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Abstract

Certain linear recurrence sequences have a divisibility property, namely that a term un divides

another term um if n divides m (e.g., the Fibonacci sequence). Such divisibility sequences can be

characterised, namely they can often be written as a product of second order divisibility sequences.

E.g., a power of the Fibonacci sequence will again give a divisibility sequence, but of a higher

order. In this thesis we characterise divisibility sequences of orders 2, 3 and 4. A theoretical basis is

provided by Ritt’s theorem on factorisation of exponential polynomials.
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CHAPTER 1

Introduction

A linear recurrence u in Z of order n is a sequence of integers u0, u1, u2, . . . with the property that

uk+n = A1uk+n−1 + · · · + An−1uk+1 + Anuk, for A1, . . . , An ∈ Z fixed (An 6= 0) and u0, . . . , un−1

chosen. The characteristic polynomial of a linear recurrence with such a recurrence relation is the

polynomial Xn − A1X
n−1 − · · · − An−1X − An. If we assume the characteristic polynomial has n

distinct roots θ1, . . . , θn, then for all k ∈ Z>0 the terms of u are of the form uk = λ1θ
k
1 + · · ·+ λnθ

k
n,

for algebraic numbers λ1, . . . , λn and algebraic integers θ1, . . . , θn [1].

A linear recurrence is called nondegenerate if none of the quotients θi/θj (for 1 6 i < j 6 n) is a

root of unity. A divisibility sequence is a nondegenerate linear recurrence u in Z such that if k | `
and uk 6= 0, then uk | u`. An example is the famous Fibonacci sequence Fk (with initial values

F0 = 0 and F1 = 1), which has recurrence relation Fk+2 = Fk+1 + Fk. To illustrate the divisibility

property, we give the first ten terms of the Fibonacci sequence:

k 0 1 2 3 4 5 6 7 8 9 10

Fk 0 1 1 2 3 5 8 13 21 34 55

Furthermore, the characteristic polynomial of the Fibonacci sequence is X2−X−1 and it has roots

θ1 = 1
2 + 1

2

√
5 and θ2 = 1

2 −
1
2

√
5. The terms are of the form Fk = (θk1 − θk2 )/(θ1 − θ2), so indeed

F0 = 0 and F1 = 1. Sequences of this form (αk−βk)/(α−β) for α, β ∈ Z are called Lucas sequences,

named after the 19th century French mathematician Édouard Lucas. Like Lucas [2] and Ward [3],

we wonder whether all divisibility sequences can be written in such a form.

This thesis consists of two parts: In the first part (Chapter 2) we connect linear recurrence sequences

to exponential polynomials. In particular, we prove the unique factorisation of such polynomials, a

theorem due to Joseph Ritt [4], given in Section 2.1. In the second part (Chapter 3) we relate divis-

ibility sequences to Lucas sequences and actually characterise them. Theorems 3.3.1 and 3.4.1 give

the characterisation of divisibility sequences of orders 2 and 3, respectively. There are a number of

cases for divisibility sequences of order 4, which are treated in Section 3.5.

1



CHAPTER 1: INTRODUCTION

2



CHAPTER 2

The ring of exponential polynomials

In this chapter we study the ring of exponential polynomials. In Section 2.1 we treat closure un-

der addition and multiplication, associativity and distributivity, units, the zero element and zero

divisors. In Sections 2.2 through 2.6 we study unique factorisation of exponential polynomials.

2.1 Definition and properties

Definition 2.1.1

An exponential polynomial over C is an expression of the form

a0e
α0x + · · ·+ ane

αnx, (2.1.1)

with a0, . . . , an ∈ C and α0, . . . , αn ∈ C distinct.

From now on we speak of exponential polynomials instead of exponential polynomials over C,

unless mentioned otherwise. We show that the ring of exponential polynomials is closed under

multiplication and addition: consider two exponential polynomials:

P =

n∑
i=0

aie
αix, Q =

m∑
j=0

bje
βjx.

Then their product is:

PQ =

n∑
i=0

m∑
j=0

aibje
(αi+βj)x

=

n∑
i=0

m∑
j=0

dije
δijx

=

p∑
`=0

c`e
γ`x, (2.1.2)

3



CHAPTER 2: THE RING OF EXPONENTIAL POLYNOMIALS

where dij = aibj and δij = αi + βj . Since the δij are not necessarily distinct, we can collect the

terms with the same exponent and obtain the exponential polynomial (2.1.2), for c` ∈ C and γ` ∈ C
distinct, and where p 6 mn. Hence exponential polynomials are closed under multiplication.

We also consider the sum of P and Q:

P +Q =

n+m+1∑
`=0

d`e
δ`x,

where

d` =

{
a` for 0 6 ` 6 n

b`−n−1 for n < ` 6 n+m+ 1,

and

δ` =

{
α` for 0 6 ` 6 n

β`−n−1 for n < ` 6 n+m+ 1.

Note that d`, δ` ∈ C, but the δ` are not necessarily distinct. Again we can collect the terms with

the same exponent and obtain an exponential polynomial with p+ 1 terms, where p 6 mn. Hence

the sum of two exponential polynomials is again an exponential polynomial. The associative and

distributive properties are easily checked. In the following lemma we find the units of exponential

polynomials:

Lemma 2.1.2

Unit elements of exponential polynomials are expressions of the form aeαx with a ∈ C∗ and α ∈ C.

PROOF First note that the multiplicative identity element is 1e0x and that multiplication in the ring

of exponential polynomials is commutative. We denote the identity element by 1. The set of units

consists of all exponential polynomials P such that PQ = QP = 1 for some exponential polynomial

Q. Consider two exponential polynomials P,Q:

P =

n∑
i=0

aie
αix, Q =

m∑
j=0

bje
βjx.

Consider their product:

PQ =

(
n∑
i=0

aie
αix

) m∑
j=0

bje
βjx


=

n∑
i=0

m∑
j=0

dije
δijx

=

p∑
`=0

c`e
γ`x,

where c` ∈ C and γ` ∈ C distinct as before. Assume PQ = 1. It then follows that γ0 = · · · = γp = 0,

4



2.1. DEFINITION AND PROPERTIES

i.e. p = 0 and γ0 = 0. Then c0 = · · · = cp = 1. As each γ` coincides with a δij for some 0 6 i 6 n

and 0 6 j 6 m, it follows that δij = 0 for every i, j. Recall that δij = αi + βj . Since for i = 0, . . . , n

the αi are distinct and for j = 0, . . . ,m the βj are distinct, it follows that n = m = 0. So write αi = α

and ai = a for every i and βj = β and bj = b for every j. Then β = −α and from c0 = 1 it follows

that ab = 1. Hence b = 1
a . We conclude that units are expressions of the form aeαx with a ∈ C∗ and

α ∈ C. �

For the zero element we consider the following lemma:

Lemma 2.1.3

Let a0, . . . , an ∈ C and α0, . . . , αn ∈ C distinct. Then a0eα0x + · · ·+ ane
αnx = 0 for all x ∈ C if and

only if a0 = · · · = an = 0.

PROOF Assume a0 = · · · = an = 0. Then, for any x ∈ C, a0eα0x + · · · + ane
αnx = 0. Conversely,

assume a0eα0x + · · ·+ ane
αnx = 0 for all x ∈ C. We substitute ex by its power series and obtain:

a0e
α0x + · · ·+ ane

αnx =

∞∑
k=0

(
a0α

k
0 + · · ·+ anα

k
n

) xk
k!
.

This can only be equal to zero if its coefficients are zero, i.e. a0αk0 + · · · + anα
k
n = 0 for all k > 0.

Consider these coefficients for k = 0, . . . , n:

(a0, . . . , an)


1 α0 · · · αn0

1 α1 · · · αn1
...

...
. . .

...

1 αn · · · αnn

 = (a0, . . . , an)A = (0, . . . , 0).

So (a0, . . . , an)A = (0, . . . , 0), which implies that either det(A) = 0 or (a0, . . . , an) = (0, . . . , 0). Note

that A is a Vandermonde matrix, hence its determinant [5] is of the following form:

det(A) =
∏

06i<j6n

(αj − αi).

If det(A) = 0, then there are 0 6 i, j 6 n distinct such that αi = αj , which contradicts the assump-

tion that α0, . . . , αn are distinct. It follows that the coefficients of the exponential polynomial are all

zero: a0 = · · · = an = 0. �

It follows from Lemma 2.1.3 that the zero element of the ring of exponential polynomials is the

element a0eα0x + · · ·+ ane
αnx with all coefficients equal to zero.

We arrange the terms of an exponential polynomial as Ritt [4] does, namely in the following man-

ner: αi comes before αj when Re(αi) < Re(αj), or when Re(αi) = Re(αj) and Im(αi) < Im(αj).

We use this to prove the following proposition:

5



CHAPTER 2: THE RING OF EXPONENTIAL POLYNOMIALS

Proposition 2.1.4

The ring of exponential polynomials has no zero divisors.

PROOF Let P and Q be two nonzero exponential polynomials, so that after ordering:

P = a0e
α0x + · · ·+ ane

αnx

Q = b0e
β0x + · · ·+ bme

βmx,

where the coefficients are nonzero. By the ordering given above, the product of the last terms of

P and Q gives the last term of the product PQ, i.e. the last term of PQ is anbme(αn+βm)x. Now

suppose that PQ = 0. By Lemma 2.1.3 all the coefficients of PQ must be equal to zero, hence also

anbm = 0. But an, bm ∈ C∗, and since C∗ has no zero divisors, either an = 0 or bm = 0. But this

contradicts the assumption that P and Q have nonzero coefficients. Hence PQ 6= 0, so indeed there

are no zero divisors in the ring of exponential polynomials. �

Next we look at factorisation of exponential polynomials. It will appear that not every exponential

polynomial factors into irreducible polynomials. These turn out to be so-called simple exponential

polynomials.

Definition 2.1.5

A simple exponential polynomial over C is a polynomial of the form 1− aeαx, with a, α ∈ C∗.

Proposition 2.1.6

A simple exponential polynomial has an infinite number of factors.

PROOF Let 1 − aeαx be a simple exponential polynomial. Then we can view it as a Laurent poly-

nomial in the variable eαx/t, for any t ∈ Z. Therefore it has degree at least t. Let ζ be a tth primitive

root of unity and let ak = ζka1/t. We see that:(
1− a1eαx/t

)
· · ·
(

1− ateαx/t
) ∣∣∣ (1− aeαx) ,

for any t ∈ Z. Hence 1− aeαx has an infinite number of factors. �

Clearly, an irreducible exponential polynomial cannot be simple. Therefore we consider factorisa-

tion of exponential polynomials into simple factors and irreducible factors. In order to do this, we

only need to look at nonzero elements. Following Ritts approach [4], we can multiply a nonzero

exponential polynomial of the form (2.1.1) by units such that a0 = 1 and α0 = 0, i.e. it is of the form

1 +

n∑
i=1

aie
αix, (2.1.3)

with a1, . . . , an ∈ C and α1, . . . , αn ∈ C∗ distinct. This form with first term unity is useful because

then factorisation gives factors that also have first term unity. We prove the following theorem [4]:

6
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Theorem 2.1.7 (Ritt)

An exponential polynomial P (distinct from unity) can be factored uniquely (up to units) as a finite

product of simple exponential polynomials and irreducible exponential polynomials. Irreducible

polynomials are unique up to units and simple exponential polynomials are unique if we require

that they do not divide other simple divisors of the exponential polynomial P .

