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Abstract

In this study simulated microwave-link information is used to com-
pute maps of areal precipitation (rainfall fields) for the Netherlands.
Simulated information from 2032 microwave links active in January
17th - 2011, are constructed from radar data.Corrected radar data
from the KNMI weather radar are used to validate the estimated re-
sults. Interpolations are carried out by the geostatistical technique
Ordinary Kriging. For this technique, applied semivariograms are
obtained on: 1) spherical models fitted to the experimental semivar-
iograms computed for the corresponding data sets; 2) seasonal var-
iogram parameterizations proposed and developed by van de Beek
et al. (2011a,b). The estimated rainfall fields show good accuracy at
regional and local scales in areas where microwave link density is high.
Local cases are presented for the cities of Utrecht and Rotterdam (the
Netherlands). Semivariogram temporal downscaling is carried out for
time-aggregation scales of 15-minute, 1-, 3-, 6- and 12-hour. For these
scales, estimated rainfall fields are obtained and filtered to account for
the percentage of microwave links not registering rainfall attenuation
in their signals. The Mean Error (ME), Root Mean Squared Error
(RMSE) and Variance Ratio (VR) are computed in order to inves-
tigate the bias, accuracy and variability of rainfall field estimations
for different time scales.The highest correlation is found for the 6-h
aggregated time scale. Overall, good results are obtained for the other
time scales, suggesting that the developed methodology is suitable for
automatic rainfall estimation at small aggregated time scales.
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1 Introduction

The main scope of the present study, is to develop a methodology for the
generation of interpolated rainfall fields at 24-hour and smaller time scales,
based on simulated microwave link rainfall measurements. Accurate rainfall
fields are the essential driving input of all processes involved in the terrestrial
part of the water cycle, (Lanza et al., 2001).

The state-of-the-art in rainfall measurements accounts for instruments
that detect and quantify different properties of rainfall depending on their lo-
cation. Michaelides et al. (2009) reviews the applicability and theory behind
disdrometers, rain gauges, radars and satellites. Rain gauges provide the only
physically direct method of collecting and measuring rainfall, generally pro-
viding relatively accurate point estimates, especially for low-to-intermediate
intensity rainfalls, (Muller and Kidd, 2006). The main drawback of rain-
gauge measurements is their point nature, requiring the use of interpolation
techniques for rainfall field estimation, (Creutin et al., 1988). Muller and
Kidd (2006) also highlight some drawbacks in rain-gauge measurements such
as their coarse resolution to detect significant changes in rainfall rate; and
rainfall overestimation at low intensities (< 50mm · h−1), and underestima-
tion at higher intensities (> 100mm · h−1). Wind, evaporation and the spatial
and temporal variation of the drop size distribution are also considered, by
Michaelides et al. (2009), as drawbacks in the use of rain gauges. The ad-
vantage of radar rainfall measurements is the real time monitoring of a wide
area from a single point with high spatial and temporal continuity and res-
olution, (Sauvageot, 1994). The disadvantages of radar technologies come
from the potential inaccuracies in the measurement of the reflectivity fac-
tor Z, attributed to radar calibration, attenuation, anomalous propagation,
beam blockage and range effects, (Hunter, 2009). Rainfall measurements by
radar still require correction to produce reliable rainfall fields. In this study
corrected radar rainfall measurements are used as validation data (“ground-
truth”), due to their correspondence at small time scales with microwave link
measurements.

Despite recent and cutting-edge implementation of microwave link tech-
nology in rainfall estimation (Zinevich et al., 2008; Goldshtein et al., 2009;
Leijnse et al., 2007b), this technique is still in development. Given its po-
tential, the application of microwave link technology in rainfall estimation is
suitable for three main reasons: 1) the broad use of microwave link networks
all around the world, builds up the possibility for large sources of informa-
tion, especially in countries with scarce conventional networks, like manual
or automatic rain gauges; 2) the spatial characteristics of such networks allow
to incorporate not only many more rainfall measurements but line-averages,
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being these latter more representative of areal rainfall than point measure-
ments; 3) this technology allows measurements at very small time intervals,
which is very useful not only for urban analysis but many other cases where
rainfall-runoff processes take place at very short time scales.

Diverse methods of interpolation have been developed, implemented and
studied for rainfall field estimation (Cuccoli et al., 2011; Schuurmans et al.,
2007). In this study a statistical method of interpolation is applied because
apart from an estimated value, the variance of the estimation error can also
be calculated. Ordinary Kriging is selected for its fundamental characteris-
tic of considering the variation of the mean across the studied area. Daily
rainfall information from January 17th-2011 8:00 UTC to January 18th-2011
8:00 UTC, is aggregated into six time scales: 15 minute, 1-, 3-, 6-, 12- and
24-hour. Estimated rainfall fields are computed following the methodology
proposed and developed by van de Beek et al. (2011a,b) for downscaling
semivariograms. Simulated microwave link data is obtained from the same
data set used for validation. The Variance Ratio is proposed as a key metric
in the analysis of the correct estimates of the variance. The accuracy of esti-
mates is estimated by looking for the Mean Error (bias) and the Root Mean
Squared Error (accuracy).

Two main components represent the aggregated value of this study in the
estimation of rainfall fields: a) The use of a large microwave link network and
the possibility for using a good validation data set; b) The use of simulated
microwave link data and corrected radar data for temporal disaggregation of
rainfall at small time scales (< 1 hour). The remaining part of this thesis is
divided as follows: section 2 describes the general principles and the theory
behind microwave link technology and its use in rainfall estimation. Section
3 presents the mathematical concepts of semivariogram models, Ordinary
Kriging and related geostatistical features. The van de Beek approach is
also detailed in this section. The methodology developed for rainfall field
estimation is presented in section 4. Results and their analyses are discussed
in section 5. Conclusions and recommendations in section 6.

2 Microwave Links

The broad use of cellular communications nowadays, enables the use of fixed
and commercial microwave radio networks for rainfall estimation. Wire-
less communication networks can be useful in measuring precipitation and
complementing existing measurement systems like rain gauge networks and
weather radars. The high link density in such networks, make them suit-
able for regional rainfall monitoring in combination with operational weather

3



radars (Leijnse et al., 2007b). Rain gauges have a high degree in accuracy
when measuring precipitation, and often few rain gauges are available; but
given that these measurements are represented as points in space, they do
not provide a reliable spatial description of rainfall variability. Messer et al.
(2006) highlight some useful properties of microwave radio networks such as:
their capability for measurements close to the ground, and their operating
frequencies in tens of GHz. Their deployment, allows near-surface rainfall
measurements. On the other hand, Zinevich et al. (2008) points out some
sources of uncertainty when estimating rainfall intensities from attenuation
measurements such as: the variability of the drop size distribution (DSD)
along the link, the attenuation due to wet antennas, the determination of
clear air attenuation due to water vapor-induced attenuation, and scintilla-
tion effects. Besides these uncertainties, cellular communication providers
are interested in having the least possible attenuation through the network.
They design and optimize their networks for communication tasks around
the frequency of the signals, the geometry of the links and their lengths,
and the received signal level (RSL) measurement protocols; hence, making
challenging the use of such networks for hydrologic purposes (Messer, 2007).

It is not completely right to think of microwave links as straight lines
(from transmitter to receiver) or to only attribute the attenuation in their
signals to rainstorms. In reality, the beam of the signal is more like a narrow
cone widening as it leaves the transmitter (Upton et al., 2005). Rainfall is
not the only source of attenuation, and although it is true that it causes
the strongest variations in the signals, variations are also due to atmospheric
adsorption, being dependant on temperature, pressure and humidity. Hence,
the strength of the received signal is never constant, not even in dry condi-
tions (weather). In their work, Upton et al. (2005), present an illustrative
example in which the variations in the received signal strength are depicted
for dry and rainy conditions. The power registered by the signal, when is
not being attenuated by rainfall, is usually called the reference level or base
level.

The temporal resolution of attenuation measurements goes from every
minute to only one minimum RSL measurement per day. In between, there
is equipment designed to only measure the minimum and maximum RSL in 15
minutes or one instantaneous value of power each 15 minutes (Zinevich et al.,
2008). Estimation of space-time rainfall intensities from RSL measurements,
in microwave-links networks, has been studied by Leijnse et al. (2007b) and
Messer et al. (2006). The attenuation of the signal is due to scattering
and adsorption by water droplets. A larger decrease in the RSL will be
registered for an increasing number and size of the raindrops present along the
beam. Atlas and Ulbrich (1977) demonstrated that at frequencies of about
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35 GHz, the power-law relationship, Equation (1), is approximately linear
and independent on DSD and temperature. Accurate rainfall estimations,
along the link, are achieved when using the difference in the attenuation at
two different frequencies, due to the linearity between this difference and the
rainrate (Upton et al., 2005). However, often only single-frequency links are
available.

