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Abstract

(Digital) Signal Processing plays a huge role in computer vision. We will use two
related Partial Differential Equations (PDEs), known for their smoothing feature,
to investigate the removal of noise in (digital) signals, namely: the Heat and Perona-
Malik equation. This report explains how we can do (digital) signal processing on
a bounded domain Ω ⊂ Rn (n = 1, 2), via a PDE approach. Depending on the type
of noise present in the signal, the PDE approach gives desirable results. For faster
iteration with the Perona-Malik equation we first need an (un)conditionally stable
finite difference method or use a non uniform grid with R-refinement (adaptive
grids) for a possibly better edge detection.

Keywords: Finite Difference methods, Heat equation, Perona-Malik1 equation, Digital
Signal Processing, Image Processing, noise reduction (denoising), (anisotropic) diffusion,
refinement.

1 Introduction

For several years now, Partial Differential Equations (PDEs) are used to restore images.
There are also other methods for doing this such as: linear filters and wavelets. PDEs are
also used for image analysis. One of the well known models which has been used before
better models emerged, are the heat equation and the inverse heat equation [P01]. In
this report we will study image processing via a PDE approach. Image processing can
be divided in three parts: image compression, image restoration and image analysis. We
will do some image restoration, where our main focus will be comparing a special PDE
to the heat equation. Since in practice we do not have the original (good) image when
doing image processing, we will need stopping criteria. These stopping criteria mean that
we have reached a point where the obtained image is clearer compared to the original bad
image, and will not get better if we iterate further on.

Before doing image processing we will need to investigate or consider the following points
concerning the PDEs to be used:

• a good and stable finite difference (FD) scheme for the PDE,

• measurable stopping criteria,

• using uniform or non-uniform grid, depending on the image.

In the following two chapters we will investigate each one of these points. We will consider
the bounded domain Ω ⊂ Rn, with the smooth boundary ∂Ω. Only n = 1, 2 will be
investigated in chapter 2 respectively chapter 3.

1Pietro Perona (1961): his research interests are in computational and biological vision.
Jitendra Malik (1960): his research interests are in machine vision and computational modeling of early
human vision. These include work on edge detection, texture segmentation, line drawing interpretation,
and 3-D object recognition [P02]
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2 Digital Signal Processing via the PDE Approach

In the last few years Digital Signal Processing (DSP) has grown rapidly. The application
of DSP can be found in several technologies. We may define a signal as any time-varying
or spatial-varying quantity. Sampling of an analog signal is required in order to use that
signal on the computer, which usually is done in the following two steps [L01]:

• discretization; transferring continuous models to discrete counterparts,

• quantization; mapping of large set of input values to a smaller set.

In this report we will only use digital signals, and skip the digitizing process of analog
signals. The signals used in this chapter are artificial ones, but real signals can also be
used. Our aim is to use also an example where (jump) discontinuity is involved. The main
focus will be to remove noise from signals, also known as denoising or noise reduction.
This noise reduction procedure will be done via the Partial Differential Equation (PDE)
approach.

In the coming sections we will discuss some Partial Differential Equations (PDEs) for
noise reduction, and their pros and cons, which are applicable. The PDEs which will be
discussed are: the well known one-dimensional diffusion equation of the form

ut = kuxx, (1)

also known as the Heat Equation (HE) and a Perona-Malik Equation (PME). In (1) we
have that k is a constant and u = u(x, t) represents the (digital) signal. In the coming
sections in this chapter we will investigate the function u(x, t) bounded as follows

0 ≤ u(x, t) ≤ 1, (2)

and u(x, 0) ∈ {S1, S2}. Here Si is a still to be defined (digital) signal, for i ∈ {1, 2}.

S1 =


1 for x ∈ [0, 0.25〉 ∪ 〈0.75, 1]

0.4 for x ∈ 〈0.25, 0.4〉 ∪ 〈0.6, 0.75〉

0.1 for x ∈ 〈0.4, 0.6]

(3)

and S2 is defined as the K-th column of the (digital) image in Figure 8(b). Some random
noise will be added to these two signals2 :

unoise := uexact + some random noise. (4)

Afterwards we will try to reduce the noise in the noisy signal, referred as unoise, by applying
the one-dimensional version of the HE or PME. To apply these PDEs we need to solve
them and this will be done numerically. From the textbooks we know this can be done by
using a Finite Difference Method (FDM) , such as the following:

2these two signals S1 and S2 will also be referred as uexact = uexact(x, t)
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(a) (b) (c)

Figure 1: Some stencils for a specific Finite Difference (FD) scheme : the stencil for the
(a) explicit method, (b) implicit method, (c) Crank-Nicolson method.

• Explicit method
In this method un+1

j depends on the quantities unj−1, unj and unj+1.

• Implicit method
Now the quantities un+1

j−1 , un+1
j and un+1

j+1 all depend on unj in an implicit manner.

• Crank-Nicolson method,
In this FDM the quantities un+1

j−1 , un+1
j and un+1

j+1 depend on unj−1, unj and unj+1,

where the stencils3 of these methods can be seen in Figure 1. With the notation unj we
mean that

unj := u(j∆x, n∆t),

is the representation of the numerical approximation from the solution we are seeking at
the point (j∆x, n∆t). We notice that the values of ∆x and ∆t are an uniform interval
in the x-direction respectively t-direction. Before choosing a FDM we need to know what
the pros and cons are. We first need to check the convergence, stability or consistency of
the finite difference scheme. For the consistency we can use theorem 1 [B01] .

Theorem 1. Lax Equivalence Theorem A consistent, two level difference scheme for
a well-posed linear initial-value problem is convergent if and only if it is stable.

2.1 The Heat Equation: ut = uxx

Now we can investigate how a Partial Differential Equation (PDE) can be applied in the
denoising process of a noisy signal. Here we will consider the bounded domain Ω ⊂ Rn,
with n = 1. By using the one-dimensional (1-D) version of the Heat Equation (HE) which
has the form:

ut = kuxx. (5)

We recall that

ut =
∂

∂t
u(x, t) =

∂u(x, t)

∂t
,

3Source: http://en.wikipedia.org/wiki/Finite difference method, last visited: May 2011.
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and similarly we have that

uxx =
∂

∂x

(
∂

∂x
u(x, t)

)
=
∂2u(x, t)

∂x2
.

Since we know that k is the thermal diffusivity, we will only consider the situation k = 1,
so we will work with the Heat equation:

ut = uxx. (6)

One of the first questions that may arise is: ”why use the Heat Equation for denoising a
noisy signal?” One of the answers is the smoothing ability of the Heat equation, already
made in the first few iteration steps, using any Finite Difference (FD) scheme consistent
with the Heat Equation. This is only possible if we meet the stability requirements of that
FD scheme.

Using an Explicit Method for approximating the Heat Equation

Knowing that Implicit methods can be expensive in computation time, we will use an
Explicit method to approximate the Heat Equation. The Explicit Euler will be the method
of our choice, which is also known as Euler Forward (EF). Firstly a uniform4 discretization
of time and space will be done, such that

∆t =
1

N
and ∆x =

1

M
.

Therefore we can approximate the left-hand side (LHS) and the right-hand side (RHS) of
(6). From the mean value theorem of calculus we know that

ut = ut(x, t) = lim
∆t→0

u(x, t+ ∆t)− u(x, t)

∆t
, (7)

similarly we have for the x-direction that

ux = ux(x, t) = lim
∆t→0

u(x+ ∆x, t)− u(x, t)

∆x
, (8)

this way5 the LHS of (6) can be approximated by

ut =
∂u(x, t)

∂x
≈
un+1
j − unj

∆t
, (9)

and the RHS by

uxx =
∂2u(x, t)

∂x2
≈
unj+1 − 2unj + unj−1

(∆x)2
, (10)

which is a reasonable approximation [B01]. Solving (6) with EF leads to

un+1
j = unj +

∆t

(∆x)2

(
unj+1 − 2unj + unj−1

)
(11)

4using uniform grids in FD methods is not compulsory, but simplifies the computations
5we can also use (ux)

n
k− 1

2
and (ux)

n
k+ 1

2
to approximate ukn but we can also see this by using the well

known Taylor expansions, both are described in §A
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By doing Von Neumann stability analysis, which is based on the decomposition of the
errors into Fourier series [L01(d)], we find that, for solving (6) with (11), the requirement
for convergence of this numerical method is

r =
∆t

(∆x)2
≤ 1

2
, (12)

indicating that this6 FD scheme is conditionally stable. If we iterate too long with EF,
the solution usol(x, t) will get smoother, but the shape compared to u(x, t) is lost. The
results of the tests done with the Heat Equation are visible in §2.3.

2.2 The Perona-Malik Equation: ut = ∂
∂x(D(u)ux)

In this section we will investigate the use of another PDE for noise reduction in noisy
signals. Here we will also consider the bounded domain Ω ⊂ Rn, with n = 1, and use the
so called one-dimensional Perona-Malik Equation (PME)

ut =
∂

∂x
(D(u)ux), with D(u) =

1

1 + ε|ux|2
(13)

so

ut =

(
ux

1 + ε|ux|2

)
x

, (14)

where 0 ≤ ε ≤ 1. Later on we will show the influence of ε on the convergence when using
the PME for denoising a noisy signal. More details on the PME can be found in §3.2.

Using an Explicit Method for approximating the Heat Equation

We will use the same Explicit Method as for the HE to discretize the PME, which makes
comparison easier, when setting ε = 0.

[
ux

1 + ε|ux|2

]
x

∣∣∣∣
xi

≈

ux,i+ 1
2

1 + ε|ux,i+ 1
2
|2
−

ux,i− 1
2

1 + ε|ux,i− 1
2
|2

∆x

=
ux,i+ 1

2

∆x+ ε∆x|ux,i+ 1
2
|2
−

ux,i− 1
2

∆x+ ε∆x|ux,i− 1
2
|2

≈ ui+1 − ui

(∆x)2 + ε(∆x)2

∣∣∣∣ui+1 − ui
∆x

∣∣∣∣2 −
ui − ui−1

(∆x)2 + ε(∆x)2

∣∣∣∣ui − ui−1

∆x

∣∣∣∣2
With this we find that the Euler-Forward approximation for the Perona-Malik equation is

un+1
j = unj +

∆t

(∆x)2

 unj+1 − unj

1 + ε

∣∣∣∣unj+1 − unj
∆x

∣∣∣∣2 −
unj − unj−1

1 + ε

∣∣∣∣unj − unj−1

∆x

∣∣∣∣2
 , (15)

6the Implicit scheme and Crank-Nicolson scheme are both unconditionally stable
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this can also be written as:

un+1
j = unj +

∆t

(∆x)2

 unj+1 − unj
1 + ε

(∆x)2

∣∣unj+1 − unj
∣∣2 − unj − unj−1

1 + ε
(∆x)2

∣∣unj − unj−1

∣∣2
 . (16)

Notice that for ε = 0, the Perona-Malik equation becomes the heat equation (14) = (6)
and also that (16) = (11).

2.3 Results

Now we can start some denoising tests by applying the Heat Equation (HE) and the
Perona-Malik Equation (PME) to the signals S1 and S2. Before doing this we need to
know when to abort the noise reducing routine using one of these Partial Differential
Equations (PDEs).

Stopping criteria for the Heat and Perona-Malik PDE

If we iterate too long with both PDEs, we cannot see the original shape any longer.
That’s why we need to built in a stopping criterion especially for the heat equation, when
solved with Euler-Forward. First we will use the signal uexact = S1 as described in (3).
After adding some random noise to it we can apply the HE and PME to the noisy signal
u∗(x, t). The result is shown in Figure 2. For the error made by both used PDEs see
Figure 3. For this example we can also see what the result would be by using the PME
for different ε ∈ {0, 125

10000
, 25

1000
, 5

1000
, 1

100
, 2

100
, 8

100
, 32

100
, 64

100
, 1}, see Figure 4 and Figure 5.

• Stopping criterion for the Heat PDE, solved with Explicit Euler
We know that in each time-step the local truncation error τ , with EF is O((∆x)2),
so the global error in the nth iteration step is nτ , so O(∆x). This since n ∼ 1

∆x
.

This tells us that we can stop the iteration as soon as

‖un+1
j+1 − un+1

j ‖2 ≤ ∆x,

for ∆x small enough. In Figure 6 we see the effect of this implementation. We do not
get better results then for ‖un+1

j+1 − un+1
j ‖2 ≤ (∆x)p with p = 1. So we are satisfied

with p=1. Example: when setting p ≥ 1.2 we can keep on iterating but will not find
a better result which gives a reasonable approximation of the exact solution u(x, t).

• Stopping criterion for the Perona-Malik PDE, solved with Explicit Euler
For PM with EF we also found a suitable stopping criterion. We find that

‖un+1
j+1 − un+1

j ‖2 ≤ (∆x)q, with q = 2,

this depending on the choice of ∆x. In Figure 7, it is visible that the implementation
as above does help. Because of memory limitations we did not take ∆x much smaller.

Questions left to be answered are: i) Does this hold for each choice of ε? ii) Does
this work for 2-D? The latter will be discussed, for both HE and PME, in chapter 3.
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Figure 2: (a): The signal u(x, t), which is the exact solution for a PDE. (b): The signal
u∗(x, t), which is u(x, t) with some random generated noise. (c): Solving the PDE with
the Heat Equation, where the initial condition is un0 = u∗(x, t), with ∆x = 1

500
= 2×10−3,

∆t = 0.0004
400

= 10−6 ⇒ ∆t
(∆x)2

= 1
4

and k = 1. (d): Solving the PDE with the Perona-

Malik PDE, where the initial condition also is un0 = u∗(x, t), with ∆x = 1
500

= 2 × 10−3,
∆t = 0.0004

400
= 10−6 and c = ε = 0.02. The Heat Equation rapidly produces a smooth

signal, but looses the details, which are the discontinuities in the signal. Notice that the
Perona-Malik Equation nicely keep these details, and acts like a local averaging filter [P06].
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Figure 3: (a): The error with the Heat PDE : ‖uexact − usol‖2 = 1.7176. (b): The error
with the Perona-Malik PDE : ‖uexact− usol‖2 = 0.0655. By only investigating the error of
the PDEs used for denoising, we could guess that the exact solution has discontinuities at
x ∈ {0.25, 0.4, 0.6, 0.75}. This tells us that reducing ∆x might improve the solution, with
the disadvantage that we need to iterate much longer, since we also need to reduce the
value of ∆t for stability reasons. Or that it’s desirable to use a non-uniform discretization
of the x-direction in this case, what will not be treated here.
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Figure 4: Solving the PDE with the Perona-Malik Equation for M = 500, N = 400,
∆x = 1

500
= 2 × 10−3, ∆t = 0.0004

400
= 10−6, so we have that ∆t

(∆x)2
= 1

4
and use different

values for c = ε ∈ {0, 125
10000

, 25
1000

, 5
1000

, 1
100
}. T = stop×T ∗, with stop = 1 and T ∗ = 0.0004.

