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Pure mathematics is, in its way, the poetry of logical ideas.

Albert Einstein, New York Times, May 1st, 1935.



Abstract

Let E/k(T ) be an elliptic curve defined over a rational function field
and fix a Weierstrass equation for E. For a point P ∈ E(k(T )), we can
write xP = AP

B2
P

with relatively prime polynomials AP , BP ∈ k[T ]. The

sequence (BnP )n≥1 is called the elliptic divisibility sequence of P ∈ E. For
two such elliptic divisibility sequences (BnP )n≥1 and (BnQ)n≥1, we consider
the degree of the greatest common divisor of terms in the elliptic divisibility
sequences,

deg gcd(BnP , BnQ).

We conjecture a complete theory for how this degree is bounded as n in-
creases, and we support this conjecture with proofs and experiments. In
characteristic 0, Silverman already conjectured that this degree is always
bounded by a constant, and he gave a proof for curves with constant j-
invariant. In characteristic p, Silverman conjectured that there is always a
constant c such that there are infinitely many n with

deg gcd(BnP , BnQ) ≥ cn.

We conjecture that there are curves that do as well as curves that don’t
satisfy the stronger bound that

deg gcd(BnP , BnQ) ≥ cn2

for infinitely many n, and that this is still true when we do not allow the
field characteristic p to divide n.
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3.3 Pullback Divisor σ∗P (Ō) . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Greatest Common Divisor of Points on Elliptic Curves . . . . . . . 40

4 Common Divisors of EDS in Characteristic 0 43

4.1 General Part of the Proof . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 A Corollary for C = P1 . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Common Divisors of EDS in Characteristic p 53

5.1 Surjective Morphisms of Curves . . . . . . . . . . . . . . . . . . . . 53

5.2 Frobenius Morphism and the Hasse Estimate . . . . . . . . . . . . 53

5.3 Silverman’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Proof of Silverman’s Theorem . . . . . . . . . . . . . . . . . . . . . 57

5.5 Points on Different Elliptic Curves . . . . . . . . . . . . . . . . . . 61

5



6 Experiments and Examples 65
6.1 Examples in Characteristic Zero . . . . . . . . . . . . . . . . . . . 66
6.2 Two Points on E : y2 = x3 + T 2x+ T in Characteristic 3 . . . . . 67
6.3 Dependent Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Points on Different Elliptic Curves . . . . . . . . . . . . . . . . . . 70
6.5 Two Points on E4 in Characteristic 5 . . . . . . . . . . . . . . . . . 76
6.6 High Points at n = pk and n = pk ± 1 . . . . . . . . . . . . . . . . 78

7 A Complete Theory 79
7.1 Characteristic 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Characteristic p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Flow Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Conclusions 85

References 87

Index 89

Appendix A: Experiments 91

6



Introduction

Elliptic Divisibility Sequences

Divisibility sequences are not new to mankind. An early example is the well
known Fibonacci sequence,

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . ,

which is given by the linear recurrence relation Fn = Fn−1 + Fn−2, and it was
used in the metrical sciences in South Asia, its development being attributed in
part to Pingala (200 BC), later being associated with Virahanka (circa 700 AD),
Gopãla (circa 1135) and Hemachandra (circa 1150) (see [3], pp 226). In the west,
the Fibonacci sequence first appears in the book Liber Abaci (1202, see [18]) by
Leonardo da Pisa, also known as Fibonacci, who considered the growth of an
idealized rabbit population.

A divisibility sequence is a sequence

n1, n2, n3, . . .

such that ni|nj whenever i|j. For example, the 10th term of the Fibonacci se-
quence, 55, is divisible by the 5th term of the Fibonacci sequence, 5. Also, the
12th term of the Fibonacci sequence, 144, is divisible by the 6th term of the Fi-
bonacci sequence, 8. A proof that the Fibonacci sequence is actually a divisibility
sequence is given in example 1.1.4.

An elliptic divisibility sequence is a special kind of divisibility sequence. The
first definition as well as the arithmetic properties of an elliptic divisibility se-
quence are attributed to Morgan Ward in 1948, and he defined one as

a sequence of integers,

(h) : h0, h1, h2, . . . , hn, . . .

which is a particular solution of

ωm+nωm−n = ωm+1ωm−1ω
2
n − ωn+1ωn−1ω

2
m

and such that hn divides hm whenever n divides m,1

which he studied using elliptic functions. He directly gives the simple example
hn = n, and one easily checks that this is indeed correct. The Fibonacci sequence
itself is not an elliptic divisibility sequence: taking m = 3 and n = 2 we have
that the left-hand side gives

ωm+nωm−n = 5 · 1 = 5

1See [25], pp. 1.
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while the right-hand side gives

ωm+1ωm−1ω
2
n − ωn+1ωn−1ω

2
m = 3 · 1 · 12 − 2 · 1 · 22 = −5.

The even terms of the Fibonacci sequence,

1, 3, 8, 21, 55, 144 . . . ,

do form an elliptic divisibility sequence, and an easy elementary proof that this
sequence satisfies the definition given by Ward can be found in [13], example 3.10,
pp. 20-21. Moreover, if we would define the Fibonacci sequence up to sign, it
would also be an elliptic divisibility sequence: the sign choice

1,−1,−2, 3, 5,−8,−13, 21, 34,−55,−89, 144, . . .

makes the Fibonacci sequence into an elliptic divisibility sequence in the defini-
tion of Ward.
Elliptic divisibility sequences attracted only sporadic attention until around the
year 2000, when they were taken up as a class of nonlinear recurrences that are
more amenable to analysis than most such sequences. New applications include
a proof of the undecidability of Hilbert’s tenth problem over certain rings of in-
tegers (logics) by Bjorn Poonen in 2002 (see [14]) and the elliptic curve discrete
logarithm problem (cryptography) by Rachel Shipsey in 2000 (see [17]).

In this thesis, we will follow Silverman in using an alternative definition of an
elliptic divisibility sequence that is more natural in that it is directly related to
elliptic curves. Let E/Q be an elliptic curve given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
3 + a4x+ a6.

As we will prove in proposition 1.2.1, any nonzero rational point P ∈ E(Q) can
be written in the form

P = (xP , yP ) =

(
AP
B2
P

,
CP
B3
P

)
with gcd(AP , BP ) = gcd(CP , BP ) = 1,

where BP is defined up to a unit, i.e., up to sign. For P a non-torsion point,
the elliptic divisibility sequence associated to E/Q and P is the sequence of
denominators of multiples of P :

BP , B2P , B3P , . . . .

This alternative definition of an elliptic divisibility sequence that we use gives a
slightly different collection of divisibility sequences than is given by the classical
non-linear recurrence formula. The relationship between these definitions has
been formalized in the year 2000 by Rachel Shipsey, see [17].

Above, we described elliptic divisibility sequences for which the elliptic curve
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E is defined over Q. We will be looking mostly at elliptic divisibility sequences
over function fields; we replace Q with the rational function field k(T ) and re-
place Z with the ring of polynomials k[T ], and for a point P , we can still write
xP = AP

B2
P

with AP , BP ∈ k[T ] and gcd(AP , BP ) = 1. Hence we will look at

elliptic divisibility sequences (BnP )n≥1 where BnP is the root of the denominator
of the x-coordinate of the point nP on an elliptic curve over a function field.

In this thesis, we will look at common divisors of two such elliptic divisibility
sequences. More explicitly, given two elliptic divisibility sequences (BnP )n≥1 and
(BnQ)n≥1, we look at the degree of gcd(BnP , BnQ), and how this degree behaves
as n increases. This means we will look at the following questions:

• What are lower and what are upper bounds for this degree, as n increases?

• In which cases are there infinitely many n such that the degree is bigger
than cn for some constant c?

• In which cases are there infinitely many n such that the degree is even
bigger than cn2 for some constant c?

• In which cases are there infinitely many n such that gcd(BnP , BnQ) =
gcd(BP , BQ)?

Overview of the Text

Broadly spoken, this thesis can be divided into four parts. Sections 1, 2, 3.1-3.2
and 5.1-5.2 are considered to be preliminaries. Sections 3.3-3.5, 4 and 5.3-5.5
treat what we know from Silverman’s article [19] and more. In section 6, we do
experiments and examples, and in section 7, a complete theory of bounds on the
degree of gcd(BnP , BnQ) is conjectured and explained.

The preliminaries first treat elliptic divisibility sequences in section 1. Here,
they are defined over Q as well as over a function field k(T ), and examples are
given. In section 2, we introduce elliptic surfaces and several concepts concerning
elliptic surfaces and elliptic curves over function fields. At the start of section 3,
we define Weil and Cartier divisors, and explore their relationship. At the start
of section 5, we treat some additional concepts concerning elliptic curves over a
function field in characteristic p. All ideas introduced in the preliminaries can be
found in any book about the subject (I mostly used [6], [10], [15], [20] and [21]),
and no new or original ideas are created. However, all proofs are mine, unless
explicitly stated otherwise.

In the remaining part of section 3, we explore and formalize the relationship
between terms in elliptic divisibility sequences BnP arising from a curve over
k(T ) = k(P1) and the pullback divisor σ∗P (Ō), and we see how this pullback di-
visor can be seen as a generalization of elliptic divisibility sequences for curves
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over k(C) where C/k is an arbitrary smooth projective curve. Although this rela-
tionship is commonly known (on appropriate subsets of the human population),
formalizing this relationship is part of my own research.

In section 4, we treat the characteristic 0 case for curves E/k(C) with constant
j-invariant as done by Silverman in [19]. Although the proof of the characteristic
0 case is attributed to Silverman, it is important to note that his version is very
dense, and I have tried to explain many of the steps in the proof in more detail.
Moreover, we finish that section by using the relationship formalized in section
3 to prove a corollary about the case C = P1, looking at BnP instead of at σ∗P (Ō).

In section 5, we treat the characteristic p case for curves E/k(C) with constant
j-invariant as done by Silverman in [19]. After doing some additional preliminar-
ies, I have tried to explain many of the steps of his proof in more detail. In 5.6,
we take a moment to see if and how this proof can be generalized when taking P
and Q on separate curves instead of on a single elliptic curve.

In section 6, the main aim is to get a better grip on the characteristic p case, and
to investigate whether or not it is probable that there is a stronger bound such
that there are infinitely many n such that the degree of gcd(BnP , BnQ) is bigger
than this bound, i.e. a bound of the form cn2 instead of the cn bound given by
the proof of Silverman (where c is a constant).

In chapter 7, we gather all our findings coming from both experiments and proofs,
and we conjecture a complete theory for how deg gcd(BnP , BnQ) is bounded as
n increases. Moreover, we recapitulate what is proven so far and we prove some
easy additional cases.

Preview

In this thesis, we conjecture a complete theory about the greatest common divisor
of elliptic divisibility sequences,

deg gcd(BnP , BnQ).

If P and Q are linearly independent or if one is a torsion point, it seems true that
there are infinitely many n such that gcd(BnP , BnQ) = gcd(BP , BQ). Moreover,
we prove that this is the case in characteristic 0 for curves with constant j-
invariant in the more general setting

GCD(σ∗nP (Ō), σ∗nQ(Ō)) = GCD(σ∗P (Ō), σ∗Q(Ō))

for infinitely many n. In characteristic p, no proof is given, but the experiments
do give a strong inclination to believe this is still the case.
In characteristic 0, the conjecture says that there is a constant c, independent of
n, that is an upper bound on deg gcd(BnP , BnQ). We prove this for curves with
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constant j-invariant.
In characteristic p, an obvious quadratic (in n) upper bound is given by the fact
that degBnP itself grows asymptotically like n2. We conjecture that for some
but not all curves, there are infinitely many n such that

deg gcd(BnP , BnQ) ≥ cn2

for some constant c, and that for all curves the weaker bound

deg gcd(BnP , BnQ) ≥ cn

holds. We prove this weaker bound for curves with constant j-invariant.
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1 Elliptic Divisibility Sequences

1.1 Divisibility Sequences

We start with a standard definition of a divisibility sequence.

Definition 1.1.1. A sequence of integers (dn)n≥1 is called a divisibility sequence,
provided that dm|dn when m|n.

Here are some easy examples.

Example 1.1.2. The sequence (n)n≥1 is trivially a divisibility sequence.

Example 1.1.3. The sequence (an−1)n≥1 is a divisibility sequence for every a ∈ N.
For let m|n and k = n

m ∈ N, then

an − 1 = ak·m − 1 = (am − 1) ·
k∑
i=1

a(k−i)m,

and thus
(am − 1)|(an − 1).

Moreover, this divisibility sequence comes from a rank 1 subgroup of the multi-
plicative group Gm: we have that p|an−1 precisely when an = 1 mod p. There is
an analogy between this sequence and elliptic divisibility sequences: with those,
we look at nP = 0 mod p instead (note that 1 is the identity in the multiplicative
group Gm and that 0 is the identity in additive group E).

Example 1.1.4. The Fibonacci sequence (F (n))n≥1 is a divisibility sequence.
Write F (1) = 1, F (2) = 1, and F (n) = F (n − 1) + F (n − 2) and let m|n
and k = n/m ∈ Z≥1, then

F (n) = F (n− 1) + F (n− 2) = 2F (n− 2) + F (n− 3)

= F (2)F (n− 1) + F (1)F (n− 2) = F (3)F (n− 2) + F (2)F (n− 3)

= F (m)F (n−m+ 1) + F (m− 1)F (n−m)

= F (m)F ((k − 1)m+ 1) + F (m− 1)F ((k − 1)m).

Now, we can continue doing the same again starting with F ((k − 1)m), and get

F ((k − 1)m) = F (m)F ((k − 2)m+ 1) + F (m− 1)F ((k − 2)m)),

F (m− 1)F ((k − 1)m) = F (m)F (m− 1)F ((k − 2)m+ 1)

+ F (m− 1)2F ((k − 2)m).

Repeating this k − 1 times, we get

F (n) =

(
k−1∑
i=1

F (m− 1)i−1F (m)F ((k − i)m+ 1)

)
+ F (m− 1)k−1F (m)

= F (m)

((
k−1∑
i=1

F (m− 1)i−1F ((k − i)m+ 1)

)
+ F (m− 1)k−1

)
and thus F (m)|F (n).
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1.2 Elliptic Divisibility Sequences over Q

Let E/Q be an elliptic curve given by the Weierstrass equation y2 = x3 +Ax+B
with integer coefficients. To define elliptic divisibility sequences, we need the
form of a point on such a curve.

Proposition 1.2.1. We can write any nonzero rational point P ∈ E(Q) as

P = (xp, yP ) =

(
AP
B2
P

,
CP
B3
P

)
,

where AP , BP and CP are integers with gcd(AP , BP ) = gcd(CP , BP ) = 1.

Proof. This is a simple elementary proof. Let (x, y) ∈ E/Q be a point on some
elliptic curve given by the Weierstrass equation y2 = x3 +Ax+B. Write

x =
a

b
and y =

c

d

with a, b, c, d ∈ Z and gcd(a, b) = gcd(c, d) = 1. Then the Weierstrass equation
gives us that

c2

d2
=
a3 +Aab2 +Bb3

b3
.

Since b|Bb3, b|Aab2 and gcd(b3, a3) = 1, we have that

gcd(a3 +Aab2 +Bb3, b3) = 1

and hence we have that d2 = b3. Moreover, this means that d =
√
b3 and hence

that b is a square b = B2
P , and therefore that d =

√
B6
P = B3

P . This completes

the proof.

Now, we can define what we mean with an elliptic divisibility sequence,
namely a sequence of denominators (BnP )n≥1.

Definition 1.2.2. The elliptic divisibility sequence associated to E/Q and P is
the sequence (BnP )n≥1 of denominators of multiples of P .

Remark 1.2.3. In the proof of proposition 1.2.1, BP is only defined up to sign:
we can change the sign of BP if we also change the sign of CP . Hence the elliptic
divisibility sequence (BnP )n≥1 is also only defined up to sign. Since we will only
look at divisibility properties, this is not a problem.

The following proposition says that an elliptic divisibility sequence indeed is
a divisibility sequence.

Proposition 1.2.4. Let (BnP )n≥1 be an elliptic divisibility sequence. Then
BmP |BnP when m|n. In other words, (BnP )n≥1 is a divisibility sequence.

Proof. The proof of this proposition is based on formal groups. Since the ma-
chinery needed for this proof is very different from the rest of the thesis, it will
be omitted. For a proof, see [2], lemma 2.6, pp. 14.

14



Remark 1.2.5. As is also shown in [2], an elliptic divisibility sequence even satisfies
the stronger condition that

gcd(BmP , BnP ) = Bgcd(m,n)P ,

and is therefore often called a strong divisibility sequence.

Example 1.2.6. As said in the introduction, we know that the even terms of the
Fibonacci sequence,

1, 3, 8, 21, 55, 144, . . . ,

form an elliptic divisibility sequence as in Wards definition, see [13], example
3.10, pp. 20-21. The elliptic curve associated to this elliptic divisibility sequence
(see [22], proposition 4.5.3, pp. 59) is the singular curve

E : y2 + 3xy + 3y = x3 + 2x2 + x,

with the point P = (0, 0). Since this curve is singular, we have that this sequence
is not an elliptic divisibility sequence in our sense of the word.

Example 1.2.7. Let E : y2 = x3 + x + 1 and look at the point P = (0, 1). We
can look at the elliptic divisibility sequence (BnP )n≥1. Its few terms are given in
table 1.

B1 = 1
B2 = 2
B3 = 1
B4 = 36 = 22 · 32
B5 = 287 = 7 · 41
B6 = 1222 = 2 · 13 · 47
B7 = 93599 = 11 · 67 · 127
B8 = 2943288 = 23 · 32 · 40879
B9 = 80653535 = 5 · 503 · 32069
B10 = 17621453878 = 2 · 7 · 41 · 30699397
B11 = 2146978731169 = 418 · 5124054251
B12 = 340830164675988 = 22 · 33 · 13 · 29 · 37 · 47 · 1721 · 2797
B13 = 240710769046691137 = 240710769046691137
B14 = 110719491046597707406 = 2 · 11 · 67 · 127 · 591456591665497
B15 = 97293858000319762026049 = 7 · 41 · 36097 · 79588361 · 118000231

Table 1: First 15 terms of the elliptic divisibility sequence (BnP )n≥1 with y2 =
x3 + x+ 1 and P = (0, 1).

1.3 Elliptic Divisibility Sequences over Function Fields

Let k be any field. Often we will assume that k is algebraically closed, but
in general this assumption is not made. Above, we defined elliptic divisibility
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sequences over Q. Instead of working over Q, we can also work over a function field
k(T ), where we replace the ring of integers Z with the ring of polynomials k[T ].
In section 2, we will see how elliptic curves over function fields k(T ) correspond
to elliptic surfaces over k, and what they are like.
Let E/k(T ) be an elliptic curve given by the Weierstrass equation y2 = x3+Ax+B
with A,B ∈ k[T ]. Just like in the case over Q, we can write a point on the elliptic
curve as

P = (xp, yP ) =

(
AP
B2
P

,
CP
B3
P

)
with AP , BP , CP ∈ k[T ] and gcd(AP , BP ) = gcd(AP , CP ) = 1. Moreover, the
proof given above carries over completely to this function field case. This means
that we have elliptic divisibility sequences over function fields in the same way
as over Q.

Definition 1.3.1. Let K be a function field. The elliptic divisibility sequence
associated to E/K and P is the sequence (BnP )n≥1 of denominators of multiples
of P .

Remark 1.3.2. In the proof of proposition 1.2.1, BP was only defined up to a unit.
As we carry that proof to the function field case, we also have that the sequence
(BnP )n≥1 is defined up to a unit in the function field. For K = k(T ), we have
that BP is defined up to multiplication by a constant in k∗, and as a convention,
this means we will choose to always write BP monic.

Example 1.3.3. Let E : y2 = x3 − T 2x+ 1, take the point P1 = (xP , yP ) = (T, 1)
and look at the elliptic divisibility sequence (BnP )n≥1 in characteristic 0. Its first
few terms are given in table 2.

B1 = 1
B2 = 1
B3 = t · (t3 − 3)
B4 = t6 − 3t3 + 1
B5 = t12 − 9t9 + 23t6 − 15t3 − 4
B6 = t(t3 − 3)(t12 − 5t9 + 7t6 − 3t3 + 8/3)
B7 = t24 − 18t21 + 115t18 − 348t15 + 515t12 − 270t9 − 183t6 + 252t3 − 16
B8 = (t6−3t3+1) ·(t24−12t21+55t18−120t15+135t12−132t9+209t6−168t3−8)
B9 = t · (t3 − 3) · (t36 − 27t33 + 264t30 − 1344t27 + 4038t24 − 7254t21 + 6204t18 +
3672t15 − 16623t12 + 17817t9 − 7068t6 + 576t3 − 192)
B10 = (t12−9t9 +23t6−15t3−4)(t36−15t33 +468/5t30−1548/5t27 +2914/5t24−
762t21 + 1544t18 − 20844/5t15 + 34929/5t12 − 30507/5t9 + 2620t6 − 624t3 + 64/5)

Table 2: First 10 terms of the elliptic divisibility sequence (BnP )n≥1 of y2 =
x3 − T 2x+ 1 and P = (T, 1), factored over Q.
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2 Elliptic Surfaces

Let k be a field (of characteristic 6= 2) and let A(T ), B(T ) ∈ k(T ) be rational
functions of the parameter T . We can look at a family of elliptic curves

ET : y2 = x3 +A(T )x+B(T ).

Substituting T = t for some t ∈ k̄, we get that Et is an elliptic curve provided
that A(t) and B(t) are finite and ∆(t) = −16(4A(t)3 + 27B(t)2) is nonzero.

-2 0 2 4

-10

-5

0

5

10

x

y

Figure 1: Left: the family of elliptic curves ET : y2 = x3 + Tx intersected with
the plane T = 3. Right: the elliptic curve E3.

Instead of looking at it this way, we can also look at the single elliptic curve

E : y2 = x3 +A(T )x+B(T )

defined over the function field k(T ). This is an elliptic curve provided that

∆(T ) = −16(4A(T )3 + 27B(T )2) 6= 0.

For example, we can look at the curve E : y2 = x3−T 2x+T 2 and find the point
(T, T ) ∈ E(k(T )).

We can generalize this even more: above, we assumed that A and B lie in the
field of rational functions k(T ). k(T ) is the function field of the projective line P1.
Instead, we can take any non-singular projective curve C/k and look at elliptic
curves E defined over the field k(C). To define the field k(C), we first recall the
definition of the local ring of X along Y .

Definition 2.0.4. If x is a point on a variety X, then we define the local ring
of X at x, denoted Ox,X , as the ring of functions that are regular at x, where
we identify two such functions if they coincide on some open (using the Zariski
topology) neighborhood of x. If X is a variety and Y ⊂ X is a subvariety, then
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we define the local ring of X along Y , denoted OY,X , as the set of pairs (U, f),
where U is open in X, U ∩ Y 6= ∅ and f ∈ O(U) is a regular function on U , and
we identify two pairs (U1, f1) = (U2, f2) if f1 = f2 on U1 ∩ U2.

