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Preface

Hooglanderveen, August 15, 2011

Dear reader,

The development of topos theory dates back to Alexander Grothendieck in the late 1950’s

who was one of the first that felt the need to put notions like coverings and sheaves in a

more abstract context. He was motivated by the seemingly dual notions of subgroups of

groups of deck transformations for a covering space and subgroups of the Galois group

of a normal field extension. The parallel fails because covering spaces factor over open

neighbourhoods (ie. monomorphisms) while fields factor over more general maps (not

necessarily epimorphisms). Grothendieck figured out that the dualization works out fine

if one replaces the notion of a neighbourhood U ⊂ X by a more general map (continuous

of course) U → X. This allows for the theory to be developed even in the generality of

category theory.

Though originally motivated by geometry, topos theory can equivalently well be de-

veloped from a logical point of view. Since this is the proper context for this thesis, we

will combine the best of both worlds to develop basic topos theory in the first chapter.

For a more elaborate version of these preliminaries we refer to [11] and the third volume

of [1]. As our starting we point, we assume the reader is familiar with basic category

theory and has followed some course in logic. If the reader feels uncertain about these

foundations it might be helpful to consult the first two volumes of [1] or have a look at

[10]. If the reader is familiar with model theory he or she might discover a connection be-

tween the general characterization theorem in chapter 2 of this thesis and the  Los-Tarski

preservation theorem.
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4 CONTENTS

During the first year of my masters in Mathematical Sciences I came across many

different topics in geometry which allow for a more general development in the context

of category theory and topos theory. Motivated by the beauty of unification of these

topics at an abstract level I visited dr. Jaap van Oosten and discussed the possibilities

for me to write my master thesis about a topos theory related subject. After studying

both category theory and topos theory I acquainted myself with the unlying theory of

Caramellos characterization theorem with the aid of dr. van Oosten. The original plan

to extend the result by Caramello turned out to be too ambitious for me to realize.

Therefore, we decided to adapt the goal of this research: give a concise description of the

characterization theorem and all its prerequisites, such that its beauty can be admired

by a much wider audience.

Yours faithfully,

Ralph Langendam



Chapter 1

Prerequisites from Topos Theory

Throughout the following we assume that C is a small category.

1.1 The Notion of Site

Given a small category C, we have the associated functor category Ĉ := SetC
op

of con-

travariant functors C → Set (called presheaves) and the Yoneda embedding y : C → Ĉ
given by yC : Cop → Set : D 7→ C(D,C) on objects C,D ∈ C0. The functors yC are called

representable, while subobjects of yC are called sieves on C. As such, a sieve S ≤ yC can

be thought of as a family of morphisms to C which form a right ideal under composition,

ie. ∀f : f ∈ S → f ◦ g ∈ S, whenever the composition is defined. Note that any arrow

h : D → C allows us to transform S into a sieve on D, by selecting those arrows to D

whose composition with h lies in S, ie. the sieve h∗(S) ≤ yD is represented by the set

{g : E → D|h ◦ g ∈ S} ⊂
⋃
E∈C0 C(E,D).

Definition 1.1.1. A (Grothendieck) topology on C is a function J on C0 which assigns

to each object C a set of sieves J(C) on C, such that the following three properties are

satisfied

1. For all objects C, the maximal sieve tC of all morphisms to C is in J(C).

2. For all sieves S ∈ J(C) and all morphisms h : D → C we have h∗(S) ∈ J(D).

3. Given S ∈ J(C) and R any sieve on C with ∀h : (h : D → C) ∈ S → h∗(R) ∈ J(D),

then R ∈ J(C).

A pair (C, J) of a small category C and a Grothendieck topology J is called a (Grothendieck)

site and a sieve S ∈ J(C) is said to J-cover C. We say that a sieve S on C is closed

for J if for all morphisms f : D → C in C we have f∗S ∈ J(D)→ f ∈ S.

5
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1.2 The Notion of a Sheaf

Definition 1.2.1. Given a site (C, J) and a presheaf P on C, then a matching family for

a sieve S ∈ J(C) of elements of P is an association of xf ∈ P (D) to any (f : D → C) ∈ S
such that xf · g := P (g)(xf ) = xfg for all g ∈ C(E,D). An amalgamation of such a

matching family is a single x ∈ P (C) such that for all f ∈ S : P (f)(x) = xf . Compare

this to the notion of matching family in classical sheaf theory for topological spaces, where

the xf are meant to agree on overlaps of their domain. As such, our presheaf P will be

a sheaf, precisely if the ”collation property” holds, ie. if every matching family for any

cover of any object has a unique amalgamation.

In view of our definition of a sieve S on C as a subfunctor of yC we see that a matching

family f → xf for f ∈ S is just a natural transformation S → P for any presheaf P .

Hence, P is a sheaf precisely when for all S ∈ J(C), all f : S → P extend uniquely to

yC , as in

S //

f   

yC

��
P

The family of sheaves over the site (C, J) forms a full subcategory of Ĉ and is denoted

Sh(C, J). The inclusion Sh(C, J) → Ĉ has a left adjoint (the associated sheaf functor)

a : Ĉ → Sh(C, J), which commutes with finite limits.

The process of sending a presheaf to its associated sheaf under a is called sheafifica-

tion. More explicitly, sheafification can be formulated in terms of the plus construction.

One may show, there is a well-defined functor + : Ĉ → Ĉ : P → P+, such that for any

presheaf P and any C ∈ C0, P+(C) is the colimit over all S, J-covering sieves of C, of

matching families for S of C. More explicitly, P+(C) is an equivalence class of matching

families {xf ∈ P (D)|f : D → C ∈ S} with for all g : E → D we have xf · g = xfg.

Two such {xf |f ∈ S} and {yg|g ∈ S′} are equivalent if there exists a common refinement

T ⊂ S ∩ S′ in J(C) such that for all f ∈ T we have xf = yf .

Given a presheaf P , the resulting presheaf P+ is separated , ie. any matching family

has at most one amalgamation. Finally, sheafification is the same as applying the plus

functor twice. That is, for any presheaf P , a(P ) = (P+)
+

.
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1.3 Elementary topoi

Recall from category theory that a category C is said to be cartesian closed if it has a

terminal object 1, any two objects of C have a product in C and an exponential in C.
Equivalently, any finite family of objects of C admits a product in C and the product

functor −× Y has a right adjoint, denoted −Y for every object Y .

Furthermore, we recall that in a category C with finite limits, a subobject classifier is

a monomorphism true : 1 → Ω such that for every monomorphism A → B there is a

unique ϕ : B → Ω such that the following is a pull-back square.

A //

��

1

true

��
B

ϕ
// Ω

Definition 1.3.1. An elementary topos is a cartesian closed category E which has all

finite limits and a subobject classifier true : 1→ Ω.

Example 1.3.2. An (elementary) topos can be seen as a generalisation of the category

Set. Henceforth, Set will be the prototype example of a topos. Its suboject classifier is

the function true : {∗} → {0, 1} : ∗ 7→ 1. Therefore, each monomorphism is classified by

a characteristic function.

