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Summary 
 
The INTEGRATOR model (Integrated Nitrogen Tool across Europe for GReen 

House Gas and Ammonia Targeted to Operational Responses) is a GIS-based, multi-
component tool developed to assess the impacts of European-scale changes in land-
use, land-management and climate on N fluxes and Green House Gases (GHG). The 
inputs used in INTEGRATOR are detailed GIS data describing environmental factors 
related to N and GHG such as land cover, climate, soil type and soil properties and 
also farming and agricultural applications. These inputs, due to their limited 
observations, contain always uncertainty. The objective of this research was to 
analyse how uncertainties in model inputs propagate to NH3, N2O, NOx, CH4 
emissions, and N leaching into surface- and groundwater  estimated by 
INTEGRATOR. The research was limited to agricultural areas in Europe. 
Uncertainties in categorical inputs, such as land cover and soil type were not included 
in the analysis. In total 56 Agricultural Parameters (APs) were considered as model 
inputs concerning:(i) soil properties, (ii) model parameters affecting N inputs to the 
system, i.e. N fixation, N deposition, N manure input and N fertilizer and (iii) model 
parameters affecting N and CH4 fluxes to and from agricultural systems. These APs 
were divided into four groups according to the four spatial-scale levels of 
INTEGRATOR in order of increasing size: NitroEurope Computational Units (NCU), 
EU territorial units (NUTS2/3), EU member states (CNTRY) and EU-25 (EUROPE). 
The uncertainty in the APs was expressed by defining their probability distribution 
functions (pdfs) and taking into account their spatial- and cross-correlations. 
Additionally, three uncertainty scenarios (Optimistic, Reference, and Pessimistic) 
were incorporated in the research to investigate the robustness of the uncertainty 
analysis. The outputs were produced at Country and European level for the year 2000, 
and the propagated uncertainty in them was quantified by applying the Monte Carlo 
simulation to the model. Results of this research indicate that: (i) when using the 
Reference scenario, the output uncertainty, expressed as Coefficient of Variation 
(CV), varies from 10-34% for outputs at European level and from 11-92% for outputs 
at Country level  (ii) the uncertainty increased going from CH4 and NH3 emissions to 
N2O emissions, to NOx emissions, to N leaching into surface- and groundwater (iii) 
the maximum value of CV for the Pessimistic scenario was 55% whereas it was only 
12 % for the Optimistic scenario and (iv) the APs at NCU level had the largest 
contribution to the output uncertainty. In summary the results indicate that it is a quite 
robust statement to say that the uncertainty is less than 55% for all considered model 
outputs and is most likely in the range of 12-55%. 
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1. INTRODUCTION 

1.1 Context and background 

 It has been a few decades now since the issue of the greenhouse effect and its 
impact on climate change gained the attention of the international scientific 
community. Human-induced burning of fossil fuels and changes in land use patterns, 
at a broad scale, have resulted in increased annual emission rates of greenhouse gases 
(GHG) such as carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). This 
has led to an enhanced focus by international organizations with an attempt to achieve 
coordinated action on the global warming issue. In 1989 the Intergovernmental Panel 
on Climate Change (IPCC) was set up by the World Meteorological Organization 
(WMO) and the United Nations Environment Program (UNEP) to provide 
governments with broad and balanced information on the world’s climate. The 
scientific evidence brought up by the first IPCC Assessment Report of 1990 played a 
major role in the creation of the United Nations Framework Convention on Climate 
Change (UNFCCC) fifteen years ago (http://www.ipcc.ch/). The UNFCCC is the key 
international treaty which many countries have joined in order to face the 
consequences of climate change (http://www.ipcc.ch/). The Kyoto Protocol, which 
was adopted in 1997 and entered into force in 2005, is an addition to this treaty and 
has more powerful measures as it sets legally-binding targets for 37 industrialized 
countries and the European community. According to Article 7 of the Protocol all 
signatories are required to submit annual inventories of anthropogenic emissions by 
sources and removals by sinks of GHG and any steps taken to increase the accuracy of 
these inventories. 
 