To prove this theorem, we use an approach that is similar to the one by Ritt [4], but some parts are

substituted by more modern mathematics. It is clear from Ritts approach that in 1926 linear algebra

was not what it is today. For example, Ritt goes through a lot of trouble to show that every set of

complex numbers can be written as a linear combination of rational numbers, i.e. every C-vector

space has a Q-basis. Our approach begins as that of Ritt: we transform exponential polynomials

into Laurent polynomials. Then we use unique factorisation of Laurent polynomials into Puiseux

polynomials, which is treated in a different manner than by Ritt. This is worked out in the next

four sections. In Section 2.6 the proof of Ritts theorem is completed. Ritts article [4] starts with the

following proposition on the shape of the factors of an exponential polynomial:

Proposition 2.1.8

Consider an exponential polynomial of the form

1 +

n∑
i=1

aie
αix,

with ai ∈ C and where each αi ∈ C∗ is a Z-linear combination of a Q-linearly independent set

{µ1, . . . , µp}. Suppose the polynomial factors into two exponential polynomials:

1 +

n∑
i=1

aie
αix =

(
1 +

m∑
k=1

bke
βkx

)(
1 +

r∑
`=1

c`e
γ`x

)
. (2.1.4)

Then for every k = 1, . . . ,m, βk is a Q-linear combination of α1, . . . , αn.

PROOF We follow Ritts proof: Suppose there is a βk that is not a Q-linear combination of α1, . . . , αn,

say β. As the αi are Z-linear combinations of µ1, . . . , µp, it follows that β, µ1, . . . , µp are Q-linearly

independent. Therefore we write β = µ0. Expand the independent set {µ0, . . . , µp} to an indepen-

dent set {µ0, . . . , µt}, for some t > p, such that every αi, βk and γ` is Q-linearly independent in

µ0, . . . , µt.

We can order the terms of 1+b1e
β1x+· · ·+bmeβmx such that the frequency of the last term, say it has

frequency B, has the largest coefficient of µ0. If there are other terms that have the same coefficient

of µ0, then B has the largest coefficient of µ1, etc. Then B = u0µ0 + · · ·+ utµt with u0 > 1.

Similarly, if we introduce c0eγ0x = 1 (i.e. c0 = 1 and γ0 = 0), then we can order the polynomial

1 + c1e
γ1x + · · · + cre

γrx such that the frequency of the last term, say with frequency C, is of the

7



CHAPTER 2: THE RING OF EXPONENTIAL POLYNOMIALS

form C = v0µ0 + · · ·+ vtµt with v0 > 0. Then the frequency of the last term of the product (2.1.4) is

B + C, which is unequal to every other βk + γ`. Hence B + C does not cancel out and must equal

one of the αi.

Now B + C = (u0 + v0)µ0 + . . . + (ut + vt)µt equals an αi, and u0 + v0 > 1. But the α1, . . . , αn

only depend on µ1, . . . , µp. This implies that µ1, . . . , µp are not independent, which contradicts our

assumption that they are. Therefore, β = µ0 is also a Q-linear combination of α1, . . . , αn. �

By the argument given in the above proof, we conclude that for every k = 1, . . . ,m and every

` = 1, . . . , r, the βk and γ` are Q-linear combinations of α1, . . . , αn, and therefore also Q-linear

combinations of µ1, . . . , µp.

2.2 From exponential polynomials to Laurent polynomials

In this section we show how exponential polynomials can be viewed as Laurent polynomials. Let

1 +a1e
α1x+ · · ·+ane

αnx be an exponential polynomial. Consider the Q-vector space 〈α1, . . . , αn〉Q,

spanned by the coefficients of x. Let {µ1, . . . , µp} be a basis for this vector space. Then every αi for

i = 1, . . . , n can be written as a Q-linear combination of µ1, . . . , µp:

αi = qi1µ1 + · · ·+ qipµp

with qij ∈ Q (for j = 1, . . . , p). We can even choose the basis {µ1, . . . , µp} such that the αi are

Z-linear combinations, i.e. qij ∈ Z. Then:

1 +

n∑
i=1

aie
αix = 1 +

n∑
i=1

aie
(qi1µ1+···+qipµp)x = 1 +

n∑
i=1

ai

p∏
j=1

eqijµjx,

with µj ∈ C∗ and qij ∈ Z for i = 1, . . . , n and j = 1, . . . , p. In other words, we can write and

exponential polynomial of the form (2.1.3) as a Laurent polynomial in the variables eµ1x, . . . , eµpx.

In the following lemma we show that there is an isomorphism between the ring of exponential

polynomials and the ring of Laurent polynomials.

Lemma 2.2.1

Let µ1, . . . , µp ∈ C∗ be Q-linearly independent. Then there is an isomorphism between the rings

C [e±µ1x, . . . , e±µpx] and C
[
y±11 , . . . , y±1p

]
.

PROOF Let ϕ : C
[
y±11 , . . . , y±1p

]
→ C [e±µ1x, . . . , e±µpx] be given by yj 7→ eµjx for j = 1, . . . , p. Then

ϕ is surjective: let P ∈ C [e±µ1x, . . . , e±µpx]. Then P is of the form

P (eµ1x, . . . , eµpx) =

n∑
i=1

ai

p∏
j=1

eqijµjx.

8
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Then, for

Q(y1, . . . , yp) =

n∑
i=1

ai

p∏
j=1

y
qij
j ∈ C

[
y±11 , . . . , y±1p

]
we obtain:

ϕ (Q(y1, . . . , yp)) =

n∑
i=1

ai

p∏
j=1

ϕ(yj)
qij

=

n∑
i=1

ai

p∏
j=1

eqijµjx

= P (eµ1x, . . . , eµpx) .

So for all P ∈ C [e±µ1x, . . . , e±µpx] there is a Q ∈ C
[
y±11 , . . . , y±1p

]
such that ϕ(Q) = P .

Recall that ϕ is injective if its kernel contains only the zero element, i.e. if

ker(ϕ) = {Q ∈ C
[
y±11 , . . . , y±1p

]
| ϕ(Q) = 0} = {0}.

Note that indeed 0 ∈ ker(ϕ). Let Q ∈ C
[
y±11 , . . . , y±1p

]
be nonzero. Then:

ϕ(Q(y1, . . . , yp)) = ϕ

 n∑
i=1

ai

p∏
j=1

y
qij
j


=

n∑
i=1

ai

p∏
j=1

eqijµjx

= u1e
v1x + · · ·+ use

vsx,

with u1, . . . , us ∈ C∗ for some s ∈ Z>1 and v1, . . . , vs ∈ C distinct. Hence:

u1e
v1x + · · ·+ use

vsx = 0 implies u1 = · · · = us = 0.

This is a contradiction of u1, . . . , us ∈ C∗, so the kernel of ϕ indeed consists only of the zero poly-

nomial, i.e. ϕ is injective. Hence ϕ is an isomorphism. �

We conclude that an exponential polynomial can be written as a Laurent polynomial:

1 +

n∑
i=1

aie
αix = 1 +

n∑
i=1

ai

p∏
j=1

eqijµjx

= 1 +

n∑
i=1

ai

p∏
j=1

y
qij
j .

9



CHAPTER 2: THE RING OF EXPONENTIAL POLYNOMIALS

We have thus transformed exponential polynomials to Laurent polynomials, which was the goal of

this section. We end this section with an important theorem, but first we give the following defini-

tion of a Puiseux polynomial.

Definition 2.2.2

A Puiseux polynomial over C in p variables is an element of
⋃
t>1

C
[
y
±1/t
1 , . . . , y±1/tp

]
.

From now on we speak of Puiseux polynomials instead of Puiseux polynomials over C. The units

are elements of the form ay
q1/t
1 · · · yqp/tp , for a ∈ C∗ and q1, . . . , qp ∈ Z. The identity element is the

element with a = 1 and q1 = · · · = qp = 0.

Definition 2.2.3

A simple Puiseux polynomial over C in p variables is a Puiseux polynomial with two terms.

To prove Theorem 2.1.7, we want to factor Laurent polynomials into Puiseux polynomials. The

approach is as follows: since the ring of Laurent polynomials is a unique factorisation domain, we

start with a Laurent polynomial and split it into a finite product of simple Laurent polynomials

(i.e. Laurent polynomials with two terms) and irreducible Laurent polynomials. We set aside the

simple factors and consider an irreducible factor:

Q(y1, . . . , yp) = 1 +

n∑
i=1

ai

p∏
j=1

y
qij
j .

Suppose that Q(y1, . . . , yp) has a non-trivial Puiseux divisor P
(
y
1/t
1 , . . . , y

1/t
p

)
. Then Q(yt1, . . . , y

t
p)

has a non-trivial Laurent divisor P (y1, . . . , yp). According to Ritt [4] “the problem thus becomes:

Given an irreducible polynomial Q(y1, . . . , yp), to determine for which positive integers t1, . . . , tp
the polynomial Q(yt11 , . . . , y

tp
p ) is reducible.”

Let t = lcm(t1, . . . , tp). If we can find t1, . . . , tp such that Q(yt11 , . . . , y
tp
p ) is reducible, then certainly

Q(yt1, . . . , y
t
p) is reducible (in the ring C

[
y±11 , . . . , y±1p

]
). Consequently, Q(y1, . . . , yp) is reducible in

the ring C
[
y
±1/t
1 , . . . , y

±1/t
p

]
. So choose a t ∈ Z such that Q(yt1, . . . , y

t
p) splits into T irreducible

Laurent polynomials Q` (y1, . . . , yp) for ` = 1, . . . , T . To prove that t and T are bounded we follow

a different direction than Ritt. We will prove the following theorem:

Theorem 2.2.4

A Laurent polynomial P can be factored uniquely (up to units) into a finite product of simple

Puiseux polynomials and irreducible Puiseux polynomials. Irreducible Puiseux polynomials are

unique up to units and simple Puiseux polynomials are unique if we require that they do not

divide other simple divisors of the Puiseux polynomial P .

We will prove this theorem in Section 2.5. To do this we need some background information, which

will be treated in the next two sections.

10



2.3. SUPPORT AND NEWTON POLYTOPE

Note that since Q(yt1, . . . , y
t
p) = Q1(y1, . . . , yp) · · ·QT (y1, . . . , yp), for any N ∈ Z>1 there exist Lau-

rent polynomials Q′1, . . . , Q′T such that:

Q(yNt1 , . . . , yNtp ) = Q1(yN1 , . . . , y
N
p ) · · ·QT (yN1 , . . . , y

N
p )

= Q′1(y1, . . . , yp) · · ·Q′T (y1, . . . , yp).

It seems as if there are infinitely many t ∈ Z>1 such that Q(yt1, . . . , y
t
p) is reducible. In Section 2.4

we will make an assumption that eliminates this problem. First we need to know more about the

support and Newton polytope of Laurent polynomials.

2.3 Support and Newton polytope

In this section we give the definitions of support and Newton polytope of a Laurent polynomial

and we show two properties of Newton polytopes [6].

Definition 2.3.1

Consider a Laurent polynomial

P (y1, . . . , yp) =
∑

(k1,...,kp)∈Zp

ak1···kpy
k1
1 · · · ykpp ,

for ak1···kp ∈ C and k1, . . . , kp ∈ Z, where ak1···kp = 0 for all k1, . . . , kp but finitely many. The

support of P is defined as:

supp(P ) = {(k1, . . . , kp) ∈ Zp | ak1···kp 6= 0}.

Definition 2.3.2

Let P and Q be Laurent polynomials. The joint support of P and Q is supp(P )∪ supp(Q). Notation:

supp(P,Q).

Definition 2.3.3

The Newton polytope of a Laurent polynomial P is the convex closure of its support, denoted by

N(P ) = conv(supp(P )).

The following proposition from [7] states one of the two properties of Newton polytopes that we

need for the proof of Theorem 2.2.4.

Proposition 2.3.4

Let P and Q be Laurent polynomials. Then N(PQ) is the Minkowski sum of N(P ) and N(Q), i.e.