Using this, we can define the function field k̄(X) of X:

Definition 2.0.5. Let X be a variety. The function field of X, denoted by k̄(X)
(sometimes just k(X)), is defined to be OX,X , the local ring of X along X. In
other words, k̄(X) is the set of pairs (U, f) where U is a non-empty open subset
(in the Zariski topology) of X and f is a regular function on U , subject to the
identification (U1, f1) = (U2, f2) if f1|U1∩U2 = f2|U1∩U2 .

Remark 2.0.6. Note that the function field of X is indeed a field: in a pair (U, f),
f is a regular function, and can be written

f = g(x)/h(x),

where h(x) 6= 0 on U . f has multiplicative inverse f−1 = h(x)/g(x) and this is
defined on the open V = X − Z(g), hence the inverse of the pair

(U, f) =

(
U,
g(x)

h(x)

)
is the pair

(V, f−1) =

(
X − Z(g),

h(x)

g(x)

)
.

Also, we have that the multiplication is commutative: let f1 = g1/h1, f2 = g2/h2
be regular and let U1 = X − Z(h1) and U2 = X − Z(h2), then U1 ∩ U2 6= ∅ and

(U1, f1) · (U2, f2) = (U1 ∩ U2, f1 · f2) = (U1 ∩ U2, f2 · f1) = (U2, f2) · (U1, f1).

Proposition 2.0.7. For k algebraically closed, we have that k(T ) is the function
field of the projective line P1.

Proof. k(T ) is the rational function field and its elements are rational functions

f = g(T )
h(T ) with g, h polynomials in k[T ]. The function field of the projective line

is given by pairs (U, f) where U is open in the projective line and f is regular

on U , i.e., we have that f(x) = g(x)
h(x) with h(x) 6= 0 on U . An element f of

k(T ) having poles α1, . . . , αn indeed corresponds to any pair (U, f) where U does
not contain α1, . . . , αn. The other way around, two pairs (U, f) and (V, f) are
the same precisely when they’re both equal to (P1 − {α1, . . . , αn}, f), and this
last pair corresponds to a rational function in k(T ). Thus k(T ) is precisely the
function field of P1.

Intuitively, assuming that k = k̄, this means that the function field k(C) of
a curve C can be seen as the field of functions C → k, poles allowed, that are
regular on some open subsets of C.
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Now, fix a non-singular projective curve C/k and take

E : y2 = x3 +Ax+B

with A,B ∈ k(C) such that 4A3 + 27B2 6= 0. As mentioned above, for almost
all points t ∈ C(k̄) we can evaluate A and B at t and get an elliptic curve Et.
Instead, we can also treat the variable t just like we treat x and y. Then, we look
at the surface formed from elliptic curves

E = {([X : Y : Z], t) ∈ P2 × C | Y 2Z = X3 +AZ2 +BZ3},

where A,B ∈ k(C). This forms the basis for the formal definition of an elliptic
surface.

Definition 2.0.8. Let C/k be a nonsingular projective curve. An elliptic surface
is a triple (E , π, σ) with the properties that

1. E is a surface, i.e., a two-dimensional projective variety over k,

2. π is a morphism

π : E → C

over k such that for all but finitely many points t ∈ C(k̄), the fibre

Et = π−1(t)

is a non-singular curve of genus 1 over k̄,

3. σ is a section

σ : C → E

to π, i.e., σ is a morphism such that the composition π ◦ σ : C → C is the
identity map on C.

Often, we will just say that E is an elliptic surface, implicitly assuming that there
is a π and a σ given.

Remark 2.0.9. In geometry, the most common definition of an elliptic surface
does not assume the existence of section, our third assumption, which leads to
many interesting geometrical questions, such as the possibility of the existence of
multiple fibres. Because the emphasis in this thesis lies in number theory rather
than in geometry, we will always assume the existence of a section σ.

2.1 Isogenies

Let us recall that an isogeny is a morphism between two elliptic curves, possibly
over some function fields, that respects the point at infinity.
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Definition 2.1.1. Let E1, E2 be elliptic curves. An isogeny from E1 to E2 is a
morphism

φ : E1 → E2

satisfying φ(O1) = O2, where O1 and O2 are the points at infinity of E1 and E2

respectively. E1 and E2 are called isogenous if there is an isogeny from E1 to E2

with φ(E1) 6= {O2}.

An isogeny turns out to commute with the group operations.

Theorem 2.1.2. Let
φ : E1 → E2

be an isogeny of elliptic curves. Then

φ(P +Q) = φ(P ) + φ(Q)

for all P,Q ∈ E1.

Proof. See [21], theorem III.4.8, pp.71.

From the definition, it is not directly clear that being isogenous is an equiv-
alence relation. The following theorem says that given a non-zero isogeny φ :
E1 → E2, we can always construct the dual isogeny φ̂ : E2 → E1. With this, it
follows that being isogenous is indeed an equivalence relation.

Theorem 2.1.3. Let φ : E1 → E2 be a nonconstant isogeny of degree m. Then
there exists a unique isogeny

φ̂ : E2 → E1

satisfying φ̂ ◦ φ = [m], where [m] is the multiplication-by-m map.

Proof. See [21], theorem III.6.1, pp. 81.

Definition 2.1.4. Let φ : E1 → E2 be an isogeny. The dual isogeny to φ is the
isogeny φ̂ given above, unless φ is constant, then the dual isogeny is [0].

2.2 Birational Equivalence

We would like to be able to associate an elliptic surface E to an elliptic curve
E/k(C), because as we’ve seen before, an elliptic surface and an elliptic curve
over a function field are rather two ways of looking at ’the same thing’. For this,
we will first define birational equivalence - first for projective varieties, then for
elliptic surfaces.

Definition 2.2.1. Let V and W be projective varieties. A rational map from V
to W is an equivalence class of pairs (U, φU ), where U is non-empty open in V
and φU : U → W is a morphism, and two pairs (U1, φU1), (U2, φU2) are deemed
equivalent if φU1 = φU2 on U1 ∩ U2.
A rational map φ : V → W is a birational isomorphism if it has rational inverse
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ψ : W → V ; that is, φ(V ) = W , ψ(W ) = V and the maps φ ◦ ψ : W → W and
ψ ◦ φ : V → V are the identity maps at all points for which they are defined.
If there is a birational isomorphism between V and W , then V and W are said
to be birationally equivalent .

Remark 2.2.2. Note that we require for a rational inverse not only that the com-
positions are identity maps at all points for which they are defined, but also that
φ(V ) = W and ψ(W ) = V . This is to exclude cases like the following: let V
be some curve and let W = curve ∪ {pt} consist of a point and a curve, and
assume that there is a rational map from V to the curve of W with the property
that there is a rational map from W to V such that the compositions are identity
maps at all points for which they are defined (i.e. assume that V and the curve of
W are isomorphic). We do not want to call this map a birational isomorphism: it
does nothing with the separate point of W . To avoid cases in which isolated parts
of W or V aren’t mapped to at all, we require that φ(V ) = W and ψ(W ) = V
before we call something a birational isomorphism.

We are now ready to say when two elliptic surfaces are birational equivalent.

Definition 2.2.3. Let (E1, π1, σ1), (E2, π2, σ2) be two elliptic surfaces over C. A
rational map from E1 to E2 over C is a rational map φ : E1 → E2 which commutes
with the projection maps, i.e., with the property that π2 ◦ φ = π1. The surfaces
E1 and E2 are birational equivalent over C if there is a birational isomorphism
φ : E1 → E2 which commutes with the projection maps.

Now, we can state the proposition that explains precisely how the theory of
elliptic curves over a function fields k(C) is the same as the birational theory of
elliptic surfaces over C.

Proposition 2.2.4. Let E/k(C) be an elliptic curve. To each Weierstrass equa-
tion for E,

E : y2 = x3 +Ax+B

with A,B ∈ k(C), we associate an elliptic surface

E(A,B) = {([X : Y : Z], t) ∈ P2 × C : Y 2Z = X3 +AXZ2 +BZ3}.

Then all of the E(A,B) associated to E are k-birationally equivalent over C.
Let E be an elliptic surface over C/k, then E is k-birationally equivalent over
C to E(A,B) for some A,B ∈ k(C). Furthermore, the elliptic curve E : y2 =
x3 +Ax+B is uniquely determined (up to k(C)-isomorphism) by E.

Proof. See [20], Proposition 3.8, pp. 206.

Definition 2.2.5. Let E be an elliptic surface over k. For a point P on the
corresponding elliptic curve over k(C), there is a map

σP : C → E : t→ (Pt, t)

that sends t to P evaluated at t.
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2.3 Minimal Elliptic Surfaces

Now, we will define what it means for an elliptic surface to be minimal.

Theorem 2.3.1. Let E → C be an elliptic surface. Then there exists an elliptic
surface Emin → C and a birational map φ : E → Emin commuting with the maps
to C with the following property:
Let E ′ → C be an elliptic surface, and let φ′ : E ′ → E be a birational map com-
muting with the maps to C. Then the rational map φ◦φ′ extends to a morphism.
In other words, the top line of the following commutative diagram extends to a
morphism:

E ′

��

φ′ // E

��

φ // Emin

}}
C

Proof. See [20], theorem 8.4, p. 244.

Definition 2.3.2. Let E → C be an elliptic surface. We say that this elliptic
surface is minimal, if it is equal to some Emin.

2.4 Split Elliptic Surfaces

An elliptic surface E over a field k is said to split if it is isomorphic to the product
of an elliptic curve over k and the curve C, with an additional constraint on π.

Definition 2.4.1. An elliptic surface E splits over k if there is an elliptic curve
E0/k and a birational isomorphism i : E → E0 × C such that the following
diagram commutes:

E
π

��

i // E0 × C

proj2{{
C

Example 2.4.2. Let E : y2 = x3 + T 4x be an elliptic surface with C = P1 and let
E0 : y2 = x3 + x be an elliptic curve, then there is an isomorphism

i : E → E0 × P1 : ((x, y), t)→ ((t−2x, t−3y), t),

where for ((x, y), t) ∈ E , we have

(t−2x)3 + (t−2x) = t−6(x3 + t4x) = t−6y2 = (yt−3)2,

so i indeed maps to E0 × P1. Moreover, we have that π : ((x, y), t) → t factors
through E0 × P1, thus we have that E splits over k.
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Example 2.4.3. Let E : y2 = x3 + Tx be an elliptic surface with C = P1 and let
E0 : y2 = x3 + x be an elliptic curve, then there is an isomorphism

i : E → E0 × P1 : ((x, y), t)→ ((t−1/2x, t−1/4y), t),

but this isomorphism is not defined over k, so E does not split over k. However,
it does split if we replace the base field k(T ) by the finite field extension k(T 1/4).

Example 2.4.4. Let E : y2 = x3 + Tx + T be an elliptic surface with C = P1.
This surface does not split over k, not even when we replace the base field by
some larger field. This is because its j-invariant is not constant, see remark 2.5.4
below.

Proposition 2.4.5. Let E → C be an elliptic surface over k, and let E/K be the
associated elliptic curve over the function field K = k(C). Then E → C splits
over k if and only if there is an elliptic curve E0/k and an isomorphism E → E0

defined over K.

Proof. This proof comes from [20], proposition 5.1, pp. 221.
Suppose first that π : E → C splits. This means that there is a birational
isomorphism

i : E → E0 × C

so that proj2 ◦ i = π. A dominant rational map induces a corresponding map on
function fields (see [20], proposition 3.7, pp. 205), so we obtain an isomorphism

k(E) ' k(E0 × C)

which is compatible with the inclusions k(C)→ k(E) and k(C)→ k(E0 × C).
In other words, writing K = k(C), the fields k(E) = K(E) and k(E0 × C) =
K(E0) are isomorphic as K-algebras. Each of them is a field of transcendence
degree 1 over K, so each corresponds to a unique non-singular curve defined over
K(see [6], I.6.12). In other words, there is an isomorphism E ' E0 defined over
K.
Now assume that we are given an elliptic curve E0/k and an isomorphism E → E0

defined over K. Then K(E) ' K(E0) as K-algebras, which is the same as saying
that

k(E) ' k(E0 × C)

as k(C)-algebras. Again using [20], proposition 3.7, this isomorphism of fields
induces a birational isomorphism of varieties E → E0 × C commuting with the
maps to C, which shows that E → C splits over k. This completes the proof.

Definition 2.4.6. Let E → C be an elliptic surface over k, and let E/K be the
associated elliptic curve over the function field K = k(C). We say that E/K
splits over K if E → C splits over k, or in other words, if there is an elliptic curve
E0/k and an isomorphism E → E0 defined over K.
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2.5 J-Invariant

In this subsection, we will first recall the definition of the j-invariant of an elliptic
curve, and after that, we will use this definition to see the j-invariant of an elliptic
surface as the j-invariant of Et at each t ∈ C. Then we will be able to state a
theorem that tells us how the splitting of an elliptic surface depends on this
j-invariant.

Definition 2.5.1. Fix an elliptic curve E : y2 = x3 + Ax + B. We define the
j-invariant of E as

j(E) = 1728
4A3

4A3 + 27B2
.

Let E be an elliptic surface over k. We define the j-invariant of E as the map

jE : C → P1 : t→ j(Et).

More precisely, jE(t) is the j-invariant of the elliptic curve Et provided that the
fiber Et is non-singular, and at the remaining points of C, it is defined by extending
jE to a morphism as in the following proposition.

Proposition 2.5.2. jE is an algebraic map, and it extends to a morphism from
C to P1.

Proof. We know that the fiber Et is non-singular if and only if the discriminant
4A(t)3 + 27B(t)2 is not equal to zero. This means that if the fiber Et is non-
singular, then we have that jE(t) ∈ A1 ⊂ P1. Hence the map we defined so far is
a map

jE : {t ∈ C|4A(t)3 + 27B(t)2 6= 0} → A1 ⊂ P1 : t→ j(Et)
Since A and B are elements of the function field k(C) of C, we now indeed have
that

1728
4A(t)3

4A(t)3 + 27B(t)2

is regular on
{t ∈ C|4A(t)3 + 27B(t)2 6= 0},

and hence jE is an algebraic map. It extends to a morphism from C to P1 by
letting it send a point t ∈ C for which Et is singular to the point ∞ = (1 : 0) ∈
P1.

Now we have an important proposition, which says that an elliptic surface
splits over some finite field extension of K = k(C) provided that its j-invariant
is constant.

Proposition 2.5.3. Let E → C be an elliptic surface defined over k, and choose
a Weierstrass equation

E : y2 = x3 +Ax+B

with A,B ∈ k(C). Assume that the j-invariant is constant, i.e., assume that
there is a constant c such that jE(C) = {c}. Then E/K splits over a finite field
extension of K = k(C).
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Remark 2.5.4. The reverse of this proposition is also true, and is very easy: if an
elliptic surface splits over a finite field extension, we have an E0 and a C ′ such
that E ' E0 × C ′, and hence jE(t) = jE0×C′(t) = j(E0) is constant.

The following lemma is an elementary result. Since the proof would require
us to dive into long elementary algebra calculations, we will assume it without
proof.

Lemma 2.5.5. Let E → C be an elliptic curve over k, and choose a Weierstrass
equation

E : y2 = x3 +Ax+B

with A,B ∈ k(C). Then E → C splits over k if and only if one of the following
is true:

• jE(C) = {0} and c6 is a 6th power,

• jE(C) = {1728} and c4 is a 4th power,

• jE(C) = {a} with a 6= 0, 1728 and c6/c4 is a square,

where c4 and c6 are the usual constants form [21], pp. 42, namely c4 = 16(A2 −
3A) and c6 = −64A3 + 288A2 − 864B.

Proof of proposition 2.5.3. The proposition is a corollary of the above lemma:
take a finite field extension K ′ of K = k(C) in which c6 is a 6th power, c4 is a 4th
power and c6/c4 is a square and assume that the j-invariant is constant. Then
E → C splits over k by the lemma, and E/K splits over the finite field extension
K ′ of K = k(C).

2.6 Heights on Elliptic Curves over Function Fields

In this subsection, we will give a criterium for an elliptic surface over a closed
field k to split over k. It makes use of the height function on the function field
K.

Definition 2.6.1. Let K = k(C) be the function field of a non-singular algebraic
curve C/k. The height of an element f ∈ K is defined to be the degree of the
assiciated map from C to P1,

h(f) = deg(f : C → P1).

In particular, if f ∈ k, then the map is constant and we set h(f) = 0.
For an elliptic curve E/K given by some Weierstrass equation, the height of a
point P ∈ E(K) is defined to be

h(P ) =

{
0 if P = O
h(x) if P = (x, y).

We now have the following criterium for an elliptic surface to split.
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Theorem 2.6.2. Let E → C be an elliptic surface over an algebraically closed
field k, let E/K be the corresponding elliptic curve over the function field K =
k(C), and let d be a constant. If the set

{P ∈ E(K)|h(P ) ≤ d}

contains infinitely many points, then E splits over k.

Proof. See [20], theorem III.5.4, pp. 222.

2.7 Twisting

By a twist of a curve E/K we mean another curve E′/K such that they are
isomorphic over K̄.

Definition 2.7.1. Let E/K be a smooth projective curve. A twist of E/K is
a smooth curve E′/K that is isomorphic to E over K̄. We treat two twists as
equivalent if they are isomorphic over K. The set of twists of E/K, modulo
K-isomorphism, is denoted by Twist(E/K).
If E/K is an elliptic curve, then a twist of E/K is another elliptic curve E′/K
that is isomorphic to E over K̄ as an elliptic curve - that is, the isomorphism must
preserve the base point O. The set of twists of E/K, modulo K-isomorphism, is
then denoted by Twist((E,O)/K).

If the characteristic of K is not 2 or 3, then the elements of Twist((E,O)/K)
can be described quite explicitly.

Proposition 2.7.2. Assume that char(K) 6= 2, 3 and let

n =


2 if j(E) 6= 0, 1728
4 if j(E) = 1728
6 if j(E) = 0.

Then Twist((E,O)/K) is canonically isomorphic to K∗/(K∗)n. More precisely,
choose a Weierstrass equation E : y2 = x3 + Ax + B for E/K and let D ∈ K∗,
then the elliptic curve ED ∈ Twist((E,O)/K) corresponding to D(mod(K∗)n)
has Weierstrass equation

ED :


y2 = x3 +D2Ax+D3B if j(E) 6= 0, 1728
y2 = x3 +DAx if j(E) = 1728
y2 = x3 +DB if j(E) = 0.

Proof. See [21], proposition X.5.4, pp. 343.
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3 Divisors and their GCD

We will work mostly with Weil divisors. Because the pullback of a divisor is more
natural using Cartier divisors, we will also introduce them and their relation to
Weil divisors. After that, we introduce the pullback divisor σ∗P (Ō) for σ∗P : C →
E : t → (Pt, t) and Ō the divisor of the curve at infinity on E . Furthermore, we
will show the relation between this pullback divisor σ∗P (Ō) and elliptic divisibility
sequences (BnP )n≥1 explicitly.

3.1 Weil Divisors

We start with the definition of a Weil divisor.

Definition 3.1.1. Let X be an algebraic variety. A Weil divisor is a finite formal
sum of subvarieties of codimension one, and the group of Weil divisors Div(X) on
X is the free abelian group generated by the closed subvarieties of codimension
one on X.

This means that we can write a divisor as a finite formal sum of the form

D =
∑

nY Y,

where the nY ’s are integers and the Y ’s are subvarieties of X of codimension one.
In the case of elliptic surfaces, the Y ’s are the irreducible curves lying on the
surface.
The support of a divisor is the union of all the Y ’s for which the multiplicity nY
is nonzero, and a divisor is called effective (or positive) if every nY ≥ 0. The
degree of a divisor D is

deg(D) =
∑

nP .

We recall that the local ring of X along Y , denoted OY,X , is the set of pairs
(U, f), where U is open in X with U ∩ Y 6= ∅ and f is regular on U , where
we identify two pairs (U1, f1) = (U2, f2) whenever f1|U1∩U2 = f2|U1∩U2 . For a
rational function, we would like to define its order at a point, as the multiplicity
of the zero at that point, or minus the multiplicity of the pole if the function has
a pole at that point. For this, we first need the definition of a discrete valuation
ring.

Definition 3.1.2. Let k be a field. A valuation of k is a map

k → Γ ∪ {0} : x→ |x|

where Γ is an ordered group, such that

1. |x| = 0 iff x = 0,

2. |xy| = |x| |y| for all x, y ∈ k,
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3. |x+ y| ≤ max(|x| , |y|) for all x, y ∈ k.

A subring R of k is called a valuation ring if it has the property that for any
x ∈ X, we have x ∈ R or x−1 ∈ R.
A valuation ring is called discrete if it gives rise to a valuation into a cyclic group
Γ.

Proposition 3.1.3. If R ⊂ K is a valuation ring, then the non-units of R form
a maximal ideal of R.

Proof. Let R be a valuation ring of K. Suppose that x, y ∈ R are not units.
Since R is a valuation ring, we either have that x/y ∈ R or that y/x ∈ R. Since
the situation is completely symmetrical, we can assume that x/y ∈ R. Then

1 + x/y = (x+ y)/y ∈ R.

If x+ y were a unit, then 1/y ∈ R, contradicting the assumption that y is not a
unit, hence x+ y is not a unit. Also, if z ∈ R and x is not a unit, then zx is also
not a unit (that would imply that x−1 ∈ R). Hence the non-units of R form a
maximal ideal of R.

Remark 3.1.4. A valuation ring R gives rise to a valuation in the following way:
the non-units of R form a maximal ideal of R, and we will denote it by m. Then,
for x, y ∈ k, we can define

|x| < |y| ↔ |x/y| ≥ 1↔ x/y ∈ m∗.

Note that this indeed satisfies the properties of a valuation.
For a discrete valuation ring R, there is an element π in this maximal ideal of R
such that its value |π| generates the value group. Then, every element x ∈ k can
be written x = uπr with u a unit of R and r an integer. We call r the order of x
at v, and we say that x has a zero of order r, or when r is negative, that x has a
pole of order −r.

Proposition 3.1.5. If Y is an irreducible divisor on X and X is nonsingular
along Y , then OY,X is a discrete valuation ring.

To prove this, we will use a classical result, stated in the following theorem.

Theorem 3.1.6. Let R be a local noetherian domain of dimension 1. Then R is
integrally closed if and only if R is a discrete valuation ring.

Proof. This is a classical result and the proof requires a considerable amount of
commutative algebra. See theorem 5.3 in [4], pp. 7-8 or proposition 9.2 in [1],
pp. 94-95.