The production of GHG is determined by processes that occur within the 

biogeochemical cycles of nitrogen (N) and carbon (C), the interactions between these 
cycles and the degree their equilibrium is perturbed by external factors. The N cycle is 
crucially important to all living organisms, ecosystem functioning and global change. 
Additionally it plays a key role in the global C cycle through the effects of primary 
production and decomposition, influences considerably the terrestrial and aquatic 
biodiversity, and has major impacts on N2O and CO2 fluxes and to a lower extent on 
CH4 fluxes from agricultural and natural areas. Besides the GHG fluxes, the increased 
use of N in European agriculture has raised the NH3 emissions which affect greatly 
the plants diversity due to exceedances of critical N loads. Elevated NH3 emissions 
lead also to bigger amounts of N leaching to groundwater and runoff to surface water 
with the related effects on the drinking water quality and the eutrophication of rivers, 
lakes, wetlands etc. (De Vries et al. 2011a). So it was a matter of major concern that 
the annual transfer of reactive Nitrogen (Nr which includes all N forms except N2, i.e. 
ammonia (NH3), ammonium (NH4

+), nitrate (NO3
-), nitrous oxide (N2O), nitrite 

(NO2), nitrogen oxides (NOx) was estimated to have more than doubled according to 
Vitousek et al.(1997) and Galloway et al. (2004). The C cycle comparatively was 
estimated to have been less than 10% disturbed by human activities (IPCC, 2001), but 
less attention had been paid recently to the quantification of the N cycle than the C 
cycle. According to Li et al. (2005) climate change approaches that can maximise CO2 
uptake may not necessarily optimize Net Greenhouse gas Exchange (NGE). 
Consequently, the need for an integrated assessment of NGE, rather than just of CO2, 
towards a future strategy development became finally apparent. In 2006 the integrated 
European Research Project NitroEurope (NEU, http://www.nitroeurope.eu/) was 

http://www.ipcc.ch/�
http://www.ipcc.ch/�
http://www.nitroeurope.eu/�
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initiated to deal with the prime issue of European N budgets in relation to C cycling 
and NGE. The NEU focuses on the integrated analysis in N fluxes and NGE at linked 
plot-, regional-, and European-scales while at the same time taking into account 
spatial interactions with other environmental issues such as the interactions with NH3 
emissions and NO3

- leaching/runoff which are considered indirect sources of N2O 
emissions under the IPCC methodology (De Vries et al. 2011c,d). 
 
The main question that NEU is addressing is: What is the effect of Nr supply on net 

GHG budgets for Europe? The objectives of the project are:  
 To build vigorous datasets of N fluxes and NGE in relation to C-N cycling of 

various ecosystems across Europe in order to investigate interactions and assess 
long-term changes; 

 To quantify the effects of past and present global changes in climate, atmospheric 
composition and land use on C-N cycling and NGE; 

 To simulate the observed fluxes of N and NGE, their synergies and their responses 
to global change decisions; 

 To quantify multiple N and C fluxes for contrasting European landscapes, including 
interactions between farm-scale management, atmospheric and water dispersion; 

 To scale up N and NGE fluxes for terrestrial ecosystems to regional and European 
levels by taking under consideration spatial variability; 

 To assess uncertainties in estimates by European models and combine them with 
independent measurement/inverse modelling approaches for verification of 
European N2O and CH4 inventories and refinement of IPCC approaches. 
 
The INTEGRATOR (Integrated Nitrogen Tool across Europe for GReen House Gas 

and Ammonia Targeted to Operational Responses) model was developed by 
Wageningen University and Research Centre to tackle the above objectives. 
INTEGRATOR is a GIS-based, multi-component modelling with an aim to assess: 
 Present N (NH3, NOx) and GHG (CO2, N2O, CH4) emissions and sinks from 

terrestrial systems with a special focus on agricultural systems; 
 C-N interactions between agricultural and non-agricultural systems; 
 Past and future N and GHG emissions and sinks in response to diverse scenarios 

which reflect past and present land cover and land management decisions and also 
policies and European Union (EU) directives that affect N emissions in interaction 
with GHG emissions and climate change (De Vries et al. 2011c). 
 