Remark 1.3.3. Since every topos E has a subobject classifier Ω and is a cartesian closed

category it also has power objects. That is, in any category C with finite products, P is a

power object of X if there is, for all Y , a natural 1-1 correspondence

E(Y, P ) ∼= SubC(Y ×X)

Power objects of X are unique up to isomorphism and in a topos E we let P(X) = ΩX

be the power object of X. In that situation we have P(X)(E) = SubE(yE ×X). As such,

the power object functor P : Eop → E is right adjoint to the product functor.

1.4 Grothendieck topoi

The following we state without proof.

Theorem 1.4.1. Given a site (C, J), the associated sheaf category is a topos, where its

subobject classifier Ω is the sheaf defined by

Ω(C) = {S sieve on C|S is closed for J}

Definition 1.4.2. A Grothendieck topos is a category which is equivalent to the category

of sheaves over some site.

Example 1.4.3. From a geometrical point of view one could consider the category O(X)

of opens of a topological space X, with inclusions as morphisms, to recover the usual

notion of a presheaf as an object of the elementary topos Ô(X). To Ô(X), is associated

a canonical Grothendieck topology J , consisting of those sieves S, such that
⋃
S contains

an open subset of X. One may verify that the topos of sheaves associated to this site,

Sh(Ô(X), J), coincides with the usual sheaves on a topological space X.
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1.5 The Heyting algebra of Subobjects

Given a sheaf E in a Grothendieck topos E = Sh(C, J), then any subobject A of E can

be uniquely represented by a functor Cop → Set, which we deliberately denote by A too.

As such, for all C ∈ C0 we have A(C) ⊂ E(C) and for every S ∈ J(C) and e ∈ E(C) we

have e ∈ A(C) whenever e · f ∈ A(D) for all f : D → C in S. Finally, for all C ′ → C

in C, the restriction A(C) → A(C ′) agrees with that of E. Hence, each subobject A of

E can be viewed as a subsheaf of E, ie. a subfunctor of E which is itself a sheaf. Still,

the set of subobjects of E in E is denoted by SubE(E) and it becomes a partial order by

defining the relation, for F, F ′ ∈ SubE(E)

F ≤ F ′ ⇔ ∀C ∈ C0 : FC ⊂ F ′C

In this sense, E itself is seen to be the top element of SubE(E).

Definition 1.5.1. We define the pointwise meet and join as usual: given any set-indexed

family {Fi ∈ SubE(E)|i ∈ I} we define their infimum (or meet) resp. supremum (or join)

by (∧
i∈I

Fi

)
(C) =

⋂
i∈I

Fi(C)∨
i∈I

Fi =
∧
{G ∈ SubE(E)|∀i ∈ I : Fi ⊂ G}

As such, SubE(E) is a complete lattice for every Grothendieck topos E and every

sheaf E ∈ E0. Even stronger, we have the following proposition.

Proposition 1.5.2. SubE(E) is a complete Heyting algebra for every sheaf E in a

Grothendieck topos E = Sh(C, J)

For this, it remains to verify the distributivity of the lattice.

Proof. Given a set of subobjects {Ai|i ∈ I} and a subobject B we need to show that

B ∧
∨
i∈I

Ai =
∨
i∈I

B ∧Ai

The inclusion ⊃ trivially holds, so we concentrate on ⊂. Take e ∈ E(C) for any C ∈ C0
and suppose that e ∈ B(C) and e ∈

∨
i∈I Ai. Then S := {f : D → C|∃i ∈ I : e · f ∈

Ai(D)} ∈ J(C). So, for f ∈ S there exists an i ∈ I for which e · f ∈ (B ∧Ai) and hence

e ∈
∨
i∈I B ∧Ai.

Now, given any morphism of sheaves ϕ ∈ E(E,F ) we may form the canonical inverse-

image functor ϕ−1 : SubE(F ) → SubE(E) by pull-back, ie. for G a subsheaf of F and

C ∈ C0 we have

ϕ−1(G)(C) = {e ∈ FC|ϕC(e) ∈ GC}

ϕ−1 has both a left and right adjoint, which will be introduced in the next section.
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1.6 Some categorical logic

The first part of this chapter is largely based on chapter 4 of [16] and chapter 1 of [15].

Definition 1.6.1. A first order language L will consist of a set of sorts {S1, S2, · · · };
a denumerable collection of variables xSi1 , x

Si
2 , · · · for every sort Si and a collection of

function symbols (f : Si1 , · · · , Sin → S) and relation symbols (R ⊂ Si1 , · · · , Sin) which

come with an arity1 n. The terms and formulas are defined in the usual inductive way.

Definition 1.6.2. A category C is called regular if it has all finite limits, regular epi-

morphisms are stable under pull-back and for all morphisms f , whenever

Z
π0 //

π1

��

X

f

��
X

f
// Y

is a pull-back, then the coequalizer of Z
π0

⇒
π1

X exists.

One of the key properties of regular categories is that they allow for a unique factori-

sation of morphisms.

Proposition 1.6.3. Every morphism f : X → Y in a regular category C can be uniquely

factored as X
e−→ E

m−→ Y , where e is a regular epimorphism and m is a monomorphism.

That is, given another such factorisation f = m′e′, there exists an isomorphism σ : E →
E′ such that σe = e′ and m′σ = m.

Since every topos is a regular category2 this proposition applies in particular to topoi.

Definition 1.6.4. An interpretation J·K of a first order language L in a regular category C
is given by choosing an object JSK for every sort S; an arrow JfK : JSi1K×· · ·×JSinK→ JSK
for every function symbol f and a subobject JRK of JSi1K× · · · × JSinK for every relation

symbol R. Given terms t and formulas ϕ we denote by FV (t) resp. FV (ϕ) the collection

of their free variables. These are interpreted as the products of interpretations of free

variables; one occurrence of each sort for each free variable, for each occurrence of that

free variable. We define the interpretation of terms and formulas inductively.

1Any nonnegative integer. In this sense, constants are 0-ary function symbols, while atomic propo-
sitions are 0-ary relation symbols.

2For a proof of this fact we refer to [11].



10 CHAPTER 1. PREREQUISITES FROM TOPOS THEORY

terms A term t of sort S is interpreted as a morphism JtK : JFV (t)K → JSK and is

defined by induction on the complexity of t:

• JxSK = idJSK for every variable x of sort S.

• Given interpretations JtiK : JFV (ti)K → JSiK for terms t1, · · · , tn and a func-

tion symbol f : S1, · · · , Sn → S we define Jf(t1, · · · , tn)K to be the map

JFV (t1)K
Jt1K // JS1K � r

$$
JFV (f(t1, · · · , tn))K

π1

66

πn ((

∏n
i=1JSiK

JfK // JSK

JFV (tn)K
JtnK // JSnK

, �

::

where the πi are the obvious projections.

fomulas A formula ϕ is interpreted as a subobject JϕK of JFV (ϕ)K. Note that this

definition is already fixed by the corresponding operations of the Heyting algebra

of subobjects, except for quantifiers. In a topos, every inverse image arrow α−1 :

Sub(E) → Sub(E′) of an arrow α : E′ → E has both a left and right adjoint:

∃α a α−1 a ∀α. Interpretation of quantifiers can be done through these adjoints as

we will see explicitly in the case of universal quantification.