Proof of proposition 3.1.5. The idea of the proof is to show that OY,X is an in-
tegrally closed one-dimensional Noetherian local ring, and then use the classical
result that any such ring is a discrete valuation ring.
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Let Y be an irreducible divisor on X with X nonsingular along Y . Since Y has
codimension 1 in X, we know that the local ring of X along Y , OY,X , has dimen-
sion 1. Since the localization of a Noetherian ring is Noetherian, we know that
OY,X is Noetherian, and since the localization of an integrally closed domain is
integrally closed, we also know that OY,X is integrally closed. Now, the above
classical result applies, and we are done.

Definition 3.1.7. As OY,X is a discrete valuation ring, for f ∈ OY,X we can
define the order of f at Y , ordY : OY,X − {0} → Z, as the normalized order r
from the above remark 3.1.4. Now, by letting

ordY (f/g) := ordY (f)− ordY (g),

we can extend ordY to k(X)− {0}, and get the order at Y ,

ordY : k(X)− {0} → Z.

Moreover, we define the positive order at Y ord+
Y as

ord+
Y : k(X)− {0} → Z : f → max(0, ordY (f)).

As we have now defined what the order of a function at Y is, we can define
the divisor of a rational function f ∈ k(X)− {0}.

Definition 3.1.8. Let X be a variety and let f ∈ k(X) − {0} be a rational
function on X. The divisor of f is the divisor

div(f) =
∑
Y

ordY (f)Y ∈ Div(X).

A divisor is called principal if it is the divisor of a function. Two divisors are
called linearly equivalent , denoted D ∼ D′, if their difference is a principal divisor.
Sometimes, we write (f) for the divisor of f . The divisor class group Cl(X) is
the group of divisor classes modulo linear equivalence. Also, we can define the
positive divisor of f as

div+(f) =
∑
Y

ord+
Y (f)Y ∈ Div(X).

3.2 Cartier Divisors and their Relation to Weil Divisors

Alternatively, we can start with the idea that a divisor should be something
which locally looks like the divisor of a rational function. Although not trivially
true, it turns out that a subvariety of codimension one on a normal variety is
defined locally as the zeros and poles of a single function. We use this idea in the
definition of Cartier divisors.

Definition 3.2.1. Let X be a variety. A Cartier divisor on X is a collection of
pairs (Ui, fi)i∈I satisfying the following conditions:
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1. The Ui’s are open in X and cover X.

2. The fi’s are nonzero rational functions f ∈ k(Ui)
∗ = k(X)∗.

3. fif
−1
j ∈ O(Ui ∩ Uj), so fif

−1
j has no poles or zeros on Ui ∩ Uj .

Two pairs (Ui, fi)i∈I , (Vj , gj)j∈J are considered the same if fig
−1
j ∈ O(Ui ∩ Vj)

for all i and j.
We define the sum of two Cartier divisors as

(Ui, fi)i∈I + (Vj , gj)j∈J = (Ui ∩ Vj , figj)j∈I×J .

With this operation, the Cartier divisors form a group, called CaDiv(X). The
support of a Cartier divisor is the set of zeros and poles of the fi’s. A Cartier
divisor is called effective (or positive) if it is equal to some (Ui, fi)i∈I with every
fi ∈ O(Ui) (that is, fi has no poles on Ui).
Associated to a function f ∈ k(X)∗ is the Cartier divisor div(f) = (X, f). Such
a divisor is called a principal Cartier divisor , and two divisors are called linearly
equivalent if their difference is principal. The group of Cartier divisor classes
modulo linear equivalence is called the Picard group of X, and is denoted Pic(X).

To connect the notion of a Cartier divisor to the notion of a Weil divisor, we
need to define the order of a Cartier divisor D along an irreducible subvariety Y
of codimension 1 in X.

Definition 3.2.2. Let D be a Cartier divisor, let Y be an irreducible subvariety
of codimension 1 in X, and choose i such that Ui ∩ Y 6= ∅. We define the order
of D along Y as

ordY (D) = ordY (fi).

Remark 3.2.3. Note that ordY (D) does not depend on the choice of i: this follows
from the fact that the fi are rational functions that fit together properly.

The following theorem gives us a connection between Cartier divisors and
Weil divisors.

Theorem 3.2.4. Let X be a smooth variety. Then the maps

CaDiv(X)→ Div(X) : D →
∑
Y

ordY (D)Y,

CaPrinc(X)→WeilPrinc(X) : divCartier(f) = (X, f)

→
∑
Y

ordY (f)Y = divWeil(f)

are isomorphisms, and they induce an isomorphism Pic(X)→ Cl(X).

Proof. See [6], II 6.11 (pp. 141).

Given a morphism g : X → Y and a Cartier divisor D over Y , we can pullback
this divisor to a divisor over X. This pullback is defined in the natural way.
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Definition 3.2.5. Let g : X → Y be a morphism of varieties, let D ∈CaDiv(Y )
be a Cartier divisor defined by (Ui, fi)i∈I , and assume that g(X) is not contained
in the support of D. Then the pullback g∗(D) ∈ CaDiv(X), defined as a Cartier
divisor, is the divisor defined by

g∗(D) = (g−1(Ui), fi ◦ g)i∈I

Using the isomorphism given above between CaDiv(X) and Div(X) for some
smooth X, we can define the pullback of a Weil divisor through the definition of
the pullback of a Cartier divisor.

Definition 3.2.6. Let g : X → Y be a morphism of smooth varieties. Let
D ∈CaDiv(Y ) be a Cartier divisor and let

DWeil =
∑
y

ordy(D)(y)

be the corresponding Weil divisor (where the sum is taken over all subvarieties of
codimension 1 of Y ). Then the pullback g∗(DWeil) ∈ Div(X), defined as a Weil
divisor, is defined by

g∗(DWeil) =
∑
x

ordx(g∗(D))(x)

whenever g∗(D) is defined, where the sum is over all the subvarieties of codimen-
sion 1 of X.

3.3 Pullback Divisor σ∗P (Ō)

Recall that given an elliptic surface E , we have morphisms

σP : C → E : t→ (Pt, t).

Using the definition given above, this means that we can construct the pullback
σ∗P . Write Ō for the divisor of the curve at infinity.
In this thesis, we are interested in the terms BnP in an elliptic divisibility se-
quence. There is a tight relationship between these denominators and the pull-
back divisor σ∗nP (Ō), and in this subsection, we will formalize this relationship.
After that, we can see σ∗nP (Ō) as a generalization of the terms BnP ; where the
denominator BnP is only defined for an elliptic curve over the function field of
P1, k(T ) = k(P1), we have that σ∗nP (Ō) is also defined for an elliptic curve over
a more general function field k(C), where C/k is any smooth projective curve.

First, we will define the zero divisor as a Weil divisor.

Definition 3.3.1. For K = k(C), let O ∈ E(K) be the point at infinity, then we
have the corresponding section σO : C → E : t→ (Ot, t), where Ot is the point at
infinity on the curve Et. Denote the irreducible curve at infinity {(Ot, t)|t ∈ C} on
the surface E by YO. Now, define the zero divisor Ō as Ō = σO(C) = YO ∈ Div(E).
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We want to be able to pull this zero divisor back over a morphism σP : C → E ,
and we want to get a divisor σ∗P (Ō) ∈ Div(C). This means that first, we will
need to write Ō as a Cartier divisor. Recall that we can write any elliptic surface
E (up to birational equivalence) as

E(A,B) = {((X : Y : Z), t) ∈ P2 × C|Y 2Z = X3 +AXZ2 +BZ3}

This leads us to the following definition.

Definition 3.3.2. As E is a two-dimensional projective variety, we have the
standard opens

U0 = {((X : Y : Z), t) ∈ E|X 6= 0}
U1 = {((X : Y : Z), t) ∈ E|Y 6= 0}
U2 = {((X : Y : Z), t) ∈ E|Z 6= 0}.

These three opens cover E . We also have rational functions

f0 =
Z

X

f1 =
Z

Y
f2 = 1

on U0, U1 and U2 respectively. Now put

ŌCar = {(U0, f0), (U1, f1), (U2, f2)}.

Remark 3.3.3. We have to check that this indeed defines a Cartier divisor. The
Ui’s are indeed opens that cover E , and the fi’s are indeed nonzero rational
functions over the Ui’s. On U0∩U1 we indeed have that f0f

−1
1 = Y

X and f1f
−1
0 =

X
Y have no poles or zeros. On U0 ∩ U2 we have that Z

X and X
Z have no poles or

zeros, and on U1 ∩ U2 we have that Z
Y and Y

Z have no poles or zeros.
Also we want to know how this divisor relates to the zero divisor. If φ is not the
curve at infinity, we can use f2 to see that ordφ(ŌCar) = ordφ(f2) = 0, and for
φO the curve at infinity, we can use f1 to see that ordφO(ŌCar) = ordφO(f1) = 3,
and hence we have that ∑

φ

ordφ(ŌCart)(φ) = 3Ō.

Now we are able to do the pullback σ∗P . For any P ∈ E(K), we have σP :
C → E : t→ (Pt, t), so the Cartier divisor σ∗P (ŌCart) is defined as

σ∗P (ŌCart) = {(σ−1P (U0),
Z

X
◦ σP ), (σ−1P (U1),

Z

Y
◦ σP ), (σ−1P (U2), 1 ◦ σP )}.

Translating this back to a Weil divisor on C (where C can be any smooth pro-
jective curve), we have the following proposition.
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Proposition 3.3.4. Let E/C be an elliptic surface over a smooth projective curve
C, and write a Weierstrass equation for E/K = E/k(C). Take a point P =

(xP , yP ) =
(
Ap
B2
P
, CP
B3
P

)
where gcd(CP , BP ) = 1, then for all t ∈ C for which the

coefficients of the Weierstrass equation are regular, we have that

ordt(σ
∗
P (Ō)) =

1

3
ord+

t (y−1P )

and equivalently, we have

ordt(σ
∗
P (Ō)) =

1

2
ord+

t (x−1P ).

To prove this proposition, we first have a lemma that says what it means that
the coefficients of the Weierstrass equation are regular.

Lemma 3.3.5. Let E/C be an elliptic surface over a curve C, and write a Weier-
strass equation y2 = x3 + Ax + B for E/K = E/k(C), and assume that A and
B are regular at t ∈ k(C). Then any point at infinity at t, Pt = (xPt : yPt : 0),
satisfies xPt = 0.

Proof. Take Y 2Z = X3 + AXZ2 + BZ with A and B regular at t and a point
Pt = (xPt : yPt : zPt) at infinity at t. This implies that zt = 0 and that xPt and
yPt are finite (or at least they can be chosen finite). Hence Btzt = 0, Atxtz

2
t = 0

and y2t zt = 0, thus we have that x3Pt = 0, and since we don’t have zero divisors,
xPt = 0. This completes the proof.

Proof of proposition 3.3.4. Let Creg ⊆ C be the set of all t ∈ C for which the
coefficients of the Weierstrass equation are regular. We have∑
t∈Creg

ordt(σ
∗
P (Ōcart))(t) =

∑
t∈Creg
ZPt 6=0

ordt(σ
∗
P (Ōcart))(t) +

∑
t∈Creg
ZPt=0

ordt(σ
∗
P (Ōcart))(t).

All t with ZPt 6= 0 are inside σ−1P (U2), and in the last sum, we have that ZPt = 0
implies that XPt = 0 (note that we use here that the coefficients of the Weierstrass
equation are regular), thus we have∑

t∈Creg

ordt(σ
∗
P (Ōcart))(t) =

∑
t∈Creg
ZPt 6=0

ordt(1)(t) +
∑
t∈Creg

Pt=(0:1:0)

ordt(σ
∗
P (Ōcart))(t)

=
∑
t∈Creg
ZPt 6=0

0 · (t) +
∑
t∈Creg

Pt=(0:1:0)

ordt(ZP /YP )(t)

=
∑
t∈Creg

Pt=(0:1:0)

ordt(ZP /YP )(t).
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Now, we can write yP = YP /ZP , and we have∑
t∈Creg

ordt(σ
∗
P (Ōcart))(t) =

∑
t∈Creg

Pt=(0:1:0)

ordt(y
−1
P )(t) =

∑
t∈Creg

Pt=(0:1:0)

ord+
t (y−1P )(t).

Moreover, ∑
t∈Creg

Pt 6=(0:1:0)

ord+
t (y−1P )(t) = 0,

and hence we have that

ordt(σ
∗
P (Ō)) =

1

3

∑
t∈Creg

ordt(σ
∗
P (Ōcart))(t) =

1

3

∑
t∈Creg

ord+
t (y−1P )(t).

Also, we have that∑
t∈Creg

Pt=(0:1:0)

ord+
t (ZP /YP )(t) =

∑
t∈Creg

Pt=(0:1:0)

ord+
t (ZP /(X

3/2
P /Z

1/2
P ))(t)

=
3

2

∑
t∈Creg

Pt=(0:1:0)

ord+
t (x−1P )(t)

and hence in the same way as above,

ordt(σ
∗
P (Ō)) =

1

3

∑
t∈Creg

ordt(σ
∗
P (Ōcart))(t) =

1

2

∑
t∈Creg

ord+
t (x−1P )(t).

For C = P1, this proposition has an easy corollary for when the coefficients
of the Weierstrass equation are constant.

Corollary 3.3.6. Let E/P1 be an elliptic surface over P1, and write a Weierstrass

equation for E/K = E/k(T ). Take a point P = (xP , yP ) =
(
Ap
B2
P
, CP
B3
P

)
satisfying

gcd(CP , BP ) = 1. If the coefficients of the Weierstrass equation are constant,
then

σ∗P (Ō) =
1

3
div+(y−1) =

1

2
div+(x−1).

Proof. The coefficients of the Weierstrass equation are constant precisely when
for all t ∈ P1, these coefficients are regular. That being said, the corollary is
immediate from proposition 3.3.4.

Now, we will take a look at what happens when for some t ∈ C, the coefficients
of the Weierstrass equation are not regular. First, we will have an example that
shows that the equation ordt(σ

∗
P (Ō)) = 1

3ord+
t (y−1P ) does not always hold for

t ∈ C = P1 for which the coefficients of the Weierstrass equation are not regular
at t.
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Example 3.3.7. Consider the curve

E : y2 = x3 − T 2x+ 1

with the point P = (xP , yP ) = (T, 1) ∈ E(k(T )) over the rational function field
k(T ). If we try and compute σ∗p(Ō) at T =∞, we see that the x-coordinate T of
P is not regular at ∞. Moreover, the coefficient −T 2 of the Weierstrass equation
is not regular. Looking at the surface

Y 2Z = X3 − T 2XZ2 + Z3

and the point
P = (T : 1 : 1) = (1 : T−1 : T−1),

trying to calculate ord∞(σ∗P (Ō)) directly gives us the problem that P∞ = (1 :
0 : 0) is not the usual point at infinity (and this is where the above proof of
ordt(σ

∗
P (Ō)) = 1

3ord+
t (y−1P ) would go wrong).

What we can do is use a change of variables. Write (x, y) = (T 2u, T 3v), then the
new equation is

v2 = u3 − T−2u+ T−6

and the point P has coordinates (uP , vP ) = (T−2 ·T, T−3 ·1) = (T−1, T−3). Now,
both coefficients −T−2 and T−6 are regular at ∞, and the coordinates of P in
these new variables are also regular at ∞. Calculating ord∞(σ∗P (Ō)) with the
method developed above, gives us that

ord∞(σ∗P (Ō)) =
1

3
ord+
∞(T 3) = 0

while
ord+
∞x
−1
P = ord+

∞T
−1 = 1

and
ord∞B2P = ord∞1 = 0

and
ord+
∞y
−1
P = ord+

∞(1) = 0.

Now, looking at 2P = (x2P , y2P ) = (T 4 − 2T : −T 6 + 3T 3 − 1 : 1), we see that

after changing coordinates, we have 2P = (u2P , v2P ) =
(
T 4−2T
T 2 : −T

6+3T 3−1
T 3 : 1

)
.

At infinity, this has order

ord∞(σ∗P (Ō)) =
1

3
ord+
∞

(
T 3

−T 6 + 3T 3 − 1

)
= 1

while

ord+
∞x
−1
P = ord+

∞

(
1

T 4 − 2T

)
= 4

and
ord∞B2P = ord∞1 = 0
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and

ord+
∞y
−1
P = ord+

∞

(
1

−T 6 + 3T 3 − 1

)
= 6.

Remark 3.3.8. As the previous example shows, there are three things of interest,
namely σ∗P (Ō), 1

2div+(x−1P ) and div+(BP ), and in general, all three are different.
σ∗P (Ō) is intrinsically defined and doesn’t depend on the Weierstrass equation
chosen, while div+(x−1P ) and div+(BP ) clearly depend on the Weierstrass equa-

tion. Furthermore, x−1P =
B2
P

AP
has an order different from B2

P at t for which AP
is not regular.

Fortunately, as the following proposition tells us, the difference between
1
2ord+

t (x−1P ) and ordt(σ
∗
P (Ō)) is always small. Furthermore, for C = P1, we can

relate ordt(BP ) to 1
2ord+

t (x−1P ).

Proposition 3.3.9. Let E/C be an elliptic surface over a curve C, and write a
Weierstrass equation for E/K = E/k(C). Take a point P = (xP , yP ). Then:

1. 1
2ord+

t (x−1), 1
3ord+

t (y−1) and ordt(σ
∗
P (Ō)) are the same for all but finitely

many t ∈ C.

2. there is a constant c, only depending on the Weierstrass equation for E,
such that for all t ∈ C,

0 ≤ 1

2
ord+

t (x−1)− ordt(σ
∗
P (Ō)) ≤ c.

3. using the same constant c, we also have for all t ∈ C that

0 ≤ 1

3
ord+

t (y−1)− ordt(σ
∗
P (Ō)) ≤ c.

Furthermore, if C = P1, then:

4. if AP , BP and CP are regular at t, then

ordt(BP ) = ord+
t (BP ) =

1

2
ord+

t (x−1) =
1

3
ord+

t (y−1).

5. if AP , BP and CP are not all regular at t, then ordt(BP ) ≤ 0.

Proof. Let E/C be an elliptic surface over a curve C, write a Weierstrass equation
y2 = x3 + Ax + B for E/K = E/k(C) and take a point P = (xP , yP ). The
coefficients of the Weierstrass equation are regular at all but finitely many t ∈ C,
thus by proposition 3.3.4, we have that 1

2ordt(x
−1), 1

3ordt(y
−1) and ordt(σ

∗
P (Ō))

are the same for all but finitely many t ∈ C.
Now we will show that the difference for other t is always bounded by a constant.
Let t be such that the coefficients of the Weierstrass equation are not regular at
t, let m be the order of the pole at t of A and let n be the order of the pole at t
of B and write ut = T − t. Let ct be max(m/4, n/6) rounded up to an integer,
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then the change-of-variables (x, y) = (u−2ctX,u−3ctY ) changes the Weierstrass
equation to

Y 2 = y2u6ct = x3u6ct +Au6ctx+Bu6ct = X3 +Au4ctX+Bu6ct = X3 +A′X+B′

where A′ = Au4ct and B′ = Bu6ct are regular at t. The point P = (xP , yP )
becomes P = (XP , YP ) = (u2ctxP , u

3ctyP ) in the new variables. Now,

ordt(σ
∗
P (Ō)) =

1

2
ord+

t (u−2ctx−1P ) ≤ ord+
t (u−ctt ) +

1

2
ord+

t (x−1P ) =
1

2
ord+

t (x−1P )

while since ordt(u
−ct
t ) < 0, we also have

ordt(σ
∗
P (Ō)) =

1

2
ord+

t (u−2ctx−1P ) ≥ ordt(u
−ct
t )+

1

2
ord+

t (x−1P ) = −ct+
1

2
ord+

t (x−1P )

and hence

0 ≤ 1

2
ord+

t (x−1P )− ordt(σ
∗
P (Ō)) ≤ ct.

Now, the second statement follows by taking c = maxt({ct}). The third state-
ment follows analogously from the fact that ordt(σ

∗
P (Ō)) = 1

3ord+
t

(
u−3cty−1P

)
.

For the 4th statement, let C = P1 and assume that AP , is regular at t, then
AP has no pole at t and hence

1

2
ord+

t (x−1P ) =
1

2
ord+

t

(
B2
P

AP

)
=

1

2
ord+

t (B2
P ) = ord+

t (BP ).

In the same way, if CP is regular at t, then

1

3
ord+

t (y−1P ) =
1

3
ord+

t

(
B3
P

CP

)
=

1

3
ord+

t (B3
P ) = ord+

t (BP ).

Furthermore, if BP is regular at t, then ordt(BP ) = ord+
t (BP ). This completes

the proof of the 4th statement.

For the 5th statement, first note that if BP is not regular at t, that then BP
has a pole at t and hence ordt(BP ) < 0. Now assume that AP is not regu-
lar at t, then AP has a pole at t, and hence BP is nonzero at t, meaning that
ordt(BP ) ≤ 0. Now, assume that CP is not regular at t, then we have in the same
way that ordt(BP ) ≤ 0. This completes the proof of the last statement and the
proof of the proposition.

To formalize the relationship between the pullback divisor σ∗nP (Ō) and div+(BnP )
in the case that C = P1, we need the following lemma.

Lemma 3.3.10. Let C = P1 and E/P1 be an elliptic surface over P1, and write
a Weierstrass equation for E/K = E/k(T ). Take a point P = (xP , yP ). Then
ordt(BP ) ≤ 0 for some t ∈ C implies that t = ∞, and for this t, there is a
constant c2 only depending on the curve E such that 1

2ord+
t (x−1) ≤ c2.
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Proof. This lemma is a direct corollary of the function field analogue to Siegels
finiteness theorem for integral points on elliptic curves. The characteristic 0 case
of this theorem is proven in part by Lang, see [11], and in part by Manin, see
[24]. The characteristic p case is done by Voloch, see [23].

The following theorem now formalizes the relation between BnP and σ∗nP (Ō).

Theorem 3.3.11. For any elliptic divisibility sequence (BnP )n≥1, we have that
the difference between div+(BnP ) and σ∗nP (Ō) is bounded by a single divisor D ∈
Div(C), only depending on the Weierstrass equation for E:∣∣σ∗nP (Ō)− div+(BnP )

∣∣ ≤ D.
Proof. This follows from combining the first, second, fourth and fifth statement
of the previous proposition and the previous lemma.
Put ordt(D) = max(c, c2) for all t ∈ C for which the coefficients of the Weier-
strass equation are not regular at t (finitely many by the first statement), and
ordt(D) = 0 everywhere else. By the 4th and the 5th statement if follows that
either ord+

t (BP ) = ord+
t (x−1) or that ord+

t (BP ) = 0, and in this last case, the
lemma above tells us that 1

2ord+
t (x−1) ≤ c2. Then by combining the first and the

second statement, the corollary follows.

Thus we have that σ∗nP (Ō) is, roughly (i.e. up to a single divisor only de-
pending on the Weierstrass equation), equal to half the polar divisor of nP . Since
σ∗nP (Ō) is defined for an elliptic divisibility sequence on E/k(C) where C is any
smooth curve, we have that σ∗nP (Ō) generalizes the concept of elliptic divisibility
sequences for arbitrary smooth projective curves C.

