are much lower than
required. An example is compressed sensing(see subsection 2.3.1), where only good recon-
struction results are obtained when the image is sparse in an appropriate domain and samples
are obtained with an incoherent basis.

The contribution of this thesis is describing the three mentioned techniques for rapid imaging,
with particular focus on the used sampling pattern (see subsection 1.2), k-space(see subsec-
tion 1.1) and the image reconstruction techniques(see partly subsection 1.3).

Two of the three techniques and a combined method are evaluated with one application;
cine imaging of the heart. The combined method includes a fast low angle shot (FLASH)
gradient-echo imaging sequence, radial encoding(see section 1.1) and a regularized non-linear
reconstruction. It is a promising combination of techniques recently described by Uecker et
al[24].



1.1 K-space

Early in the development of MRI it was recognized that the time-varying signals could be
detected from precessing magnetization following an RF excitation pulse, a short burst radio
frequency matching the Larmor frequency of the nuclei of interest. The MR signal generated
with the presence of a slice selective gradient is likewise a polyphonic mixture, containing the
encoded spatial position and the magnetization strength on those positions in the selected
slice. Each MRI method must have a decoding strategy which’ unravels’the "polyphonic mix-
ture’to produce a spatially resolved image. The basic principle consists of collecting the raw
data in a space, called k-space during image acquisition. The k-space is filled with applying
x- and y gradients, which traces a particular trajectory into a two dimensional space, which
is further sampled into k-space. The coordinate in k-space at which a sample is acquired
corresponds to the frequencies of the sinusoidal waves that form the basis for the Fourier
transform in x and y direction[21].

The most popular trajectory is sampling of the signal along a Cartesian grid, because of the
instrumental imperfections of the early MRI systems and the simple reconstruction of an im-
age by the inverse Fourier transformation of Cartesian data. Despite these advantages for a
static image, dynamic monitoring of a moving object is better served with different sampling
trajectories [24].

One of the targets in real time imaging, which uses moving objects, is to find the gradient
waveform that will traverse k-space from one point to another along a specific path and in
minimum-time. The reason is that the acquisition time window is limited because of the
exponential decay of the magnetization. Non Cartesian trajectories are faster than Cartesian
Trajectories, for example radial lines or spiral trajectories (see figure 2). Radial acquisi-
tions are for example less susceptible to motion artifacts and have better image resolution
than Cartesian trajectories [5] and can be significantly under sampled [19].This is because
each line crosses the centre of k-space and therefore contributes both high spatial frequencies
(outer part of k-space) and low spatial frequencies (inner part of k-space). Above that, spirals
and radial make efficient use of the gradient system hardware[15]. Most of their efficiency
comes from the fact that a relative small number of interleaves are sufficient to cover whole
k-space[l].

The x- and y-gradients are used together for phase encoding and frequency encoding.In order
to scan a spoke in k-space ,with a certain angle 6 a combination of x and y gradients are
selected to accomplish this.[17].

Sampling of those trajectories is more complicated, this is done by using non-linear inversion-
or gridding reconstruction.

1.2 Resolution vs. Field of view

The k-space sampling density should be conventionally designed to meet the Nyquist criterion.
This means that the sample frequency must be at least two times higher than the highest
frequency component to be reconstructed from the signal, to avoid aliasing.. This maximum
component follows field of view and resolution (see figure 1). The maximum allowed Nyquist
sampling periods are given by [6]:
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Where the minimum of samples required for aliasing-free sampling is directly proportional
to the step size. The field of view is determined by the density of sampling of the region of
interest. For example a larger object requires denser sampling of k-space than other regions.
Accordingly [6]:

1
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where 7y is the gyromagnetic ratio, G is the read gradient and At is the uniform time intervals.
The resolution depends on which part of k-space is sampled (see figure 1). In figure 1b the
high frequency region is neglected and set to zero. Therefore, a pulse sequence inherently
represents a low-pass filtering process applied to the underlying image. The low-pass filter
implied by these methods is a rectangle in Fourier dimensions, they represent the k-space
steps in respectively read- and phase encode direction [6]:
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where 7 is the duration of the phase encoding gradient. The MR resolution is given by Fourier
resolution, so k-space can be represented by sinc functions. It is sufficient to consider the main
lobes of the sinc functions. The Fourier resolution (FWHM) is approximated by taking half
of the interval between the first two zeros of the sinc function [6]:
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Figure 1: The relation between the sampling pattern in the spatial-frequency domain (k-space) and
the image in spatial domain. Image resolution is determined by the extent of the k-space that is
covered. The supported field of view is determined by the sampling density. Violation of the Nyquist
criteria results in aliasing interference in the image domain. The appearance of the artefact depends
on the sampling. Coherent folding is produced by equispaced sampling and incoherent interference is
produced by irregular sampling
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Figure 2: Common sampling trajectories. Top, left to right: Cartesian 2D, Cartesian echo-planar,
radial, spiral. Bottom left to right: Cartesian 3D, stack of radial, 3D radial, 3D stack of spirals



1.3 Regularization

Regularization penalizes the complexity of a learning algorithm[10], with some prior knowl-
edge about the observed object. Penalizing implies adding quality weighting factors, which
result in a better estimate of the observed object. When the aim is reduction of acquisition
time, which is the case in real time imaging, undersampling of k-space would be an option.
However, it is well-known that this may cause all sorts of image artifacts , which can be
modified by alternative reconstruction methods[23]; such as supervised learning algorithms.
The regularization/optimization problem parameters in real time imaging is: the operator(¥m).
The operator consists of the undersampled Fourier Transform(F,), the acquired k-space(y),
the images themselves represented as vector(m) and the noise level(e). Two examples of
regularizations are: [y and [y regularization. [; is given by:

minimize [|Um|| (6)
st |[Fum —yll1 <e, (7)
where [y is given by:
1 2
w3 0

It has frequently been observed that [; regularization in many models often results in a sparse
solution[3, 16], which is an essential aspect of compressed Sensing (see paragraph 2.3.1). On
the other hand, [y is easier to implement and outperforms /; in calculation time. The two
mentioned regularization methods are compared in a study of Andrew Y. Ng, a study to the
logistic regression performance of regularized learning algorithms.

In one experiment both are tested on data with many irrelevant features' and the learning
algorithms are trained with 100 examples. The total number of features varies and just a single
feature is relevant. Andrew Y. Ng, mathematical expert showed that [; performs extremely
well in ignoring irrelevant features. Also when the number of relevant features increases, l; is
superior to I3 [16]. The bad performance of I3 is mainly a result of the rotational invariance[16],
a characteristic shared by a large class of learning algorithms. However, the performance can
be improved by increasing the number of training samples.

2 Methods
2.1 SENSE

Instead of using different trajectories in k-space to increase scan time and reduce motion
artifacts, multiple coils can be used as well. By using multiple receiver coils in parallel, scan
time in Fourier imaging can be considerably reduced[18]. Each surface coil will sense the signal
differently depending on its position. Sensitivity encoding(SENSE) is based on the fact that
receiver sensitivity generally has an encoding effect complementary to Fourier preparation by
linear field gradients.

Sampling
The SENSE technique reduces scan time by sampling fewer points. The phase encoding is
reduced by increasing the distance of readout lines in k-space[18], such that the sample area

!Features are the characteristics of the content of your data



remains unchanged. In standard Fourier imaging, reducing the sample density will result in
the reduction of the FOV(see equation 2). Increasing the distance in k-space, with a fixed
FOV, without reducing the volume that is being imaged, will result in a fold over effect in
the image, due to the properties of the IDFT (Inverse Discrete Fourier Transform).

K-space

The next step is to unfold the image. Each pixel which is superimposed must be separated.
The key to signal separation lies in the fact that in each single-coil image signal superposition
occurs with different weights according to local coil sensitivities[18]. With the weights the
superimposed intensities can be rearranged to their original positions as shown in figure 3 .

Reduced image Full FOV image

Superimposed pixel intensitics are

. distributed to its original positions. >. J

Figure 3: Image folding due to undersampling of k-space. The signal of the two marked spatial
subregions in the right full FOV have both contributed to the signal intensity in the left folded image.
This intensity should be separated again into its reconstructed origins in the full image FOV

2.2 k-t BLAST and k-t SENSE

In dynamic MRI, a temporal sequence(in time) of spatial MR images (2D or 3D) is con-
structed(see figure 4, Top). Especially dynamic images depicting a quasi periodic process are
highly compressible, such as cardiac image sequences. This has been demonstrated by the
success of MPEG, which uses the fact that some parts of the frames stays constant or else
undergo motion that is similar between neighbouring pixels. Based on this quasi-periodicity,
severe undersampling of k-space is possible. k-t BLAST and k-t SENSE are the techniques
to recover the missing data, where SENSE makes use of the coil sensitivities in addition.