Rainfall estimation through commercial microwave-links networks can be
performed using a power-law relation between attenuation and rainfall rate
(Atlas and Ulbrich, 1977):

k = a ·R b (1)

where k [dB · km−1] is the specific attenuation and R [mm · h−1] the rainrate.
Overeem et al. (2011) state that in order to be able to derive rainfall intensi-
ties from received signal powers, the point-scale k−R relation [Equation (1)]
could be assumed as a good approximation of path-averaged rainfall intensi-
ties. Thus, Equation (2) expresses the rainfall intensity as a function of the
specific attenuation, where a and b are constants depending on the frequency
of the signal, temperature, size and shape of the raindrops; R [mm · h−1] is
the rainrate; Pref [dB · km] the reference signal level or base line; P [dB · km]
the received signal power and L [km] the microwave-link length.

〈R〉 = a ·
(
Pref (L)− P (L)

L

)b
(2)

Leijnse et al. (2007a) present different values for coefficients a and b estab-
lished in previous studies.

Wet antenna attenuation is also taken into account by Overeem et al.
(2011) when calculating the corrected path-averaged, mean 15-min rainfall
intensity [Equation (3)]. Here, Aa [dB] is the wet antenna attenuation (0 dB
for dry conditions), L [km] the length of the link, Amax and Amin in [dB] the
maximum and minimum rain induced attenuation in the measured interval, a
and b same coefficients as in Equation (2), and α the coefficient determining
the contribution of the maximum and minimum attenuation in the measured
interval. kmax and kmin can be read as the maximum and minimum specific
attenuations in [dB · km−1], where H represents the Heaviside function (H =
0 when its argument is smaller than zero, H = 1 everywhere else).

kmax =
Amax − Aa

L
·H · (Amax − Aa) ,

kmin =
Amin − Aa

L
·H · (Amin − Aa) ,

〈R〉 = α · a[kmax]
b + (1− α) · a[kmin]b

(3)
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2.1 Topology of the microwave link network used in
the present study

The number of links in commercial networks in the Netherlands rises up to
12000 (Leijnse et al., 2007b); but for the present study, only 2032 links are
used as a source of information. Simulated microwave link data come from
the fully active network of T-Mobile in January 17th, 2011. This one-sixth
use of the full microwave link network capacity, in the Netherlands, is due to
the fact that telecommunication service is offered by several providers, most
of the times, owners of their own networks. Nevertheless, when compared to
the manual rain-gauge network, 329 gauges (van de Beek et al., 2011a), or
even with the automatic network, 33 gauges (ibid)1, the number of measure-
ments in time and space, increase substantially the possibility for both better
rainfall field estimations and aggreation of rainfall into short-time scales, 15-
minute for instance. Figure 2 displays the 2032 microwave links used in the
present study. From this figure, it can be observed that the highest densities
occur in the cities of Amsterdam, Den Haag, Rotterdam and Utrecht.
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Figure 1: Histograms of microwave link length (left), and orientation with respect
to the north (right).

The mean value of the microwave links orientation is 179.2 ◦ with respect
to the north2. Figure 1, with frequency distribution of link length and orien-
tation, shows that the microwave links are not orientated in any particular

1Overeem (2009) approximately accounts for 35 gauges for the automatic network and
325 gauges for the manual network.

2For an angle greater than 180 ◦, its supplementary angle is taken.
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direction. This characteristic is important because then the performance
of the rainfall field estimation is not influenced by any directionality of the
microwave link network.

The average microwave link length is 3.1 km; and from what is observed
in Figure 1, 88% of the links have lengths smaller than 6 km. 0.089 km and
25.809 km are the minimum and maximum link-lengths in this network.
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Figure 2: T-Mobile active microwave link network from January 17th-2011 8:00
UTC to January 18th-2011 8:00 UTC. 2032 links.

2.2 How a microwave link network functions

In communication systems, there are different types of links: a) overhead
lines; b) underground copper cables; c) radio; and, in modern times, d) fiber-
optic cables and lasers.
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Microwave link networks are used not only for cellular communications
but for many other services, like the broadcast of programs from studio to
the transmitter location, high-speed Internet access or intercommunication
between specific networks. The broad use of microwave links is due to their
capability for moving large amounts of information at high speeds; and de-
spite some attenuation in the signal, mainly due to rainfall, the transmission
is not disrupted. There are five key components in a simple one-way mi-
crowave link:

¶ Transmitter: produces the signal in which the information is contained.
This information can be telephone calls, text, television or radio pro-
grams, web pages, or any possible combination of these media. The
transmitter not only generates the energy at the required power and
frequency but also modulates the signal.

· Transmission lines: coaxial cables or waveguides (hollow pipes) trans-
port the signal from the transmitter to the antenna or from the antenna
to the receiver.

¸ Antennas: emit and collect the microwave signal from the transmission
line into the free space, or vice versa. Their highly directional factor
allows signal transmission over long distances using small amounts of
power.

¹ Clear path: due to the signal propagation is mainly in straight lines. A
clear path should be established for a successful transmission of data.

º Receiver: extracts the signal from the microwave energy used in its trans-
mission and demodulates its codification to make the signal available
in its original form. Because of the attenuation in the power that the
signal experiences through its travelling from antenna to antenna, the
receiver must be capable of detecting low-powered microwave signals.

The entire process of emitting and receiving the signal is carried out from
antenna to antenna at the speed of light; in practical terms, data transmission
is instantaneous. Figure 3 shows a simple diagram on data transmission
through microwave links.

2.2.1 Making a call from a cellphone

During a cell phone call, the sound waves produced by the user are processed
by the digital signal processor (DSP), embedded in the cell phone, and trans-
formed in binary information. The binary data is splitted into four channels:
a sending channel, a receiving channel, and two control channels which track
the strength of the signal to and from the closest base station (BS). Binary
information is sent to the BS, previously identified by the cell phone, as soon
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as this latter is turned on. The BS sends the call (binary information) to
the related Mobile Switching Center (MSC)3. It is in this part of the process
that microwave links become fully active in emitting and receiving electro-
magnetic signals. If the call is intended to either a land-based phone or a
mobile number of another service provider, the MSC passes the information
to the PSTN (public switched telephone network). The information is either
sent to another MSC or BS or even a land-based phone. This depends on the
device (cell phone or land-based phone) and the location of the user receiving
call with respect to the user making the call. Once the call has reached the
final user, the binary information goes to the DSP, through the receiving
channel, and is back-transformed into sound waves.

Figure 3: Data transmission using microwave links. Taken from Icom America
Inc. (2011).

3 Stochastic Rainfall Modeling

Foufoula-Geourgiou and Krajewski (1995) summarize in detail all the previ-
ous work and advances done in this field. The different approaches that have
been developed in this field, are presented below as a general overview of the
different ways of rainfall modeling from the stochastic point of view.

¶ Point Processes are models based on a random collection of points,
where each point represents the time and location of an event, with
some random value of intensity and duration associated to them. These
models are not able to describe the statistical structure of rainfall over
a wide range of scales and its parameterization is rather cumbersome.

3An MSC is also known as mobile telephone switching office (MTSO).
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· Scaling Models of rain have evolved from fractal geometry, to monofrac-
tal fields, to multifractals, to generalized scale-invariant models, to uni-
versal multifractals.

¸ Multiplicative Cascades have their origin in the statistical theory of
turbulence, where rainfall is analyzed as an analogy to atmospheric
turbulence which dictates a cascading of energy from a large input
scale to smaller scales. Its parameter estimation is also not trivial.

¹ Wavelet Transforms offer a method for decomposing some process into
“atoms” localized not only in frequency but in space. Useful for inho-
mogeneous fields such as rainfall events.

º Other approaches: the diffusion model (which, under some assump-
tions, results in a family of asymptotic probability distributions), sim-
plified dynamics of raindrop processes, Markovian type models, aggre-
gation models, geostatistics and some other probability distribution
models.

Lanza et al. (2001) briefly reviews the evolution of the geostatistical ap-
proach for rainfall modeling; since the early concept of objective analysis
developed by Gandin (1970) in meteorological fields, to the work done by
Matheron (1971) who established an appropriate mathematical background
to the previous work carried out by Krige (1951) in the field of mining en-
gineering. The result was an optimal linear interpolation technique known
as Kriging, which is characterised for being unbiased and minimum in its
variance. The benefit of this technique depends on the a priori knowledge of
the spatial covariance (for stationary random functions) or upon the knowl-
edge of a special function: the variogram, also referred as semivariogram,
(for non-stationary fields).

3.1 Geostatistical framework

The present work is entirely based in the geostatistical approach for two main
reasons: a) Kriging is well-suited technique for interpolation of data points
that are irregularly spaced; and b) interpolation by Kriging not only yields
an estimate of the field itself, but also of the variance of this field.

3.1.1 Semi-Variogram

Using the notation presented by Goovaerts (1997), rainfall intensity [mm] is
represented, in here, as the continuous random variable r (uα), where uα is
the vector of spatial coordinates (x, y) at the α th location. The distance and
direction between any pair of rainfall intensities is represented by the vector
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h. If homogeneity and isotropy is assumed, the vector h can be represented
by its magnitude, i.e., h = |h|.