3.4 Examples

3.4.1 A Singular Surface

Take C = P1 and look at the surface

E = {([X : Y : Z], t) ∈ P2 × C|Y 2Z = X3}.

This is not an elliptic surface: for every t ∈ C, the fibre Et = π−1(t) is singular.
Still, we can look at the point P = ([T, 1, T 3], T ) = ([ 1

T 2 ,
1
T 3 , 1], T ) and we have a

map

σP : P1 → E : t→ Pt.

Furthermore, we can still construct the pullback

σ∗P (Ōcart) = {(σ−1P (U0),
Z

X
◦ σP ), (σ−1P (U1),

Z

Y
◦ σP ), (σ−1P (U2), 1 ◦ σP )}

= {(P1 − {0}, T → T 2), (σ−1P (U1), T → T 3), (P1 − {0}, T → 1)}
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and hence

σ∗P (Ō) =
1

3

∑
t∈P1

ordt(σ
∗
P (Ōcart))(t) =

1

3

∑
t∈P1−{0}

ordt(T
2)(t) +

1

3

∑
t=0

ordt(T
3)(t)

= 0 +
1

3
3(0) = (0) = div(T ) = div(BP )

Since for every t ∈ P1, we do have that the non-singular points of Et form a group,

we can still add points, and it turns out that nP =
(
1/n2

T 2 ,
1/n3

T 3

)
and hence

div(BnP ) = (0) = σ∗nP (Ō)

for all n ≥ 1.

3.4.2 An Elliptic Surface with Constant J-invariant

Let
E = {([X : Y : Z], t) ∈ P2 × C|Y 2Z = X3 − T 2(T 2 − 1)X}

with the point P = (1− T 2, 1− T 2). We can construct the pullback

σ∗P (Ōcart) = {(σ−1P (U0),
Z

X
◦ σP ), (σ−1P (U1),

Z

Y
◦ σP ), (σ−1P (U2), 1 ◦ σP )}

= {(V, T → 1

1− T 2
), (V, T → 1

1− T 2
), (P1, T → 1)}

where V = {t ∈ P1|1− t2 6= 0}, and hence

σ∗P (Ō) =
1

3

∑
t∈P1

ordt(σ
∗
P (Ōcart))(t)

=
1

3
ord∞(σ∗P (Ōcart))(∞) +

1

3

∑
t∈P1−{∞}

ordt(1)(t)

=
1

3
ord∞(σ∗P (Ōcart))(∞).

To calculate the order at infinity, we need to do a change of variables

(x, y) = ((T 2(T 2 − 1))2u, (T 2(T 2 − 1))3v),

and we get that P = (uP , vP ) =
(

−1
T 4(T 2−1) ,

−1
T 6(T 2−1)2

)
on

v2 = u3 − (T 2(T 2 − 1))−3u.

Hence
ord∞(σ∗P (Ōcart)) = ord∞(1) = 0,

and σ∗P (Ō) is the empty divisor, and is equal to div(BP ) = div(1).
We can calculate multiples nP of P , and their BnP is denoted in the table below.
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point nP BnP
P 1
2P 1

3P T 4 − 3T 2

4 −
3
16

4P T 6 − 3T 4

2 + T 2

2 + 1
64

5P T 12 − 9T 10

4 + 5T 8

8 + 107T 6

64 − 155T 4

128 + 167T 2

1024 + 5
4096

Figure 2: BnP for E : y2 = x3 − T 2(T 2 − 1)x and P = (1− T 2, 1− T 2).

In each case, we have that the divisor of BnP and σ∗nP (Ō) are equal everywhere
except maybe at ∞. To find the order of σ∗nP (Ō) at infinity, we can do the same
change of variables (x, y) = ((T 2(T 2 − 1))2u, (T 2(T 2 − 1))3v) as before. For
example, we have that

2P = (t4 − t2 + 1/4, t6 − 3/2t4 + 1/4t2 + 1/8)

and after change of variables, we have that

2P =

(
t4 − t2 + 1/4

(t2(t2 − 1))2
,
t6 − 3/2t4 + 1/4t2 + 1/8

(t2(t2 − 1))3

)
and has regular coordinates at t = ∞, so the order at infinity σ∗nP (Ō) is again
zero, and div(BnP ) = σ∗nP (Ō).

3.5 Greatest Common Divisor of Points on Elliptic Curves

We have the standard definition of the greatest common divisor of two polynomi-
als (the largest polynomial that divides both), and using that, we can define the
greatest common divisor of two points P and Q on an elliptic curve over k(T ) as
the greatest common divisor of their denominators BP and BQ. Now, we want
to generalize that idea to elliptic curves over the function field of an arbitrary
curve k(C), and for that, we will use the pullback divisor σ∗P (Ō) instead of BP .
For this, we first need the definition of the greatest common divisor of two Weil
divisors.

Definition 3.5.1. Let C be a smooth projective curve. For effective divisors
D1, D2 ∈ Div(C), we define the greatest common divisor of D1 and D2 as

GCD(D1, D2) =
∑
γ∈C

min(ordγ(D1), ordγ(D2))(γ) ∈ Div(C).

Remark 3.5.2. In the case that C = P1, taking two polynomials f, g ∈ k[T ], we
have that

div(gcd(f, g)) =
∑
γ∈C

min(ordγ(f), ordγ(g))(γ) = GCD(div+(f),div+(g)).
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Using the pullback divisor σ∗P (Ō), we can now define the greatest common
divisor of two points on elliptic curves.

Definition 3.5.3. Let E1/K and E2/K be two elliptic curves over a function
field K = k(C), and let P1 ∈ E1(K) and P2 ∈ E2(K) be nonzero points. The
elliptic greatest common divisor (or just greatest common divisor) of P1 and P2

is the divisor

GCD(P1, P2) = GCD(σ∗P1
(ŌE1), σ∗P2

(ŌE2)) ∈ Div(C)

In the case that C = P1, we want this definition to correspond to the other
definition of the greatest common divisor of two points as the greatest common
divisor of their BP . As it turns out, the two definitions are not precisely the same;
they can differ up to a constant, only depending on the Weierstrass equations
chosen. The following proposition gives a precise formulation.

Proposition 3.5.4. Let two elliptic curves E1/k(T ) and E2/k(T ) in Weierstrass

form and two nonzero points P =
(
AP
B2
P
, CP
B2
P

)
∈ E1 and Q =

(
AQ
B2
Q
,
CQ
B2
Q

)
∈ E2 be

given. Then there is a divisor D = D(E1, E2), only depending on the Weierstrass
equations, such that

|GCD(P,Q)− div(gcd(BP , BQ))| ≤ D.

Proof. We have GCD(P,Q) = GCD(σ∗P (ŌE1), σ∗Q(ŌE2)). Now, corollary 3.3.11

gives us that |σ∗P (ŌE1) − div+(BP )| ≤ D1 and |σ∗P (ŌE2) − div+(BQ)| ≤ D2, and
using remark 3.5.2 we know that

GCD(div+(BP ), div+(BQ)) = div(gcd(BP , BQ))

Hence

|GCD(P,Q)− div(gcd(BP , BQ))| = |GCD(σ∗P (ŌE1), σ∗Q(ŌE2))

−GCD(div+(BP ),div+(BQ))|
≤ D1 +D2 = D

This completes the proof.

We also need the notion of independent points; when we look at common
divisors of elliptic divisibility sequences, we will need to distinguish between the
case that the points P and Q are and the case that they are not in essence the
same point.

Definition 3.5.5. Two points P1 ∈ E1/K and P2 ∈ E2/K are called dependent
points if there are isogenies F : E1 → E1 and G : E2 → E1, not both zero, such
that F (P1) = G(P2); otherwise, they are called independent points. We say that
P1 and P2 are K-independent if the isogenies F and G can be defined over K.
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4 Common Divisors of Elliptic Divisibility Sequences
in Characteristic 0

In this section we will look at common divisors of elliptic divisibility sequences
in characteristic 0. Instead of working with (BnP )n≥1, we will work with the
sequences (σ∗nP (Ō))n≥1. As we’ve seen, they only differ by a constant if C = P1,
and if C 6= P1, then we see (σ∗nP (Ō))n≥1 as a generalization of (BnP )n≥1.

The following theorem says that if the j-invariant is constant, then the de-
gree the greatest common divisor of multiples of two independent points is al-
ways bounded by a constant. It thus gives the strongest possible bound for
deg GCD(n1P1, n2P2). Also, the theorem says that deg GCD(n1P1, n2P2) is equal
to the lower bound deg GCD(P1, P2) for infinitely many n. This theorem is proven
by Silverman in [19]. In this section, our main goal is to give and explain the
proof, and to give some details that Silverman omits.

Theorem 4.0.6. Let K = k(C) be a characteristic zero function field of a smooth
projective curve C/k, let E1/K and E2/K be elliptic curves, and let P1 ∈ E1(K)
and P2 ∈ E2(K) be K-independent points. Assume further that the elliptic curves
E1/K and E2/K both have constant j-invariant, i.e., j(E1), j(E2) ∈ k. Then:

1. there is a constant c = c(K,E1, E2, P1, P2) so that

deg GCD(n1P1, n2P2) ≤ c for all n1, n2 ≥ 1.

2. the set

{n ≥ 1 : GCD(nP1, nP2) = GCD(P1, P2)}

has positive density.

The proof of this theorem consists of four parts: first, there is a general part,
where the assumption of the constant j-invariant is used by taking a finite field
extension over which the elliptic curves over the function fields split. After that,
there are three cases: two ’easy’ cases and one ’hard’ case that uses Raynaud’s
theorem.

Before we start with the general part, we will first do an elementary result that
is used in both ’easy’ cases.

Lemma 4.0.7. Let γ ∈ C and let P ∈ E(K) = E(k(C)) be a nontorsion point.

• If ordγσ
∗
P (Ō) ≥ 1, then for all m 6= 0 we have

ordγσ
∗
mP (Ō) = ordγσ

∗
P (Ō).
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• There is an integer m′ = m′(E/K,P, γ) so that for all m 6= 0,

ordγσ
∗
mP (Ō) ∈ {0,m′}.

In particular, ordγσmP (Ō) is bounded independently of m.

Proof. Let [m] : E → E be the multiplication-by-m map. We have that

[m]∗Ō = Ō +Dm

where Dm ∈ Div(E) is the divisor of nonzero m-torsion points.
Now I claim that Ō ∩Dm = ∅, i.e. that the divisors Ō and Dm do not intersect.
For a nonsingular fiber Eγ , we know that the intersection of Dm and Eγ consists of
the nonzero m-torsion points of the elliptic curve Eγ , so on the nonsingular fibers,
the divisors Ō and Dm do not intersect(note that we use that the characteristic
of k is zero - moreover, it is enough to know that m is relatively prime to the
field characteristic p, see [21], VII.3.1, pp. 192). On a singular fiber Eγ , the map
[m] : E → E is étale in a neighborhood of the zero point Oγ of Eγ (the map
behaves well locally around Oγ : there is no singularity there). Hence we indeed
have Ō ∩Dm = ∅, and we have

σ∗mP (Ō) = σ∗P ([m]∗(Ō)) = σ∗P (Ō) + σ∗P (Dm)

Using this, we can prove both statements of the lemma. First assume that
ordγσ

∗
P (Ō) ≥ 1, then this means that σP (γ) = Oγ ∈ Eγ . Since Ō ∩ Dm = ∅,

it follows that the support of σ∗(Dm) does not contain γ, so

ordγσ
∗
mP (Ō) = ordγσ

∗
P (Ō) + ordγσ

∗
P (Dm) = ordγσ

∗
P (Ō).

This completes the proof of the first statement.
For the second statement, we may suppose without loss of generality that there
exists some m 6= 0 such that ordγσ

∗
mP ≥ 1, since otherwise we may take m′ = 0.

Now suppose that ordγσ
∗
m1P

(Ō) ≥ 1 and ordγσ
∗
m2P

(Ō) ≥ 1. Then applying the
first statement first to m1P with m = m2 and then to m2P with m = m1, we
find that

ordγσ
∗
m1P (Ō) = ordγσ

∗
m1m2P (Ō) = ordγσ

∗
m2P (Ō).

This completes the proof of the lemma.

4.1 General Part of the Proof

We will now start the proof of theorem 4.0.6. Let K = k(C) be a characteristic
zero function field, let E1/K and E2/K be elliptic curves and let P1 ∈ E1(K)
and P2 ∈ E2(K) be K-independent points. Assume that the elliptic curves E1

and E2 have constant j-invariant. Then, by 2.5.3, we know that they split over
some finite extension of K. Taking a common splitting field K ′, there is a finite
cover C ′ → C and there are elliptic curves E′1/k, E′2/k such that

Ei ×C C ′ '/k E′i ×k C ′.

For i = 1, 2, we then get commutative diagrams
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E′i ×k C ′
s−→ Ei

↓ ↓
C ′

f−→ C.

For each point Pi ∈ Ei(K), we have a section σPi : C → Ei which in turn lifts to
a unique section

τPi × 1 : C ′ → E′i ×k C ′.

In other words, each point Ei(K) gives a unique morphism τPi : C ′ → E′i so that
the following diagram commutes:

E′i ×k C ′
s−→ Ei

↑τPi×1 ↑σPi
C ′

f−→ C.

Now we can define a morphism

φ = τP1 × τP2 : C ′ → E′1 ×k E′2.

The general part of the proof ends by showing the statement that I’ve put in the
following lemma. The proof of the lemma mainly consists of tracing around the
above commutative diagrams.

Lemma 4.1.1. If
γ ∈ Support(GCD(n1P1, n2P2)),

then for all γ′ ∈ f−1(γ) we have that

φ(γ′) ∈ E′1[n1]× E′2[n2] ⊂ (E′1 × E′2)tors.

Proof. Suppose that γ is in the support of GCD(n1P1, n2P2) for some integers
n1, n2. Then by definition of this GCD, we have that γ ∈ Support(σ∗n1P1

(ŌE1))
and γ ∈ Support(σ∗n2P2

(ŌE2)).
Tracing around the commutative diagrams, this means that for every point γ′ ∈
f−1(γ) ⊂ C ′, we have τn1P1(γ′) = O1 and τn2P2(γ′) = O2 where Oi ∈ E′i(K) is
the zero point. Equivalently, we have τP1(γ′) ∈ E′1[n1] and τP2(γ′) ∈ E′2[n2], so
in particular, τP1(γ′) and τP2(γ′) are torsion points of E′1 and E′2 respectively.
Hence φ(γ′) = (τP1(γ′), τP2(γ′)) is a torsion point of the abelian surface E′1×E′2.
This completes the proof of the lemma.

Now, there will be three cases. In case 1 and 2 we will prove the theorem,
and we will prove that case 3 does not occur.

4.2 Case 1: τp1 and τp2 are Constant

We start with an ’easy’ case, namely by assuming that the maps τp1 and τp2
defined in the general part above are constant. Write τPi(C

′) = {ci} ⊂ E′i. First,
we have a short lemma, of which the proof is due to Cornelissen.
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Lemma 4.2.1. In this case, the divisor σ∗Pi(ŌEi) is supported on the set of rami-
fication points Rf of the map f : C ′ → C. Moreover, we also have that σ∗nPi(ŌEi)
is supported on the set of ramification points Rf .

Proof. Write
E : y2 = x3 +Ax+B,

where E has constant j-invariant, and take a point P = (xP , yP ) ∈ E(K). Since
E splits, there is a transformation (x, y) = (Xu2, Y u3) that changes E to its twist

Y 2 = X3 +Au−4 +Bu−6 = X3 +A0X +B0

with Au−4 = A0 and Bu−6 = B0 constant and P ′ = (X,Y ) constant.
Now, with P = (X,Y ) constant and hence (x, y) = (Xu2, Y u3) on the original
curve, a constant non-zero divisor, coming from a constant point P ′, intersects
the curve at infinity on E only when t is a pole of u.
The curve over which E splits is given by extending K with u = 4

√
A/A0, and this

extension C ′ → C ramifies above the poles and zeros of u. Hence the support
of the pullback divisor σ∗nP (O) is contained in the support of the polar divisor
of u, and this support is contained in the set of ramification points of the map
C ′ → C. Noting that the proof still works for j = 0, 1728, this completes the
proof.

Returning to the proof of our original theorem, we have that lemma 4.0.7
gives us that for any particular point γ ∈ Rf , the multiplicity ordγσ

∗
nPi

(ŌEi) is
bounded independently of n. Hence by above lemma, deg σ∗nPi(ŌEi) is bounded
for all n ≥ 1. Thus Ei(K) contains infinitely many points of bounded degree.
Now, using that

h(P ) = h(xP ) =
∑
t∈C

max{−ordt(x), 0} =
∑
t∈C

ord+
t (x−1)

(see [20], III.4.1, pp. 212), using that 1
2ord+

t (x−1P ) = ordt(σ
∗
P (Ō)) for all but

finitely many t and using that the difference between 1
2ord+

t (x−1) and ordt(σ
∗
P (Ō))

is bounded by a constant (see proposition 3.3.9), we have that

h(P ) = 2 deg σ∗P (Ō) +O(1).

Hence Ei(K) contains infinitely many points of bounded height. It then follows
from theorem 2.6.2 that Ei → C splits over k.

Thus this case leads to the conclusion that both E1 and E2 are K-isomorphic
to elliptic curves defined over k, so we may replace them with curves that are
defined over k. Then Ei = Ei ×k C, and any point Qi ∈ Ei(K) is associated to a
k-morphism τQi : C → Ei. Our assumption that τPi is constant is equivalent to
saying that Pi ∈ Ei(k). Now, σ∗nPi(ŌEi) is supported on t ∈ C for which there is
a point (nP, t) ∈ Ei ×k C ′ that is zero at t. But

(nPi × C ′) ∩ (Oi × C ′) = ∅,
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so we have that
Support(σ∗nPi(ŌEi)) = ∅.

This means that for all n1, n2,

GCD(n1P1, n2P2) = 0

which gives a strong form of both statements in the theorem.

4.3 Case 2: τP1 or τP2 is Nonconstant, and φ(C ′) ∩ (E ′1 × E ′2)tors is
Finite

The first statement of the theorem is in this case almost trivial from lemma 4.0.7.
We will show how this lemma is applied.
The assumption that τP1 or τP2 is nonconstant implies that the map φ = τP1×τP2 :
C ′ → E′1 ×k E′2 is nonconstant, and hence that φ : C ′ → φ(C ′) is finite-to-one.
Now, lemma 4.1.1 gives us that

Support(GCD(n1P1, n2P2)) ⊂ f(φ−1(φ(C ′) ∩ (E′1 × E′2)tors)).

Using that φ(C ′) ∩ (E′1 × E′2)tors is finite and φ : C ′ → φ(C ′) is finite-to-one, we
then have that

f(φ−1(φ(C ′) ∩ (E′1 × E′2)tors))

is finite hence that
Support(GCD(n1P1, n2P2))

is a subset of a finite set of points that is independent of n1 and n2. Now we can
apply lemma 4.0.7 to complete the proof of the first statement: the lemma tells us
that for any γ ∈ C, the order of GCD(n1P1, n2P2) at γ is bounded independently
of n1 and n2, thus we have that GCD(n1P1, n2P2) is bounded.

We will now prove the second statement of the theorem in this case. We’ve
already seen that

Support(GCD(n1P1, n2P2)) ⊂ f(φ−1(φ(C ′) ∩ (E′1 × E′2)[n])).

Since φ(C ′) ∩ (E′1 × E′2)tors is finite by assumption, we can find an integer N so
that φ(C ′) ∩ (E′1 × E′2)tors) is contained in (E′1 × E′2)[N ]. It follows that

φ(C ′) ∩ (E′1 × E′2)[n] = φ(C ′) ∩ (E′1 × E′2)[gcd(n,N)]

for all n ≥ 1, and hence in particular that

φ(C ′) ∩ (E′1 × E′2)[n] = φ(C ′) ∩ {0}

for all n with gcd(n,N) = 1. For those n, this means, since we’re dealing with
divisibility sequences, that

Support(GCD(P1, P2)) ⊆ Support(GCD(nP1, nP2)) ⊆ f(φ−1(φ(C ′) ∩ {0}))
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Now I claim that Support(GCD(nP1, nP2)) = Support(GCD(P1, P2)) for all n
with gcd(n,N) = 1. If 0 6∈ φ(C ′) this is trivial, so assume that 0 ∈ φ(C ′). Then
we know that

Support(GCD(P1, P2)) ⊆ Support(GCD(nP1, nP2)) ⊆ f(φ−1({0}))

On the other hand, we also know that when γ ∈ f(φ−1({0})), the commuta-
tive diagrams in the general part give us that γ ∈ Support(σ∗Pi(s({0}, C

′))) =
Support(σ∗Pi(Ō)), what means that

f(φ−1({0})) ⊆ Support(GCD(P1, P2)),

and hence indeed that

Support(GCD(nP1, nP2)) = Support(GCD(P1, P2))

for all n with gcd(n,N) = 1.
Now,we can apply the first part of lemma 4.0.7, amd this says that the multi-
plicities of GCD(nP1, nP2) and GCD(P1, P2) are the same at every point in the
support of GCD(P1, P2), and hence we have that

GCD(nP1, nP2) = GCD(P1, P2)

for all n with gcd(n,N) = 1. This proves the second statement of the theorem in
this case.

4.4 Case 3: τP1 or τP2 is Nonconstant, and φ(C ′) ∩ (E ′1 × E ′2)tors is
Infinite

The idea here is to show that this case cannot occur. Having seen the proof of
case 2, in this case we do not have that GCD(n1P1, n2P2) is supported on a finite
set of points that is independent of n1 and n2, and this means that the degree of
GCD(n1P1, n2P2) could most probably become arbitrary large.

To show that this case cannot occur, Raynaud’s theorem is applied, and it is
shown that P1 and P2 cannot be K-independent points.

Theorem 4.4.1 (Raynaud’s theorem). Let k be a field of characteristic zero,
and A/k be an abelian variety, and let V ⊂ A be a subvariety. Then the Zariski
closure of V ∩Ators is equal to a finite union of translates of abelian subvarieties
of A by torsion points.

Proof. For the case that V is a curve, which is the case that we need, see Raynaud,
M.: Sous-variété d’un variété abélienne et points de torsion. Invent. Math. 71,
207-233 (1983).
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The assumption that τP1 or τP2 is nonconstant implies that V = φ(C ′) is an
irreducible curve, what means that we can apply Raynaud’s theorem which tells
us that V ∩ (E′1×E′2)tors can only be infinite if it is contained in the translate of
an elliptic curve (an abelian subvariety of E′1×E′2) by a torsion point of E′1×E′2.
Thus there is an elliptic curve W ⊂ E′1 × E′2 and a torsion point t ∈ E′1 × E′2 so
that v = W + t. Let N be the order of the point t. Then composing with the
multiplication-by-N map yields

[N ] ◦ φ = [N ] ◦ (τP1 × τP2) = τNP1 × τNP2 .