Precisely 400 iteration steps are made.
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Figure 5: Solving the PDE with the Perona-Malik Equation for M = 500, N = 400,
∆x = 1

500
= 2 × 10−3, ∆t = 0.0004

400
= 10−6, so we have that ∆t

(∆x)2
= 1

4
and use different

values for c = ε ∈ { 2
100
, 8

100
, 32

100
, 64

100
, 1}. T = stop × T ∗, with stop = 1 and T ∗ = 0.0004.

Here also precisely 400 iteration steps are made.
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Figure 6: Solving the PDE with the Heat Equation, where we use the initial condition
un0 = u∗(x, t), with ∆x = 1

2000
= 5× 10−4, ∆t = 0.00016

4000
= 4× 10−8 ⇒ ∆t

(∆x)2
= 4

25
= 0.16

and k = 1. Tmax = T = 25T ∗, with T ∗ = 0.00016. With a built in variable stop we can
expand the end-time T, which makes further iteration possible if the stopping criterion is
not yet reached. Notice that the number of iteration steps needed is 6261; this is larger
then N = 4000. We have that stop = 25 and the elapsed time is approximately 4 seconds.

Using a column of a (digital) image as a signal: S2

First we will read in an image and store this as a matrix. Then we will take the K-th col-
umn from that matrix and consider this as a signal. The gray-scaled image in Figure 8(b)
will be used for this purpose. In Figure 9 we have a signal, where K = 17 (see the red line
in Figure 10), and apply the Heat and Perona-Malik PDE to it. Here we also see that the
Perona-Malik PDE gives better results compared to the Heat PDE.

With the results above we hope to have put a step in the right direction by moving from
the 1-D to the 2-D situation. This means that we will investigate denoising noisy images,
instead of noisy signals.
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Figure 7: Solving the PDE with the Perona-Malik Equation, where the initial condition is
un0 = u∗(x, t), with ∆x = 1

2000
= 5× 10−4, ∆t = 0.00016

4000
= 4× 10−8 ⇒ ∆t

(∆x)2
= 4

25
= 0.16

and c = ε = 0.02. Tmax = T = 25T ∗, with T ∗ = 0.00016. A built in variable stop expands
the end-time T. Notice that the number of iteration steps needed is 73617; this is much
larger then N = 4000. We have that stop = 25 and the elapsed time is approximately 3800
seconds. The stopping criterion used for this approximation is ‖unj − unj−1‖2 ≤ (∆x)1.8.
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→

(a) (b)

Figure 8: Mona Lisa (a) A (digital) color image in the Red-Green-Blue (RGB) color space .
(b) Converted version of the RGB Mona Lisa image to shades of gray. We calculated the
gray scale of each pixel via Y=0.30R+0.59G+0.11B.

Figure 9: (a) Considering a column of an image as a signal (pde) with noise.
(b) Applying the Heat equation on the signal in (a), using Euler-Forward. (c)
Applying the Perona-Malik equation on the signal in (a), using Euler-Forward.
Parameters: k = 1, M = N = 24, T = 0, 00004 and ε = c = 0.02, so ∆x = 1

M
,

∆t = T
N

and ∆t
(∆x)2

= 48
125

= 0.384.
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Figure 10: The red line is the 17-th Column of the (color) Mona Lisa image.

Figure 11: Zooming in on figure 9, this on the area [0.15 , 0.45]× [0.35 , 0.90].
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2.4 Conclusion and Future Work

When we want to denoise a noisy signal, as a form of Digital Signal Processing (DSP), it
is possible to use another numerical method such as the Implicit method or the Crank-
Nicolson (CN) method, instead of the Explicit Euler, to solve the Heat Equation (HE).
We wanted to try this and see if the results are better, compared to the Explicit method
explained above. Recall that the HE will smoothen the signal quite rapidly, so detailed
information might get lost, even when a better numerical method is used to solve the Heat
Equation. This means for example that the Implicit Euler (EB), compared to the Explicit
Euler (EF), is better when EF needs to compute much longer, in terms of time steps.
Using a non-uniform discretization of the x-direction is desired especially when there are
discontinuities involved. However when using a more stable numerical method compared
to the EF, we might not gain speedups, in terms of computational cost for the whole
denoising process.

The Perona-Malik Equation (PME) seems to be a better PDE for the denoising procedure
within DSP, compared to the HE. When using the PME we need to choose a proper ε. If
ε = 0, we have that PME = HE. For ε > 0.25 the denoising process is too slow or nothing
seems to happen, in the beginning of this procedure. Iterating long enough will smoothen
the noisy signal eventually see for example Figure 12. PME works like a local averaging
filter, which localizes the discontinuities7, and leaves them unchanged. But a locally fast
alternating signal will be smoothened a little. This smoothening process does not happen
as fast as what the HE would do to that (noisy) signal.

To handle fast alternating signals or signals with discontinuities, it would be better if
we do not choose equally large step sizes ∆x. This means that we need to take care of
stability issues, when using EF, in each time-step. This since ∆x might change in each
time-step so that locally ∆t

(∆x)2
> 1

2
, meaning that we also need to change ∆t. To avoid

this we can use EB, CN or some other unconditionally stable Finite Difference method
which is consistent with the HE and PME.

Figure 12: Set stop = 5 and the other parameters as the example in Figure 5.

7these discontinuities in the signal may be due to noise, but may also be the result of transition to
locally detailed information
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3 Image Processing via the PDE approach

In this chapter we will do some (digital) image processing. With this we mean image
restoration in the form of noise reduction. The image analysis and decompression pro-
cess will not be discussed in this report. This means that we will investigate the two-
dimensional (2-D) version of what is discussed in chapter 2.

All images during the denoising process will be gray-scale8 images, where each value of
the pixel is the result of converting a color image, in the RGB colorspace; so this pixel
value is the weighted sum

Y = 0.30R + 0.59G+ 0.11B, (17)

where R,G,B are respectively the red, green and blue pixel component from the color
image to be processed. In the gray-scale image the value zero represents black, and the
value one represents white.

Adding noise to an image

A brief description of the noise in the noisy image will be given. We will use the following
kind of (random) noise [L01 (f)]:

• plain random noise;
We set a value9 σ and then for each pixel we randomly choose a value β; so on pixel
level we have that

Ynoisy = Y + σβ, (18)

or
Ynoisy = Y − σβ, (19)

with 0 < σ < 1 and 0 ≤ β ≤ 1, depending10 on the image to be investigated. For
instance; if the background of the test image is black, we will use (18) and if the
background is white we will use (19).

• salt-and-pepper noise;
This can be recognized by the randomly occurring white and black pixels.

• white Gaussian noise;
Adds Gaussian white noise of mean m and variance v to the test image. In all test
cases we used m = 0.0, but we will vary the value of the parameter v. This type of
noise will be used the most during the denoising procedures in this report, because
of the uncorrelated property and is also commonly used in applications [L01 (g)].

More details on all of these type of noise can be found in [L01], and will not be discussed,
since our main focus is denoising. And in practice we will need to denoise a noisy image,

8grayscale (or grey-scale) images are distinct from black-and-white images [L01 (e)]
9for most images we used σ = 0.2345678901 or σ = 0.4

10this is not a requirement, but only for better studying purpose of the applied denoising method
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not knowing what the original image is. We can also say; not knowing what the added
noise is.

There are more kinds of noise, such as Quantization noise (uniform noise) [L01], Pop noise,
Localized random noise and Random clutter noise (recognizable by unwanted dots and hor-
izontal bars with maximum intensity) [B05]. None of these four will be discussed in this
report.

Removing noise from an image
One of the most important aspects in (digital) signal processing is denoising noisy sig-
nals [B05]. There are several kinds of noise removing techniques such as: linear smooth-
ing filters (convolving the original image with a mask that represents a low-pass filter)
[L01][B05], non linear filters (example: the median filter) [B04][L01], and (An)isotropic
diffusion [B04][P01][P02][L01]. Only the latter will be discussed.

The Peak signal-to-noise ratio
The Peak signal-to-noise ratio (PSNR) is commonly used for measurement of the quality
of reconstruction of lossy compression [L01 (c)]. With the PSNR we will try to give the
quality of the denoised image [P03] compared to the noisy image or compared to the
original image. The PSNR is defined via the mean squared error (MSE) which is given by

MSE =
1

M N

M−1∑
i=0

N−1∑
j=0

[I(i, j)−K(i, j)]2 , (20)

where I and K are images and M,N are the size of the image respectively, in horizontal
and in vertical direction. We will consider K the noisy approximation11 of I. Let us
define MAXI as the maximum possible pixel value of the image. So in our case we have
MAXI = 1. With this the PSNR is defined as

PSNR = 10. log10

(
MAX2

I

MSE

)
= 20. log10

(
MAXI√
MSE

)

= 20. log10

 1√
1

M N

∑M−1
i=0

∑N−1
j=0 [I(i, j)−K(i, j)]2

 (21)

With the PSNR we can also see if further denoising is necessary or even required to gain
a reasonable result for the quality of the denoised image. The comparison then should
be done with the noisy image, instead of the original images, since in practice we do not
have the noisy image.

We could also build in the PSNR into the denoising algorithm as a stopping criterion.
This is not done in the algorithm we used. In section § 3.3 we can see what the PSNR
can tell us about the convergence.

11notice; we need not to know which image is the noisy one since (I−K)2 = (K−I)2, for I,K ∈ [−1, 1]
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3.1 The Heat Equation: ut = ∆u

In section §2.1 we saw that smoothening, of a locally fast alternating signal, with the
Heat Equation (HE) occurs when solving a Partial Differential Equation (PDE). A well
known effect for the 2-D situation is similar to the 1-D case. In 1-D we had smoothening
and diffusion of a signal, now we have smoothening of the surface with a diffusion effect.
Therefore the HE is also known as the diffusion equation [B02][L01 (h)].

We want to analyse what the effect is of the HE on a noisy image. Now we need to solve the
2-D initial boundary value problem and we will leave the boundary of the image during
the denoising procedure unchanged. One may choose another approach for handling the
boundaries during this process. The effect of this choice is visible in the examples in
section §3.3.

2-D discretization of the Heat PDE

Here we will consider the initial boundary value problem for the HE on the domain
Ω ⊂ Rn, with n = 2; the 2-D Heat equation

ut = k∆u = k

(
∂2u

∂x2
+
∂2u

∂y2

)
,

u(x, y, 0) = Θ(x, y),

(22)

where Θ(x, y) is the noisy image, and k = 1. The finite difference method will be applied
for approximation of (22) this by applying the Explicit Euler (EF) scheme. These approx-
imations can be found in the appendix from (58)-(62). This gives us the approximation

un+1
i,j = uni,j +

∆t

(∆x)2

(
uni+1,j − 2uni,j + uni−1,j

)
+

∆t

(∆y)2

(
uni,j+1 − 2uni,j + uni,j−1

)
(23)

For efficiency purposes when programming, we may set r =
∆t

(∆x)2
and s =

∆t

(∆y)2
. Thus

we can rewrite (23) as

un+1
i,j = (1− 2r − 2s)uni,j + r(uni+1,j + uni−1,j) + s(uni,j+1 + uni,j−1) (24)

Numerical Stability

As in the 1-D case we need to check the stability of HE using EF for the 2-D situation.
The stability condition now is that both r and s should be less than 1

2
. On a uniform

grid where ∆x = ∆y we have that λ := max(r, s), this way we have that the scheme is
conditionally stable with

r + s ≤ 1

2
⇒ λ ≤ 1

4
, (25)

which is stricter than the one-dimensional case [B01].
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3.2 The Perona-Malik Equation: ut = ∇.(D(u)∇u)

In this section we will investigate12 the two-dimensional (2-D) version of the, in the previ-
ous chapter discussed, Perona-Malik Equation (PME). Here scale-space filtering, in terms
of multi-scale descriptions of images, will have a important role. I quote; Perona and Malik
[P02]: ”The essential idea of this approach is quite simple: embed the original image in a
family of derived images I(x, y, t) obtained by convolving the original image I0(x, y) with
a Gaussian kernel G(x,y;t) of variance t:

I(x, y, t) = I0(x, y) ∗G(x, y; t). (26)

Larger values of t, the scale-space parameter, correspond to images at coarser resolutions.”

The used Gaussian kernel has the form [L01 (i)]:

1

2πt
e−(x2+y2)/2t,

and the derived images I(x, y, t) may be viewed as solutions of (22), the Heat diffusion
equation, with

I0(x, y) = u(x, y, 0) = Θ(x, y).

