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SUMMARY

Currently there is a debate in epidemiology about the contribution of overlap-
ping sexual partnerships, and in particular polygamy, to the spread of HIV in
sub-Saharan Africa. Motivated by this debate we formulate a mathematical
model for the dynamic sexual network corresponding to polygamy. Consider
the following situation. Suppose we have a heterosexual population where men
may have multiple wives and women at most one husband. If we also assume
men and women to be faithful to each other, then this gives rise to a sexual
network with multiple star-shaped components. This network is dynamic as
partnerships are formed and broken over time and individuals enter and leave
the population due to demographic turnover. We can describe this network with
a system of ordinary differential equations (ODEs). We analyse the system and
study existence and uniqueness of solutions and the steady state of the system.
We are interested in how sexually transmitted infections, such as HIV, spread
along the network. Therefore, the next part of the research is to superimpose an
S(usceptible)-I(nfectious) infection on the dynamic sexual network and describe
the infection model with a set of ODEs. Using the interpretation of the model
we determine epidemic thresholds for the system. The thresholds allow us to
determine what the conditions are for an infection to become endemic in the
population. We end the analysis by comparing the basic reproduction numbers
of the infectious disease models for the polygynous population with that of a
monogamous population.

Keywords: Mathematical modelling; dynamical systems; dynamic sexual net-
work; polygyny (polygamy); S-I infection; HIV; epidemic thresholds
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Chapter 1

Introduction

Infectious diseases

Infectious diseases, such as HIV, influenza, and measles, are a part of modern
life. Some diseases, such as measles, cause relatively small harm in the developed
world, while others, such as HIV, form serious problems for public health. Other
recent infectious disease outbreaks, such as SARS and swine flu (H1N1), remind
us of the serious threat they pose to world health. Effective control measures
require an understanding of how infectious diseases spread.

Mathematically modelling the transmission of diseases has proven to be very
useful in this respect [1, 2]. Already in the beginning of the previous century,
Sir Ronald Ross used a mathematical model to describe the spread of malaria
[3, 4]. This allowed him to deduce that malaria could be eradicated in a region
by reducing the density of mosquitoes below a certain threshold; it was not
necessary to exterminate all mosquitoes. The qualitative insights gained from a
mathematical analysis of the model were most important in providing ways to
control malaria.

In recent years, mathematical modelling has played an increasingly impor-
tant role in supporting decisions in infectious-disease control by providing in-
sights into transmission dynamics and possible effects of intervention measu-
res [5, 6].

Figure 1.1: Network structure of adolescent students in a romantic or sexual re-
lationship with another student in a ‘typical’ high school in a midsized town in the
midwest of the United States. [7, Fig. 2]
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4 Chapter 1. Introduction

Dynamic sexual networks

In studying the transmission of an infectious disease in a population, an im-
portant modelling component is the contact pattern; each contact generates a
possibility to transmit the disease. We can suppose any two individuals in a
population may contact each other: random contacts. This simplifying assump-
tion of a randomly mixing population is often used in epidemiological research
(often referred to as homogeneous mixing) and has proven to be successful for
e.g. host-vector diseases such as malaria and respiratory infections like influ-
enza [8]. For other infections, such as sexually transmitted infections (STIs),
the contact patterns deviate strongly from the random mixing assumption. In
these cases, the random mixing assumption does not allow us to capture the
spread of an STI in a population.

In case of an STI, a connection between two individuals is established by
sexual contact. As a rule, individuals engage in partnerships with other indi-
viduals and have multiple sexual contacts before separation: contacts do not
occur at random. Such contact patterns can be described by networks in which
vertices represent individuals and edges represent partnerships (Figure 1.1).

To understand the transmission dynamics of an STI we need to analyse the
spread of it in a dynamic sexual contact network. This network describes all
existing sexual partnerships in a population. It is dynamic since partnerships are
formed and broken over time and individuals enter and leave due to demographic
turnover in the population. The dynamic sexual network needs to be taken into
account in order to really capture the dynamics of an STI in a population.

Figure 1.2: Components of the sexual network of Likoma Island, Malawi. Black
(grey) nodes represent males (females), lines represent sexual partnerships. All sexual
connections (a) in three years preceding the survey; all sexual connections of the ’giant
component’ (b) within one year and (c) at the time of the survey. [9, Fig. 2]

Mathematical modelling

In theory, if we know every sexual partnership of every individual in a popula-
tion, we would be able to construct the dynamic sexual network. In practice,
this is very cumbersome and almost impossible. A network quickly becomes
very complicated (Figure 1.2) and determining the influence of the network on
the disease dynamics even more so. This is where mathematical modelling co-
mes into play. Rather than taking all possible details into account, we consider
abstractions of reality using mathematical modelling. This allows us to gain in-
sights into an idealized sexual network and the influence of structural properties
of the network on the spread of infectious diseases.
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Figure 1.3: The sexual network of a population that is strictly monogamous on the
left and one that is not strictly monogamous on the left.

As every community has its own social and cultural values, there exist many
different types of sexual networks. Therefore a wide variety of idealized dynamic
sexual networks can be considered. By specifying different characteristics, we
can obtain many different idealized networks; compare e.g. the sexual network
of a population that is strictly monogamous to one that is not (Figure 1.3) and
the romantic and sexual network of a ‘typical’ high school in a midsized town
in the midwest of the United States (Figure 1.1) with the sexual network of a
population at Likoma Island, Malawi (Figure 1.2).

So, how does one start studying dynamic sexual networks? Ideally, we would
like to know what network characteristics have what effect on the disease dyna-
mics. So if we would have a network with some specific characteristics, then we
would investigate what the disease dynamics along this network would be. As
we are still far away from understanding relations between network topologies
and disease dynamics, this will not be the goal in this thesis. Rather we will
study a specific sexual network, motivated by real-life problems.

Figure 1.4: The sexual network of a polygynous population. Multiple star-shaped
components arise from men having multiple wives and women at most one husband.
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Figure 1.5: HIV prevalence among adults aged 15-49 years old across the world in
2009 [10].

Polygyny and HIV in sub-Saharan Africa

We find a motivation for this thesis in the HIV epidemic in sub-Saharan Africa.
This epidemic has great social and economic impact, and its scale is enormous
(Figure 1.5), especially in sub-Saharan Africa. It is estimated that in 2009, 2.6
million individuals were newly infected with HIV and HIV/AIDS caused 1.8
million deaths, a disproportionate amount (1.8 and 1.3 million, respectively)
occurring in sub-Saharan Africa [10].

In heterosexual populations in sub-Saharan Africa, in contrast to elsewhere,
polygyny, a form of polygamy, is commonly practised: men may have multiple
wives while women have at most one husband. If we also assume men and women
to be faithful, this gives rise to a network with multiple star-shaped components
(Figure 1.4). A possible route of transmission is displayed in Figure 1.6. How
does this sexual network influence the spread of STI such as HIV?

Figure 1.6: Possible route of transmission in a star-shaped union. In the last frame,
the man has died, leaving two infectious women to potentially infect other men.

The influence of the sexual network in sub-Saharan Africa on the spread of
HIV is most pertinent to study, both from a mathematical and an epidemiolo-
gical point of view. In this region, HIV is widespread among the heterosexual
population. This is very different from the rest of the world, where HIV mostly
remains concentrated in specific high-risk groups such as injecting drug-users,
prostitutes, and homosexual men [11].

Can we explain the pervasive HIV transmission among the heterosexual po-
pulation in sub-Saharan Africa by the sexual network corresponding to poly-
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gyny? Currently, there is much debate in the epidemiological literature about
the contribution of overlapping partnerships (concurrency) on HIV-transmission
in sub-Saharan Africa [11]. While some (empirical researchers) argue that con-
currency is an important factor in the rapid spread [12], others hypothesized
that some forms of concurrency, such as the practice of polygyny, may be pro-
tective [13].

Motivated by the debate we will use mathematical modelling to study a
dynamic sexual network with multiple star-shaped components and the trans-
mission of an infection along the network. In a way, the models we consider here
will be extensions of the model of Kretzschmar and Dietz [14]. In this paper,
they considered the pair-formation process of a completely monogamous ho-
mosexual population and the spread of an infection. Now we will not make the
restriction of the population being completely monogamous, but only impose
this condition on one type of individuals, namely the women.

Outline of the text

This thesis is set up in the following way. First, as a preparation, we consider
the pair-formation model corresponding to an idealized polygamous population.
This dynamic network is interesting in its own right and we will spend some
time studying it, not avoiding the technical parts. Moreover, analysis of the
dynamic sexual network allows us to make some simplifying assumptions when
studying the transmission of infection along the network. The steady state of
the pair-formation model will be used to simplify the statistical description of
the dynamic sexual network in the next part of our investigation. In this second
part, we will study the spread of an infection along the dynamic sexual network.
Here, the emphasis will be on working with the interpretation of the model, and
less on technical details.

In Chapter 2, we will describe the pair-formation model with an infinite-
dimensional system of nonlinear ordinary differential equations (ODEs) and
then analyse this system. We will prove existence and uniqueness of solutions
of the dynamical system and consider its steady state. Concerning this steady
state, we will determine an explicit expression for it. This explicit expression
will then be analysed numerically to understand the behaviour of the steady
state as a function of the parameters.

In order to understand the behaviour of the system near the steady state
we will consider its stability. Inspired by [15, 16], we will prove the stability of
the steady statevia a compact attractor of an appropriate set. We will be able
to prove that the steady state is a compact attractor, in particular it will be
globally asymptotically stable.

Proving the existence and uniqueness of solutions and the stability of the
steady state will comprise the largest part of Chapter 2. The topic of infinite-
dimensional systems of ODEs in Banach spaces, which we are dealing with here,
has been dealt with before [17, 18, 19, 20]. In our situation, the system has a
biological interpretation, e.g. we consider the fraction of single women in the
population. We specifically need solutions to be nonnegative at any point of time
in the future. Therefore, we can not simply use general results on existence and
uniqueness of solutions such as presented in e.g. [17]. Fortunately, we are not the
first to consider infinite-dimensional systems in modelling biological phenomena,
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and we will be able to use a lot of theory and ideas already developed, especially
those presented in [16].

In Chapter 3 we superimpose an STI on our dynamic sexual network. We
consider an S-I infection that can be transmitted through sexual contact. Indi-
viduals can then be either Susceptible or Infectious. One should think of this
STI as describing the virus HIV in a much idealized way. Obviously, the actual
virus is much more complex than this simple representation. We will however
ignore most of the biological aspects of HIV in our model. Again this model
can be described with an infinite-dimensional dynamical system. We are inte-
rested in the endemic steady state and criteria for the infection-free state to be
asymptotically stable.

Using the interpretation of the model, we will determine the basic reproduc-
tion number R0. This number can be interpreted as the expected number of
secondary cases that one ‘typical’ infectious individual does cause in an other-
wise susceptible population. It is one of the most important quantities of interest
in infectious disease epidemiology as it determines whether an infection dies out
when introduced in the population.

We will consider a threshold parameter R̃0 different from R0. This R̃0 will
again be determined using the interpretation of the model. This threshold
parameter will just be a different way of bookkeeping. It will be shown that a
relationship between R0 and R̃0 exists. Both have the threshold value 1.

Next, we will compare the R0 we have found for the polygynous population
with the basic reproduction number of a monogamous population. This allows
us to draw some conclusions on the effect of the polygynous structure on the
initial spread of an infection (compared to a monogamous population).

Finally, in Chapter 4 we will give a short summary of our most important
findings and some conclusions based on our investigation. We will also point
out the challenges that we have not dealt with in this thesis. This is mainly
due to time constraints. But for future work, it will be interesting to look into
them. Furthermore, we will give an outlook on some ideas to further develop
and extend the models presented here.



Chapter 2

Pair Formation

In this chapter, we will start by introducing the model for the dynamic sexual
network corresponding to a polygamous population and discuss some of the
assumptions we make. Next, we will describe the model using an infinite set of
ODEs. We will concern ourselves with proving the existence and uniqueness of
the solutions of the dynamical system.

We are interested in the long run behaviour of the system. Therefore, we
study the steady state of the system. First, we will calculate an explicit expres-
sion for the steady state. Next, we will perform some numerical experiments
and also consider the effect on the steady state of some extreme cases for the pa-
rameters. Finally, we will prove that the steady state is globally asymptotically
stable.

This chapter can be seen as a preparation for what we are really interested
in: the transmission of an infection along the dynamic sexual network. Luckily
for us, the preparations give rise to some interesting mathematics (which also
explains why this chapter comprises the largest part of the entire text).

2.1 Pair-formation model

We consider a heterosexual population where the sex ratio is 1 : 1. In this
population, each woman can be in a relationship with at most one man, while
a man may have multiple partners, without any restriction on the number of
partners for these men. Note that the situation is asymmetric for men and
women. The network arising from this consists of star-shaped components,
with men in the ‘centre’ of each star (Figure 1.4). We say that a star consisting
of one man and his j wives has star size j, j = 0, 1, . . . By definition, stars of
size zero will consist of single men or single women.

The pair-formation process will be described with a deterministic model.
We justify this deterministic setting by assuming the population to be large.
Therefore, stochastic fluctuations are of relatively minor importance.

We make the following assumptions on the pair-formation process. A man
with more than one partner does not distinguish between any of his wives; his
first wife will not be of more or less importance than his potential third as far as
sexual contacts and inclination to divorce his wife are concerned. The same goes
for the women; the inclination to divorce her husband will not depend on the

9
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number of co-wives a woman has. Couples separate at a constant rate σ > 0,
regardless of the number of partners of the man.

Women do not have any preference for the status of the man when ‘looking’
for a husband. Therefore a man with e.g. 10 wives acquires a new partner at
the same rate as a single man. Men and women form new relationships at a per
pair rate ρ > 0. The pair-formation function is derived from the mass-action
principle. This means that if we have e.g. X single women and P1 men with
one wife, then the rate of formation of partnerships between men with one wife
and single women is ρXP1.

There is also demographic turnover due to birth and death. Since we are
considering a pair-formation process, and eventually sexual contacts that gene-
rate possibilities to transmit an STI between individuals, birth of an individual
should be interpreted as recruitment into the sexually active population. Indi-
viduals are recruited into the population as singles. The death of an individual
may mean physical death or merely the individual leaving the sexually active
population, we do not distinguish between these events. Note that a newly re-
cruited individual may die before having any sexual contact with anyone in the
population.

A partnership may dissolve if the individuals separate or if either of the two
individuals involved in that partnership die. These dissolution events do not
affect the emotional state of individuals, e.g. there is no mourning period after
the loss of a partner. The woman whose partner dies, will be added to the single
population, while the man, with more than one partner, whose partner dies will
be left with j − 1 partners, j = 2, 3, . . . The man will be added to the single
population if he had one wife to begin with. If a man with j partners dies, j
women will be added to the single population, j = 1, 2, . . . Individuals will only
remember the state they are in, not the states they may have visited in the past.
So a single man may have been newly recruited into the population or he may
have become single after losing his wife. Either way, his sexual behaviour will
not depend on this.

A consequence of our assumptions is that once a partnership is dissolved,
the two individuals involved never encounter each other again (in the sexual
network): a partner, once lost, is lost forever. If the dissolution happens because
one of the partners dies, this is obviously so. But if two individuals separate,
they will also never have a sexual relationship again in our model. It is with
probability zero that two individuals encounter each other again in our large
population (and deterministic description) conform the standard case with mass-
action kinetics. So our population is randomly mixed in partner choice, but not
in sexual contacts as these may occur (multiple times) within partnerships.

We include birth and death in the simplest way: there is a constant popula-
tion birth rate and a constant per capita death rate. Since we want to maintain
the sex ratio 1 : 1, we assume that the birth of males and females both happen
at the same constant rate B > 0. We assume that each individual dies at rate
µ > 0, regardless of its sex or partnership status.1

Obviously, many of the above assumptions are arguable. For instance, the
assumption that men acquire new partners regardless of the current number of
partners is quite simplistic. In reality a man must have something to offer in

1We may imagine that men will drop dead of exhaustion due to the obligation of enter-
taining too many wives. On the other hand it is not entirely realistic to assume there is no
upper bound on the number of women a man may have.
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return for the partnership, e.g. be able to provide for his wives or there is the
law to abide to. In future work, we can extend the model by incorporating
more sophisticated assumptions that reflect real life situations more accurately.
However, we will focus on this idealized situation for this thesis.

We introduce the following variables.

X : the number of single women,

Pj : the number of men with j partners, j ≥ 0,

N : the total population size.

Note that P0, the number of men with zero partners, equals the number of single
men in the population.

Due to demographic turnover, the total population size may change over
time. Consistency requires the total population size to be the sum of all men
and women, and the population of women to be equal to the population of men.

N = X +

∞∑

j=0

(1 + j)Pj ,

1

2
N = X +

∞∑

j=1

jPj =

∞∑

j=0

Pj .

The set of ODE describing this model is given by the following:

dX

dt
= B − ρX

∞∑

k=0

Pk + (σ + µ)

∞∑

k=1

kPk − µX,

dP0

dt
= B − ρXP0 + σP1 + µP1 − µP0,

dPj

dt
= ρXPj−1 −

(
ρX + (σ + µ)j

)
Pj + (σ + µ)(j + 1)Pj+1 − µPj ,

(2.1)

j ≥ 1.
We are able to calculate the equilibrium population size. Since

d

dt

(
X +

∞∑

j=0

(1 + j)Pj

)
= 2B − µ

(
X +

∞∑

j=0

(1 + j)Pj

)
,

we see that the population size at equilibrium equals

N∗ =
2B

µ
.

For the population of women and the population of men we have

d

dt

(
X +

∞∑

j=0

jPj

)
= B − µ

(
X +

∞∑

j=0

jPj

)
,

d

dt

( ∞∑

j=0

Pj

)
= B − µ

( ∞∑

j=0

Pj

)
,
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so the population of women and men in equilibrium is Nf = N∗
f = 1

2N
∗ and

Nm = N∗
m = 1

2N
∗, respectively. From now on we will assume the population is

in equilibrium, i.e. N = N∗, and Nf = Nm = N∗
m = 1

2N
∗.

We can consider fractions rather than numbers. We will use small letters to
denote fractions, i.e.

x :=
X

N
: the fraction of single women,

pj :=
Pj

N
: the fraction of men with j partners, j ≥ 0.

The set of ODEs describing the model then becomes:

dx

dt
=

µ

2
−

2Bρ

µ
x

∞∑

k=0

pk + (σ + µ)
∑

k=1

kpk − µx,

dp0
dt

=
µ

2
−

2Bρ

µ
xp0 + (σ + µ)p1 − µp0,

dpj
dt

=
2Bρ

µ
xpj−1 −

(
2Bρ

µ
x+

(
σ + µ)j

)
pj

+
(
σ + µ

)
(j + 1)pj+1 − µpj ,

(2.2)

j ≥ 1. We write the above system in a more condensed form by introducing the
following coefficients. Let

r :=
2Bρ

µ
,

and





α0j = µ, j = 1, 2, . . . ,

αjj = −
(
(σ + µ)j + µ

)
, j = 1, 2, . . . ,

αj−1,j = (σ + µ)j, j = 1, 2, . . . ,

αjk = 0, otherwise, j, k = 0, 1, . . .

(2.3)

Furthermore, introduce




γjj = −r, j = 0, 1, . . . ,

γj+1,j = r, j = 1, 2, . . . ,

γjk = 0, otherwise, j, k = 0, 1, . . .

(2.4)

Since we assume a sex ratio 1 : 1, i.e.

x+

∞∑

j=1

jpj =

∞∑

j=0

pj =
1

2
, (2.5)

we may also write the birth rate for the fraction of women as µ(x+
∑∞

j=1 jpj)

and the birth rate for the fraction of men as µ
∑∞

j=0 pj . The set of differential
equations (2.2) can then be written as

x′ = −rx

∞∑

j=0

pj + (σ + 2µ)

∞∑

j=1

jpj ,

p′j =
∞∑

k=0

αjkpk + x
∞∑

k=0

γjkpk,

(2.6)
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with the coefficients αjk and γjk, j, k = 0, 1, . . . given by (2.3) and (2.4). For
later use, it is also convenient to introduce the functions f : R+ ×ℓ11+ → R and
g : R+ ×ℓ11+ × ℓ11, with

f(x, p) = −rx

∞∑

j=0

pj + (σ + 2µ)

∞∑

j=1

jpj ,

gj(x, p) = x

∞∑

k=0

γjkpk, j = 0, 1, . . . .

(2.7)

2.2 Existence and uniqueness of solutions

This section (and Section 2.5) will rely on the paper by Martcheva and
Thieme [16]. In this section, we will be dealing with the mathematical question
of existence and uniqueness of solutions of (2.6) given appropriate initial condi-
tions. We would like to prove that, with initial data

(
x(0), p(0)

)
= (x̃, p̃) there

exist unique solutions of (2.6) for all positive times t. In order to do this, we
need to understand what a solution is in our setting. Recall the Banach space

ℓ1 =



p = (pj)j≥0 : pj ∈ R, j = 0, 1, . . . ,

∞∑

j=0

|pj | < ∞



 ,

endowed with norm

‖p‖ =

∞∑

j=0

|pj |, p = (pj)j≥0. (2.8)

We introduce the subspace

ℓ11 =



p = (pj)j≥0 : pj ∈ R, j = 0, 1, . . . ,

∞∑

j=0

j|pj | < ∞



⊂ ℓ1.

By introducing the norm

‖p‖1 =

∞∑

j=0

(1 + j)|pj |, p = (pj)j≥0,

this subspace ℓ11 becomes a Banach space itself.
If we now write

ℓ11+ :=
{
p = (pj)j≥0 ∈ ℓ11 : pj ≥ 0, j = 0, 1, . . .

}
,

then it is natural to require solutions (x(t), p0(t), p1(t), . . .) =
(
x(t), p(t)

)
of (2.6)

to lie in R+×ℓ11+ ⊂R×ℓ11. The space R×ℓ11 is endowed with the natural
product-norm, which we will also denote with ‖ · ‖, i.e.

‖(x, p)‖ = |x|+ ‖p‖1, (x, p) ∈ R×ℓ11. (2.9)
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Remark 2.1. Recall the definition of a C0-semigroup
(
S(t)

)
t≥0

on a Banach

space X ; see e.g. [17, 18, 19, 20]. The family
(
S(t)

)
t≥0

is a family of bounded

linear operators on X such that

S(t+ s) = S(t)S(s), t, s ≥ 0,

lim
t→0

S(t)x = S(0)x, x ∈ X.