N(PQ) = N(P ) + N(Q) in the sense that r ∈ N(PQ) is of the form p + q with p ∈ N(P ) and

q ∈ N(Q).

11



CHAPTER 2: THE RING OF EXPONENTIAL POLYNOMIALS

PROOF Consider two Laurent polynomials P and Q and their product PQ:

P =
∑

(k1,...,kp)∈Zp

ak1···kpy
k1
1 · · · ykpp ,

Q =
∑

(`1,...,`p)∈Zp

b`1···`py
`1
1 · · · y`pp ,

PQ =
∑

(k1,...,kp)

∑
(`1,...,`p)

ak1···kpb`1···`py
k1+`1
1 · · · ykp+`pp .

Then the support of PQ is:

supp(PQ) = {(k1 + `1, . . . , kp + `p) ∈ Zp | ak1···kpb`1···`p 6= 0}

= {(k1, . . . , kp) + (`1, . . . , `p) ∈ Zp | ak1···kpb`1···`p 6= 0}

⊆ {(k1, . . . , kp) ∈ Zp | ak1···kp 6= 0}+ {(`1, . . . , `p) ∈ Zp | b`1···`p 6= 0}

= supp(P ) + supp(Q)

⊆ N(P ) +N(Q).

So supp(PQ) ⊆ N(P ) +N(Q) and therefore also N(PQ) ⊆ N(P ) +N(Q). Conversely, let v be any

vertex ofN(P )+N(Q). Then there are vertices v1 and v2 ofN(P ) andN(Q), respectively, such that

v = v1 + v2. Note that v1 and v2 must be vertices, for otherwise their sum would not be a vertex.

We now show that v1 and v2 are unique for any v ∈ N(P ) + N(Q): Let v′1 ∈ N(P ) and v′2 ∈ N(Q)

be vertices such that also v′1 + v′2 = v. Then:

v =
1

2
(v1 + v2) +

1

2
(v′1 + v′2) =

1

2
(v1 + v′2) +

1

2
(v′1 + v2).

Since both v1 + v′2 and v′1 + v2 are elements of N(P ) +N(Q), it follows that v is the average of these

two points, i.e. v is a point on the line segment between v1 + v′2 and v′1 + v2. But v is a vertex, so

it cannot be a point on a line segment in N(P ) + N(Q). Therefore we have v1 + v′2 = v′1 + v2 = v.

Recall that also v1 + v2 = v′1 + v′2 = v. Subtracting this equality from the latter gives v1 = v′1 and

v2 = v′2.

So indeed, for v ∈ N(P ) + N(Q) there are unique vertices v1 ∈ N(P ) and v2 ∈ N(Q) such that

v = v1 + v2. Hence there are corresponding (k1, . . . , kp), (`1, . . . , `p) ∈ Zp with ak1···kp 6= 0 and

b`1···`p 6= 0 such that:

v = v1 + v2

= (k1, . . . , kp) + (`1, . . . , `p) with ak1···kp , b`1···`p 6= 0

= (k1 + `1, . . . , kp + `p) ∈ Zp with ak1···kpb`1···`p 6= 0,

i.e. v ∈ N(PQ) so that also N(P ) +N(Q) ⊆ N(PQ). Hence N(PQ) = N(P ) +N(Q). �
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Another important property is treated in the following proposition:

Proposition 2.3.5

Let P (y1, . . . , yp) be a Laurent polynomial. Then, for any t ∈ Z:

N
(
P
(
yt1, . . . , y

t
p

))
= t ·N(P (y1, . . . , yp)).

PROOF The support and Newton polytope of P (y1, . . . , yp) are:

supp(P (y1, . . . , yp)) = {(k1, . . . , kp) ∈ Zp | ak1···kp 6= 0},

N(P (y1, . . . , yp)) = conv(supp(P (y1, . . . , yp))).

For P
(
yt1, . . . , y

t
p

)
=

∑
(k1,...,kp)

ak1···kpy
k1t
1 · · · ykptp , we find the support and Newton polytope:

supp
(
P
(
yt1, . . . , y

t
p

))
= {(k1t, . . . , kpt) ∈ Zp | ak1···kp 6= 0}

= {t(k1, . . . , kp) ∈ Zp | ak1···kp 6= 0}

N
(
P
(
yt1, . . . , y

t
p

))
= conv

(
supp

(
P
(
yt1, . . . , y

t
p

)))
= t · conv(supp(P (y1, . . . , yp)))

= t ·N(P (y1, . . . , yp)). �

We continue our quest for an upper bound of T , where T is the number of irreducible Laurent

polynomials into which Q(yt1, . . . , y
t
p) factors. We do this in the next section, by bounding t and

finding a relation between T and t.

2.4 Finding an upper bound for T

The situation is as follows: Let Q(y1, . . . , yp) be an irreducible Laurent polynomial and let t ∈ Z>1
such that Q

(
yt1, . . . , y

t
p

)
factors into a finite product of irreducible (non-unitary) Laurent polynomi-

als in the variables y1, . . . , yp:

Q
(
yt1, . . . , y

t
p

)
=

T∏
`=1

Q`(y1, . . . , yp). (2.4.1)

In this section we prove that both T and t are bounded.

Theorem 2.4.1

Let Q(y1, . . . , yp) be an irreducible Laurent polynomial and let t ∈ Z>1 such that Q(yt1, . . . , y
t
p)

factors into T irreducible Laurent polynomials Q1(y1, . . . , yp), . . . , QT (y1, . . . , yp). Then T has an

upper bound depending only on Q.

13
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As the proof contains many steps, in order to maintain an overview, each step is formulated as a

proposition.

Let ζ be a tth primitive root of unity and consider Q1(ζσ1y1, . . . , ζ
σpyp) for σ1, . . . , σp ∈ [0, t − 1].

Note that Q1(ζσ1y1, . . . , ζ
σpyp) is also irreducible as a Laurent polynomial. Since Q1(y1, . . . , yp) is a

divisor of Q(yt1, . . . , y
t
p), it follows that

Q1 (ζσ1y1, . . . , ζ
σpyp) | Q

(
(ζσ1y1)t, . . . , (ζσpyp)

t
)

= Q
(
yt1, . . . , y

t
p

)
.

Therefore, Q1(ζσ1y1, . . . , ζ
σpyp) must be equal to some Q`(y1, . . . , yp). We conclude that for every

(σ1, . . . , σp) ∈ [0, t− 1]p there is an ` ∈ [1, T ] such that Q1 (ζσ1y1, . . . , ζ
σpyp) = Q`(y1, . . . , yp).

For the converse, consider the following proposition:

Proposition 2.4.2

For every ` = 1, . . . , T there is at least one (σ1, . . . , σp) ∈ [0, t− 1]p such that

Q1 (ζσ1y1, . . . , ζ
σpyp) = Q`(y1, . . . , yp).

PROOF Consider the product:

t−1∏
σ1,...,σp=0

Q1 (ζσ1y1, . . . , ζ
σpyp) .

Expanding this product gives a Laurent polynomial in the variables yt1, . . . , ytp. Therefore, define

P
(
yt1, . . . , y

t
p

)
:=

t−1∏
σ1,...,σp=0

Q1 (ζσ1y1, . . . , ζ
σpyp) . (2.4.2)

For σ1 = · · · = σp = 0 we have Q1 (ζσ1y1, . . . , ζ
σpyp) = Q1(y1, . . . , yp), from which it follows that

Q1(y1, . . . , yp) is a divisor of P
(
yt1, . . . , y

t
p

)
. From definition (2.4.1) we know that Q1(y1, . . . , yp) is

also a divisor of Q
(
yt1, . . . , y

t
p

)
. Therefore,

Q1(y1, . . . , yp) | gcd
(
P
(
yt1, . . . , y

t
p

)
, Q
(
yt1, . . . , y

t
p

))
.

We know thatQ
(
yt1, . . . , y

t
p

)
is irreducible in C

[
y±t1 , . . . , y±tp

]
. So either the gcd is one orQ

(
yt1, . . . , y

t
p

)
dividesP

(
yt1, . . . , y

t
p

)
. ButQ1(y1, . . . , yp) is non-unitary, hence indeedQ

(
yt1, . . . , y

t
p

)
| P
(
yt1, . . . , y

t
p

)
,

i.e.
T∏
`=1

Q`(y1, . . . , yp)

∣∣∣∣∣
t−1∏

σ1,...,σp=0

Q1 (ζσ1y1, . . . , ζ
σpyp) .

Consequently, for every ` = 1, . . . , T there is at least one (σ1, . . . , σp) ∈ [0, t− 1]p such that

Q1 (ζσ1y1, . . . , ζ
σpyp) = Q`(y1, . . . , yp). �
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2.4. FINDING AN UPPER BOUND FOR T

We know that every ` = 1, . . . , T corresponds to at least one p-tuple (σ1, . . . , σp). Now we want

to know how many of such p-tuples correspond to each `. Suppose there are m ∈ Z>1 p-tuples

(σ1, . . . , σp) ∈ [0, t − 1]p for which Q1(ζσ1y1, . . . , ζ
σpyp) = Q1(y1, . . . , yp). We will show that for

every ` there are m corresponding p-tuples in [0, t− 1]p.

Let G be the group consisting of all (σ1, . . . , σp) such that Q1 (ζσ1y1, . . . , ζ
σpyp) = Q1(y1, . . . , yp).

E.g., (0, . . . , 0) is an element of G. Then m is the order of G. By G` denote the set consisting of all

p-tuples (ρ1, . . . , ρp) ∈ [0, t− 1]p such that Q1 (ζρ1y1, . . . , ζ
ρpyp) = Q`(y1, . . . , yp) for ` = 1, . . . , T . In

the next proposition we show that m is also the cardinality of G`.

Proposition 2.4.3

For every ` = 1, . . . , T , the set G` has m elements.

PROOF Let ` ∈ [1, T ] and let (ρ1, . . . , ρp) ∈ G`. Then Q1 (ζρ1y1, . . . , ζ
ρpyp) = Q`(y1, . . . , yp) and:

(σ1, . . . , σp) ∈ G ⇔ Q1 (ζσ1y1, . . . , ζ
σpyp) = Q1(y1, . . . , yp)

⇔ Q1

(
ζσ1+ρ1y1, . . . , ζ

σp+ρpyp
)

= Q1(ζρ1y1, . . . , ζ
ρpyp)

⇔ Q1

(
ζσ1+ρ1y1, . . . , ζ

σp+ρpyp
)

= Q`(y1, . . . , yp)

⇔ (σ1 + ρ1, . . . , σp + ρp) ∈ G`.

Since G has m elements and (0, . . . , 0) ∈ G, every G` also has m elements. �

From Proposition 2.4.3 it follows that every ` = 1, . . . , T corresponds to m p-tuples (σ1, . . . , σp).

Therefore,
t−1∏

σ1,...,σp=0

Q1 (ζσ1y1, . . . , ζ
σpyp) =

(
T∏
`=1

Q`(y1, . . . , yp)

)m
.

From definitions (2.4.1) and (2.4.2) it follows that:

P
(
yt1, . . . , y

t
p

)
=
(
Q
(
yt1, . . . , y

t
p

))m
.

Next we compare the Newton polytopes of P
(
yt1, . . . , y

t
p

)
and

(
Q
(
yt1, . . . , y

t
p

))m to bound t.

Proposition 2.4.4

Let m be the number of (σ1, . . . , σp) ∈ [0, t − 1]p such that Q1(ζσ1y1, . . . , ζ
σpyp) = Q1(y1, . . . , yp).