Some important features are that there should not be any generation of spurious de-
tailed information, when we diminish the resolution. That blurring is required to be space
invariant. These criteria are respectively known as:

• Causality

• Homogeneity and Isotropy

Since the Gaussian kernel does not respect natural boundaries (edges) of objects, spatial
distortion occurs when using this kernel. Thats why Perona and Malik enunciated the
following criteria:

• Causality

• Immediate Localization

• Piecewise Smoothing

More details about this can be found in [P02]. Perona and Malik showed that a suitable
choice for the constant k in (22), enables us to satisfy the last two conditions in the
criteria above, this without giving up the first criterion; causality. The choice is; not to
use a diffusion coefficient k as a constant, but a diffusion coefficient as function k =
k(x, y, t). Perona and Malik suggested the anisotropic diffusion equation13 instead of the

12most of the text in this section is based on [P02]
13this is also known as the Perona-Malik equation. In [P08] they note that the PME should not be

named anisotropic in their terminology, but isotropic
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isotropic heat diffusion equation, where the subset of the plane is denoted as Ω ⊂ R2 and
I(x, y, t) : Ω → R is the family of gray-scaled images corresponding with I0(x, y). Thus
the anisotropic diffusion equation is defined as

It = div
(
k(x, y, t) ∇I

)
= k(x, y, t)∆I +∇k · ∇I, (27)

where It = ∂
∂t
I further div, ∇ and ∆ respectively indicate the divergence, gradient and

Laplacian operator, with respect to the space variables. Perona and Malik showed that
the simplest estimate of the position of edges is the gradient of the brightness function

E(x, y, t) = ∇I(x, y, t), (28)

which gives excellent results, and that the conduction coefficient k can be chosen as

k = k(x, y, t) = g(‖E‖) = g(‖∇I‖), (29)

where g(·) is a nonnegative monotonically decreasing function and g(0) = 1. The effect
therefore is that diffusion occurs in the interior of regions and does not affect the edges of
these regions. Perona and Malik also showed that in case of using edge estimate E(x, y, t)
there is a restricted choice, this will not be done here.

Perona and Malik proposed two functions for the diffusion coefficient

g(‖∇I‖) = e−(‖∇I‖/K)2 (30)

and

g(‖∇I‖) =
1

1 +
(
‖∇I‖
K

)1+α α > 0, (31)

where α = 1 in [P02][P04][L01(b)]. We will use (31) for our numerical experiments and

also set α = 1, but we have that the constant K =
1√
ε
. This way we will use

g(‖∇I‖) =
1

1 + ε‖∇I‖2
. (32)

The constant ε, meaning K, can be fixed at some value and mostly K ∈ {1, 2, 3, · · ·}, but
this is not a requirement. Notice that for K → ∞ we have ε → 0 and for ε = 0 we have
the Heat PDE.

2-D discretization of the Perona-Malik PDE

Now we will investigate the 2-D Perona-Malik Equation (PME), which is of the form

ut = div
(
D(u)∇u

)
= ∇.(D(u)∇u), (33)
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so D(u) = g(‖∇u‖) and u represents the image. In the previous section we have already
given the discretization of ut, so our focus will be on the right-hand side of (33).

ut = ∇ ·
( 1

1 + ε|∇u|2
∇u
)

=
∂

∂x

[
1

1 + ε|∇u|2
∂u

∂x

] ∣∣∣∣
i,j

+
∂

∂y

[
1

1 + ε|∇u|2
∂u

∂y

] ∣∣∣∣
i,j

. (34)

where

|∇u|2 = ∇u · ∇u =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

. (35)

We will now approximate both equations. Using the approximations in the appendix. We
have that

∂

∂x

[
1

1 + ε|∇u|2
∂u

∂x

] ∣∣∣∣
i,j

= → see Appendix : § A, (36)

and

∂

∂y

[
1

1 + ε|∇u|2
∂u

∂y

] ∣∣∣∣
i,j

= → see Appendix : § A. (37)

This way we find that the FD-scheme for the Perona-Malik PDE becomes

un+1
i,j = uni,j + ∆t

(
(36) + (37)

)
. (38)

3.3 Results

In this section we will put the Heat Equation (HE) and the Perona-Malik Equation (PME)
to the denoising test, for different kind of images. There will also be different types of
noise added to the original images, so we can analyze what the denoising effect of these
two PDEs is on the different types of noisy images.

Stopping criteria for the Heat and Perona-Malik PDE

We did not build in a stopping criterion in the algorithm yet14, but the Peak Signal-
to-Noise Ratio (PSNR) can be used to abort iteration in an early state if there is no
divergence. So for now our stopping criteria is a fixed number of iteration steps.

Experiments

We will investigate two kind of images (simple and less simple) and put the HE and the
PME to the denoising test. The original simple image has only three grayshades and has
only vertical and horizontal edges. The less simple images have more grayshades and all
kind of edges. The errors in the Figures 14, 16 and 18 are the norm15: ‖un+1

i,j − uni,j‖ given
in terms of the largest singular value.

14see the experiments under item Salt-and-Pepper noise for an example of the use of this possible
criteria

15using the function norm(A) or norm(A,2) in MATLAB, where A is a matrix representing ui,j
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A. We will look at the following simple16 test cases:

• Gaussian noise
During the denoising procedures the boundary of the images itself is left unchanged.
The denoising process is on an image where Gaussian noise is added, with mean
m = 0.0:

– We set variance v = 0.1, and we did only 500 steps with PM.
In Figure 13 the result of the denoising process is visible with the PME. Fur-
ther iteration is preferred here to remove the remaining dark dots. Figure 14,
shows that removing these remaining dark dots will be a very slow process and
therefore a lot of iteration steps are needed.

– Here we also set variance v = 0.1, but now 2500 steps are done with PM.
As we saw in the experiment above, further iteration was needed. In Figure 15
we see that all the dark dots are gone, but Figure 16 tells us that this effect
was already reached after approximately 1000 steps. After 1500 steps there is
almost no progress made.

– Here we set variance v = 0.15, but now 1500 steps are done with PM.
The result can be seen in Figure 17. We set ε = 0.08 instead of the 0.16, what
was the case in the experiments above. Because of this choice of ε we have faster
convergence, see Figure 18. The now larger parameter v introduced more noise,
such that the edges of the internal object (rectangle)
is deformed.

• Plain random noise
Here we add some plain random noise, and will see that after a few steps the HE
gives bad results, see the Figure 19. Even when we can already guess what the
original image should look like. For the same case the PME gives much better re-
sults. The smoothening effect of the HE causes the resulting denoised image to seem
blurry, but the PME also keeps the edges of the internal rectangle almost intact.

• Salt-and-Pepper noise
If this type of noise is involved, the PME is not a suitable denoising PDE for image
processing. This since clusters of white or black pixels easily arise, which cannot be
filtered by the PME. In Figure 20 we see this effect, where almost 30% of the pixels
is changed in black or white. Here we also used ε = 0.02 for the PME. In Figure 21
we see that the PSNR will work as a stopping criterion but the result may be not
what we hoped. A good filter (image operator) when this kind of noise is involved is
the so called ”Extrema Killer” [P01]; I quote: ”This image operator simply removes
all connected components of upper and lower level sets with area smaller than some
fixed scale. This is not a PDE, actually it’s much simpler!”.

16only vertical and horizontal edges are involved in the rectangles
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Figure 13: The left and right top figures are the original image, in RGB and gray-scaled
respectively. The left lower image is the original gray-scaled image with Gaussian noise;
the parameters are m = 0.0 and v = 0.1. The lower right image is the denoising result,
after 500 steps, with the Perona-Malik PDE.

Figure 14: Here we see the error of the denoising procedure in Figure 13, with ε = 0.16.
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Figure 15: The left and right top figures are the original image, in RGB and gray-scaled
respectively. The left lower image is the original gray-scaled image with Gaussian noise;
the parameters are m = 0.0 and v = 0.1. The lower right image is the denoising result,
after 2500 steps, with the Perona-Malik PDE.

Figure 16: Here we see the error of the denoising procedure in Figure 15, with ε = 0.16.
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Figure 17: The left and right top figures are the original image, in RGB and gray-scaled
respectively. The left lower image is the original gray-scaled image with Gaussian noise;
the parameters are: m = 0.0 and v = 0.15. The lower right image is the denoising result,
after 1500 steps, with the Perona-Malik PDE.

Figure 18: Here we see the error of the denoising procedure in Figure 17, with ε = 0.08.
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Figure 19: The first 12 images (top) represent the denoising procedure with the HE, and
the following 12 images (below) the denoising procedure with the PME, where ε = 0.02.
The denoising result are after 2-20 steps respectively.
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Figure 20: (Top): Original image with Salt-and-Pepper noise, where almost 30% of the
pixels is turned black or white. (Lower): The denoised image after 500 iteration steps with
the Perona-Malik equation.

Figure 21: The PSNR curve for the Heat and Perona-Malik equations. We may conclude
that after 10 iteration steps the HE for sure won’t give better results. But the PME give
some hope. The best it can do is visible in Figure 20.
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B. The following images are less simple test cases.

• Mona Lisa; with Gaussian white noise
Notice that the original Mona Lisa image has a lot of noise-like pixels. This was
maybe the intention of the painter. That’s why we do not add a lot of noise to this
test image; parameter m = 0.0 and v = 0.1. The difference is therefore almost not
visible; see Figure 22:

– As we saw in the previous examples the HE will cause a blurry result as de-
noised image. We can also say PME with ε = 0 causes this. This shows us that
we need not take a too small ε which is almost zero, since the interior edges of
objects such as the eyes, nose and lips are totally destroyed.

– In Figure 22 we see that after 200 steps with PME the eyes, nose and lips are
still intact. The forehead and clouds are smoothened without loosing the edges
of these objects.

• Face; with Gaussian white noise
After adding noise to this image we see that there is almost no visible difference
between the background with noise disturbance and the contour of the face.

– As expected the HE does not work and objects like nose and lips are localized
but are totally blurred and have no logical meaning17 at all.

– Choosing ε = 0.02 again we see that with the PME the eyes and lips are also
localized but now we can recognize them. This is also the case in the noisy
image, so this is no gain at all. Since there is no visible difference between the
background with noise disturbance and the contour of the face we see that
the contour almost totally disappeared after the 150 steps. Recall that the
PME works as a locally averaging filter. To be able to recognize the contour
we should have stopped earlier with the iteration, but then we would not lose
that much noise.

The question is; ”when should we stop iterating to gain a recognizable denoised
image?” Even the PSNR stopping criterion would not be suitable in this case.
We really need to localize edges of objects in images to get better results when
we have noisy images as described in this example. The more noise the less
change we have in localizing and keeping these edges. Recall the causality
feature of the PME; therefore we will not be able to reconstruct the edges
that are lost because of the noise, since this would mean generating spurious
detailed information.

A solution to this problem is to use adaptive grids to localize edges in a early
stage of the denoising process.

17a logical meaning is localizing the positions of the eyes and so on, but that is not what we want here
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Figure 22: Mona Lisa: The first 4 images (top); represent the denoising procedure with
the HE, and the following 4 images (below) the denoising procedure with the PME, where
ε = 0.02. In both cases we made 200 iteration steps.
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Figure 23: Face: The first 4 images (top); represent the denoising procedure with the
HE, and the following 4 images (below) the denoising procedure with the PME, where
ε = 0.02. In both cases we made 150 iteration steps.
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3.4 R-refinement in image Processing

For detecting edges in an early state of the denoising procedure, we need to switch from
a uniformly distributed to a non-uniformed grid. To benefit from this approach the size
of the image is of great importance. The larger the size the better adaptivity will take
place. There are several ways to do refinement, using adaptive grids. In [P07] nice results
are visible using the finite volume scheme for solving nonlinear diffusion equations. The
approach here will be via a finite difference scheme.

First we need to perform a transformation of coordinates where u(x, y, t) is transformed
into u(ξ, η, θ), where ξ = ξ(x, y, t), η = η(x, y, t) and θ = t. So that we can approximate

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
(39)

Before doing this, notice that

∂θ

∂t
= 1 and

∂θ

∂x
=
∂θ

∂y
= 0,

as result of θ = t, so

ut =
∂u

∂t
=

∂u

∂ξ

∂ξ

∂t
+
∂u

∂η

∂η

∂t
+
∂u

∂θ

∂θ

∂t
=

∂u

∂ξ

∂ξ

∂t
+
∂u

∂η

∂η

∂t
+
∂u

∂θ
= uξξt + uηηt + uθ

ux =
∂u

∂x
=

∂u

∂ξ

∂ξ

∂x
+
∂u

∂η

∂η

∂x
+
∂u

∂θ

∂θ

∂x
=

∂u

∂ξ

∂ξ

∂x
+
∂u

∂η

∂η

∂x
= uξξx + uηηx

uy =
∂u

∂y
=

∂u

∂ξ

∂ξ

∂y
+
∂u

∂η

∂η

∂y
+
∂u

∂θ

∂θ

∂y
=

∂u

∂ξ

∂ξ

∂y
+
∂u

∂η

∂η

∂y
= uξξy + uηηy

With these approximations we can compute the terms uxx = ∂2u
∂x2

and uyy = ∂2u
∂y2

. This can

be done by first eliminating the following terms, based on [P09]

ξt, ξx, ξy, ηt, ηx, ηy, θt, θx, and θy

in the future equation(s). This will be done by using the fact that for each matrix A for
which there is an inverse A−1 we have that AA−1 = A−1A = I, where I is the identity
matrix. From the transformation we know that the Jacobian matrix and its (logical)
inverse are

J−1
T =

 ξx ξy ξt
ηx ηy ηt
0 0 1

 and JT =

 xξ xη xθ
yξ yη yθ
0 0 1
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So J−1
T JT = I. If we work this out we get the following system of equations (i) to (vi)

ξxxξ + ξyyξ = 1, (i)

ηxxξ + ηyyξ = 0, (ii)

ξxxη + ξyyη = 0, (iii)

ηxxη + ηyyη = 1, (iv)

ξxxθ + ξyyθ + ξt = 0, (v)

ηxxθ + ηyyθ + ηt = 0, (vi)

This system can be solved, such that the each ξ, η and θ derivative is expressed in the
terms of the coordinates of the physical domain. We can eliminate yξ and yη in (i) and
(iii) and find that

−yη (ξxxξ + ξyyξ) = −yη
yξ (ξxxη + ξyyη) = 0

}
⇒ ξx =

−yη
xηyξ − xξyη

In the same way we can eliminate xξ and xη in (i) and (iii)

−xη (ξxxξ + ξyyξ) = −xη
xξ (ξxxη + ξyyη) = 0

}
⇒ ξy =

−xη
xξyη − xηyξ

Lets eliminate yξ and yη in (ii) and (iv)

−yη (ηxxξ + ηyyξ) = 0

yξ (ηxxη + ηyyη) = yξ

}
⇒ ηx =

yξ
xηyξ − xξyη

Now we eliminate xξ and xη in (ii) and (iv)

−xη (ηxxξ + ηyyξ) = 0

xξ (ηxxη + ηyyη) = xξ

}
⇒ ηy =

xξ
xξyη − xηyξ

Substituting the computed values above in (v) and (vi) we find that

ξt = −xθyη − xηyθ
xξyη − xηyξ

and ηt =
xθyξ − xξyθ
xξyη − xηyξ

If we compute the determinant of the Jacobian matrix JT we find, with for example the
use of the Sarrus’ rule [L01 (j)], that

J = det(JT ) = |JT | = xξyη − yξxη.