Since W is an elliptic curve, we have that [N ]◦φ maps C ′ onto NV = N(W+t) =
NW = W . Hence we get a commutative diagram:

C
τNP1

~~
[N ]◦φ
��

τNP2

  
E′1 Wπ1
oo

π2
// E′2

where π1 and π2 are the projections πi : E′1 × E′2 → E′i.
Write d2 = deg(π2). Since W is an elliptic curve, there is a dual isogeny π̂2 :
E′2 →W with the property that π̂2 ◦ π2 = [d2]. Now we compute

[d2] ◦ τNP1 = [d2] ◦ π1 ◦ [N ] ◦ φ
= π1 ◦ [d2] ◦ [N ] ◦ φ
= π1 ◦ π̂2 ◦ π2 ◦ [N ] ◦ φ
= π1 ◦ π̂2 ◦ τNP2

= π1 ◦ π̂2 ◦ [N ] ◦ τP2

Let G′ : E′2 → E′1 be the isogeny

G′ = π1 ◦ π̂2 ◦ [N ] ∈ Homk(E
′
2, E

′
1).

Recall that K ′ = k(C ′) is the extension of K over which E1 and E2 become
isomorphic to E′1 and E′2 respectively. Thus G′ induces an isogeny

G : E2 → E1

defined over K ′, but a priori, there is no reason that G needs to be defined over K.
However, the relation τd2NP1 = [d2]◦τNP1 = π1◦π̂2◦[N ]◦τP2 gives a commutative
diagram

E′2 ×k C ′ G′×1
// E′1 ×k C ′

C ′

τP2×1
OO

C ′

τd2NP1×1
OO

which is equivalent to the equality

G(P2) = d2NP1
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of points in E1(K).
The curves E1 and E2 and the points P1 and P2 are rational over K by assump-
tion, hence the same is true of the multiple d1NP1 of P1. Thus the above equality
says that the isogeny G maps at least one K-rational point of E2 to a K-rational
point of E1. Further, the independence assumption on P1 and P2 ensures that
they are not torsion points. Now, the following lemma gives us that G is indeed
defined over K:

Lemma 4.4.2. Let K be a field of characteristic 0, let E1/K and E2/K be elliptic
curves, and let G : E2 → E1 be an isogeny defined over K̄. Suppose that there
is a K-rational point P ∈ E2(K) so that the image G(P ) is also K-rational, i.e.
G(P ) ∈ E1(K). Then either P has finite order or else G is defined over K.

Proof. For each s ∈ Gal(K̄/K), define an isogeny gs be

gs : E2 → E1, gs(Q) = Gs(Q)−G(Q).

The assumption on the point P implies that

G(P ) = (G(P ))s = Gs(P s) = Gs(P )

so we can see that P ∈ ker(gs) for all s ∈ Gal(K̄/K). Let ds = deg(gs). Applying
the dual isogeny, it follows that P ∈ E2[ds] for all s ∈ Gal(K̄/K). Hence either
P is a torsion point, or else ds = 0 for all s ∈ Gal(K̄/K). But

ds = 0↔ gs = [0]↔ Gs = G

so
ds = 0 for all s ∈ Gal(K̄/K)↔ G is defined over K.

This completes the proof that P is either a torsion point or that G is defined over
K.

Continuing with the proof of theorem 4.0.6, we now know that G is indeed
defined over K. But now the relation G(P2) = d1NP1 tells us that P1 and P2 are
linearly K-dependent, which is a contradiction. The conclusion is that this case,
having τP1 or τP2 nonconstant and φ(C ′) ∩ (E′1 × E′2)tors infinite, cannot occur.
Having proven all three cases, the proposition now follows.

4.5 A Corollary for C = P1

For C = P1, Silverman’s theorem also applies when we look at the denominators
BnP of points on a curve E/k(T ).

Corollary 4.5.1. Take k algebraically closed of characteristic 0. Let C = P1

and let P,Q ∈ E(k(T )) be independent points on an elliptic curve over k(T ), and
assume that it has constant j-invariant. Then there is a constant c = c(E,P,Q)
so that

deg gcd(BnP , BnQ) ≤ c.
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Further, there is an equality

gcd(BnP , BnQ) = gcd(BP , BQ)

for infinitely many n ≥ 1.

Proof. This follows from the above theorem and the fact from corollary 3.5.4 that
there is a divisor D, only depending on the elliptic curve, such that

|GCD(P,Q)− div(gcd(BP , BQ))| ≤ D.

To see the first statement explicitly, note that for a divisor of a function D =
div(f), we know that deg(D) = deg(f). Hence we know that

|deg(GCD(nP, nQ))− deg(gcd(BnP , BnQ))| ≤ deg(D) = c1,

and from the above theorem we have that deg GCD(nP1, nQ) ≤ c2, so combining
the two statements and putting c = c1 + c2, the first statement follows.

For the second statement, first note that from the above theorem, we know that
the set

{n ≥ 1 : GCD(nP, nQ) = GCD(P,Q)}

has positive density. Assume for some n that GCD(nP, nQ) = GCD(P,Q). For
all t ∈ P1 − {∞}, we have by proposition 3.3.9 that

ordt gcd(BnP , BnQ) = ordtGCD(nP, nQ).

For t = ∞, the difference between ordt gcd(BnP , BnQ) and ordtGCD(nP, nQ) is
either 0 or c, where c is a constant only depending on the Weierstrass equation.
If ord∞ gcd(BP , BQ) = ord∞GCD(P,Q)+c, then since BP and BQ are divisibility
sequences, we know that for all n with the property that GCD(nP1, nP2) =
GCD(P1, P2), we have that

ord∞ gcd(BnP , BnQ) = ord∞GCD(nP, nQ) + c = ord∞GCD(P,Q) + c

= ord∞ gcd(BP , BQ)

and hence
gcd(BnP , BnQ) = gcd(BP , BQ).

If on the other hand

ord∞ gcd(BP , BQ) = ord∞GCD(P,Q),

then for above n, we either have that

ord∞ gcd(BnP , BnQ) = ord∞GCD(nP, nQ)
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or that
ord∞ gcd(BnP , BnQ) = ord∞GCD(nP, nQ) + c.

Since both sequences are strong divisibility sequences, we know that

gcd(Bp1P , Bp2P ) = BP

for all primes p1, p2. Hence this constant c at infinity can only be contained in
BpP for one prime number p, and not for any other. More generally, the constant
c can only be contained in BnP for n = kp for integers k and a single prime p.
Since in the proof of the above theorem (see case 2 mostly), the equality is for
all n with gcd(n,N) = 1, we know that there are infinitely many such n with
the property that our prime number p does not divide n, and hence for infinitely
many n,

gcd(BnP , BnQ) = gcd(BP , BQ).

This completes the proof.
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5 Common Divisors of Elliptic Divisibility Sequences
in Characteristic p

The previous section did the case for which the characteristic was zero. When
we change the perspective to characteristic p, the results seem to change rather
drastically. Most importantly, lemma 4.0.7 does not hold, and this lemma was a
fundamental lemma needed for both the ’easy’ cases of the proof.
Before we start with elliptic divisibility sequences over function fields in char-
acteristic p, we will first take a closer look at surjective morphisms of curves in
general and the Frobenius map in particular.

5.1 Surjective Morphisms of Curves

We recall that a morphism of curves φ : E1 → E2 is either surjective or constant,
and that if it is surjective, then it induces an injection of function fields

φ∗ : k(E2)→ k(E1), φ∗(g) = g ◦ φ for all g ∈ k(E2).

Similarly, we can define maps of divisor groups as follows:

φ∗ : Div(E2)→ Div(E1) : (Q)→
∑

P∈φ−1(Q)

eφ(P )(P ),

where eφ is the ramification index (see [6], pp. 299), and extend Z-linearly to

arbitrary divisors. Recall that we write φ̂ for the dual of φ, and note that we
write φ̂∗ for the dual of φ∗. Now, we have the following proposition.

Proposition 5.1.1. Let φ : E1 → E2 be a nonconstant (or equivalently, surjec-
tive) map of smooth curves. Then the following hold:

1. deg(φ∗D) = (deg(φ))(deg(D)) for all D ∈ Div(E2).

2. φ∗(div(g)) = div(φ∗(g)) for all g ∈ k̄(E2)
∗.

3. If ψ : E2 → E3 is another such map, then (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

Proof. See [21], II.3.6, pp. 29.

5.2 Frobenius Morphism and the Hasse Estimate

Let k be a field of characteristic p > 0 and let q = pr. For a polynomial f ∈ k[X],
we write f (q) for the polynomial obtained from f by raising each coefficient to
the qth power. For any curve E/k, we can define a new curve E(q)/k as the
curve whose homogeneous ideal is given by I(E(q)), i.e. the ideal generated by
{f (q) : f ∈ I(E)}. The Frobenius morphism is a natural map from E to E(q).

Definition 5.2.1. The qth-power Frobenius morphism is the map

F : E → E(q) : F ([x0, . . . , xn]) = [xq0, . . . , x
q
n].
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Remark 5.2.2. Note that the qth-power Frobenius morphism indeed maps to E(q):
for every point P = [x0, . . . , xn] ∈ E, the image φ(P ) of each generator f (q) of
I(E(q)) is

f (q)(φ(P )) = f (q)(xq0, . . . , x
q
n) = (f(x0, . . . , xn))q = 0.

Note that we used that char(k)|q.
Using what we know from nonconstant morphisms, we have that the Frobenius

morphism induces an injection

F ∗ : k(E(q))→ k(E), F ∗g = g ◦ F for all g ∈ k(E(q))

and that there is a map of divisor groups generated by

F ∗ : Div(E(q))→ Div(E) : (Q)→
∑

P∈F−1(Q)

eF (P )(P ).

The following result is a standard result about the multiplication-by-[m] map and
the m-torsion subgroup.

Proposition 5.2.3. Let E be an elliptic curve and let m ∈ Z− {0}. Then:

1. deg[m] = m2,

2. if m 6= 0 in K, i.e. if either char(K) = 0 or char(K) = p and p 6 | m, then

E[m] = Z/mZ× Z/mZ,

3. if char(K) = p ≥ 0, then one of the following is true:

• E[p] = {O},
• E[p] = Z/pZ.

Proof. See [21], corollary III.6.4, pp. 86.

Definition 5.2.4. An elliptic curve in characteristic p is called supersingular if
E[p] = {O}, and it is called ordinary otherwise, i.e. if E[p] = Z/pZ.

The following proposition about the pullback of the Frobenius map is a key
proposition that we will use to show Silverman’s conjecture in characteristic p
when we do allow p to divide n, see section 5.3.

Proposition 5.2.5. Let E be an elliptic curve over k(T ), let Ō denote the zero
divisor on a model of E over P1 and let Ō′ denote the zero divisor on a model of
E(p). Then:

• we have F ∗(Ō′) = pŌ,

• we have F̂ ∗(Ō) = Ō′ +D for some effective divisor D.
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Proof. Since F−1(Ō′) = {Ō}, we have that

F ∗(Ō′) = eF (Ō)Ō.

Moreover, deg(F ∗(Ō′)) = (deg(F ))(deg(Ō′)) = p, and hence we have that

F ∗(Ō′) = pŌ.

To show the second statement, we have that

F ∗ ◦ F̂ ∗ = (F̂ ◦ F )∗ = [p]∗

where [p] is the multiplication-by-p map. Moreover, [p]∗(Ō) = kŌ+DP for some
integer k, where Dp is the divisor of p-torsion points. From proposition 5.2.3, we
know that deg([p]) = p2 and hence

deg([p]∗(Ō)) = deg([p]) · 1 = p2,

and we know that #DP is either 0 or p, thus we must have that

[p]∗(Ō) = pŌ +D′

where D′ is some effective divisor (containing the p-torsion subgroup).
Now write F̂ ∗(Ō) = Ō′ + D for some divisor D. We need to show that D is
effective. We can calculate

pŌ +D′ = [p]∗(Ō) = F ∗ ◦ F̂ ∗(Ō)

= F ∗(Ō′ +D) = F ∗(Ō′) + F ∗(D) = pŌ + F ∗(D)

and hence we know that F ∗(D) = D′ is effective, and this is only possible when
D is also effective. This completes the proof.

The Hasse bound is a classical result that bounds the number of points on an
elliptic curve over a finite field.

Theorem 5.2.6. Let E/Fq be an elliptic curve defined over a finite field. Then

|#E(Fq)− q − 1| ≤ 2
√
q.

Proof. Since we haven’t proven all ingredients for the Hasse bound, I will give a
short sketch, which is based on the proof given in [21], V.1.1, pp. 138.
Choose a Weierstrass equation for E with coefficients in Fq and let F denote
the usual qth power Frobenius morphism. Since the Galois group Gal(F̄q/Fq) is
topologically generated by the qth-power map on F̄q, we know that for any point
P ∈ E(F̄q), we have that

P ∈ E(Fq) if and only if F (P ) = P.

Thus we have that E(Fq) = ker(1− F ) and

#E(Fq) = # ker(1− F ) = deg(1− F ).

Since the degree map on End(E) is a positive quadratic form and since deg(F ) =
q, we have that the Cauchy-Schwarz inequality gives us that

|#E(Fq)− q − 1| = |deg(1− F )− deg(F )− deg(1)| ≤ 2
√

deg(1) deg(F ) = 2
√
q.
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5.3 Silverman’s Conjecture

The following theorem is proven by Silverman in his paper [19], which is a strong
form of his conjecture for elliptic curves with constant j-invariant.

Theorem 5.3.1. Let Fq be a finite field of characteristic p ≥ 5, let E/Fq(T ) be an
elliptic curve with constant j-invariant, and let P,Q ∈ E(Fq(T )) be non-torsion
points. Then

deg GCD(nP, nQ) ≥ cn+O(
√
n) for infinitely many n ≥ 1 with p 6 | n,

for some constant c.
Moreover, this constant c is given by

c =


1
2 if j 6= 0, 1728,
1 if j = 1728 with q = 3 mod 4 or if j = 0 with q = 2 mod 3,
1
4 if j = 1728 with q = 1 mod 4,
1
6 if j = 0 with q = 1 mod 3.

Remark 5.3.2. Note that Silverman claims that he proves that in all cases,

deg GCD(nP, nQ) ≥ n+O(
√
n) for infinitely many n ≥ 1 with p 6 | n.

However, reading the proof carefully, above theorem gives all that can be con-
cluded.

We will go over the proof of this theorem in a minute. First, let us see that the
theorem is relatively easy to see if one allows p to divide n, and the assumption
of a constant j-invariant is not needed in this case. Since the Frobenius map
F : E(p) → E is an isogeny of degree p, we can factor the multiplication-by-p
map [p] as [p] = F ◦ F̂ , where F̂ is the dual of F . Let Ō denote the zero divisor on
a model of E over P1 and let Ō′ denote the zero divisor on a model of E(p). From
proposition 5.2.5, we now know that F ∗(Ō′) = pŌ, and that F̂ ∗(Ō) = Ō′+D for
some effective divisor D, and we can estimate

deg GCD(piP, piQ) = deg GCD(σ∗P ◦ F i
∗ ◦ F̂ i∗(Ō), σ∗Q ◦ F i

∗ ◦ F̂ i∗(Ō))

≥ deg GCD(σ∗P ◦ F i
∗
(Ō′), σ∗Q ◦ F i

∗
(Ō′))

= pideg GCD(σ∗P (Ō), σ∗Q(Ō))

and hence

deg GCD(nP, nQ) ≥ n · deg GCD(P,Q)

for all n = pi, i = 1, 2, 3, . . . . Hence if deg GCD(P,Q) 6= 0, then the theorem
indeed follows if we would allow p to divide n. However, if deg GCD(P,Q) = 0,
then it doesn’t follow. An example of such a case is given in the experiments, see
remark 6.5.1.
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Remark 5.3.3. As Silverman states, it seems tempting to conjecture a stronger
lower bound of the form cn2. The only obvious upper bound comes from the fact
that deg DnP grows asymptotically as fast as n2 (this is a corollary of Siegel’s
theorem, see [21], theorem IX.3.1, pp. 276). In section 6, we experiment on
this hypothesis, and it seems probable that there are curves for which there is a
stronger lower bound of the form cn2, as well as curves for which no such bound
exists.

5.4 Proof of Silverman’s Theorem

This proof of the characteristic p case is rather different in nature from the proof
of the characteristic zero case: this proof is number-theoretical, while in the
characteristic zero case, the proof was almost entirely geometric.

Proof of theorem 5.3.1. Take E/Fq(T ) any elliptic curve, and fix a minimal Weier-
strass equation for E. For each integer N ≥ 1, let

Sq,N = {π ∈ Fq[T ] : π is monic, irreducible, and deg π = N}

be the set of monic irreducible polynomials of degree N in Fq[T ]. Given any
π ∈ Sq,N , we can reduce E modulo π to obtain an elliptic curve Ẽπ defined over
the finite field Fπ = Fq[T ]/(π). The residue fields Fπ ' FqN associated to the

various π ∈ Sq,N are all isomorphic, but the elliptic curves Ẽπ for different primes
need not and generally will not be isomorphic. The Hasse estimate now gives us
that

nπ(E) = #Ẽπ(Fπ) = qN + 1− aπ(E)

where |aπ(E)| ≤ 2qN/2.
Now suppose that j(E) ∈ Fq and assume for now that j(E) 6= 0, 1728. This
means that there is an elliptic curve E′/Fq so that E is a quadratic twist of E′.
In other words, if E′ is given by a Weierstrass equation y2 = x3 + ax + b with
a, b ∈ F∗q , then E has a Weierstrass equation

E : y2 = x3 +D2ax+D3b

for some squarefree D ∈ Fq[T ] (note that this is where the char(k) ≥ 5 assumption
is used, see proposition 2.7.2). Replacing a, b by r2a, r3b and D(T ) by r−1D(T )
for an appropriate r ∈ F∗q , we may assume that D(T ) is monic. For now, we
assume that D(T ) 6= 1, so E is a nontrivial twist of E′.
For any π ∈ Sq,N with π 6 | D, the curve Ẽπ/Fπ is isomorphic over Fπ to either
E′/FqN or to its unique quadratic twist. More precisely, Ẽπ/Fπ is isomorphic

over Fπ to E′/FqN if D ∈ F∗2π and to its twist if D ∈ F∗π\F∗
2

π .

Write aN (E′) := qN + 1−#E′(FqN ). Hence if D is a square in Fπ, then we have

aπ(E) = aN (E′). If on the other handD is not a square, then Ẽπ/Fπ is isomorphic
to the quadratic twist of E′/FqN , and #E′/FqN + #twist(E′/FqN ) = 2(qN + 1)
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(see [16], 3, pp. 224), where twist(E′/FqN ) is the twist of E′/FqN . Hence in this
case we have that

aπ(E) = qN+1−#twist(E′/FqN ) = qN+1−2(qN+1)+(qN+1−aN (E′)) = −aN (E′).

Therefore, we have that

aπ(E) =

(
D

π

)
aN (E′)

where
(
D
π

)
is the Legendre symbol. We divide the set of primes Sq,N into two

subsets,

S+
q,N (D) = {π ∈ Sq,N |

(
D

π

)
= 1},

S−q,N (D) = {π ∈ Sq,N |
(
D

π

)
= −1}.

Then

nπ(E) =

{
qN + 1− aN (E′) for all π ∈ S+

q,N

qN + 1 + aN (E′) for all π ∈ S−q,N .

For a fixed D, the quadratic reciprocity law for Fq[T ] (see [15], 3.5, pp. 27) says
that (

D

π

)
= (−1)

q−1
2
·N ·deg(D)

( π
D

)
.

This means that for fixed D, the power of −1 only depends on N , the degree of
π. For fixed D and N , this means that we either have

(
D
π

)
=
(
π
D

)
or we have(

D
π

)
= −

(
π
D

)
for all π of degree N , and thus we can write

S+
q,N (D) = {π ∈ Sq,N |

( π
D

)
= 1} or S+

q,N (D) = {π ∈ Sq,N |
( π
D

)
= −1}.

Now,
(
π
D

)
= 1 implies that π mod D ∈ {a1, . . . , ar}, where a1, . . . , ar are the

squares mod D, and there are r = Φ(D)/2 of them, where Φ(D) is the number
of nonzero polynomials of degree less then deg(D) and relatively prime to D. By
Dirichlets theorem (see [15], theorem 4.8, pp. 40), writing

SN (ai, D) := {π ∈ Sq,N |π = ai mod D},

we have that

#SN (ai, D) =
1

Φ(D)

qN

N
+O

(
qN/2

N

)
,

hence we have that

#S+
q,N = #

r⋃
i=1

SN (ai, D) =
Φ(D)

2

(
1

Φ(D)

qN

N
+O(

qN/2

N
)

)
=
qN

2N
+O

(
qN/2

N

)
.
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Moreover, if
(
π
D

)
= −1, then the same thing follows analogously. Now, doing

precisely the same for S−q,N (D), we get that

#S−q,N =
qN

2N
+O

(
qN/2

N

)
.

Let P,Q ∈ E(Fq(T )) be non-torsion points, and let n = nπ(E) = qN +1−aN (E′).
Since n is the number of points on the curve Ẽπ(Fπ), we know that n annihilates
Ẽπ(Fπ) (i.e. n times a point on Ẽπ(Fπ) is the point at infinity). Write nP =(
AnP
B2
nP

: CnP
B3
nP

: 1
)

= (AnPBnP : CnP : B3
nP ), then we know that if we reduce nP

modulo π, we will get the point at infinity on Ẽπ(Fπ), i.e. we know that BnP is
divisible by all such π. Since the same is true for nQ, we obtain a lower bound

deg GCD(BnP , BnQ) ≥
∑

π∈S+
q,N

deg(π) = #S+
q,N ·N =

qN

2
+O(qN/2) = n/2+O(

√
n).

Similarly, if n = qN + 1 + aN (E′), then the same argument using the primes
π ∈ S−q,N yield the same lower bound. Hence we have that

deg GCD(BnP , BnQ) ≥ n/2 +O(
√
n) for all n = qN + 1± aN (E′)

with N = 1, 2, 3, . . . . This estimate is exactly the lower bound that we are trying
to prove, subject to the additional constraint that we want n to be relatively prime
to p. However, it is clear that at least one of the numbers n = qN + 1 + aN (E′)
and n = qN + 1− aN (E′) is prime to p, since otherwise p would divide their sum
2qN + 2, which is only possible when p = 2, contrary to assumption. Therefore,
the bound holds for infinitely many values if n with p 6 | n, which completes the
proof.
Now consider the case that E is a trivial twist of E′. Then E is Fq(T )-isomorphic
to a curve defined over Fq, and thus E(Fq(T )) = E′(Fq(T )) = E′(Fq), since a
nonconstant point in E′(Fq(T )) would correspond to a nonconstant morphism
P1 → E′. But the group E′(Fq(T )) is finite, so E(Fq(T )) has no non-torsion
points, and the statement of the theorem is vacuously true.