Sampling[22]

Sampling of k-space occurs on a regular set of congruent lines, where an undersampled sets
of phase encode line are acquired at one out four time points (see figure 5). In this way it is
impossible to meet the spatial Nyquist rate (see equation 1), but in time the signal is fully
sampled. Sub-Nyquist sampling, followed by linear reconstruction causes coherent aliasing
of the signal in the spatial-temporal frequency (x-f)domain(see figure 4, Bottom), which is
shifted due the congruent sampling.

K-space[22]

Dynamic MRI data are acquired in the spatial frequency vs. time (k -t) domain, undersampled
by a factor four, according to the k-t sampling pattern(see left figure 5). The temporal average
is subtracted from the sampled phase encodes(see figure 7, 4.2). Inverse Fourier transform is

separately applied to k- and t-domain to yield an x-f array with a lattice structure(see figure
7,4.3 and 4.5) .



Reconstruction(BLAST)[22]

In essence, K-t blast is the reconstruction of the original data from the aliased data, which is
based on two steps: The first step is to make use of prior information, which can be obtained
from measured training data. The data is stored in a matrix M, which specifies where the
changes in spatial and temporal domain are likely to occur(x-f space). The second step is
setting all time varying intensity maps equal to each other, which means obtaining the DC
estimate. The DC estimate contains information about the present intensities in each time
frame, localized in the center of k-space. DC estimate is important to enable normalisation
of image intensity.

In the training stage with several steps the diagonal elements of matrix M are obtained. The
training set consisted of the densely sampled central region of k-space only, because mainly
the central region changes in time.

The below mentioned steps are used to determine Matrix M:

1. Filtering along the phase encode direction in k-space of the training data to reduce
truncated artifacts(see figure 6, 3.1).

2. On the filtered training set, the inverse Fourier transform to the k-space’s is applied to
yield a series of low-resolution images (see figure 6, 3.2).

3. The image columns from all time frames are gathered into a x-t array and inverse Fourier
transform is applied to t to yield a x-f array (see figure 6, 3.3).

4. The DC term is set to zero(f=0) to normalize all image intensities (see figure 6, 3.4).
5. Filtering along f to reduce noise with high temporal frequencies (see figure 6, 3.5).

6. Multiplying by a safety margin for a better estimate of the intensity magnitude (see
figure 6, 3.6).

7. Taking the squared magnitude yielding the estimated deviation from the baseline, which
are the diagonal elements of matrix M (see figure 6, 3.7).
Matrix M represents the changes in spatial and temporal domain.

The following describes about the acquisition stage after Matrix M determination:

The sparsely sampled k-t spaces are averaged to yield a temporal average to obtain a time
varying intensity average(see figure 7, 4.1). Inverse Fourier transform in k-domain is applied
to obtain data in x-t domain(see figure 7, 4.3). Inverse Fourier in time is applied to yield x-f
domain. The image column from the x-f domain at f = 0 is used to get a DC estimate (see
figure 7,4.4),

In other words, the aliasing in x-f array, which is the result of undersampling along a sheared
grid pattern is unfolded by the prior determined matrix M. The frame by frame intensity
variation is resolved by the DC estimate.

Reconstruction(SENSE)[22]

In addition to k-t blast, it is possible to use information from additional receiver coils to
resolve the aliasing. Specifically, by incorporating the sensitivity information, generalized in
the sensitivity matrix. For k-t SENSE, the data from each coil are arranged in a separate k-t
array. The reconstruction method of k-t blast(M) extended with the sensitivity matrix will
be used to effectively resolve the aliasing

It should be noted that reconstruction is considerably more demanding if the k-t sampling
does not conform the lattice structure.
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temporal frequenc

Figure 4: Top: Dynamic MRI yields a temporal sequence of multiple spatial MR, images (2D or 3D)
Bottom: Dynamic images have a sparse representation in an appropriate transform domain.

Figure 5: Traditional k-t sequential sampling and random sampling
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2.3 Nonlinear reconstruction techniques

It is a method to deal with undersampling of k-space when using alternatively k-space tra-
jectories to increase imaging speeds.