With this value we see that we can rewrite the computed terms as

ξx =
yη
J
, ξy = −xη

J
, ξt = −xθyη − yθxη

J
,

ηx = −yξ
J
, ηy =

xξ
J
, ηt =

xθyξ − yθxξ
J

.
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We see that the first derivative of u(x, y, t) with respect to x is:

∂u

∂x
= ux = uξξx + uηηx

=
1

J

[
uξyη − uηyξ

]
=

1

J

[
(uξyη + uyηξ)− (uηyξ + uyξη)

]
=

1

J

[
(uyη)ξ − (uyξ)η

]
(40)

Notice that the cross terms uyηξ and uyξη cancel in the previous equation. With this result
we can write the second derivative of u(x, y, t) with respect to x, by using the fact that

∂2u

∂x2
= uxx = (ux)x =

∂

∂x

(
∂u

∂x

)
,

so we find

uxx =
1

J

[
(uxyη)ξ − (uxyξ)η

]
=

1

J

[ ( 1

J

[
(uyη)ξ − (uyξ)η

]
yη

)
ξ
−
( 1

J

[
(uyη)ξ − (uyξ)η

]
yξ

)
η

]

=
1

J

[ (
uξy

2
η − uηyξyη
J

)
ξ

−
(
uξyηyξ − uηy2

ξ

J

)
η

]

=
1

J

[ (
uξy

2
η

J

)
ξ

−
(
uηyξyη
J

)
ξ

−
(
uξyηyξ
J

)
η

+

(
uηy

2
ξ

J

)
η

]
.

(41)

In the same way we can determine uy and uyy:

∂u

∂y
= uy = uξξy + uηηy

=
1

J

[
−uξxη + uηxξ

]
=

1

J

[
(uxξ)η − (uxη)ξ

]
(42)

and since uyy = (uy)y we determine that
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uyy =
1

J

[
(uyxξ)η − (uyxη)ξ

]
=

1

J

[ ( 1

J

[
(uxξ)η − (uxη)ξ

]
xξ

)
η
−
( 1

J

[
(uxξ)η − (uxη)ξ

]
xη

)
ξ

]

=
1

J

[ (
uηx

2
ξ − uξxηxξ
J

)
η

−
(
uηxξxη − uξx2

η

J

)
ξ

]

=
1

J

[ (
uηx

2
ξ

J

)
η

−
(
uξxηxξ
J

)
η

−
(
uηxξxη
J

)
ξ

+

(
uξx

2
η

J

)
ξ

]
.

(43)

The left-hand-side of (39) becomes

ut = uθ +
1

J

[
(xθyξ − yθxξ)uη − (xθyη − yθxη)uξ

]
(44)

So now we are able to write (39) in the transformed coordinates as

1

J

[
(xθyξ − yθxξ)uη − (xθyη − yθxη)uξ

]

=
1

J

[ (
uξy

2
η

J

)
ξ

−
(
uηyξyη
J

)
ξ

−
(
uξyηyξ
J

)
η

+

(
uηy

2
ξ

J

)
η

]
+

1

J

[ (
uηx

2
ξ

J

)
η

−
(
uξxηxξ
J

)
η

−
(
uηxξxη
J

)
ξ

+

(
uξx

2
η

J

)
ξ

]

=
1

J

[ (
x2
η + y2

η

J
uξ

)
ξ

−
(
xξxη + yξyη

J
uη

)
ξ

+

(
x2
ξ + y2

ξ

J
uη

)
η

−
(
xξxη + yξyη

J
uξ

)
η

]

(45)

Discretization of the transformed heat equation

Equation (45) can be discretized. We know enough about the stability of the numerical
method Euler Forward (EF). So we will try to investigate the influence of this method in
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the discretization of the transformed HE. Lets define

∆X n+1
i,j ≡ X n+1

i,j −X n
i,j

∆X n
i+1,j ≡ X n

i+1,j −X n
i−1,j

∆X n
i,j+1 ≡ X n

i,j+1 −X n
i,j−1

 with X ∈ {u, x, y} (46)

We will use the following approximations for the derivatives:

uθ ≈
un+1
i,j − uni,j
θn+1
i,j − θni,j

=
∆un+1

i,j

∆θ

xθ ≈
xn+1
i,j − xni,j
θn+1
i,j − θni,j

=
∆xn+1

i,j

∆θ

yθ ≈
yn+1
i,j − yni,j
θn+1
i,j − θni,j

=
∆yn+1

i,j

∆θ

uξ ≈
uni+1,j − uni−1,j

ξni+1,j − ξni−1,j

=
∆uni+1,j

2∆ξ

xξ ≈
xni+1,j − xni−1,j

ξni+1,j − ξni−1,j

=
∆xni+1,j

2∆ξ

yξ ≈
yni+1,j − yni−1,j

ξni+1,j − ξni−1,j

=
∆yni+1,j

2∆ξ

uη ≈
uni,j+1 − uni,j−1

ηni,j+1 − ηni,j−1

=
∆uni,j+1

2∆η

xη ≈
xni,j+1 − xni,j−1

ηni,j+1 − ηni,j−1

=
∆xni,j+1

2∆η

yη ≈
yni,j+1 − yni,j−1

ηni,j+1 − ηni,j−1

=
∆yni,j+1

2∆η

With these approximations we are using a kind of centered approximation around a point
(i, j) in the transformed grid (ξ, η), where the distance between two neighboring mesh
point in the ξ-direction or η-direction is ∆ξ respectively ∆η.
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Now we are able to write the discretization of the ut

ut = uθ + uξξt + uηηt

= uθ +
1

J

[
(xθyξ − yθxξ)uη − (xθyη − yθxη)uξ

]

≈
∆un+1

i,j

∆θ
+

4∆ξ∆η

∆xni+1,j∆y
n
i,j+1 + ∆xni,j+1∆yni+1,j

·
( 1

4∆θ∆ξ∆η
·

{
∆uni,j+1

[
∆xn+1

i,j ∆yni+1,j −∆yn+1
i,j ∆xni+1,j

]
−

∆uni+1,j

[
∆xn+1

i,j ∆yni,j+1 −∆yn+1
i,j ∆xni,j+1

] } )
=

1

∆θ

{
∆un+1

i,j + A∆uni,j+1 −B∆uni+1,j

}
,

(47)

with

A =
∆xn+1

i,j ∆yni+1,j −∆yn+1
i,j ∆xni+1,j

∆xni+1,j∆y
n
i,j+1 + ∆xni,j+1∆yni+1,j

and B =
∆xn+1

i,j ∆yni,j+1 −∆yn+1
i,j ∆xni,j+1

∆xni+1,j∆y
n
i,j+1 + ∆xni,j+1∆yni+1,j

Lets look at the discretization of the following derivatives:

(Cuξ)ξ ≈
(Cuξ)i+ 1

2
,j − (Cuξ)i− 1

2
,j

∆ξ

≈ 1

∆ξ

(
Ci+ 1

2
,j ui+1,j − Ci+ 1

2
,j ui,j

∆ξ
−
Ci− 1

2
,j ui,j − Ci− 1

2
,j ui−1,j

∆ξ

)

=
1

(∆ξ)2

(
Ci+1,j + Ci,j

2
ui+1,j −

[Ci+1,j + Ci,j
2

+
Ci,j + Ci−1,j

2

]
ui,j +

Ci,j + Ci−1,j

2
ui−1,j

)

=
1

2 (∆ξ)2

( [
Ci+1,j + Ci,j

]
ui+1,j −

[
Ci+1,j + 2Ci,j + Ci−1,j

]
ui,j +

[
Ci,j + Ci−1,j

]
ui−1,j

)
.
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(Duη)ξ ≈
(Duη)i+1,j − (Duη)i−1,j

2∆ξ

≈ 1

2∆ξ

(
Di+1,j+1 ui+1,j+1 −Di+1,j−1 ui+1,j−1

2∆η
−

Di−1,j+1 ui−1,j+1 −Di−1,j−1 ui−1,j−1

2∆η

)

≈ 1

4∆ξ∆η

(
Di+1,j+1 ui+1,j+1 − Di+1,j−1 ui+1,j−1 −

Di−1,j+1 ui−1,j+1 + Di−1,j−1 ui−1,j−1

)
.
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(Euη)η ≈
(Euη)i,j+ 1

2
− (Euη)i,j− 1

2

∆η

≈ 1

∆η

(
Ei,j+ 1

2
ui,j+1 − Ei,j+ 1

2
ui,j

∆η
−
Ei,j− 1

2
ui,j − Ei,j− 1

2
ui,j−1

∆η

)

=
1

(∆η)2

(
Ei,j+1 + Ei,j

2
ui,j+1 −

[Ei,j+1 + Ei,j
2

+
Ei,j + Ei,j−1

2

]
ui,j +

Ei,j + Ei,j−1

2
ui,j−1

)

=
1

2 (∆η)2

( [
Ei,j+1 + Ei,j

]
ui,j+1 −

[
Ei,j+1 + 2Ei,j + Ei,j−1

]
ui,j +

[
Ei,j + Ei,j−1

]
ui,j−1

)
.

(Fuξ)η ≈
(Fuη)i,j+1 − (Fuη)i,j−1

2∆η

≈ 1

2∆η

(
Fi+1,j+1 ui+1,j+1 − Fi−1,j+1 ui−1,j+1

2∆ξ
−

Fi+1,j−1 ui+1,j−1 − Fi−1,j−1 ui−1,j−1

2∆ξ

)

≈ 1

4∆ξ∆η

(
Fi+1,j+1 ui+1,j+1 − Fi−1,j+1 ui−1,j+1 −

Fi+1,j−1 ui+1,j−1 + Fi−1,j−1 ui−1,j−1

)
.
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Now we can approximate the right hand side of (39) using (41) and (43):

uxx + uyy

=
1

J

[ (
x2
η + y2

η

J
uξ

)
ξ

−
(
xξxη + yξyη

J
uη

)
ξ

+

(
x2
ξ + y2

ξ

J
uη

)
η

−
(
xξxη + yξyη

J
uξ

)
η

]

=
1

J

[
(Cuξ)ξ − (Duη)ξ + (Euη)η − (Fuξ)η

]

≈ 4∆ξ∆η

∆xi+1,j∆yi,j+1 −∆xi,j+1∆yi+1,j

{

(Ci+1,j + Ci,j)ui+1,j − (Ci+1,j + 2Ci,j + Ci−1,j)ui,j + (Ci,j + Ci−1,j)ui−1,j

2(∆ξ)2
−

Di+1,j+1ui+1,j+1 −Di+1,j−1ui+1,j−1 −Di−1,j+1ui−1,j+1 +Di−1,j−1ui−1,j−1

4∆ξ∆η
+

(Ei,j+1 + Ei,j)ui,j+1 − (Ei,j+1 + 2Ei,j + Ei,j−1)ui,j + (Ei,j + Ei,j−1)ui,j−1

2(∆η)2
−

Fi+1,j+1ui+1,j+1 − Fi−1,j+1ui−1,j+1 − Fi+1,j−1ui+1,j−1 + Fi−1,j−1ui−1,j−1

4∆ξ∆η

}

(48)

Notice that we still have to approximate the derivatives18 of Ci±p,j±q, even for D, E and
F , where

C =
x2
η + y2

η

J

D =
xξxη + yξyη

J
= F

E =
x2
ξ + y2

ξ

J
but these will not be given.

18for example Ci±p,j±q where p, q ∈ {−1, 0, 1}
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Figure 24: Top: the original image with added Salt-and-Pepper Noise. Lower: the denoised
image with the Heat Equation (HE) on an R-refined adaptive grid.

Detailed information about the adaptive mesh PDEs and the involved monitor function
can be found in [B03]. From this point on we used the C++ code from Anika Remorie,
Thesis: Adaptive numerical solutions of two-dimensional fingering patterns, she solved
the nonequilibrium Richards Equation (NERE) on an adaptive grid using the IMEX-θ
scheme19 given by:

∂S

∂t
= ∇. (D(S)∇) +

∂K(S)

∂z
+ τ∇.

[
K(S)∇

(
∂S

∂t

)]
. (49)

By setting τ = 0, K(S) = 0 and D(S) = 1 we have the Heat Equation (HE). Now we
just need to set the correct parameters in the provided program. In Figure 24 we see the
result of the HE. For the PME we need to plug in the correct D(S), but this is not done
in this report.

In Figures 25 - 26 we see that R-refinement technique works for the detection of edges
using the HE. The more the noise in the image, the less grid points are available for
detecting the edges to speed up the denoising process. Because grid points are also used
for detecting noise in the image.

19this was solved with the Bi-CGSTAB (Bi-Conjugate Gradient Stabilized) method
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Figure 25: No noise The left column gives the resulting images after applying the Heat
Equation. In the right column we see the adaptation of the mesh. The edges of the internal
rectangles are well detected. The first row is the initial situation, the second and third
row are corresponding with iteration step 10 respectively 25.
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Figure 26: Gaussian noise m=0, v=0.01 The left column gives the resulting images
after applying the Heat Equation. In the right column we see the adaptation of the mesh.
The edges of the internal rectangles are well detected. The first row is the initial situation,
the second and third row are corresponding with iteration step 10 respectively 25.
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3.5 Conclusion and Future Work

In the previous sections we have seen that the Heat Equation (HE) and the Perona-
Malik Equation (PME) have a smoothening effect during image processing. Depending
on the noise involved, the PME has desirable results. For example; the Salt-and-Pepper
noise is the worst of the three possibilities mentioned, since it strongly depends on the
percentages of changed pixels new structures might be formed. But when Gaussian white
noise is involved the denoised image with the PME nicely resembles with the original
image, meaning that edges are preserved. On the other hand, if there are clear structures
formed by the added noise, neither the HE or PM will denoise these structures properly ;
meaning that these structures will be visible in the resulting denoised image when applying
the PME, even with a proper value for the parameter ε.