The inputs used in INTEGRATOR are detailed GIS data describing environmental 

factors such as climate, land use, soil type and soil properties as well as farming and 
agricultural management applications. The main concept for the simulation of the 
processes related to N and GHG emissions is based on: 
 The use of relatively transparent calculations from available simple models; 
 The inclusion of empirical model approaches with statistical relations between 

model outputs and environmental variables; 
 The focus on the derivation of high resolution spatially explicit input data (De Vries 

et al. 2011c).  
 
INTEGRATOR assesses N and GHG emissions by sources and removals by sinks, 

focusing on natural and in particular agricultural systems. However, the uncertainty in 
estimates of INTEGRATOR inputs such as various agricultural parameters (from now 
on referred to as APs), determining the emissions from these sources, is rather large 
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and mainly at local and national scale due to legislation or country-specific 
management (Oenema et al. 2007). The uncertainty though in model inputs 
propagates to model outputs and this is why uncertainty assessment is one of the main 
objectives of the project NEU project. 
 
Since uncertainty propagation analysis is an integral part of NEU modelling, all 

model developers have agreed to submit uncertainty reports next to the calculated 
emissions. The most common approach they use in order to analyse how uncertainty 
in model inputs propagates, through the model, to the outputs is the Monte Carlo 
simulation. The concept of this approach is to compute repeatedly multiple output 
realizations by running the model for samples of multiple input realizations which are 
randomly drawn from the probability distribution of each input (Van Oijen 2006). The 
multiple output realizations which are produced after the model has been run for all 
input realizations can be summarized statistically and in this way conclusions can be 
made about the uncertainty in N and GHG emissions. 

1.2 Problem definition 

As mentioned above, the inputs used in INTEGRATOR contain sources of 
uncertainty that propagate to the model outputs. According to Van Oijen 2006 the 
inputs are defined as all the information needed to run the model which is not 
incorporated in the model itself. These inputs can be of three types: 
1. initial values of state variables at the start of the simulation (e.g. the amount of N 

already stored in the soil); 
2. model parameters (e.g. emission fractions); 
3. environmental constants and variables (e.g. soil pH, soil type, precipitation, 

temperature etc.). 
 
None of these inputs are free or error. For example, emission fractions are mainly 

obtained by expert judgement or calibration due to lack of hard data. In addition, the 
model itself also contains errors, because a model is by definition a simplified 
representation of the reality based on many assumptions. Hence the model output 
uncertainty is caused by two main sources (Heuvelink et al. 2009): 
1.  the model input uncertainty; 
2.  the model structure uncertainty. 
 
Subsequently, the uncertainty assessment of the INTEGRATOR output can be 

achieved by quantifying the uncertainty in these two sources and analysing its 
propagation through the model. By this assessment the model can be further 
improved, the objectives of the NEU can be met and ultimately the GHG inventories 
according to Kyoto Protocol can be completed with their accuracy quantified. 
 
For this research though, only the model input uncertainty was considered, and from 

that source only model parameters (APs) that concerned agricultural areas were taken 
into account. For example, driving forces (e.g. animal numbers), emission fractions 
(e.g. NH3 from housing systems), soil properties (e.g C/N ratio) etc. Uncertainties in 
climatic variables and in categorical data such as land cover and soil type were not 
included in the analysis. 
 
Within the context of this research, the uncertainty was defined as the lack of 

knowledge about either the estimated value or the measurement error or the variability 
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of an AP. Uncertainties about variables are often expressed by characterising their 
probability distribution functions (pdfs). The most common distribution is the normal 
or Gaussian distribution which is specified by its two parameters: the mean (μ) and 
the variance (σ2). For uncertain variables, however, which are located within a given 
spatial unit and may be related with each other, their spatial- and/or cross-correlations 
must be taken into account as well. For example: (i) emission fractions of a plot, e.g. 
at location x1, may be related through natural processes with emission fractions at 
another plot, e.g. at location x2, within a given neighbourhood and thus covary as a 
result (i.e. spatial-correlation) and (ii) APs from different N sources, e.g. N excretion 
rates from cattle and N content in the grass, may covary as well (i.e. cross-
correlation). Therefore spatial- and cross-correlations had to be specified within the 
spatial aggregation levels distinguished in INTEGRATOR which are referring to the 
spatial extent of the areas under study. These levels are described below:  
a. the NCU level (NitroEurope Computational Unit) which is the smallest spatial unit 

and represents the local areas; 
b. the NUTS2/3 level (Nomenclature of Units for Territorial Statistics according to 

Eurostat) which consists of a number of NCUs and represents the regional areas;  
c. the Country level which consists of a number of NUTS regions and represents each 

EU country; 
d. the European level being the largest one. 
 