Next, we write down the cases for equality, conjunction, implication and existential

and universal quantification explicitly. Here it should be noted that the definitions

for implication and universal quatification are to be understood in the context of

topoi, because the subobject lattice of a topos is a complete Heyting algebra.

• J>K is the maximal subobject of JFV (>)K = J∅K = 1.

• Given terms t, s of sort S, then Jt = sK→ JFV (t = s)K is the equalizer of

JFV (t)K
JtK

##
JFV (t = s)K

πs

88

πt &&

JSK

JFV (s)K
JsK

;;

• For R ⊂ Si1 , · · · , Sin a relation symbol and t1, · · · , tn terms of sorts Si1 , · · · , Sin
respectively, we take JR(t1, · · · , tn)K→ JFV (R(t1, · · · , tn))K to be the subobject

defined by pulling back JRK along

JFV (R(t1, · · · , tn))K→
n∏
i=j

JFV (tj)K
∏n
j=1JtjK
−→

n∏
j=1

JSij K



1.6. SOME CATEGORICAL LOGIC 11

• Given interpretations of formulas ϕ and ψ and projections

JFV (ϕ)K
πϕ← JFV (ϕ ∧ ψ)K

πψ→ JFV (ψ)K

we define Jϕ ∧ ψK → JFV (ϕ ∧ ψ)K to be the greatest lower bound of the pull-

backs of the interpreted formulas (as subobjects of JFV (ϕ ∧ ψ)K) along their

corresponding projections. Furthermore, we define Jϕ→ ψK→ FV (ϕ→ ψ) to

be the Heyting implication between the pull-backs of the interpreted formulas

along their corresponding projection, again in Sub(JFV (ϕ→ ψ)K).

• Let JϕK→ JFV (ϕ)K be the interpretation of the formula ϕ and let π : JFV (ϕ)K→
JFV (∃xϕ)K be a projection. Depending on whether or not x appears freely in

ϕ we have different interpretations of ∃xϕ. Therefore, consider the (possibly

trivial) projection π′ : JFV (ϕ) ∪ {x}K → JFV (ϕ)K and define the subobject

J∃xϕK→ JFV (∃xϕ)K to be the image of the composition

(π′)∗(JϕK)→ JFV (ϕ) ∪ {x}K π′−→ JFV (ϕ)K π−→ JFV (∃xϕ)K

• Finally, given JϕK→ JFV (ϕ)K and the corresponding projection π : JFV (ϕ)K→
JFV (∀xϕ)K we have the projection π′ : FV (ϕ∧x = x)→ JFV (ϕ)K which com-

bines to define J∀xϕK := ∀π◦π′(JϕK).

We now say that a formula ϕ is true under this interpretation if its interpretation is the

maximal subobject.

Notation: We often write J·KE or J·KM, instead of J·K, to emphasize that the interpre-

tation lands in a topos E or belongs to an L-structure M.
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1.7 Some First-Order Infinitary Geometric Logic

Definition 1.7.1. For cadinals κ and λ we form the infinitary language Lκ,λ which is

just the extension of the empty language in which we allow the formation of formulas of

the form
∨
ϕ∈X ϕ and

∧
ϕ∈X ϕ for any set of formulas X with cardinality less then κ and∣∣∣⋃ϕ∈X FV (ϕ)

∣∣∣ < λ

It should be noted that if κ is an infinite cardinal, the compactness theorem no longer

holds for these languages. There exist however so called ”weak compactness theorems”

for Lκ,κ whenever κ is a weakly inaccessible cardinal. For a detailed discussion about

this topic we refer to chapter 17 of [8].

Next, we focus our attention to the infinitary language L∞,ω, which is just Lκ,λ, where we

drop the κ-restriction. Instead of considering the language L∞,ω as a whole, we restrict

ourselves to the geometric fragment:

Definition 1.7.2. A formula ϕ in a first-order (possibly infinitary) language L is called

geometric if it is built up from atomic formulas by means of conjunction, arbitrary dis-

junction, existential quantification and the truth values > and ⊥.

Then, a geometric L-theory T is a theory in which all axioms are (equivalent to formulas)

of the form

∀x1 · · · ∀xn (ϕ(x1, · · · , xn)→ ψ(x1, · · · , xn))

where ϕ,ψ are geometric formulas with all free variables contained in {x1, · · · , xn}.

In order to interpret a general geometric formula in a Grothendieck topos we need,

in addition to the machinary of the previous section, also a method to interpret the arbi-

trary disjunctions in a consistent way. To this end we let E = Sh(C, J) be a Grothendieck

topos and Φ := {ϕi|i ∈ I} a set of geometric formulas together with interpretations

{πi : JϕiKE → JFV (ϕi)KE}i∈I . We then define the interpretation J
∨

ΦKE → JFV (
∨

Φ)KE
to be the least upper bound of the pull-backs of the interpreted formulas along their

corresponding projections. Recall that this least upper bound is guaranteed to exist by

virtue of the fact that SubE(FV (
∨

Φ)) is a complete Heyting algebra.

Now, let M = (M, J·KE) be an L-structure in E , where M is an object of E and J·KE
is an interpretation of L in M , then a geometric formula ∀x(ϕ(x)→ ψ(x)) is true under

this interpretation if Jϕ(x)KE is a subobject of Jψ(x)KE .
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1.8 Forcing over a site

Given a Grothendieck topos E = Sh(C, J) we have the functors

C
y // Ĉ

a

88> E

ι

xx

where ι is the inclusion. By the Yoneda lemma, we have for all sheaves X and objects C

of C that X(C) ∼= Ĉ(yC , ιX). Secondly, since ι has the left adjoint a we also obtain the

equivalence Ĉ(yC , ιX) ∼= E(a ◦ yC , X) for all C ∈ C0 and X ∈ E0. Composing these two

yields the equivalence X(C) ∼= E(a ◦ yC , X) for all C ∈ C0 and X ∈ E0. This allows us to

associate the α ∈ X(C) in a 1-1 fashion with the α′ : yC → X and the α′′ : a ◦ yC → X.

Definition 1.8.1. Given a Grothendieck topos E = Sh(C, J) and a first order formula

ϕ(x) with free variable x of sort X ∈ E0, then for any C ∈ C0 and α ∈ X(C) we define

the forcing relation C 
 ϕ(α) to mean that α ∈ Jϕ(x)KE(C).

By virtue of the previous isomorphisms the forcing relation is equivalent to the fol-

lowing two statements

• α′ : yC → X factors through JϕKE → X.

• α′′ : a ◦ yC → X factors through JϕKE → X.

The following theorem states the Kripke-Joyal semantics

Theorem 1.8.2. Given a Grothendieck topos E = Sh(C, J); let ϕ(x), ψ(x) and χ(x, y)

be formulas in the language of E with free variables x, y respectively of sorts X,Y ∈ E0
and suppose α ∈ X(C) for some C ∈ C0. Then

1. C 
 ϕ(α) ∧ ψ(α) if and only if both C 
 ϕ(α) and C 
 ψ(α).

2. C 
 ϕ(α) ∨ ψ(α) if and only if there exists a set-indexed J-cover of C, say {fi :

Ci → C|i ∈ I}, such that for each i ∈ I either Ci 
 ϕ(α ◦ fi) or Ci 
 ψ(α ◦ fi).