As we saw with the Mona Lisa image; denoising with PME gives a nicely smoothened
image where all the applied details in the cloud by the artist, are removed since they seem
similar to noise. We will just have to do with this!

A major setback is the color of the background. In the previous chapter we also saw that
the PME works like a locally averaging filter. This means that especially when there are
white backgrounds involved the resulting denoised image seems to have a gray shade as
background. This needs to be taken care of with other techniques; for example rescaling the
resulted denoised image in the range [0, 1], by increasing the brightness20, see Figure 27.

(a) (b)

Figure 27: Increasing the brightness of the resulting denoised images: (a) from the rectangle
in Figure 15, (b) from the Face in Figure 23.

This is a part of image reconstruction, but not a part of the treated PDE approach.
Therefore we will not pay further attention to it.

To avoid many iteration steps with the PME we can use a unconditionally stable finite
difference method such as an Implicit method which is consistent with the PME. Another
approach is using adaptive grids. This way we can localize edges early in the iteration.

20for example in Microsoft Office Picture Manager by increasing the brightness from 0 to 20
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Appendix

A List of Approximations

Approximating uxx via the Taylor Expansions

If u(x, t) is smooth enough, then the approximation of u in the point (x+ ∆x, t) is equal
to

u(x±∆x, t) := T±n,t(u(x, t)) +R±n,t(u(x, t)) = T±n,t(u) +R±n,t(u) (50)

u(x+ ∆x, t) =
n∑
j=0

(∆x)j

j!

∂j

∂xj
u(x, t) +

∞∑
j=n+1

(∆x)j

j!

∂j

∂xj
u(x, t), (51)

u(x−∆x, t) =
n∑
j=0

(−∆x)j

j!

∂j

∂xj
u(x, t) +

∞∑
j=n+1

(−∆x)j

j!

∂j

∂xj
u(x, t). (52)

So we have that

uxx =
∂2u(x, t)

∂x2
=
u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

(∆x)2
+R+

3,t(u) +R−3,t(u), (53)

recall that if ∆x→ 0 then [R+
3,t(u) +R−3,t(u)]→ 0, which results in

uxx ≈
uni+1 − 2uni + uni−1

(∆x)2
. (54)

Approximation for ut, ux and uxx in 1-D

For the 1-D case we have that

ut =
∂u(x, t)

∂t

∣∣∣∣
xi

≈ un+1
i − uni

∆t
, (55)

ux =
∂u(x, t)

∂x

∣∣∣∣
xi

≈
uni+1 − uni

∆x
. (56)

uxx =
∂

∂xi

(
∂u

∂xi

)
=

∂

∂xi
ux =

[
ux

]
x

∣∣∣
xi

(57)

≈

[
ux

]n
i+ 1

2

−
[
ux

]n
i− 1

2

∆x
≈

uni+1 − uni
∆x

−
uni − uni−1

∆x
∆x

=
uni+1 − 2uni + uni−1

(∆x)2
.
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Approximation for ut, ux and uy in 2-D

For the 2-D case we have that

ut =
∂u(x, y, t)

∂t

∣∣∣∣
i,j

≈
un+1
i,j − uni,j

∆t
, (58)

ux =
∂u(x, y, t)

∂x

∣∣∣∣
i,j

≈
uni+1,j − uni,j

∆x
, (59)

uy =
∂u(x, y, t)

∂y

∣∣∣∣
i,j

≈
uni,j+1 − uni,j

∆y
. (60)

Approximation for uxx and uyy in 2-D

For the 2-D case we have that

uxx =
∂

∂x

(
∂u

∂x

)∣∣∣∣
i,j

=
[
ux

]
x

∣∣∣
i,j

(61)

≈

[
ux

]n
i+ 1

2
,j
−
[
ux

]n
i− 1

2
,j

∆x
=

uni+1,j − uni,j
∆x

−
uni,j − uni−1,j

∆x
∆x

=
uni+1,j − 2uni,j + uni−1,j

(∆x)2
.

Similar we can approximate

uyy =
∂

∂y

(
∂u

∂y

)∣∣∣∣
i,j

=
[
uy

]
y

∣∣∣∣
i,j

(62)

≈

[
uy

]n
i,j+ 1

2

−
[
uy

]n
i,j− 1

2

∆y
=

uni,j+1 − uni,j
∆y

−
uni,j − uni,j−1

∆y

∆y
=
uni,j+1 − 2uni,j + uni,j−1

(∆y)2
.
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Approximation of mixed derivatives uxy = uyx in 2D

For the 2D case we have that uxy = uyx

∂2u

∂x∂y

∣∣∣∣
i,j

=
∂

∂x

(
∂u

∂y

) ∣∣∣∣
i,j

=
∂

∂y

(
∂u

∂x

) ∣∣∣∣
i,j

=
∂2u

∂y∂x

∣∣∣∣
i,j

≈

∂u

∂y

∣∣∣∣
i+1,j

− ∂u

∂y

∣∣∣∣
i−1,j

2∆x
≈

uni+1,j+1 − uni+1,j−1

2∆y
−

uni−1,j+1 − uni−1,j−1

2∆y

2∆x
(63)

=
uni+1,j+1 − uni+1,j−1 − uni−1,j+1 + uni−1,j−1

4∆x∆y
.

The stecil form of this approximation is

1

4∆x∆y

 −1 0 1
0 0 0
1 0 −1

 . (64)

We also can compute uxy = uyx via

∂2u

∂x∂y

∣∣∣∣
i,j

=
∂

∂x

(
∂u

∂y

) ∣∣∣∣
i,j

=
∂

∂y

(
∂u

∂x

) ∣∣∣∣
i,j

=
∂2u

∂y∂x

∣∣∣∣
i,j

≈

∂u

∂y

∣∣∣∣
i+ 1

2
,j

− ∂u

∂y

∣∣∣∣
i− 1

2
,j

∆x
≈

un
i+ 1

2
,j+1
− un

i+ 1
2
,j−1

2∆y
−

un
i− 1

2
,j+1
− un

i− 1
2
,j−1

2∆y

∆x

(65)

≈

uni+1,j+1 + uni,j+1

2
−
uni+1,j−1 + uni,j−1

2
2∆y

−

uni,j+1 + uni−1,j+1

2
−
uni,j−1 + uni−1,j−1

2
2∆y

∆x

=

uni+1,j+1

2
+
uni,j+1

2
−
uni+1,j−1

2
−
uni,j−1

2
−
uni,j+1

2
−
uni−1,j+1

2
+
uni,j−1

2
+
uni−1,j−1

2
2∆x∆y

=
uni+1,j+1 + uni,j+1 − uni+1,j−1 − uni,j−1 − uni,j+1 − uni−1,j+1 + uni,j−1 + uni−1,j−1

4∆x∆y
.

We see that both approximations of uxy in (63) and (65) have the same stencil (64). We
can also construct other approximations for uxy if needed, which have another stencil.
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Approximating the 2D heat equation

ut = ∆u = uxx + uyy =
∂2u

∂x2
+
∂2u

∂y2
=

∂

∂x

(
∂u

∂x

)
+

∂

∂y

(
∂u

∂y

)
(66)

Using the approximations in (58), (61) and (62) we find that (66) becomes

un+1
i,j = uni,j +

∆t

(∆x)2

(
uni+1,j − 2uni,j + uni−1,j

)
+

∆t

(∆y)2

(
uni,j+1 − 2uni,j + uni,j−1

)
. (67)

For efficiency purposes we set r = ∆t
(∆x)2

and s = ∆t
(∆y)2

. Thus we can rewrite (67) as

un+1
i,j = (1− 2r − 2s)uni,j + r(uni+1,j + uni−1,j) + s(uni,j+1 + uni,j−1). (68)

Approximating the 2D Perona-Malik PDE

ut = ∇ ·
( 1

1 + ε|∇u|2
∇u
)

=
∂

∂x

[
1

1 + ε|∇u|2
∂u

∂x

] ∣∣∣∣
i,j

+
∂

∂y

[
1

1 + ε|∇u|2
∂u

∂y

] ∣∣∣∣
i,j

. (69)

where

|∇u|2 = ∇u · ∇u =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

. (70)

The following approximations are used:

ux

∣∣∣
i+ 1

2
,j

=
∂u

∂x

∣∣∣∣
i+ 1

2
,j

≈
uni+1,j − uni,j

∆x
, (71)

ux

∣∣∣
i− 1

2
,j

=
∂u

∂x

∣∣∣∣
i− 1

2
,j

≈
uni,j − uni−1,j

∆x
, (72)

uy

∣∣∣
i,j+ 1

2

=
∂u

∂y

∣∣∣∣
i,j+ 1

2

≈
uni,j+1 − uni,j

∆y
, (73)

uy

∣∣∣
i,j− 1

2

=
∂u

∂y

∣∣∣∣
i,j− 1

2

≈
uni,j − uni,j−1

∆y
, (74)

[
u2
x

] ∣∣∣
i+ 1

2
,j

=
(
ux

∣∣∣
i+ 1

2
,j

)2

≈
(
uni+1,j − uni,j

∆x

)2

, (75)

[
u2
x

] ∣∣∣
i− 1

2
,j

=
(
ux

∣∣∣
i− 1

2
,j

)2

≈
(
uni,j − uni−1,j

∆x

)2

, (76)

[
u2
y

] ∣∣∣
i,j+ 1

2

=
(
uy

∣∣∣
i,j+ 1

2

)2

≈
(
uni,j+1 − uni,j

∆y

)2

, (77)
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[
u2
y

] ∣∣∣
i,j− 1

2

=
(
uy

∣∣∣
i,j− 1

2

)2

≈
(
uni,j − uni,j−1

∆y

)2

, (78)

un
i+ 1

2
,j+1

≈
uni+1,j+1 + uni,j+1

2
and un

i+ 1
2
,j−1

≈
uni+1,j−1 + uni,j−1

2
, (79)

un
i+1,j+ 1

2
≈

uni+1,j+1 + uni+1,j

2
and un

i−1,j+ 1
2
≈

uni−1,j+1 + uni−1,j

2
, (80)

un
i− 1

2
,j+1

≈
uni,j+1 + uni−1,j+1

2
and un

i− 1
2
,j−1

≈
uni,j−1 + uni−1,j−1

2
, (81)

un
i+1,j− 1

2
≈

uni+1,j + uni+1,j−1

2
and un

i−1,j− 1
2
≈

uni−1,j + uni−1,j−1

2
, (82)

[
u2
y

] ∣∣∣
i+ 1

2
,j

=
(
uy

∣∣∣
i+ 1

2
,j

)2

≈

(
un
i+ 1

2
,j+1
− un

i+ 1
2
,j−1

2∆y

)2

(83)

≈
(
uni+1,j+1 + uni,j+1 − uni+1,j−1 − uni,j−1

4∆y

)2

,

[
u2
x

] ∣∣∣
i,j+ 1

2

=
(
ux

∣∣∣
i,j+ 1

2

)2

≈

(
un
i+1,j+ 1

2

− un
i−1,j+ 1

2

2∆x

)2

(84)

≈
(
uni+1,j+1 + uni+1,j − uni−1,j+1 − uni−1,j

4∆x

)2

,

[
u2
y

] ∣∣∣
i− 1

2
,j

=
(
uy

∣∣∣
i− 1

2
,j

)2

≈

(
un
i− 1

2
,j+1
− un

i− 1
2
,j−1

2∆y

)2

(85)

≈
(
uni,j+1 + uni−1,j+1 − uni,j−1 − uni−1,j−1

4∆y

)2

,

[
u2
x

] ∣∣∣
i,j− 1

2

=
(
ux

∣∣∣
i,j− 1

2

)2

≈

(
un
i+1,j− 1

2

− un
i−1,j− 1

2

2∆x

)2

(86)

≈
(
uni+1,j + uni+1,j−1 − uni−1,j − uni−1,j−1

4∆x

)2

.
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First we will approximate

∂

∂x

[
1

1 + ε|∇u|2
∂u

∂x

] ∣∣∣∣
i,j

≈

1

1 + ε
[
u2
x + u2

y

]∣∣∣
i+ 1

2
,j

∂u

∂x

∣∣∣∣
i+ 1

2
,j

− 1

1 + ε
[
u2
x + u2

y

]∣∣∣
i− 1

2
,j

∂u

∂x

∣∣∣∣
i− 1

2
,j

∆x

≈

(uni+1,j − uni,j)/∆x

1 + ε

[(
uni+1,j−uni,j

∆x

)2

+
(
uni+1,j+1+uni,j+1−uni+1,j−1−uni,j−1

4∆y

)2
]

∆x
−

(uni,j − uni−1,j)/∆x

1 + ε

[(
uni,j−uni−1,j

∆x

)2

+
(
uni,j+1+uni−1,j+1−uni,j−1−uni−1,j−1

4∆y

)2
]

∆x

(87)

=
uni+1,j − uni,j

(∆x)2 + ε
(
uni+1,j − uni,j

)2
+ ε(∆x)2

16(∆y)2

(
uni+1,j+1 + uni,j+1 − uni+1,j−1 − uni,j−1

)2 −

uni,j − uni−1,j

(∆x)2 + ε
(
uni,j − uni−1,j

)2
+ ε(∆x)2

16(∆y)2

(
uni,j+1 + uni−1,j+1 − uni,j−1 − uni−1,j−1

)2 .
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Secondly we will approximate

∂

∂y

[
1

1 + ε|∇u|2
∂u

∂y

] ∣∣∣∣
i,j

≈

1

1 + ε
[
u2
x + u2

y

]∣∣∣
i,j+ 1

2

∂u

∂y

∣∣∣∣
i,j+ 1

2

− 1

1 + ε
[
u2
x + u2

y

]∣∣∣
i,j− 1

2

∂u

∂y

∣∣∣∣
i,j− 1

2

∆y

≈

(uni,j+1 − uni,j)/∆y

1 + ε

[(
uni,j+1−uni,j

∆y

)2

+
(
uni+1,j+1+uni+1,j−uni−1,j+1−uni−1,j

4∆x

)2
]

∆y
−

(uni,j − uni,j−1)/∆y

1 + ε

[(
uni,j−uni,j−1

∆y

)2

+
(
uni+1,j+uni+1,j−1−uni−1,j−uni−1,j−1

4∆x

)2
]

∆y

(88)

=
uni,j+1 − uni,j

(∆y)2 + ε
(
uni,j+1 − uni,j

)2
+ ε(∆y)2

16(∆x)2

(
uni+1,j+1 + uni+1,j − uni−1,j+1 − uni−1,j

)2 −

uni,j − uni,j−1

(∆y)2 + ε
(
uni,j − uni,j−1

)2
+ ε(∆y)2

16(∆x)2

(
uni+1,j + uni+1,j−1 − uni−1,j − uni−1,j−1

)2 .