Truong (2009) used a statistical model to quantify the uncertainty in N2O emissions 

from agricultural areas, based on emission fractions which were treated as variable in 
space but it was assumed their spatial- and cross- correlations were ignored due to 
lack of data on them. This is not realistic though because if spatial- and cross-
correlation are not incorporated in the model, the uncertainty assigned independently 
to the NCU level will vanish completely when model outputs are up-scaled to the 
Country or European level (Kros et al. 2010). This will be explained in detail later on 
in this report.  
 
The problem addressed in this research was the uncertainty quantification of the 

following model outputs: NH3, N2O, NOx, CH4 emissions, and N leaching into 
surface- and groundwater released from agricultural areas. These outputs were 
estimated by INTEGRATOR: 
a. while the uncertainty in the APs was estimated by taking into account their spatial- 

and cross-correlation within the spatial aggregation levels defined by the model; 
b. for each individual EU country and for Europe as a whole. 

1.3 Research objective 

The general research objective was to analyse the propagation of the uncertainty in 
the APs to the INTEGRATOR output emissions of NH3, NOx, CH4, N2O, and N 
leaching into surface- and groundwater, at Country and European level, for the year 
2000. 

1.4 Research questions 

The research questions that were addressed during this study were the following: 
1. How can statistical models (joint pdfs) be built that fully characterize the 

uncertainty in the APs by taking into account their spatial- and cross-correlations? 
2. How can realizations of APs be sampled efficiently from their pdfs by using 

stochastic simulation techniques? 
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3. How can the Monte Carlo uncertainty propagation analysis be carried out in batch 
mode and its results be stored automatically? 

4. How can the results of the uncertainty propagation analysis be summarised and 
visualised and thus efficiently communicated to end-users across Europe? 

5. Which APs are the main uncertainty sources contributing to the total output 
uncertainty?  

1.5 Research limitations 

This research was based only on the quantification of the uncertainty only in the APs 
and not in any other variables. For example, uncertainties in climatic variables (e.g. 
precipitation, temperature etc.), in land cover/land management and soil type data 
were not considered. 

1.6 Structure of the report 

In addition to this Introduction Chapter, this report contains another four Chapters: 
 Chapter 2 is describing the steps of the Generic Methodology for Spatial Uncertainty 

Quantification (UQ) / Uncertainty Analysis (UA); 
 Chapter 3 is describing how the Generic Methodology for Spatial Uncertainty 

Quantification (UQ) / Uncertainty Analysis (UA) was applied to the INTEGRATOR 
model. In particular, explanation is given about the model, about the inputs and the 
outputs considered for this research, how the uncertainty in the inputs was 
represented, and how the Monte Carlo simulation was applied to the model; 

 Chapter 4 is presenting the Results of this research based on visualizations of 
calculated statistics on the uncertainty in the inputs and the outputs and Discussion 
about them is given as well; 

 Chapter 5 is providing the General Conclusions of the research, a summary of how 
the research questions were addressed and also Recommendations about further 
research steps. 
 
Appendices are also given at the end of the report containing some extra information 

and the developed R-scripts. 
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2. GENERIC METHODOLOGY FOR SPATIAL UNCERTAINTY 
QUANTIFICATION (UQ) / UNCERTAINTY ANALYSIS (UA) 

Within NitroEurope, Uncertainty Quantification (UQ) and Uncertainty Analysis 
(UA) are two important components of the operational methodology for regional scale 
modelling in order the net N and CHG exchange to be assessed. This methodology is 
described in Heuvelink et al. (2009). UQ and UA consider the case in which 
uncertainty in model inputs is analysed as to how it propagates to the output through 
the model. In particular, the purpose of UQ is to quantify the model output 
uncertainty, whereas the goal of an UA is to determine how much individual input 
uncertainties account for the overall output uncertainty. Depending on the available 
data, several representations of the uncertainty in model inputs can be used such as 
pdfs, ranked or unranked scenarios, rough stets or fuzzy sets. The pdfs though being 
rather more comprehensive are the most preferred representations. 