The Newton polytopes of Q1(y1, . . . , yp) and Q(y1, . . . , yp) have the following relation:

N(Q1) =
m

tp−1
·N(Q). (2.4.3)

PROOF By multiplying Q1(y1, . . . , yp) with units, we can assure it has constant term 1. Then:

Q1(y1, . . . , yp) =
∑

(k1,...,kp)∈supp(Q1)

ak1···kpy
k1
1 · · · ykpp , (2.4.4)
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with a0···0 = 1. Now:

Q1 (ζσ1y1, . . . , ζ
σpyp) =

∑
(k1,...,kp)∈supp(Q1)

ak1···kpy
k1
1 · · · ykpp ζk1σ1+···+kpσp . (2.4.5)

Since ζk1σ1+···+kpσp 6= 0,

supp (Q1 (ζσ1y1, . . . , ζ
σpyp)) = supp (Q1(y1, . . . , yp)) (2.4.6)

for every (σ1, . . . , σp) ∈ [0, t−1]p. We combine equality (2.4.6) with definition (2.4.2) and Proposition

2.3.4, so that N
(
P
(
yt1, . . . , y

t
p

))
= tp ·N(Q1(y1, . . . , yp)). Using Proposition 2.3.5 we moreover find

that N
((
Q
(
yt1, . . . , y

t
p

))m)
= m · t · N(Q(y1, . . . , yp)). Since P (yt1, . . . , y

t
p) = (Q(yt1, . . . , y

t
p))

m, it

follows that N(Q1) = m
tp−1 ·N(Q). �

To bound t, we need to know more about m. Recall that m is the number of p-tuples (σ1, . . . , σp)

in [0, t − 1]p such that Q1 (ζσ1y1, . . . , ζ
σpyp) = Q1(y1, . . . , yp). From equalities (2.4.4) and (2.4.5)

it thus follows that m is the number of (σ1, . . . , σp) such that for all (k1, . . . , kp) ∈ supp(Q1),

ζk1σ1+···+kpσp = 1. Since ζ is a tth primitive root of unity, ζk1σ1+···+kpσp = 1 is equivalent to

k1σ1 + · · ·+ kpσp ≡ 0 (mod t).

Before we continue to find out more about m, we introduce the following definitions:

Definition 2.4.5

Let Z ⊆ Zp. The content of Z is the largest N ∈ Z>1 such that Z ⊂ N Zp. Notation: content(Z).

From equality (2.4.6) and Proposition 2.4.2 it follows that supp(Q`) = supp(Q1) for every ` ∈ [1, T ].

The following proposition states the assumption mentioned at the end of Section 2.2:

Proposition 2.4.6

For Q(yt1, . . . , y
t
p) and Q1(y1, . . . , yp) as above we may assume that gcd(content(supp(Q1)), t) = 1.

PROOF Assume gcd(content(supp(Q1)), t) = d ∈ Z>1, and let t = d · t′. Since d | content(supp(Q1))

and supp(Q`) = supp(Q1) for every ` = 1, . . . , T , it follows that there are Laurent polynomials Q′`
such that Q`(y1, . . . , yp) = Q′`(y

d
1 , . . . , y

d
p) for every `. Therefore, we can rewrite (2.4.1) as:

Q(yd·t
′

1 , . . . , yd·t
′

p ) = Q′1(yd1 , . . . , y
d
p) · · ·Q′T (yd1 , . . . , y

d
p).

Consequently, Q(yt
′

1 , . . . , y
t′

p ) = Q′1(y1, . . . , yp) · · ·Q′T (y1, . . . , yp). Hence we may as well assume

that d = gcd(content(supp(Q1)), t) = 1. �

We conclude that if Q(yt1, . . . , y
t
p) is reducible for t ∈ Z>1, then t is maximal.

Define the lattice Λ := 〈(k1, . . . , kp)〉(k1,...,kp)∈supp(Q1), i.e. the lattice generated by the elements of

the support of Q1. As Λ ⊆ Zp, we denote by ΛQ the extension of Λ to Qp, so that Λ ⊂ ΛQ. Let
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δ = |(ΛQ∩Zp)/Λ|, i.e. the index of ΛQ∩Zp over Λ, where ΛQ∩Zp is the plane spanned by the lattice

Λ and can contain more points with integer coordinates than Λ. We call ΛQ∩Zp the saturated lattice

or saturation of Λ.

We can find an s-dimensional basis (with s 6 p) of Λ, say

{k1, . . . ,ks} = {(k11, . . . , k1p), (k21, . . . , k2p), . . . , (ks1, . . . , ksp)}.

Recall from the beginning of the proof of Proposition 2.4.4 that a0···0 = 1. It follows that (0, . . . , 0)

is a point on the lattice Λ. Suppose (0, . . . , 0) is a vertex of N(Q1). Recall that m is the number of

p-tuples (σ1, . . . , σp) such that for all (k1, . . . , kp) ∈ Λ, k1σ1 + · · · + kpσp ≡ 0 (mod t). Since Λ has

basis {k1, . . . ,ks} (for s 6 p), every (k1, . . . , kp) ∈ Λ is a linear combination of k1, . . . ,ks. Hence

k1σ1 + · · ·+ kpσp ≡ 0 (mod t) is equivalent to:

k11σ1 + · · · + k1pσp ≡ 0 (mod t)

k21σ1 + · · · + k2pσp ≡ 0 (mod t)
...

...
...

ks1σ1 + · · · + kspσp ≡ 0 (mod t)

In short, Kσ ≡ 0 (mod t), where K is the matrix (kij) for i = 1, . . . , s and j = 1, . . . , p, and where

σ = (σ1, . . . , σp) and 0 = (0, . . . , 0).

We can normalise the matrix K to its Smith normal form [8]: there exist invertible s × s and p × p
matrices Σ and Π, respectively, with integer entries, such that the Smith normal form ΣKΠ of K is

an s× p matrix 
η1 0 · · · 0 0 · · · 0

0 η2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · ηs 0 · · · 0

 (2.4.7)

where η1 | η2, η2 | η3, . . . , ηs−1 | ηs. After applying Σ and Π, the lattice Λ lies in a new coordinate

system with a new basis. The s rows of the matrix (2.4.7) represent the new basis of Λ, with respect

to Σ and Π, which we denote by Λ′:

Λ′ = ΣΛΠ = 〈(η1, 0, . . . , 0), (0, η2, 0, . . . , 0), . . . , (0, . . . , 0, ηs, 0, . . . , 0)〉. (2.4.8)

Proposition 2.4.7

Let δ, Λ and ΛQ ∩ Zp as before and let Λ′ as (2.4.8). Then δ = η1 · · · ηs.

PROOF We can also apply Σ and Π to ΛQ: Σ(ΛQ ∩ Zp)Π = Λ′Q ∩ Zp, since ΣZp Π = Zp. Then:

Λ′Q ∩ Zp = 〈(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 0, . . . , 0)〉.
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Consider the homomorphism:

ψ : Λ′Q ∩ Zp → Z /η1 Z× · · · × Z /ηs Z
(a1, . . . , as, 0, . . . , 0) 7→ (a1(mod η1), . . . , as(mod ηs)).

Then the kernel of ψ is precisely Λ′ and obviously ψ is surjective, so by the First Isomorphism

Theorem [9] the image of ψ is isomorphic to (Λ′Q ∩ Zp)/ ker(ψ), i.e.:

(Λ′Q ∩ Zp)/Λ′ ' Z /η1 Z× · · · × Z /ηs Z,

and therefore:
δ = |(ΛQ ∩ Zp)/Λ| = |(Λ′Q ∩ Zp)/Λ′| = η1 · · · ηs. �

Proposition 2.4.8

Let K, Σ and Π as before, and let m be the number of p-tuples (σ1, . . . , σp) ∈ [0, t− 1]p such that for

all (k1, . . . , kp) ∈ supp(Q1), Kσ ≡ 0 (mod t). Then m | gcd(δ, ts−1) · tp−s.

PROOF Let z = (z1, . . . , zp) ∈ Zp such that σ = Πz. Then:

ΣKσ = ΣKΠz =


η1 0 · · · 0 0 · · · 0

0 η2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · ηs 0 · · · 0





z1
...

zs
...

zp


=


η1z1

...

ηszs



We see that there is no restriction modulo t on the variables zs+1, . . . , zp. Therefore each of these

has t possible values. In total we thus have tp−s choices for the variables zs+1, . . . , zp.

In general, an equation of the form ηz ≡ 0 (mod t) has gcd(η, t) solutions modulo t. The total

number of solutions z to ΣKΠz ≡ 0 (mod t) is therefore

gcd(η1, t) · · · gcd(ηs, t) · tp−s. (2.4.9)

As the lattice Λ is generated by the elements of supp(Q1), its basis {k1, . . . ,ks} is a subset of

supp(Q1). Recall from Proposition 2.4.6 that gcd(content(supp(Q1)), t) = 1. Therefore we also

have that gcd(content(basis of Λ), t) = 1, hence also gcd(content(basis of Λ′), t) = 1, i.e.

gcd(content({(η1, 0, . . . , 0), (0, η2, 0, . . . , 0), . . . , (0, . . . , 0, ηs, 0, . . . , 0)}), t) = gcd(η1, t) = 1,

since η1 | ηi for all i = 2, . . . , s. Therefore,

gcd(η1, t) · · · gcd(ηs, t) = gcd(η2, t) · · · gcd(ηs, t),
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which divides gcd(η2 · · · ηs, ts−1). Recall from Proposition 2.4.7 that δ = η1 · · · ηs. Since gcd η1, t = 1,

it follows that gcd(η1, t) · · · gcd(ηs, t) | gcd(δ, ts−1).

Now we see that the number of solutions (2.4.9) of z to the equation ΣKΠz ≡ 0 (mod t) is a

divisor of gcd(δ, ts−1) · tp−s. Since m is the number of σ = (σ1, . . . , σp) ∈ [0, t − 1]p such that

Kσ ≡ 0 (mod t), it follows that m is also the number of solutions σ to the equation ΣKσ ≡ 0

(mod t), which corresponds to the solutions z to ΣKΠz ≡ 0 (mod t). Hence:

m | gcd(δ, ts−1) · tp−s. (2.4.10)
�

In particular, m | ts−1 · tp−s = tp−1.

Proposition 2.4.9

Let Q(yt1, . . . , y
t
p), Q1(y1, . . . , yp), Λ and δ as above. Then δ depends only on Q.

PROOF Define Λ(Q1) := 〈vertices of N(Q1)〉 and Λ(Q) := 〈vertices of N(Q)〉. By equality (2.4.3),

Λ(Q) = ρ · Λ(Q1) for ρ = tp−1

m . Hence Λ(Q) is a sublattice of Λ(Q1) and Λ(Q1) is a sublattice of Λ.

Moreover, Λ(Q)Q = Λ(Q1)Q = ΛQ. Now consider δ:

δ = |(ΛQ ∩ Zp)/Λ|

6 |(Λ(Q1)Q ∩ Zp)/Λ(Q1)|

= |(Λ(Q)Q ∩ Zp)/(ρ−1 · Λ(Q))|

= ρ−s · |(Λ(Q)Q ∩ Zp)/Λ(Q)|,

where s is the dimension of the basis of Λ, hence of Λ(Q). It follows that δ depends only on Q. �

In equality (2.4.3) we saw that the size of N(Q1) depends on N(Q) by a factor m
tp−1 . Since m | tp−1,

there is a constant cQ ∈ Z>1 depending on Q, such that

tp−1

m
6 cQ. (2.4.11)

Combine this with equation (2.4.10):

tp−1 6 cQ ·m 6 cQ · gcd(δ, ts−1) · tp−s,

so that ts−1 6 cQ · gcd(δ, ts−1) 6 cQ · δ.
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For the final stage of bounding t, we eliminate the case where s = 1. Namely, if s = 1, then the

lattice Λ has only one basiselement, so the support of Q1 is one-dimensional. This means that for

(k1, . . . , kp), (k
′
1, . . . , k

′
p) ∈ supp(Q1), (k′1, . . . , k

′
p) = c(k1, . . . , kp) for some c ∈ Z. As explained in

Section 2.1, it follows that Q1 is simple. But at the beginning of this section we assumed Q1 to be

irreducible, i.e. it cannot be simple. Therefore s > 2, and we conclude that

t 6 ts−1 6 cQ · δ, (2.4.12)

where cQ ∈ Z and δ = |(ΛQ ∩ Zp)/Λ|. Hence t only depends on Q.