With this we find that the FD scheme for the Perona-Malik PDE becomes:

un+1
i,j = uni,j + ∆t

(
(87) + (88)

)
. (89)
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B List of Matlab Source code

In this chapter we have MATLAB code for denoising 1-D or 2-D signals. Please read the
caution before using this code!

B.1 Code for 1-D: Heat and Perona-Malik PDE

Listing 1: For computing S1 in (3) – f1.m
1 function u x0 = f1 ( x )
%

3 % Function u(x ,0)= f ( x ) i s the i n i t i a l condi t ion , with x in [ 0 , 1 ] .
%

5

a = 0 . 1 0 ; b = 0 . 4 0 ; c = 1 . 0 0 ; u x0 = 0 . 0 0 ;
7

% For the exac t s o l u t i on u = f ( x − c t ) we need f to be pe r i od i c .
9 x = x − f loor ( x ) ; %per i od i c f ( x ) −−> . . .= f (33.1)=. . .= f (2.1)= f (1.1)= f (0 . 1 )

11 i f x < 0 .25 | x > 0 .75
u x0=c ;

13 e l s e i f x >= 0.25 & x < 0 .40 | x > 0 .6 & x <= 0.75
u x0=b ;

15 e l s e i f x >= 0.40 & x <= 0.6
u x0=a ;

17 end

19 clear a b c x

Listing 2: For computing S1 in (3) with some noise – f1 EF.m
1 function u x0 = f1 EF ( x )
%

3 % Function u(x ,0)= f ( x ) i s the i n i t i a l condi t ion , with x in [ 0 , 1 ] .
%

5

a = 0 . 1 0 ; b = 0 . 4 0 ; c = 1 . 0 0 ; u x0 = 0 . 0 0 ;
7

% For the exac t s o l u t i on u = f ( x − c t ) we need f to be pe r i od i c .
9 x = x − f loor ( x ) ; %per i od i c f ( x ) −−> . . .= f (33.1)=. . .= f (2.1)= f (1.1)= f (0 . 1 )

11 i f x == 0 | x == 1
u x0=c ;

13 e l s e i f x > 0 & x < 0 .25
u x0= c+(xˆ2)∗ sin ( (251∗x ) ˆ ( 4 ) ) ;

15 e l s e i f x > 0 .75 & x < 1
y = 1 − x ;

17 u x0= c+(yˆ2)∗ sin ( (251∗y ) ˆ ( 4 ) ) ;
e l s e i f x >= 0.25 & x < 0 .40

19 u x0= b+(xˆ3)∗ sin ( (83∗x ) ˆ ( 4 ) ) ;
e l s e i f x > 0 .6 & x <= 0.75

21 y = 1 − x ;
u x0= b+(yˆ3)∗ sin ( (83∗y ) ˆ ( 4 ) ) ;

23 e l s e i f x >= 0.40 & x <= 0.5
u x0= a+(xˆ4)∗ sin ( (179∗x ) ˆ ( 4 ) ) ;

25 e l s e i f x > 0 .50 & x <= 0.6
y = 1 − x ;

27 u x0= a+(yˆ4)∗ sin ( (179∗y ) ˆ ( 4 ) ) ;
end

29

clear a b c x t1 t2 t3 y
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Listing 3: For denoising with the Heat Equation – Heat1D.m
1 function [ uso l , r e s e f , t o t s t e p ] = Heat1D (M,N,T, c , stop )
%

3 % Fin i t e Di f f e r ence scheme Heat PDE ( with )
% u t = c u xx , where c i s a constant .

5 %
% Input : M −> such tha t dx = 1/M, x = [ 0 , 1 ] .

7 % N −> such tha t dt = T/N, t = [0 ,T ] .
% T −> see input N.

9 % c −> constant ’ c ’ in the heat equat ion .
% stop −> f o r ex tend ing the T end ( choose an in t e g e r )

11 %
% Output : u so l −> The numerical s o l u t i on u , with the Euler Forward scheme .

13 % r e s e f −> Residua l ( us ing 2−norm ) .
% t o t s t e p −> Total number o f s t e p s needed .

15 %
% See a l s o PERONAMALIK1D

17 %

19 t ic

21 dt = T/abs (N) ;
dx = 1/abs (M) ; xx = linspace (0 , 1 ,M+1);

23 lmd = c ∗( dt /( dx ˆ 2 ) ) ; % Courant number

25 uso l = zeros (M+1 ,3) ; % Set dimension uso l ( numerical s o l u t i on o f u( x , t ) ) .

27 % Set i n i t i a l cond i t i on
for i =1:M+1, uso l ( i , 1 ) = f1 EF ( xx ( i ) ) ; u so l ( i , 2 ) = uso l ( i , 1 ) ; end

29

utemp = uso l ( : , 2 ) ; % array fo r the temporary s o l u t i on
31 t o t s t e p = −1;

mm = 1 . 0 ; % power f o r the norm %1.125 z i e s teps6261
33

for j =1:( stop ∗N)+1
35 for i =1:M+1

i f i == 1
37 uso l ( i , 3 ) = uso l ( i ,2)+( c∗lmd )∗ ( u so l ( i ,2)−2∗ uso l ( i , 2 ) ) ;

e l s e i f i > 1 && i < M+1
39 uso l ( i , 3 ) = uso l ( i ,2)+( c∗lmd )∗ ( u so l ( i +1,2)−2∗ uso l ( i ,2)+ uso l ( i −1 ,2) ) ;

e l s e i f i == M+1
41 uso l ( i , 3 ) = uso l ( i ,2)+( c∗lmd)∗(−2∗ uso l ( i ,2)+ uso l ( i −1 ,2) ) ;

end
43 end

% Set boundary cond i t i ons u (0 , t ) = u(1 , t ) ==> uso l (1 , j ) = uso l (M+1, j ) .
45 uso l ( 1 , 3 ) = uso l ( 1 , 2 ) ;

u so l (M+1 ,3) = uso l (M+1 ,2) ;
47 uso l ( [ 2 :M+1] ,2) = uso l ( [ 2 :M+1 ] , 3 ) ;

49 r e s e f ( j ) = norm( utemp − uso l ( : , 3 ) , 2 ) ; utemp = uso l ( : , 3 ) ;

51 i f ( r e s e f ( j ) < ( dx ˆ(mm) ) ) , dx2 = dx ˆ(mm) , r s j = r e s e f ( j ) , j j = j , break , end
t o t s t e p = t o t s t e p +1;

53 end

55 toc
toc EF = toc

57 figure ( 1 2 1 ) ; plot ( log ( r e s e f ) )

59 clear M N T c stop % Clear ing the input v a r i a b l e s (memory ) .
clear dx dt lmd t t xx i j mm t toc EF utemp % Clear ing other v a r i a b l e s (memory ) .
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Listing 4: For denoising with the Perona-Malik Equation – PeronaMalik1D.m
1 function [ uso l , res pm , t o t s t e p ] = PeronaMalik1D (M,N,T, c , stop )
%

3 % Fin i t e Di f f e r ence scheme Perona−Mai l ik ( with EF)
% u t = ( u x /(1 + c | u x |ˆ2) ) x ,

5 % where c = eps i l on , i s a constant . For c=0, we have the heat equat ion
% u t = u xx .

7 %
% Input : M −> such tha t dx = 1/M, x = [ 0 , 1 ] .

9 % N −> such tha t dt = T/N, t = [0 ,T ] .
% T −> see input N.

11 % c −> constant ’ c ’ .
% stop −> f o r ex tend ing the T end ( choose an in t e g e r )

13 %
% Output : u so l −> The numerical s o l u t i on u , with the Perona−Malik PDE.

15 % res PM −> Residua l ( us ing 2−norm ) .
% t o t s t e p −> Total number o f s t e p s needed .

17 %
% See a l s o HEAT1D

19 %

21 t ic

23 i f (nargin < 4)
error ( ’MATLAB: PeronaMalik ’ , ’ Not enough input arguments . ’ ) ;

25 end
i f (nargin == 4)

27 stop = 1
end

29 i f (nargin > 5)
error ( ’MATLAB: PeronaMalik ’ , ’Too many input arguments . ’ ) ;

31 end

33 dt = T/abs (N) ;
dx = 1/abs (M) ; xx = linspace (0 , 1 ,M+1);

35

uso l = zeros (M+1 ,3) ; % Set dimension uso l ( numerical o f s o l u t i on u(x , t ) ) .
37

% Set i n i t i a l cond i t i on
39 for i =1:M+1, uso l ( i , 1 ) = f1 EF ( xx ( i ) ) ; u so l ( i , 2 ) = uso l ( i , 1 ) ; end

41 utemp = uso l ( : , 2 ) ;
t o t s t e p = −1;

43 mm = 1 . 8 ; % power f o r the norm %1.7 see steps24499 / 1.8 see s teps73617

45 for j =1:( stop ∗N)+1
for i =1:M+1

47

i f i == 1
49 uso l ( i , 3 ) = uso l ( i ,2)+ ( dt/dx ˆ2)∗ h ux ( usol , i , 2 , dx , 0 , c ) ;

e l s e i f i > 1 && i < M+1
51 uso l ( i , 3 ) = uso l ( i ,2)+ ( dt/dx ˆ2)∗ h ux ( usol , i , 2 , dx , 2 , c ) ;

e l s e i f i == M+1
53 uso l ( i , 3 ) = uso l ( i ,2)+ ( dt/dx ˆ2)∗ h ux ( usol , i , 2 , dx , 1 , c ) ;

end
55 end

% Set boundary cond i t i ons u (0 , t ) = u(1 , t ) ==> uso l (1 , j ) = uso l (M+1, j ) .
57 uso l ( 1 , 3 ) = uso l ( 1 , 2 ) ;

u so l (M+1 ,3) = uso l (M+1 ,2) ;
59 uso l ( [ 2 :M+1] ,2) = uso l ( [ 2 :M+1 ] , 3 ) ;

61 res pm ( j ) = norm( utemp − uso l ( : , 3 ) , 2 ) ; utemp = uso l ( : , 3 ) ;

63 i f ( res pm ( j ) < ( dx )ˆ (mm) ) , dx2 = dx ˆ(mm) , r s j = res pm ( j ) , j j = j , break , end
t o t s t e p = t o t s t e p +1;

65 end

67
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toc
69 toc PM = toc

71 clear M N T c stop % Clear ing the input v a r i a b l e s (memory ) .
clear dx dt lmd t t xx i j mm toc PM % Clear ing other v a r i a b l e s (memory ) .

73

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
75 %%%%%%%%%%%%%%%%%%%%%%% Bui l t−in func t i ons %%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
77 function [ u xx ] = Vxx(u , i , j , dx , bound )

%
79 % bound==0 => u( i−1, j )=0, bound==1 => u( i +1, j )=0

%
81

i f bound == 0
83 u xx = (u( i +1, j ) −2∗u( i , j ) ) / ( dx ˆ 2 ) ;

e l s e i f bound==1
85 u xx = (−2∗u( i , j ) + u( i −1, j ) ) / ( dx ˆ 2 ) ;

e l s e i f bound > 1
87 u xx = (u( i +1, j ) −2∗u( i , j ) + u( i −1, j ) ) / ( dx ˆ 2 ) ;

end
89

%
91 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%
93

function [ u x ] = Vx(u , i , j , dx , bound )
95 %

% bound==1 => u( i +1, j )=0
97 %

99 i f bound == 1
u x = u( i , j )/ dx ;

101 e l s e i f bound < 1 | | bound > 1
u x = (u( i +1, j )−u( i , j ) ) / dx ;

103 end

105 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

107 %

109 function [ fux ] = f ux (u , i , j , dx , bound , c )

111 vx = Vx(u , i , j , dx , bound ) ;
vxx = Vxx(u , i , j , dx , bound ) ;

113 t1 = vxx ∗(1 + ( c ∗(abs ( vx ) ˆ ( 2 ) ) ) ) ;
t2 = vx ∗(2∗ c∗abs ( vx )∗abs ( vxx ) ) ;

115 n = 1 + (2∗ c∗abs ( vx ) ˆ ( 2 ) ) + ( ( c ˆ2)∗abs ( vx ) ˆ ( 4 ) ) ;
fux = ( t1 − t2 )/n ;

117

%
119 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%
121

function [ u x ] = Wx1(u , i , j , dx , bound )
123 %

% bound==1 => u( i +1, j )=0
125 %

127 i f bound == 1
u x = u( i , j )/ dx ;

129 e l s e i f bound == 0 | | bound > 1
u x = (u( i +1, j )−u( i , j ) ) / dx ;

131 end

133 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

135 %
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137 function [ u x ] = Wx2(u , i , j , dx , bound )
%

139 % bound==1 => u( i−1, j )=0
%

141

i f bound == 0
143 u x = u( i , j )/ dx ;

e l s e i f bound > 0
145 u x = (u( i , j )−u( i −1, j ) )/ dx ;

end
147

%
149 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%
151

function [ gux ] = g ux (u , i , j , dx , bound , c )
153

wx1 = Wx1(u , i , j , dx , bound ) ;
155 wx2 = Wx2(u , i , j , dx , bound ) ;

t1 = wx1/(1 + ( c ∗(abs (wx1 ) ˆ ( 2 ) ) ) ) ;
157 t2 = wx2/(1 + ( c ∗(abs (wx2 ) ˆ ( 2 ) ) ) ) ;

gux = ( t1 − t2 )/ dx ;
159

%
161 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%
163

function [ u x ] = Ux1(u , i , j , dx , bound )
165 %

% bound==1 => u( i +1, j )=0
167 %

169 i f bound == 1
u x = u( i , j )/ dx ;