When Nyquist is violated, either field of view(FOV) becomes smaller(see equation 2) or all
kinds of image artifacts occur. This can be modified by using alternative reconstruction
methods|23], such as supervised learning algorithms. In this section we present an iterative
reconstruction method for undersampled radial MRI which is based on: (i) a nonlinear opti-
mization, (ii) by combining the acquired signal from multiple coils and (iii) by incorporation
of prior knowledge, implemented by penalty functions|2].

Sampling and K-space

The acquisition of k-space can be done in many different trajectories (1.1) and the optimal
choice depends on: (i) the imaged process, (ii) the purpose of the scan (iii) and the other
acquisition parameters. Radial sampling has two attractive characteristics: each line crosses
the center of k-space and therefore contributes to high spatial and low spatial frequencies|[24]
and it has low sensitivity for object motion.

An important characteristic of radial sampling is folding artifacts due to aliasing, which have
a very different appearance compared to the central image content. For this reason it is
possible to remove these so-called streaking artifacts during the reconstruction phase with
the use of prior information about the structure of the image. For radial MRI, this has been
demonstrated by using an iterative image reconstruction method with the penalization of the
total variation(TV) of the image[2]. Another important difference from existing reconstruc-
tion methods is that for radial trajectories a much lower number of spikes are needed than
data samples per spoke.

Reconstruction MRI acquisitions using radial trajectories are commonly reconstructed with
either projection reconstruction or regridding methods but these methods lead mostly to
a low temporal resolution or a poor spatial resolution(streaking artifacts).To overcome the
problems of undersampled radial encoded lines is to see it as an inverse problem; as described
in the section 1.3 Regularization. The inverse problem parameters are: (i) the undersample
Fourier Transform, (ii) the acquired k-space, (iii) the images themselves and (iv) the noise
level. By optimizing this problem, the best image fit of the measured data can be found.
Finding a solution requires a highly efficient optimization method due to the large size of the
parameter space. A suitable approach for such problems is the conjugate gradient method.
The conjugate gradient is an iterative two-step scheme, which is repeated until a satisfying
solution has been found. (See Figure 8)

From experiments it has been observed that reconstruction of the undersampled radial images
with Eq. (6), still leads to streaking artifacts[2]. One of the reasons why reconstruction fails,
is that solution space is too large. By using some prior knowledge about the true object, this
space can be restricted. This requires extension of Eq.(6) with quality weighting/ penalty
terms, which result in:

1
STmIE+ D AR (9)

where R; contains the penalty functions. The coefficients \; represent the tuning factors for
shifting the preference from matching the image to the measured data, according to the prior
knowledge.
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In radial MRI there are several choices to restrict solution space: penalize image intensities
outside FOV, suppression of negative values and restriction of total variance(TV). TV is based
on the fact that the true object and aliasing effects have a different appearance.
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Figure 8: Schematic diagram of the proposed iterative reconstruction technique. The procedure has
been formulated as an inverse problem. The solution employs a nonlinear conjugate gradient method
to obtain an image estimate that complies with the measured data as well as prior knowledge.

2.3.1 Compressed Sensing

In CS, a relatively small number of 'random’ linear combination of the signal values is mea-
sured, which implies that it is an undersampled signal. The underlying signal is compressible,
because the nominal signal sampling(Nyquist criterium) is a gross overestimate of the effec-
tive number of ’degrees of freedom’ of the signal. As a result, the signal can be reconstructed
using a non linear reconstruction(ly regularization) technique.

Sampling

Compressed sensing is based on the premise that raw data in dynamic imaging exhibit corre-
lations in k-space and in time[13], allowing to reconstruct the image with a reduced amount of
data, without compromising the spatiotemporal resolution. Compressed Sense uses the prop-
erty of sparsity of images. Fach image is more or less sparse than others. So if the underlying
image exhibits transform sparsity and if k-space under sampling results in incoherent artifacts
in the transform domain, then the image can be recovered from randomly under sampled fre-
quency domain data, provided an appropriate nonlinear recovery scheme is used. Thus the
aim is to design a practical sampling scheme that exploits the interference properties, in the
frequency domain. No interference means that there is no strict relation between measure-
ments. A sampling method must be designed to guarantee this. In Sparse MRI[12] different
sample schemes are compared with the Transform Point Spread Function(TPSF) analysis,
which quantifies the interference of measurements. Comparison of different Fourier analysis
shows that the peak interference is significantly reduced by using a 3 dimensional Fourier
transform [11](which is good, because the need for speed is highest in 3D imaging). 3D imag-
ing is more attractive because the spatial resolution is the in all direction(isotropic voxels)
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and it will leads to higher SNR. But sources of artifacts present during scanning will affect
all slices in a 3D scan|[21].