3. C 
 ϕ(α)→ ψ(α) if and only if for all morphisms f : D → C in C, if D 
 ϕ(α◦f),

then D 
 ψ(α ◦ f).

4. C 
 ¬ϕ(α) if and only if for all morphisms f : D → C in C, if D 
 ϕ(α ◦ f), then

∅ J-covers D.

5. C 
 ∃y : χ(α, y) if and only if there exists a set-indexed J-cover of C, say {fi :

Ci → C|i ∈ I}, and elements βi ∈ Y (Ci) for each i ∈ I, such that Ci 
 χ(α◦fi, βi)
for all i ∈ I.

6. C 
 ∀y : χ(α, y) if and only if for all morphisms f : D → C in C and all β ∈ Y (D)

we have D 
 χ(α ◦ f, β).
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1.9 Geometric Morphisms

When given a continuous map between topological spaces f : X → Y this induces an

adjoint pair of functors on the sheaf topoi: f∗ : Sh(X) � Sh(Y ) : f∗ with f∗ a f∗ where

the direct image functor f∗ is defined by composition with f−1 and the inverse image

functor f∗ is defined by pulling back the sheaf as an étale bundle along f . As such, f∗

is left exact. We’ll now generalise this construction to adapt to Grothendieck topoi.

Definition 1.9.1. Let E and F be topoi. A geometric morphism f : F → E is a pair of

adjoint functors

F

f∗

77⊥ E

f∗

ww

such that f∗ is left exact3. f∗ is called the inverse image part of f while f∗ is called the

direct image part of f .

We say that f is a surjection4 if f∗ is conservative, ie. f∗ is faithful and reflects

isomorphisms. f is called an embedding whenever f∗ is fully faithful. Finally, the

geometric morphism f is called open when for every object E ∈ E0 we have an adjunction

(fE)! a f∗E with

(fE)! : SubF (f∗E) � SubE(E) : f∗E

The last definition is of course motivated by the notion of an open map between

topological spaces. That is, given an open map f : X → Y , which induces the inverse

image functor f−1 : O(X) → O(Y ), we have V ⊂ f−1(U) ⇔ f(V ) ⊂ U forall open

U ⊂ X and V ⊂ Y . Hence, if f is open, the functor O(Y ) → O(X) : V 7→ f(V ) has a

left adjoint f!.

Definition 1.9.2. Given a site (C, J) and a topos E, we say that F : C → E is continuous

for J if it sends covering sieves to colimit diagrams. The category of continuous left exact

functors is denoted ConLex(Sh(C, J), E).

Definition 1.9.3. Given any set-indexed family of geometric morphisms {fi : Ei → E|i ∈
I} with common codomain. Then this set is said to be jointly surjective if for any two

morphisms α, β : E → E′ in E there exists an i ∈ I, such that f∗i (α) 6= f∗i (β). In this

case, we also say that the inverse image functors f∗i are jointly conservative

A geometric morphism Set → E is called a point of the topos E and E is said to have

enough points if the class of points of E is jointly surjective.

Remark 1.9.4. Given two topoi E ,F one may consider the family of geometric mor-

phisms E → F . These form a category, denoted Geom(E ,F), if we define morphisms

between geometric morphisms f, g : E ⇒ F to be natural transformations f∗ → g∗. One

may show that we could have chosen natural transformations g∗ → f∗ equivalently well,

as these correspond bijectively with natural transformations f∗ → g∗.

3That is, f∗ preserves finite limits. It already preserves colimits, because it has a right adjoint.
4In fact it is sufficient to require that f∗ is faithful, because every faithful functor reflects epi-

morphisms and monomorphisms and, in topoi, an arrow is an isomorphism precisely if it is both a
monomorphism and an epimorphism. Hence, every faithful functor between topoi reflects isomorphisms.
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1.10 Classifying Topoi

Motivated by topology, the notion of classiying topos will generalise the notion of clas-

sifying space (for cohomology) in a special way. Given a space X and an abelian group

G we may form the cohomology group Hn(X,G) with respect to G, for any n ∈ N. We

now have the classifying space Kn(G) which has the property that every n-dimensional

cohomology class of X arises as the pull-back of a universal cohomology class along a

unique map X → Kn(G) (up to homotopy). In that sense, Kn(G) classifies Hn(X,G).

In generalising to topoi we have the following in mind: suppose we have the notion

of a ”structure” such that for any topos E we have a category of such structures in E .

Intuitively one would like to say that a topos B is a classifying topos for these structures

if there is an equivalence between the subcategory of E of such structures and the cate-

gory of geometric morphisms E → B.

Now, let these structures in a topos E be axiomatised in a theory T such that these struc-

tures form the set of T -models in E , denoted Mod(T, E). This set becomes a category

if one defines a morphism between two models, µ : M → N , to be a map µ : M → N

which preserves the structure of the language. That is, for every function symbol f and

relation symbol R, we have µ(JfKM) = JfKN and µ(JRKM) = JRKN .

Now, suppose that we have a geometric morphism f : F → E whose inverse image

part preserves T -models5.

Definition 1.10.1. In the above context, a classifying topos for T -models is a Grothendieck

topos B(T ) such that for every Grothendieck topos E we have a natural (in E) equivalence

cE : Mod(E , T )→ Hom(E ,B(T ))

In case E = B(T ), the model corresponding to the identity on B(T ) under cE is called

the universal T -model and is denoted UT := c−1B(T )

(
idB(T )

)
.

Remark 1.10.2. (Universal property for the classifying topos) The universal T -model

has the property that for any topos E and T -model M there exists up to isomorphism a

unique geometric morphism f : E → B(T ) such that M∼= f∗(UT ).

5We’ll see later that this property holds for any geometric morphism, as long as T is a geometric
theory.
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1.11 Geometric Logic

In this section we’ll show that every geometric theory has a classifying topos. To this end

we first fix a first-order language L and an interpretation J·KE of our language in a topos

E . Given a geometric morphism f : F → E we have a canonical way of transporting our

interpretation in E to an interpretation J·KF in F using the inverse image functor f∗,

because it is left exact.

Remark 1.11.1. Given a left exact functor F : E → F we may define JSKF = F (JSKE)
on sorts S. Since F preserves products and monomorphisms it will also preserve inter-

pretations of relation symbols: JRKF = F (JRKE) and function symbols: JfKF = F (JfKE).
Although this gives rise to a functor between L-interpretations, we don’t expect it to re-

strict to a functor Mod(T,F) → Mod(T, E) for any theory T , because that would imply

that M � ϕ ⇒ F (M) � ϕ for any L-structure M and T -axiom ϕ. However, we shall

prove that if T is a geometric theory, f∗ does send T -models to T -models functorially.