The operator A, the infinitesimal generator of the C0-semigroup
(
S(t)

)
t≥0

is

defined by

A = lim
h↓0

S(h)x− x

h
, x ∈ D(A),

where D(A) is the set of all x ∈ X for which the above limit exists; D(A) is
called the domain of A.

Note that the system of differential equations for p in system (2.6) consists
of a linear part

∑∞
k=0 αjkpk, which is independent of x, and a nonlinear part

x
∑∞

k=0 γjkpk. The coefficients αjk in (2.6) give rise to an infinitesimal generator
A1 of a C0-semigroup S1 on ℓ11; see [16, Section 2.2]. The domain of A1 is given
by D(A1) = {p ∈ ℓ11 ∩D0 : Ăp ∈ ℓ11}, where D0 = {p ∈ ℓ1 :

∑∞
j=0 |αjj ||pj | <

∞} and Ă is the linear operator with Ăp = (
∑∞

k=0 αjkpk)j≥0, p ∈ D0. We have

∞∑

k=0

∞∑

j=1

j|αjk||pk| < ∞ for all p ∈ D(A1);

see [16, Lemma 2] for a proof. This shows that the double series∑∞
k=0

∑∞
j=1 jαjkpk exists absolutely and we may interchange the order of sum-

mation. We will use this property several times to make estimates or for rewri-
ting expressions, e.g. in the proof of Theorem 2.3.

The pair of continuous functions x : R+ → R+ and p : R+ → ℓ11+ is called an
integral solution of (2.6) with initial conditions x(0) = x̃, p(0) = p̃ if it is a
solution of

x′ = −rx

∞∑

j=0

pj + (σ + 2µ)

∞∑

j=1

jpj, t ∈ R+, x(0) = x̃,

pj(t) = p̃j +

∞∑

k=0

αjk

∫ t

0

pk(s)ds +

∫ t

0

x(s)

∞∑

k=0

γjkpk(s)ds, t ∈ R+,

(2.10)

j = 0, 1, . . ., with the understanding that
∫ t

0 p(s)ds ∈ D(A1) for all t ∈ R+.
Equivalently to the equation for p in (2.10), p is an integral solution of (2.6)

if it satisfies

p(t) = S1(t)p̃+

∫ t

0

S1(t− s)g
(
x(s), p(s)

)
ds, t ∈ [0, τ),

where g
(
x(s), p(s)

)
=
(
x(s)

∑∞
k=0 γjkpk(s)

)
j≥0

and S1 is the C0-semigroup ge-

nerated by A1 on ℓ11; see Remark 2.1. This equivalence is stated in [16] without
a proof given. We choose not to check the equivalence and believe that it holds.
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If (x, p) is a pair of continuously differentiable functions that satisfies (2.6),
then we say (x, p) is a classical solution. If such a classical solution exists, then
it must also be an integral solution.

In this section, we will focus on the existence and uniqueness of integral
solutions rather than classical solutions of (2.6). This allows us to apply the
theory of [16]. Obviously, we could have chosen to only write down (2.10) to
describe the model, and then such a distinction between classical and integral
solutions does not have to be made.

We will prove that (2.10) has a unique solution by showing that we can
apply [16, Theorem 7]. This theorem’s statement is exactly that unique solutions
exist to infinite systems such as (2.10) provided that certain assumptions are
satisfied. We will write down the assumptions we need in their general form
as they can be found in [16] and we will show that our system satisfies these
assumptions.2 These allow us to prove existence and uniqueness but also later
on when dealing with stability of the steady state.

The following few pages will mainly be a list of assumptions from [16] that
we need and propositions showing that our functions f and g (see (2.7)) and
coefficients αjk, γjk, j, k = 0, 1, . . . (see (2.3) and (2.4)) satisfy these assumpti-
ons.

Assumption 1 (Assumption 1 of [16]). The coefficients αjk, j, k = 0, 1, . . .
satisfy the following conditions.

(a) αjj ≤ 0 ≤ αjk, k 6= j.

(b) α⋄ :=
∑∞

k=0

∑∞
j=0 αjk < ∞.

(c) There exist constants c0, c1 > 0, ǫ > 0 such that

∞∑

j=1

jαjk ≤ c0 + c1k − ǫ|αkk|, k = 0, 1, . . .

Proposition 1. The coefficients αjk, j, k = 0, 1, . . . of our system (2.10) as
given by (2.3) satisfy Assumption 1.

Proof. (a) αjj ≤ 0, j = 0, 1, 2, . . . and αjk ≥ 0 for j 6= k.

(b) α00 = 0 and for k ≥ 1 we get

∞∑

j=0

αjk = α0k + αkk + αk−1,k = 0,

so α⋄ = 0.

2The notation in our text has been chosen such that it corresponds with the notation used
in [16], the exception being (x, p) in our text which corresponds to (w, x) in [16]. A minor
modification can also be found in the functions f and g (see (2.7)), these do not depend on time
t and therefore we write f : R+ ×ℓ11+ → R+, g : R+ ×ℓ11+ → ℓ11 instead of f : R2

+ ×ℓ11+ → R+,

g : R2
+ ×ℓ11+ → ℓ11 in [16], where they may depend on time.
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(c) Let c0 = c1 = 1 and ǫ = 1. Then
∑∞

j=1 jαj0 = 0 ≤ 1 and for k ≥ 1 we
find

∞∑

j=1

jαjk = kαkk + (k − 1)αk−1,k = −(σ + 2µ)k

≤ −|αkk|

≤ c0 + c1k − ǫ|αkk|.

Assumption 2 (Assumption 4 of [16]). f : R+ ×ℓ11+ → R and g : R+ ×ℓ11+ →
ℓ11 are continuous and have the following properties:

(a) f(0, p) ≥ 0 for all x ∈ ℓ11+ .

(b) For every j = 0, 1, . . ., gj(x, p) ≥ 0 whenever x ≥ 0, p ∈ ℓ11+ , and pj = 0.

(c) For every R > 0 there exists a Lipschitz constant ΛR such that

|f(x, p− f(x̃, p̃))|
‖g(x, p)− g(x̃, p̃)‖1

}
≤ ΛR(|x − x̃|+ ‖p− p̃‖1)

Proposition 2. The functions f and g given by (2.7) satisfy Assumption 2.

Proof. Obviously (x, p) 7→ −rx
∑∞

j=0 pj + (σ + 2µ)
∑∞

j=1 jpj and (x, p) 7→

(x
∑∞

k=0 γjkpk)j are continuous on R+ ×ℓ11+ . Furthermore

(a) −rx
∑∞

j=0 pj + (σ + 2µ)
∑∞

j=1 jpj

∣∣∣
x=0

= (σ + 2µ)
∑∞

j=1 jpj ≥ 0

for all p ∈ ℓ11+ .

(b) Let j = 0, 1, 2, . . .. Then x
∑∞

k=0 γjkpk = 0 for all x ≥ 0, p ∈ ℓ11+ , and
pj = 0.

(c) Let R > 0, x, x̃ ∈ [0, R], p, p̃ ∈ ℓ11+ , ‖p‖1, ‖p̃‖1 ≤ R. Then we can estimate

∣∣∣rx
∞∑

j=0

pj − (σ + 2µ)

∞∑

j=1

jpj − rx̃

∞∑

j=0

p̃j + (σ + 2µ)

∞∑

j=1

jp̃j

∣∣∣

≤ r
(
|x− x̃|+ ‖p− p̃‖1

)
+ (σ + 2µ)‖p− p̃‖1,

and

∞∑

j=0

(1 + j)
∣∣∣

∞∑

k=0

αjkpk + x

∞∑

k=0

γjkpk −

∞∑

k=0

αjk p̃k − x̃

∞∑

k=0

γjk p̃k

∣∣∣

≤ 2rR
(
|x− x̃|+ ‖p− p̃‖1

)
.

If we let ΛR := 2rR+ σ + 2µ, then we obtain the desired estimate

∣∣∣rx
∞∑

j=0

pj − (σ + 2µ)

∞∑

j=1

jpj − rx̃

∞∑

j=0

p̃j + (σ + 2µ)

∞∑

j=1

jp̃j

∣∣∣
∞∑

j=0

(1 + j)
∣∣∣

∞∑

k=0

αjkpk + x

∞∑

k=0

γjkpk −

∞∑

k=0

αjk p̃k − x̃

∞∑

k=0

γjkp̃k

∣∣∣





≤ ΛR

(
|x− x̃|+ ‖p− p̃‖1

)



2.2. Existence and uniqueness of solutions 17

Assumption 3 (Assumption 6 of [16]). There exist constants c2, c3 ≥ 0 such
that for all x ≥ 0 and p ∈ ℓ11

(a)

∞∑

j=0

gj(x, p) ≤ c3‖p‖, with ‖p‖ the norm of p in the space ℓ1; see (2.8).

(b) f(x, p) +

∞∑

j=1

jgj(x, p) ≤ c2(x+ ‖p‖1).

Proposition 3. The functions f and g given by (2.7) satisfy Assumption 3.

Proof. For all x ≥ 0 and p ∈ ℓ11+ we have the following:

(a)
∑∞

j=0 x
∑∞

k=0 γjkpk = −rxp0 + x
∑∞

j=1 rpj−1 − x
∑∞

j=1 rpj = 0,

(b)

− rx

∞∑

j=0

pj + (σ + 2µ)

∞∑

j=1

jpj +

∞∑

j=1

x

∞∑

k=0

γjkpk

= −rx

∞∑

j=0

pj + (σ + 2µ)

∞∑

j=1

jpj − rx

∞∑

j=1

jpj + rx

∞∑

j=1

jpj−1

= (σ + 2µ)

∞∑

j=1

jpj

≤ (σ + 2µ)‖p‖1.

The final assumption we need will be used in Section 2.5.

Assumption 4 (Assumption 10 of [16]). There exist constants c4, c5, ǫ4 > 0
such that, for all x ≥ 0, p ∈ ℓ11+

f(x, p) +

∞∑

k=0

∞∑

j=1

jαjkpk +

∞∑

j=1

jgj(x, p) ≤ c4‖p‖+ c5 − ǫ4


x+

∞∑

j=1

jpj


 .

Proposition 4. The functions f and g given by (2.7) satisfy Assumption 4.

Proof. Using (2.7) for f and g in Assumption 4 we find the following relation.

f(x, p) +

∞∑

k=0

∞∑

j=1

jαjkpk +

∞∑

j=1

jgj(x, p)

− rx

∞∑

j=0

pj + (σ + 2µ)

∞∑

j=1

jpj +

∞∑

k=0

∞∑

j=1

jαjkpk +

∞∑

j=1

jx

∞∑

k=0

γjkpk

= (σ + 2µ)
∞∑

j=1

jpj −
∞∑

k=1

(σ + 2µ)kpk

= 0.

We have used the calculation in the proof of Proposition 3 to find that the sum
of the first, second, and last term in the first line is equal to (σ+2µ)

∑∞
j=1 jpj .

By Remark 2.1 the series
∑∞

k=0

∑∞
j=1 jαjkpk exists and is equal to −

∑∞
k=1(σ+

2µ)kpk.
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We have now written down the ingredients needed to prove existence and uni-
queness of solutions of (2.10). Let’s formulate this in a theorem.

Theorem 2.2. Let (x̃, p̃) ∈ R+ ×ℓ11+ . Then there exists a unique continuous
solution (x, p) : R+ → R+ ×ℓ11+ of (2.10).

Brief description of how the result relates to statements in [16]. We have
shown in Propositions 1, 2, and 3 that Assumptions 1, 2, and 3 are satisfied
(which correspond to Assumptions 1, 4, and 6 of [16]). Therefore we may ap-
ply [16, Theorem 7], which states exactly that there exists a unique continuous
solution for a system of the form (2.10) that satisfies Assumptions 1, 4, and 6
of [16].

The proof of this theorem uses approximating solutions of (2.10), which we
mention later on in the text in Lemma 1 on page 41 in this text. The proof uses
local existence of solutions, which is stated and proven in [16, Theorem 5]. It
is shown that the solutions to the approximating system (2.29) exist globally.
Next, it is proven that the solutions (x, p) that exist locally on [0, τ) are the
uniform limit of the approximating solutions on the interval [0, τ). Then finally,
it is proven that it must hold that τ = ∞, so continuous solutions (x(t), p(t))
exist and are unique on R+.

Recall the interpretation of x and p = (p0, p1, p2, . . .). The fraction of sin-
gle women is given by x, and the fraction of men with j partners is given by
pj , j = 0, 1, 2, . . . If we have a solution

(
x(t), p(t)

)
of (2.10) with initial data(

x(0), p(0)
)
= (x̃, p̃), then we can prove that, at all times t ≥ 0, the fraction of

women and the fraction of men are equal to the initial fractions. In particular,
the solutions satisfy the consistency condition (2.5) if the initial conditions also
satisfy (2.5). Note that this is also what we would expect based on the model-
ling assumptions. We have assumed that the death rate does not depend on
the gender of the individual, and we have assumed the population birth rate to
be equal for men and women. Therefore it makes sense that the fractions of
men and women do not change over time. Let’s formulate this in a theorem.
This theorem will be helpful to us when proving the stability of the steady state
(x∗, p∗) in Section 2.5.

Theorem 2.3. Let (x(0), p(0)) = (x̃, p̃) ∈ R+ ×ℓ11+ . Then the solutions
(x(t), p(t)) of (2.10) satisfy the following:

∑

j=0

pj(t) =
∞∑

j=0

p̃j , and x(t) +
∞∑

j=1

jpj(t) = x̃+
∞∑

j=1

jp̃j.

In other words, the fraction of men (women) in the population is, for all times
t ≥ 0, equal to the initial fraction of men (women).

Proof. For the first equality, note that p solves the integral equation

pj(t) = p̃j +

∞∑

k=0

αjk

∫ t

0

pk(s)ds+

∫ t

0

x(s)

∞∑

k=0

γjkpk(s)ds.

We can use this equation for p(t) to determine its norm in ℓ1 and show it is
equal to the norm of p̃ in ℓ1, i.e. , for all t ∈ R+,

∞∑

j=0

pj(t) =

∞∑

j=0

p̃j . (2.11)
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This uses explicitly that
∑∞

j=1 αjk = 0, as shown in Proposition 1,∑∞
j=0

∑∞
k=0 xγjkpk = 0, as shown in Proposition 3a, and Proposition 4. For

the details on the derivation see [16, Corollary 1].

Note that, formally, x solves

x(t) = x̃+

∫ t

0



−rx(s)
∞∑

j=0

pj(s) + (σ + 2µ)
∞∑

j=1

jpj(s)



 ds. (2.12)

If p is a solution of (2.10), then we find, for t ∈ R+,

x(t) +
∞∑

j=1

jpj(t)

= x̃+
∞∑

k=1

jp̃j +

∫ t

0


−rx(s)

∞∑

j=0

pj(s) + (σ + 2µ)
∞∑

j=1

jpj(s)


 ds

+

∫ t

0




∞∑

j=1

jx(s)

∞∑

k=0

γjkpk(s)


 ds+

∞∑

j=1

∞∑

k=0

jαjk

∫ t

0

pk(s)ds

= x̃+

∞∑

k=1

jp̃j + (σ + 2µ)

∫ t

0

∞∑

j=1

jpj(s)ds+

∞∑

j=1

∞∑

k=0

jαjk

∫ t

0

pk(s)ds

= x̃+
∞∑

k=1

jp̃j .

The last equality holds because of the following. By the absolute convergence
of the double series

∑∞
j=1

∑∞
k=0 jαjk

∫ t

0
pk(s)ds we may interchange the order

of summation; see Remark 2.1. Since pk ≥ 0 we may also interchange the order
of summation and integration. Therefore

∞∑

j=1

∞∑

k=0

jαjk

∫ t

0

pk(s)ds =

∫ t

0




∞∑

k=0

∞∑

j=1

jαjkpk(s)


 ds

= −

∫ t

0

∞∑

k=0

(σ + 2µ)kpk(s)ds,

where the second equality has been calculated in the proof of Proposition 1(c).

Let initial conditions (x̃, p̃) ∈ C, where

C :=




(x, p) ∈ R+ ×ℓ11+ : x+

∞∑

j=1

jpj =

∞∑

j=0

pj =
1

2




 . (2.13)

Theorem 2.3 tells us that system (2.10) is defined on C, which is exactly what we
would like. Obviously, C is bounded in norm in the space R×ℓ11: if (x, p) ∈ C,
then ‖(x, p)‖ = 1. We will use this later on in Section 2.5.
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2.3 Semiflow

As a reminder, a map Φ: R+ ×R+×ℓ11+ → R+ ×ℓ11+ is called a semiflow on
R+ ×ℓ11+ if

Φ
(
t+ s, (x̃, p̃)

)
= Φ

(
t,Φ
(
s, (x̃, p̃)

))
, t, s ≥ 0,

Φ
(
0, (x̃, p̃)

)
= (x̃, p̃),

for (x̃, p̃) ∈ R+ ×ℓ11+ . If Φ is also continuous, we call Φ a continuous semiflow.
For our system (2.10) we have the following useful theorem.

Theorem 2.4. The map Φ: R+ ×R+ ×ℓ11+ → R+ ×ℓ11+ defined by

Φ
(
t, (x̃, p̃)

)
=
(
x(t), p(t)

)
,

with (x, p) being the solution of (2.10), is a continuous semiflow.

Description of how the result relates to statements in [16]. Apply [16, Theo-
rem 8]. This makes exactly the statement in the theorem written down above.
In order to apply this theorem, we need that Assumptions 1, 4, and 6 of [16]
are satisfied, something we have checked with Proposition 1, 2, and 3. Further-
more, we need the coefficients αjk (see (2.3)) and γjk (see (2.4)) not to depend
on time, which is the case.

We will use this semiflow later on to prove stability of the steady state
(x∗, p∗). Introduce the notation

Φt(x̃, p̃) := Φ(t, (x̃, p̃)), (2.14)

for t ≥ 0 and (x̃, p̃) ∈ R+ ×ℓ11+ .

2.4 Steady state: dependence on parameters

In this section the focus will be on the steady state of the system. First we
will establish that there exists such a steady state by explicitly calculating an
expression for it. This explicit expression enables us to investigate a few things.
We can see how the steady state depends on the parameters B, ρ, σ, µ of the
system.

The steady state will also enable us to determine the mean star size, variance
in star size, and higher moments of the probability distribution of the stars.

We will start with some calculations to determine the steady state.

2.4.1 Calculating an explicit expression

Suppose B, µ, ρ, σ > 0. To find the steady state of the system (2.2), we set
dx/dt = dpj/dt = 0, j = 0, 1, . . .. The consistency conditions (2.5) turn the
right-hand side of dx/dt into a linear equation of x. Indeed,

µ

2
−

r

2
x+ σ

(
1

2
− x

)
+ µ

(
1

2
− x

)
− µx = 0. (2.15)
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Hence

x∗ =
µ+ σ/2

r
2 + σ + 2µ

=
µ(σ + 2µ)

2
(
Bρ+ µ(σ + 2µ)

) ≤
1

2
. (2.16)

We see that this does not require any restrictions on the parameters B, µ, ρ,
and σ. Using this expression for x∗, we define

ν = ν(B, ρ, σ, µ) := rx∗ =
Bρ(σ + 2µ)

Bρ+ µ(σ + 2µ)
. (2.17)

Setting dp0/dt = 0 allows us to express p1 as a function of p0:

µ

2
− p0(ν + µ) + p1(σ + µ) = 0,

so

p∗1 =
(ν + µ)p∗0 − µ/2

σ + µ
.

Define

G(z) :=

∞∑

j=0

pjz
j,

the generating function of the pj. We see that G(1) =
∑∞

j=0 pj , the fraction of
all men in the population. Consistency (2.5) show us that we need to have

G(1) =
1

2
. (2.18)

We will let G(z) be a function of the unknown p0 and then use (2.18) to solve
for p0 and find p∗0. By setting dpj/dt = 0, j = 1, 2, . . ., we obtain the equality

0 = νpj−1 −
(
ν + jσ + (j + 1)µ

)
pj + (µ+ σ)(j + 1)pj+1, j = 1, 2, . . .

Multiplying this with zj , j = 1, 2, . . ., and taking the sum over all j ≥ 1, we get

0 = ν

∞∑

j=1

pj−1z
j − ν

∞∑

j=1

pjz
j − σ

∞∑

j=1

jpjz
j − µ

∞∑

j=1

(j + 1)pjz
j

+ (µ+ σ)

∞∑

j=1

(j + 1)pj+1z
j

= νzG(z)− ν
(
G(z)− p0

)
− σzG′(z)− µ

(
zG′(z) +G(z)− p0

)

+ (σ + µ)(G′(z)− p1)

= −G(z)
(
(1− z)ν + µ

)
+G′(z)(1− z)(σ + µ) + (ν + µ)p0 − (σ + µ)p1

= −G(z)
(
(1− z)ν + µ

)
+G′(z)(1− z)(σ + µ) +

µ

2
.

In the last equality we have used the relation between p0 and p1 found by
setting the right-hand side of dp0/dt = 0. Together with the boundary condition
G(0) = p0, the first order linear nonhomogeneous differential equation

G′(z) =

(
ν

σ + µ
+

µ

(σ + µ)(1− z)

)
G(z)−

µ

2(σ + µ)(1 − z)
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has a unique solution. Variation of constants gives us

G(z) = e
ν

µ+σ
z(1 − z)−

µ
σ+µ

(
p0 −

µ

2(σ + µ)

∫ z

0

e−
ν

σ+µ
ξ(1− ξ)−

σ
σ+µ dξ

)
.

The integral part of the above equation can be written as
∫ z

0

e−
ν

σ+µ
ξ(1 − ξ)−

σ
σ+µ dξ

=

∫ ∞

0

e−
ν

σ+µ
ξ(1 − ξ)−

σ
σ+µ dξ −

∫ ∞

z

e−
ν

σ+µ
ξ(1 − ξ)−

σ
σ+µ dξ.

Let’s consider the first term of the right-hand side of the equation above. A
change of variables t = − ν

σ+µ (1− ξ) shows us it is equal to

−

(
−

ν

σ + µ

) µ
σ+µ

e−
ν

σ+µ

∫ ∞

− ν
σ+µ

et t
µ

µ+σ
−1dt = Γ

(
µ

σ + µ
,−

ν

σ + µ

)
,

where Γ(s, x) denotes the upper incomplete gamma function,

Γ(s, x) =

∫ ∞

x

e−tts−1dt.