171 e l s e i f bound == 0 | | bound > 1
u x = u( i +1, j )−u( i , j ) ;

173 end

175 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

177 %

179 function [ u x ] = Ux2(u , i , j , dx , bound )
%

181 % bound==1 => u( i−1, j )=0
%

183

i f bound == 0
185 u x = u( i , j )/ dx ;

e l s e i f bound > 0
187 u x = u( i , j )−u( i −1, j ) ;

end
189

%
191 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%
193

function [ hux ] = h ux (u , i , j , dx , bound , c )
195

ux1 = Ux1(u , i , j , dx , bound ) ; % u( i +1, j ) − u( i , j )
197 ux2 = Ux2(u , i , j , dx , bound ) ; % u( i , j ) − u( i−1, j )

t1 = ux1 /(1 + ( ( c /( dx ˆ2) )∗ ( abs ( ux1 ) ˆ ( 2 ) ) ) ) ;
199 t2 = ux2 /(1 + ( ( c /( dx ˆ2) )∗ ( abs ( ux2 ) ˆ ( 2 ) ) ) ) ;

hux = ( t1 − t2 ) ;
201

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59



Listing 5: Testing the Heat and Perona-Malik PDE on a noisy signal – test HTPM.m
addpath ( ’ . / NumericalMethods ’ ) ;

2 addpath ( ’ . / Functions ’ ) ;

4 M = 500 ; %1000; % 500;
N = 400 ; %4000; % 400;

6 T = 0 . 0 0 0 4 ; %0.00016; % 0.0004 ;
c1 = 1 ;

8 c2 = 0 . 0 2 ;

10 dx=1/M; dt=T/N; lmd = ( c1∗dt )/ ( dx ˆ2)

12 a = linspace (0 , 1 ,M+1);
f a = zeros (M+1 ,1) ;

14 f e f = zeros (M+1 ,1) ;

16 for i =1:M+1
fa ( i ) = f1 ( a ( i ) ) ;

18 f e f ( i ) = f1 EF ( a ( i ) ) ;
end

20

stop = 1 ; %25 % va r i a b l e f o r ex tend ing the end−time T end
22

[ usol EF , r s e f , stepEF ] = Heat1D (M,N,T, c1 , stop ) ;
24 [ usol PM , rs pm , stepPM ] = PeronaMalik1D (M,N,T, c2 , stop ) ;

26 T = stop ∗T;

28 figure ( 1 ) ;
subplot ( 2 , 2 , 1 ) ;

30 plot ( a , fa , ’−b ’ ) ; axis ( [ 0 1 0 1 . 1 ] ) ;
t i t l e ( sprintf (”The Exact So lu t i on (M = %d , N = %d , dx = 1/M and dt = (T/%d)/N

32 with T = %0.3 g )” ,M,N, stop ,T) ) ;
xlabel ( ’ ( a ) ’ ) ;

34

subplot ( 2 , 2 , 2 ) ;
36 plot ( a , f e f , ’−r ’ ) ; axis ( [ 0 1 0 1 . 1 ] ) ;

t i t l e ( sprintf (”The S igna l uˆ{∗}(x , t ) with no i s e . ” ) ) ;
38 xlabel ( ’ (b) ’ ) ;

40 subplot ( 2 , 2 , 3 ) ;
plot ( a , usol EF ( : , 3 ) , ’−c ’ ) ; axis ( [ 0 1 0 1 . 1 ] ) ;

42 t i t l e ( sprintf (”The So lu t i on with the Heat equat ion (PDE) : u { t } = k . u {xx } ,
for k = %d” , c1 ) ) ;

44 xlabel ( ’ ( c ) ’ ) ;

46 subplot ( 2 , 2 , 4 ) ;
plot ( a , usol PM ( : , 3 ) , ’−c ’ ) ; axis ( [ 0 1 0 1 . 1 ] ) ;

48 t i t l e ( sprintf (”The So lu t i on with Perona−Malik PDE : u { t } = ( u x /(1 + c | u x |ˆ 2 ) ) x
for c = %0.3 g ” , c2 ) ) ;

50 xlabel ( ’ (d) ’ ) ;

52 l i n e o b j = f i n d o b j ( ’ type ’ , ’ l i n e ’ ) ; set ( l i n e o b j , ’ l i n ew id th ’ , 1 . 2 ) ;
dddt = 0 . 0 0 0 1 ;

54 n1 = norm( ( f a − usol EF ( : , 3 ) ) , 2 ) ;

56 figure ( 2 ) ;
subplot ( 2 , 1 , 1 ) ;

58 plot ( a , ( f a − usol EF ( : , 3 ) ) , ’−b ’ ) ;
axis ( [ 0 1 (min( ( f a − usol EF ( : , 3 ) ) ) − dddt ) (max( ( f a − usol EF ( : , 3 ) ) ) + dddt ) ] ) ;

60 t i t l e ( sprintf (”The error with the Heat PDE : u { exact } − u { s o l } ” ) ) ;
xlabel ( ’ ( a ) ’ ) ;

62

subplot ( 2 , 1 , 2 ) ;
64 plot ( a , ( f a − usol PM ( : , 3 ) ) , ’−b ’ ) ;

axis ( [ 0 1 (min( ( f a − usol PM ( : , 3 ) ) ) − dddt ) (max( ( f a − usol PM ( : , 3 ) ) ) + dddt ) ] ) ;
66 t i t l e ( sprintf (”The error with the Perona−Malik PDE : u { exact } − u { s o l } ” ) ) ;

xlabel ( ’ (b) ’ ) ;

60



68

figure ( 1 7 ) ;
70 plot ( a , usol EF ( : , 3 ) , ’−r ’ ) ; hold on ; plot ( a , fa , ’−b ’ ) ; axis ( [ 0 1 0 1 . 1 ] ) ;

t i t l e ( sprintf (”The So lu t i on with the Heat equat ion (PDE) : u { t } = k . u {xx } ,
72 for k = %d (M = %d , N = %d , dx = 1/M and dt = Tˆ{∗}/N

with T = %0.3 g )” , c1 ,M,N,T) ) ;
74 text ( 0 . 6 5 , 0 . 3 0 , sprintf (” dx = %2.5 f dt = %2.8 f dt /( dx ˆ2) = %2.4 f ” , dx , dt , lmd) ) ;

text ( 0 . 6 5 , 0 . 2 5 , sprintf (” I t e r a t i o n s t ep s = %d” , stepEF ) ) ;
76 text ( 0 . 6 5 , 0 . 2 0 , sprintf (” T {end} = %2.8 f

Tˆ{∗} = %2.8 f ” , ( ( stepEF ∗1.00)∗ dt ) , (T/ s top ) ) ) ;
78 text ( 0 . 6 5 , 0 . 1 3 , sprintf ( ” | | u { exact } − u { s o l } | | {%d} = %2.10 f ” ,

M,norm( ( f a − usol EF ( : , 3 ) ) ,M) ) ) ; %% the M−norm
80

ylabel ( ’u (x , t ) ’ ) ;
82 xlabel (”0 \ l e q x \ l e q 1 ” ) ;

84 l i n e o b j = f i n d o b j ( ’ type ’ , ’ l i n e ’ ) ; set ( l i n e o b j , ’ l i n ew id th ’ , 1 . 2 0 ) ;
h = legend ( ’ u { s o l } ’ , ’ u { exact } ’ ,−1);

86

figure ( 1 9 ) ;
88 plot ( a , usol PM ( : , 3 ) , ’−r ’ ) ; hold on ;

plot ( a , fa , ’−b ’ ) ; axis ( [ 0 1 0 1 . 1 ] ) ;
90

t i t l e ( sprintf (”The So lu t i on with the Perona−Malik (PDE) :
92 u { t } = ( u x /(1 + c | u x |ˆ 2 ) ) x ,

for c = %1.3 f (M = %d , N = %d , dx = 1/M
94 and dt = Tˆ{∗}/N with T = %0.3 g )” , c2 ,M,N,T) ) ;

96 text ( 0 . 6 5 , 0 . 3 0 , sprintf (” dx = %2.5 f dt = %2.8 f dt /( dx ˆ2) = %2.4 f ” , dx , dt , lmd) ) ;
text ( 0 . 6 5 , 0 . 2 5 , sprintf (” I t e r a t i o n s t ep s = %d” , stepPM) ) ;

98 text ( 0 . 6 5 , 0 . 2 0 , sprintf (” T {end} = %2.8 f
Tˆ{∗} = %2.8 f ” , ( ( stepPM ∗1.00)∗ dt ) , (T/ s top ) ) ) ;

100 text ( 0 . 6 5 , 0 . 1 3 , sprintf ( ” | | u { exact } − u { s o l } | | {%d} = %2.10 f ” ,
M,norm( ( f a − usol PM ( : , 3 ) ) ,M) ) ) ; %% the M−norm

102

ylabel ( ’u (x , t ) ’ ) ;
104 xlabel (” 0 \ l e q x \ l e q 1 ” ) ;

106 l i n e o b j = f i n d o b j ( ’ type ’ , ’ l i n e ’ ) ; set ( l i n e o b j , ’ l i n ew id th ’ , 1 . 2 0 ) ;
h = legend ( ’ u { s o l } ’ , ’ u { exact } ’ ,−1);

108

clear l i n e o b j n1 n2 M N T c1 c2 dddt dt dx fa f e f i lmd usol EF usol PM a
110 clear h r s e f rs pm stepEF stepPM stop t o l

B.2 Code for 2-D: Heat and Perona-Malik PDE

Listing 6: For computing the PSNR – compute psnr.m
1 function [ psnr ] = compute psnr (A,B, max i )
%

3 % func t ion fo r computing the Peak Signal−to−Noise Ratio (PSNR)
%

5

M = s ize (A, 1 ) ;
7 N = s ize (A, 2 ) ;

C = A − B;
9

% Computing the Mean Square Error %
11 mse = (1/(M∗N))∗sum(sum(C.∗C) ) ;

13 % Compute the PSNR %
psnr = 20∗ log10 ( max i/sqrt (mse ) ) ;

15

clear M N C mse
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Listing 7: The 2-D Perona-Malik PDE – PeronaMalik2D.m
1 function [B, to t s t ep , Tend , psnr1 , psnr2 ] = PeronaMalik2D (A, c , dt , s teps ,AA)
%

3 % 2−D Perona−Malik Equation (PME) using Euler Forward (EF) as F in i t e Di f f e rence scheme
%

5 % Input : A −> Matrix conta in ing the noisy gray−s ca l ed va lue s o f the image .
% c −> constant ’ eps i l on ’ in the Perona−Malik equat ion .

7 % dt −> A f i c t i v e t imes tep
% s t ep s −> The number o f i t e r a t i o n s t e p s to be done

9 % AA −> Matrix conta in ing the gray−s ca l ed va lue s o f the o r i g i n a l image .
%

11 % Output : B −> The numerical s o l u t i on B, where the PME i s app l i ed to denoise
% the noisy image .

13 %
% See a l s o HEAT2D

15 %

17 t ic

19 M = s ize (A, 2 ) ; % the number o f columns in the matrix
N = s ize (A, 1 ) ; % the number o f rows in the matrix

21 dx = 1/M; r = ( c∗dt )/ ( dx ˆ 2 ) ; % Courant number f o r the x−d i r e c t i on
dy = 1/N; s = ( c∗dt )/ ( dy ˆ 2 ) ; % Courant number f o r the y−d i r e c t i on

23

25 % Set i n i t i a l cond i t i on
B = A; C = A;

27

t o t s t e p = 0 ; % t o t a l number o f i t e r a t i o n s t e p s
29 t t1 = clock ;

NN = ( s t ep s ∗N∗M)/100 ;
31 TT = 0 ;

33 psnr1 = zeros ( s teps , 1 ) ;
psnr2 = zeros ( s teps , 1 ) ;

35 AAA = zeros (N,M) ;

37 for i =1:M
for j=N

39 AAA( j , i ) = double ( ( (AA( j , i , 1 ) ∗ 0 . 3 0 ) / 2 5 5 . 0 ) + ( (AA( j , i , 2 ) ∗ 0 . 5 9 ) / 2 5 5 . 0 ) + . . .
( (AA( j , i , 3 ) ∗ 0 . 1 1 ) / 2 5 5 . 0 ) ) ;

41 end
end

43

for k=1: s t ep s
45 for j =1:N

for i =1:M
47 C( j , i ) = B( j , i ) + . . .

dt ∗(pm x(B, i , j , dx , dy , c ,M,N) + . . .
49 pm y(B, i , j , dx , dy , c ,M,N) ) ;

TT = TT + 1 ;
51 end

end
53

B = C;
55

psnr1 ( k ) = compute psnr (A,B, 1 ) ; % compute psnr compared to noisy image
57 psnr2 ( k ) = compute psnr (AAA,B, 1 ) ; % compute psnr compared to o r i g i n a l image

59 % Se t t i n g the boundary cond i t i ons
B(: ,1 )=A( : , 1 ) ; B(1 , : )=A( 1 , : ) ; B( : ,M)=A( : ,M) ; B(N, : )=A(N, : ) ;

61

t o t s t e p = t o t s t e p +1;
63 t t1 = clock ;

end
65

rearange = 0
67

62



i f rearange == 1
69

% Se t t i n g a l l C( j , i ) in the range [ 0 , 1 ]
71 for j =1:M

for i =1:N
73 i f C( j , i ) < 0

C( j , i ) = 0 ;
75 e l s e i f C( j , i ) > 1

C( j , i ) = 1 ;
77 end

end
79 end

81 end

83 toc
toc PM = toc

85

t o t s t e p
87 Tend = t o t s t e p ∗dt

89 makef igures = 1 ;

91 i f makef igures == 1
figure ( 1 1 7 ) ;

93 subplot ( 2 , 1 , 1 ) ; imagesc (A) ; colormap (gray ) ;
t i t l e ( ’ Orig + Noise ’ ) ; axis square ; axis on ;

95 subplot ( 2 , 1 , 2 ) ; imagesc (C) ; colormap (gray ) ;
t i t l e ( ’PM’ ) ; axis square ; axis on ;