Theorem 1.11.2. Given a geometric morphism f : F → E and an interpretation J·KE
of L in E, then for any geometric formula ϕ(x) we have f∗(Jϕ(x)KE) = Jϕ(x)KF , where

J·KF is the induced interpretation as before.

Proof. We prove this by induction on the construction of the formula ϕ.

atomic formulas Given a term t(x1, · · · , xn) of sort S and free variables among the xi
of sort Si we have the interpretation JtKE :

∏n
i=1JSiKE → JSKE of t in E . Since f∗

preserves products, an induction on the complexity of terms shows the commuta-

tivity of

f∗ (
∏n
i=1JSiKE)

f∗(JtKE)//

∼=
��

f∗(JSKE)

∏n
i=1JSiKF JtKF

// JSKF

Hence, for atomic formulas t = t′ or R(t1, · · · , tk) with free variables among the xi,

we have f∗Jt = t′KE ∼= Jt = t′KF and f∗JR(t1, · · · , tk)KE ∼= JR(t1, · · · , tk)KF . Finally,

f∗ preserves the top and bottom elements of the subobject lattice SubE (
∏n
i=1JSiKE)

because these are finite limits. So, f∗J>KE = J>KF and f∗J⊥KE ∼= J⊥KF . Hence,

the theorem holds for all atomic formulas.
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conjunction Given formulas ϕ and ψ for which the theorem holds, then the theorem

also holds for ϕ ∧ ψ, because f∗ preserves the meets of the subobject lattices6

arbitrary disjunction Given a set-indexed family of geometric formulas {ϕi|i ∈ I} we

need to see why f∗J
∨
i∈I ϕiKE = J

∨
i∈I ϕiKF . To this end it suffices to prove that

the join is a supremum of subobjects, because then it is preserved by f∗. However,

it’s already the top element of SubE
(
FV

(∨
i∈I ϕi

))
.

existential quantification Let α : E → E′ be any arrow in E and let A → E be any

subobject. Then f∗(∃αA) = ∃f∗αf∗A, since ∃αA is the image of A → E → E′

and f∗ preserves images. In particular, this holds for any subobject which is the

interpretation of a formula ϕ for which the theorem already holds. So the theorem

holds for formulas ∃xϕ as well.

We conclude that the theorem holds for all geometric formulas, as they’re built up out

of these three elementary building blocks.

Corollary 1.11.3. For a geometric theory T , each geometric morphism f : F → E
induces a functor f∗ : Mod(T, E)→ Mod(T,F).

Proof. Let M = (M, J·KE) be an L-structure in E , such that all axioms of T are valid in

M. That is, if T ` α, then JαKM is a maximal subobject. To prove the corollary we

need to show that the axioms of T are also valid in f∗M. Since T is geometric, α is of

the form ∀x (ϕ(x)→ ψ(x)). Now, assume that α is true in M, ie. Jϕ(x)KM ≤ Jψ(x)KM.

Since, f∗ is left exact we have f∗Jϕ(x)KM ≤ f∗Jψ(x)KM. Hence, by the previous theorem

Jϕ(x)Kf∗M ≤ Jψ(x)Kf∗M, ie. α holds in f∗M and so, f∗M is a model of T in F .

6Meets are preserved by left exactness of f∗
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1.12 Classifying Topoi for Geometric Theories

In this section we’ll concentrate on the problem of finding a classifying topos for a (pos-

sibly infinitary) geometric theory T . Remarkably enough, this problem is completely

solvable and below we will discuss how to explicitly construct the solution B(T ). We

start with the construction of a syntactic category B(T ), which comes equipped with

a canonical Grothendieck topology J(T ). Then our classifying topos B(T ) will be the

Grothendieck topos of sheaves over the syntactic site.

The construction of the syntactic site will be a generalisation of the more intuitive and

motivating idea of a category of definable objects. That is, given a Grothendieck topos

E and a T -model M in E , then an object A of E is called definable in M if there ex-

ists a geometric formula ϕ such that A ∼= Jϕ(x)KE . Now, let the free variables of ϕ

(defining A) resp. ψ (defining B) be listed among (x1, · · · , xn) resp. (y1, · · · , ym) where

each xi is of sort Si resp. each yj is of sort S′j and denote SM =
∏n
i=1JSiKE resp.

S ′M =
∏m
j=1JS

′
jKE . Then an arrow between definable objects (A,SM) → (B,S ′M) is an

arrow A → B in E whose graph (as a subobject of SM × S ′M) is definable. This forms

the category Def(M) of definable objects in M . This category can be shown to inherit

all finite limits from E . It also inherits a basis for a Grothendieck topology, making all

finite epimorphic families covering. More explicitly, a finite family of definable arrows

{si : (Ai,SiM)→ (B,S ′M)}ni=1 covers (B,S ′M) if it becomes an epimorphic family under

the forgetful functor Def(M)→ E , ie. if
∐n
i=1Ai → B is epimorphic in E .

Somehow, we’d like to avoid choosing a particular model for our theory and instead

treat all model of T in E simultaneously. It’s precisely this generalisation which leads to

the notion of a syntactic site.
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Definition 1.12.1. Given a geometric theory T , the syntactic category B(T ) of T is

defined as follows:

Objects An object of B(T ) is a list of sorts S = (S1, · · · , Sn), together with an equiva-

lence class of geometric formulas [ϕ(x1, · · · , xn)] whose free variables are among the

xi, each of sort Si. ϕ(x1, · · · , xn) is equivalent to ψ(y1, · · · , yn) (and hence defines

the same object of B(T )) if the free variables of ϕ resp. ψ are among x1, · · · , xn
resp. y1, · · · , yn from the same list of sorts S and when for every T -model M we

have Jϕ(x)KM ∼= Jψ(y)KM.

Arrows An arrow between two objects ([ϕ(x)],S)→ ([ψ(y)],S′) is an equivalence class

of geometric formulas7 [σ(x, y)] whose interpretations as subobjects, are graphs of

arrows JϕKM → JψKM for every T -model M. Two such σ, σ′ are equivalent if they

define the graph of the same arrow in every model of T .

More explicitly, the functionality of σ can be expressed as

T ` ∀x∀y(σ(x, y)→ ϕ(x) ∧ ψ(y))

T ` ∀x(ϕ(x)→ ∃yσ(x, y))

T ` ∀x∀y∀z(σ(x, y) ∧ σ(x, z)→ y = z)

To see that this forms a category we observe that the identity arrow for an object ([ϕ],S)

is represented by the formula

ϕ(x) ∧ ϕ(x′) ∧
n∧
i=1

xi = x′i

and that composition of two arrows [σ] : ([ϕ(x)],S)→ ([ψ(y)],S′) and [τ ] : ([ψ(y′)],S′)→
([χ(z)],S′′) is an arrow [τ ◦ σ] : (ϕ(x),S)→ (χ(z),S′′) represented by

∃y(σ(x, y) ∧ τ(y, z))

where we note that the representant in the codomain of [σ] can be chosen equal to the

representant in the domain of [τ ], because ψ(y) and ψ(y′) define the same subobject of

S ′M for any T -model M.