In geostatistics, measures of similarity are modeled by the covariance and
correlation coefficients, Equations (4) and (5) respectively, where N (h) is the
number of data pairs within the class defined by h, m−h and m+h the means
of the corresponding tail and head values4, and σ2

−h and σ2
+h their respective

variances. Computing either the covariance or the correlation coefficients
for different lags h1, h2 > h1, h3 > h2, . . . will lead to what is known as the
experimental (auto)covariance function or the experimental (auto)correlation
function5. The difference between these two functions is that the latter is a
standardized unit-free measure.

C (h) =
1

N (h)
·
N(h)∑
α=1

r (uα) · r (uα + h)−m−h ·m+h (4)

with m−h =
1

N (h)
·
N(h)∑
α=1

r (uα) and m+h =
1

N (h)
·
N(h)∑
α=1

r (uα + h)

ρ (h) =
C (h)√
σ2
−h · σ2

+h

∈ [−1,+1] (5)

with σ2
−h =

1

N (h)
·
N(h)∑
α=1

[r (uα)−m−h]
2

and σ2
+h =

1

N (h)
·
N(h)∑
α=1

[r (uα + h)−m+h]
2

Conversely to the covariance and correlation functions, the experimen-
tal semivariogram6, Equation (6), is a measure of variability (dissimilarity)
between data separated by a lag h. The semivariogram of a Random Func-
tion characterizes the degree of spatial variability between any two Random
Variables, r (uα) and r (uα + h) in this case, separated by a lag h (Journel,
1989).

γ (h) =
1

2 ·N (h)
·
N(h)∑
α=1

[r (uα)− r (uα + h)]2 (6)

4Tail are all the values taken as initial points of reference; whereas head indicates all
the values separated by the lag h from those initial points of reference.

5Also known as correlogram.
6Also known as empirical semivariogram
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The covariance function and the semivariogram are related through:

C (h) = C (0)− γ (h) (7)

C (0) can either be set equal to the sill of the semivariogram model, i.e., γ (h)
when h→∞, if the random function is a wide sense stationary one7; or can
be set to any arbitrary large value. Equation (7) expresses the reciprocity
between the semivariance and covariance [also Figure 4 (a)]. An increase
in the semivariance indicates less relation among random variables through
the lag h, i.e., a decrease in the covariance. Stationarity is not an intrinsic
property of the actual distribution of the random variables over an area but
a decision made when assuming that the semivariogram, modeled after some
average over the region in study, is assumed representative of the population
in the whole area. This decision is implicit in all statistics and it is not
particular to the geostatistical approach (Journel, 1989).

Figure 4: (a) Reciprocity between semivariance and covariance. (b) Scheme
and parameter representation of a linear combination of Nugget-effect and
Spherical models. Taken from Hengl (2009, p. 17).

Interpolation algorithms, e.g. any Kriging technique, demands the easy
estimation of (semi)variance or covariance values for any possible lag h; there-
fore, the need for fitting continuous and positive definite functions8 to the
experimental semivariogram or covariance model. In practice, every possible

7In a wide sense stationary function, also called homogeneous random function, the
mean is constant, the variance is constant and finite, and the covariance only depends on
the lag h (Bierkens, 2010). Neither the mean nor the variance depend on space or time.

8A function f contained in the domain Ω such that f : Ω → <, where Ω ⊂ <n and
0 ∈ Ω; is said to be positive definite on Ω, if and only if f(0) = 0 and f(x) > 0, for
x ∈ Ω and x 6= 0 (King et al., 2003, p. 381).
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linear combination of basic models can be used to best-fit the empirical semi-
variogram; see Goovaerts (1997, p. 88), Bierkens (2010, p. 81) or Pebesma
(2001, p. 38). Accounting for measurement errors and/or spatial sources of
variation at distances smaller than the shortest sampling interval, will lead
into a discontinuity at the origin of the semivariogram called the nugget
effect, i.e., γ (0) 6= 0 (Goovaerts, 1997, p. 31).

In the present study, Equation (10) is used in fitting the empirical semi-
variograms. This equation is a linear combination of the Nugget-effect and
Spherical models, Equations (8) and (9) respectively; thus, the total semivar-
iogram is given by: γ (h) TOTAL = γ (h)Nugget−effect + γ (h)Spherical.

γ (h)Nugget−effect =

{
0 if h = 0
C0 otherwise

}
with C0 > 0 (8)

γ (h)Spherical =

 C1 ·

[
3

2
·
(
h

a

)
− 1

2
·
(
h

a

)3
]

if h ≤ a

C1 otherwise

 (9)

with a and C1 > 0

γ (h)TOTAL =


0 if h = 0

C0 + C1 ·

[
3

2
·
(
h

a

)
− 1

2
·
(
h

a

)3
]

if 0 < h ≤ a

C0 + C1 otherwise

 (10)

with a, C0 and C1 > 0

Figure 4 (b) presents a graphical description of the parameters associated
with the linear combination of the Nugget-effect and Spherical models. The
range a is the distance at which random variables are still correlated. Fur-
ther away of this point (h ≥ a) the semivariance reaches the sill C, that is,
becomes constant and maximum. If the Random Function R is wide sense
stationary, the sill C is equal to the variance, i.e., γ (h ≥ a) = C = σ2

R.
Figure 5 shows different representations of the empirical semivariogram

for 2032 simulated microwave link values of daily rainfall intensity in January
17th, 2011. If every individual point-pair semivariance, of the whole data set,
is plotted against every possible lag h, the result will look like a very dense
cloud of points, Figure 5 (left). If all the possible h-lags are grouped into bins
(h1, h2>h1, h3>h2, . . . ), and the semivariances are averaged accordingly to
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these bins, the semivariogram will look like a noisy (and continuous) function,
Figure 5 (centre and/or right).

The fitting of a semivariogram model to the empirical semivariogram is
done by iteratively reweighted least squares (WLS); minimizing Equation 11,
with wα either equal to N (h) or to N (h) · γ (h) −2

α , Pebesma (2001).

N(h)∑
α=1

wα · [γ̂ (h)α − γ (h)α]2 (11)

After the selection of a “guess” value, each iteration is made over: a) a
direct (least squares) fit of the partial sills; and b) an iterated search, using
gradients, for the optimal range value(s). The iterative procedure ends after
exceeding 50 iterations or when the fitted model has converged, that is,
when the change in the weighted sum of squared differences between the
semivariogram model and empirical semivariogram becomes less than 1.0 e−6

times the last value of this sum of squares, Pebesma (2001, 2011). The fitting
is done using the Gauss-Newton method with (mostly) analytical derivative
functions.

Figure 5: Empirical semivariogram models for 2032 simulated microwave link
values of daily rainfall in January 17th, 2011. The red line represents the
fitted curve (semivariogram) for the empirical semivariogram using a spheri-
cal model. Parameters for the fitted semivariogram with 70 classes of h and
maximum lag of 200 km: range 162.97 km, sill 13.13 mm2 and nugget 1.32
mm2 (centre). Parameters for the fitted semivariogram with 20 classes of h
and maximum lag of 18 km: range 4.73 km, sill 2.51 mm2 and no nugget
(right).
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3.1.2 Ordinary Kriging

Kriging techniques, after Krige (1951), are a family of generalized least-
squares regression algorithms used to estimate the value of a continuous
attribute r, at any unsampled location u, using n sampled r-data, i.e.,
{r (uα) , α = 1, . . . , n} within a region A. The different kriging techniques:
simple, ordinary, with a trend, factorial, of residuals, with external drift(s),
Poisson, etc.; are variants of the basic linear-regression estimator R ∗(u):

R ∗(u)−m (u) =

n(u)∑
α=1

λα (u) · [R (uα)−m (uα)] (12)

with λα (u) the weights assigned to datum r (u) [here expressed as realiza-
tions of the Random Variable (RV) R (uα)]; m (u) and m (uα) the expected
values of the RVs R (u) and R (uα). Only the n (u) data within a given
neighborhood W (u) centered on u, are retained and used in computing the
estimator R ∗(u).

The preference for using Ordinary Kriging (OK) as the interpolation al-
gorithm in the present study, is due to its capability for accounting local
variations of the mean, within the study area A, by limiting the domain of
stationarity of the mean to the local neighborhood W (u) centered on u, the
location of the estimator R ∗(u). In OK the mean m (u) deemed constant but
unknown, ∀ u ∈ W (u); and is filtered from the linear estimator by forcing
all the weights λα (u) to sum 1. The OK estimator R ∗(u) is unbiased since
the error mean is equal to zero, i.e., E {R ∗(u)−R (u)} = m (u)−m (u) = 0
(Goovaerts, 1997); thus, the OK estimator R̂OK(u) can now be rewritten as
a linear combination only of the n (u) RVs R (uα):

R̂OK(u) =

n(u)∑
α=1

λOKα (u) ·R (uα) with

n(u)∑
α=1

λOKα (u) = 1 (13)

The n (u) weights λOKα (u) are also determined to minimize the error variance.
When minimizing the error variance σ 2

E(u) = V ar
{
R̂OK(u)

}
+V ar

{
R (u)

}
−

2·Cov
{
R̂OK(u) , R (u)

}
, the definition of a Lagrangian L (u) has to be made.