We have found an upper bound for t. In the next proposition we find a relation between t and T ,

the number of Laurent polynomials into which Q(yt1, . . . , y
t
p) factors.

Proposition 2.4.10

Let T be the number of Laurent polynomials in which Q(yt1, . . . , y
t
p) factors. Then T = tp

m .

PROOF Using Proposition 2.4.2 and equality (2.4.6), we have that for all ` = 1, . . . , T :

N (Q`(y1, . . . , yp)) = N (Q1 (ζσ1y1, . . . , ζ
σpyp)) = N(Q1(y1, . . . , yp)).

Moreover, by definition (2.4.1) and Proposition 2.3.5,

t ·N(Q(y1, . . . , yp)) = N
(
Q
(
yt1, . . . , y

t
p

))
= N

(
T∏
`=1

Q`(y1, . . . , yp)

)
= T ·N(Q1(y1, . . . , yp)).

By equality (2.4.3) it then follows that

T =
t ·N(Q)

N(Q1)
=
tp ·N(Q)

m ·N(Q)
=
tp

m
.

�

Finally, we can prove Theorem 2.4.1:

PROOF In Proposition 2.4.10 we found a relation between T and t, namely T = tp

m . By equations

(2.4.11) and (2.4.12) it follows that:

T =
tp

m
6 c2Q · δ, (2.4.13)

where both cQ and δ only depend on the known Laurent polynomial Q(yt1, . . . , y
t
p). �

20



2.5. FACTORISATION OF LAURENT POLYNOMIALS INTO PUISEUX POLYNOMIALS

2.5 Factorisation of Laurent polynomials into Puiseux

polynomials

We now return to the situation of Theorem 2.2.4: We need to factor an irreducible Laurent polyno-

mial Q(y1, . . . , yp) into a finite product of irreducible Puiseux polynomials. Suppose Q(y1, . . . , yp)

splits into M Puiseux polynomials Q`
(
y
1/t
1 , . . . , y

1/t
p

)
for ` = 1, . . . ,M and for some t ∈ Z>1. Then:

Q(yt1, . . . , y
t
p) =

M∏
`=1

Q`(y1, . . . , yp).

From the previous section it follows that M 6 c2Q · δ (see equation (2.4.13)). Consequently, the num-

ber of Puiseux polynomials into which Q(y1, . . . , yp) factors is bounded. We want these Puiseux

polynomials to be irreducible, so consider the following lemma:

Lemma 2.5.1

Suppose Q(y1, . . . , yp) factors into M Puiseux polynomials and M is maximal in this respect. Then

the polynomials Q`
(
y
1/t
1 , . . . , y

1/t
p

)
for ` = 1, . . . ,M are irreducible as Puiseux polynomials.

PROOF Suppose there is an ` ∈ [1,M ] for which Q`

(
y
1/t
1 , . . . , y

1/t
p

)
is reducible. Without loss of

generality we assume ` = 1. Then there are Puiseux polynomials A and B into which Q1 factors:

Q1

(
y
1/t
1 , . . . , y1/tp

)
= A

(
y
1/t′

1 , . . . , y1/t
′

p

)
B
(
y
1/t′

1 , . . . , y1/t
′

p

)
,

where t | t′. Then we obtain:

Q(y1, . . . , yp) =

M∏
`=1

Q`

(
y
1/t
1 , . . . , y1/tp

)
= A

(
y
1/t′

1 , . . . , y1/t
′

p

)
B
(
y
1/t′

1 , . . . , y1/t
′

p

) M∏
`=2

Q`

(
y
1/t
1 , . . . , y1/tp

)
.

Now Q(y1, . . . , yp) factors into M + 1 Puiseux polynomials, which contradicts M being maximal.

Hence all Q`
(
y
1/t
1 , . . . , y

1/t
p

)
for ` = 1, . . . ,M are irreducible as Puiseux polynomials. �

Now we can prove Theorem 2.2.4:

PROOF At the end of Section 2.2 we explained the following: Start with a Laurent polynomial, and

factor it into simple Laurent polynomials and irreducible Laurent polynomials. The simple Laurent

polynomials can be factored infinitely into simple Puiseux polynomials. Moreover, in Section 2.4

we saw that irreducible Laurent polynomials can be factored into a finite number of Puiseux poly-

nomials, and from Lemma 2.5.1 it follows that these Puiseux polynomials are in fact irreducible. �
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2.6 Unique factorisation of exponential polynomials

Finally, we can prove Theorem 2.1.7:

PROOF From the isomorphism proved in Lemma 2.2.1, it follows that exponential polynomials can

be written as Laurent polynomials. By Theorem 2.2.4 we can factor Laurent polynomials uniquely

into a finite product of simple Puiseux polynomials and irreducible Puiseux polynomials. There-

fore, exponential polynomials can be factored into simple exponential Puiseux polynomials and

irreducible exponential Puiseux polynomials. Since exponential Puiseux polynomials are just ex-

ponential polynomials, the statement of the theorem follows. �
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CHAPTER 3

Divisibility sequences

In this chapter, we use Q to denote the algebraic numbers, i.e. roots of polynomials with integer

coefficients. Furthermore, we use Z to denote the algebraic integers, i.e. roots of monic polynomials

with integer coefficients. Integers are roots of monic polynomials of degree 1, hence algebraic. As

rational numbers are roots of polynomials of degree 1, an algebraic integer is a normal integer if

and only if it is a rational number: Z ∩Q = Z.

3.1 Properties

Recall from Chapter 1 that a divisibility sequence is a nondegenerate linear recurrence sequence u

with the property that if k | ` and uk 6= 0, then uk | u`. Furthermore, if θ1, . . . , θn are the n distinct

roots of the characteristic polynomial of a divisibility sequence u, then the sequence can be written

as uk = λ1θ
k
1 + · · ·+ λnθ

k
n for every k ∈ Z>0, with λ1, . . . , λn ∈ Q. Note that θ1 · · · θn is the constant

term of the characteristic polynomial, hence it is nonzero. Therefore θi 6= 0 for every i = 1, . . . , n.

We can rewrite the sequence as

uk =

n∑
i=1

λiθ
k
i =

n∑
i=1

λie
k log θi =

n∑
i=1

λie
kαi ,

where αi = log θi for all i = 1, . . . , n.

Now uk is an exponential polynomial over C, restricted to N (where we assume 0 ∈ N). We say

that uk is an exponential polynomial over N. Furthermore, note that since we can multiply uk by

scalars, we may assume that not only θi ∈ Z, but also λi ∈ Z, for i = 1, . . . , n.

By the definition of a divisibility sequence given in Chapter 1, divisibility sequences are sequences

in Z. For the characterisation of such sequences, we extend the concept of divisibility sequences to

Z: a sequence is a divisibility sequence in Z if the divisibility property (if k | ` and uk 6= 0, then

uk | u`) holds in Z.
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CHAPTER 3: DIVISIBILITY SEQUENCES

Lemma 3.1.1

Let u be a divisibility sequence in Z as above. Then, for every k such that uk 6= 0 and for every

i = 1, . . . , n, uk divides

λiθ
k
1 · · · θkn

∏
16i<j6n

(
θkj − θki

)
.

PROOF Let uk be a nonzero term of u. Then uk is of the form uk = λ1θ
k
1 + · · · + λnθ

k
n, with

λ1, . . . , λn ∈ Z and θ1, . . . , θn ∈ Z distinct. Consider the following determinant:

det(Θ) =

∣∣∣∣∣∣∣∣∣∣∣

θk1 θ2k1 · · · θnk1

θk2 θ2k2 · · · θnk2
...

...
. . .

...

θkn θ2kn · · · θnkn

∣∣∣∣∣∣∣∣∣∣∣
= θk1 · · · θkn

∣∣∣∣∣∣∣∣∣∣∣

1 θk1 · · · θ
(n−1)k
1

1 θk2 · · · θ
(n−1)k
2

...
...

. . .
...

1 θkn · · · θ
(n−1)k
n

∣∣∣∣∣∣∣∣∣∣∣
,

which is a Vandermonde determinant, hence:

det(Θ) = θk1 · · · θkn
∏

16i<j6n

(θkj − θki ).

Note that, since divisibility sequences are nondegenerate and every θi 6= 0, the determinant of Θ is

nonzero. Now consider λ1 det(Θ):

λ1 det(Θ) =

∣∣∣∣∣∣∣∣∣∣∣

λ1θ
k
1 λ1θ

2k
1 · · · λ1θ

nk
1

θk2 θ2k2 · · · θnk2
...

...
. . .

...

θkn θ2kn · · · θnkn

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

uk u2k · · · unk

θk2 θ2k2 · · · θnk2
...

...
. . .

...

θkn θ2kn · · · θnkn

∣∣∣∣∣∣∣∣∣∣∣
≡ 0 (mod uk).

Obviously, replacing λ1 by any λi gives λi det(Θ) ≡ 0 (mod uk). Therefore,

uk | λi det(Θ) = λiθ
k
1 · · · θkn

∏
16i<j6n

(
θkj − θki

)
.

�

From Lemma 3.1.1 it follows that λi det(Θ) is a linear recurrence sequence divisible by uk for every

i = 1, . . . , n and k > 0. We would therefore like to know more about factorisation of linear recur-

rence sequences. For this we can use the Hadamard Quotient Theorem:
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Theorem 3.1.2 (Pourchet-Van der Poorten)

Let u and v be two nondegenerate linear recurrence sequences of (algebraic) integers and suppose

that uk divides vk whenever uk 6= 0. Then there exists a linear recurrence sequence w such that

vk = ukwk for all k > 0.

According to Rumely [10]: ”The Hadamard Quotient Theorem in its general form was first consid-

ered by Charles Pisot in 1959” (see [11]), and ”Van der Poorten’s proof is independent of [Pisot’s

approach,] the dominant-root method, but its last step relies crucially on the Pólya-Cantor lemma”

[12]. Van der Poorten’s proof is based on an incomplete argument by Pourchet [13]. For this reason,

we credit the Hadamard Quotient Theorem to Pourchet and Van der Poorten.

Combining the result of Lemma 3.1.1 with Theorem 3.1.2, we find that there exists a linear recur-

rence sequence v such that λi det(Θ) = ukvk for all k > 0. As linear recurrence sequences are

exponential polynomials over N, it seems possible that Theorem 3.1.2 can be lifted to exponential

polynomials. However, the following example shows that this is not always easy:

Example 3.1.3

Let u and v be linear recurrence sequences:

uk = αk + (−β)k

vk = α2k + 2(−αβ)k + β2k.

Then u2k = vk, so u and v satisfy Theorem 3.1.2. Lift these linear recurrence sequences to exponen-

tial polynomials, and we obtain:

ux = eax + e(πi+b)x

vx = e2ax + 2e(πi+a+b)x + e2bx.

Then u2x has last term e2(πi+b)x = e2πie2bx, whereas vx has last term e2bx.