Remark 1.12.2. Note that B(T ) might not be a small category. Semantically we see

that it refers to all models in all topoi, while syntactically we observe that the class of

(infinitary) formulas is not a set. From a foundational point of view there are two ways

out of this: either we restrict the class of topoi, or we use a larger universe for our set

theory. Although the first method can be applied without harming the theory we prefer

the second method, because it gives us as much freedom as possible.

The syntactic category defines, as a generalisation of the category of definable objects,

a family of functors {FM : B(T ) → Def(M)|M ∈ Mod(T, E)0} by FM([ϕ(x)],S) =

Jϕ(x)KM on objects and FM ([σ] : ([ϕ(x)],S)→ ([ψ(y)],S′)) is the arrow Jϕ(x)KM →
Jψ(y)KM which has graph Jσ(x, y)KM.

7Each σ(x, y) defines a subobject (the graph) Jσ(x, y)KM ≤ SM × S′M for every T -model M, as
before.
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We now define a basis for a Grothendieck topology J(T ) on B(T ).

Definition 1.12.3. A finite family {si : Ai → B}ni=1 of arrows in B(T ) is defined to

cover B if for every T -model M this family is sent to a cover of FM(B) by FM. The

syntactic site is now defined to be the site (B(T ), J(T )).

Theorem 1.12.4. Let T be a geometric L-theory, then B(T ) := Sh(B(T ), J(T )) is the

classifying topos for models of T .

Remark 1.12.5. Although we will not prove this theorem here, it’s worthwile to observe

how the equivalence Hom(E ,B(T )) ∼= Mod(T, E) (natural in E) comes about for every co-

complete topos E. By what we’ve seen about the syntactic category it’s not difficult to see

that every geometric morphism E → B(T ) arises uniquely from a left-exact continuous

functor B(T )→ E, such that we have an equivalence ConLex(B(T ), E) ∼= Hom(E ,B(T )).

As we anticipated, the first equivalence will be a generalisation of the notion of classifying

space. That is, given a morphism E → B(T ), it will arise uniquely from a continuous

left exact morphism B(T )→ E which can be factored uniquely over Def(M) for a unique

T -model M. The equivalence in the theorem is precisely this correspondence between

T -models M and geometric morphisms E → B(T ).

Remark 1.12.6. In view of Remark 1.12.2 it is not immediately clear why B(T ) could

be regarded as the sheaf category over a small site. To this end, we first observe that if

B(T ) = Sh(C, J) is the classifying topos for a geometric theory T and E is a subtopos

of B(T ), then we obtain a finer Grothendieck topology J ⊂ JE on C, corresponding to

the models of T in E. However, this corresepondence between subtopoi of B(T ) and finer

Grothendieck topologies JE is 1-1 by virtue of the previous remark. Hence, subtopoi of

B(T ) can be regarded as sets, such that (C, J) can be assumed to be a small site.



Chapter 2

Characterization of Geometric Logic

2.1 The Finitary Characterization Problem

Given a language L and a topos E , we denote the L-structures in E by L(E).

Definition 2.1.1. Coherent sequents are sequents of the form ϕ ` ψ where ϕ and ψ

are coherent formulas, ie. formulas in coherent logic: the fragment of finitary first-order

logic using only connectives and quantifiers. In full first order logic, coherent sequents

are equivalent to geometric formulas ∀x : ϕ→ ψ. A theory T is called a coherent theory

if it consists of coherent sequents.

Suppose that L is a finitary first-order language. Then we may wonder whether an L-

theory T is equivalent to a coherent one. Having a precise answer to this question yields

a characterization of coherent logic. I. Moerdijk was the first to tackle this problem in a

letter to M. Makkai in 1989.

Theorem 2.1.2. A finitary first-order L-theory T can be axiomatized by coherent se-

quents over L precisely if

1. All inverse image parts of geometric morphisms between Grothendieck topoi pre-

serve T -models, ie. for all geometric morphisms f : F → E, if M ∈ L(E) is a

model of T , then f∗M∈ L(F) is a model of T .

2. All inverse image parts of surjective geometric morphisms between Grothendieck

topoi reflect T -models, ie. for all surjective geometric morphisms f : F → E and

all M∈ L(E), if f∗M∈ L(F) is a model of T , then M is a model of T .

Moerdijk asked in his letter whether it was possible to generalise his result to infinitary

logic. In 2009 Olivia Caramello published a paper [3] in which she adresses a more general

problem of whether a class of structures is the class of models of a geometric theory inside

a Grothendieck topos. In specializing to infinitary first-order theories that are geometric,

in terms of their models in Grothendieck topoi, the question posed by Moerdijk, back in

1989, could now be answered by a decisive yes.

21
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The orginal proof by Moerdijk uses the compactness theorem extensively. However,

in the infinitary generalisation one cannot rely on this result anymore and so the proof

fails. Nevertheless, for the infinitary case there do exist so called ”weak compactness

theorems”, but they are beyond the scope of this paper. Detailed information about

them can be found in chapter 17 of [8].

The remaining part of this chapter is devoted to the result by Olivia Caramello: the

solution to the more general problem posed by Moerdijk.
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2.2 Local Operators and Subtopoi

It turns out there are different but equivalent ways to express the data of a Grothendieck

topology. One of those is the local operator or Lawverre-Tierney topology.

Definition 2.2.1. A local operator on a topos E is a morphism j : Ω → Ω (where Ω

is the subobject classfier of E) which satisfies the following properties on the (possibly

infinitary) logic of E:

1. j(>) = >

2. For all formulas ϕ, j ◦ j(ϕ) = ϕ.

3. For all formulas ϕ and ψ we have j(ϕ ∧ ψ) = j(ϕ) ∧ j(ψ).

Example 2.2.2. In case E = Ĉ for some category C, the definition of a local operator

j : Ω→ Ω on E takes the usual form:

1. For every sieve S on C ∈ C0 we have S ⊂ jC(S).

2. For every sieve S on C ∈ C0 we have jC(jC(S)) = jC(S).

3. Given any two sieves S, S′ on C ∈ C0 we have jC(S ∩ S′) = jC(S) ∩ jC(S′).

In particular, a local operator can be thought of as a representant of a subobject.

Hence, we have a canonical notion of comparability (≤) between local operators on the

same topos.

Proposition 2.2.3. The following notions are equivalent. That is to say, that one

determines the other uniquely.

• A Grothendieck topology J on a category C.

• A local operator j on Ĉ.

Although we do not prove the proposition it might be helpful to see how j can be

expressed in terms of J explicitly. Given any sieve S on C ∈ C0 we define

jC(S) := {g : C ′ → C|g∗(S) ∈ J(C ′)}

Definition 2.2.4. Given a topos E, a subtopos of E is a topos E ′ together with a geo-

metric embedding E ′ ↪→ E.

Theorem 2.2.5. Every local operator j on a topos E determines a unique subtopos Ej ↪→
E. Conversely, every geometric embedding (inclusion) ι : E ′ ↪→ E of topoi determines a

unique local operator j on E, such that Ej is equivalent to E ′.