The Lagrangian L (u), also called Lagrange multiplier, is a function of the
data weights λOKα (u) and a Lagrange parameter 2·µOK(u) (Goovaerts, 1997,
p. 133). The optimal weights λOKα (u) are obtained by setting to zero the
[n (u) + 1] first partial derivatives of the Lagrangian L (u) with respect to
its variables λOKα (u) and 2·µOK(u). Hence, the Ordinary Kriging predictor
R̂OK(u), for the single location (u), is a system of [n (u) + 1] linear equa-
tions with [n (u) + 1] unknowns: the n (u) weights λOKα (u) and the Lagrange
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parameter µOK(u). This linear system can be expressed in terms of the semi-
variance when accounting for Equation (7):

R̂OK(u) =



n(u)∑
β=1

λOKβ (u) · γ (uα − uβ) + µOK(u) = γ (uα − u)

α = 1, . . . , n (u)
n(u)∑
β=1

λOKβ (u) = 1

(14)

The advantage in using this kind of statistical-interpolation technique(s)
is that it also allows to estimate the associated uncertainty of the predicted
estimator R ∗(u). Thus, the minimum error variance9 of the OK predictor
σ 2
OK(u) is obtained by:

σ 2
OK(u) =

n(u)∑
α=1

λOKα (u) · γ (uα − u) + µOK(u) (15)

A unique solution of the linear OK system, Equation (14), and a positive
OK variance, Equation (15), is ensured only if the semivariogram function is
chosen to be “conditionally positive definite” (Bierkens, 2010, p. 130).

3.2 The “van de Beek” approach

The seasonal variation of fitted semivariogram parameters for a spherical
model, i.e., range and sill, is studied by van de Beek et al. (2011a,b). Such
seasonal variation is found to be well described, and reasonably accurate, by
simple cosine functions. The study is based on rainfall rainrates registered
in the last 30 years; carried out not only across the entire Netherlands but
also for accumulated intervals of 1, 2, 3, 4, 6, 8, 12 and 24 hours. The
model describing the seasonal variation of the fitted parameters is expressed
through the cosine function:

xt = [x0 + A · cos (2 · π · f (t− t0))] 4 (16)

with xt the parameter to be estimated: range or sill; t [1, 365] the day of the
year for which the parameters have to be computed. The angle for which
the cosine has to be calculated is expressed in radians. Table 3 gives the
values of the different coefficients in Equation (16), according to the fitted
parameter being estimated.

9Sometimes referred to as the estimated variance of the prediction error.
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3.2.1 Downscaling

¶ Parameters Ratio: due to the similarity between the seasonal variation
of the sill and range throughout the different time scales; the ratio of
the p-parameter, sill or range, of a 24-hourly-based semivariogram over
the same p-parameter of any other smaller time scale, can be modeled
as a power-law function of the form y = a · x b, with x [hours] the time
scale for which the 24-hour parameters are to be downscaled. Table 1
gives the coefficients a and b of this power-law function for the sill and
range parameters.

Table 1: Parameters of the power-law functions describing the ratio of 24-
hourly sill and range parameters over any other smaller time scale(s).
The corresponding standard errors are also given. Taken from van de
Beek et al. (2011b).

p -parameter a b ε

Range 2.92 -0.34 3× 10−2

Sill 0.04 0.94 3× 10−3

· Cosine functions: the same power-law function y = a ·x b is obtained, in
here, not from the p-parameters but from the coefficients A, t0 and x0
of the seasonal-variation model [Equation (16)]. For each p-parameter
(range or sill), Table 2 gives the coefficients a and b of the power-law
functions used in downscaling every coefficient in Equation (16).

Table 2: Coefficients of the power-law functions of the range and sill cosine-
function parameters, for any time interval between 1 and 24 hours.
Corresponding standard errors are also given. Taken from van de
Beek et al. (2011b).

parameter coefficient a b εa εb

Range
x0 15.51 0.09 0.26 0.009
A 2.06 -0.12 0.09 0.023
t0 7.37 0.22 0.98 0.067

Sill
x0 0.82 -0.25 0.010 0.007
A 0.20 -0.37 0.003 0.007
t0 162.00 -0.03 0.400 0.001

17



Table 3: Cosine functions parameters of the sill and range for the daily-fitted
spherical semivariograms. Taken from van de Beek et al. (2011a).

parameter 1/f A t0 x0

Range 365 1.30 2.5 19.77
Sill 365 0.31 217.9 1.83

4 Methodology

Estimation of rainfall fields was carried out mainly in two parts: 1) for daily
time scales, i.e., for 24-hour; 2) for smaller time scales, i.e., from 15-min to
12-hour. In both cases the Ordinary Kriging estimator was computed for the
entire area of the Netherlands, 41848 km2 10.

4.1 Data

Three different data sets were used in the interpolation procedure:

¶ Corrected radar data: for every five minutes was used as validation
data. The correction is made using the manual and automatic rain
gauge network of KNMI (Royal Netherlands Meteorological Institute),
Overeem (2009, p. 41). Because microwave link data is given in maxi-
mum and minimum power over 15-minute intervals, the 5-minute cor-
rected radar data are accumulated to 15-minute data to be consistent
and comparable to microwave link data. Corrected radar data is consis-
tent throughout the time scales within 24-hours (or even larger scales),
i.e., adding up 96 15-minute intervals is equal to rainfall values for
24 hours, and so on for other smaller time scales. Each rainfall field
generated by this data consists of 38063 pixels covering the entire land
surface of the Netherlands. The spatial resolution is 1 km2. This set
contains data of a stratiform rainfall event from January 17th 8:00 UTC,
to January 18th 8:00 UTC, 2011.

· Simulated microwave link data: (also referred in this work as path-
averaged data) is obtained from the corrected 5-minute radar data.
Path-averaged rainfall intensities were derived from the radar pixels
covering each microwave link-path for each 5-minute step. From these
data, 15-minute path-averaged radar rainfall intensities are derived.
Simulated microwave link data is preferred above microwave link data.

10Data extracted from http://en.wikipedia.org/wiki/Netherlands.
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The main scope is not to evaluate how accurate are the microwave link
measurements but to evaluate an interpolation technique, or procedure,
for the generation of accurate rainfall fields when compared to the real
event; this latter, represented by the corrected radar data set. As was
said before, simulated microwave link data is packed in 15-minute in-
tervals; and the value of the 15-minute path-averaged radar rainfall
intensity is assigned to the middle of the link. Therefore, 2032 simu-
lated rainfall values represent the T-Mobile microwave link network of
the Netherlands for that day. Assigning the value to the middle of the
link seems to be the more logical procedure, because it is unknown how
the rainfall is distributed along the path of the link.

¸ Radar data in the middle of the link: (also referred as centered-link
pixel data) is used to contrast the differences in rainfall estimation,
when using the pixel (rainfall value) falling right below the middle of
the link, instead of averaging all the pixels falling under the path of
the link. Like simulated microwave link data, there are 2032 values
of rainfall representing the centers of all links in the network for each
15-minute interval.

4.2 Daily rainfall field estimation

In this part of the research, all the rainfall fields are estimated for 24-hour
(daily) rainfall intensities. In both parts, sections 4.2 and 4.3, estimates are
performed over the spatial grid of the corrected radar data set.

For the data sets described in section 4.1, spherical-semivariogram mod-
els are fitted to the corresponding empirical semivariograms. These fitted
semivariograms are computed for short- and large-range models, ∼5 km and
∼ 150 km respectively. Short-range semivariograms refer to semivariograms
fitted for a maximum radius of 16 km, i.e., the largest possible lag between
two measurements looked for; meanwhile for large-range semavariograms a
maximum radius of 200 km was looked for. Spherical semivariograms follow-
ing the van de Beek approach (van de Beek et al., 2011a) are also computed.
With all these semivariance models, rainfall field estimation is carried out
applying Ordinary Kriging for every corresponding data set, path-averaged
and centered-link pixel values. Rainfall field estimation with permutation
between semivariogram models and data sets is also done.

Although short- and large-range semivariogram models are also fitted to
all pixel values from the corrected radar data set, and used in OK estimates
for the other two data sets; by its nature, there is no sense in trying to apply
any interpolation technique to this set of values.
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4.3 Sub-daily rainfall field estimation

Rainfall fields estimations are again carried out applying OK using this time
downscaled semivariograms. The downscaling is done following the van de
Beek approach (van de Beek et al., 2011b) described in section 3.2.1 for both
methods, Parameters Ratio and Cosine Functions. The semivariogram to
which these two methods are applied to, is the large-range spherical model
for the path-averaged data set. This data set is aggregated into five different
time scales: 15-minute, 1-, 3-, 6- and 12-hour; and rainfall fields are estimated
for every data subset within each time scale including the 24-hour scale, e.g.,
96 outcomes are obtained by OK for the 15-minute scale, 24 outcomes for
the 1-hour scale and so forth.

Along the 24-hour rainfall event, interpolated negative values of rainfall
are expected in places where no precipitation is registered. The definition of
a threshold is needed in order to surpass this situation. Such a threshold is
established independently for every interpolated rainfall field in the following
way: 1) for the time interval in which the interpolation is carried out, the
percentage of all simulated microwave links in the network registering any
precipitation is calculated; 2) the interpolated rainfall field (38063 pixels) is
sorted from large to small rainfall values; 3) from the highest to the lowest
rainfall value, the percentage is applied to this data subset11; and the values
that have a corresponding cumulative frequency [%] lower than this percent-
age are said to be below the threshold. Although the threshold does not
guarantee that all the values above this latter will be positive; it does allow
to account for no rainfall areas in estimated rainfall fields.