We see that we can not easily lift Theorem 3.1.2 to exponential polynomials over C. But since uk
is a divisor of λi det(Θ), which is a product of constants and simple exponential polynomials over

N, it seems likely that uk is itself a product of simple exponential polynomials over N. However,

the following example shows that there are irreducible exponential polynomials that are divisors

of simple exponential polynomials:

α+ β | α2 − β2. (3.1.1)

Therefore, uk can be a product of irreducible exponential polynomials and simple exponential poly-

nomials. As we are uncertain of the shape of uk, we consider the obvious divisors of λi det(Θ),

namely sequences of the form
∏r
j=1

(
αkj − βkj

)
, where αj , βj are algebraic integers and j = 1, . . . , r.
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In the next sections we will relate this form to Lucas sequences and characterise divisibility se-

quences in Z of orders 2, 3 and 4. We will also present an example of a fourth order divisibility

sequence that is not a product of simple exponential polynomials over N.

3.2 (General) Lucas sequences

Definition 3.2.1

A Lucas sequence is a nondegenerate linear recurrence sequence u in Z of order 2 with terms uk of

the following form:

uk =
αk − βk

α− β
, (3.2.1)

for k > 0 and where α, β are distinct algebraic integers.

Note that the terms of a Lucas sequence are integers. Lucas sequences are useful when considering

divisibility sequences in Z. Ward [3] even speaks of Lucasian sequences instead of divisibility se-

quences. He also remarks that “it appears probable that all Lucasian sequences may be exhibited as

resultant sequences or divisors of resultant sequences”, where resultant sequences are divisibility

sequences of the form
∏
i,j(α

k
i − βki )/(αi − βi). This is what we found as a result of Lemma 3.1.1.

For the construction of third and fourth order divisibility sequences, we use a generalisation of

Lucas sequences to Z.

Definition 3.2.2

A general Lucas sequence is a nondegenerate linear recurrence sequence u in Z of order 2 with

terms uk of the following form:

uk =
αk − βk

α− β
,

for k > 0 and where α, β are distinct algebraic integers.

The initial values of a (general) Lucas sequence u are u0 = 0 and u1 = 1.

Let M = α + β and N = αβ. Then α, β are roots of the polynomial X2 −MX + N . This is the

characteristic polynomial of the sequence, as the recurrence relation is given by:

uk+2 =
αk+2 − βk+2

α− β

=
(α+ β)(αk+1 − βk+1)− αβ(αk − βk)

α− β
= Muk+1 −Nuk.

Note that if u is a Lucas sequence, M and N are integers. In the general case: M,N ∈ Z.

A famous example of a Lucas sequence is the Fibonacci sequence:
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Example 3.2.3

For M = 1 and N = −1, the Lucas sequence with terms uk is the Fibonacci sequence, with recur-

rence relation uk+2 = uk+1 +uk and initial values u0 = 0 and u1 = 1. The characteristic polynomial

is X2 −X − 1, with roots

α =
1 +
√

5

2
, β =

1−
√

5

2
.

As mentioned in Chapter 1, the Fibonacci sequence is a divisibility sequence. Its first ten terms are:

k 0 1 2 3 4 5 6 7 8 9 10

uk 0 1 1 2 3 5 8 13 21 34 55

Indeed we can see that if k | `, then uk | u`.

Another example is the sequence of Mersenne numbers:

Example 3.2.4

For M = 3 and N = 2, the Lucas sequence with terms uk is the sequence of Mersenne numbers:

uk+2 = 3uk+1−2uk, with u0 = 0 and u1 = 1. The roots of the characteristic polynomialX2−3X+2

are α = 2 and β = 1. Therefore, Mersenne numbers are given by

uk =
αk − βk

α− β
= 2k − 1.

Williams [2] remarks that “Lucas discovered that primality testing for certain integers could be ef-

fected (. . .) without having to perform a very large number of trial divisions”. One of the numbers

Lucas proved is prime, is the 127th Mersenne number. Later, Lehmer simplified Lucas’s test, which

is nowadays known as the Lucas-Lehmer primality test. In [14], Lehmer defines an extension of

Lucas sequences, i.e. he defines a particular form of general Lucas sequences, which in this thesis

we call Lucas-Lehmer sequences.

Definition 3.2.5

A Lucas-Lehmer sequence is a general Lucas sequence u with terms uk as (3.2.1), but with the

following recurrence relation:

uk+2 =
√
Muk+1 −Nuk,

where
√
M = α+ β and N = αβ for α, β distinct algebraic integers such that M,N ∈ Z. The initial

values still are u0 = 0 and u1 = 1.

Note that the terms of a Lucas-Lehmer sequence satisfy:

uk =
αk − βk

α− β
∈

{
Z for k odd
√
M Z for k even.
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Proposition 3.2.6

General Lucas sequences are divisibility sequences in Z.

PROOF Let u be a general Lucas sequence. Then the terms uk, for k > 0, are of the form:

uk =
αk − βk

α− β
,

where α, β are distinct algebraic integers. Suppose k | ` for k, ` > 1 and uk 6= 0. Then:

u`
uk

=
α` − β`

αk − βk
=

`
k∑
i=1

α`−ikβ(i−1)k ∈ Z,

so indeed uk | u` in Z. �

From Proposition 3.2.6 it follows that products of general Lucas sequences are divisibility sequences

in Z. Moreover:

Corollary 3.2.7

Lucas sequences, i.e. general Lucas sequences with terms in Z, are divisibility sequences in Z.

PROOF Let u be a Lucas sequence and suppose k | ` for k, ` > 1 and uk 6= 0. From the proof

of Proposition 3.2.6 it follows that u`/uk ∈ Z. Moreover, since the terms of a Lucas sequence are

integers, u`/uk ∈ Q. As explained at the beginning of this chapter, therefore u`/uk ∈ Z, hence u is

a divisibility sequence in Z. �

Clearly, products of Lucas sequences are divisibility sequences in Z, but we can also construct

divisibility sequences in Z from products of general Lucas sequences. These are sequences u in Z
with terms of the form

uk =

r∏
j=1

αkj − βkj
αj − βj

, (3.2.2)

where αj , βj ∈ Z such that αj 6= βj for every j = 1, . . . , r, and where r ∈ Z.

In the following theorem we connect the integer r to the order n of the sequence u.

Theorem 3.2.8

For a divisibility sequence u of which the terms uk are of the form (3.2.2), the order n of u is

restricted by the length r of the product as follows: r + 1 6 n 6 2r.

PROOF Recall that the order n of a divisibility sequence u is the number of terms of which uk

consists. Consider the case where the order is the largest, and where it is the smallest. The largest

possible order is attained when all αj , βj in the product (3.2.2) are distinct. In that case, the product

has 2r terms, so n = 2r. The sequence has the smallest possible order when α1 = · · · = αr = α and

28



3.3. DIVISIBILITY SEQUENCES OF ORDER 2

β1 = · · · = βr = β. This gives:

uk =

(
αk − βk

α− β

)r
and by the Binomial Theorem uk has r + 1 terms. Hence r + 1 6 n 6 2r. �

As we are interested in divisibility sequences of orders 2, 3 and 4, using Theorem 3.2.8 we conclude

the following:

Order n Length of the product r

2 1

3 2

4 2 or 3

In the next sections we consider divisibility sequences of abovementioned orders separately. There

we find what restrictions on the coefficients of the general Lucas sequences are necessary so that

the resulting divisibility sequences are in Z.

3.3 Divisibility sequences of order 2

Let u be a divisibility sequence of order 2 that is a product of general Lucas sequences. From the

previous section we know that u has terms uk for k > 0 of the form

uk =
αk − βk

α− β
,

where α, β are distinct algebraic integers. The initial values are u0 = 0 and u1 = 1. So u is itself

a general Lucas sequence. For u to be a divisibility sequence in Z we need the coefficients of the

recurrence relation to be integers, i.e. u is a Lucas sequence. Since divisibility sequences are non-

degenerate, this is the only form of second order divisibility sequences. This is proven in [15] by

Hall. We have thus proven the following theorem:

Theorem 3.3.1

Divisibility sequences in Z of order 2 are Lucas sequences.
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3.4 Divisibility sequences of order 3

Let u be a divisibility sequence of order 3 that is a product of general Lucas sequences. In the table

at the end of Section 3.2 we find that the terms uk for k > 0 are a product of two general Lucas

sequences (r = 2 for n = 3):

uk =
αk1 − βk1
α1 − β1

· α
k
2 − βk2
α2 − β2

=
(α1α2)k − (α1β2)k − (α2β1)k + (β1β2)k

(α1 − β1)(α2 − β2)
,

where αi, βi ∈ Z and since u is nondegenerate, α1 6= β1 and α2 6= β2. As u has order 3, it follows

that α1β2 = α2β1. Let λ =
√
α2/α1. Then α1λ =

√
α1α2 = α2λ

−1. So we may as well assume

α1 = α2 =: α. Then also β1 = β2 =: β. The terms are therefore of the form

uk =

(
αk − βk

α− β

)2

=
(α2)k − 2(αβ)k + (β2)k

(α− β)2
.

The initial values are u0 = 0, u1 = 1 and u2 = (α+ β)2. So u is not only the product of two general

Lucas sequences, it is the square of one general Lucas sequence. But we still need to figure out

which conditions on the coefficients of the general Lucas sequence are necessary to be sure that u

has terms in Z. For this we consider the characteristic polynomial:

(X − α2)(X − αβ)(X − β2) = X3 − (α2 + αβ + β2)X2 + αβ(α2 + αβ + β2)X − (αβ)3.

Define P = α2 + αβ + β2 and Q = αβ. Then P ∈ Z as it is the coefficient of X2 and since Q is the

quotient of the coefficient of X and P , it follows that Q ∈ Q. But since the constant coefficient is

Q3 ∈ Z, it follows that Q ∈ Z. So both P,Q ∈ Z. Now the characteristic polynomial becomes:

X3 − PX2 + PQX −Q3,

so the recurrence relation of the terms of u is:

uk+3 = Puk+2 − PQuk+1 +Q3uk,

where P,Q ∈ Z. The sequence u has initial values u0 = 0, u1 = 1 and u2 = (α+ β)2 = P +Q. Note

that the characteristic polynomial splits into a linear factor and an irreducible quadratic factor:

X3 − PX2 + PQX −Q3 = (X −Q)(X2 + (Q− P )X +Q2).

It follows that third order divisibility sequences cannot have an irreducible characteristic poly-

nomial. This is one of the properties of divisibility sequences that Hall shows in [15]. Now let
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R = P +Q = (α+β)2 ∈ Z. Then α+β =
√
R and since αβ = Q, we see that α and β are roots of the

polynomial X2 −
√
RX +Q, which is the characteristic polynomial of the Lucas-Lehmer sequence

vk+2 =
√
Rvk+1 − Qvk with initial values v0 = 0 and v1 = 1. Hence uk = v2k. Hall [15] explains

that this is the only possibility for third order divisibility sequences, i.e. he proves the following

theorem:

Theorem 3.4.1

Divisibility sequences in Z of order 3 are squares of Lucas-Lehmer sequences.

3.5 Divisibility sequences of order 4

In Sections 3.3 and 3.4 we saw that divisibility sequences in Z of orders 2 and 3 are always products

of (general) Lucas sequences. At the beginning of this chapter, we made clear that for fourth order

divisibility sequences, this is not necessarily the case. First we study divisibility sequences that are

indeed products of general Lucas sequences, then we show an example where this is not the case.

At the end of Section 3.2 we saw that if a divisibility sequence is the product of general Lucas

sequences, then this product consists of either two or three general Lucas sequences (r = 2 or r = 3

for n = 4). For r = 2,

uk =
αk1 − βk1
α1 − β1

· α
k
2 − βk2
α2 − β2

=
(α1α2)k − (α1β2)k − (β1α2)k + (β1β2)k

(α1 − β1)(α2 − β2)
,

for α1, α2, β1, β2 ∈ Z distinct. This is the case where uk = vkwk, the product of two general Lucas

sequences v and w, treated in Section 3.5.3. For r = 3, the terms uk are of the form

uk =
αk1 − βk1
α1 − β1

· α
k
2 − βk2
α2 − β2

· α
k
3 − βk3
α3 − β3

and after expanding:

(α1α2α3)k − (α1α2β3)k − (α1β2α3)k + (α1β2β3)k − (β1α2α3)k + (β1α2β3)k + (β1β2α3)k − (β1β2β3)k

(α1 − β1)(α2 − β2)(α3 − β3)
.