This theorem expresses in particular the bijective correspondence between subtopoi

and Grothendieck topologies, which will be needed in the next section.
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2.3 Preliminaries

Remark 2.3.1. Two arrows, in a category with equalizers, are equal precisely if their

equalizer is an isomorphism. Hence, an equalizer preserving functor between two cat-

egories with equalizers is conservative, precisely when it reflects isomorphisms. So, a

family of geometric morphisms with common codomain is jointly surjective if and only

if all the associated inverse image functors jointly reflect isomorphisms. That is, a set

of geometric morphisms {fi : Ei → E|i ∈ I} is jointly surjective precisely if for all mor-

phisms g : E → E′ in E we have that if f∗i (g) is an isomorphism for all i ∈ I, then so is

g itself.

Remark 2.3.2. In [4] it is proved that the class of subtopoi of a Grothendieck topos E
is a set. Hence, given an indexed family of subtopoi {Ei ↪→ E|i ∈ I}, we can form the

smallest subtopos
⋃
i∈I Ei ↪→ E containing all the Ei.1

Lemma 2.3.3. Given an indexed family of geometric morphisms {fi : Ei → E|i ∈ I},
then it’s jointly surjective, precisely if the surjection-embedding factorisations fi : Ei

ei
�

E ′i
mi
↪→ E combine to yield an isomorphism

∐
i∈I mi :

⋃
i∈I E ′i → E.

Proof. The joint surjectivity of the indexed family is equivalent to the joint surjectivity

of the mi. Secondly, to each mi is associated a local operator ji on E as seen in the

previous section. Now, let aji : E → E ′i be the sheaf functor associated to ji.

”⇒” Let be given any local operator j on E which is smaller (as a subobject) then all

the ji, ie. for all i ∈ I we have j ≤ ji. Then ”aj(f) is an isomorphism⇒ aji(f) is

an isomorphism” for all morphisms f in E and i ∈ I. However, the latter implies

that f is an isomorphism by the joint surjectivity of the fi. Hence j must be the

smallest local operator on E such that
∐
i∈I mi is an isomorphism.

”⇐” Conversely, to see that the fi are jointly surjective we need to show that any

morphism f in E is an isomorphism whenever aji(f) is an isomorphism for all i ∈ I.

To this end we consider the smallest local operator2 kf on E such that akf (f) is

an isomorphism. Here, akf is the sheaf functor associated to kf . As subobjects,

kf ≤ ji for all i ∈ I and hence kf is the smallest local operator. This implies that

f must be an isomorphism, since
∐
i∈I mi is an isomorphism by assumption.

From now on we assume our topoi to be Grothendieck, such that Remark 2.3.2 applies

and we immediately obtain the following corollary.

Corollary 2.3.4. Let be given a set-indexed family of geometric morphisms {fi : Ei →
E|i ∈ I} between Grothendieck topoi. By the previous lemma the coproduct Grothendieck

topos
∐
i∈I Ei exist, so we have a coproduct map f :

∐
i∈I Ei → E, whose surjection-

embedding factorisation is f :
∐
i∈I Ei �

⋃
i∈I Ei ↪→ E. Moreover, the family is jointly

surjective, precisely if f is surjective.

1Even if E is not Grothendieck, it is still common to use
⋃
i∈I Ei ↪→ E to denote the smallest subtopos

of E containing all the Ei, provided it exists.
2This exists by virtue of Example A 4.5.14 (c) in [9].
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2.4 The Duality Theorem

To prepare for the characterization theorem in the next section, we now focus our at-

tention to a duality between subtopoi of the classifying topos of a geometric L-theory

T and the closed geometric L-theories which are ”quotients of T”. This is needed to

ensure the preservation of the universal model under an associated sheaf functor. For an

elaboration on the fact that every subtopos of a Grothendieck topos is a Grothendieck

topos, we refer to chapter 3 of [4].

Definition 2.4.1. Given a geometric L-theory T and geometric L-sequents σ, σ′, then

σ, σ′ are said to be T -equivalent if T ∪ {σ} ` σ′ and T ∪ {σ′} ` σ. A quotient or an

extension of T is a geometric L-theory T ′, such that for all ϕ ∈ T : T ′ ` ϕ and the set

of such quotients of T is denoted by Q(T ). We say say that two geometric L-theories

T, T ′ are syntactically equivalent (and write T ≡s T ′) if for any geometric L-sequent σ

we have T ` σ ⇔ T ′ ` σ. We say that T, T ′ are Morita-equivalent (and write T ≡M T ′)

if they have equivalent classifying topoi. Finally, T is called closed if every geometrical

sequent provable from T is already an axiom of T .

Remark 2.4.2. Syntactic equivalence is clearly an equivalence relation on the geometric

L-theories and each equivalence class can be canonically represented by the theory of all

geometric L-sequents provable in any (and hence all) theories of the equivalence class.

This canonical representative is of course the unique theory of the equivalence class which

is closed. This motivates the following definition.

Definition 2.4.3. The closure of a geometric L-theory T is the unique (closed) canonical

representative of the syntactic equivalence class of T , denoted by T .

Definition 2.4.4. Given a small category C, a cocomplete category E (e.g. a topos) and

a functor F : C → E, then the Hom-functor R : E → Ĉ with R(E)(C) = E(FC,E) has a

left adjoint which we denote by −⊗C F (the tensor product functor). The functor F is

called flat if the corresponding tensor product functor −⊗C F : Ĉ → E is left exact.

Given a site (C, J), then the J-continuous flat functors C → E form a category which we

denote by FlatJ(C, E).

We need the following classical theorem as a lemma for the proof of the duality

theorem.

Lemma 2.4.5. (Diaconescu) Any presheaf topos is the classifying topos for flat functors

on its site.

Detailed proofs of a more general version of this theorem can be found at B 3.2.7 of

[9] or in the original work by Diaconescu: [7].
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Theorem 2.4.6. (The Duality Theorem) Given a geometric L-theory T , we may send its

quotients T ′ to their classifying topoi B(T ′). This induces a bijection between Q(T )/ ≡s
and the subtopoi of B(T ).

Instead of proving this theorem in full detail we shall give a sketch of it and indicate

how the predicted bijection comes about.

”proof”. By the soundness theorem for geometric logic, syntactically equivalent geo-

metric theories have the same models in all Grothendieck topoi and are hence Morita

equivalent. Assume B(T ) = Sh(B(T ), J(T )), where (B(T ), J(T )) is the syntactic site of

T . Given any Grothendieck topos E and any M ∈ Mod(T, E), we have a flat functor

FM : B(T )→ E assigning to every L-formula ϕ(x) the domain of Jϕ(x)KM. This yields

an equivalence Mod(T, E) ∼= FlatJ(T )(B(T ), E). It is shown in volume 2 part D of [9] that

B(T ) is equivalent to a small category and hence all we now about small Grothendieck

sites applies here.

Given a quotient T ′ of T , we construct B(T ′) like this: T ′ can be obtained from T

by adding a set ∆T of axioms of the form ϕ ` ψ. One may show that given any

Grothendieck topos E and M ∈ Mod(T, E) the morphism associated to any ϕ ` ψ in

B(T ) is sent to an epimorphism by FM precisely if ϕ ` ψ holds inM. Hence, the models

of T ′ are classified by those J(T )-continuous flat functors which send the axioms of ∆T

to epimorphisms.