Three different procedures are applied to the estimated rainfall fields for
their posterior statistical analysis: 1) no threshold is applied to the estimated
rainfall field, i.e., every possible negative value is used in the analysis; 2) all
the interpolated rainfall values falling below the threshold are set to zero, and
used in the analysis; 3) all the interpolated rainfall values falling below the
threshold are dropt out of the data subset, and the remaining values are used
for analysis. Having done this post-processing of the interpolated rainfall
fields, scattergrams of interpolated rainfall values against corrected radar
data are plotted for every time scale, for both downscaling methodologies.
Pearson and Spearman correlation coefficients are computed from these data
sets.

11The term subset makes reference to the fact that the 24-hour rainfall event, here
studied, could be divided into n-subsets of the i-aggregated scale, e.g., there are 8 subsets
of path-averaged data in a 3-hour scale.
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4.4 Metrics

The following metrics were used to asses the quality of the interpolated rain-
fall fields.

¶ Mean Error (ME): gives the mean bias of the estimated rainfall fields
for the time scale in consideration. If the estimator is not unbiased, the
difference between the estimator and the true value is called the bias of
the estimator (Montgomery and Runger, 1999, p. 265). The estimated
rainfall value is said to be unbiased if it is equal to the actual value of
rainfall, i.e., ME = 0. For ME larger than 0, the averaged rainfall
fields overestimate the actual field (“ground-truth”), and the opposite
is true for ME smaller than 0.

· Root Mean Square Error (RMSE): gives the accuracy of the esti-
mated rainfall field regarding to the actual field. The RMSE measures
the departure of the estimated values from the actual ones; therefore,
the closer this metric is to 0, the better is considered the estimator
(Helsel and Hirsch, 1995, p. 358).

¸ Variance Ratio (VR): gives the amount of variance in the estimated
rainfall field that is explained by the Kriging variance. For V R values
smaller than 1, the Kriging variance overestimates the true variance,
and the opposite is true for V R larger than 1. The closer this met-
ric is to 1, the better the Kriging. The variance measures the actual
uncertainty of the interpolated values.

ME =
1

N ·P (uα)
·
N∑
i=1

P (uα)∑
α=1

[[
R̂OK(uα)

]
i
−
[
R (uα)

]
i

]
(17)

RMSE =

√√√√ 1

N ·P (uα)
·
N∑
i=1

P (uα)∑
α=1

[[
R̂OK(uα)

]
i
−
[
R (uα)

]
i

]2
(18)

V R =
1

N ·P (uα)
·
N∑
i=1

P (uα)∑
α=1

[[
R̂OK(uα)

]
i
−
[
R (uα)

]
i

]2
−
[
ME

]2[
σ 2
OK(uα)

]
i

(19)

The above metrics are chosen as measures of bias, accuracy and variabil-
ity of the estimated rainfall fields, Equations (17), (18) and (19) respectively;
whereR (uα) is the “ground-truth” value of rainfall12, R̂OK(uα) the estimated
rainfall value by Ordinary Kriging, P (uα) the total number of interpolated

12R (uα) a realization of the random variable r (uα), where uα is the vector of spatial
coordinates (x, y) at the α th location (Section 3.1.1).
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locations for every estimated rainfall field [38063 pixels], N the total number
of estimated rainfall fields per time scale analyzed, e.g., 96 for the 15-minute
aggregated scale, and σ 2

OK(uα) the variance obtained after applying Ordi-
nary Kriging [Equation (15)]. The Mean is also calculated as an absolute
parameter of reference when MEs and RMSEs are analyzed. These metrics
are computed for every time scale within 24 hours, for both downscaling
methodologies.

5 Results and Analysis

Analysis of the results are presented following the methodology described in
section 4, for the two main parts in which this study is divided: daily and
sub-daily rainfall field estimation.

Table 4: Parameters of spherical and nugget-effect semivariogram models, ob-
tained when fitting their corresponding empirical semivariograms for the
three different data sets, and the van de Beek methodology. LR stands for
large-range semivariograms, SR stands for short-range semivariograms.

Data set Parameter Unit LR SR

Corrected Radar
Range km 219.745 54.085
Sill mm2 11.645 3.371
Nugget mm2 0.065 –

Path Averaged
Range km 147.970 4.767
Sill mm2 12.785 2.506
Nugget mm2 1.110 –

Centered-link pixel
Range km 154.082 4.349
Sill mm2 12.907 2.474
Nugget mm2 1.178 –

van-de-Beek model
Range km 195.372 –
Sill mm2 5.535 –

5.1 Daily rainfall field estimation

For the three different sets of data described in section 4.1, short- and large-
range empirical semivariograms were computed for 24-hour rainfall to ac-
count for local and regional variability. Total semivariograms models (a linear
combination of nugget-effect and spherical semivariograms [Equation (10)])
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were fitted to all these empirical semivariograms, except for the van de Beek
model which is a fitted model itself. Parameters of the fitted models for each
data set for short and larges ranges are presented in Table 4.
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Figure 6: Empirical and fitted semivariogram models for a 24-hour rainfall event
in January 17th, 2011. The red line represents the fitted spherical model.
The first part of the label indicates the data set used; the second part,
whether it is a short- or large-semivariogram. Parameters for each fitted
semivariogram are presented in Table 4.

Figure 6 shows six out of the seven possible models used in the present
study. The large-range semivariogram for the corrected radar data set (Fig-
ure 6 top-left), represents the actual semivariogram for the rainfall event of
January 17th, 2011. In here, no nugget-effect model is fitted because of the
large amount of radar pixels in the vicinity of the tail value. The “actual”
semivariance increases again from approximately 220 km on, thus indicating
some degree of weak correlation in areas located beyond this distance within
the Netherlands, north and south-east regions (see Figure 7 left). The sim-
ilarity between the path-averaged and centered-link pixel data sets (Figure
6 top- center and right); can be seen when comparing their corresponding
empirical semivariograms. Because of this similarity, estimated rainfall fields
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based on these two data sets are expected to have small differences among
them. The “actual” and van de Beek (Figure 6 bottom-right) semivariogram
fitted models have a range of about 200 km; but their sill values are rather
different. The range of the path-averaged and centered-link pixel semivari-
ograms are close to the “actual” range, around 50 km smaller, and with quite
similar sills when the nugget-effect model is not taken into account. Large-
range fitted semivariograms (LR) for path-averaged and centered-link pixel
data sets show a nugget-effect. While for short-range fitted semivariograms
(SR) (Figure 6 bottom-center), no nugget-effect is obtained.

5.1.1 Regional scale

For January 17th 2011, the regional spatial distribution of rainfall in the
Netherlands, is well estimated when using LR-semivariograms as can be seen
in Figure 7. This figure presents the “actual” rainfall field for January 17th

2011, obtained from the corrected radar data set, and two estimated rainfall
fields based on the “actual” semivariogram and the van de Beek model, for
the path-averaged data set. The interpolated fields are somewhat smoothed
when compared to the radar image, which is inherent to optimal geostatis-
tical interpolations. Nevertheless, the good results are obtained from these
estimates (Figure 7 center and right) for three reasons: a) the characteristic
of the rainfall event itself, because in this season of the year (January 17th)
stratiform rainfall events are predominant in the Netherlands; therefore, the
estimation of uniform events over large areas implies low variability; b) the
distribution of the microwave link network across the Netherlands, and its
accurate simulated measurements (based on the corrected radar data set),
allows to incorporate many more “points”13 of information than any other
rain-gauge network(s); c) the van de Beek methodology gives a very close es-
timate of the range parameter, when compared to the “actual” range, which
is the key parameter in Equation (9).

In reality, there is no way to know beforehand how exactly the “actual”
semivariogram of some current or future rainfall event is. Besides this, and
for practical purposes, rainfall field estimations are based on simple fitted
models, and although possible, finding the most accurate fit for an “actual”
semivariogram is rather cumbersome (see Figure 6 top-left) and does not
add accuracy to the interpolation process. What Figure 7 (center) presents,
is an estimated rainfall field from a fitted spherical model of the “actual”
empirical semivariogram. The van de Beek methodology yields and equally

13Although the word points is used to make reference to simulated microwave link mea-
surements, this latter enclose linear distributions of the rainfall along their paths.
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good approximation without any fitting procedure (right panel); therefore,
is preferred here instead of using the “actual” empirical semivariogram.

Figure 7: Corrected radar image for the 24-hour rainfall of January 17th, 2011
(left). Estimated rainfall field for this event using a fitted spherical model of
the “actual” empirical semivariogram (centre). Estimated rainfall field based
on the semivariogram calculated from the van de Beek methodology (right).
The first part of the label indicates the data set used for the interpolation; the
second part indicates the semivariogram model; and the third part indicates
the number of pixels with rainfall intensities larger than 0.5 mm.