The same change of variables gives for the second term,

−

(
−

ν

σ + µ

) µ
σ+µ

e−
ν

σ+µ

∫ ∞

ν(z−1)
σ+µ

et t
µ

µ+σ
−1dt = Γ

(
µ

σ + µ
,
ν(z − 1)

σ + µ

)
.

Furthermore, the relation

Γ(s) = γ(s, x) + Γ(s, x)

holds, where Γ(s) denotes the gamma function,

Γ(s) =

∫ ∞

0

e−tts−1dt,

and γ(s) denotes the lower incomplete gamma function,

γ(s, x) =

∫ x

0

e−tts−1dt.

Hence

G(z) =
e

ν
µ+σ

z(p0 + δ(z))

(1− z)
µ

σ+µ

, (2.19)

with δ(z) given by

δ(z) =
µe−

ν
σ+µ

2(σ + µ)

(
−

ν

σ + µ

) −µ
σ+µ

∗

∗

(
Γ

(
µ

σ + µ
,−

ν

σ + µ

)
− Γ

(
µ

σ + µ

)
+ γ

(
µ

σ + µ
,
ν(z − 1)

σ + µ

))

=
µe−

ν
σ+µ

2(σ + µ)

(
−

ν

σ + µ

) −µ
σ+µ

∗

∗

(
−γ

(
µ

σ + µ
,−

ν

σ + µ

)
+ γ

(
µ

σ + µ
,
ν(z − 1)

σ + µ

))
,
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and ∗ denotes the product sign. We also have the relationship

γ(s, x) = Γ(s)xse−x
∞∑

k=0

xk

Γ(s+ k + 1)
, s 6= 0,−1,−2, . . . , (2.20)

see e.g. [21, Formula 8.7.3]. Moreover the equality Γ(z + 1) = zΓ(z) holds. In
particular we find

γ

(
µ

σ + µ
,
ν(z − 1)

σ + µ

)

= (z − 1)
µ

σ+µ

(
ν

σ + µ

) µ
σ+µ

e−
ν(z−1)
σ+µ Γ

(
µ

σ + µ

)
∗

∗


 1

Γ
(

µ
σ+µ + 1

) +
ν

σ + µ

z − 1

Γ
(

µ
σ+µ + 2

) +O(z − 1)2




= (z − 1)
µ

σ+µ

(
ν

σ + µ

) µ
σ+µ

e−
ν(z−1)
σ+µ ∗

∗

(
σ + µ

µ
+

ν(σ + µ)(z − 1)

µ(σ + 2µ)
+O(z − 1)2

)
.

Using this, we can write the power series of the numerator of (2.19), i.e. the
map z 7→ e

ν
µ+σ

z(p0 + δ(z)), around z = 1:

(z − 1)
µ

σ+µ (−1)
µ

σ+µ

(
1

2
+O(z − 1)

)

+ p0e
ν

σ+µ −
µ

2(σ + µ)

(
−

ν

σ + µ

)− µ
σ+µ

γ

(
µ

σ + µ
,−

ν

σ + µ

)
+O(z − 1).

Recall that we want equation (2.18) to hold. Let us choose p∗0 such that the
term independent of z − 1 equals zero:

p∗0 =
µe−

ν
σ+µ

2(σ + µ)

(
−

ν

σ + µ

)− µ
σ+µ

γ

(
µ

σ + µ
,−

ν

σ + µ

)
.

Note that, since p∗0 has the interpretation of the fraction of single men in steady
state, we require p∗0 ∈ [0, 12 ]. The above formula for p∗0 gives us a restriction on

the parameters. Both (− ν
σ+µ )

− µ
σ+µ ∈ C and γ

(
µ

σ+µ ,−
ν

σ+µ

)
∈ C. We need a

combination of parameters such that their product is an element of R. More
specifically, we need to ensure p∗0 ∈ [0, 12 ].

By using (2.20) we see that

γ

(
µ

σ + µ
,−

ν

σ + µ

)

=

(
−

ν

σ + µ

) µ
σ+µ

e
ν

σ+µ Γ

(
µ

σ + µ

) ∞∑

k=0

(
− ν

σ+µ

)k

Γ
(

µ
σ+µ + k + 1

) .
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Hence we see that

p∗0 =
µ

2(σ + µ)
Γ

(
µ

σ + µ

) ∞∑

k=0

(
− ν

σ+µ

)k

Γ
(

µ
σ+µ + k + 1

) ∈ R .

We can further simplify p∗0. Note that the relation Γ(z + 1) = zΓ(z) implies

Γ

(
µ

σ + µ
+ k + 1

)
=

k∏

j=0

(
µ

σ + µ
+ j

)
Γ

(
µ

σ + µ

)
,

for all k = 0, 1, . . . We can therefore rewrite the expression for p∗0 as follows.

p∗0 =
µ

2(σ + µ)

∞∑

k=0

(
− ν

σ+µ

)k

∏k
j=0

(
µ

σ+µ + j
)

=
µ

2(σ + µ)

∞∑

k=0

(
−

ν

σ + µ

)k k∏

j=0

σ + µ

(σ + µ)j + µ

=
µ

2ν

∞∑

k=0

(−1)k
k∏

j=0

ν

(σ + µ)j + µ
.

Our generating function becomes

G(z) =
µ(1− z)−

µ
σ+µ e

ν(z−1)
σ+µ

2(σ + µ)

(
−

ν

σ + µ

)− µ
σ+µ

γ

(
µ

σ + µ
,
ν(z − 1)

σ + µ

)

=
µ

2(σ + µ)
Γ

(
µ

σ + µ

) ∞∑

k=0

(
ν(z−1)
σ+µ

)k

Γ
(

µ
σ+µ + k + 1

) .

We can check that this choice of p0 implies limz→1 G(z) = 1
2 , i.e. equation (2.18)

holds. Indeed we see that

G(1) =
µ

2(σ + µ)

Γ
(

µ
σ+µ

)

Γ
(

µ
σ+µ + 1

) =
1

2
,

where we have used that Γ
(

µ
σ+µ + 1

)
= µ

σ+µΓ
(

µ
σ+µ

)
. Hence, the consis-

tency (2.5) is satisfied.

We are now left to determine the pj, j = 1, 2, . . ., i.e. we want to find the
power series expansion of G(z) around z = 0. We write G(z) as the product of
three functions for which we can find the Taylor coefficients. Write

G(z) = C1f(z)g(z)h(z),
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where

C1 :=
µ

2(σ + µ)
e−

ν
σ+µ

(
−

ν

σ + µ

)− µ
σ+µ

,

f(z) := e
ν

σ+µ
z,

g(z) := (1− z)−
µ

σ+µ ,

h(z) := γ

(
µ

σ + µ
,
ν(z − 1)

σ + µ

)
.

We can write f(z) =
∑

n≥0 fnz
n, g(z) =

∑
n≥0 gnz

n, and h(z) =
∑

n≥0 hnz
n.

It is easy to find expressions for the coefficients fn and gn:

fn =

(
ν

σ+µ

)n

n!
, n ≥ 0,

g0 = 1,

gn =
1

n!

n−1∏

j=0

(
µ

σ + µ
+ j

)
, n ≥ 1.

(2.21)

To find the coefficients hn we note that h0 = h(0) = γ
(

µ
σ+µ ,

−ν
σ+µ

)
, and

h′(z) =
ν

σ + µ
e−

ν(z−1)
σ+µ

(
ν(z − 1)

σ + µ

)− σ
σ+µ

= (−1)
σ

σ+µ

(
ν

σ + µ

) µ
σ+µ

e
ν

σ+µ e
−ν
σ+µ

z(1− z)−
σ

σ+µ =: q(z).

So we see that h1 = h′(1) = e
ν

σ+µ (−1)
σ

σ+µ ( ν
σ+µ )

µ
σ+µ . We write q(z) =

C2r(z)s(z) with

C2 := e
ν

σ+µ (−1)
σ

σ+µ ( ν
σ+µ )

µ
σ+µ ,

r(z) := e−
ν

σ+µ
z =

∞∑

n=0

rn,

s(z) := (1− z)−
σ

σ+µ =

∞∑

n=0

sn.

The coefficients rn and sn are given by

rn =
1

n!

(
−

ν

σ + µ

)n

, n = 0, 1, 2, . . .

s0 = 1,

sn =
1

n!

n−1∏

j=0

(
σ

σ + µ
+ j

)
, n = 1, 2, 3, . . . .

Using these expressions for rn and sn, n ≥ 0, we find expressions for qn, n ≥ 0:

q0 = C2,

qn = C2

(
rn +

n−1∑

k=0

rksn−k

)
, n = 1, 2, . . . .
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Now we find, for n ≥ 2, that

hn =
h(n)(0)

n!
=

qn−1

n
(2.22)

= C2




(
−ν
σ+µ

)

n!

n−1

+
1

n

n−2∑

k=0




(
−ν
σ+µ

)k

k!(n− 1− k)!

n−k−2∏

j=0

(
σ

σ + µ
+ j

)




 .

Now we have all the ingredients to find expressions for the pj , j ≥ 1. For
example we can write

pj =

j∑

m=0

(
m∑

n=0

fngm−n

)
hj−m, j = 1, 2, . . . ,

or, by interchanging the summation, we can use some other order in combining
the coefficients fn, gn, hn. In theory, we now have an explicit expression for
the p∗j , j = 0, 1, . . . In practice, this does not help much in gaining more insight
in how the p∗j behave as a function of the different parameters of the system.
Therefore, we conclude our investigation of the explicit expression of the steady
state of the system for now. In Section 2.4.3 we will conduct a short numerical
investigation.

To summarize, the steady state (x∗, p∗) is given by

x∗ =
µ(σ + 2µ)

2(Bρ+ µ(σ + 2µ))
,

p∗0 =
µ

2ν

∞∑

k=0

(−1)k
k∏

j=0

ν

(σ + µ)j + µ
,

p∗j =

j∑

m=0

(
m∑

n=0

fngm−n

)
hj−m

j = 1, 2, . . . ,

(2.23)

with

ν =
2Bρ

µ
x∗ =

Bρ(σ + 2µ)

Bρ+ µ(σ + 2µ)
,

and fn, gn, and hn given by (2.21) and (2.22).

2.4.2 Mean value analysis

From this point onwards we will assume the pair-formation process to be in
equilibrium, so we have a fraction x∗ of single women, p∗0 of single men, p∗1 of
men with one wife, and so on. In Section 2.5 we will prove that the steady
state (x∗, p∗) is globally asymptotically stable. This means that no matter
how we choose the initial conditions (x(0), p(0)), as long as they satisfy (2.5),
the solution (x(t), p(t)) converges to the steady state as t → ∞. We assume
the population to exist long enough for this to have happened before we take
any interest in the population and its dynamic sexual network, allowing us
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to consider the system in equilibrium. Thus we have simplified its statistical
description.

The steady state (x∗, p∗) can be translated in probabilities by normalizing.
We have assumed the total fraction of women and men to be 1

2 , so if we are
interested in the probability a woman is single, then this given by 2x∗ rather
than x∗ (and the probability a woman is part of a star of size j is given by 2jp∗j).
Similarly, up to a factor 2, p∗j equals the probability that a man has j partners,
j = 0, 1, 2, . . . Let us denote the number of wives per man, or equivalently the
star size of one star, with the random variable S, then

P(S = j) = 2p∗j , j = 0, 1, . . .

In other words, the probability of a man to have j wives is equal to 2p∗j . The-
refore, the mean number of partners of a man, or the mean star-size, is given
by

E(S) = 2
∞∑

j=1

jp∗j = 1− 2x∗ (2.24)

= 1−
µ(σ + 2µ)

Bρ+ µ(σ + 2µ)
=

Bρ

Bρ+ µ(σ + 2µ)
.

What implications does this have? First of all, we observe that the mean number
of partners per man is always less than 1. This is to be expected. There are as
many males as females present in the population, there is a positive fraction x∗

of single women in equilibrium, and women can only be in a partnership with
at most one man at once. Our second observation is that in order to determine
the expected number of partners of a man we only need to know the fraction
of single women x∗, and this fraction can be calculated without having explicit
expressions for the pj ’s (recall (2.15)).

Note that the number of sexual partnerships in the population is equal to
the mean number of women involved in a partnership, or equivalently, the total
number of women minus the number of single women:

1

2
N∗ −X∗ = N∗

(
1

2
− x∗

)
=

2B

µ

Bρ

2(Bρ+ µ(σ + 2µ))
.

Concerning the dependence on the parameters, we see that the mean star-
size is increasing as a function of both the population birth rate and the pair-
formation rate, and it is a decreasing function in the death and the separation
rate. Indeed

d

dB
E(S) =

ρµ(σ + µ)
(
Bρ+ µ(σ + µ)

)2 > 0,

d

dρ
E(S) =

Bµ(σ + µ)
(
Bρ+ µ(σ + µ)

)2 > 0,

d

dσ
E(S) = −

µBρ
(
Bρ+ µ(σ + µ)

)2 < 0,

d

dµ
E(S) = −

(σ + 4µ)Bρ
(
Bρ+ µ(σ + µ)

)2 < 0.
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Intuitively this also makes sense. An increased population birth rate means an
increased population size since N∗ = 2B/µ, so there are more women to recruit.
An increased pair-formation rate let men ‘profit’ from this more than women
by the asymmetric situation. On the other hand, death and separation lead to
men losing their partners, which decreases their star size.

Note that, because of the relation E(S) = 1 − 2x∗ we also see the opposite
dependence of x∗ on the parameters, i.e. x∗ is a decreasing function in B and ρ
and increasing as a function of σ and µ.

Using the probability distribution for the number of wives per husband, we
can also consider higher moments for S. Let k ∈ N, then the k-th moment is
given by

E(Sk) =

∞∑

j=1

jk P(S = j) = 2

∞∑

j=1

jkp∗j ,

and we see that, contrary to E(S), we need the explicit expressions for the pj’s
in order to calculate E(Sk), k = 2, 3, . . . In particular, we find the variance to
be

Var(S) = E(S2)− E(S)2 = 2

∞∑

j=1

j2p∗j − (1 − 2x∗)2.

Beside the mean star-size we can also consider some other mean values, these
will help us in choosing appropriate parameter values in Section 2.4.3.

The mean number of different partners one single man acquires in his life
time is equal to

W =
ρX∗

µ
. (2.25)

Indeed, (single) women arrive according to a Poisson stream with rate ρX∗,
with X∗ = x∗N∗ the number of single women in steady state, and the mean
life length of this man is 1

µ . So in total, the mean number of women arriving

in his life time is ρX∗

µ . Note that this uses that the acquisition of new partners
is independent of the man’s partnership status, so that we can indeed view the
acquisition of new wives as a Poisson arrival process.

Since women are restricted by the fact that they may only have one husband
at the time, the mean number of different partners a single woman acquires in
her life time H needs to be derived in a different way than W . We can derive
this quantity H using first step analysis. A single woman acquires a husband

with probability
ρN∗

m

ρN∗

m+µ , where N∗
m = 1

2N
∗ is the total male population size in

equilibrium.3 If she is to acquire more husbands, her original partnership must
dissolve either by separation or by the death of her husband. This occurs with
probability σ+µ

σ+2µ . She is then again in the single state; see Figure 2.1 for the
flow diagram of the process.

3Note the asymmetry between men and women in our population. While a single woman
acquires a new husband at rate ρN∗

m, a man (either single or not) acquires a new wife at rate
ρX∗ ≤ ρN∗

m. This has to do with women being able to choose a partner from all the men
in the population, while men are only allowed to choose wives from the population of single
women.
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Figure 2.1: Flow diagram for the pair-formation process from the point of view of
a woman. She is either single or in a partnership with a man, denoted with 0 and 1,
respectively.

The memoryless property tells us that the expected number of partners she
has at this point in time equals the expected number of partners she has at the
beginning. Hence

H =
ρN∗

m

ρN∗
m + µ

(
1 +

σ + µ

σ + 2µ
H

)
.

Solving this equation for H yields

H =
ρN∗

m(σ + 2µ)

µ(ρN∗
m + σ + 2µ)

. (2.26)

Comparing H with W , we see that H = W . This is what one should expect
due to consistency reasons.

Furthermore, note that the mean life length of an individual equals

1

µ
,

and for the mean duration of one partnership we reason as follows. Two indivi-
duals in a partnership separate at rate σ and each individual dies at rate µ, so
the partnership dissolves at rate σ + 2µ, and we see that the mean duration of
a partnership is given by

1

σ + 2µ
.

2.4.3 Dependence on parameters: numerical results

Let’s consider a population with initial size N0 = 10 000. Then, as we assume
the population to be in equilibrium we have B = 1

2µN0. We take one day as
the time unit in our numerical analysis in this section.

We investigate the dependence of the steady state on the parameters by
considering some parameter values. These will be chosen somewhat arbitrarily
and will not be estimated from data. However, we will choose them in a range
such that the expected number of partners of a single man W (see (2.25)) and
the expected number of partners of a single woman H (see (2.26)), the expected
duration of a partnership, and the expected duration of an individual’s sexually
active life are not completely ridiculous.

First, let’s vary µ in the range ( 1
18240 ,

1
3650 ) while keeping the remaining

parameters fixed at ρ = 1
3000 and σ = 1

1000 ; see Figure 2.2 and Table 2.1 for
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some results. Next, we vary ρ in the range ( 1
30000 ,

1
300 ) with σ = 1

1000 and
µ = 1

9120 ; see Figure 2.3 and Table 2.2 for some results. Finally, we vary σ in
the range ( 1

10000 ,
1

100 ) with ρ = 1
3000 , µ = 1

9120 ; see Figure 2.4 and Table 2.3 for
some results.

µ 1
µ

1
σ+2µ H = W x∗ p∗0 p∗1

1
18240 50.0 years 2.5 years 20.2 0.003 0.187 0.180
1

9120 25.0 years 2.2 years 11.1 0.0003 0.189 0.177
1

3650 10.0 years 1.7 years 5.6 0.0004 0.195 0.171

Table 2.1: Table displaying some approximating values for among others the mean
duration of one partnership when varying the death rate µ from µ = 1

18240
till µ = 1

3650
,

and letting ρ = 1

3000
, σ = 1

1000
.

ρ 1
µ

1
σ+2µ H = W x∗ p∗0 p∗1

1
30000 25.0 years 2.2 years 11.0 0.003 0.191 0.177
1

3000 25.0 years 2.2 years 11.1 0.0003 0.189 0.177
1

300 25.0 years 2.2 years 11.1 0.00003 0.189 0.177

Table 2.2: Table displaying some approximating values for among others the mean
duration of one partnership when varying the pair-formation rate ρ from ρ = 1

30000
till

ρ = 1

300
, and letting σ = 1

1000
, µ = 1

9120
.

σ 1
µ

1
σ+2µ H = W x∗ p∗0 p∗1

1
10000 25.0 years 8.6 years 2.9 0.0001 0.201 0.159
1

1000 25.0 years 2.2 years 11.1 0.0003 0.189 0.177
1

100 25.0 years 3.3 months 92.6 0.003 0.186 0.183

Table 2.3: Table displaying some approximating values for among others the mean
duration of one partnership when varying the separation rate σ from σ = 1

10000
till

σ = 1

100
, and letting ρ = 1

3000
, µ = 1

9120
.
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Figure 2.2: Exploring the dependence on µ. The figure on the left shows the expected
number of different partners of a single individual (H = W ) in its life as a function
of µ. The figure on the right shows the fraction of single men p∗0 (purple) and the
fraction of men with 1 partner p∗1 (orange, dashed) as functions of µ. The remaining
parameters are fixed at ρ = 1

3000
and σ = 1

1000
.
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Figure 2.3: Exploring the dependence on ρ. The figure on the left shows the expected
number of different partners of a single individual (H = W ) in its life as a function
of ρ. The figure on the right shows the fraction of single men p∗0 (purple) and the
fraction of men with 1 partner p∗1 (orange, dashed) as functions of ρ. The remaining
parameters are fixed at σ = 1

1000
, µ = 1

9120
.

0.002 0.004 0.006 0.008 0.010
Σ

20

40

60

80

0.002 0.004 0.006 0.008 0.010
Σ

0.180

0.185

0.190

Figure 2.4: Exploring the dependence on σ. The figure on the left shows the expected
number of different partners of a single individual (H = W ) in its life as a function
of σ. The figure on the right shows the fraction of single men p∗0 (purple) and the
fraction of men with 1 partner p∗1 (orange, dashed) as functions of σ. The remaining
parameters are fixed at ρ = 1

3000
and µ = 1

9120
.

Typically, 2p∗n, i.e. the distribution of the number of wives per man, will
have the following shape. A large fraction of men is single or has 1 partner.
If we consider the fraction of men with more than 1 partner, then we find a
sharp decrease in pn as n gets larger. Typically, the fraction of men with more
than 4 partners is next to zero. Moreover, if we compare this distribution with
the Poisson distribution with parameter 1, then we see this is quite a good
approximation; see Figures 2.6 and 2.7. In Table 2.4 we find a list with some
numerical values.

Recall the Poisson distribution. Suppose we have a random variable Z which
is Poisson distributed with rate λ, then

P(Z = n) =
e−λλn

n!
, n = 0, 1, 2, . . .

Concerning our situation of a population with demographic turnover we note
the following. In the range of parameter values that we investigate in this sec-
tion, the Poisson distribution with parameter 1 is quite a good approximation;
see Figures 2.6 and 2.7. However, we can come up with parameter values for
ρ, σ, µ, where the Poisson distribution does not perform well as an approxi-
mation of 2p∗n; see e.g. Figure 2.5. Note that this combination of parameter
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values will probably never be estimated from data of any real-life population.
Based on these parameter values the expected number of sexually active years
is approximately 2.7 years, the mean number of partners of a single woman
will be approximately 1 ∗ 10−6 and a single man has an expected number of
0.0001 partners in his life time. Despite this, we can still use the Poisson dis-
tribution to approximate (2p∗n)n. Choose λ such that P(Z = 0) = 2p∗0, i.e.
let λ = − log(2p∗0). We can then improve approximations of Figures 2.6, 2.7,
and 2.5 (see also Table 2.4). So it seems we can use the Poisson distribution to
approximate (2p∗j )j .
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Figure 2.5: The distribution (2p∗n) of the number of wives per man (blue, dashed),
n = 0, . . . , 10, together with the Poisson distribution with parameter 1 (purple) and
the Poisson distribution with parameter − log(2p∗0) (orange, dashed). For the pair-
formation process we have used B = 1

2
µN0, N0 = 10000, ρ = 1/100000000, σ =

1/100000, and µ = 1/1000.
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Figure 2.6: The distribution of the number of wives per man, n = 0, 1, . . . , 10. The
chosen parameter values are as follows: B = 1

2
µN0, ρ = 1

3000
, σ = 1

100
, µ = 1

9120
. On

the right, this distribution is compared with a Poisson distribution with parameter 1.
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n 2p∗n P (Z = n)− 2p∗n,
Z ∼Poisson(1)

P (Z = n)− 2p∗n,
Z ∼Poisson(-log(2p∗0))

0 0.3713 0.003497 0
1 0.3663 -0.001581 -0.001564
2 0.2926 -0.001355 0.0003936
3 0.06086 -0.0004547 0.0007027
4 0.01523 -0.00009359 0.0003380

Table 2.4: In the second column we have the distribution of the number of wives
per man 2p∗n, n = 0, . . . 4, with parameters B = 1

2
µN0, N0 = 10000, ρ = 1/3000,

σ = 1/100, and µ = 1/9120. In the third column we have the difference P(Z = n)−2p∗n,
where Z is a Poisson distributed random variable with parameter 1. In the fourth
column we have again a difference P(Z = n)− 2p∗n, this time Z is Poisson distributed
with parameter − log(2p∗0). We see that the latter approximation of (2p∗n) is slightly
better.