Let j(E) = 1728, then there is an elliptic curve E′/Fq so that E is a twist of
E′. In other words, if E′ is given by a Weierstrass equation y2 = x3 + ax with
a ∈ F∗q , then E has a Weierstrass equation

E : y2 = x3 +Dax

for some D ∈ Fq[T ]. Replacing a by ra and D(T ) by r−1D(T ), we may assume
that D(T ) is monic.
First assume that q = 3 mod 4. Then, for odd N , we also have that qN = 3 mod
4. Using Jacobi sums (see [8], theorem 18.5.5, pp. 307), it is not hard to show
that

nπ(E) = qN + 1
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for all π ∈ Sq,N , where N is odd.
Hence just as in the above proof, we have that qN+1 annihilates Ẽπ, and B(qN+1)P

is divisible by all such π. Thus

deg GCD(BnP , BnQ) ≥
∑

π∈Sq,N

deg(π) = #Sq,N ×N = qN +O(qN/2) = n+O(
√
n)

for all n = qN + 1 with N odd. Noting that p 6 | qN + 1, this completes the proof
of this case.
Now assume that q = 1 mod 4, then for all N , qN = 1 mod 4. Write qN = φφ̄
with φ = a+ bi ∈ Z[i] such that φ = 1 mod 2 + 2i, then, again using [8], theorem
18.5, pp. 307, we have that

nπ(E) = qN + 1−
(
Dπ

φ

)
4

φ−
(
Dπ

φ

)
4

φ̄

where Dπ is D modulo π, i.e., it is the D in the equation for Ẽπ, and ()4 is the

4-th power residue symbol. Hence
(
Dπ
φ

)
4
∈ {1,−1, i,−i} and

−
(
Dπ

φ

)
4

φ−
(
Dπ

φ

)
4

φ̄ ∈ {2a,−2a, 2b,−2b}.

Using the same argument as above, again by using Dirichlet’s theorem to show
that all four subsets are roughly equal in size, it follows that

deg GCD(BnP , BnQ) ≥ 1

4
#Sq,N ×N =

1

4
qN +O(qN/2) = n/4 +O(

√
n).

Let j(E) = 0, then there are again two cases. If q = 2 mod 3, then

nπ(E) = qN + 1

for all π ∈ Sq,N where N is odd (see [8], theorem 18.4, pp. 305) and we again
have that

deg GCD(BnP , BnQ) ≥
∑

π∈Sq,N

deg(π) = #Sq,N ×N = qN +O(qN/2) = n+O(
√
n)

for all n = qN + 1 with N odd.
If on the other hand q = 1 mod 3, writing qN = φφ̄ with φ = a+ bω+ cω2 ∈ Z[ω]
where ω = e2πi/3 and φ = 2 mod 3, we have that

nπ(E) = qN + 1 +

(
4Dπ

φ

)
6

φ+

(
4Dπ

φ

)
6

φ̄,

where ()6 is the 6-th power residue symbol. Now,
(
4Dπ
φ

)
6
∈ {1,−1, ω,−ω, ω2,−ω2}

and(
4Dπ

φ

)
6

φ+

(
4Dπ

φ

)
6

φ̄ ∈ {2a−2b−2c,−2a+2b+2c,−a−b+2c, a+b−2c,−a+2b−c, a−2b+c}.
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Then,in the same way as above, we have

deg GCD(BnP , BnQ) ≥ 1

6
#Sq,N ×N =

1

6
qN +O(qN/2) = n/6 +O(

√
n).

Remark 5.4.1. Silverman claims that he proves that

deg GCD(nP, nQ) ≥ n+O(
√
n) for infinitely many n ≥ 1 with p 6 | n.

However, in his prove, he uses that

qN

2
+O(qN/2) = n+O(

√
n)

for n = qn + 1± aN (E′), which is incorrect. If we replace this with

qN

2
+O(qN/2) = n/2 +O(

√
n),

as we did in our version of the proof above, then the conclusion is the slightly
weaker, namely that

deg GCD(nP, nQ) ≥ n/2 +O(
√
n) for infinitely many n ≥ 1 with p 6 | n.

Also, for j = 0, 1728, the result is weaker.

Remark 5.4.2. In characteristic 3, we expect that there is a similar proof of the
above theorem using the characteristic 3 analogue of proposition 2.7.2.

5.5 Points on Different Elliptic Curves

In characteristic 0, the proof we’ve seen was also valid when taking the points P
and Q on two different elliptic curves, as well as allowing n to be chosen differ-
ently on both curves. In this subsection, we discuss the question whether this is
also the case with above proof in characteristic p.

Take P and Q on two different elliptic curves. The above proof does not gen-
eralize to this case. If P and Q lie on different elliptic curves with constant
j-invariant j 6= 0, 1728, then the n for which BnP is divisible by all primes in
S−q,N is nπ(E) = qN + q − aN (E′). Arguing heuristically, the chance that this

happens for the same n around qN for both P and Q is 1 over the size of the
Hasse bound on aN (E′). This means that we can calculate the chance that after
some N = N0, it never happens again that aN (E′1) = ±aN (E′2), and this chance
is

∞∏
N=N0

(1− 1

2
√
qN/2

) ≥
∞∏

N=N0

(1− 1

2
√

2N/2
).
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This product converges, and as N0 goes up, it converges to a value that converges
to 1. For example if we take N0 = 50, then there is over a 99.9% chance that
aNE

′
1 6= ±aNE′2 for all N > N0.

There is one case for which the result does generalize.

Corollary 5.5.1. Let P1 ∈ E1 and P2 ∈ E2 be non-torsion points on elliptic
curves E1/Fq(T ), E2/Fq(T ), with j = 0 and q = 2 mod 3 or j = 1728 and q = 3
mod 4. Then

deg GCD(nP1, nP2) ≥ n+O(
√
n) for infinitely many n ≥ 1 with p 6 | n.

Proof. Using the notation of the above proof, we have that

nπ(Ei) = qN + 1

for all π ∈ Sq,N , which is valid for E1 as well as for E2. Hence the same way as
in the above proof,

deg GCD(BnP , BnQ) ≥
∑

π∈Sq,N

deg(π) = #Sq,N×N = qN +O(qN/2) = n+O(
√
n).

If we also allow to look at multiples n1P and n2Q with n1 not necessarily
equal to n2, the result does generalize, and this is made precise in the following
corollary.

Corollary 5.5.2. Let Fq be a finite field of characteristic p ≥ 5, let E1/Fq(T )
and E2/Fq(T ) be elliptic curves with constant j-invariant j 6= 0, 1728, and let
P1 ∈ E1(Fq(T )) and P2 ∈ E2(Fq(T )) be non-torsion points. Then writing n =
max(n1, n2),

deg GCD(n1P1, n2P2) ≥ n/4 +O(
√
n)

for infinitely many pairs (n1, n2), ni ≥ 1 with p 6 | ni, where the big-O constant
only depends on E1/Fq(T ) and E2/Fq(T ).

Proof. For each N , using the notation from the proof above, let n1 = qN + 1 +
aN (E′1) and n2 = qN + 1 + aN (E′2). Because D is different for both elliptic
curves, also the sets S+

q,N (D) and S−q,N (D) are different for both curves. Still, if
D1 corresponds to E1 and D2 corresponds to E2, then either

#
(
S+
q,N (D1) ∩ S+

q,N (D2)
)
≥ 1

2
#S+

q,N (D1)

or

#
(
S+
q,N (D1) ∩ S−q,N (D2)

)
≥ 1

2
#S+

q,N (D1).

Hence potentially matching S+
q,N (D1) of the first curve with S−q,N (D2) of the

second curve, we can assume that at least half of the π in S+
q,N (D1) are also in
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the corresponding set for E2. Hence in the same way as in the proof above, we
have that

GCD(Bn1P1 , Bn2P2) ≥
1

2
·#S+

q,N ·N =
qN

4
+O(qN/2) = n/4 +O(

√
n).

If j = 0 or j = 1728, an analogue to above corollary is possible, and this is
left to the reader.
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6 Experiments and Examples

We will first take a short moment to dwell on what is proven so far, what is most
probably true, and what is still an open question. After that, we will do some
experiments for all three parts: for what we have proven, the experiments can
be thought of as examples; for what is most probably true they are something
between examples and support; and for the open questions, they are support to
state conjectures.

We started with the characteristic zero case, and in this case, at least when
the j-invariant is constant, we know that the degree of the greatest common
divisor of multiples of points,

deg GCD(n1P1, n2P2),

is bounded by a constant independent of n1 and n2. Thus we have a very strong
upper bound on the size of deg GCD(n1P1, n2P2) in the characteristic zero case.
Furthermore, we’ve seen that GCD(nP1, nP2) is equal to GCD(P1, P2) for in-
finitely many n, or even stronger, that the set

{n ≥ 1 : GCD(nP1, nP2) = GCD(P1, P2)}

has positive density.
The constant upper bound in this characteristic zero case is as good as we could
hope for, and there are no open questions here - the only thing that remains open,
but is thought to be precisely the same, is the case of a non-constant j-invariant.

In the characteristic p case, we’ve seen a proof of a lower bound, that holds
for infinitely many n with p 6 | n. This lower bound grows linearly in n, and gives
a real difference between the characteristic p and the characteristic 0 case: this
lower bound shows that a constant upper bound cannot exists in the character-
istic p case. Again, we’ve only seen a proof that assumed that the j-invariant
of the elliptic curve over the function field was constant - if it is not constant,
then the proof does not work, but still we are very tempted to think that the
lower bound will still hold. Also, the proof assumed that p ≥ 5, but for lower
characteristic, similar results are expected.

Hence in characteristic p we showed that there are infinitely many n with p 6 | n
such that deg GCD(nP1, nP2) lies somewhere between n + O(

√
n) and cn2 for

some c, where the upper bound comes from the fact that degBnP grows asymp-
totically as n2.
Now, it is still an open question whether or not there are always infinitely
many n, with or without p 6 | n, such that deg GCD(nP1, nP2) has a lower
bound of the form cn2. Also, it is an open question whether or not we have
GCD(nP1, nP2) = GCD(P1, P2) for infinitely many n. Moreover, we can wonder
which of these things are true when we take P1 and P2 on two different elliptic
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curves instead of on the same one.

In this section, our main focus will be to try and conjecture the answers to these
three open questions. Along the way, we will see examples of all the other cases
as comparison, and we will also look at curves with non-constant j-invariant, to
see if we can spot any apparent differences.

Except for their specific properties, the surfaces chosen can be thought of as
“randomly chosen”, whatever that can mean, and different “randomly chosen”
surfaces are expected to give similar results. All calculations are done in Magma,
and the pictures are made in Mathematica. Tables with the results of the exper-
iments can be found in appendix A.

6.1 Examples in Characteristic Zero

When starting experiments on deg GCD(nP, nQ) in characteristic 0, it is directly
apparent that this degree always stays very low. Of course, this is what we should
expect, because it is bounded by a constant independent of n. For example, if
we take the curves

E1 : y2 = x3 − T 2x+ 1 with the point P1 = (xP1 , yP1) = (T, 1),

E2 : y2 = x3 − T 2(T 2 − 1)x with the point P2 = (xP2 , yP2) = (1− T 2, 1− T 2),

E3 : y2 = x3 − (T 2 − 1)x+ T 2 with the point P3 = (xP3 , yP3) = (0, T ),

E4 : y2 = x3 − T 2x+ T 2 with the point P4 = (xP4 , yP4) = (T, T ),

then we can calculate deg GCD(nP, nQ) for all 6 combinations, and for all n
at least up to 32, all of those degrees are zero. The denominators of the x-
coordinates of the points nP and nQ never share any root.

Let’s construct an example in which the degree of GCD(nP, nQ) is not al-
ways zero. E1, as defined above, also has the point P = (T−2, T−3) where the
denominator has 0 as a root. It is not hard to construct another elliptic curve
and a point with this property. Let

E5 : y2 = x3 + T 4x− 1

with the point Q = (T−4, T−6). Calculating, we find that GCD(nP, nQ) is, for
all n at least up to 12, equal to T , with degree 1. By lemma 4.0.7, we indeed
have that

ord0σ
∗
mP (Ō) = ord0σ

∗
P (Ō) = 1 = ord0σ

∗
Q(Ō) = ord0σ

∗
mQ(Ō),

so the order at 0 is indeed always just 1.
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If we take E5 with Q = (T−4, T−6) and E1 using the other point P1 = (T, 1),
calculations seem to give, at least for all n up to 12, that GCD(nP1, nQ) = t
whenever n is a multiple of 3, and GCD(nP1, nQ) = 0 otherwise. Something like
this is to be expected; again using lemma 4.0.7, we have that

ord0σ
∗
mP (Ō) ∈ {0, 1}

and
ord0σ

∗
mQ(Ō) ∈ {0, 1}

for all m, and the sequences are strong divisibility sequences, i.e.,

gcd(BnP , BmP ) = Bgcd(m,n)P .

In all cases, GCD(nP, nQ) seems to be very bounded indeed, and the fact that
many curves used here do not have a constant j-invariant does not seem to matter.

6.2 Two Points on E : y2 = x3 + T 2x+ T in Characteristic 3

We will start with the curve

E : y2 = x3 + T 2x+ T

having independent non-torsion points

P =

(
T 2 + T + 1

(T + 1)2
,
2T 4 + 2T + 1

(T + 1)3

)
and Q = (1, T + 2).

We calculated deg GCD(nP, nQ) for all n up to 390, and the results can be
found in figure 3. It is apparent from the graphs that this degree seems to grow
quadratically. Looking at the top picture, one can notice that the three points
on or near the top line have n = 3k with k = 1, 2, 3, . . . .
When we instead decide to look only at points with n not a multiple of 3, we still
see high points lying on the second quadratic line, and they turn out to be the
points with

n = 3k ± 1.

This thus gives strong evidence that there are elliptic curves with two independent
points in characteristic 3 such that for infinitely many n,

deg GCD(nP, nQ) ≥ cn2

for some constant c, and that this is still true if we do not allow the characteristic
3 to divide n.
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Figure 3: Graphs of the degree of the GCD of nP and nQ on y2 = x3 + T 2x+ T

on a logarithmic scale, where P =
(
T 2+T+1
(T+1)2

, 2T
4+2T+1
(T+1)3

)
and Q = (1, T + 2), over

a function field with characteristic 3. The top picture shows all n, the bottom
picture shows n that are not a multiple of 3. The lines are, starting from top
going down, the functions x2/70 (red), x2/200 (yellow), x2/500 (green), x2/1000
(blue) and x/5 (dark blue).
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p:=3;

F:=GF(p);

K<t>:=FunctionField(F);

E:=EllipticCurve([0,0,0,t^2,t]);

point:= E![1,t+2,1];

pt:= C![(t^2+t+1)/((t+1)^2),(2*t^4+2t+1)/(t+1)^3,1];

Q<t> := PolynomialRing(GF(p));

newpoint:=point;

newpt:=pt;

set:=<Degree(Gcd(Q!(Denominator((newpoint)[2])/Denominator((newpoint)[1])),

Q!(Denominator((newpt)[2])/Denominator((newpt)[1]))))>;

for k:=2 to 200 do

newpoint:=newpoint+point;

newpt:=newpt+pt;

a:=Gcd(Q!(Denominator((newpoint)[2])/Denominator((newpoint)[1])),

Q!(Denominator((newpt)[2])/Denominator((newpt)[1]))); set:=Append(set,Degree(a));

end for;

set;

Figure 4: Magma code used to calculate deg GCD(nP, nQ) for n up to 200 for

E : y2 = x3+T 2x+T and P =
(
T 2+T+1
(T+1)2

, 2T
4+2T+1
(T+1)3

)
and Q = (1, T+2). The code

used in the characteristic 0 case is similar with F := RationalF ield(); instead.
In the characteristic 3 case, most machine time is spend calculating the sums
newpoint:=newpoint+point; and newpt:=newpt+pt;.

6.3 Dependent Points

Here we will give an example of what the graph looks like for dependent points.
Take

E1 : y2 = x3 − T 2x+ 1 with the point P1 = (xP1 , yP1) = (T, 1)

and

E4 : y2 = x3 − T 2x+ T 2 with the point P4 = (xP4 , yP4) = (T, T )

in characteristic 3. Take a look at figure 5. From this figure, we see that there
is something peculiar going on with E1 and E4: the numbers are high, and
increasing with few exceptions. Closer examination shows that 168 of the 201
calculated points lie on the line x2/6 rounded down, and when we only look at
points with n not a multiple of 3, all points lie on the line x2/6 rounded down.
Furthermore, closer examination also shows that in all cases, the degree of the
GCD is just a big as the degree of the point on E1.
The difference between this case an all the others, is that in characteristic 3,
the points we’ve chosen on E1 and E4 are not linearly independent. To see this,
let us construct an isogeny. Recall that E1 : y2 = x3 − T 2x + 1 with the point
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Figure 5: The degree of the GCD of the sequences on E1 and E4 over a function
field with characteristic 3. The picture on the left shows all n, the picture on the
right only show n that are not a multiple of 3. The lines are the functions x2/6
(red) and x2/24 (blue). Note that the scale on the degree is logarithmic.

P1 = (T, 1) and E4 : y2 = x3 − T 2x+ T 2 with the point P4 = (T, T )
Let

φ : E4 → E1 : (x, y)→ (x3/t2, y3/t3).

If (x, y) ∈ E4 is a point on E4, then, using that the field has characteristic 3,(
y3

t3

)2

=
(x3 − t2x+ t2)3

t6
=
x9 − t6x3 + t6

t6
=

(
x3

t2

)3

− t2
(
x3

t2

)
+ 1

and hence (x3/t2, y3/t3) indeed lies on E4. Thus φ is a morphism from E4

to E1 satisfying φ(O1) = O2, so it is an isogeny. Furthermore, we have that

φ(P4) = φ((t, t)) =
(
t3

t2
, t

3

t3

)
= (t, 1) = P1, hence we indeed have, in characteristic

3, that P4 and P1 are linearly dependent points.

6.4 Points on Different Elliptic Curves

One can wonder if what we just saw on E : y2 = x3 + T 2 + T taking two points
on the same curve, is still probable when we take the two independent points on
separate elliptic curves. To have a good look at this, we will have two examples.
Let the field characteristic be 3 and look at the curves

E1 : y2 = x3 − T 2x+ 1 with the point P1 = (xP1 , yP1) = (T, 1),

E2 : y2 = x3 − T 2(T 2 − 1)x with the point P2 = (xP2 , yP2) = (1− T 2, 1− T 2),

E3 : y2 = x3 − (T 2 − 1)x+ T 2 with the point P3 = (xP3 , yP3) = (0, T ).

We will look at deg GCD(nP1, nP2) and at deg GCD(nP1, nP3), see figures 6 and
7.
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Figure 6: Graphs of the degree of the GCD of nP1 and nP2 over a function
field with characteristic 3. The top picture shows all n, the bottom picture
shows n that are not a multiple of 3. The lines are {x, x2/2, x2/7, x2/25} and
{x, x2/25, x2/50, x2/100} respectively.
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Figure 7: Graphs of the degree of the GCD of nP1 and nP3 over a function field
with characteristic 3. The top picture shows all n, the bottom picture shows n
that are not a multiple of 3. The lines are {x, x2/7, x2/25} and {x, x2/75, x2/300}
respectively.
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Recall that Silverman conjectured for two points on a single curve, and proved
for some cases, that even if we don’t allow p to divide n (i.e. even if we look at
the picures on the bottom), that there is a c such that there are infinitely many
n with the property that deg GCD(nP, nQ) ≥ cn. Looking at the pictures on the
bottom, it seems very probable that this is still the case for some pairs of non-
isomorphic curves, when we take two points on two different curves: the lowest
blue line (the function x) seems to grow slower than the degrees.

We also wondered whether or not there are infinitely many n with the prop-
erty that deg GCD(nP, nQ) ≥ cn2 for some c. When we allow p to divide n (i.e.
look at the pictures on the top), the stronger bound seems very probable. There
even seems to be some structure in most of the graphs: take for example E1 and
E2, then we see that there are 3 points, each time with increasing distance, on or
near the red line in the top graph. Moreover, closer inspection gives that these
points are at

n = 3k, k = 1, 2, 3, 4.

In the same way, there is a point just above and shortly after that a point just
beneath the yellow line, each time with increasing distance. These points lie at

n = 2 · 3k

and
n = 4 · 3k.

Note that analogous things can be said about the graph of E1 and E3, where we
allow p to divide n.

If we do not allow p to divide n, i.e. look at the pictures on the bottom, the
constant c, the constant such that there are infinitely many n with a degree
above cn2, will be lower then in the other case, but it still seems probable that
there is such a cn2 bound. In both examples, this degree seems to be rather high
at the points

n = 3k ± 1,

and also at similar n, and the degree seems to grow quadratically for those n.
Further calculations indeed show that for n = 728,

deg GCD(728P1, 728P2) = 21596 > 21199 = 7282/25

and
deg GCD(728P1, 728P3) = 7106 > 7066 = 7282/75.

Hence also for k = 6, the points at n = 3k − 1 lie above our quadratic line.

We will now see a pair of curves where the results seem to be drastically dif-
ferent.
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Figure 8: Graphs of the degree of the GCD of nP and nQ over a function field
with characteristic 3, where P = (1, T +1) on E : y2 = x3 +(t+1)x2 +(t2 + t+2)
and Q = (1, T + 2) on E′ : y2 = x3 + (2t+ 1)x2 + (t2 + 2t+ 2). The top picture
shows all n, the bottom picture shows n that are not a multiple of 3. The line is
x/3 and x/14 respectively.

74



In figure 8, we again see the graphs for two independent points on two non-
isomorphic curves,

P = (1, T + 1) on E : y2 = x3 + (t+ 1)x2 + (t2 + t+ 2)

Q = (1, T + 2) on E′ : y2 = x3 + (2t+ 1)x2 + (t2 + 2t+ 2).

Here, there seems to be a linear upper bound

deg GCD(nP, nQ) ≤ n/3

for all n. Closer inspection at the high points in the upper graph show that

deg GCD(3kP, 3kQ) = 3k−1

for all k up to 6, and thus lie on this upper bound.
Moreover, if we instead look at n so that p does not divide n, i.e. look at the
lower graph, deg GCD(nP, nQ) does not even seem to grow linearly, i.e. I don’t
think that there is a constant c such that for infinitely many n,

deg GCD(nP, nQ) ≥ cn.

One might even think that there is a constant upper bound, maybe as low as 14,
but our experiments do not give any strong evidence for such a bound. Moreover,
14 as a lower bound is easily disproved: we have (see appendix A, table 7) that

deg GCD(196P, 196Q) = 14

and

deg GCD(184P, 184Q) = 6,

but strong divisibility gives us that

GCD(196P, 184P ) = B4P

and

GCD(196Q, 184Q) = B4Q,

where

GCD(4P, 4Q) = 0.