When Figure 7 is compared to the microwave link network distribution
presented in Figure 2, it is apparent that relative high rainfall depths are
not well reproduced in areas with low microwave-links density, for example,
in the south-west region. This issue becomes more important when using
the fitted semivariogram models calculated from the centered-link pixel and
path-averaged data sets, Figure 8 top- center and right. As expected, the
results of both estimates are pretty similar, this due to the very similar
semivariogram parameters they have. When the results from the fitted semi-
variograms are compared (Figure 8 top- center and right) to the corrected
radar and the results from the van de Beek models (Figure 7 left and right),
it can be seen that they are less accurate in that they give smaller areas where
rainfall intensity is high or null. This decrease in accuracy can be related
to the decrease in the range parameter these models present, around 31%
smaller (Table 4), because a reduction in the semivariogram range implies a
loss in correlation at larger lags. A drastic decrease in the range, i.e., when
semivariograms are computed for SR-semivariograms, makes it impossible to
obtain accurate rainfall fields at regional scales. This can be seen by compar-
ing Figure 8 (right- top and bottom) in which different range-semivariogram
models, SR and LR, use the same data set, i.e., path-averaged data set.

Examples of using different LR fitted semivariogram models for the in-

25



terpolation of the same data set (centered-link pixel data, Figure 8 center-
top and right) were carried out as well as different data sets (centered-link
and path-averaged) in which only one SR fitted semivariogram model was
applied (Figure 8 bottom- left and right). The results obtained from this
crossed estimation between data sets and semivariogram models, not only
support the initial approximation of assigning the simulated microwave link
rainfall value in the middle of the link but also indicate the low variability
of the 24-h rainfall event along this path. For convective rainfall events, this
low variability between path-averaged and centered-pixels is not expected.

Figure 8: Corrected radar image for the 24-hour rainfall of January 17th, 2011
(top-left). Estimated rainfall fields for the centered-link pixel data using
two different LR semivariogram fitted models (center- top and bottom).
Estimated rainfall fields for the simulated microwave link data using LR and
SR semivariogram models (right- top and bottom respectively). Estimated
rainfall field based on a SR semivariogram applied to centered-link pixel
data (bottom-left). The first part of the label indicates the data set used;
the second part indicates the semivariogram model applied; the third part
indicates the number of pixels in the plot with rainfall intensities larger than
0.5 mm.
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5.1.2 Local scale

LR fitted semivariogram models give relative good estimates for the spatial
distribution of the rainfall event at local scales, as it is expected; never-
theless, the nature of the interpolation technique used here, OK, does not
cope with areas where high values of rainfall are occurring, Figures 9 and
10 (top panels). Figures 9 and 10 present estimated rainfall fields at local
scales, Utrecht and Rotterdam respectively, when SR and LR semivariogram
models, for 24-h rainfall events, are applied to different data sets.

Figure 9: City of Utrecht. Local estimated rainfall fields for the 24-hour
rainfall of January 17th, 2011. Corrected radar image (top-left). LR fitted
semivariograms, “actual” and van de Beek, applied to path averaged data
set (top- center and right, respectively). SR fitted semivariograms applied
to centered-link pixel and path averaged data sets (bottom- left and right
respectively). “actual”-SR fitted semivariogram applied to path averaged
data set (bottom-center). For a detailed description of the labels, see Figure
7.

SR semivariograms used in rainfall field estimations give quite similar re-
sults in spatial variability, at very local scales, when compared to the “actual”
rainfall event Figure 9 or 10 bottom- left and right. These good results in
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the estimated rainfall fields are clearly visible for areas with high microwave
link densities, e.g., Rotterdam (Figure 10) and Utrecht (Figure 9). In ar-
eas with low microwave link densities, estimated rainfall fields underestimate
the “actual” rainfall field. Relative high rainfall values were not reproduced
either for SR models, when used in the OK technique. When compared to
the “actual”-SR fitted semivariogram model, Figure 10 or 9 bottom-center,
SR fitted models (bottom- left and right panels of these figures), yields sim-
ilar results for areas with high microwave link densities, thus indicating the
goodness of these SR fitted models for rainfall field estimation; at least for
stratiform rainfall events.

Figure 10: City of Rotterdam. Same as in Figure 9 but for Rotterdam.

Once more, the similarity in estimated rainfall fields obtained from crossed
estimation between data sets and SR semivariogram models, proves the small
differences among the path averaged and centered-link pixel data sets. Blank
spaces in Figure 10 represent voids in the radar grid (i.e., no radar estimates
available) over which no interpolation was carried out. The grid for esti-
mated rainfall fields, is given by the corrected radar data set; hence, its
shifted (rotated) appearance.
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5.2 Sub-daily rainfall field estimation

For 24-h rainfall events, either the “van de Beek” approach or LR fitted
semivariogram models, not only give good results in rainfall field estimations
but the fitting of the empirical semivariogram is pretty straightforward. This
is because for such “large” aggregated time scales, and given the spatial
characteristics of stratiform events, common in this season of the year in the
Netherlands (January 17th), enough precipitation is registered.

A large variability of rainfall, in time and space, is clearly present when
rainfall is aggregated over small time scales, i.e, 15-minute or 1-hour. At
these intervals, rainfall measurements are not as homogeneous as they are
at larger aggregated intervals; and depending on the event, attenuation of
the power due to rainfall is only registered by a few microwave links. When
this happens, the fitting of the empirical semivariogram is not straightfor-
ward. Therefore, the task for automatic fittings of empirical semivariograms
through only one model, turns out to be a cumbersome process. The down-
scaling parameterization developed in van de Beek et al. (2011b) presents
a useful alternative for the semivariogram parameterization at small time
scales.

The smallest interval in which van de Beek et al. (2011b) disaggregate
rainfall events is 1 hour. The present work was based on the assumption that
this downscaling methodology can also be applied to smaller intervals than 1
hour; in this case, 15 minutes. Table 5 presents the downscaled parameters
for LR spherical semivariogram models, following the methodology described
in section 3.2.1. None of the two 24-hour “downscaled” semivariograms for
both methodologies, Parameters Ratio and Cosine Functions, were used for
rainfall field estimation; instead, the LR semivariogram models used for the
24-hour scale were: 1) the LR fitted semivariogram for 24-hour computed
from the path-averaged data set; and 2) the seasonal semivariogram ob-
tained from the van de Beek model. These two models are the raw input
for the two downscaling methodologies: the path-averaged LR fitted model
for the Parameters Ratio methodology; and the van de Beek model for the
Cosine Functions methodology. The parameters of these semivariograms, are
not equal to their 24-hour “downscaled” counterparts. This is because the
downscaling procedure for both methodologies (van de Beek et al., 2011b), is
based on fitted curves relating either the ratio between parameters or their
seasonality, with their aggregated time scales (section 3.2.1).

The seasonal parameterization developed by van de Beek et al. (2011a)
is intended for spherical semivariogram models only, and does not account
for the nugget effect. This implies that less smoothed results are obtained
when the fitted semivariogram model is applied. Although the van de Beek
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methodology does not provide any downscaling procedure for the nugget-
effect model. Nevertheless, the downscaling curve for the sill parameter
used in the Parameters Ratio method (section 3.2.1), was also applied to
the nugget-effect model, present on the LR fitted semivariogram model com-
puted from the path-averaged data set. This data set was selected for all the
estimations carried out in this part of the research, because for future imple-
mentations of automatic procedures for the generation of rainfall fields, this
set represents the “raw” microwave link information on which these rainfall
fields will be estimated.

Table 5: Downscaled parameters for LR spherical and nugget-effect semivari-
ogram models, computed for the two methodologies proposed by van de
Beek et al. (2011b). The parameters for the 24-hour semivariogram are the
actual parameters obtained from fitting the empirical semivariogram (Pa-
rameters Ratio column), and from applying the van de Beek model (Cosine
Functions column). Starting date: January 17th 08:00 UTC, 2011.

Time scale Parameter Unit
Parameters

Ratio
Cosine

Functions

15 minutes
Range km 34.745 66.782
Sill mm2 0.130 0.036
Nugget mm2 0.014 –

1 hour
Range km 55.666 94.688
Sill mm2 0.564 0.190
Nugget mm2 0.059 –

3 hours
Range km 80.874 127.923
Sill mm2 1.808 0.680
Nugget mm2 0.189 –

6 hours
Range km 102.367 156.084
Sill mm2 3.769 1.496
Nugget mm2 0.394 –

12 hours
Range km 129.571 191.603
Sill mm2 7.858 3.253
Nugget mm2 0.822 –

24 hours∗
Range km 162.544 195.584
Sill mm2 12.997 5.558
Nugget mm2 1.359 –

Rainfall fields were estimated for each time scale, for each downscaled
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method, using the downscaled semivariogram models summarized in Table
5. Figures 11 and 12 presents the scatter plots for the 15-minute time scale
and the 24-hour aggregated time scale, respectively. The posterior analyses
of estimated rainfall values, shows that the best fit between estimated and
validated data, belongs to the data which is zeroed under a certain threshold.
This is in accordance with the expected post-process for interpolated values;
because not only negative rainfall values do not have any physical sense in
reality but estimated rainfall fields, required as inputs in modeling, should
also be able to reproduce null values of rainfall.