Another observation we can make about the p∗n is that nearly all men will
have either 0, 1, 2, 3, or 4 partners, for e.g. the case ρ = 1

3000 , σ = 1
100 , µ = 1

9120
we have

p∗0 + p∗1 + p∗2 + p∗3 + p∗4 ≈ 0.498.

Note that this means that less than 1% of all men have more than 4 partners.
Concerning the women in the population, we observe that, for the same set
of parameter values ρ = 1

3000 , σ = 1
100 , µ = 1

9120 , nearly all women are in a
marriage with 0, 1, 2, 3, or 4 co-wives (so this means her husband has 1, 2,. . .,
5 wives). Indeed,

5∑

n=1

np∗n ≈ 0.495.

We find the mean star size to equal

2

∞∑

j=1

jp∗j ≈ 0.9939.

We approximate the variance in the star size and find

2

∞∑

j=1

j2p∗j − (1− 2x∗)2 ≈ 2

50∑

j=1

j2p∗j − (1− 2x∗)2 ≈ 0.9992.

So the average number of partners per man is almost 1, but the variance in
the number of partners is also close to one. Compare with the the Poisson
distribution with parameter 1, its mean and variance are both 1. If we disregard
all men with more than four partners and all single men, we find that the mean
star size is equal to

∑4
j=1 jp

∗
j∑4

j=1 p
∗
j

≈ 1.583
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and the variance to be

∑4
j=1 j

2p∗j∑4
j=1 p

∗
j

−

(∑4
j=1 jp

∗
j∑4

j=1 p
∗
j

)2

≈ 0.615.

On first sight, based on this limited numerical investigation, the pair-
formation model seems to be quite a good approximation of reality as far as
the steady state of the system is concerned. After all, we would expect that in
real life most men do not have more than one wife and certainly that almost
none have more than 4 wives. We do find that the fraction of single women
x∗ is in general quite small in our model (see Tables 2.1, 2.2, and 2.3 for some
numerical values), and this may be not very realistic.

Our pair-formation model only contains four parameters B, µ, ρ, and σ.
Suppose we would have some data on a sexually active population. Information
about the demography of the population, i.e. the total population size and the
average number of years individuals are sexually active allow us to give an
estimate for B and µ. Information about the average duration of a partnership
would give us an estimate for σ. Then we would be able to give an estimate for ρ
by having data on the average number of partners of an individual in its lifetime
(use the formula for H = W ) or the average star size using formula (2.24).

That being said, we do not claim the above description of finding estimates
for the parameters the ‘correct’ way. For example, the rate at which men acquire
new wives is dependent on the number of single women, and this may make it
difficult to find good estimates for some of the parameters. Whether or not
one is able to estimate the parameters of course depends on the data available.
Moreover, from the point of view of the theory on statistics, estimators should
satisfy certain conditions such as being unbiased and consistent. We have not
investigated whether we can find such estimators.

æ

æ

æ

æ

æ
æ æ æ æ æ æ

2 4 6 8 10
n

0.05

0.10

0.15

pn

N0=10000, B=
1

2
ΜN0, Ρ=

1

500
, Σ=

1

1000
, Μ=

1

9120

æ

æ

æ

æ

æ
æ æ æ æ æ æ

à à

à

à

à
à à à à à à

2 4 6 8 10
n

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2 pn

N0=10000, B=
1

2
ΜN0, Ρ=

1

500
, Σ=

1

1000
, Μ=

1

9120

Figure 2.7: The fraction of men in the population with n partners (normalized to a
probability distribution function), n = 0, 1, . . . , 10. The chosen parameter values are
as follows: B = 1

2
µN0, ρ = 1

500
, σ = 1

1000
, µ = 1

9120
. On the right, this distribution is

compared with a Poisson distribution with parameter 1.

2.4.4 Extreme situations

Let us consider some extremes for the parameter values. We will consider the
cases ρ = 0, σ = 0, ρ = σ = 0, and the situation without birth and death.
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No partnership formation: ρ = 0

If we let B, µ > 0, σ > 0 and ρ = 0, then no partnerships can be formed and all
existing partnerships will eventually dissolve. We expect the steady state to be
globally asymptotically stable and to satisfy x∗ = p∗0 = 1

2 , p
∗
j = 0, j = 1, 2, . . ..

Indeed, since partnerships can only dissolve, we expect that all individuals in
the population will eventually become single. We can easily derive the steady
state from our system of differential equations. The system becomes

dx

dt
=

µ

2
− (σ + µ)x + µ+

1

2
σ,

dp0
dt

=
µ

2
+ (σ + µ)p1 − µp0,

dpj
dt

= −(σ + µ)pj − µpj + (σ + µ)(j + 1)pj+1, j ≥ 1.

Letting dx/dt = 0, we see that indeed x∗ = 1
2 . From dp0/dt = 0 we derive that

p∗1 =
µ

µ+ σ
p∗0 −

µ

2(µ+ σ)
.

Since the pj , j ≥ 0 must all be nonnegative, p∗0 must satisfy the inequality
p∗0 ≥ 1

2 . On the other hand, by the consistency conditions (2.5) we also have

x∗ + p∗0 ≤ 1,

from which the reverse inequality p∗0 ≤ 1
2 follows. Therefore we see that p∗0 = 1

2 .
Since

∑
n≥0 p

∗
n = 1

2 , it also follows that p∗n = 0 for all n ≥ 1.

No partnership formation or separation: ρ = σ = 0

We can also take the (boring) extreme of σ = ρ = 0. Then new partnerships
can not be formed, while existing partnerships will eventually dissolve due to
the death of one of the partners. If we proceed as in the case of σ > 0, ρ = 0,
we find the same steady state x∗ = p∗0 = 1

2 , p
∗
j = 0 for all j ≥ 1. This is also

what one should expect. By setting σ = ρ = 0, all partnerships will eventually
dissolve by natural death of partners. New individuals enter the population as
singles and no new partnerships can be formed since ρ = 0. Hence, after enough
time, the dynamics of the population are only influenced by birth and death.
Since we assume the population to be in equilibrium and the sex ratio to be
1 : 1, we expect the number of single men to equal the number of single women
in equilibrium.

No partnership separation: σ = 0

Note that if we take the romantic view of partnerships existing till one of the
partners involved dies, i.e. if we let σ = 0, the calculation of the steady state
(x∗, p∗) simplifies compared to Section 2.4.1. We also assume all other parame-
ters to be strictly larger than zero.

First, by setting the right-hand side of (2.2) equal to zero, and by setting
σ = 0, we find for x∗ the following expression:

x∗ =
µ2

ρB + 2µ2
.
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If we again let ν := 2Bρ
µ x∗ = 2ρBµ

ρB+2µ2 , we can find, in exactly the same way as
with σ > 0, explicit expressions for the pj , j = 0, 1, . . . Indeed, our generating
function G then solves the differential equation

G′(z) =
ν

µ
G(z) +

G(z)

1− z
−

1

2(1− z)
,

and with initial condition G(0) = p0, it gets the expression

G(z) =
µ

2ν

1− e
ν
µ
z

1− z
+ p0

e
ν
µ
z

1− z
.

We can again choose p0 such that the limit limz→1 G(z) = 1
2 . First, we expand

the function z 7→ µ(1−e
ν
µ z)

2ν + p0e
ν
µ z around the point z = 1, and set the zeroth

order term equal to zero. Note that, contrary to before, we can now simply take
the Taylor expansion. The zeroth order term is given by µ

2ν

(
1 − e

ν
µ

)
+ p0e

ν
µ .

We want this term to equal zero, thus we choose p0 as follows:

p0 =
µ

2ν

(
1− e−

ν
µ

)
. (2.27)

This choice of p0 gives

G(z) =
µ

2ν

e
ν
µ − e

ν
µ
z

1− z
,

If we let z near 1, then we have

G(z) =
− 1

2e
ν
µ (z − 1) + p0

ν
µe

ν
µ (z − 1) +O(z − 1)2

1− z
.

This shows us that

lim
z→1

G(z) =
1

2
e

ν
µ − p0

ν

µ
e

ν
µ =

1

2
,

where we used the expression for p0 in the second equality. The explicit ex-
pression that we find for G shows us that the coefficients pj of the power series
expansion of G in z = 0 are given by

pj =
µ

2ν

(
1− e−

ν
µ

j∑

k=0

(
ν

µ

)k
1

k!

)
, j = 0, 1, 2, . . .

We see from this expression that j 7→ pj is a decreasing function of j and pj → 0
as j → ∞. Finally, we can check that indeed

∑∞
j=0 pj =

1
2 . First we rewrite pj :

pj =
µ

2ν
e−

ν
µ

(
e

ν
µ −

j∑

k=0

(
ν

µ

)k
1

k!

)

=
µ

2ν
e−

ν
µ

(
∞∑

k=0

(
ν

µ

)k
1

k!
−

j∑

k=0

(
ν

µ

)k
1

k!

)

=
µ

2ν
e−

ν
µ

∞∑

k=j+1

(
ν

µ

)k
1

k!
.
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If we now sum over all pj we get

∞∑

j=0

pj =
µ

2ν
e−

ν
µ

∞∑

j=0

∞∑

k=j+1

(ν/µ)k

k!
=

µ

2ν
e−

ν
µ

∞∑

k=1

k−1∑

j=0

(ν/µ)k

k!

=
µ

2ν
e−

ν
µ

∞∑

k=1

k(ν/µ)k

k!
=

µ

2ν
e−

ν
µ
ν

µ
e

ν
µ

=
1

2
.

Note that we may interchange the summation over k and j since the sums are
absolutely convergent.

If we compare the steady state found in this extreme case of σ = 0 with the
general case (2.23), then we see that (2.23) coincides with the extreme situation

if we let σ = 0 in (2.23). Indeed, x∗ becomes µ2

Bρ+2µ2 , and for p∗0 we obtain

p∗0 =
1

2

∞∑

k=0

k∏

j=0

−ν

µ(j + 1)
=

1

2

∞∑

k=0

(
−
ν

µ

)k
1

(k + 1)!
= −

µ

2ν

(
e−

ν
µ − 1

)

=
µ

2ν

(
1− e−

ν
µ

)
.

For the remaining pj we can also show the expressions coincide if we let σ = 0
in (2.23). Indeed, we find

C1 = −
µ

ν
e−

ν
µ

fn =

(
ν
µ

)

n!
, n = 0, 1, . . .

gn = 1, n = 0, 1, . . .

h0 = γ

(
1,−

ν

µ

)
=

∫ − ν
µ

0

e−tdt = 1− e
ν
µ ,

h1 = e
ν
µ
ν

µ
,

hn = −e
ν
µ

(
− ν

µ

)n

n!
, n = 2, 3, . . .

If we express pj = C1

∑j
m=0 fj−m (

∑m
n=0 hngm−n), j = 0, 1, . . ., then we find

the right expression. Indeed,

m∑

n=0

hngn−m = h0 + h1 +

m∑

n=2

hn

= 1− e
ν
µ + e

ν
µ
ν

µ
− e

ν
µ

m∑

n=2

(
− ν

µ

)n

n!

= 1− e
ν
µ

m∑

n=0

(
− ν

µ

)n

n!
,
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and

j∑

m=0

fj−m

(
m∑

n=0

hngm−n

)
=

j∑

m=0

(
ν
µ

)j−m

(j −m!)
− e

ν
µ

j∑

m=0

m∑

n=0

(
− ν

µ

)n (
ν
µ

)j−m

n!(j −m)!

=

j∑

m=0

(
ν
µ

)m

m!
− e

ν
µ .

The last equality can be found as follows. The last summand of the above
derivation can be rewritten:

j∑

m=0

m∑

n=0

(
− ν

µ

)n (
ν
µ

)j−m

n!(j −m)!

=

j∑

m=0

(
− ν

µ

)m (
ν
µ

)j−m

m!(j −m)!
+

j∑

m=1

(
− ν

µ

)m−1 (
ν
µ

)j−m

(m− 1)!(j −m)!

+ . . .+

j∑

m=j−1

(
− ν

µ

)m−(j−1) (
ν
µ

)j−m

(m− (j − 1))!(j −m)!
+ 1

= 1.

Hence, we find

pj =
µ

2ν



1−

j∑

m=0

(
ν
µ

)m

m!



 .

No demographic turnover: B = µ = 0

Finally, we can also consider the situation without birth and death, i.e. B =
µ = 0.4 We then obtain a pair-formation process in a closed population of fixed
size N . This can be described by the following system.

dx

dt
= −ρNx

∞∑

j=0

pj + σ

∞∑

j=1

jpj

dp0
dt

= −ρNxp0 + σp1

dpj
dt

= ρNxpj−1 −
(
ρNx+ σj

)
pj + σ(j + 1)pj+1, j ≥ 1.

It turns out to be quite simple to calculate the steady state of this system.
Consistency conditions give us

∑∞
j=0 pj =

1
2 and

∑∞
j=1 jpj =

1
2 − x. By setting

dx/dt = 0 we obtain a linear equation in x that we can solve:

−ρ 1
2Nx+ σ(12 − x) = 0,

4Note that the situation with only birth or with only death is not interesting to consider.
In the first case we will have exponential growth of the population whereas in the second case
the population will decrease and eventually not contain any individuals.
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hence x∗ = σ
ρN+2σ . Let us write

ν = ν(ρ, σ,N) := ρNx∗ =
ρNσ

ρN + 2σ
.

By setting the right-hand side of dp0/dt equal to zero we can express p∗1 in terms
of p∗0. This gives −νp0 + σp1 = 0, hence p∗1 = ν

σp
∗
0.

For j ≥ 1 we have a recurrence relation that we solve by the generating
function approach. Let G(z) :=

∑∞
j=0 pjz

j be the generating function of the
pj . Note that G(0) = p0. Now, by multiplying the right-hand side of dpj/dt
with zn and summing over all n ≥ 1 we obtain a first order linear differential
equation for G that we can solve explicitly:

0 = −ν

∞∑

j=1

pjz
j + ν

∞∑

j=1

pj−1z
j + σ

∞∑

j=1

(j + 1)pj+1z
j − σ

∞∑

j=1

jpjz
j

= ν
(
G(z)− p0

)
+ νzG(z) + σ

(
G′(z)− p1

)
− σzG′(z)

= G(z)ν(z − 1)−G′(z)σ(z − 1) + νp0 − σp1.

In the second equality we have used that G′(z) =
∑∞

j=1 jpjz
j−1. Finally by

using the relation between p0 and p1, we get that G must satisfy the differential
equation

G′(z) =
ν

σ
G(z).

Together with the boundary condition G(0) = p0 we see that

G(z) = p0 exp
( ν
σ
z
)
= p0

∞∑

j=0

(ν/σ)j

j!
zj.

Since by definition of G we also have G(z) =
∑∞

j=0 pjz
j, we see that

pj = p0
(ν/σ)j

j!
.

We are left with solving the unknown p0. For this we will use that
∑∞

j=0 pj =
1
2 :

1

2
=

∞∑

j=0

pj = p0

∞∑

j=0

(ν/σ)j

j!
= p0e

ν/σ.

Hence

p∗0 =
1

2
e−ν/σ.

Finally, we use the explicit expression for ν, the steady state of the system is
given by (x∗, p∗), where

x∗ =
σ

ρN + 2σ
,

p∗j =
1

2

(
ρN
σ x∗

)j

j!
exp

(
−
ρN

σ
x∗

)

=
1

2

(
ρN

ρN+2σ

)j

j!
exp

(
−

ρN

ρN + 2σ

)
, j = 0, 1, . . . .

(2.28)
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We see that x∗ ≥ 0 and p∗j ≥ 0, j = 0, 1, . . ., for all ρ, σ,N ≥ 0 so we do not
have to put any restrictions on the parameters based on the steady state of the
system. If we consider the distribution of the number of wives a man has, i.e.

P(man has j wives) = 2p∗j , j = 0, 1, . . . ,

then we recognize that this random variable is Poisson distributed with para-
meter

ρN

ρN + 2σ
.

As the main motivation for this project arises from the virus HIV, we will not
focus on a closed population. Indeed, the time-scale of HIV makes us wanting
to consider a population with demographic turnover.

Remark 2.5. Note that, technically, we should also check that the special cases
boil down to systems for which unique solutions exist given an initial condition.
Otherwise, it is not worth knowing the steady states. We can do this by checking
that the assumptions 1, 4, and 6 of [16] still hold. However, we will omit these
tasks from this thesis as we will not consider the extreme cases further along.
Intuitively, there should not be any reason to expect existence and uniqueness
not to hold anymore, and the proof of this should really just be checking the
assumptions.

Moreover, for these extreme situations, we would also like the steady states
to be globally asymptotically stable (except for the situation that ρ = 0). We
will again omit this from this thesis for the extreme cases and only show that
this is true for the situation that all parameters B, µ, ρ, and σ are strictly larger
than zero in Section 2.5 below.

2.5 Stability of the steady state

In this section we will focus on proving that the steady state (x∗, p∗) is globally
asymptotically stable on the state space C defined by (2.13). As in Section 2.2
we will use results from [16]. In Theorem 2.3, we have seen that if the initial
condition

(
x(0), p(0)

)
= (x̃, p̃) belongs to C, then the solution (x(t), p(t)) is also

in C.
The proof will consist of two parts. First we will prove the existence of a

compact attractor. Therefore we introduce its definition. Recall the notation for
the semiflow of the system introduced in (2.14). A nonempty compact invariant
subset A of C is called a compact attractor of B⊂C if for all open sets U with
A⊂U ⊂C there is an r > 0 such that

Φt(B)⊂U, for all t ≥ r.

Equivalently,

d
(
Φt(B), A

)
= sup

(x,p∈B)

d
(
Φt(x, p), A

)
→ 0, as t → ∞,

where d
(
Φt(x, p), A

)
= inf(x̃,p̃)∈A ‖Φt(x, p) − (x̃, p̃)‖ denotes the distance of

Φt(x, p) to the set A. A nonempty compact invariant subset A⊂C is called
a compact attractor of bounded subsets of C if A is a compact attractor of
every bounded subset B of C.
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Remark 2.6. If a compact attractor of all bounded subsets of C exists, it is uni-
quely determined. Indeed, suppose we would have a compact attractor A, this
attractor is invariant. Then necessarily it must contain all bounded invariant
subsets of C. Suppose B⊂C is a bounded invariant subset of C with B * A.
Then there is a point (x, p) ∈ B, (x, p) /∈ A. Since A is compact it is closed and
therefore we find that

d((x, p), A) = inf
(x̃,p̃)∈A

‖(x, p)− (x̃, p̃)‖ = ε > 0.

Then, as B is invariant we have Φt(B) = B, t ≥ 0, and

d
(
Φt(B), A

)
= d(B,A) ≥ ε > 0, for all t ≥ 0.

This contradicts A being a compact attractor of all bounded subsets. Hence,
the compact attractor of all bounded subsets is unique.

After proving the first part, we will continue our proof of stability by proving
the compact attractor consists of the steady state (x∗, p∗) only. This then allows
us to conclude that (x∗, p∗) is globally asymptotically stable in C.

Before we start with either, we will formulate some approximations and
estimates for solutions of (2.10), which will be useful in estimates we will make.

The following lemma has been mentioned already in the proof of Theo-
rem 2.2. We are able to approximate solutions (x(t), p(t)) of system (2.10). In
turn, this allows for useful estimates of (x(t), p(t)), which we will need in proving
the stability of (x∗, p∗).

Lemma 1. On every bounded interval of R+, the solution (x, p) of Theorem 2.2
is the uniform limit of solutions (x[n], p[n]) on R+ with values in R+ ×ℓ11+ which
solves the system

d

dt
x[n](t) = −rx[n](t)

∞∑

j=0

p
[n]
j (t) + (σ + 2µ)

∞∑

j=1

jp
[n]
j (t),

d

dt
p
[n]
j (t)− x[n](t)

∞∑

k=0

γjkp
[n]
k (t) =






n∑

k=0

αjkp
[n]
k (t), j = 0, . . . , n,

αjjp
[n]
j (t), j > n.

(2.29)

(x[n](0), p[n](0)) = (x̃, p̃).

Proof. See [16, Remark 3, p. 64] which makes exactly this statement.

We will formulate two lemma’s concerning the approximating solutions of
Lemma 1. These lemma’s will also be used in the proof of the stability of the
steady state. In the first lemma, we show that we can estimate the norm of
the approximating solutions (in R×ℓ11) using the norm of the initial condition
(x̂, p̂).

Lemma 2. Let (x[n](0), p[n](0)) = (x̂, p̂) be the initial condition of sys-
tem (2.29). The approximating solutions

(
x[n], p[n]

)
satisfy

x[n](t) +

∞∑

j=1

jx
[n]
j (t) ≤ x̂+

∞∑

j=1

jp̂j ,
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and

∞∑

j=0

p
[n]
j (t) ≤

∞∑

j=0

p̂j.

Proof. The following estimates hold for the approximating solution:

∞∑

j=0

p
[n]
j (t) ≤

∞∑

j=0

p̃j +

∫ t

0

∞∑

j=0

x[n](s)

∞∑

k=0

γjkp
[n]
k (s)ds,

∞∑

j=0

jp
[n]
j (t) ≤

∞∑

j=0

jp̃j +

∞∑

k=0

∞∑

j=0

jαjk

∫ t

0

p
[n]
k (s)ds

+

∫ t

0

∞∑

j=0

jx[n](s)

∞∑

k=0

γjkp
[n]
k (s)ds.