If we let J(T, T ′) be the smallest Grothendieck topology on B(T ) which makes all sieves

of J(T ) and those corresponding to the axioms of ∆T covering then, by Diaconescu’s

theorem, B(T ′) = Sh(B(T ), J(T, T ′)). In particular, the inclusion J(T ) ⊂ J(T, T ′) yields

the subtopos B(T ′) ↪→ B(T ).

To see that this is well-defined on syntactic equivalence classes one needs to show that

the above construction of the subtopos is independent of the choice of axioms in ∆T .

We will omit this rather technical detail and concentrate on the reverse construction:

given a subtopos E of B(T ), then E = Sh(B(T ), J) for a unique J containing J(T ).

Now, define the L-theory TJ to consist of the axioms ψ ` ∃x : σ where [σ] ∈ B(T )1 is

any monomorphism generating a sieve in J . One may now show that the equivalence

Mod(T, E) ∼= FlatJ(T )(B(T ), E) restricts to an equivalence Mod(TJ , E) ∼= FlatJ(B(T ), E)

and hence that E = Sh(B(T ), J) classifies TJ .

The last part of the proof amounts to showing that J 7→ TJ and T ′ 7→ J(T, T ′) are

bijections inverse to each other. To this end we first observe that J(T, TJ) = J by

definition of the assignment T ′ 7→ J(T, T ′). Conversely, we need to show that every

quotient T ′ of T is syntactically equivalent to TJ(T,T ′). For this, one shows that the

L-structure U(T, T ′) := image
(
aJ(T,T ′) ◦ yT

)
is a universal model for both T ′ as well as

TJ(T,T ′). Here, yT is of course the Yoneda embedding B(T ) → B̂(T ). So U(T, T ′) is a

conservative model of both T ′ and TJ(T,T ′), yielding their syntactic equivalence.
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2.5 The Characterization Theorem

Remark 2.5.1. Given the (trivially geometric) empty theory OL in the language L,

consider its classifying topos B(OL) and observe that, since OL is empty, its models in

any E are precisely the L-structures in E, L(E). Hence we have a correspondence between

M∈ L(E) and geometric morphisms fM : E → B(OL).

Theorem 2.5.2. Given a class S of L-structures in Grothendieck topoi which is closed

under isomorphisms of L-structures, then S is the class3 of all models in all possible

Grothendieck topoi of some geometric L-theory TS if and only if (”⇔”) the following two

conditions are satisfied:

1. Given any L-structure M ∈ S in E and any geometric morphism f : F → E, then

f∗(M) ∈ S.

2. Given any set-indexed jointly surjective family of geometric morphisms

{fi : Ei → E|i ∈ I} and any M∈ L(E); if for all i ∈ I : f∗i (M) ∈ S, then M∈ S.

Proof.

”⇒” 1. Given f : F → E and M ∈ L(E) in S, then f∗(M) is also a model of TS .

Since S is the class of all models in Grothendieck topoi of TS we must have

f∗(M) ∈ S as well.

2. Given a set-indexed jointly surjective family of geometric morphisms {fi :

Ei → E|i ∈ I} we have f :
∐
i∈I Ei → E surjective as indicated in Corollary

2.3.4. Let M ∈ L(E) be given with f∗i (M) ∈ S for all i ∈ I, such that

f∗i (M) ∈ Mod(TS , Ei) for all i ∈ I, then f∗(M) is a model of TS in
∐
i∈I Ei.

To see that M is also a model of TS we assume TS � ϕ implying f∗(M) � ϕ.

Hence, JϕK is the maximal subobject and so is reflected by f∗ to yieldM � ϕ.

We conclude that M is a model of TS and so M∈ S.

3Given a class S = {x|ϕ(x, p1, · · · , pn)} we deliberately write y ∈ S for ϕ(y, p1, · · · , pn).
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”⇐” In view of our last remark, the fM withM∈ S correspond to the set L(E), so the

associated class of geometric morphisms is a set: {fM|M ∈ S}. Now, givenM∈ S
in E , we have the epi-mono factorisation of the associated geometric morphism

fM : EM
eM
� E ′M

mM
↪→ B(OL). Using Remark 2.3.2 and the fact that B(OL) is

Grothendieck, we obtain a subtopos4 ES :=
∐
M∈S E ′M ↪→ B(OL) represented by

m :=
∐
M∈SmM; we denote the inclusions by ιM : E ′M → ES . This subtopos has

an associated sheaf functor aS : B(OL) → ES and by the Dualization Theorem

(2.4.6) it corresponds to a unique (up to ≡s) geometric quotient TS of OL, such

that if UOL(E) is a universal model for OL in E , then UTS (E) := a (UOL(E)) is a

universal model for TS in E . It remains to show that our TS is properly chosen as

to axiomatize the L-structures in S.

Define the family of geometric morphisms hM := ιM ◦ eM : EM → ES and observe

that fM = m ◦ hM. Since M ∼= f∗M (UOL) we have h∗M (UTS ) ∼= M, such that

M is a model of TS and hence all structures in S are TS -models. Conversely, by

Lemma 2.3.3 we see that the hM are jointly surjective such that by (2), UTS ∈ S.

By Remark 1.10.2 for any F Grothendieck and any N ∈ Mod(TS ,F) we have

N = g∗(UTS ) for some geometric morphism g : F → ES and so, by (1), any

TS -model in a Grothendieck topos already lies in S.

4In words: it is the union of the inclusion parts of the geometric morphisms.
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2.6 Applications

We will now use the characterization theorem to prove the conjecture posed by Moerdijk.

Remark 2.6.1. Similar to what we’ve done in the ”only if”-part of the proof we can ef-

fectively replace property (2) in the characterization theorem by the following statements,

by virtue of Corollary 2.3.4.

(a) Given any surjective geometric morphism f : F → E and M∈ S we have

f∗(M) ∈ S ⇒M ∈ S.

(b) For any set-indexed family {Mi ∈ L(Ei)|i ∈ I} of L-structures in S, the associated

L-structure in
∐
i∈I Ei also lies in S.

The following lemma is stated without proof.

Lemma 2.6.2. Two infinitary first-order L-theories are deductively equivalent if and

only if they have the same models in all Grothendieck topoi.

Theorem 2.6.3. An infinitary first-order L-theory T can be axiomatized by geometric

L-sequents if and only if

1. For any geometric morphism f : F → E between Grothendieck topoi we have

M∈ Mod(T, E)⇒ f∗(M) ∈ Mod(T,F).

2. For any surjective geometric morphism f : F → E between Grothendieck topoi we

have f∗(M) ∈ Mod(T,F)⇒M ∈ Mod(T, E).

Proof. Let ST be the set of all models of T inside Grothendieck topoi, such that it

automatically satisfies property (b) of the previous remark. Then T is axiomatizable by

geometric L-sequents if and only if property (a) and property (1) of the characterization

theorem hold. So, the previous lemma finishes the proof.
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