Figure 11: Scatter plots for the 15-minute aggregated time scale for the two
downscaling methodologies (Parameters Ration and Cosine Functions) for
the three different posterior analyses of estimated rainfall values (Dropt,
Zeroed and No Threshold). The red line represents a 45◦ line with the
origin in zero. The data value corresponds to the number of points used for
computing the correlation coefficients.

From Figure 11 (left-panels) it can be seen how small or null values of
measured rainfall influence the estimation procedure in such a way, that neg-
ative values of rainfall are more likely to be estimated at these small scales of
rainfall aggregation. Relative high rainfall values are less well reproduced in
the estimated rainfall fields. But this can be attributed to the fact that there
is only one relative “extreme” rainfall value throughout the 96 15-minute
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intervals configuring the daily event. If more relative “extreme” rainfall val-
ues were present in the data set, the estimated rainfall field will prone to
reproduce this tendency. For all the outcomes, i.e., all the three different
posterior analyses, it can be seen that there is a slight tendency of under-
estimation in the interpolated values, specially for the relative large values
of rainfall. When compared to large aggregated time scales, e.g., 24 hours
(Figure 12), the scatter plot exhibits a large variability around the 1:1 line,
thus indicating the non-homogeneity of the rainfall event at such small time
scales, despite the stratiform characteristics of the event under study.

Figure 12: Same as in Figure 11 but for the 24-hour aggregated time scale.

In contrast to what was obtained for smaller aggregated time scales, the
stratiform characteristics of the rainfall event, when viewed over larger ag-
gregated time scales, drastically reduce the possibilities for negative values
of estimated rainfall. The variability around the 1:1 line is also reduced for
large aggregated time scales. For these scales, the interpolated values tend to
be overestimated around the relative small rainfall values. Nevertheless, the
tendency of underestimation towards the relative high rainfall values seen in
Figure 11, is also observed in Figure 12. The few relative high values observed
in this latter scatter plot, indicates once more the spatial uniformity of this
stratiform rainfall event. For this aggregated time scale, the Pearson and
Spearman correlation coefficients give equal results, along the three different
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posterior analyses. This is because all the microwave links have non-zero
registered rainfall. Therefore, in data sets with non-zero registered rainfall,
there is no need for applying a threshold considering microwave links with
no information.

Table 6: Non-normalized metrics for the three posterior analyses (No, Zeroed
and Dropt Threshold) of estimated rainfall fields, interpolated for the two
downscaling methodologies (Parameters Ratio and Cosine Functions) for six
different aggregated time scales (15-minute, 1-, 3-, 6-, 12- and 24-hour).

Scale
[hours]

Metric
[mm]

Parameters Ratio Cosine Functions

No
Threshold

Zeroed
Threshold

Dropt
Threshold

No
Threshold

Zeroed
Threshold

Dropt
Threshold

0.25

R̄ 0.0446 0.0446 0.2380 0.0446 0.0446 0.2384
R̄OK 0.0448 0.0435 0.2382 0.0447 0.0439 0.2404
M.E. 0.0003 -0.0011 0.0002 0.0001 -0.0007 0.0020

R.M.S.E. 0.0504 0.0508 0.1160 0.0454 0.0458 0.1044
V.R. 0.0603 0.0612 0.3206 0.6616 0.6815 3.5277

1

R̄ 0.1783 0.1783 0.6417 0.1783 0.1783 0.6422
R̄OK 0.1794 0.1779 0.6458 0.1790 0.1780 0.6462
M.E. 0.0012 -0.0003 0.0041 0.0007 -0.0002 0.0040

R.M.S.E. 0.1075 0.1078 0.2031 0.0927 0.0930 0.1751
V.R. 0.0813 0.0817 0.2917 0.7614 0.7708 2.7368

3

R̄ 0.5348 0.5348 1.2226 0.5348 0.5348 1.2227
R̄OK 0.5391 0.5379 1.2329 0.5370 0.5364 1.2293
M.E. 0.0043 0.0031 0.0103 0.0023 0.0016 0.0066

R.M.S.E. 0.1976 0.1977 0.2988 0.1678 0.1679 0.2537
V.R. 0.1039 0.1040 0.2374 0.9702 0.9721 2.2176

6

R̄ 1.0696 1.0696 1.6503 1.0696 1.0696 1.6505
R̄OK 1.0788 1.0791 1.6658 1.0745 1.0750 1.6595
M.E. 0.0092 0.0095 0.0156 0.0049 0.0054 0.0090

R.M.S.E. 0.2937 0.2936 0.3646 0.2432 0.2431 0.3019
V.R. 0.1224 0.1224 0.1886 1.1752 1.1747 1.8112

12

R̄ 2.1392 2.1392 2.1989 2.1392 2.1392 2.1991
R̄OK 2.1603 2.1609 2.2215 2.1481 2.1484 2.2087
M.E. 0.0212 0.0217 0.0227 0.0089 0.0092 0.0096

R.M.S.E. 0.4303 0.4303 0.4362 0.3436 0.3436 0.3484
V.R. 0.1362 0.1362 0.1399 1.3408 1.3407 1.3780

24

R̄ 4.2783 4.2783 4.2783 4.2783 4.2783 4.2783
R̄OK 4.3236 4.3236 4.3236 4.2963 4.2963 4.2963
M.E. 0.0453 0.0453 0.0453 0.0180 0.0180 0.0180

R.M.S.E. 0.6317 0.6317 0.6317 0.4955 0.4955 0.4955
V.R. 0.1898 0.1898 0.1898 1.6535 1.6535 1.6535
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Overall, the methodology of Cosine Functions yields slightly better results
for Pearson and Spearman correlation coefficients than the Parameters Ratio
methodology. For all aggregated scales, the Pearson correlation coefficient
increases from the Dropt Threshold case to the No Threshold case. This
implies that when all estimates are taken into account, even the negative
ones, these values are so small or close to zero, that the tendency for linear
correspondence between corrected radar data and estimations, increases. The
opposite is the case for the Spearman correlation coefficient14, which is small
when negative measurements are taken into account, and starts to increase
when this measures are turned into zero values, and reaches its maximum
values when these zeroed values are dropt out of the correlation. All the
correlation coefficients tend to improve for larger aggregated time scales; but
after reaching maximum values at 6-hour aggregated scales, these coefficients
start to decrease again. This could mean that 6-hour is the aggregated
scale where rainfall is more homogeneous in time and space, among the four
intervals for the 24-hour event. This assumption was not tested in the present
study though.

The highest Pearson correlation coefficient was found to be 0.99266 for the
6-hour aggregated scale for the Cosine Function methodology for the Zeroed
Threshold case; meanwhile 0.94417 was the lowest Pearson coefficient for
the 15-minute aggregated scale for the Parameters Ratio methodology for
the Dropt Threshold case. Although this “lowest” correlation coefficient
has a high value, close to 1, the fact that it was obtained for the smallest
aggregated time scale, 15-minute, indicates a lower accuracy of the estimated
rainfall field when compared against larger aggregated time scales. This is
due to the absence of microwave link data between 15-minutes intervals, and
the large variability of rainfall in space, despite the stratiform characteristics
of the event. For the Spearman correlation coefficient, the highest value
was found to be 0.99154 for the 12-hour aggreggated scale for the Cosine
Function methodology for the Dropt Threshold case; meanwhile 0.59299 was
the lowest coefficient for the 15-min aggregated scale for the Parameters Ratio
methodology for the No Threshold case (Figure 11). This lower correlation
can be attributed to the fact that the spatial scale of rainfall variability is
smallest at the 15-minute time scale. As the scale of spatial rainfall variability
approaches the typical scale of the separation of microwave links within the
network, it is expected that the quality of rainfall retrievals decreases. The
difference between Spearman coefficients along the three different Threshold
cases is very small for 12-hour aggregated scales onwards; therefore, it can be

14Spearman correlation coefficient is a measure of how monotonic the relation between
two variables is, in this case, corrected radar and estimated rainfall values.
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said that for these larger scales and for the Zeroed Threshold case, there is an
increasing-monotonic-linear relation between the estimated and the corrected
radar rainfall values. The Zeroed Threshold case is recommended in here,
for future implementations, because estimated rainfall fields must be able to
represent areas where precipitation is equal to zero instead of some negative
value (not realistic representation of the event) or no value at all.

OK not only returns the estimated value but also its estimate variance.
If the bias (squared) is subtracted from the squared error and then divided
by the OK variance, a ratio of the variance for every estimated rainfall value
can be established [Equation (19)].
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Figure 13: Normalized curves for the Mean Error (M.R.), Root Square Mean
Error (R.S.M.E.) and Variance Ratio (V.R.), for each downscaling method-
ology, for each posterior analysis.
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Table 6 presents the non-“normalized” values of the estimated metrics
(mean, mean error, root mean square error and variance ratio) for both
methodologies of downscaling, for each posterior analysis. Figure 13 presents
the “normalized” curves for these metrics. The Variance Ratio is also pre-
sented in this figure, but given that this is already a relative measure, there
is no need (nor physical meaning) for normalization. This metric is also
plotted in log-normal scale, independently from the others two, in Figure
14. The normalization was carried out by dividing these parameters over the
corresponding corrected radar mean value.