See the proof of [16, Theorem 7] for the details of the derivation of the above

estimates and note that
∑∞

k=0

∑∞
j=0 αjk

∫ t

0
p
[n]
k (s)ds = 0 by Proposition 1(b).

Therefore,

x[n](t) +
∞∑

j=1

jp
[n]
j (t)

≤ x̂+

∞∑

j=1

jp̂j +

∫ t

0



−rx[n](s)

∞∑

j=0

p
[n]
j (s) + (σ + 2µ)

∞∑

j=1

jp
[n]
j (s)



 ds

+

∞∑

k=0

∞∑

j=1

jαjk

∫ t

0

p
[n]
k (s)ds+

∫ t

0

∞∑

j=1

jx[n](s)

∞∑

k=0

γjkp
[n]
k (s)ds

= x̂+

∞∑

j=1

jp̂j .

Here we have used that the double series
∑∞

k=0

∑∞
j=1 jαjkp

[n]
k exists absolutely;

see Remark 2.1. Since the p
[n]
k are nonnegative, we may interchange summation

and integration in the fourth summand. Proposition 4 then gives the equality.
Furthermore, the calculations in the proof of Proposition 3(a) show that

∞∑

j=0

p̂j +

∫ t

0

∞∑

j=0

x[n](s)

∞∑

k=0

γjkp
[n]
k (s)ds =

∞∑

j=0

p̂j,

and this concludes the proof.

The following lemma shows convergence of approximating solutions.

Lemma 3. If we have two different initial conditions (x̂, p̂) and (x̌, p̌), then the
approximating solutions p[n] and p̃[n], respectively, satisfy

n∑

j=1

j
∣∣p[n]j (t)− p̃

[n]
j (t)

∣∣→
∞∑

j=1

j
∣∣pj(t)− p̃j(t)

∣∣, as n → ∞,

for all t ∈ R+.
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Proof. Since p[n] converges uniformly to p we find that

∣∣∣
∞∑

j=1

jpj(t)−

n∑

j=1

jp
[n]
j (t)

∣∣∣ =
∣∣∣

∞∑

j=1

j(pj(t)− p
[n]
j (t))−

∞∑

j=n+1

jp
[n]
j (t)

∣∣∣

≤

∞∑

j=1

j
∣∣pj(t)− p

[n]
j (t)

∣∣ +
∞∑

j=n+1

jp
[n]
j (t).

And this converges to 0 as n → ∞. Hence

∣∣∣
∞∑

j=1

j
∣∣pj(t)− p̃j(t)

∣∣ −
n∑

j=1

j
∣∣p[n]j (t)− p̃

[n]
j (t)

∣∣
∣∣∣

≤
∣∣∣

∞∑

j=1

jpj(t)−

∞∑

j=1

jp̃j(t)−

n∑

j=1

jp
[n]
j (t) +

n∑

j=1

jp̃
[n]
j (t)

∣∣∣

≤
∣∣∣

∞∑

j=1

jpj(t)−
n∑

j=1

jp
[n]
j (t)

∣∣∣ +
∣∣∣

n∑

j=1

jp̃
[n]
j (t)−

∞∑

j=1

jp̃j(t)
∣∣∣

converges to 0 as n → ∞.

Before we start with proving the existence of a compact attractor note the
following. The set C is a bounded subset of R×ℓ11 and by Theorem 2.3 for the
semiflow Φt it holds that

Φt(C)⊂C for all t ≥ 0. (2.30)

Hence, if we want to show that a compact attractor of all subsets of C exists,
it is enough to show that C has a compact attractor.We are now almost ready
to start the actual proof.

Next we note that it is sufficient to show that

αs

(
Φt(C)

)
→ 0 as t → ∞, (2.31)

where αs is the separation measure of non-compactness. The compact attractor
is then given by

ω(C) =
⋂

t≥0

⋃

s≥t

Φs(C), (2.32)

see [16, Lemma 5].5

If (X, d) is a metric space and Y ⊂X , then αs(Y ) is characterized as follows:

αs(Y ) = inf{c ≥ 0: each sequence (xn)n in Y has a subsequence

(xnk
)k with lim sup

j,k→∞
d(xnj

, xnk
) ≤ c}. (2.33)

The next theorem, which is concerned with proving the existence of a com-
pact attractor, will work towards showing (2.31). The proof follows the structure
of the proof of [16, Theorem 21]. The desired estimates follow from the fact that
C is bounded and (2.30).

5Recall that ω(B) denotes the set of omega limit points of the set B⊂C under Φ.
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Theorem 2.7. The semiflow Φ on C induced by the solutions of (2.10) has a
compact attractor of C.

Proof. Let y, ỹ ∈ R. For sufficiently small |h|,

|y + hỹ| − |y| =





hỹ, y > 0,

|h||ỹ|, y = 0,

−hỹ, y < 0.

We divide by h and take the limit h → 0 from the left,

D−|y|ỹ := lim
h→−0

|y + hỹ| − |y|

h
=





ỹ, y > 0,

−|ỹ|, y = 0,

−ỹ, y < 0.

Therefore, the following estimate holds:

D−|y|ỹ ≤ ỹ sign0(y), where sign0(y) =






1, y > 0,

0, y = 0,

−1, y < 0.

Let (x̂, p̂), (x̌, p̌) ∈ C, and
(
x[n](t), p[n](t)

)
,
(
x̃[n](t), p̃[n](t)

)
be approximating

solutions (as in Lemma 1) of Φt(x̂, p̂) and Φt(x̌, p̌), respectively. If we let d−

dt
denote the left derivative, then (see [20, VI.4 Lemma 4.1]) we obtain

d−
dt

∣∣p[n]j (t)− p̃
[n]
j (t)

∣∣ = D−

∣∣p[n]j (t)− p̃
[n]
j (t)

∣∣
(

d

dt
p
[n]
j (t)− p̃

[n]
j (t)

)

≤

(
d

dt
p
[n]
j (t)−

d

dt
p̃
[n]
j (t)

)
sign0

(
p
[n]
j (t)− p̃

[n]
j (t)

)

≤

∣∣∣∣
d

dt
p
[n]
j (t)−

d

dt
p̃
[n]
j (t)

∣∣∣∣ .

Using (2.29), this yields

d−
dt

∣∣p[n]j (t)− p̃
[n]
j (t)

∣∣ ≤
n∑

k=0

αjk|p
[n]
k (t)− p̃

[n]
k (t)|

+ x[n](t)

∞∑

k=0

γjk
∣∣p[n]k (t)− p̃

[n]
k (t)

∣∣

+
∣∣x[n](t)− x̃[n](t)

∣∣
∞∑

k=0

|γjk| ·
∣∣p̃[n]k (t)

∣∣.

We multiply this inequality by j, sum with respect to j = 1, . . . , n, change the



2.5. Stability of the steady state 45

order of summation, and use that αjk ≥ 0 for j 6= k:

d−
dt

n∑

j=1

j
∣∣p[n]j (t)− p̃

[n]
j (t)

∣∣ ≤
n∑

k=0

∞∑

j=1

αjk

∣∣p[n]k (t)− p̃
[n]
k (t)

∣∣

+ x[n](t)

∞∑

k=0

n∑

j=1

jγjk
∣∣p[n]k (t)− p̃

[n]
k (t)

∣∣

+
∣∣x[n](t)− x̃[n](t)

∣∣
∞∑

k=0

∞∑

j=1

j|γjk|p̃
[n]
k (t).

Notice that

∞∑

j=1

j|γjk| = r(1 + k) ≤ 2r(1 + k) and

∞∑

j=1

jαjk = −(σ + 2µ)k,

for k = 0, 1, . . . Hence

d−
dt

n∑

j=1

j
∣∣p[n]j (t)− p̃

[n]
j (t)

∣∣ ≤ −(σ + 2µ)

n∑

k=0

k
∣∣p[n]k (t)− p̃

[n]
k (t)

∣∣

+ x[n](t)

∞∑

k=0

n∑

j=1

jγjk|p
[n]
k (t)− p̃

[n]
k (t)|

+ 2r
∣∣x[n](t)− x̃[n](t)

∣∣ · ‖p̃[n]k (t)‖1.

In the last summand we have used that ‖x‖1 =
∑∞

k=0(1 + k)|x| for x ∈ ℓ11. We
integrate the above differential equation and obtain

n∑

j=1

j
∣∣p[n]j (t)− p̃

[n]
j (t)

∣∣

≤ e−(σ+2µ)t
n∑

j=1

j
∣∣p[n]j (0)− p̃

[n]
j (0)

∣∣

+

∫ t

0

e−(σ+2µ)(t−s)x[n](s)

∞∑

k=0

n∑

j=1

jγjk
∣∣p[n]k (s)− p̃

[n]
k (s)

∣∣ds

+ 2r

∫ t

0

e−(σ+2µ)(t−s)
∣∣x[n](s)− x̃[n](s)

∣∣ · ‖p̃[n](s)‖1ds.

Next, Lemma 3 shows us that
∑n

j=1 j
∣∣p[n]j (t)−p̃

[n]
j (t)

∣∣→
∑∞

j=1 j
∣∣pj(t)−p̃j(t)

∣∣ as
n → ∞. We apply Lebesgue dominated convergence and interchange integration
and summation with the limit of n → ∞ in the above inequality. Let’s show
explicitly that we may apply this to the summands.

We have the estimate

∞∑

k=0

∣∣∣
n∑

j=1

jγjkx
[n](s)

∣∣p[n]k (s)− p̃
[n]
k (s)

∣∣
∣∣∣ ≤ r

∞∑

k=0

kx[n](s)
∣∣p[n]k (s)− p̃

[n]
k (s)

∣∣

≤ rx[n](s)‖p[n](s)− p̃[n](s)‖1

≤ r,
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where we have used

n∑

j=1

jγjk =





r, n ≥ k + 1,

−rk, n = k,

0, n < k,

in the first inequality and Lemma 2 and (x̂, p̂), (x̌, p̌) ∈ C in the final estimate.
Therefore we may interchange the limit of n → ∞ with first the integral and
second the infinite sum of k = 0 to ∞ and we obtain

lim
n→∞

∫ t

0

e−(σ+2µ)(t−s)x[n](s)

∞∑

k=0

n∑

j=1

jγjk
∣∣p[n]k (s)− p̃

[n]
k (s)

∣∣ds

=

∫ t

0

e−(σ+2µ)(t−s)x(s)

∞∑

k=0

∞∑

j=1

jγjk|pk(s)− p̃k(s)|ds

= r

∫ t

0

e−(σ+2µ)(t−s)x(s)

∞∑

k=0

|pk(s)− p̃k(s)|ds,

where the last inequality holds since
∑∞

j=1 jγjk = r for all k ∈ N.

Since e−(σ+2µ)(t−s)|x[n](s)− x̃[n](s)| · ‖p̃[n](s)‖1 ≤ 1 for all s ∈ (0, t) we may
also use Lebesgue dominated convergence in the following:

lim
n→∞

2r

∫ t

0

e−(σ+2µ)(t−s)
∣∣x[n](s)− x̃[n](s)

∣∣ · ‖p̃[n](s)‖1ds

= 2r

∫ t

0

e−(σ+2µ)(t−s)|x(s) − x̃(s)| · ‖p̃(s)‖1ds.

Therefore
∞∑

j=1

j
∣∣pj(t)− p̃j(t)

∣∣ ≤ e−(σ+2µ)t
∞∑

j=1

j|pj(0)− p̃j(0)|

+ r

∫ t

0

e−(σ+2µ)(t−s)x(s)

∞∑

k=0

|pk(s)− p̃k(s)|ds

+ 2r

∫ t

0

e−(σ+2µ)(t−s)|x(s) − x̃(s)| · ‖p̃(s)‖1ds.

We split up the second sum of the right-hand side in the above inequality at
k = i where i ∈ N is arbitrary. Then

∞∑

j=1

j
∣∣pj(t)− p̃j(t)

∣∣ ≤ e−(σ+2µ)t
∞∑

j=1

j|pj(0)− p̃j(0)|

+ r

∫ t

0

e−(σ+2µ)(t−s)x(s)
i∑

k=0

|pk(s)− p̃k(s)|ds

+ r

∫ t

0

e−(σ+2µ)(t−s)x(s)

∞∑

k=i+1

|pk(s)− p̃k(s)|ds

+ 2r

∫ t

0

e−(σ+2µ)(t−s)|x(s) − x̃(s)| · ‖p̃(s)‖1ds.
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Note the inequality
∞∑

k=i+1

|pk(s)− p̃k(s)| ≤
1

i

∞∑

k=i+1

k|pk(s)− p̃k(s)|

≤
1

i
‖p(s)− p̃(s)‖1.

Hence,
∞∑

j=1

j
∣∣pj(t)− p̃j(t)

∣∣

≤ e−(σ+2µ)t
∞∑

j=1

j|pj(0)− p̃j(0)|

+ r

∫ t

0

e−(σ+2µ)(t−s)x(s)

i∑

k=0

|pk(s)− p̃k(s)|ds

+
r

i

∫ t

0

e−(σ+2µ)(t−s)x(s)‖p(s)− p̃(s)‖1ds

+ 2r

∫ t

0

e−(σ+2µ)(t−s)|x(s)− x̃(s)| · ‖p̃(s)‖1ds. (2.34)

Let
(
(x̂{n}, p̂{n})

)
n
be a sequence in C and (x{n}, p{n}) = Φt(x̂

{n}, p̂{n}).

We will show that (x{nk})k, and for each j, (p
{nk}
j )k are Cauchy sequences on

every finite interval in R+. We are then able to show that (2.31) holds, allowing
us to conclude that a compact attractor exists.

Since C is bounded by 1 in the space R×ℓ11 with respect to the norm given

by (2.9), the sequence (x{n})n and, for each j ≥ 0, (p
{n}
j )n are equi-bounded

with respect to n. We will show that they are also equi-continuous with respect
to n on every finite interval in R+.

Let n ∈ N be arbitrary. Then writing

x{n}(t) = x̂{n} + (σ +2µ)

∫ t

0

∞∑

k=1

kp
{n}
k (u)du+ r

∫ t

0

x{n}(u)

∞∑

k=0

p
{n}
k (u)du,

shows (x{n})n is equi-continuous:

∣∣x{n}(t)− x{n}(s)
∣∣ ≤ (σ + 2µ)

∣∣∣∣∣

∫ s

t

∞∑

k=1

kp
{n}
k (u)du

∣∣∣∣∣

+ r

∣∣∣∣∣

∫ s

t

x{n}(u)

∞∑

k=0

p
{n}
k (u)du

∣∣∣∣∣

≤ (σ + 2µ+ r)|t − s|,

Similarly, by using the expression for pj given in (2.10), we can make the

following estimates for p
{n}
j . Let t ≤ s, then

∣∣p{n}j (t)− p
{n}
j (s)

∣∣

≤

∞∑

k=0

|αjk|

∫ s

t

p
{n}
k (u)du +

∞∑

k=0

|γjk|

∫ s

t

x{n}(u)p
{n}
k (u)du
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Note that
∑∞

k=0 |γjk ≤ 2r, j = 0, 1, . . .,

∞∑

k=0

|α0k|

∫ s

t

p
{n}
k (u)du =

∫ s

t

∞∑

k=0

|α0k|p
{n}
k (u)du =

1

2
µ|t− s|.

and
∞∑

k=0

|αjk|

∫ s

t

p
{n}
k (u)du =

∫ s

t

∞∑

k=0

|αjk|p
{n}
k (u)du

=

∫ s

t

(
|αjj |x

{n}
j (u) + |αj,j+1|x

{n}
j+1(u)

)
du

≤ (σ + 2µ)|t− s|,

for j ≥ 1. Hence
∣∣p{n}j (t) − p

{n}
j (s)

∣∣ ≤ K|t − s|, j = 0, 1, . . ., for some finite

constant K > 0. These estimates show that (p
{n}
j )n is equi-continuous for each

j = 0, 1, . . .

We conclude that (x{n})n and for each j ≥ 0, (p
{n}
j )n are equi-bounded

and equi-continuous with respect to n on every finite interval in R+. By the
Arzela-Ascoli theorem and a diagonalization procedure, after choosing approp-

riate subsequences, (x{n})n and for each j ≥ 0, (p
{n}
j )n are Cauchy sequences

on every finite interval in R+. Let m,n ∈ N. By setting (x, p) = (x{m}, p{m})
and (x̃, p̃) = (x{n}, p{n}) in inequality (2.34), we find the following estimate:

lim sup
m,n→∞

∞∑

j=1

j
∣∣p{m}

j (t)− p
{n}
j (t)

∣∣

≤ e−(σ+2µ)t lim sup
m,n→∞

‖p
{m}
j (0)− p

{n}
j (0)‖1

+
r

i

∫ t

0

e−(σ+2µ)(t−s)x{m}(s)‖p
{m}
j (s)− p

{n}
j (s)‖ds.

(2.35)

Here we have used that

lim sup
m,n→∞

r

∫ t

0

e−(σ+2µ)(t−s)x{m}(s)

i∑

k=0

∣∣p{m}
k (s)− p

{n}
k (s)

∣∣ds

≤ r

∫ t

0

e−(σ+2µ)(t−s) lim sup
m,n→∞

x{m}(s)

i∑

k=0

∣∣p{m}
k (s)− p

{n}
k (s)

∣∣ds

= 0,

where the inequality follows from Fatou’s lemma (we are integrating a conti-

nuous function over a finite interval), and the equality follows from (p
{n}
k )n

being a Cauchy sequence on the finite interval (0, t). Similar reasoning gives

lim sup
m,n→∞

∫ t

0

e−(σ+2µ)(t−s)
∣∣x{m}(s)− x{n}(s)

∣∣‖p{m}(s)‖1ds = 0.

Note that we also used ‖p{m}(s)‖1 ≤ 1 < ∞ for all s ∈ (0, t). We can estimate
x{k}(s) ≤ 1

2 and ‖p{k}(s)‖1 ≤ 1 for all k = 0, 1, . . . and s ∈ (0, t). Therefore

lim sup
m,n→∞

∫ t

0

e−(σ+2µ)(t−s)x{m}(s)‖p
{m}
j (s)− p

{n}
j (s)‖ds < ∞.
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This shows us we can take the limit of i → ∞ in (2.35), and we obtain

lim sup
m,n→∞

∞∑

j=1

j
∣∣p{m}

j (t)− p
{n}
j (t)

∣∣ ≤ e−(σ+2µ)t lim sup
m,n→∞

‖p
{m}
j (0)− p

{n}
j (0)‖1.

We can estimate ‖p‖1 ≤ |p0|+ 2
∑∞

j=1 j|pj | for all p ∈ ℓ11. Note that

∥∥∥Φt

(
x̃{m}, p̃{m}

)
− Φt

(
x̃{n}, p̃{n}

)∥∥∥

=
∣∣x{m}(t)− x{n}(t)

∣∣+ ‖p{m}(t)− p{n}(t)‖1

≤ |x{m}(t)− x{n}(t)|+ |p
{m}
0 (t)− p

{n}
0 (t)|+ 2

∞∑

j=1

j|p
{m}
j (t)− p

{n}
j (t)|.

Therefore, since both (x{n})n and (p
{n}
0 )n are Cauchy sequences,

lim sup
m,n→∞

∥∥∥Φt

(
x̃{m}, p̃{m}

)
− Φt

(
x̃{n}, p̃{n}

)∥∥∥

≤ 2e−(σ+2µ)t lim sup
m,n→∞

‖p{m}(0)− p{n}(0)‖1.

If we let ‖C‖1 := sup(x̃,p̃)∈C ‖p̃‖1 ≤ 1 < ∞, then we see that

lim sup
m,n→∞

∥∥∥Φt

(
x̃{m}, p̃{m}

)
− Φt

(
x̃{n}, p̃{n}

)∥∥∥ ≤ 2e−(σ+µ)t2‖C‖1

≤ 4e−(σ+2µ)t.

Now use characterization (2.33), we see that

αx

(
Φt(C)

)
≤ 4e−(σ+2µ)t → 0 as t → ∞.

By [16, Lemma 5], this implies C has a compact attractor

A := ω(C) =
⋂

t≥0

⋃

s≥t

Φs(C), (2.36)

and this concludes our proof (recall (2.32)).

We are now ready to prove the result that we are actually interested in,
namely that (x∗, p∗) is globally asymptotically stable in C. We will prove this
by showing that the compact attractor A in the previous theorem is equal to
this steady state, i.e. (x∗, p∗) is the compact attractor of C.

Theorem 2.8. The steady state (x∗, p∗) is globally asymptotically stable in C.

Proof. Let A denote the compact attractor of Theorem 2.7. A first observation
is that (x∗, p∗) ∈ A.

Let (x̃, p̃) ∈ A. By definition, A is an invariant subset of C. Therefore
Φt(x̃, p̃) is defined for all t ∈ R (rather than only t ∈ R+) and takes its values in
A. Since Φt(C)⊂C, we have the relations x = 1

2 −
∑∞

j=1 jpj and
∑∞

j=0 pj =
1
2

and we can reduce the differential equation for x to a first order linear inhomo-
geneous differential equation:

x′ = − 1
2rx + (σ + 2µ)(12 − x).
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With initial data x(0) = x̃, we obtain an explicit expression for x:

x(t) = x∗ − e−
1
2 (r+2(σ+2µ))t(x∗ − x̃).

Since C is bounded, also x(t) must be bounded for all t ∈ R. This holds only
if x̃ = x∗, and we see that x(t) = x∗ for all t ∈ R. Since (x̃, p̃) is an arbitrary
element of A we conclude that A is contained in the set {(x∗, p) ∈ C}.

For all (x∗, p̃) ∈ C we can show convergence of Φt(x
∗, p̃) → (x∗, p∗) as

t → ∞. Obviously, with x(t) = x∗ in its steady state, we get a set of linear
differential equations for p. Let ν be given by (2.17). Then

p′0 = µ

∞∑

n=1

pn − νp0 + (σ + µ)p1

p′j = νpj−1 −
(
ν − (σ + µ)j

)
pj + (σ + µ)(j + 1)pj+1 − µpj , j ≥ 1.

We can rewrite this in the more condensed form

p′j =

∞∑

k=0

βjkpk, j = 0, 1, . . .

This system is known as Kolmogorov’s differential equations; see [22, p. 57] and
references therein for more on Kolmogorov’s differential equations. In a Markov
chain describing population growth, βjk can be interpreted as the transition
rate of the population of size j changing to a population size of k. The vector
p = (pj)k can be interpreted as the probability distribution of the population
size, i.e. pj(t) is the probability that the population has size j at time t. The
coefficients βjk are defined as follows





β00 = −ν,

β01 = σ + 2µ,

β0n = µ, n ≥ 2,

βn,n−1 = ν, n ≥ 1,

βn,n = −
(
ν + (σ + µ)n+ µ

)
, n ≥ 1,

βn,n+1 = (σ + µ)(n+ 1), n ≥ 1,

βnk = 0, otherwise.