Hence irreducible parts of GCD(184P, 184Q) do not divide GCD(196P, 196Q),
and writing 9016 = lcm(196, 184), we have that

deg GCD(9016P, 9016Q) ≥ 20.
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6.5 Two Points on E4 in Characteristic 5

Above, we saw two points on a curve in characteristic 3 that seemed to satisfy
the strong bound that there are infinitely many n with p 6 | n and

deg GCD(nP, nQ) ≥ cn2

for some constant c.
Here, we give an experiment on a curve in characteristic 5, where such a strong
bound is not probable. We use

E4 : y2 = x3 − T 2x+ T 2

with P = (1, 1) and Q = (T, T ), see figure 9.
From the graphs, it seems probable that there only is a weaker bound that there
are infinitely many n with p 6 | n and

deg GCD(nP, nQ) ≥ cn

for some constant c.

Remark 6.5.1. In section 5.3, we’ve shown that

deg GCD(piP, piQ) ≥ pi · deg GCD(P,Q)

for all i. As we can see in this experiment, a priori this does not need to mean
that deg GCD(nP, nQ) grows at least linearly for n = pi: this experiment is an
example of the case that

deg GCD(P,Q) = 0.

Moreover,
deg GCD(5P, 5Q) = deg GCD(52P, 52Q) = 0.

However, we do have that

deg GCD(53P, 53Q) = 6,

and therefore that
deg GCD(5kP, 5kQ) ≥ 5k−3 · 6

for all k ≥ 3. This means that 6
125n is a proven lower bound such that there are

infinitely many n with the property that

deg GCD(nP, nQ) ≥ cn,

where we do allow p = 5 to divide n.
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Figure 9: Graphs of the degree of the GCD of nP and nQ on E4 over a function
field with characteristic 5. The top picture shows all n, the bottom picture shows
n that are not a multiple of 5. The line is x/2.7.
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6.6 High Points at n = pk and n = pk ± 1

In figures 3, 6 and 7, we saw the degree of the GCD of nP and nQ grow quadrat-
ically in n for n = pk. Moreover, in the same figures, we also saw the degree
grow quadratically for n = pk ± 1. As we see neither occur in figures 8 and
9, there seems to be a correlation between these two occurrences, i.e., between
quadratic growth in points at n = pk and quadratic growth in points at n = pk±1.

Let’s first have a closer look at what happens for n = pk. In section 5.3, we’ve
already shown that

deg GCD(nP, nQ) ≥ n ·GCD(P,Q)

for n = pk. Moreover, we’ve shown this using the Frobenius morphism and its
dual, and the estimate was based on the fact that

deg GCD(σ∗P ◦F i
∗◦F̂ i∗(Ō), σ∗Q◦F i

∗◦F̂ i∗(Ō)) ≥ deg GCD(σ∗P ◦F i
∗
(Ō′), σ∗Q◦F i

∗
(Ō′)).

For some classes of curves, it can be expected that there is a stronger, quadratic
bound, based on how F̂ can be related to F .

When we look at the points at n = pk ± 1, one might be tempted to think
that this apparent correlation between quadratic growth at n = pk and quadratic
growth at n = pk ± 1 is somehow caused by them sharing roots. Nothing is less
true: since we are dealing with strong divisibility sequences, we have that

gcd(BpkP , Bpk±1P ) = Bgcd(pk,pk±1)P = BP ,

and thus that

gcd
(

gcd(BpkP , BpkQ), gcd(B(pk±1)P , B(pk±1)Q)
)

= gcd(BP , BQ).

However, we do believe that there is some relation between quadratic growth at
n = pk and quadratic growth at n = pk ± 1. The search for this relation and the
class of curves for which points at n = pk± 1 grow quadratically is an interesting
subject for a follow-up study.
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7 A Complete Theory

In section 4 and 5, we saw proofs by Silverman concerning the behavior of the
degree of the greatest common divisor of multiples of points, deg GCD(nP, nQ),
as n increases. In section 6 we did experiments to get a better grip on unsolved
cases. In this section, we will use these experiments and the proofs to conjecture
a complete theory about the behavior of deg GCD(nP, nQ) as n increases.

7.1 Characteristic 0

Independent Points and Torsion Points

In the characteristic 0 case, Silverman already conjectured2 the following.

Conjecture 7.1.1. Let K be a characteristic 0 function field, let P1 ∈ E1/K and
P2 ∈ E2/K be K-independent points.

1. There is a constant c = c(K,E1, E2, P1, P2) so that

deg GCD(n1P1, n2P2) ≤ c for all n1, n2 ≥ 1.

2. Further, there is an equality

GCD(nP1, nP2) = GCD(P1, P2) for infinitely many n ≥ 1

Our experiments support this conjecture, see section 6.1. Furthermore, it is
true for curves with constant j-invariant.
The conjecture is also valid if either P1 or P2 is a torsion point. This is done in
the following proposition.

Proposition 7.1.2. Let K be a characteristic 0 function field, let P1 ∈ E1/K
and P2 ∈ E2/K where at least one of them is a torsion point.

1. There is a constant c = c(K,E1, E2, P1, P2) so that

deg GCD(n1P1, n2P2) ≤ c for all n1, n2 ≥ 1.

2. Further there is an equality

GCD(nP1, nP2) = GCD(P1, P2) for infinitely many n ≥ 1

Proof. Let K = k(C) be a characteristic 0 function field, let P1 ∈ E1/K and
P2 ∈ E2/K and assume for simplicity that P1 is torsion. Then nP1 = O for some
n ∈ N≥1, and hence

deg GCD(n1P1, n2P2) ≤ max
(
deg(σ∗P1

(Ō)),deg(σ∗2P1
(Ō)), . . . ,deg(σ∗nP1

(Ō))
)

= c

2See [19], conjecture 7, pp. 437.
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for some constant c = c(K,E1, P1).

For the second statement, assume that P1 is torsion and that n1P1 = O. Then
the set3

{π ∈ Div(C)|π divides GCD(nP1, nP2) for some n}

is finite, since it contains at most all the roots of the denominators of x-coordinates
of the finite number of points P1, 2P1, . . . , n1P1 (more precisely, it contains at
most all divisors dividing all σ∗nP2

(Ō), 1 ≤ n ≤ n1).
Take any such π and take nπ the smallest integer such that that

π|GCD(nπP1, nπP2).

Since we have strong divisibility, we have that

π 6 | GCD(n′P1, n
′P2)

for all n′ coprime to nπ. This means that for all n that are coprime to all nπ 6= 1,
we have that

GCD(nP1, nP2) = GCD(P1, P2).

Since there are infinitely many such n, this completes the proof.

Dependent Nontorsion Points

The only case we did not yet look at in characteristic 0, is the case of dependent
nontorsion points. For K-dependent nontorsion points P1 and P2, we expect
something completely different from the above. For instance, we can choose P1 =
P2, and we would have that deg GCD(nP1, nP2) has a lower and an upper bound
that is quadratic in n. We conjecture that this is generally true for dependent
nontorsion points.

Conjecture 7.1.3. Let K be a characteristic 0 function field, let P1 ∈ E1/K and
P2 ∈ E2/K be K-dependent nontorsion points.

1. There is a constant c1 = c1(K,E1, E2, P1, P2) so that

deg GCD(nP1, nP2) ≤ c1n2 for all n ≥ 1.

2. Further, there is a constant c2 = c2(K,E1, E2, P1, P2) so that

deg GCD(nP1, nP2) ≥ c2n2 for all n ≥ 1.

3By “π divides GCD(nP1, nP2)” we mean that the divisor GCD(nP1, nP2)− π is positive.
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7.2 Characteristic p

Nontorsion Points

In characteristic p, Silverman conjectured4 the following.

Conjecture 7.2.1. Let Fq be a finite field of characteristic p, let E/Fq(T ) be an
elliptic curve, and let P,Q ∈ E(Fq(T )) be nontorsion points. Then there is a
constant c = c(q, E, P,Q) so that

deg GCD(nP, nQ) ≥ cn for infinitely many n ≥ 1 with p 6 | n.

We can support this conjecture with our experiments, and it is proven in the
case of a constant j-invariant.
Also, Silverman stated that it is tempting to conjecture a lower bound of the form
cn2, but that there was really no evidence for or against the stronger bound. In
the experiments, we saw that there both seem to be curves that satisfy this
stronger bound and curves that do not satisfy the stronger bound. That leads us
to the following conjecture.

Conjecture 7.2.2. Let Fq be a finite field of characteristic p, then there exists:

1. an elliptic curve E/Fq(T ) and nontorsion points P,Q ∈ E(Fq(T )) such that
there is a constant c = c(q, E, P,Q) so that

deg GCD(nP, nQ) ≥ cn2 for infinitely many n ≥ 1 with p 6 | n,

2. an elliptic curve E/Fq(T ) and nontorsion points P,Q ∈ E(Fq(T )) such that
there is a constant c = c(q, E, P,Q) so that

deg GCD(nP, nQ) ≤ cn for all n ≥ 1,

Two Non-Isomorphic Elliptic Curves

In the above, we took P and Q from the same elliptic curve. If we allow that
they come from different elliptic curves, there seems to be even a greater variety
of possibilities.

Conjecture 7.2.3. Let Fp be a finite field of characteristic p, then

1. there exist two non-isomorphic elliptic curves E1/Fq(T ) and E2/Fq(T ) with
independent non-torsion points P ∈ E1(Fq(T )) and Q ∈ E2(Fq(T )) such
that there is a constant c = c(q, E1, E2, P,Q) ≥ 0 so that

deg GCD(nP, nQ) ≥ cn2 for infinitely many n ≥ 1 with p 6 | n.

4See [19], conjecture 9, pp. 442
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2. there exist two non-isomorphic elliptic curves E1/Fq(T ) and E2/Fq(T ) with
non-torsion points P ∈ E1(Fq(T )) and Q ∈ E2(Fq(T )) such that there is a
constant c1 = c1(q, E1, E2, P,Q) ≥ 0 so that

deg GCD(nP, nQ) ≤ c1n for all n ≥ 1

while at the same time, there is a constant c2 = c2(q, E1, E2, P,Q) ≥ 0 such
that

deg GCD(nP, nQ) ≥ c2n for infinitely many n ≥ 1 with p 6 | n.

3. there exist two non-isomorphic elliptic curves E1/Fq(T ) and E2/Fq(T ) with
non-torsion points P ∈ E1(Fq(T )) and Q ∈ E2(Fq(T )) such that for all
c ∈ R>0, there are only finitely many n so that

deg GCD(nP, nQ) ≥ cn.

Torsion Points

In characteristic p, the proof of above proposition 7.1.2 is still valid. Therefore,
we have the same proposition for torsion points in characteristic p as we had in
characteristic 0.

Proposition 7.2.4. Let K be a characteristic p function field and let P1 ∈ E1/K
and P2 ∈ E2/K be such that one of them be a torsion point.

1. There is a constant c = c(K,E1, E2, P1, P2) so that

deg GCD(n1P1, n2P2) ≤ c for all n1, n2 ≥ 1.

2. Further, there is an equality

GCD(nP1, nP2) = GCD(P1, P2) for infinitely many n ≥ 1

Proof. The proof is identical to the proof of proposition 7.1.2.

Lower Bound

For the lower bound, we conjecture the following.

Conjecture 7.2.5. Let E1 and E2 be two elliptic curves over a function field, and
let P ∈ E1 and Q ∈ E2 be independent points. Then

GCD(nP, nQ) = GCD(P,Q) for infinitely many n ≥ 1

Moreover, this is also true if at least one of them is a torsion point instead.

The final thing we need now is a lower bound for dependent non-torsion
points.

Conjecture 7.2.6. Let E1 and E2 be two elliptic curves over a function field, and
let P ∈ E1 and Q ∈ E2 be dependent nontorsion points. Then there is a constant
c such that

deg GCD(nP, nQ) ≥ cn2 for all n ≥ 1.
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7.3 Flow Charts

The main conjectures are summarized into two flowcharts: one for the upper and
one for the lower bounds.

Take two points P and Q on some specified
elliptic curves over some function field.

Are P and Q
dependent non-
torsion points?

There is a constant
c, independent of n,
such that for all n,

deg GCD(nP, nQ) ≥ cn2.

We have that
GCD(nP, nQ) =
GCD(P,Q) for in-
finitely many n.

no
yes

Figure 10: Conjecture of the flow chart for the lower bound on deg GCD(nP, nQ) over
a function field.
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Take two points P and Q on some specified
elliptic curves over some function field.

Is one of them
a torsion point?

Are P and Q
linearly dependent?

Is the field char-
acteristic 0?

There is a con-
stant c, indepen-

dent of n, such that
deg GCD(nP, nQ) ≤ c.

There is a constant c,
independent of n, such
that there are infinitely

many n such that
deg GCD(nP, nQ) ≥ cn2.

Do P and Q lie on
isomorphic curves?

There is a constant c,
independent of n, such
that there are infinitely

many n such that
deg GCD(nP, nQ) ≥ cn.

A stronger quadratic
bound holds for some,

but not all such curves.

For all constants c,
there are infinitely
many n such that

deg GCD(nP, nQ) ≥ c.
A stronger quadratic
or linear bound holds

for some, but not
all such curves.

no

yes

no

yes

no

yes

yes
no

Figure 11: Conjecture of the flow chart for the upper bound on deg GCD(nP, nQ) over
a function field.
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Conclusions

For two points on elliptic curves P1, P2, we looked at

deg GCD(nP1, nP2)

for increasing n.

We sketched a complete theory of how deg GCD(nP1, nP2) is bounded as n in-
creases, and this theory is proposed in conjectures.
In characteristic 0, our experiments confirm Silverman’s conjecture that there is
a constant c, independent of ni, such that

deg GCD(n1P1, n2P2) ≤ c for all n1, n2 ≥ 1.

Also, they confirm that for infinitely many n such that

deg GCD(nP1, nP2) = deg GCD(P1, P2).

Furthermore, we’ve seen a proof of both statements for curves with constant j-
invariant.

In characteristic p, taking P1 and P2 from a single elliptic curve, our experiments
confirm Silverman’s conjecture that there is a constant c such that

deg GCD(nP1, nP2) ≥ cn for infinitely many n ≥ 1 with p 6 | n.

Again, we’ve seen a proof of this for curves with constant j-invariant.
Also, it is probable that there exists curves that satisfy as well as curves that do
not satisfy the stronger bound

deg GCD(nP1, nP2) ≥ cn2 for infinitely many n ≥ 1 with p 6 | n.

Allowing P1 and P2 to lie on different curves, it even seems probable that there
exists curves with points P1, P2, such that there is no constant c with the property
that

deg GCD(nP1, nP2) ≥ cn for infinitely many n ≥ 1 with p 6 | n.
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Appendix A: Experiments

n deg n deg n deg n deg n deg n deg n deg n deg
1 0 51 4 101 0 151 0 201 4 251 0 301 0 351 3280
2 0 52 116 102 4 152 4 202 0 252 12028 302 0 352 4
3 4 53 0 103 0 153 40 203 0 253 0 303 4 353 0
4 4 54 364 104 116 154 0 204 40 254 0 304 4 354 4
5 0 55 0 105 4 155 0 205 72 255 4 305 60 355 0
6 4 56 148 106 0 156 1048 206 0 256 4 306 40 356 4
7 0 57 4 107 0 157 0 207 40 257 0 307 0 357 4
8 4 58 0 108 3280 158 0 208 116 258 4 308 148 358 0
9 40 59 0 109 0 159 4 209 0 259 0 309 4 359 0

10 16 60 184 110 16 160 1012 210 148 260 132 310 16 360 4252
11 0 61 60 111 4 161 0 211 0 261 40 311 0 361 0
12 40 62 0 112 148 162 3280 212 4 262 0 312 1048 362 0
13 4 63 40 113 0 163 0 213 4 263 0 313 0 363 5764
14 0 64 4 114 4 164 1124 214 0 264 40 314 0 364 5284
15 4 65 4 115 0 165 4 215 0 265 0 315 40 365 5592
16 4 66 4 116 4 166 0 216 3280 266 0 316 4 366 6484
17 0 67 0 117 364 167 0 217 0 267 4 317 0 367 0
18 40 68 4 118 0 168 1336 218 0 268 4 318 4 368 4
19 0 69 4 119 0 169 4 219 220 269 0 319 0 369 5872
20 20 70 16 120 472 170 16 220 20 270 12028 320 1012 370 16
21 4 71 0 121 640 171 40 221 4 271 0 321 4 371 0
22 0 72 364 122 720 172 4 222 4 272 4 322 0 372 40
23 0 73 24 123 652 173 0 223 0 273 328 323 0 373 0
24 40 74 0 124 4 174 4 224 148 274 0 324 29524 374 0
25 0 75 4 125 0 175 0 225 40 275 0 325 4 375 4
26 112 76 4 126 40 176 4 226 0 276 40 326 0 376 4
27 364 77 0 127 0 177 4 227 0 277 0 327 4 377 4
28 148 78 1012 128 4 178 0 228 40 278 0 328 1124 378 364
29 0 79 0 129 4 179 0 229 0 279 40 329 0 379 0
30 148 80 1012 130 128 180 1660 230 16 280 196 330 148 380 20
31 0 81 3280 131 0 181 0 231 4 281 0 331 0 381 4
32 4 82 1120 132 40 182 336 232 4 282 4 332 4 382 0
33 4 83 0 133 0 183 544 233 0 283 0 333 40 383 0
34 0 84 1336 134 0 184 4 234 9112 284 4 334 0 384 40
35 0 85 0 135 364 185 0 235 0 285 4 335 0 385 0
36 364 86 0 136 4 186 4 236 4 286 112 336 1336 386 64
37 0 87 4 137 0 187 0 237 4 287 72 337 0 387 40
38 0 88 4 138 4 188 4 238 0 288 364 338 112 388 4
39 40 89 0 139 0 189 364 239 0 289 0 339 4 389 0
40 52 90 1336 140 164 190 16 240 9112 290 16 340 20 390 1156
41 72 91 36 141 4 191 0 241 0 291 4 341 0
42 4 92 4 142 0 192 40 242 9760 292 100 342 40
43 0 93 4 143 4 193 16 243 29524 293 0 343 0
44 4 94 0 144 364 194 0 244 10084 294 4 344 4
45 40 95 0 145 0 195 40 245 0 295 0 345 4
46 0 96 40 146 96 196 148 246 10084 296 4 346 0
47 0 97 0 147 4 197 0 247 4 297 364 347 0
48 40 98 0 148 4 198 40 248 4 298 0 348 40
49 0 99 40 149 0 199 0 249 4 299 4 349 0
50 16 100 20 150 148 200 52 250 16 300 184 350 16

Table 3: deg gcd(BnP , BnQ) for all n up to 390 for P = (1, T + 2) and Q =

(T
2+T+1
(T+1)2

, 2T
4+2T+1
(T+1)3

) on E : y2 = x3 + T 2X + T in characteristic 3.
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n deg n deg n deg n deg n deg n deg
1 0 35 204 69 793 103 1768 137 3128 171 4873
2 0 36 175 70 816 104 1802 138 3169 172 4930
3 1 37 228 71 840 105 1837 139 3220 173 4988
4 2 38 240 72 823 106 1872 140 3266 174 5041
5 4 39 253 73 888 107 1908 141 3313 175 5104
6 1 40 266 74 912 108 1579 142 3360 176 5162
7 8 41 280 75 937 109 1980 143 3408 177 5221
8 10 42 289 76 962 110 2016 144 3415 178 5280
9 13 43 308 77 988 111 2053 145 3504 179 5340

10 16 44 322 78 1009 112 2090 146 3552 180 5359
11 20 45 337 79 1040 113 2128 147 3601 181 5460
12 19 46 352 80 1066 114 2161 148 3650 182 5520
13 28 47 368 81 1093 115 2204 149 3700 183 5581
14 32 48 379 82 1120 116 2242 150 3745 184 5642
15 37 49 400 83 1148 117 2281 151 3800 185 5704
16 42 50 416 84 1171 118 2320 152 3850 186 5761
17 48 51 433 85 1204 119 2360 153 3901 187 5828
18 13 52 450 86 1232 120 2395 154 3952 188 5890
19 60 53 468 87 1261 121 2440 155 4004 189 5953
20 66 54 121 88 1290 122 2480 156 4051 190 6016
21 73 55 504 89 1320 123 2521 157 4108 191 6080
22 80 56 522 90 1309 124 2562 158 4160 192 6139
23 88 57 541 91 1380 125 2604 159 4213 193 6208
24 91 58 560 92 1410 126 2605 160 4266 194 6272
25 104 59 580 93 1441 127 2688 161 4320 195 6337
26 112 60 595 94 1472 128 2730 162 1093 196 6402
27 121 61 620 95 1504 129 2773 163 4428 197 6468
28 130 62 640 96 1531 130 2816 164 4482 198 6493
29 140 63 661 97 1568 131 2860 165 4537 199 6600
30 145 64 682 98 1600 132 2899 166 4592 200 6666
31 160 65 704 99 1633 133 2948 167 4648 201 6733
32 170 66 721 100 1666 134 2992 168 4699
33 181 67 748 101 1700 135 3037 169 4760
34 192 68 770 102 1729 136 3082 170 4816

Table 4: deg gcd(BnP , BnQ) for all n up to 201 for the dependent points P = (T, 1)
on E1 : y2 = x3 − T 2x + 1 and Q = (T, T ) on E4 : y2 = x3 − T 2x + T 2 in
characteristic 3.
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n deg n deg n deg n deg n deg n deg n deg n deg
1 0 69 4 137 0 205 32 273 220 341 0 409 0 477 40
2 0 70 16 138 4 206 0 274 0 342 40 410 380 478 0
3 4 71 0 139 0 207 40 275 0 343 0 411 4 479 0
4 2 72 202 140 52 208 38 276 22 344 2 412 2 480 2110
5 0 73 0 141 4 209 0 277 0 345 4 413 0 481 0
6 4 74 0 142 0 210 152 278 0 346 0 414 40 482 0
7 0 75 4 143 0 211 0 279 40 347 0 415 0 483 4
8 2 76 2 144 202 212 2 280 68 348 22 416 38 484 2322
9 40 77 0 145 0 213 4 281 0 349 0 417 4 485 0