From Figure 13, it can be seen that the bias (ME) in the interpolated
fields is very small (generally less than 1%). The decrease of the RMSE
while increasing temporal aggregation is also evident. This is due to the fact
that there is much more variability at the 15-minute time scale. The effect of
the difference between the two different semivariograms becomes apparent in
Figure 13 (bottom row) and Figure 14. The Parameters Ratio methodology
clearly overestimates the variance for all time scales, whereas this depends on
the aggregation time scale for the Cosine Functions methodology. The V R
shows slightly different behaviour when only the values above a threshold
are considered. This indicates that for the part of the rainfall field that
is hydrologically most interesting, i.e., the part where there is significant
rain, the choice of an optimal semivariogram could be different than when
considering the entire field (including the zeroed threshold).
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Figure 14: Normalized curves in log-normal scale, for the Variance Ratio (V.R.),
for each downscaling methodology, for each posterior analysis.
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6 Conclusions and Recommendations

This study showed that rainfall maps can be obtained from interpolated
rainfall estimates of commercial microwave links.

For daily rainfall field estimation, large- and short-range fitted semivari-
ograms were computed from three different data sets: corrected radar data,
path-averaged data and centered-link pixel data. Also, the approach devel-
oped by van de Beek et al. (2011a) to obtain semivariograms for a given day
in the year, was used. When used in Ordinary Kriging (OK), large-range
(LR) spherical semivariogram models gave good estimates at regional and
local scales for 24-hour stratiform rainfall events. These LR-semivariogram
models, could be estimated either using microwave link information for the
given day or the seasonal model proposed and developed by van de Beek
et al. (2011a,b). In both cases the results were good and rather similar. The
goodness of the LR-models, computed from simulated microwave link infor-
mation, can be attributed to the microwave link network widely distributed
across the Netherlands. Small difference were observed between estimated
rainfall fields based on path-averaged and centered-link pixel data, mainly
due to the close semivariogram parameters they share. Estimates based on
the van de Beek methodology yielded accurate results, despite the fact that
a predefined semivariogram was used. Short-Range (SR) spherical semivar-
iogram models gave accurate estimations, but only at local scales in areas
where local microwave link density is high. Higher values of rainfall were not
completely reproduced by the OK statistical interpolation technique, i.e.,
underestimated rainfall values were always obtained in areas where local-
extreme values of rainfall are registered.

For sub-daily rainfall field estimation, 15-minute simulated microwave
link data was aggregated into scales of 1-, 3-, 6- 12- and 24-hour. For each
time scale, downscaled semivariograms were used for the generation of in-
terpolated rainfall fields. The two downscaling methodologies applied to
the path-averaged data set were developed previously by van de Beek et al.
(2011b). The Parameters Ratio methodology was based on the 24-hour fit-
ted semivariogram computed from the path-averaged data set; whereas the
Cosine Functions methodology was based on the van de Beek seasonal model
for January 17th. Pearson and Spearman correlation coefficients, and met-
rics of bias, accuracy and variance reproduction were computed for all the
aggregated time scales. Considering the bias, accuracy and the correlation
coefficients between estimated and observed values, best results were ob-
tained overall for the Cosine Functions downscaling methodology and post-
processing the estimated fields by setting negative estimates to zero (Zeroed
Threshold posterior analysis). The small ME and the substantially smaller
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RMSE, for increasing aggregated time scales, reflect the good performance
and higher accuracy in rainfall field estimates at larger aggregated time scales.
When the Parameters Ratio methodology was applied to the semivariogram
downscaling procedure, for all the aggregated time scales there was an over-
estimation in the variance of the estimated rainfall fields. When the down-
scaling was done by the Cosine Functions methodology, this overestimation
in the variance depended on the aggregated time scale, but was generally
much smaller.

In conclusion, this study showed that the Cosine Functions methodol-
ogy applied to zeroed threshold posterior analyses of rainfall data, is the
suggested future operational method for rainfall field estimation from link
data. Not only because of its higher correlation coefficients when compared
to the Parameters Ratio methodology, as was demonstrated in the present
study, but also because its used semivariogram does not depend directly on
the registered data itself but on the seasonal model of van de Beek (van de
Beek et al., 2011a). Hence, for dryer periods when no enough information is
collected to compute a daily semivariogram, the method can be still applied
to these scarce data sets.

In this study, simulated microwave link values were placed in the middle
of the path for all the links within the network. For further analyses, these
values could be placed at the extreme sides of the link, in order to test the
influence of the path and its direction in rainfall field estimations at regional
scales. However, given the directional homogeneity of the network (Figure 1),
no large changes in estimated rainfall fields are expected for the Netherlands.

A different method could be applied for finding the threshold over which
non-zero rainfall values are taken into account. The method developed in
this study does not guarantee that for all the cases only positive values are
taken into account. Even though in few cases, very small values of estimated
negative rainfall were used in the different posterior analyses; in most of the
cases, the “surplus” of the threshold computation used in the present work,
zeroed (turned into zero) small positive values of estimated rainfall. The same
procedure should also be applied for data registered around summer, where
the characteristics of rainfall will differ. These will be less homogeneous
in space and more intense (convective rainfall); hence, a re-validation or
disregarding of the method here proposed can be the result.

It should be noted that the radar measurements account for large volumes
in space, but yet, these are used in simulating path-averaged rainfall. This
makes radar data not entirely representative of link data, which are real path
measurements. Besides this fact, the radar data resolution used in this study,
1 km2, is less suitable to simulate path-averaged rainfall intensities at smaller
spatial scales, e.g., < 1 km2. Therefore, the use of x-band radar is highly
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recommended to simulate link measurements at such smaller scales.

References

Atlas, D. and C. W. Ulbrich, 1977: Path- and area-integrated rainfall mea-
surement by microwave attenuation in the 1-3 cm band. J. Appl. Meteor.,
16, 1322–1331.

Bierkens, M. F. P., 2010: Stochastic Hydrology, lecture notes. Utrecht Uni-
versity.

Creutin, J., G. Delrieu, and T. Lebel, 1988: Rain measurement by raingage-
radar combination: A geostatistical approach. J. Atmos. Ocean. Technol.,
5, 102–115.

Cuccoli, F., L. Baldini, L. Facheris, S. Gori, and E. Gorgucci, 2011: Tomog-
raphy applied to radiobase network for real time estimation of the rainfall
rate fields, Submitted.

Foufoula-Geourgiou, E. and W. Krajewski, 1995: Recent advances in rain-
fall modeling, estimation, and forecasting. Rev. Geophys., 33, 1125–1137,
Supplement.

Gandin, L. S., 1970: The planning of meteorological station networks. Tech-
nical Note No. 111 WMO No. 265, Secretariat of the World Meteorological
Organization, Geneva, 35 pp.

Goldshtein, O., H. Messer, F. IEEE, and A. Zinevich, 2009: Rain rate es-
timation using measurements from commercial telecommunications links.
IEEE Trans. Signal Process., 57, 1616–1625.

Goovaerts, P., 1997: Geostatistics for Natural Resources Evaluation. Applied
Geostatistics, Oxford University Press, New York, 496 pp.

Helsel, D. R. and R. Hirsch, 1995: Statistical Methods in Water Resources .
Elsevier Science B.V., Amsterdam, 548 pp.

Hengl, T., 2009: A Practical Guide to Geostatistical Mapping , 2nd edition.
University of Amsterdam, Amsterdam, 291 pp.
URL http://spatial-analyst.net/book/

Hunter, S. M., 2009: WSR-88D radar rainfall estimation: Capabilities, lim-
itations and potential improvements. Technical report, National Weather

39



Service Weather Forecast Office - Morristown, TN.
URL http://www.srh.noaa.gov/mrx/research/precip/precip.php

Icom America Inc., 2011: ID-1 1200 MHz Digital Transceiver.
URL http://www.icomamerica.com/en/products/amateur/dstar/

id1/default.aspx

Journel, A. G., 1989: Fundamentals of Geostatistics in Five Lessons , vol-
ume 8 of Short Course in Geology . American Geophysical Union, Wash-
ington, 46 pp.

King, A., J. Billingham, and S. Otto, 2003: Differential Equations - Linear,
Nonlinear, Ordinary, Partial . Cambridge University Press, Cambridge,
548 pp.

Krige, D. G., 1951: A statistical approach to some basic mine valuation
problems on the witwatersrand. J. of the Chem., Metal. and Mining Soc.
of South Africa, 52, 119–139.

Lanza, L., J. Ramı́rez, and E. Todini, 2001: Stochastic rainfall interpolation
and downscaling. Hydrol. Earth Syst. Sci., 5, 139–143.

Leijnse, H., R. Uijlenhoet, and J. Strickter, 2007a: Hydrometeorological ap-
plication of a microwave link: 2. precipitation. Water Resour. Res., 43.

— 2007b: Rainfall measurement using radio links from cellular communica-
tion networks. Water Resour. Res., 43.

Matheron, G., 1971: The Theory of Regionalized Variables and Its Appli-
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