K-space
CS is characterized by incoherent measurements.The optimal gradient waveform to obtain
this is the spiral trajectory, follows the TPSF[11](see figure 2).

Reconstruction(Regularization)

In compressed sensing the objective is to get a sparse solution, where /; leads to a sparse so-
lution and Iy penalizes large coefficients heavily. In compressed sensing the small coefficients
must be penalized, not the large. In [, many small coefficients tend to carry a large penalty
than a few large coefficients, therefore small coefficients are suppressed and solutions are often
sparse[4]. So both regularization methods do not lead to the same level of sparseness, because
[1 drives many coefficients to zero.

3 Accelerating Cardiac Cine 3D Imaging using k-t BLAST,
Compressed Sensing and ”Real time MRI at a resolution of
20ms”

An application of real time imaging technique is to make cine acquisitions of the moving heart.
A real time cine acquisition of the heart makes it possible to directly monitor the contracting
heart and the resulting blood flow. It could help by the diagnosis of typical heart failures
such as myocardial insufficiency. Here we discuss three methods: k-t BLAST[10], Compressed
Sensing[14] and ”"Real time MRI at a resolution of 20ms”.

3.1 K-t BLAST

In general, each new application of k-t BLAST requires careful considerations, since the distri-
bution in K-T BLAST depends on how the image content is distributed in x-f space. However,
the high degree of correlation in both space and time makes cardiac cine imaging very suitable
for this method.

The key challenge is that the k-t concept is applied to the pseudo-time axis which refers to
cardiac phase acquisition with cardiac gating rather than real time imaging.

In practice,the subject must hold his/her breath when the acquisition of multiple frames is
started. A potential problem can be misregistration of the frames, between the phases of
acquisition.

Two solutions are given by Kozerke et al.[10] to deal with this problem: single breath hold
sampling and using multiple receiver coils to reduce scan time.

The single breath hold sample strategy implies interleaved acquisition of the low resolution
training data, which enables the acquisition of data in a single scan. With the low resolution
training data, an estimate of the expected signal in x-f space is obtained. The clinical useful-
ness of this technique is questionable because it requires long breath-holds(25-27 sec.), which
may be challenging for patients. However, the breath-hold time could be reduced by using
k-t SENSE, but this is not yet investigated.

In all subjects, the reconstructed images were artifacts-free. Also good consistence of acqui-
sitions between the frames were found(Root mean square error was low). Also by using the
scanner implementation for single breath hold sampling as described by Kozerke et al.[10] it
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was possible to acquire data sets of the heart at high spatial resolution(2 * 2 * 5mm?) with
a temporal resolution of 33 ms in a single breathhold lasting 21 seconds. The acquisition
strategy was well tolerated by healthy subjects and patients In all subjects, the reconstructed
images were artifacts-free. Also good consistence of acquisitions between the phases are
found(Root mean square error is low). The breath-hold time could be reduced by using k-t
SENSE, but this is not yet investigated. By using the scanner implementation described by
Kozerke et al.[10] it was possible to acquire volumetric data sets of the heart at high spatial
resolution(2 * 2 * 5mm3) with a temporal resolution of 33 ms.

3.2 Compressed Sensing

CS is suitable for making a cine acquisition of the moving heart. Dynamic imaging requires
high spatial - and temporal resolution which encourages undersampling. CS is ideal for
resolving the undersampled artifacts.Using the method described by Lustig et al.[12] it was
possible to acquire data sets of the heart at high spatial resolution(2.5 x 2.5 * 2.5mm?) with
a temporal resolution of 40 ms[14]. The challenges of making a cine acquisition of the heart
are nearly the same as in k-t BLAST. The sampling pattern of k-t BLAST can also be used
here,because it results in a sparse solution. The only problem of sampling along a congruent
line is getting too much interference in the measured signal. The solution is a random order
in the acquisition of k-space lines in time (see right figure 5).