In the Markov chain description we may also interpret this as a continuous-
time birth and death process with immigration and catastrophes, and births
and immigrations do not stop however large the population is. This Markov
chain has a unique stationary probability distribution p∗ such that p(t) → p∗
as t → ∞ for all probability distributions p, with convergence in the ℓ11-norm.
One may check that the (βjk)j,k satisfy the assumptions of [22, Theorem 11]
which states the existence of the unique stationary probability distribution p∗
with convergence of all probability distributions to p∗ in the ℓ11-norm. By
renormalising we see the relation with our p∗, i.e. p∗ = 1

2p∗.
Therefore,

Φt(x
∗, p̃) → (x∗, p∗) as t → ∞.

In particular, ω(x∗, p̃) = {(x∗, p∗)} for all (x∗, p̃) ∈ C. Hence ω(A) = {(x∗, p∗)}.
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Next, from ω(C) = A (recall (2.36)) it follows that

ω(C) = ω
(
ω(C)

)
= ω(A) = {(x∗, p∗)}.

Hence

A = ω(C) = {(x∗, p∗)}.

By definition of a compact attractor

‖Φt(x̃, p̃)− (x∗, p∗)‖ → 0 as t → ∞

for all (x̃, p̃) ∈ C showing us the steady state (x∗, p∗) is globally asymptotically
stable on C.

The steady state of the pair-formation process allows us to simplify the
statistical description of the dynamic sexual network. In the next chapter,
when studying the spread of an infection along the network, we will assume
the sexual network to be in equilibrium. The reasoning behind this is that we
assume the pair-formation process to have stabilized long before the infection is
introduced in the population.

An interesting aspect to consider, that we have not done here, and which we
will not do, is to consider the time it takes to reach the equilibrium value when
starting with any initial condition for the pair-formation process. If it would
take millions and millions of years before the steady state is reached, then the
assumption of the dynamic sexual network to be in equilibrium may be quite
unreasonable. In order to gain some information about the rate of convergence
we would need to study the spectral bound of the linearization of (2.6). The
closer this value is to 0, the longer it takes for the solutions of (2.6) to converge
to (x∗, p∗).

What we are really after is to understand how an infectious disease spreads
along the dynamic sexual network that we have studied here. In a sense, this
chapter has been the preparatory work for our main investigation. Therefore,
we now leave the analysis of the pair-formation process and continue this text
by studying an infection model in the next chapter. This will be constructed by
superimposing an STI on the dynamic sexual network that we have discussed
and analysed in this chapter.





Chapter 3

Infectious disease

In this chapter we will introduce the infectious-disease model, discuss some of
the assumptions we make, and describe the model with an infinite-dimensional
system of ODEs. We will discuss some problems that we do not try to solve in
this research but which are interesting for future research. The focus will be on
deriving an epidemic threshold for the system: when does the infection-free equi-
librium switch from being (globally) asymptotically stable to unstable? Finally,
we compare the basic reproduction number R0 of our polygynous population
with the basic reproduction number of a monogamous population.

3.1 Infectious-disease model

As mentioned in the introduction, the pair-formation model is inspired by poly-
gyny and HIV in sub-Saharan Africa. In this section we will therefore consider
an infectious disease without recovery. Let’s superimpose an STI and make a
few assumptions on this infectious disease and its effect on the individuals in
the population.

Individuals all enter the population as susceptible singles. There is only one
disease stage. An individual is either susceptible or infectious. We define a
contact as a sexual act between two individuals.1 A susceptible individual can
become infectious through sexual contact with an infectious individual. Since
we are considering a heterosexual population, transmission of the infection can
only occur through sexual contact between man and woman. We will assume
that an infectious individual remains so until (s)he dies.

We assume individuals to be unaffected by their infection status, i.e. there is
no disease-induced death rate and the pair-formation process is not influenced by
the infection. We may think of individuals being unaware or indifferent of their
partner’s and their own infection status for motivating the latter assumption.

We let h denote the transmission rate. This can be viewed as the product of
the number of sexual acts per unit of time c and the probability of transmission
in one sexual contact p. As we have assumed with the parameters involved in
the pair-formation process in Chapter 2, h is independent of sex, marital status,

1Unlike some other infectious diseases such as airborne diseases, it is clearly defined what
a contact is for STI: sexual acts generate the possibility of transmitting an STI.
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etc. In particular we assume the infectivity to be the same for each infectious
individual.

In our model, it may happen that a partnership dissolves before any sexual
contact has taken place between the individuals. So the start of a partnership is
not initiated with sexual contact. Of course, these partnerships are not of any
interest from the point of view of the infectious disease as they do not allow for
the transmission of the infection.

An important assumption we will make regarding the sexual acts is that
each woman with a husband will have the same number of sexual contacts c per
unit of time with her husband. This is regardless of the marital status of her
husband. Put differently, the average number of sexual contacts per unit of time
in a partnership is equal to c. For a man with n wives, this means he will have
c · n number of sexual contacts per unit of time, n ≥ 1. This is not necessarily
a very realistic assumption, especially if you take into account the assumptions
for the pair-formation model. Indeed, there is no upper bound on the number
of wives one man may have. At some point a man can have 1000 partners at
the time and he will have to have sex all day long to ‘satisfy’ the 1000 · c sexual
contacts.2 However, for now, in order not to complicate the analysis, we will
not modify this assumption.

As is true for the pair-formation model, we can extend this model in the
future by making some different or additional assumptions.

Another assumption we will make regarding the transmission rate is that
each sex act will generate a fixed probability p of transmitting the disease.
Implicitly we assume that each sex act has the same risk behaviour, e.g. condom-
use is the same with each contact and each wife. This also means a man does
not distinguish between his wives. This is probably not usually the case. A
man may distinguish between his first wife and junior wives and consequently
his condom-use may be different for each wife [23].

Furthermore, we assume that the transmission rate h does not change over
time. Individuals are equally infectious in their entire infectious life. This is
a major simplification if we consider a disease such as HIV, where there are
significant differences in infectivity in the course of the infectious life of an
individual [24, 25]. Following the initial infection, there is a period of relatively
high infectivity in the so-called acute phase. The infectivity then decreases
and more or less stabilizes in the chronic phase, which are the years after the
acute phase and before the development of AIDS. In this phase, the infectivity
increases again, although, due to factors connected with AIDS, most individuals
will leave the sexually active population by then. This last observation is like a
disease-induced death, something we have not incorporated in our model (recall
we assume there to be no disease-induced death rate). In our model, we assume
the expected life length of infectious individuals not to decrease due to their
infection status. For future work, it would be interesting to explore the effect
of an additional death rate of infectious individuals on the transmission of the
infection through the population.

The significant difference in infectivity over the course of the infectious life of
an infective is an important point as it may be the cause that concurrency yields
higher prevalence than serial monogamy. Simulations done in e.g. [14] show

2On the other hand, we may expect a man with three wives to be more sexually active
than a man with ‘only’ one wife.
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significant differences in the prevalence when taking the variable infectivity into
account. We will not incorporate this variable infectivity in our current model.
However, it is certainly worth investigating in future extensions of this model.

Now, let us describe the model using a system of ODEs. The following
variables are of interest to us:

X0 : the number of single and susceptible women,

X1 : the number of single and infectious women,

Pn,k : the number of susceptible men with

n− k susceptible and k infectious partners,

Qn,k : the number of infectious men with

n− k susceptible and k infectious partners,

n, k ≥ 0, k ≤ n. Note that P0,0 and Q0,0 denote the number of single susceptible
and single infectious men, respectively.
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The model is described by

dX0

dt
= B − ρX0

∞∑

n=0

n∑

k=0

(Pn,k +Qn,k)

+ (σ + µ)

∞∑

n=1

n−1∑

k=0

(n− k)(Pn,k +Qn,k)− µX0,

dX1

dt
= −ρX1

∞∑

n=0

n∑

k=0

(Pn,k +Qn,k)

+ (σ + µ)

∞∑

n=1

n∑

k=1

k(Pn,k +Qn,k)− µX1,

dP0,0

dt
= B − ρ(X0 +X1)P0,0 + (σ + µ)(P1,0 + P1,1)− µP0,0,

dQ0,0

dt
= −ρ(X0 +X1)Q0,0 + (σ + µ)(Q1,0 +Q1,1)− µQ0,0.

For n ≥ 1,

dPn,0

dt
= ρX0Pn−1,0 −

(
ρ(X0 +X1) + (σ + µ)n

)
Pn,0

+ (σ + µ)
(
(n+ 1)Pn+1,0 + Pn+1,1

)
− µPn,0,

dQn,0

dt
= ρX0Qn−1,0 −

(
ρ(X0 +X1) + (σ + µ)n

)
Qn,0

+ (σ + µ)
(
(n+ 1)Qn+1,0 +Qn+1,1

)
− µQn,0

− hnQn,0,

dPn,n

dt
= ρX1Pn−1,n−1 −

(
ρ(X0 +X1) + (σ + µ)n

)
Pn,n

+ (σ + µ)
(
(n+ 1)Pn+1,n+1 + Pn+1,n

)
− µPn,n

− hnPn,n,

dQn,n

dt
= ρX1Qn−1,n−1 −

(
ρ(X0 +X1) + (σ + µ)n

)
Qn,n

+ (σ + µ)
(
(n+ 1)Qn+1,n+1 +Qn+1,n

)
− µQn,n

+ h(Qn,n−1 + nPn,n).

For n ≥ 1, k ≥ 1, k < n,

dPn,k

dt
= ρX0Pn−1,k + ρX1Pn−1,k−1 −

(
ρ(X0 +X1) + (σ + µ)n

)
Pn,k

+ (σ + µ)
(
(n+ 1− k)Pn+1,k + (k + 1)Pn+1,k+1

)
− µPn,k

− hkPn,k,

dQn,k

dt
= ρX0Qn−1,k + ρX1Qn−1,k−1 −

(
ρ(X0 +X1) + (σ + µ)n

)
Qn,k

+ (σ + µ)
(
(n+ 1− k)Qn+1,k + (k + 1)Qn+1,k+1

)
− µQn,k

+ h
(
(n− k + 1)Qn,k−1 + kPn,k − (n− k)Qn,k

)
.
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One can check (which I have done only for the first equality) that we have

dN

dt
= 2B − µN,

dNf

dt
= B − µNf ,

dNm

dt
= B − µNm,

where

N = X0 +X1 +
∞∑

n=0

n∑

k=0

(1 + n)
(
Pn,k +Qn,k

)
,

Nf = X0 +X1 +

∞∑

n=0

n∑

k=0

n
(
Pn,k +Qn,k

)
,

Nm =
∞∑

n=0

n∑

k=0

(
Pn,k +Qn,k

)
,

denote the total population size, the total number of women, and the total
number of men, respectively. We assume the population to be in equilibrium,
hence N = N∗ = 2B/µ, Nf = N∗

f = B/µ, and Nm = N∗
m = B/µ.

We also assume the pair-formation process to be in equilibrium. The follo-
wing relations are therefore satisfied:

X∗ = X0 +X1 : the total number of single women,

P ∗
n =

n∑

k=0

(Pn,k +Qn,k) : the total number of men with n partners, n ≥ 0,

where (X∗, P ∗) = N∗(x∗, p∗) is the steady state of the pair-formation pro-
cess (2.1) for which we found an explicit expression (2.23). The reasoning behind
this assumption is that we are considering a population and its corresponding
dynamic sexual network that have existed long before the infection is introduced
in the population. In fact, we assume that the population has existed for such
a long time that the pair-formation process has already converged to its steady
state (X∗, P ∗), which we know to happen for time t → ∞; see Section 2.5.

We are interested in the total number of infectious individuals in the popu-
lation. This is given by the total number of infectious women

X1 +

∞∑

n=1

n∑

k=1

k(Pn,k +Qn,k),

plus the total number of infectious men

∞∑

n=0

n∑

k=0

Qn,k.

As in the case for the system (2.2) describing the pair-formation model
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we may consider fractions rather than numbers. Let the small letters x0, x1,
pn,k, and qn,k denote the fractions corresponding to the quantities represented
by the capital letters X0, X1, Pn,k, and Qn,k, respectively. Compared to the
above system, we need to make the following changes. Replace the capital
letters with the small letters, replace B with µ

2 and ρ with 2Bρ
µ .

The sex ratio 1 : 1 needs to be maintained. Therefore

1

2
= x0 + x1 +

∞∑

n=0

n∑

k=0

n(pn,k + qn,k) =

∞∑

n=0

n∑

k=0

(pn,k + qn,k).

Assuming the pair-formation process to be in equilibrium allows us to eli-
minate all susceptible components from the system, i.e. the susceptible singles
and all star-shaped components where each individual involved is susceptible.
These components consist of x0, p0, and pn,0, n = 1, 2, . . . Indeed we have

x0 = x∗ − x1,

p0,0 = p∗0 − q0,0,

pn,0 = p∗n −

n∑

k=1

(pn,k + qn,k)− qn,0, n = 1, 2, . . .

Note however that this does not allow for a great reduction of the number of
differential equations. If we consider all stars consisting of n + 1 individuals,
n = 0, 1, . . ., then there are 2(n+1) different stars of that size. Different should
be interpreted in the labels susceptible and infectious assigned to the members
of the star. Of the 2(n+1) different stars, we are only able to eliminate the fully
susceptible star. For example, if we consider all stars of one man with two wives,
then we have the following different stars, in the usual notation, p2,0, p2,1, p2,2,
q2,0, q2,1, and q2,2. Assuming the pair-formation process to be in equilibrium
we are able to eliminate the variable p2,0 only.

Let us denote the fraction of infectious men and infectious women with im
and if , respectively. Then

im =
∞∑

n=0

n∑

k=0

qn,k,

and

if = x1 +

∞∑

n=1

n∑

k=1

k(pn,k + qn,k).

Hence the total fraction of infectives in the population i is

i = if + im = x1 +

∞∑

n=1

n∑

k=1

k(pn,k + qn,k) +

∞∑

n=0

n∑

k=0

qn,k.

Remark 3.1. We have paid attention to the existence and uniqueness of solutions
of the system (2.10) in the previous chapter. Indeed we have proven that, given
some initial condition, the system describing the pair-formation process has
unique solutions, and this comprised a large part of the analysis in the previous
chapter. In this chapter, we have again described a model with a system of
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ODEs on page 56. Formally, we would need to check existence and uniqueness of
solutions of this system. However, time constraints oblige us to make decisions.
We focus instead on understanding the initial growth of an epidemic process
in this chapter. In the rest of this chapter we will mainly be dealing with
determining a threshold value for the model.

3.2 Steady states

By definition, our infectious-disease model has at least one steady state, namely
the infection free state (x0, p0, q0) with

x0
0 = x∗, p0j,0 = p∗j , j = 0, 1, . . .

and x0
1 = p0jk = q0jk = 0 otherwise.

Intuitively, we would expect there to exist a unique endemic equilibrium tot
the system, which, under the right conditions, is asymptotically stable. At least
there does not seem to be a reason to suspect otherwise. This is no convincing
argument for anything. We need to formally prove the existence of an endemic
equilibrium. In case of the pair-formation process we could prove the existence
of a unique steady state by explicitly calculating it. For the infectious-disease
model the approach we have taken there seems to be too complicated.

As we are quite confident that there must exist a unique endemic equilibrium,
we will leave it as an open problem for now. Let’s find the condition for the
infection-free equilibrium to be globally asymptotically stable in the rest of this
chapter.

3.3 Determining R0

To determine R0 for our model we will use the next-generation matrix (NGM)
as defined in Diekmann et al. [26, Ch. 7: The basic reproduction ratio]. We con-
sider the states-at-infection, i.e. states that individuals can be in immediately
after infection. These individuals-at-infection are nonsingle by construction of
the model. Indeed, contacts are not instantaneous, they occur within partner-
ships. Immediately after infection, an individual will be in a partnership with
its epidemiological parent.

An individual-at-infection may be female-at-infection or a male-at-infection
with n wives, n = 1, 2, . . . We need to distinguish between a male-at-infection
with n1 wives or a male-at-infection with n2 wives, n1, n2 = 1, 2, . . ., n1 6= n2.
Therefore, we have countably many states-at-infection. The exact number of
wives a man has at the start of his infectious life matters for the expected number
of secondary cases he produces. We shall see this in Section 3.3.2. However, as
the pair-formation process is in steady state, we know the distribution (2p∗j )j of
wives per man. This allows us to reduce the infinitely many males-at-infection
to one ‘typical’ male-at-infection. This newly infected male is typical in the
sense that we average over all men with n = 1, 2, . . . partners weighted with
some appropriate probability distribution (λn)n (which will be given by (3.4)).
If the expected number of secondary cases of a man with n wives, n = 1, 2, . . .,
is given by Rm(n), then we find Rm, the expected number of secondary cases
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one typical newly infected male can make in the beginning of an epidemic, to
be

Rm =

∞∑

n=1

λnRm(n).

Our NGM K is then a 2× 2-matrix

K =

(
0 Rf

Rm 0

)
.

Here, the quantityRf denotes the expected number of secondary cases one newly
infected female can make in the beginning of an epidemic. Since we assume a
heterosexual population, a secondary case is necessarily from the opposite sex.
This is reflected in the zero-diagonal of K. The basic reproduction number R0

is defined as the dominant eigenvalue of K. For this 2× 2 matrix, we can easily
determine the dominant eigenvalue to be equal to

R0 =
√
RfRm. (3.1)

In a sense we have reduced an infinite dimensional situation to a two-dimensional
problem, which is easier to work with.

As we will also explain in Section 3.3.1, a female-at-infection is simply a non-
single infectious female, i.e. it will not matter how many co-wives this woman
has for the calculation of Rf , contrary to the situation of a male-at-infection.
This should coincide with the intuition one has for the model. In a heterosexual
population, a woman has at most one partner at the time who she may poten-
tially infect, while this is not the case for a man with more sexual partnerships
at once.

We are left to calculate the two unknowns Rf and Rm. Before determining
Rm, let us start with the relatively simple case of determining Rf .

3.3.1 The basic reproduction number Rf

If we take the point of view of an infectious woman in an otherwise susceptible
population, then the number of men she will infect will not depend on the
partnership status of the men she will acquire (or the partnership status of the
man at the beginning of her infectious lifetime). Note that this is based on the
assumption that each man will have the same number of sex acts per unit of time
with each of his partners, regardless of his number of partners. The same is true
for the rate of separation and death of her husband; both do also not depend on
the partnership status of her husband. Also, we have assumed that women do
not have a preference for the marital status of a future husband. At the start
of her infectious life, the woman is in a partnership with her epidemiological
parent. Before she can infect anyone, she needs to separate from her current
husband and find new husbands.

We assume that each man acquired by this infectious woman is susceptible
and she has susceptible co-wives only. She either infects an acquired husband
or their partnership dissolves before this happens. In particular, there is no
possibility of him to become infectious through infection from one of his other
(future) wives. This is reasonable to assume as we are considering a large
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population at the beginning of an epidemic. There are only very few infectious
individuals, and she will not encounter any infectious men or women, except for
the infectious individuals of the star she is part of at the start of her infectious
life or the men that she will infect herself.

From the point of view of the infectious woman, we may as well have a
completely monogamous population and she can be in three states only: single,
paired with a susceptible man, and paired with an infectious man.

Figure 3.1: Flowchart of the different states the infectious woman can be in.

We can use a Markov-chain description to determine an expression for Rf ,
the expected number of men a newly infected woman infects in her lifetime
in a fully susceptible population. The women is in state 0 if she is single, in
state (1, 0) if paired with a susceptible man, and in state (1, 1) if paired with
an infectious man.3 Let Pi,j denote the transition probability from i to j,
i, j ∈ {0, (1, 0), (1, 1)}. The following transition probabilities describe the entire
process:

P0,(1,0) =
ρN∗

m

ρN∗
m + µ

,

P(1,0),0 =
σ + µ

h+ σ + 2µ
,

P(1,0),(1,1) =
h

h+ σ + 2µ
,

P(1,1),0 =
σ + µ

σ + 2µ
.

All other transition probabilities are equal to zero. Note that ‘death’ is a hypo-
thetical fourth state of the Markov chain.

We determine Rf , the expected number of men one newly infected woman
infects in her lifetime in a fully susceptible population, using first step analysis
of the Markov chain. In order to find Rf we want to know the expected number
of times the infectious woman visits state (1, 1) (not including the first time she
is in state (1, 1), which is when she is newly infected). After all, each time she
enters state (1, 1), she will have infected one man.

If we let πi,j , i, j ∈ {0, (1, 0), (1, 1)} denote the probability to ever arrive in
state j when starting from state i, then we find

Rf = π(1,1),(1,1)(1 +Rf ).

3This process is exactly the one described in [26, Sec. 7.8: Pair Formation models]. The
states 1, 2, and 3 in this book correspond to state 0, (1,0), and (1,1), respectively. The
notation for the parameters used in the book correspond to the parameters in our model. In
the book, two different methods are presented to derive Rf (plus another threshold value).
We will explain the second method to derive Rf here.
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Indeed, the woman’s infectious life starts in state (1, 1), with probability
π(1,1),(1,1) she will have infected one man and she is again in state (1, 1). By the
memoryless property of the Markov chain it is as if she is in this state for the
first time. The expected number of additional infectees is therefore also equal
to Rf .

To determine π(1,1),(1,1), we will first find an expression for π0,(1,1). In order
to arrive at state (1, 1) from state 0, one must first pass state (1, 0). To enter
state (1, 1) from this state, the woman may either jump to (1, 1) directly or she
separates from her partner and enters the single state again. The probability
that she arrives at state (1, 1) is again equal to π0,(1,1) in the latter case. To
summarise, π0,(1,1) satisfies the relation

π0,(1,1) =
ρN∗

m

ρN∗
m + µ

(
h

h+ σ + 2µ
+

σ + µ

h+ σ + 2µ
π0,(1,1)

)
.

Now we observe that π(1,1),(1,1) is equal to the probability to enter state 0 from
state (1, 1) times the probability that we ever arrive at state (1, 1) from state 0,
i.e.

π(1,1),(1,1) =
σ + µ

σ + 2µ
π0,(1,1).