10 4 78 328 146 24 214 0 282 4 350 16 418 0 486 29524
11 0 79 0 147 4 215 0 283 0 351 364 419 0 487 0
12 22 80 234 148 2 216 1822 284 2 352 2 420 476 488 2522
13 0 81 3280 149 0 217 0 285 4 353 0 421 0 489 4
14 12 82 248 150 40 218 0 286 36 354 4 422 0 490 16
15 4 83 0 151 0 219 4 287 32 355 0 423 40 491 0
16 2 84 404 152 2 220 10 288 202 356 2 424 2 492 2254
17 0 85 0 153 40 221 0 289 0 357 4 425 0 493 0
18 40 86 0 154 12 222 4 290 4 358 0 426 4 494 36
19 0 87 4 155 0 223 0 291 4 359 0 427 20 495 40
20 10 88 2 156 346 224 44 292 26 360 2146 428 2 496 2
21 4 89 0 157 0 225 40 293 0 361 0 429 4 497 0
22 0 90 364 158 0 226 0 294 116 362 0 430 4 498 4
23 0 91 24 159 4 227 0 295 0 363 2164 431 0 499 0
24 22 92 2 160 234 228 22 296 2 364 2660 432 1822 500 10
25 0 93 4 161 0 229 0 297 364 365 3012 433 0 501 4
26 36 94 0 162 3280 230 4 298 0 366 3244 434 12 502 0
27 364 95 0 163 0 231 4 299 0 367 0 435 4 503 0
28 44 96 22 164 250 232 2 300 94 368 2 436 2 504 3644
29 0 97 0 165 4 233 0 301 0 369 2632 437 0 505 0
30 40 98 12 166 0 234 2956 302 0 370 4 438 220 506 0
31 0 99 40 167 0 235 0 303 4 371 0 439 0 507 4
32 2 100 10 168 404 236 2 304 2 372 22 440 26 508 2
33 4 101 0 169 0 237 4 305 20 373 0 441 40 509 0
34 0 102 4 170 4 238 12 306 40 374 0 442 36 510 40
35 0 103 0 171 40 239 0 307 0 375 4 443 0 511 0
36 202 104 38 172 2 240 2110 308 44 376 2 444 22 512 2
37 0 105 4 173 0 241 0 309 4 377 0 445 0 513 364
38 0 106 0 174 4 242 2320 310 4 378 9476 446 0 514 0
39 4 107 0 175 0 243 29524 311 0 379 0 447 4 515 0
40 26 108 1822 176 2 244 2522 312 346 380 10 448 44 516 22
41 32 109 0 177 4 245 0 313 0 381 4 449 0 517 0
42 116 110 4 178 0 246 2236 314 0 382 0 450 364 518 60
43 0 111 4 179 0 247 0 315 40 383 0 451 32 519 4
44 2 112 44 180 850 248 2 316 2 384 22 452 2 520 66
45 40 113 0 181 0 249 4 317 0 385 0 453 4 521 0
46 0 114 4 182 348 250 4 318 4 386 32 454 0 522 40
47 0 115 0 183 184 251 0 319 0 387 40 455 32 523 0
48 22 116 2 184 2 252 3644 320 234 388 2 456 22 524 2
49 0 117 40 185 0 253 0 321 4 389 0 457 0 525 4
50 4 118 0 186 4 254 0 322 12 390 400 458 0 526 0
51 4 119 0 187 0 255 4 323 0 391 0 459 364 527 0
52 38 120 238 188 2 256 2 324 16402 392 44 460 10 528 22
53 0 121 240 189 364 257 0 325 0 393 4 461 0 529 0
54 364 122 360 190 4 258 4 326 0 394 0 462 116 530 4
55 0 123 292 191 0 259 0 327 4 395 0 463 0 531 40
56 44 124 2 192 22 260 50 328 306 396 202 464 2 532 86
57 4 125 0 193 16 261 40 329 0 397 0 465 4 533 32
58 0 126 1052 194 0 262 0 330 40 398 0 466 0 534 4
59 0 127 0 195 4 263 0 331 0 399 58 467 0 535 0
60 94 128 2 196 44 264 22 332 2 400 234 468 3118 536 2
61 20 129 4 197 0 265 0 333 40 401 0 469 0 537 4
62 0 130 44 198 40 266 18 334 0 402 4 470 4 538 0
63 40 131 0 199 0 267 4 335 0 403 0 471 4 539 0
64 2 132 22 200 26 268 2 336 404 404 2 472 2 540 7654
65 0 133 6 201 4 269 0 337 0 405 3280 473 0 541 0
66 4 134 0 202 0 270 3280 338 36 406 12 474 4 542 0
67 0 135 364 203 0 271 0 339 4 407 0 475 0 543 4
68 2 136 2 204 22 272 2 340 10 408 22 476 44 544 2

Table 5: deg gcd(BnP , BnQ) for all n up to 544 for P = (T, 1) on E1 : y2 =
x3 − T 2x + 1 and Q = (1 − T 2, 1 − T 2) on E2 : y2 = x3 − T 2(T 2 − 1)x in
characteristic 3.
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n deg n deg n deg n deg n deg n deg n deg n deg
1 0 69 0 137 0 205 20 273 4 341 0 409 0 477 0
2 0 70 14 138 4 206 0 274 0 342 40 410 140 478 0
3 0 71 0 139 0 207 0 275 4 343 0 411 0 479 0
4 0 72 40 140 34 208 0 276 4 344 0 412 0 480 472
5 4 73 0 141 0 209 0 277 0 345 36 413 0 481 6
6 4 74 6 142 0 210 134 278 0 346 0 414 40 482 0
7 0 75 36 143 0 211 0 279 0 347 0 415 4 483 4
8 0 76 6 144 40 212 0 280 34 348 4 416 0 484 800
9 0 77 0 145 4 213 0 281 0 349 0 417 0 485 4

10 4 78 4 146 12 214 0 282 4 350 14 418 0 486 29524
11 0 79 0 147 4 215 4 283 0 351 0 419 0 487 0
12 4 80 52 148 6 216 364 284 0 352 0 420 314 488 880
13 0 81 0 149 0 217 10 285 36 353 0 421 0 489 0
14 6 82 120 150 40 218 0 286 0 354 4 422 0 490 14
15 36 83 0 151 0 219 0 287 8 355 4 423 0 491 0
16 0 84 242 152 6 220 4 288 40 356 0 424 0 492 1084
17 0 85 4 153 0 221 0 289 0 357 4 425 4 493 0
18 40 86 0 154 6 222 58 290 4 358 0 426 4 494 0
19 0 87 0 155 4 223 0 291 0 359 0 427 0 495 324
20 4 88 0 156 4 224 26 292 12 360 364 428 0 496 0
21 4 89 0 157 0 225 324 293 0 361 0 429 0 497 0
22 0 90 364 158 0 226 0 294 62 362 0 430 4 498 4
23 0 91 0 159 0 227 0 295 4 363 0 431 0 499 0
24 4 92 0 160 52 228 58 296 6 364 314 432 364 500 4
25 4 93 0 161 0 229 0 297 0 365 580 433 0 501 0
26 0 94 0 162 3280 230 4 298 0 366 1354 434 16 502 0
27 0 95 4 163 0 231 4 299 0 367 0 435 36 503 0
28 26 96 4 164 120 232 0 300 40 368 0 436 0 504 2186
29 0 97 0 165 36 233 0 301 0 369 648 437 0 505 4
30 40 98 6 166 0 234 40 302 0 370 10 438 112 506 0
31 0 99 0 167 0 235 4 303 0 371 0 439 0 507 0
32 0 100 4 168 242 236 0 304 6 372 4 440 4 508 0
33 0 101 0 169 0 237 0 305 4 373 0 441 40 509 0
34 0 102 4 170 4 238 6 306 40 374 0 442 0 510 40
35 4 103 0 171 0 239 0 307 0 375 36 443 0 511 0
36 40 104 0 172 0 240 472 308 26 376 0 444 58 512 0
37 6 105 40 173 0 241 0 309 0 377 0 445 4 513 0
38 0 106 0 174 4 242 800 310 4 378 5102 446 0 514 0
39 0 107 0 175 4 243 0 311 0 379 0 447 0 515 4
40 4 108 364 176 0 244 880 312 4 380 10 448 26 516 4
41 8 109 0 177 0 245 4 313 0 381 0 449 0 517 0
42 62 110 4 178 0 246 1084 314 0 382 0 450 364 518 30
43 0 111 54 179 0 247 0 315 364 383 0 451 8 519 0
44 0 112 26 180 364 248 0 316 0 384 4 452 0 520 8
45 324 113 0 181 0 249 0 317 0 385 4 453 0 521 0
46 0 114 4 182 54 250 4 318 4 386 0 454 0 522 40
47 0 115 4 183 0 251 0 319 0 387 0 455 4 523 0
48 4 116 0 184 0 252 2186 320 52 388 0 456 58 524 0
49 0 117 0 185 10 253 0 321 0 389 0 457 0 525 40
50 4 118 0 186 4 254 0 322 6 390 76 458 0 526 0
51 0 119 0 187 0 255 36 323 0 391 0 459 0 527 0
52 0 120 40 188 0 256 0 324 3280 392 26 460 4 528 4
53 0 121 0 189 364 257 0 325 4 393 0 461 0 529 0
54 364 122 150 190 4 258 4 326 0 394 0 462 62 530 4
55 4 123 72 191 0 259 6 327 0 395 4 463 0 531 0
56 26 124 0 192 4 260 8 328 128 396 40 464 0 532 32
57 0 125 4 193 0 261 0 329 0 397 0 465 36 533 8
58 0 126 566 194 0 262 0 330 40 398 0 466 0 534 4
59 0 127 0 195 36 263 0 331 0 399 4 467 0 535 4
60 40 128 0 196 26 264 4 332 0 400 52 468 40 536 0
61 0 129 0 197 0 265 4 333 486 401 0 469 0 537 0
62 0 130 8 198 40 266 6 334 0 402 4 470 4 538 0
63 40 131 0 199 0 267 0 335 4 403 0 471 0 539 0
64 0 132 4 200 4 268 0 336 242 404 0 472 0 540 3280
65 4 133 0 201 0 269 0 337 0 405 26244 473 0
66 4 134 0 202 0 270 3280 338 0 406 6 474 4
67 0 135 2916 203 0 271 20 339 0 407 6 475 4
68 0 136 0 204 4 272 16 340 4 408 4 476 26

Table 6: deg gcd(BnP , BnQ) for all n up to 540 for P = (T, 1) on E1 : y2 =
x3−T 2x+ 1 and Q = (0, T ) on E3 : y2 = x3− (T 2− 1)x+T 2 in characteristic 3.
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n deg n deg n deg n deg n deg n deg n deg n deg n deg n deg
1 0 80 0 159 1 238 4 317 0 396 21 475 0 554 0 633 1 712 0
2 0 81 27 160 0 239 0 318 1 397 0 476 8 555 1 634 0 713 0
3 1 82 0 161 0 240 7 319 2 398 0 477 3 556 0 635 0 714 19
4 0 83 0 162 27 241 0 320 0 399 1 478 0 557 0 636 1 715 2
5 0 84 13 163 0 242 2 321 1 400 0 479 0 558 3 637 0 716 0
6 1 85 0 164 0 243 81 322 0 401 0 480 7 559 0 638 2 717 1
7 0 86 0 165 7 244 0 323 0 402 1 481 0 560 4 639 3 718 0
8 0 87 1 166 0 245 0 324 27 403 0 482 0 561 7 640 0 719 0
9 3 88 2 167 0 246 1 325 0 404 0 483 1 562 0 641 0 720 29

10 0 89 0 168 13 247 0 326 0 405 27 484 2 563 0 642 1 721 0
11 2 90 23 169 0 248 0 327 1 406 0 485 0 564 1 643 0 722 6
12 1 91 0 170 4 249 1 328 0 407 2 486 81 565 0 644 4 723 1
13 0 92 0 171 3 250 0 329 0 408 13 487 0 566 0 645 1 724 0
14 0 93 1 172 0 251 0 330 13 409 0 488 0 567 27 646 4 725 0
15 1 94 0 173 0 252 39 331 0 410 0 489 1 568 0 647 0 726 7
16 0 95 0 174 1 253 2 332 0 411 1 490 0 569 0 648 81 727 0
17 0 96 1 175 0 254 0 333 3 412 0 491 0 570 7 649 2 728 4
18 3 97 0 176 2 255 1 334 0 413 0 492 1 571 0 650 0 729 243
19 0 98 0 177 1 256 0 335 0 414 3 493 0 572 2 651 1 730 0
20 0 99 21 178 0 257 0 336 13 415 0 494 0 573 1 652 0 731 0
21 1 100 0 179 0 258 1 337 0 416 0 495 21 574 0 653 0 732 1
22 2 101 0 180 23 259 0 338 0 417 1 496 0 575 0 654 1 733 0
23 0 102 13 181 0 260 10 339 1 418 2 497 0 576 9 655 0 734 0
24 1 103 0 182 0 261 3 340 4 419 0 498 1 577 0 656 0 735 1
25 0 104 0 183 1 262 0 341 2 420 19 499 0 578 4 657 3 736 6
26 0 105 1 184 6 263 0 342 9 421 0 500 0 579 1 658 0 737 2
27 9 106 0 185 0 264 7 343 0 422 0 501 1 580 0 659 0 738 3
28 4 107 0 186 1 265 0 344 0 423 3 502 0 581 0 660 13 739 0
29 0 108 9 187 2 266 0 345 1 424 0 503 0 582 1 661 0 740 0
30 7 109 0 188 0 267 1 346 0 425 0 504 45 583 2 662 0 741 1
31 0 110 2 189 9 268 0 347 0 426 1 505 0 584 0 663 1 742 0
32 0 111 1 190 0 269 0 348 1 427 0 506 2 585 13 664 0 743 0
33 7 112 4 191 0 270 71 349 0 428 0 507 1 586 0 665 0 744 1
34 4 113 0 192 1 271 0 350 0 429 7 508 0 587 0 666 3 745 0
35 0 114 1 193 0 272 4 351 9 430 0 509 0 588 43 667 0 746 0
36 3 115 0 194 0 273 1 352 2 431 0 510 19 589 0 668 0 747 3
37 0 116 0 195 1 274 0 353 0 432 27 511 0 590 0 669 1 748 6
38 0 117 3 196 14 275 2 354 1 433 0 512 0 591 1 670 0 749 0
39 1 118 0 197 0 276 1 355 0 434 0 513 9 592 0 671 2 750 7
40 0 119 0 198 21 277 0 356 0 435 1 514 0 593 0 672 13 751 0
41 0 120 7 199 0 278 0 357 1 436 0 515 0 594 63 673 0 752 0
42 1 121 2 200 0 279 3 358 0 437 0 516 1 595 0 674 0 753 1
43 0 122 0 201 1 280 4 359 0 438 1 517 2 596 0 675 9 754 0
44 2 123 1 202 0 281 0 360 29 439 0 518 0 597 1 676 0 755 0
45 3 124 0 203 0 282 1 361 6 440 2 519 1 598 0 677 0 756 117
46 0 125 0 204 13 283 0 362 0 441 3 520 10 599 0 678 1 757 0
47 0 126 3 205 0 284 0 363 7 442 4 521 0 600 7 679 0 758 0
48 1 127 0 206 0 285 1 364 4 443 0 522 3 601 0 680 4 759 7
49 0 128 0 207 3 286 2 365 0 444 1 523 0 602 0 681 1 760 0
50 0 129 1 208 0 287 0 366 1 445 0 524 0 603 3 682 2 761 0
51 1 130 0 209 2 288 9 367 0 446 0 525 1 604 0 683 0 762 1
52 0 131 0 210 7 289 0 368 6 447 1 526 0 605 2 684 9 763 0
53 0 132 7 211 0 290 0 369 3 448 4 527 0 606 1 685 0 764 0
54 9 133 0 212 0 291 1 370 0 449 0 528 7 607 0 686 0 765 3
55 2 134 0 213 1 292 0 371 0 450 23 529 0 608 0 687 1 766 0
56 4 135 9 214 0 293 0 372 1 451 2 530 0 609 1 688 0 767 0
57 1 136 4 215 0 294 1 373 0 452 0 531 3 610 0 689 0 768 1
58 0 137 0 216 27 295 0 374 6 453 1 532 4 611 0 690 7 769 0
59 0 138 1 217 0 296 0 375 1 454 0 533 0 612 39 691 0 770 2
60 7 139 0 218 0 297 63 376 0 455 0 534 1 613 0 692 0 771 1
61 0 140 4 219 1 298 0 377 0 456 7 535 0 614 0 693 21 772 0
62 0 141 1 220 2 299 0 378 9 457 0 536 0 615 1 694 0 773 0
63 3 142 0 221 0 300 7 379 0 458 0 537 1 616 6 695 0 774 3
64 0 143 2 222 1 301 0 380 0 459 9 538 0 617 0 696 1 775 0
65 0 144 9 223 0 302 0 381 1 460 0 539 2 618 1 697 0 776 0
66 7 145 0 224 4 303 1 382 0 461 0 540 71 619 0 698 6 777 1
67 0 146 0 225 3 304 0 383 0 462 7 541 0 620 0 699 1 778 0
68 4 147 1 226 0 305 0 384 1 463 0 542 0 621 9 700 4 779 0
69 1 148 0 227 0 306 39 385 2 464 0 543 1 622 0 701 0 780 37
70 0 149 0 228 1 307 0 386 0 465 1 544 4 623 0 702 9 781 2
71 0 150 7 229 0 308 6 387 3 466 0 545 0 624 1 703 0 782 4
72 9 151 0 230 0 309 1 388 0 467 0 546 7 625 0 704 2 783 9
73 0 152 0 231 7 310 0 389 0 468 3 547 0 626 0 705 1 784 14
74 0 153 3 232 0 311 0 390 7 469 0 548 0 627 7 706 0 785 0
75 1 154 2 233 0 312 1 391 0 470 0 549 3 628 0 707 0
76 0 155 0 234 3 313 0 392 14 471 1 550 2 629 0 708 1
77 2 156 1 235 0 314 0 393 1 472 0 551 0 630 23 709 0
78 1 157 0 236 0 315 3 394 0 473 2 552 19 631 0 710 0
79 0 158 0 237 1 316 0 395 0 474 1 553 0 632 0 711 3

Table 7: deg gcd(BnP , BnQ) for all n up to 785 for P = (1, T+1) on E : y2 = x3+
(T+1)x2+(T 2+T+2) andQ = (1, T+2) on E′ : y2 = x3+(2T+1)x2+(T 2+2T+2)
in characteristic 3.

95



n deg n deg n deg n deg n deg n deg n deg n deg
1 0 66 4 131 0 196 6 261 2 326 8 391 0 456 10
2 0 67 6 132 4 197 0 262 0 327 0 392 20 457 0
3 0 68 0 133 6 198 16 263 0 328 2 393 0 458 0
4 0 69 0 134 26 199 0 264 42 329 0 394 12 459 10
5 0 70 2 135 12 200 54 265 0 330 34 395 0 460 0
6 0 71 0 136 2 201 6 266 6 331 16 396 28 461 0
7 0 72 6 137 0 202 0 267 0 332 0 397 0 462 4
8 2 73 0 138 18 203 0 268 26 333 2 398 0 463 0
9 2 74 0 139 6 204 12 269 0 334 0 399 6 464 2

10 0 75 16 140 32 205 0 270 46 335 30 400 54 465 2
11 0 76 0 141 0 206 0 271 0 336 28 401 0 466 0
12 0 77 0 142 0 207 2 272 2 337 0 402 26 467 0
13 0 78 0 143 6 208 2 273 0 338 0 403 0 468 2
14 0 79 0 144 12 209 0 274 0 339 0 404 0 469 6
15 2 80 10 145 0 210 8 275 4 340 0 405 12 470 0
16 2 81 2 146 0 211 0 276 18 341 0 406 0 471 0
17 0 82 0 147 6 212 0 277 0 342 8 407 0 472 2
18 2 83 0 148 0 213 0 278 6 343 0 408 16 473 0
19 0 84 6 149 0 214 0 279 2 344 2 409 0 474 0
20 0 85 0 150 36 215 0 280 42 345 2 410 0 475 4
21 0 86 0 151 0 216 18 281 0 346 0 411 0 476 20
22 4 87 0 152 2 217 0 282 0 347 0 412 0 477 2
23 0 88 6 153 10 218 0 283 0 348 0 413 0 478 0
24 4 89 0 154 4 219 8 284 0 349 0 414 20 479 0
25 4 90 16 155 0 220 28 285 2 350 14 415 0 480 122
26 0 91 0 156 0 221 0 286 10 351 8 416 12 481 0
27 2 92 0 157 0 222 0 287 0 352 16 417 6 482 0
28 6 93 0 158 0 223 0 288 22 353 0 418 4 483 0
29 0 94 0 159 0 224 24 289 0 354 0 419 0 484 4
30 6 95 0 160 68 225 66 290 0 355 0 420 46 485 0
31 0 96 20 161 0 226 0 291 0 356 0 421 0 486 8
32 12 97 0 162 8 227 0 292 0 357 22 422 0 487 0
33 0 98 0 163 0 228 6 293 0 358 0 423 2 488 10
34 0 99 2 164 0 229 0 294 6 359 0 424 2 489 0
35 2 100 4 165 2 230 0 295 0 360 44 425 4 490 2
36 2 101 0 166 0 231 0 296 10 361 0 426 0 491 0
37 0 102 12 167 0 232 2 297 2 362 0 427 0 492 6
38 0 103 0 168 18 233 0 298 0 363 0 428 0 493 0
39 0 104 2 169 0 234 2 299 0 364 6 429 6 494 0
40 10 105 4 170 0 235 0 300 76 365 0 430 0 495 12
41 0 106 0 171 2 236 0 301 0 366 8 431 0 496 22
42 0 107 0 172 0 237 0 302 0 367 0 432 24 497 0
43 0 108 14 173 0 238 14 303 0 368 2 433 0 498 0
44 4 109 0 174 0 239 0 304 2 369 8 434 6 499 0
45 12 110 28 175 14 240 64 305 0 370 0 435 14 500 28
46 0 111 0 176 6 241 0 306 22 371 0 436 0 501 0
47 0 112 8 177 0 242 4 307 0 372 20 437 12 502 0
48 10 113 0 178 0 243 2 308 10 373 0 438 8 503 0
49 0 114 6 179 0 244 8 309 0 374 4 439 0 504 20
50 4 115 0 180 24 245 2 310 46 375 90 440 38 505 0
51 8 116 0 181 0 246 6 311 0 376 2 441 8 506 4
52 0 117 2 182 0 247 0 312 4 377 0 442 0 507 0
53 0 118 0 183 0 248 22 313 0 378 8 443 0 508 10
54 8 119 14 184 2 249 0 314 0 379 0 444 0 509 0
55 0 120 34 185 0 250 28 315 30 380 0 445 0 510 66
56 8 121 0 186 6 251 0 316 8 381 0 446 0 511 0
57 0 122 8 187 0 252 8 317 0 382 0 447 0
58 0 123 6 188 0 253 0 318 0 383 0 448 30
59 0 124 20 189 2 254 0 319 0 384 26 449 0
60 14 125 28 190 0 255 42 320 114 385 2 450 86
61 0 126 2 191 0 256 18 321 8 386 0 451 0
62 6 127 0 192 26 257 0 322 0 387 14 452 0
63 2 128 18 193 0 258 12 323 0 388 10 453 0
64 18 129 12 194 0 259 0 324 14 389 0 454 0
65 0 130 8 195 8 260 8 325 12 390 20 455 2

Table 8: deg gcd(BnP , BnQ) for all n up to 511 for P = (1, 1) and Q = (T, T ) on
E4 : y2 = x3 − T 2x+ T 2 in characteristic 5.
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