The clinical usefulness of CS is however still questionable because of long computation time
and the reconstruction quality in terms of clinical significance which are two of the main
problems.

3.3 ”Real time MRI at a resolution of 20ms”

In an article of Uecker et al. a method is presented to reduce the temporal resolution to 30ms
of the moving heart[24]. The real-time method combines the following: (i) FLASH MRI, (ii) a
radial encoding scheme and (iii) an iterative nonlinear reconstruction method.

FLASH is based on the application of reduced flip angles: for excitation, the acquisition of
magnetic field gradient echoes and considerably shortened repetition times[7].

Radial encoding is used to increase imaging speed and is suitable for organs showing quasi-
periodicity processes such as the heart.Radial k-space sampling is preferred above spiral sam-
pling, because radial sampling results in fewer motion artifacts and improved heart wall
definition compared to spiral k-space sampling[9]. Each single turn corresponds to a full im-
age and contains only 15 radial spokes distributed over a full 360 degrees circle in order to
homogenously sample the k-space. The chronological order of the acquired spokes was chosen
to be sequential in each turn.

Reconstruction of the undersampled data was performed by an iterative nonlinear reconstruc-
tion method with Iy regularization.

For the heart the combined method performed without synchronization with the electrocardio-
gram and without breathholds. This is not only beneficial for the patients but also expected
to improve the diagnostic quality of the examination by eliminating motion artifacts and
temporal blurring in cine reconstruction for multiple heart beats. Using the implementation
by Uecker et al. [24] a high spatial resolution (2 %2 * 8mm?) with a temporal resolution of 30
ms is reached. Drawback of this combined method is the computation time.
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4 Discussion and Conclusion

I have presented briefly the theory of SENSE, k-t BLAST /k-t SENSE, Nonlinear reconstruc-
tion and Compressed Sensing. On examining each of the techniques, the following findings
came up for discussion. SENSE technique requires multiple coils for undersampling and time
consuming because of the long numerical calculation times which is a disadvantage. K-t
BLAST uses prior information to be used and needs high degree of correlation in both space
and time. K-t sense needs to be completely investigated so as to be used in real time. Nonlin-
ear reconstruction techniques require prior knowledge about the object of to restrict solution
space. The object of interest can be for example cardiac cine imaging. Compressed sensing
which is an example of a non-linear reconstruction technique has a similar disadvantage

A rather new method wherein different existing techniques are combined is also discussed
here[24]. Tt was evaluated with one object of interest i.e., cardiac cine imaging, where also
the performance of other different approaches discussed here are evaluated.

It is seen that combining different techniques (FLASH MRI, a radial encoding scheme and
an iterative nonlinear reconstruction method), as described by Uecker et al.[24], is the most
promising real time imaging approach that we see today. It’s because of the high spatial reso-
lution, temporal resolution and mainly least burdensome for patients because they do not need
to hold their breath at all in contrast to the other techniques. In comparison with MRI recon-
structions based on compressed sensing, this approach does not require sparsity and therefore
reduces the complexity of the minimization problem. The combined techniques does not de-
pend on the specific nature of K-t space, as required, for example, for UNFOLD (unalisaing by
Fourier-encoding the overlaps using the temporal dimension) and TSENSE (adaptive sensitiv-
ity encoding incorporating temporal filtering), which is also required for K-t BLAST /SENSE.
A drawback of combined techniques is however the long computation time.

On the other hand, it’s needed that the techniques like CS for rapid imaging, different sam-
pling trajectories and reconstruction algorithms are needed to speed up the acquisition of
the frames. This is due to the hardware limitations and the different types of reconstruction
methods used.

Even though the k-t BLAST/SENSE and the compressed sensing approach appear drastically
different, a close look at the algorithms however reveals the striking similarities[8]. It was
seen from Jung et al. that the diagonal signal covariance matrix in k-t BLAST /SENSE was
originally designed to obtain a sparse solution by successively solving quadratic optimization
problems.

This doesn’t mean that other techniques as described in the thesis are amortized. Com-
pressed Sensing is for example still in its infancy. Many crucial issues remain unsettled, but
the potency is there. If theoretical and practical research problems in CS are solved, it can
be considered as a potential technique.
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