Solving the above equations for Rf , π0,(1,1), and π(1,1),(1,1) we find

Rf =
ρN∗

mh(σ + µ)

µ(ρN∗
m + σ + 2µ)(h+ σ + 2µ)

. (3.2)

3.3.2 The basic reproduction number Rm

To determine Rm, the expected number of secondary cases a typical newly
infected man can make in his lifetime in the beginning of the epidemic, we
make a few assumptions first. We assume that every partner this infectious
man acquires is susceptible. Beside his epidemiological parent, all current wives
are also susceptible and might get infected by their infectious husband. Each
event occurring in the life of the infectious man (acquiring a partner, separation,
infection, death) only depends on the last event, independent of any previous
events, and the waiting times are exponentially distributed.

We can subdivide the wives of an infectious man into two categories.

• The wives at the start of the infectious life. Let’s call these current part-
ners.

• The wives he acquires during his infectious life. Let’s call these new part-
ners.

By assumption, each wife is independent of the other wives. The dependence
is created by the death of the man: if the husband dies, all wives become single.

We will derive an explicit expression for Rm in two ways. First, we will give
an intuitive argument. After this, we will derive it in a more exact way, and we
will verify that the two arguments lead to the same expression for Rm.
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Intuitively, we can reason as follows. The probability a wife gets infec-
ted is the probability that infection takes place before separation or death of
either the husband or the wife. Hence this probability is

h

h+ σ + 2µ
.

Suppose the man has n susceptible current partners. Since we assume all wives
behave independently of each other (as long as the husband is alive) we get that
the expected number of infected current wives equals

hn

h+ σ + 2µ
, (3.3)

see also Remark 3.2. The probability the husband has n susceptible current
partners, n = 0, 1, . . ., given that he has at least one, infectious, partner, is
equal to

P(man has n+ 1 partners | man is not single)

=
P(man has n+ 1 partners)

P(man is not single)

=
2p∗n+1

1− 2p∗0
, (3.4)

n = 0, 1, 2, . . .. Note that the pair-formation process does not depend on the
infection status of the individuals involved. Therefore, this also does not play a
role in the above probability. Since we are considering a male-at-infection, we
consider only men with 1 partner or more. A man at the start of his infectious
career with n susceptible partners has n + 1 partners in total. The expected
number of infected current wives of a typical newly infected man is therefore
given by

∞∑

n=1

2p∗n+1

1− 2p∗0

hn

h+ σ + 2µ
.

New wives arrive according to a Poisson stream with rate ρX∗. Note that,
while (single) women can choose to form a partnership with any man in the
population, men are restricted in their choice of women since they can only
choose from the pool of single women. The expected life length of the infectious
husband is equal to 1

µ . Therefore, the expected number of new wives is ρX∗

µ .
This is independent of initial star-size. The expected number of infected new
wives of any infectious man is equal to

ρX∗

µ

h

h+ σ + 2µ
.

In particular, it is the expected number of infected new wives of a typical newly
infected man.

The sum of the expected number of infected current wives and the expected
number of infected new wives then gives us Rm, the total expected number
of secondary cases of one typical newly infected man at the beginning of an
epidemic.
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Remark 3.2 (The pitfall of overlooking dependence). One should note that (3.3)
is an expected value (and for its derivation one should read on until equa-
tion (3.5)). We have not made any statements about the probability distribution
of infected current wives. One might be tempted to say that this distribution is
the binomial distribution

P (i) =

(
n

i

)(
h

h+ σ + 2µ

)i(
σ + 2µ

h+ σ + 2µ

)n−i

.

However, this is not true. This is the pitfall of overlooking dependence. The
current wives are correlated with each other: if the husband dies, then they all
become single. For a slightly different example and an elaborate explanation
see[26, Sec. 2.3 The pitfall of overlooking dependence].

Let us now derive Rm more carefully. Let L denote the life length of the
infectious husband. By assumption, L is exponentially distributed with mean 1

µ .
Let’s consider one current partner. We introduce three more random variables.
Let X1 ∼ exp (h), X2 ∼ exp (σ) and X3 ∼ exp (µ) denote the time of infection,
separation, and death of the current partner, respectively. These three random
variables can be viewed as being independent from each other and of L. We just
assume that infection, separation, and death can occur in any order for this wife.
However, for an infection to actually count as a secondary case, the infection
must take place before separation, death of husband, and death of herself.

Assume L = τ , with τ ∈ [0,∞). The wife gets infected if both
{X1 = min{X1, X2, X3}} and {X1 < τ}. The probability this happens is

∫ τ

t=0

P(X2 > t)P(X3 > t)he−htdt =

∫ x

t=0

he−(h+σ+µ)tdt

=
h

h+ σ + µ

(
1− e−(h+σ+µ)τ

)
.

The wife does not get infected if either {X1 6= min{X1, X2, X3}} or
{X1 = min{X1, X2, X3}, X1 > τ}. This probability is given by

P(X1 6= min{X1, X2, X3}) + P(X1 = min{X1, X2, X3}, X1 > τ)

= 1−
h

h+ σ + µ
+

∫ ∞

t=τ

he−(h+σ+µ)tdt

=
σ + µ

h+ σ + µ
+

h

h+ σ + µ
e−(h+σ+µ)τ .

Suppose we know the husband starts his infectious life with n+1 wives, n ≥ 1.
Then we know that n of these wives are susceptible and therefore they may
become infected by their husband. The probability that k out of n wives get
infected, given L = τ , is given by

ξn,k(τ) :=

(
n

k

)(
h
(
1− e−(h+σ+µ)τ

)

h+ σ + µ

)k (
σ + µ

h+ σ + µ
+

he−(h+σ+µ)τ

h+ σ + µ

)n−k

.

The expected number of infected current partners, given L = x and n current
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partners, is given by

n∑

k=1

kξn,k(τ) = n
h

h+ σ + µ
(1 − e−(h+σ+µ)τ )

n−1∑

k=0

ξn−1,k(τ)

= n
h

h+ σ + µ
(1 − e−(h+σ+µ)τ )

(
h

h+ σ + µ
+

σ + µ

h+ σ + µ

)

= n
h

h+ σ + µ
(1 − e−(h+σ+µ)τ ).

Hence, the expected number of infected current partners, given n susceptible
current partners at the start of the infectious life of the man, is

∫ ∞

τ=0

hn

h+ σ + µ
(1− e−(h+σ+µ)τ )µe−µτdτ

=
hn

h+ σ + µ

(
1−

µ

h+ σ + 2µ

)

=
hn

h+ σ + 2µ
. (3.5)

Again, keep in mind Remark 3.2.
The probability that a man has n+1 partners, n = 1, 2, . . ., given that he has

at least one partner, is given by
2p∗

n+1

1−2p∗

0
; see also (3.4). Therefore, the expected

number of current partners a man infects equals

∞∑

n=1

2p∗n+1

1− 2p∗0

hn

h+ σ + 2µ
=

h

h+ σ + 2µ

1

1− 2p∗0

(
∞∑

n=2

2np∗n −

∞∑

n=2

2p∗n

)

=
h
(
(1− 2x∗ − 2p∗1)− (1− 2p∗0 − 2p∗1)

)

(h+ σ + 2µ)(1− 2p∗0)

=
h

h+ σ + 2µ

2p∗0 − 2x∗

1− 2p∗0
.

This expected number is always strictly larger than zero.
Now, we have to calculate the expected number of infectees among the new

partners, i.e. the partners arriving after the start of the man’s infectious period.
Again assume L = τ , with τ ∈ [0,∞). Women arrive according to a Poisson
stream with rate ρX∗. In order for an arriving woman to become a partner, her
arrival time T must be t < τ , with t ∈ (0, τ). Given that a woman arrives before
the death of the husband, the arrival point will be a random point within his
life, i.e. the arrival time T is uniformly distributed with the life length interval
(0, τ):

P(t ≤ T ≤ t+ dt|L = τ) =
dt

τ
, t ≤ τ,

and the conditional probability is zero if t > τ . Suppose a new partner arrives
at time t and L = τ . The probability the partner gets infected is given by

P(X1 = min{X1, X2, X3}, X1 < τ − t) =
h

h+ σ + µ

(
1− e−(h+σ+µ)(τ−t)

)
.



66 Chapter 3. Infectious disease

The probability the partner gets infected, given L = x, is then

∫ τ

t=0

1

x

h

h+ σ + µ
(1− e−(h+σ+µ)(τ−t))dt

=
h

h+ σ + µ
−

h

τ(h+ σ + µ)2
(
1− e−(h+σ+µ)τ

)
=: η(τ).

Since new partners arrive according to a Poisson process with rate ρX∗, the
probability that n partners, n = 1, 2, . . ., arrive in the time interval (0, τ) is
given by

(ρX∗τ)n

n!
e−ρX∗τ ,

and each of these n partners has probability η(τ) of acquiring the infectious
disease. Therefore, the expected number of secondary cases among the new
partners is equal to

∫ ∞

τ=0

∞∑

n=1

n
(ρX∗τ)n

n!
e−ρX∗τη(τ)µe−µτdτ

=

∫ ∞

τ=0

ρX∗τη(τ)µe−µτ dτ

=
ρX∗h

µ(h+ σ + µ)
−

ρh

(h+ σ + µ)2
−

ρhµ

(h+ σ + µ)2(h+ σ + 2µ)

=
ρX∗h

µ(h+ σ + 2µ)
.

As in the intuitive approach, we see that this expected number of secondary
cases among the new partners is independent of the number of current wives.
Based on our modelling assumptions, this independence is exactly what we
would like.

The total number of secondary cases one typical newly infected man can
make at the beginning of the epidemic is therefore

Rm =
h

h+ σ + 2µ

2p∗0 − 2x∗

1− 2p∗0
+

ρX∗h

µ(h+ σ + 2µ)
. (3.6)

We see that this expression is the same as what we derived earlier with the
intuitive approach. We see that Rm only depends on the fraction of single men
and women in the population. Indirectly, we also see the mean star size E(S)
to play a role in this expression as we have found E(S) = 1− 2x∗ in (2.24).

Recall the expression for x∗ and Rf (see (2.16) and (3.2) ). We see that

ρX∗

µ
=

ρN∗
m(σ + µ)

µ(ρN∗
m + σ + 2µ)

= Rf .

Hence the expected number of new wives an infectious man infects is the same
as the expected number of men an infectious woman infects (at the beginning
of an epidemic) Rf .
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3.3.3 R0 revisited

The expression for R0 is now found by combining the pieces of Subsections 3.3.2
and 3.3.1. Consider expressions (3.2) and (3.6). We find that

R0 =
√
RfRm

=
h

h+ σ + 2µ

√(
2p∗0 − 2x∗

1− 2p∗0
+

ρX∗

µ

)
ρN∗

m(σ + µ)

µ(ρN∗
m + σ + 2µ)

(3.7)

=
h

h+ σ + 2µ

√(
2p∗0 − 2x∗

1− 2p∗0
+

ρN∗
m(σ + µ)

µ(ρN∗
m + σ + 2µ)

)
ρN∗

m(σ + µ)

µ(ρN∗
m + σ + 2µ)

.

We now have to show that this is indeed the threshold value, i.e. we have to
show that R0 < 1 if and only if the infection-free state is asymptotically stable
and R0 > 1 if and only if the infection-free state is unstable. However, we do
not manage to provide this proof in this thesis and therefore leave it as an open
problem.

Before we will concern ourselves with describing our thoughts on this pro-
blem in Section 3.5, we will derive a different threshold quantity for the infection
model, denoted R̃0. The derivation of this quantity is simpler than is the case
for R0 in the sense that we need less steps to arrive at it. It also allows us to
get rid of square root in the expression. But really, it is just another way to
of bookkeeping. In Section 3.5 we will show a simple relation between the two
threshold parameters R0 and R̃0.

3.4 Another threshold

In this section we will derive a threshold quantity different from R0, and we will
denote this with R̃0. We will be able to find that R̃0 satisfies the equivalence
R0 = 1 if and only if R̃0 = 1, and R0 > 1 if and only if R̃0 > 1. This at least
does not discard R0 or R̃0 as a threshold quantity.

We make the standard assumptions concerning the pair-formation process
and the infection process at the beginning of an epidemic, which we have writ-
ten down explicitly in Sections 3.3.1 and 3.3.2. Infectious men and women do
not encounter any other infectious individuals except for their epidemiological
parents or children. In case of infectious women, they may also see other epi-
demiological siblings if she is still in the star with her epidemiological parent.
But, as the transmission can occur only by heterosexual contact, this does not
influence the expected number of secondary cases an infectious woman at the
beginning of an epidemic can create. There is an infinite supply of susceptibles
for these infectious individuals at the beginning of the epidemic.

Start with one newly infected single woman. We count the number of infec-
tious single women caused by this woman. These secondary cases of infectious
single women can be considered as ‘indirect’ epidemiological children of the ini-
tial infectious woman as we are considering a heterosexual population. The
initial infectious single woman may infect her husbands she acquires from the
susceptible population. In turn, these men may infect a certain number of wo-
men. We count these infectious women that also become single. Let’s denote
this quantity with R̃0 .
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We determine R̃0 in the following way. If the woman acquires a man, then
this man has probability

h

h+ σ + 2µ

of becoming infected by this infectious woman. The probability that this newly
infected man has n wives is given by (3.4), n = 1, 2, . . . Indeed, this probabi-
lity does not depend on the man being infected. Therefore it is equal to the
probability a man has n wives given that he has at least one wife, namely his
epidemiological parent. Note that the number of wives the man has is always
larger than zero as he has been infected by his partner and he is at the start
of his infectious life. If the man has n wives, then one of them is infectious,
namely his epidemiological parent, while the other n− 1 are susceptible. Hence
he can potentially infect n − 1 of them, n = 1, 2, . . . The expected number of
wives he will infect in his life time is

h(n− 1)

h+ σ + 2µ
+

ρX∗h

µ(h+ σ + 2µ)
,

where the first term is the expected number of current wives and the second
term is the expected number of new wives he will infect; see also (3.5) for the
derivation. The probability that one of his infectious wives becomes single again,
and who may cause new infections in the population, is given by the probability
that either the husband and wife separate or that the husband dies. Hence this
is

σ + µ

σ + 2µ
.

So the expected number of single infectious women that arise from the initial
infective woman, given that the man she acquires has n partners at moment of
infection, n = 1, 2, . . . is

h

h+ σ + 2µ

(
h(n− 1)

h+ σ + 2µ
+

ρX∗h

µ(h+ σ + 2µ)

)
σ + µ

σ + 2µ

=

(
h

h+ σ + 2µ

)2(
n− 1 +

ρX∗

µ

)
σ + µ

σ + 2µ
.

By summing over all possibilities n = 1, 2, . . ., weighted with the right probabi-
lity (3.4), we obtain the expected number of single infectious woman that are
caused by this initial infectious woman, given that she infects one man

∞∑

n=1

2p∗n
1− 2p∗0

(
h

h+ σ + 2µ

)2(
n− 1 +

ρX∗

µ

)
σ + µ

σ + 2µ

=

(
h

h+ σ + 2µ

)2(
2p∗0 − 2x∗

1− 2p∗0
+

ρX∗

µ

)
σ + µ

σ + 2µ
. (3.8)

Here we have used
∑∞

n=1 p
∗
n = 1

2−p∗0 and
∑∞

n=1 np
∗
n = 1

2−x∗. A single infectious
woman has an expected number of partners equal to

H =
ρN∗

m(σ + 2µ)

µ(ρN∗
m + σ + 2µ)

,
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as we have seen in (2.26). Therefore, in order to obtain R̃0, we need to multi-
ply (3.8) with this factor H :

R̃0 =
ρN∗

m(σ + µ)

µ(ρN∗
m + σ + 2µ)

(
h

h+ σ + 2µ

)2(
2p∗0 − 2x∗

1− 2p∗0
+

ρX∗

µ

)
. (3.9)

We find that the following reasoning yields the same expression for R̃0. A
woman infects a man with probability h

h+σ+2µ . This typical man produces an

expected number of Rm infectious women, with Rm given by (3.6). Each of
these women separates him with probability σ+µ

σ+2µ . Taking into account the
expected number of partners a woman acquires in her infectious life time, we
find

ρN∗
m(σ + µ)

µ(ρN∗
m + σ + 2µ)

h

h+ σ + 2µ
Rm

σ + µ

σ + 2µ
,

and this is the same expression that we found in (3.9).

Since we claim that this R̃0 is a threshold value, we need to prove that this is
indeed the case, i.e. R̃0 < 1 if and only if the infection-free state is asymptotically
stable and R̃0 > 1 if and only if the infection-free state is unstable.

By comparing R0, the threshold quantity that we found in Section 3.3, with
this new threshold quantity R̃0, we find that we only need to prove the stability
switch of the infection-free state for either of the two threshold quantities. In
the next section we will compare R0 with R̃0. Furthermore, we will describe our
current thoughts on the problem of proving the stability switch. This problem
remains an open problem in this thesis as we have not managed to provide a
proof within the time available.

3.5 R0 and R̃0: threshold parameters

If we compare expression (3.7) for R0 and expression (3.9) for R̃0, then we
immediately see that

R2
0 = RfRm =

(
h

h+ σ + 2µ

)2(
2p∗0 − 2x∗

1− 2p∗0
+

ρX∗

µ

)
ρN∗

m(σ + µ)

µ(ρN∗
m + σ + 2µ)

= R̃0.

In particular, R0 = 1 if and only if R̃0 = 1. For any of the two expressionsR0 and
R̃0 we need to show the threshold behaviour, i.e. the stability of the infection-
free state switches from asymptotically stable to unstable at R0 = R̃0 = 1.

Although this relation does not help us in proving that either of the two,
and therefore both, is actually a threshold quantity, we do have consistency. If
the two quantities do not satisfy the equivalence R0 = 1 if and only if R̃0 = 1,
then we would already have that one or both of the quantities can not be a
threshold quantity.

Proving the threshold behaviour of (3.7) or (3.9) is a gap in the research
that has yet to be filled. Due to lack of time it remains an open problem. In
the rest of this section we will describe our thoughts and ideas on this problem.

Suppose we would have a finite-dimensional set of nonlinear ODEs describing
an infection model. Then, in order to determine the threshold R0 of the system,
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we can do the following. Consider the infection subsystem and linearise around
the infection-free steady state, which, as a rule, exists. This linearised system
can be written in matrix notation

dx

dt
= Ax.

We can write the matrix A as the sum of two matrices T and Σ, where T
corresponds to transmissions and Σ to transitions. These matrices can then be
used to determine R0. Indeed, we have R0 = ρ(−TΣ−1); see [27] for a proof of
this relation.

This does not immediately generalise to our system of ODEs. First of all,
we are now dealing with an infinite-dimensional system. Luckily, this is not
necessarily a big problem, as we find a generalization of the above method
in [28]. One will need to make sure that the linear operators A, T , and Σ satisfy
certain assumptions, but then we still have that the infection-free state to be
locally asymptotically stable if s(A) < 0 and equivalently ρ(−TΣ−1) < 1 [28,
Theorem 3.16].

In case of a pair-formation process, in which we do not have instantaneous
contacts, it is not clear how to choose which events correspond to transmissions
and which to transitions. In principle, this does not matter in order to determine
a threshold quantity. However, an interpretation for the spectral radius we find
may be lacking. In particular, it may not necessarily be what we call R0.

If we are able to find a threshold quantity using this method, and if we are
able to connect its behaviour with that of the R0 or R̃0 that we have found
before, then we are done. The problem is how to choose T and Σ in such a way
that we can

1. invert the operator Σ,

2. determine the spectral radius of −TΣ−1,

if any of that is at all possible.

We would like to reduce the system of differential equations as given on
page 56. We can discard the infection-free stars x0 and pn, 0, n = 0, 1, 2, . . .,
since we have assumed the pair-formation process to be in equilibrium. Can we
further reduce the system?

Suppose we want to determine R̃0 by means of the ‘next-generation-matrix-
method’. Suppose we would start with an infectious single woman at the be-
ginning of an epidemic. As unlikely it is for a susceptible man to acquire an
infectious woman, it is even more unlikely that he acquires two or more infec-
tious women. This reasoning has been used when deriving R0 and R̃0 from the
interpretation. We would also like to see this reflected in the variables pn,k,
n, k ≥ 2, k ≤ n, not to play a role in the linearized system. In other words,
we would like to see that we only need the differential equations for x1, pn,1,
n = 1, 2, . . ., and qn,k, k ≤ n, k, n = 0, 1, . . . in the linearization.

Linearisation of the differential equations of x1, pn,1, n = 1, 2, . . ., and qn,k,
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k ≤ n yields the following system (if we keep the same notation):

dx1

dt
= −

(
1

2
r + µ

)
x1

+ (σ + µ)

(
∞∑

n=1

n∑

k=1

kqn,k +

∞∑

n=1

pn,1 +

∞∑

n=1

n∑

k=2

kpn,k

)
,

dp1,1
dt

= rx1p
∗
0 − (rx∗ + σ + 2µ+ h)p1,1 + (σ + µ)(p2,1 + 2p2,2),

dpn,1
dt

= rx∗pn−1,1 + rx1p
∗
n−1 − (rx∗ + (σ + µ)n+ µ+ h)pn,1

+ (σ + µ)(npn+1,1 + 2pn+1,2),

for n = 2, 3, . . .

dq0,0
dt

= −(rx∗ + µ)q0,0 + (σ + µ)(q1,0 + q1,1),

dqn,0
dt

= rx∗qn−1,0 − (rx∗ + (σ + µ)n+ µ+ hn)qn,0

+ (σ + µ)((n+ 1)qn+1,0 + qn+1,1),

for n = 1, 2, . . .

dqn,n
dt

= −(rx∗ + (σ + µ)n+ µ)qn,n + (σ + µ)((n+ 1)qn+1,n+1 + qn+1,n)

+ h(qn,n−1 + npn,n),

for n = 1, 2, . . .

dqn,k
dt

= rx∗qn−1,k − (rx∗ + (σ + µ)n+ µ+ h(n− k))qn,k

+ (σ + µ)((n+ 1− k)qn+1,k + (k + 1)qn+1,k+1)

+ h((n− k + 1)qn,k−1 + kpn,k),

with k < n, n, k = 1, 2, . . . We see the pn,k to still be present in the above
linearization. So is there a reasoning that makes the pn,k disappear? Perhaps
we need a more refined argument to eliminate the pn,k, k > 1.