For uk to have four terms, there are two possibilities. The first possibility is the following:

α1α2β3 = α1β2α3 = β1α2α3

α1β2β3 = β1α2β3 = β1β2α3,

which results in α1 = α2 = α3 and β1 = β2 = β3 so that uk = v3k, i.e. u is the cube of a general

Lucas sequence v.
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The second possibility is

α1β2α3 = β1α2α3

α1β2β3 = β1β2α3

α1α2β3 = β1α2β3,

so that α1 = α2, α3 = α2
1, β1 = β2 and β3 = β2

1 . In this case uk = v2kv2k/v2, for vk a general Lucas

sequence.

In the following sections, we therefore disinguish the abovementioned three cases: For each case

we construct the characteristic polynomial to find the conditions on the coefficients of the general

Lucas sequences v andw of which the sequence u is a product. After that, we show an example of

a fourth order divisibility sequence that is not the product of general Lucas sequences.

3.5.1 Case 1: uk = v2kv2k/v2

Let u be of the form uk = v2kv2k/v2, where vk are the terms of a general Lucas sequence v:

vk =
αk − βk

α− β
,

for α, β distinct algebraic integers. Note that v2 = α + β. Let α + β = M and αβ = N , and let the

corresponding characteristic polynomial of v be X2−MX+N . The recurrence relation of v is then

vk+2 = Mvk+1 −Nvk. The terms uk are:

uk =
v2kv2k
v2

=

(
αk − βk

α− β

)2

· α
2k − β2k

α− β
· 1

α+ β

=
(α4)k − 2(α3β)k + 2(αβ3)k − (β4)k

(α− β)2(α2 − β2)
. (3.5.1)

From the form (3.5.1) we derive the characteristic polynomial of u:

(X − α4)(X − α3β)(X − αβ3)(X − β4)

= α2β2(X − α4)(X − β4)

(
X

αβ
− α2

)(
X

αβ
− β2

)
= α2β2

(
X2 − (α4 + β4)X + (αβ)4

)(( X

αβ

)2

− (M2 − 2N)
X

αβ
+N2

)
= (X2 − (M4 − 4M2N + 2N2)X +N4)(X2 − αβ(M2 − 2N)X + (αβN)2)

= X4 −M2(M2 − 3N)X3 + (M6N − 6M4N2 + 10M2N3 − 2N4)X2 −M2N4(M2 − 3N)X +N8.
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The initial values are u0 = 0, u1 = 1 and

u2 = (α+ β)2(α2 + β2) = M2(M2 − 2N)

u3 = (α2 + αβ + β2)2(α4 + α2β2 + β4) = M8 − 6M6N + 12M4N2 − 10M2N3 + 3N4.

For u to be in Z, we need the initial values and the coefficients of the characteristic polynomial

to be integers. The coefficient of X divided by the coefficient of X3 is N4, hence N4 ∈ Q. But

the constant coefficient is (N4)2 ∈ Z, so N4 ∈ Z. Subtracting the coefficient of X3 from u2 gives

M2N ∈ Z. Subtracting this from the coefficient of X3 gives M4 ∈ Z. As M2N ∈ Z, also M4N2 ∈ Z.

Hence N2 ∈ Q. But we already saw that N4 ∈ Z, hence N2 ∈ Z. We therefore define P = M4 and

Q = M2N . Then P,Q ∈ Z such that P | Q2. The characteristic polynomial now becomes:

X4 − (P − 3Q)X3 +
Q

P 2
(P 3 − 6P 2 + 10PQ2 − 2Q3)X2 − Q2

P
(P − 3Q)X +

Q8

P 4

and the initial values are u0 = 0, u1 = 1 and

u2 = P − 2Q

u3 =
(P −Q)3(P − 3Q)

P 2
.

This proves the following theorem:

Theorem 3.5.1

For divisibility sequences u in Z of order 4 with terms uk = v2kv2k/v2, where vk are the terms of a

general Lucas sequence v, the terms uk satisfy the recurrence relation:

uk+4 = (P − 3Q)uk+3 −
Q

P 2
(P 3 − 6P 2 + 10PQ2 − 2Q3)uk+2 +

Q2

P
(P − 3Q)uk+1 −

Q8

P 4
uk, (3.5.2)

for P,Q ∈ Z such that P | Q2. Hence the conditions on the coefficients of the general Lucas

sequence v, with recurrence relation vk+2 = Mvk+1 −Nvk, are: M = 4
√
P and N = Q√

P
.

3.5.2 Case 2: uk = v3k

Let u be of the form uk = v3k, where vk are the terms of a general Lucas sequence v of the form

vk =
αk − βk

α− β
,

where α, β are distinct algebraic integers. Let the corresponding characteristic polynomial of v be

X2 −MX + N with roots α, β. The recurrence relation of v is then vk+2 = Mvk+1 − Nvk and the
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terms uk are

uk =

(
αk − βk

α− β

)3

=
(α3)k − 3(α2β)k + 3(αβ2)k − (β3)k

(α− β)3
,

and the initial values are u0 = 0, u1 = 1 and

u2 = (α+ β)3 = M3

u3 = (α2 + αβ + β2)3 = M6 − 3M4N + 3M2N2 −N3.

Using the integrality of the coefficients of the characteristic polynomial of u, we can find conditions

on M and N . The characteristic polynomial is

(X − α3)(X − α2β)(X − αβ2)(X − β3)

= α4β4

(
X

α2
− α

)(
X

α2
− β

)(
X

β2
− α

)(
X

β2
− β

)
= α4β4

((
X

α2

)2

−M X

α2
+N

)((
X

β2

)2

−M X

β2
+N

)
= (X2 − α2MX + α4N)(X2 − β2MX + β4N)

= X4 −M(α2 + β2)X3 + (N(α4 + β4) + (αβM)2)X2 −MN(αβ)2(α2 + β2)X + (αβ)4N2

= X4 −M(M2 − 2N)X3 + (M4N − 3M2N2 + 2N3)X2 −MN3(M2 − 2N)X +N6.

The coefficient of X divided by the coefficient of X3 is N3, hence N3 ∈ Q. But the constant coeffi-

cient is (N3)2 ∈ Z, soN3 ∈ Z. Subtracting the coefficient ofX3 from the value of u2 gives 2MN ∈ Z,

hence MN ∈ Q. The value of u2 is M3, so M3 ∈ Z. Thus we see that M3N3 = (MN)3 ∈ Z, so also

MN ∈ Z. Therefore we define P = M3 and Q = MN . Then P,Q ∈ Z such that P | Q3.

The characteristic polynomial now becomes

X4 − (P − 2Q)X3 +
Q

P
(P −Q)(P − 2Q)X2 − Q3

P
(P − 2Q)X +

Q6

P 2
,

and the initial values are u0 = 0, u1 = 1 and

u2 = P

u3 =
(P −Q)3

P
.

We have thus proven the following theorem:
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Theorem 3.5.2

For a fourth order divisibility sequence u in Z with terms uk = v3k, where vk are the terms of a

general Lucas sequence v, we see that the terms uk satisfy the recurrence relation:

uk+4 = (P − 2Q)uk+3 −
Q

P
(P −Q)(P − 2Q)uk+2 +

Q3

P
(P − 2Q)uk+1 −

Q6

P 2
uk, (3.5.3)

for P,Q ∈ Z such that P | Q3. So the conditions on the coefficients of the general Lucas sequence v,

of which the recurrence relation is vk+2 = Mvk+1−Nvk, are the following: M = 3
√
P and N = Q

3√
P

.

3.5.3 Case 3: uk = vkwk

Let u have terms of the form uk = vkwk, where vk and wk are the terms of two general Lucas

sequences v and w:

vk =
αk − βk

α− β
, wk =

γk − δk

γ − δ
,

where α, β, γ, δ are distinct algebraic integers. Let the corresponding characteristic polynomials of

v andw be X2 −M1X +N1 with roots α, β and X2 −M2X +N2 with roots γ, δ. Note that, as long

as the product vkwk is unchanged, we can multiply vk by a scalar λk and wk by λ−k. Therefore we

can assume that M1 = M2 (unless M1 = 0 or M2 = 0), say M1 = M2 = M . The recurrence relations

are then vk+2 = Mvk+1 −N1vk and wk+2 = Mwk+1 −N2wk. The terms uk are

uk = vkwk

=
αk − βk

α− β
· γ

k − δk

γ − δ

=
(αγ)k − (αδ)k − (βγ)k + (βδ)k

(α− β)(γ − δ)
, (3.5.4)

with characteristic polynomial

(X − αγ)(X − αδ)(X − βγ)(X − βδ)

= α2β2

((
X

α

)2

−MX

α
+N2

)((
X

β

)2

−MX

β
+N2

)
= (X2 − αMX + α2N2)(X2 − βMX + β2N2)

= X4 − (α+ β)MX3 + ((α2 + β2)N2 + αβM2)X2 − αβ(α+ β)MN2X + (αβN2)2

= X4 −M2X3 + (M2(N1 +N2)− 2N1N2)X2 −M2N1N2X + (N1N2)2.

The initial values are u0 = 0, u1 = 1 and

u2 = (α+ β)(γ + δ) = M2

u3 = (α2 + αβ + β2)(γ2 + γδ + δ2) = (M2 −N1)(M2 −N2).
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For u to be in Z, we need the initial values and the coefficients of the characteristic polynomial to

be integers. The coefficient of X divided by the value of u1 is N1N2, so N1N2 ∈ Q. But the constant

coefficient is (N1N2)2, so N1N2 ∈ Z. From the coefficient of X2 we derive that M2(N1 + N2) ∈ Z.

We therefore define

P = M2

Q = M2(N1 +N2)

R = N1N2.

Then P,Q,R ∈ Z. The characteristic polynomial now becomes

X4 − PX3 + (Q− 2R)X2 − PRX +R2,

i.e. the recurrence relation of the terms uk is

uk+4 = Puk+3 − (Q− 2R)uk+2 + PRuk+1 −R2uk. (3.5.5)

This relation is not the same as given by Williams [16], due to a different choice of Q. It does

however not affect the conditions on M and N . The sequence has initial values u0 = 0, u1 = 1 and

u2 = P

u3 = P 2 −Q+R.

AsR = N1N2 andQ = P (N1 +N2), it follows thatN1, N2 are roots of the polynomial Y 2− Q
P Y +R.

So far, we know the following about the coefficients of the recurrence relations of the general Lucas

sequences v and w:

• M2 ∈ Z

• N1N2 ∈ Z

• N1 +N2 ∈ Q

We see that v and w are similar to Lucas-Lehmer sequences, since their recurrence relations are of

the form

vk+2 =
√
Pvk+1 −N1vk

wk+2 =
√
Pwk+1 −N2wk

with P ∈ Z. However, since N1, N2 are roots of Y 2 − Q
P Y + R, we are not sure whether N1, N2 are

integers; they aren’t even necessariy algebraic integers. In Section 3.6 we find a possible solution to

this problem using so-called twists of the general Lucas sequences v and w.
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3.5.4 Another case

We have characterised the divisibility sequences in Z of order 4 that are products of general Lu-

cas sequences. However, these are not all possible divisibility sequences in Z of order 4. At the

beginning of this chapter we saw and example (3.1.1) of an irreducible exponential polynomial di-

viding a simple exponential polynomial. Similarly we find the following example of a fourth order

divisibility sequence uwith terms that are not a product of general Lucas sequences:

uk = (αk + βk)(αdk − βdk), (3.5.6)

where α, β are distinct algebraic integers and d ∈ Z odd.