97 end

99 % Clear ing input v a r i a b l e s (memory ) .
clear A c dt s t ep s AA

101

% Clear ing other v a r i a b l e s (memory ) .
103 clear AAA C M N NN TT dx dy mm tt1 toc PM makef igures rearange i j k r s h w

105

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
107 %%%%%%%%%%%%%%%%%%%%%%% Bui l t−in func t i ons %%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
109 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
111 %

113 function [ u x ] = pm x(A, i , j , dx , dy , c ,w, h)
%

115 % u1 = A( j , i−1)
% u2 = A( j , i +1)

117 % u3 = A( j−1, i )
% u4 = A( j +1, i )

119 % u5 = A( j , i )
% u6 = A( j−1, i−1)

121 % u7 = A( j +1, i+1)
%

123

dx2 = dx ˆ2 ;
125 dy2 = dy ˆ2 ;

t = ( c /16 . 0 )∗ ( dx2/dy2 ) ;
127

%T1 = A( j , i +1) − A( j , i ) ;
129 %T2 = A( j , i ) − A( j , i −1);

%v1 = A( j +1, i+1) + A( j +1, i ) − A( j−1, i+1) − A( j−1, i ) ;
131 %v2 = A( j +1, i ) + A( j +1, i−1) − A( j−1, i ) − A( j−1, i −1);

%N1 = dx2 + c ∗(T1ˆ2)+ t ∗( v1 ˆ2) ;
133 %N2 = dx2 + c ∗(T2ˆ2)+ t ∗( v2 ˆ2) ;

135
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[ u1 , u2 , u3 , u4 , u5 , u6 , u7 , u8 , u9 ] = pm A(A, i , j ,w, h ) ;
137

T1 = u6 − u5 ;
139 T2 = u5 − u4 ;

v1 = u3 + u2 − u9 − u8 ;
141 v2 = u2 + u1 − u8 − u7 ;

N1 = dx2 + ( c ∗(T1ˆ2)) + ( t ∗( v1 ˆ 2 ) ) ;
143 N2 = dx2 + ( c ∗(T2ˆ2)) + ( t ∗( v2 ˆ 2 ) ) ;

u x = (T1/N1) − (T2/N2 ) ;
145

%
147 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%
149

function [ u y ] = pm y(A, i , j , dx , dy , c ,w, h)
151 %

% u1 = A( j , i−1)
153 % u2 = A( j , i +1)

% u3 = A( j−1, i )
155 % u4 = A( j +1, i )

% u5 = A( j , i )
157

dx2 = dx ˆ2 ;
159 dy2 = dy ˆ2 ;

t = ( c /16 . 0 )∗ ( dy2/dx2 ) ;
161

%T1 = A( j +1, i ) − A( j , i ) ;
163 %T2 = A( j , i ) − A( j−1, i ) ;

%v1 = A( j +1, i+1) + A( j , i +1) − A( j +1, i−1) − A( j , i −1);
165 %v2 = A( j , i +1) + A( j−1, i+1) − A( j , i−1) − A( j−1, i −1);

%N1 = dy2 + c ∗(T1ˆ2)+ t ∗( v1 ˆ2) ;
167 %N2 = dy2 + c ∗(T2ˆ2)+ t ∗( v2 ˆ2) ;

169 [ u1 , u2 , u3 , u4 , u5 , u6 , u7 , u8 , u9 ] = pm A(A, i , j ,w, h ) ;

171 T1 = u2 − u5 ;
T2 = u5 − u8 ;

173 v1 = u3 + u6 − u1 − u4 ;
v2 = u6 + u9 − u4 − u7 ;

175 N1 = dy2 + ( c ∗(T1ˆ2)) + ( t ∗( v1 ˆ 2 ) ) ;
N2 = dy2 + ( c ∗(T2ˆ2)) + ( t ∗( v2 ˆ 2 ) ) ;

177

u y = (T1/N1) − (T2/N2 ) ;
179

%
181 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%
183

function [ u1 , u2 , u3 , u4 , u5 , u6 , u7 , u8 , u9 ] = pm A(A, i , j ,w, h)
185 %

% Input
187 % − w : width (A) us ing index i

% − h : h e i g h t (A) us ing index j
189 %

% u1 = A( j +1, i −1); u2 = A( j +1, i ) ; u3 = A( j +1, i +1);
191 % u4 = A( j , i −1); u5 = A( j , i ) ; u6 = A( j , i +1);

% u7 = A( j−1, i −1); u8 = A( j−1, i ) ; u9 = A( j−1, i +1);
193

i f i==1 && j==1 % u1
195 u1 = 0 ; u2 = A( j +1, i ) ; u3 = A( j +1, i +1);

u4 = 0 ; u5 = A( j , i ) ; u6 = A( j , i +1);
197 u7 = 0 ; u8 = 0 ; u9 = 0 ;

199 e l s e i f ( i>1 && i<w) && j==1 % u2
u1 = A( j +1, i −1); u2 = A( j +1, i ) ; u3 = A( j +1, i +1);

201 u4 = A( j , i −1); u5 = A( j , i ) ; u6 = A( j , i +1);
u7 = 0 ; u8 = 0 ; u9 = 0 ;

203
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e l s e i f i==w && j==1 % u3
205 u1 = A( j +1, i −1); u2 = A( j +1, i ) ; u3 = 0 ;

u4 = A( j , i −1); u5 = A( j , i ) ; u6 = 0 ;
207 u7 = 0 ; u8 = 0 ; u9 = 0 ;

209 e l s e i f i==1 && ( j>1 && j<h) % u4
u1 = 0 ; u2 = A( j +1, i ) ; u3 = A( j +1, i +1);

211 u4 = 0 ; u5 = A( j , i ) ; u6 = A( j , i +1);
u7 = 0 ; u8 = A( j −1, i ) ; u9 = A( j −1, i +1);

213

e l s e i f ( i>1 && i<w) && ( j>1 && j<h) % u5
215 u1 = A( j +1, i −1); u2 = A( j +1, i ) ; u3 = A( j +1, i +1);

u4 = A( j , i −1); u5 = A( j , i ) ; u6 = A( j , i +1);
217 u7 = A( j −1, i −1); u8 = A( j −1, i ) ; u9 = A( j −1, i +1);

219 e l s e i f i==w && ( j>1 && j<h) % u6
u1 = A( j +1, i −1); u2 = A( j +1, i ) ; u3 = 0 ;

221 u4 = A( j , i −1); u5 = A( j , i ) ; u6 = 0 ;
u7 = A( j −1, i −1); u8 = A( j −1, i ) ; u9 = 0 ;

223

e l s e i f i==1 && j==h % u7
225 u1 = 0 ; u2 = 0 ; u3 = 0 ;

u4 = 0 ; u5 = A( j , i ) ; u6 = A( j , i +1);
227 u7 = 0 ; u8 = A( j −1, i ) ; u9 = A( j −1, i +1);

229 e l s e i f ( i>1 && i<w) && j==h % u8
u1 = 0 ; u2 = 0 ; u3 = 0 ;

231 u4 = A( j , i −1); u5 = A( j , i ) ; u6 = A( j , i +1);
u7 = A( j −1, i −1); u8 = A( j −1, i ) ; u9 = A( j −1, i +1);

233

e l s e i f i==w && j==h % u9
235 u1 = 0 ; u2 = 0 ; u3 = 0 ;

u4 = A( j , i −1); u5 = A( j , i ) ; u6 = 0 ;
237 u7 = A( j −1, i −1); u8 = A( j −1, i ) ; u9 = 0 ;

end
239 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Caution
To make the code readable we choose to change the syntax of some MATLAB functions
at some places in the code. Spaces in the text, as visible in the error message on line 24
of Listing 4, have a strange notation. For example instead of using title(’Test Message’)
we used title(”Test Message”). So beware for all functions where quotes are used ” ” ,
such as :

• xlabel(” ... ”) or ylabel(” ... ”)

• text(x y, sprintf(” ... ”))

• title(” ... ”)

• error(” ... ”)

Consult the MATLAB help function for the correct syntax if the code crashes and you
get the following message

Error: Missing variable or function.
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Listing 8: The 2-D Heat PDE – Heat2D.m
function [B, to t s t ep , Tend , psnr1 , psnr2 ] = Heat2D2 test (A, c , dt , s teps ,AA)

2 %
% 2−D Heat Equation (HE) using Euler Forward (EF) as F in i t e Di f f e rence scheme

4 %
% Input : A −> A matrix conta in ing the g raysca l ed va lue s o f an image .

6 % c −> constant ’ c ’ in the heat equat ion .
% dt −> A f i c t i v e t imes tep

8 % st ep s −> The number o f i t e r a t i o n s t e p s to be done
% AA −> Matrix conta in ing the gray−s ca l ed va lue s o f the o r i g i n a l image .

10 %
% Output : B −> The numerical s o l u t i on B, where the heat equat ion i s

12 % app l i ed f o r deno i s ing the noisy image with noise .
%

14 % See a l s o PERONAMALIK2D
%

16

t ic
18

M = s ize (A, 2 ) ; % the number o f columns in the matrix
20 N = s ize (A, 1 ) ; % the number o f rows in the matrix

T = 0 . 0 0 0 4 ;
22 c1 = 1 ;

c2 = 0 . 0 2 ;
24 dx = 1/M;

dy = 1/N;
26 r = ( c∗dt )/ ( dx ˆ 2 ) ; % Courant number f o r the x−d i r e c t i on

s = ( c∗dt )/ ( dy ˆ 2 ) ; % Courant number f o r the y−d i r e c t i on
28

% Set i n i t i a l cond i t i on
30 B = A; C = A;

32

% va r i a b l e s f o r psnr computing ! !
34

psnr1 = zeros ( s teps , 1 ) ;
36 psnr2 = zeros ( s teps , 1 ) ;

38 AAA = zeros (N,M) ;

40 for i =1:M
for j=N

42 AAA( j , i ) = double ( ( (AA( j , i , 1 ) ∗ 0 . 3 0 ) / 2 5 5 . 0 ) + ( (AA( j , i , 2 ) ∗ 0 . 5 9 ) / 2 5 5 . 0 ) + . . .
( (AA( j , i , 3 ) ∗ 0 . 1 1 ) / 2 5 5 . 0 ) ) ;

44 end
end

46

48 t o t s t e p = 0 ;

50 for k=1: s t ep s
for j =1:N

52 for i =1:M
i f i == 1 && j==1

54 C( j , i ) = (1 − 2∗ r − 2∗ s )∗B( j , i ) + . . .
r ∗(0 + B( j , i +1)) + . . .

56 s ∗(0 + B( j +1, i ) ) ;

58 e l s e i f i == 1 && ( j>1 && j<N)
C( j , i ) = (1 − 2∗ r − 2∗ s )∗B( j , i ) + . . .

60 r ∗(0 + B( j , i +1)) + . . .
s ∗(B( j −1, i ) + B( j +1, i ) ) ;

62

e l s e i f i == 1 && j==N
64 C( j , i ) = (1 − 2∗ r − 2∗ s )∗B( j , i ) + . . .

r ∗(0 + B( j , i +1)) + . . .
66 s ∗(B( j −1, i ) + 0 ) ;
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68 e l s e i f ( i>1 && i<M) && j == 1
C( j , i ) = (1 − 2∗ r − 2∗ s )∗B( j , i ) + . . .

70 r ∗(B( j , i −1) + B( j , i +1)) + . . .
s ∗(0 + B( j +1, i ) ) ;

72

e l s e i f ( i>1 && i<M) && j == N
74 C( j , i ) = (1 − 2∗ r − 2∗ s )∗B( j , i ) + . . .

r ∗(B( j , i −1) + B( j , i +1)) + . . .
76 s ∗(B( j −1, i ) + 0 ) ;

78 e l s e i f i == M && j== N
C( j , i ) = (1 − 2∗ r − 2∗ s )∗B( j , i ) + . . .

80 r ∗(B( j , i −1) + 0 ) + . . .
s ∗(B( j −1, i ) + 0 ) ;

82

e l s e i f i == M && j== 1
84 C( j , i ) = (1 − 2∗ r − 2∗ s )∗B( j , i ) + . . .

r ∗(B( j , i −1) + 0 ) + . . .
86 s ∗(0 + B( j +1, i ) ) ;

88 e l s e i f i == M && ( j>1 && j<N)
C( j , i ) = (1 − 2∗ r − 2∗ s )∗B( j , i ) + . . .

90 r ∗(B( j , i −1) + 0 ) + . . .
s ∗(B( j −1, i ) + B( j +1, i ) ) ;

92

e l s e i f ( i > 1 && i < M) && ( j > 1 && j < N)
94 C( j , i ) = (1 − 2∗ r − 2∗ s )∗B( j , i ) + . . .

r ∗(B( j , i −1) + B( j , i +1)) + . . .
96 s ∗(B( j −1, i ) + B( j +1, i ) ) ;

end
98 end

end
100

B = C;
102

% Set boundary cond i t i ons
104 B( : , 1 ) = A( : , 1 ) ; B( 1 , : ) = A( 1 , : ) ; B( : ,M) = A( : ,M) ; B(N, : ) = A(N, : ) ;

106 psnr1 ( k ) = compute psnr (A,B, 1 ) ;
psnr2 ( k ) = compute psnr (AAA,B, 1 ) ;

108 t o t s t e p = t o t s t e p +1;
end

110

toc
112 toc EF = toc

Tend = t o t s t e p ∗dt
114

makef igures = 0 ;
116

i f makef igures == 1
118 figure ( 1 1 7 ) ;

subplot ( 2 , 1 , 1 ) ; imagesc (A) ; colormap (gray ) ; t i t l e ( ’ Orig ’ ) ;
120 axis square ; axis on ;

subplot ( 2 , 1 , 2 ) ; imagesc (C) ; colormap (gray ) ; t i t l e ( ’ Heat ’ ) ;
122 axis square ; axis on ;

end
124

% Clear ing the input v a r i a b l e s (memory ) .
126 clear A c dt s t ep s AA

128 % Clear ing other v a r i a b l e s (memory ) .
clear dx dt r s i j c1 c2 dy k M N T makef igures toc EF AAA C
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