Let’s also consider the linearisation of the differential equations of pn,k,
n, k > 1, k ≤ n.

dpn,n
dt

= −(ρx∗ + (σ + µ)n+ µ+ hn)pn,n

+ (σ + µ)((n+ 1)pn+1,n+1 + pn+1,n),

for n = 2, 3, . . ., and

dpn,k
dt

= ρx∗pn−1,k − (ρx∗ + (σ + µ)n+ µ+ hk)pn,k

+ (σ + µ)((n + 1− k)pn+1,k + (k + 1)pn+1,k+1),

for k < n, n, k = 2, 3, . . . We see that the above system is independent of x1,
qn,k, and pn,1 (we see that in the differential equation for pn,k, k > 1, pm,l does
not play a role with l < k.)
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We could call ‘transmission events’ to be the transitions from state pn,1 to
qn,1 (susceptible man gets infected by his infectious wife) and the transitions
from state qn,k to x1 (infectious woman becomes single again after a marriage
with either her epidemiological parent or child). All other transitions will then
fall under the ‘transition events’. The exact details on how we can determine R0

from this distinction between transmission and transition events is not entirely
clear. In any case it does not seem to be straightforward.

These are our thoughts on the problem of proving the stability switch so far.
Since the interpretation allowed us to derive an expression (3.7), we are quite
convinced that the stability switch does occur at R0 = 1 with R0 given by (3.7).

3.6 Monogamy vs polygyny

We conclude this chapter by comparing the infection spread in a population
with a pair-formation process as described in Chapter 2 to the infection spread
in a population which is completely monogamous, i.e. the individuals in the
population have sequential partnerships only.

This comparison can be done by comparing e.g. the endemic level in both
populations, the time it takes to converge to the endemic equilibrium, the ex-
pected number of secondary cases one ‘typical’ infectious individual causes at
the beginning of the epidemic, etc. We will do the latter, i.e. we will compare
the basic reproduction numbers of the two populations with different sexual
behaviour. Let’s reserve R0 for expression (3.7), the basic reproduction number
of the polygynous population, while we let RM

0 denote the basic reproduction
number of the monogamous population.

First, let us consider the polygynous population. Consider expressi-
ons (3.2) and (3.6). They have the factor h/(h + σ + 2µ) in common. Since
(2p∗0 − 2x∗)/(1 − 2p∗0) is always strictly larger than zero we see that Rm > Rf .
This means that, at the beginning of an epidemic, an infectious man causes, on
average, more secondary cases than an infectious woman.

Does this mean that there are more infectious women than infectious men
in equilibrium? Not necessarily. We would need information about the endemic
equilibrium to make a statement about this, something we do not have. Howe-
ver, we would expect there to be an asymmetry in the fraction of infectious men
and infectious women in equilibrium due to the asymmetry of the pair-formation
process.

Do we expect R0 of the polygynous population to be always greater than
RM

0 in a monogamous population? One might be inclined to say this is
indeed the case. Women have the same role if we compare the women in
the monogamous population to the women in the polygynous population:
both may only have one husband at a time. Therefore, one may be tempted
to conclude that, at the beginning of an epidemic, an infectious woman in
the polygynous population causes on average the same number of secondary
cases as an infectious woman in the monogamous population. Since an
infectious man in the polygynous population causes more secondary cases
than an infectious woman, i.e. Rm > Rf , one would conclude that R0 > RM

0 .
However,this all depends on the assumptions we make. For example, although
women are only allowed one husband at the time in both the polygynous and
the monogamous population, there is a difference in the pair formation rate
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since we derived the pair-formation function from the mass-action principle.
Suppose that in both populations the per pair formation rate is given by ρ. In
the polygynous population, women can choose a husband among all men, so
single women acquire a partner at rate ρN∗

m. In the monogamous population,
women can only choose a husband from the pool of Ssingle men, which limits
their choice, and single women acquire a partner at rate ρN∗ȳ, where N∗ȳ
denotes the number of single men in the monogamous population in steady state.

Now let’s consider a heterosexual population that practises monogamy:
men and women are both allowed at most one partner at the time. In contrast
to the polygynous population, this means that men and women are equal (as
far as their role in the pair-formation process is concerned).

We make assumptions similar to the assumptions in Chapter 2, and let m (of
marriage), σ, B, and µ denote the per pair formation rate, the separation rate,
the population birth rate, and the death rate, respectively. Note that we have
used the same notation as in Chapter 2 except for the per pair formation rate,
which we have denoted with ρ in the polygynous population. Of course this has
been done intentionally, to make life easier when gauging the two models.

Introduce the following variables for the model describing the pair-formation
process in a monogamous population.

x : the fraction of single women,

y : the fraction of single men

p : the fraction of pairs.

Consistency requires

x+ y + 2p = 1,

x+ p = y + p =
1

2
.

We have the following set of ODEs describing the model.

dx

dt
=

µ

2
−mN∗xy + (σ + µ)p− µx,

dy

dt
=

µ

2
−mN∗xy + (σ + µ)p− µy,

dp

dt
= mN∗xy − (σ + 2µ)p,

(3.10)

with N∗ = 2B
µ the equilibrium population size. Note that

d

dt
(x+ y + 2p) = µ− µ(x+ y + 2p) = 0.

In order to find the steady state (x̄, ȳ, p̄) of the system we note that x = y = 1
2−p.

In order to find (x̄, ȳ, p̄) we set dp/dt = 0 and solve the quadratic equation

mN∗

(
1

2
− p

)2

− (σ + 2µ)p = 0 (3.11)
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in p. We find

x̄ = ȳ =

√
µ(σ + 2µ)(4Bm+ µ(σ + 2µ))− µ(σ + 2µ)

4Bm
,

p̄ =
2Bm+ µ(σ + 2µ)−

√
µ(σ + 2µ)(4Bm+ µ(σ + 2µ))

4Bm
.

Note that x̄, ȳ, p̄ ≥ 0 for all parameter values B, µ,m, σ.

We will assume that the pair-formation process is in steady state when
introducing an infection in the population (as we have done for the polygynous
population).

Consider two heterosexual populations of equal size N∗ and an equal
number of men and women 1

2N
∗. Suppose one of these populations practises

monogamy, i.e. individuals have sequential partnerships only. We describe this
sexual behaviour with the set of ODEs as given in (3.10). The other population
is asymmetric in its sexual behaviour if we consider men and women: this
population has a sexual network with star-shaped components as described in
Chapter 2. We want to compare the two epidemic models by comparing the
basic reproduction numbers. In order to do so we need to gauge the models.

Suppose we would gauge the two models by equating the total number of
sexual partnerships in the two populations. In the monogamous population,
the total number of sexual partnerships is given by p̄N∗, i.e. the total number
of pairs. In the polygynous population we find the total number of sexual
partnerships (in steady state) to be

(
1

2
− x∗

)
N∗ =

Bρ

2(Bρ+ µ(σ + 2µ))
N∗.

Indeed, the number of sexual partnerships is equal to the number of women in
a sexual partnership, i.e. the number of non-single women (recall Section 2.4.2).

We may equate the total number of sexual partnerships by assuming the
separation and death rate to be the same in the two populations, and choose
the per pair formation rate m in the monogamous population in the right way.
Hence we solve

p̄ =
1

2
− x∗

for m. This yields

m =
ρ(Bρ+ µ(σ + 2µ))

µ(σ + 2µ)
=

ρ

2x∗
,

if we simply use the expressions for x∗ (see (2.16)) and p̄ that we have calculated
before. We can also find the appropriate m as follows. We have p̄ such that it
satisfies (3.11), i.e. mN∗(1/2− p̄)2 − (σ + 2µ)p̄ = 0. Since we equate the total
number of partnerships in both populations, we want m such that

mN∗(x∗)2 − (σ + 2µ)

(
1

2
− x∗

)
= 0.
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If we let m = ρ/(2x∗), then we find

ρ

2
N∗x∗ − (σ + 2µ)

(
1

2
− x∗

)
,

and this is always equal to zero since x∗ solves (2.15), which is the equation
we find above except for a minus sign (recall that we have defined r as ρN∗

in (2.15)).
Now that we have found the expression for m that makes sure that the

number of sexual partnerships in the monogamous and polygynous population
is the same, we can consider the expected number of partners a single individual
in the monogamous population has in its lifetime. This expected number is given
by

QM =
mN∗x̄(σ + 2µ)

µ(mN∗ + σ + 2µ)
.

This expression is the same as (2.26), except for the fact that single women (men)
in the monogamous population may only choose a partner from the population
of single men (women), hence the factor N∗x̄ (= N∗ȳ) rather than N∗

m = 1
2N

∗

in the polygynous population. If we use x̄ = 1
2 − p̄ = x∗, then we can simplify

QM to be

QM =
1
2ρN

∗(σ + 2µ)

µ(12ρN
∗ + σ + 2µ)

= H = W,

i.e. the expected number of partners of a single individual in the monogamous
population equals the expected number of partners of a single individual in the
polygynous population.

Note that the expected duration of one partnership and the expected life
length are given by 1/(σ+2µ) and 1/µ, respectively, so these quantities are the
same in both populations.

We introduce the infection in the monogamous population using the same
assumptions as in Chapter 3. We again let h denote the transmission rate.
In case of a monogamous population we do not have an asymmetry between
men and women. Therefore RM

m = RM
f , where RM

m (RM
f ) denotes the expected

number of secondary cases one infectious man (woman) creates at the beginning
of the epidemic in a monogamous population, with

RM
m = RM

f =
mN∗x̄h(σ + µ)

µ(mN∗x̄+ σ + 2µ)(h+ σ + 2µ)
.

This expression is derived in the same way we derived the expression for Rf in
Section 3.3.1, only now the rate at which an infectious single man acquires a
partner is mN∗x̄(= mN∗ȳ).

The basic reproduction number RM
0 is given by

RM
0 = RM

f .

If we now use m = ρ/(2x∗) and x̄ = x∗, then we see that

RM
0 = Rf ,
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with Rf the basic reproduction number for an infectious woman in the polygy-
nous population (see (3.2) for its expression). We have already observed that
Rm > Rf . Therefore

R0 =
√
RmRf > Rf = RM

0 ,

i.e. the basic reproduction number is always larger in the polygynous population
than in the monogamous population.

We have decided to adjust the per pair formation rate m in the monogamous
population to match the total number of sexual partnerships with that of the
monogamous population. This is not the only choice we could have made, i.e.
there is no canonical choice to solve 1/2− x∗ = p̄. Note that equating the total
number of sexual partnerships means that there are as many single women in the
monogamous population as there are in the polygynous population. However,
there are more single men in the polygynous population than there are in the
monogamous population (p0N

∗ and ȳN∗, respectively).

Our decision of adjusting m changed the per pair formation rate in the
monogamous model such that the total pair formation rate equals the pair for-
mation rate for women in the polygynous model, i.e. the rate a single individual
acquires a new partner. Since we let the expected duration of a partnership
and the expected life length to be the same in both models, the expected num-
ber of partners of a single individual is also the same in both models. As the
infectivity is chosen to be h in both models, the probability of infection in a
partnership with one susceptible and one infectious partner is h/(h+σ+2µ) in
both populations.
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Figure 3.2: Comparing R0 (purple dashed line) and RM
0 (orange solid line) as func-

tions of the infectivity h. The remaining parameters are chosen as ρ = 1/30000000,
σ = 1/1000, µ = 1/9120, B = 1

2
µN0 with N0 = 10000. This means that the

average life length is 1/µ ≈ 25 years, the average duration of a partnership is
1/(σ + 2µ) ≈ 2.25 years, and the average number of partners of a single individual
is QM = H = W ≈ 1.35. The number of sexual partnerships is given by p̄N∗

≈ 602.2
(so the majority of the population is single in both populations with a larger number
of single men in the polygynous population). We see that R0 and RM

0 are increasing
functions of h (as to be expected), R0 > RM

0 , and R0 > 1 for h & 0.0038, RM
0 > 1 for

h & 0.0053.
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We have that infectious individuals in the monogamous model cause, on
average, the same number of secondary cases as the infectious women in the po-
lygynous model (at the beginning of an epidemic). At the same time, infectious
men in the polygynous population produce, on average, a larger number of se-
condary cases. In the situation we investigated, the star-shaped components do
not provide a protective effect compared to the sequential partnerships. Indeed,
we always have R0 > RM

0 and it is possible that an infection becomes endemic
in the polygynous population (R0 > 1), while that same infectious disease dies
out in the monogamous population (RM

0 < 1); see Figure 3.2 for an example.
Based on our assumptions and models, we conclude that, from the viewpoint of
the virus at the beginning of the epidemic, the practice of polygyny is beneficial
compared to the practice of monogamy.

We have compared the basic reproduction numbers of two populations with
a different sexual network. One should keep in mind that the basic reproduction
number gives us information about the growth of an epidemic at the beginning
of the epidemic (when almost all individuals are susceptible) on a generation
basis. We can not use R0 and RM

0 to make statements about the initial growth
in real time. For this we would need the exponential growth rate or Malthusian
parameter (which is denoted with r in [26]). We can also not use R0 and RM

0 to
gain information about the endemic levels. Suppose R0 and RM

0 are both larger
than 1, so the infectious disease can become endemic in both the polygynous
and monogamous population. Even though R0 > RM

0 , this does not imply
that the endemic level in the polygynous population is larger than that in the
monogamous population.

One should be careful when making a statement such as ‘polygyny has a
protective effect’. First of all, compared to what kind of population? Is it a
monogamous population with the same kind of sexual behaviour (i.e. the same
expected number of partners, expected life length, etc.) and an equal number
of sexual partnerships in total, like we have done in this section? Or is it
because populations that practice polygyny are different from a cultural and a
social point of view? Secondly, is polygyny protective because of the the initial
growth of an epidemic on a generation basis or in real time, or is it protective
on the endemic level? For example, if one studies the correlation between HIV
prevalence and polygyny in 34 sub-Saharan African countries [13], then are the
areas one compares in the same stage of the epidemic? In some areas, HIV may
already be endemic, while the epidemic is still growing in other areas. We do
not find any assumptions about this in [13].

We have shown in this section that, given our models and assumptions, we
find R0 > RM

0 . To conclude, there is no simple yes or no answer to the question:
‘Does polygyny have a protective effect?’ One should always be careful to
consider the (implicit) assumptions that one makes.
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Discussion

There are quite a few extensions or adjustments we can make to the dynamic
sexual network or the infectious-diseases model that we presented in Chap-
ters 2 and 3. Some have already been discussed briefly in the main text. We
mention the most interesting extensions for future work.

Simplifying reality with a mathematical model

We are able to describe a dynamic sexual network with a system of ODEs that
we can analyse mathematically. Assumptions that we have made about this
network corresponds to a greatly simplified picture of reality.

The simplification has both advantages and disadvantages. The disadvan-
tage is of course that we do not include a very detailed description of reality,
even in cases we know it could be important. The advantage of the relatively
simple models we have developed is that they are analytically tractable. Fur-
thermore, there are only few parameters included in the models. It is probably
possible to estimate the pair-formation parameters from data obtained on sexual
behaviour, e.g. 1/µ, the mean number of years an individual is sexually active.
Medical investigators have investigated the probability of transmitting HIV in
one sexual act, and such numbers can be found in literature, e.g. [24].

A more practically inclined researcher will probably wonder about this lack
of data in this research. We could have used data in e.g. our investigation of the
steady states of the pair-formation model by estimating the model parameters ρ,
σ, µ, and B from data on sexual behaviour in different populations. This would
have allowed us to see to what extent the model agrees with reality; see also
Section 2.4.3 for discussion of estimating the parameters of the model. However,
one needs to keep in mind that data on this topic is often flawed. For example,
individuals may be under- or over reporting the number of sexual partners they
have (had).

As we have also noted in Section 2.4.3, the numerical investigation that we
have performed on the sexual network is quite limited (and the numerical values
assigned to the parameters have been chosen quite arbitrarily). It would be in-
teresting to extend this investigation and better understand e.g. the distribution
(2p∗j )j . Among others we may estimate the parameters B, µ, ρ, σ from actual
data. Will we then still find a reasonable distribution (2p∗j )j?

The disadvantage of simplifying reality we have mentioned is not entirely a
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disadvantage. The simplification of reality that we have made can still result
in a model that is able to describe the most important features that we also
observe from reality. The limited numerical exploration of the steady state of
the pair-formation model in Section 2.4.3 shows us results for the sexual network
that are not in total disagreement with reality, e.g. (2p∗j )j , the distribution of
the number of wives a man has.

Open problems

In the text we have pointed out some issues that we still need to deal with. In
this chapter we recall the most important ones.

In Section 3.2 we have briefly discussed the existence and uniqueness of an
endemic steady state of the system describing the infectious-disease model. We
have not given a proof of this.

Having more information about the endemic steady state is also of interest
to us. We would like to know how the infectives are distributed among the
two sexes. We have seen in Section 3.6 that Rm ≥ Rf . Does this also result
in a higher endemic level for women than for men? Also, it would be inte-
resting to compare the endemic level in a polygynous population with that in
a monogamous population. This would allow us to understand the effect of
the polygynous structure on the infectious disease compared to a monogamous
population.

In Chapter 3 we have derived explicit expressions for R0 and R̃0 using the
interpretation for the model. A problem that still needs to be solved is to prove
that the thresholds R0 and R̃0 are indeed threshold values, i.e. do we indeed have
a stability switch of the disease-free equilibrium at R0 = R̃0 = 1? Intuitively,
this should be true. However, the main text lacks a mathematical proof for it.
We have described our thoughts on this problem in Section 3.5, in the future
we hope that these will lead to an actual proof.

Concerning the R0 there is more work that we can do. Something we have
not done yet is seeing how R0 behaves as a function of the different parameters,
e.g. how does R0 change if we change the duration of one partnership?

We have not used the description of the infection model as given on page 56
and only given this description. Concerning our analysis of the infection model
in Chapter 3 we may as well have omitted this description. However, it will be
useful when proving R0 is a threshold, which is still one of the goals. We could
also use it to do simulations and gain insights on the endemic state. Often it is
not straightforward how to translate a model to a simulation program. There
is a risk of (accidentally) creating dependencies where one does not want them.
In that case, it will not be clear how to interpret simulation results and how
general the conclusions are that are obtained for a particular choice of parameter
values. The fact that we are able to describe the infection model as a set of
ODEs probably allows us to do simulations in a more straightforward way.

Maximum number of wives

One of the assumptions we have made on the pair-formation process is that there
is no limit on the number of wives a man may have. How does the system change
if we put a bound on the number of wives one man may have? Suppose we would
put a restriction on the maximum number of wives per man; a restriction we
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find in real life imposed by e.g. the law. We also see this reflected in survey data
about marriages. In this case the model description is then no longer infinite
dimensional, but this does not necessarily make it easier to analyse.

The number of differential equations needed to describe the models when
assuming a maximum star size grows quite fast. If we would have a maximum
star size of two, then we have four equations describing the pair formation pro-
cess (using the variables x, p0, p1, and p2). We already need fourteen equations
for the description of the infection model (equations for x0, x1, p0,0, q0,0, p1,0,
q1,0, p1,1, q1,1, p2,0, q2,0, p2,1, q2,1, p2,2, and q2,2), which we are able to reduce
to at least ten by eliminating the equations for x0, p0,0, p1,0, and p2,0. For a
maximum star size of three we need five equations to describe the pair-formation
process and 22 equations to describe the infection model, which we can again
reduce, this time to a maximum of seventeen equations. It is not necessarily
easier to analyse such a large finite-dimensional system compared to the infinite-
dimensional system introduced in this text. Our life does become easier if we
consider the existence and uniqueness of solutions to the finite-dimensional sy-
stem of ODEs describing the model. However, a bound on the star size creates
all kinds of dependencies between wives of one husband. We will not be able to
derive an explicit expression for R0 using the interpretation when such depen-
dencies exist, as we did in Chapter 3. There may be other difficulties involved.

Variable infectivity

A different extension we should explore is the following. In the model for the in-
fectious disease we have assumed an infectious individual to be equally infectious
in his entire infectious life. What changes if we would assume this infectivity to
be variable? The infectiousness of HIV in one infectious individual is known to
change over time [24, 25], as we have discussed in Section 3.1.

Roughly, we can subdivide it in the acute primary phase in the first few
weeks following the initial infection, the chronic phase that can last for ye-
ars, and the AIDS phase as the last disease stage. The infectivity is relatively
high in the acute phase and low in chronic phase before the infectivity increa-
ses again when one develops AIDS. Researchers hypothesize that this variable
infectivity in combination with concurrent partnerships, i.e. partnerships that
overlap in time, allow for HIV prevalence to be higher in populations that are
monogamous [11, 12, 29]. In this short window of the acute phase, infectious
individuals are exposed to more potential infectees than is the case without
concurrency. In this case, there is less time between an individual becoming
infected and transmitting it to another partner. This compared to individuals
who are monogamous, in which case an infected individual must first separate
from its epidemiological parent before it can transmit the infection to a new
partner. Often, new transmissions will then occur in the chronic phase rather
than the acute phase.

Some believe that concurrency is a major contributor to the spread of HIV
in sub-Saharan Africa. Typically, individuals in this region report a number of
sexual partners in their life time similar to heterosexual individuals in western
countries. However, many individuals in sub-Saharan Africa seem to have these
sexual partnerships overlapping in time, contrary to the western population [11].
In order to see the effect of this variable infectivity on a polygamous population
we should incorporate this in our model.
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We have compared the basic reproduction number of an infection model in
a monogamous population with our polygynous population in Section 3.6. We
did this by taking two populations of equal size and an equal number of sexual
partnerships (by choosing the per pair formation rate of the monogamous po-
pulation, and keeping all other parameters the same as in the polygynous popu-
lation). This resulted in a larger basic reproduction number in the polygynous
population than in the monogamous population. If we would include the varia-
ble infectivity in both populations rather than a constant infectivity, then we
would expect this difference in the basic reproduction numbers to grow. Indeed,
infectious men in the acute phase of the infection in the polygynous population
would in general have more susceptible wives than do infectious men in the
monogamous population. Then what about the endemic levels? How will they
change when incorporating variable infectivity?

Polygyny vs monogamy

To end this thesis, we want to mention the discussion at the end of Section 3.6.
Based on the assumptions we have made about the infection model for the
monogamous and polygynous population we have found R0 > RM

0 . Therefore,
we see that the star-shaped components of our sexual network do not provide
any protection to the infectious disease in the initial phase of an epidemic on a
generation basis compared to a strictly monogamous population. In future work,
we could extent the comparison between the two populations and also consider
e.g. the endemic levels and see whether polygyny does or does not provide a
protective effect in this stage of the epidemic. Either way, one should always
keep in mind that any conclusions drawn in this text are based on the models
we have considered. One should always be careful to consider the (implicit)
assumptions.
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