We cannot confirm the integrality of the sequence yet, so for the time being we let it be in Z. There-

fore we also only consider divisibility in Z. First we check u is indeed a divisibility sequence. To

do this, consider the following proposition:

Proposition 3.5.3

Let d ∈ Z be odd. For every m ∈ Z, (x+ y)(xd − yd) divides (xm + ym)(xdm − ydm) in Z.

PROOF If m is odd, then x+ y | xm + ym and xd− yd | xdm− ydm, so the statement holds for m ∈ Z
odd. If m is even, then, since d is odd, both x+ y | xdm − ydm and xd − yd | xdm − ydm. Hence also

for m ∈ Z odd, the proposition holds. �

Assume k | ` and uk 6= 0 and write ` = km. Then by Proposition 3.5.3:

(αk + βk)(αdk − βdk) | (αkm + βkm)(αdkm − βdkm),

hence uk | u` in Z. We conclude that linear recurrence sequences with terms of the form (3.5.6) with

d odd are divisibility sequences in Z. It follows that u1 | uk for all k > 1, so we can normalise the

sequence by dividing every term by u1. The terms of u then become:

uk =
αk + βk

α+ β
· α

dk − βdk

αd − βd
,

where d is odd and the initial values are u0 = 0, u1 = 1 and

u2 = (α2 + β2) · α
d + βd

α+ β

u3 = (α2 − αβ + β2)(α2d + αdβd + β2d).
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Example 3.5.4

Let d = 3. Then u is a divisibility sequence with terms

uk =
αk + βk

α+ β
· α

3k − β3k

α3 − β3
,

for α, β ∈ Z distinct. If we let α + β = M ∈ Z and αβ = N ∈ Z, then the initial values are u0 = 0,

u1 = 1 and

u2 = (α2 + β2)(α2 − αβ + β2) = (M2 − 2N)(M2 −N)

u3 = (α2 − αβ + β2)(α6 + α3β3 + β6) = M8 + 7M6N + 15M4N2 + 12M2N3 + 3N4.

Note that:

uk =
v2k
vk · v2

· v3k
v3
,

where vk is a Lucas sequence (3.2.1). The characteristic polynomial of u is the same as that of

Section 3.5.1:

X4 −M2(M2 − 3N)X3 + (M6N − 6M4N2 + 10M2N3 − 2N4)X2 −M2N4(M2 − 3N)X +N8.

As the coefficients of the characteristic polynomial and the initial values are integers, u is in Z,

hence u`/uk ∈ Q. Moreover, since uk | u` in Z, it follows that uk | u` in Z. Hence u is a divisibility

sequence in Z. The differences with the case from Section 3.5.1 are the initial values, and therefore

this sequence is of a different shape.

Theorem 3.5.5

For divisibility sequences in Z of order 4 with terms

uk =
v2k
vk · v2

· vdk
vd
,

for d odd, and where vk are the terms of a Lucas sequence v, we see that the terms uk satisfy the

recurrence relation:

uk+4 = M2(M2−3N)uk+3−(M6N−6M4N2+10M2N3−2N4)uk+2+(M2N4(M2−3N)uk+1−N8uk,

for M,N ∈ Z the coefficients of the Lucas sequence v: vk+2 = Mvk+1 −Nvk.

In conclusion: divisibility sequences in Z of orders 2 and 3 are always products of (general) Lucas

sequences (see Section 3.3 and Section 3.4, respectively), there are three forms of fourth order di-

visibility sequences in Z that are products of general Lucas sequences (see Sections 3.5.1, 3.5.2 and

3.5.3), but there are also forms where this is not the case (an example is shown in this section).

The following conjecture covers all possibilities of divisibility sequences:
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Conjecture 3.5.6

Suppose u is a (nondegenerate) divisibility sequence with terms uk for k > 0 and let θ1, . . . , θn be

the roots of its characteristic polynomial. Let Γ be the subgroup of Q∗ generated by the θi. Then

there exists a c ∈ Q, elements A, γ1, . . . , γm ∈ Γ and Lucas polynomials p1, . . . , pm such that

uk = cAkp1(γk1 ) · · · pm(γkm),

for all k > 0.

Lucas polynomials are polynomials p ∈ Q[x] such that p(x) divides p(xk) for every k ∈ Z>1. For

example, x− 1 or xd − 1 for d ∈ Z.

Example 3.5.7

Let u be a third order divisibility sequence, i.e. with terms

uk =

(
αk − βk

α− β

)2

,

for α, β distinct algebraic integers and for every k > 0. We saw in Section 3.4 that the roots of the

characteristic polynomial of u are α2, αβ, β2. So Γ = 〈α2, αβ, β2〉 ⊆ Q∗. Rewrite the terms as

uk =
1

(α− β)2
β2k

((
α

β

)k
− 1

)2

= cAk(γk − 1)2,

for c ∈ Q, A = β2 ∈ Γ and γ = α/β = α2 · (αβ)−1 ∈ Γ. The Lucas polynomial is p(x) = (x − 1).

And indeed, uk = cAkp(γk)2 for every k > 0.

39



CHAPTER 3: DIVISIBILITY SEQUENCES

3.6 Twists of divisibility sequences

As promised at the end of Section 3.5.3, we introduce twists of divisibility sequences. These twists

change general Lucas sequences into Lucas sequences, and simplify the cases of fourth order di-

visibility sequences in Z treated in Section 3.5. Namely, products of Lucas sequences are already

divisibility sequences in Z. In Section 3.6.3 we twist the divisibility sequence of Section 3.5.3 so

that it becomes a proper product of general Lucas sequences, instead of something that looks like

a product of two Lucas-Lehmer sequences.

Definition 3.6.1

Let u be a divisibility sequence in Z with terms uk for k > 0 satisfying the recurrence relation:

uk+n = A1uk+n−1 + · · ·+An−1uk+1 +Anuk,

for A1, . . . , An ∈ Z. A twist of u is a divisibility sequence ũwith terms ũk = τkuk for some τ ∈ Z.

It is obvious that ũ itself is a divisibility sequence, but not necessarily in Z. However, τ can be

chosen such that ũ is in Z. The terms ũk of the twist satisfy the recurrence relation:

ũk+n = τk+nuk+n

= τA1(τk+n−1uk+n−1) + · · ·+ τn−1An−1(τk+1uk+1) + τnAn(τkuk)

= τA1ũk+n−1 + · · ·+ τn−1An−1ũk+1 + τnAnũk.

3.6.1 Twist of uk = v2kv2k/v2

Consider the fourth order divisibility sequence uwith terms uk = v2kv2k/v2 from Section 3.5.1. Here

v is a general Lucas sequence with recurrence relation vk+2 = Mvk+1 −Nvk, where M = P
1
4 and

N = P−
1
2Q for P,Q ∈ Z such that P | Q2. We twist this general Lucas sequence v with τ = P

3
4 ,

obtaining the twist ṽ with terms ṽk = P
3
4kvk, satisfying the recurrence relation

ṽk+2 = τMṽk+1 − τ2Nṽk

= P ṽk+1 − PQṽk.

Since P,Q ∈ Z, ṽ is a Lucas sequence. We twist the fourth order divisibility sequence uk as follows:

(τkvk)2(τ2kv2k)/v2 = τ4kv2kv2k/v2 = τ4kuk = P 3kuk.

So for the fourth order divisibility sequence u in Z, there is another fourth order divisibility se-

quence in Z corresponding to u, namely the twist ũ, with terms ũk = P 3kuk ∈ Z. In particular,

while uk is a product of general Lucas sequences, ũk is a product of Lucas sequences.
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Recall the recurrence relation (3.5.2) of the terms uk:

uk+4 = (P − 3Q)uk+3 −
Q

P 2
(P 3 − 6P 2 + 10PQ2 − 2Q3)uk+2 +

Q2

P
(P − 3Q)uk+1 −

Q8

P 4
uk.

By Definition 3.6.1 the terms ũk then satisfy the following recurrence relation:

ũk+4 = P 3(P − 3Q)ũk+3 − P 4Q(P 3 − 6P 2 + 10PQ2 − 2Q3)ũk+2 + P 8Q2(P − 3Q)ũk+1 − P 8Q8ũk.

3.6.2 Twist of uk = v3k

Consider the fourth order divisibility sequence u with terms uk = v3k from Section 3.5.2. Here v

is a general Lucas sequence with recurrence relation vk+2 = Mvk+1 − Nvk, where M = P
1
3 and

N = P−
1
3Q for P,Q ∈ Z such that P | Q3. We twist this general Lucas sequence v with τ = P

2
3 ,

obtaining the twist ṽ with terms ṽk = P
2
3kvk, satisfying the recurrence relation

ṽk+2 = τMṽk+1 − τ2Nṽk

= P ṽk+1 − PQṽk.

Since P,Q ∈ Z, ṽ is a Lucas sequence. We twist the fourth order divisibility sequence uk as follows:

(τkvk)3 = τ3kv3k = τ3kuk = P 2kuk.

As in the previous section, the divisibility sequence u in Z corresponds to the twist ũ, with terms

ũk = P 2kuk = (τkvk)3 = ṽ3k. Since ṽ is a Lucas sequence, ũk ∈ Z. While uk is a product of general

Lucas sequences, ũk is a product of Lucas sequences. Recall the recurrence relation (3.5.3) of the

terms uk:

uk+4 = (P − 2Q)uk+3 −
Q

P
(P −Q)(P − 2Q)uk+2 +

Q3

P
(P − 2Q)uk+1 −

Q6

P 2
uk.

By Definition 3.6.1 the terms ũk then satisfy the following recurrence relation:

ũk+4 = P 2(P − 2Q)ũk+3 − P 3Q(P −Q)(P − 2Q)ũk+2 + P 5Q3(P − 2Q)ũk+1 − P 6Q6ũk.
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3.6.3 Twist of uk = vkwk

Consider the fourth order divisibility sequence u with terms uk = vkwk from Section 3.5.3. Here v

and w are general Lucas sequences with recurrence relations

vk+2 = Mvk+1 −N1vk

wk+2 = Mwk+1 −N2wk,

where M =
√
P , N1 + N2 = Q

P and N1N2 = R. We twist these general Lucas sequences v and w

with τ =
√
P , obtaining the twists ṽ and w̃ with terms ṽk = P

k
2 vk and w̃ = P

k
2wk, respectively,

satisfying the recurrence relations

ṽk+2 = τMṽk+1 − τ2N1ṽk

= P ṽk+1 − PN1ṽk

and

w̃k+2 = τMw̃k+1 − τ2N2w̃k

= Pw̃k+1 − PN2w̃k.

Recall that N1, N2 are roots of Y 2 − Q
P Y + R. Then PN1, PN2 are roots of Y 2 − QY + P 2R. So

now we are certain that PN1, PN2 are algebraic integers. So the twists ṽ and w̃ are general Lucas

sequences. We can twist the divisibility sequence uk as follows:

(τkvk)(τkwk) = τ2kvkwk = τ2kuk = P kuk.

Recall the recurrence relation (3.5.5) of the terms uk:

uk+4 = Puk+3 − (Q− 2R)uk+2 + PRuk+1 −R2uk.

By Definition 3.6.1 the terms ũk then satisfy the following recurrence relation:

ũk+4 = P 2ũk+3 − P 2(Q− 2R)ũk+2 + P 4Rũk+1 − P 4R2ũk.

So for the fourth order divisibility sequence u in Z, there is also the fourth order divisibility se-

quence ũ in Z, with terms ũk = P kuk = (τkvk)(τkwk) = ṽkw̃k. In particular, while uk is a product

of second order sequences that look a lot like Lucas-Lehmer sequences, ũk is the product of two

general Lucas sequences, ṽk and w̃k.
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