2.1 Monte Carlo simulation in spatial modelling 

The Monte Carlo (MC) simulation is a rather prevailed approach in spatial modelling 
for UQ/UA. The consecutive steps taken during the application of this approach are: 
1. By using stochastic simulation techniques, a sample drawn from the input’s pdf is 

generated consisting of multiple input simulations (realizations); 
2. The MC approach is applied to the model and it is run for each member of the 

sample; 
3. The produced multiple output simulations can be interpreted as a random sample of 

the output’s pdf. By obtaining parameters of this pdf, the level of the output 
uncertainty can be derived providing the drawn sample of input simulations is big 
enough to represent the input uncertainty (Van Oijen 2006). 

2.2 Selection of model outputs for which the uncertainty is quantified 

Most of the time models can have a large number of outputs and each of them may 
have a different level of uncertainty. Since UQ/UA is a procedure that focuses only on 
those sources that have the largest contribution to the output uncertainty, the targeted 
model outputs must be explicitly defined and this in turn will determine which 
uncertain sources affect these outputs and consequently must be considered in the 
analysis.  
 
The spatio-temporal support of the model output, which refers to the spatial area and 

temporal interval over which the variable is aggregated, must also be defined since 
both the magnitude of the output uncertainty and the degree the uncertain sources 
contribute to it depend generally on this support. Usually the generated input 
simulations at which the model calculations are implemented have a much smaller 
spatio-temporal support than the required output support. However, the simulations of 
the small support outputs, produced at the end of the model, can be easily aggregated 
to the larger support by simply computing the average of the small support values 
contained within the larger support. So the larger the size of the output support, the 
larger the number of the small supports it can contain and thus the smaller the 
magnitude of the estimated uncertainty. 

2.3 Selection of uncertainty sources included in the analysis 

Uncertainty in the model output, as it has been already mentioned, is caused by two 
uncertainty sources: a. the model input uncertainty and b. the model structure 
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uncertainty. Initially it is decided which of these sources is included in the UQ/UA 
and then they are ranked in order of treatment as it would be rather a complex process 
to address them both at once. So the most important source is considered first and 
once it is completed the second one is added. 

2.4 Selection of model inputs for which the uncertainty is analysed 

Models can have hundreds or thousand of inputs which need not be all treated as 
uncertain. Only the ones that contribute significantly to the model output uncertainty 
should be taken into account and this can be concluded by checking two factors: a. the 
sensitivity of the model to changes in inputs and b. the magnitude of uncertainty about 
the model input.  
 
 The above two factors can confirm model experts´ fair ideas concerning the most 

sensitive inputs of the model and also the difference between the true value of an 
input and its estimated value available in a database. By computing changes in model 
outputs caused by fixed changes in inputs (i.e. ± 10%) they can take final decisions 
about the sensitivity of the inputs. By using historical data on given regions and other 
additional information they can make assessments about the future values of inputs 
and their expected uncertainty.  

2.5 Uncertainty Quantification in model inputs 

Once it is decided which inputs are treated as uncertain, then their uncertainty must 
be quantified. First a distinction should be made between inputs depending on 
whether they are measured on a continuous numerical scale or a discrete numerical 
scale. Next, it is checked whether spatial-, temporal- and cross-correlations need to be 
considered as well, and finally one of the available methods to estimate pdfs´ 
parameters is decided upon. 
 
The method followed to quantify uncertainty in continuous numerical variables that 

are spatially- and cross-correlated (this is the case for the APs of this research) is 
described below: 
 Initially, the cumulative distribution function, F, of the variables is defined. An 

uncertain continuous numerical variable X, that varies in space, is characterised by 
its joint function F: 
 

)(()( nx)n x(s,.....,1x)1sXns,n x....,1s,1xX PF     (1) 
 
which describes the probability that X takes on values less than or equal to numbers 
x1, ..xn at multiple plots s1...sn ( n may be any integer value). F must be known for 
each and every combination of the xi and si. The probability density function of X, P 
is the first derivative of F and must be non-negative everywhere with a surface area 
below its curve being equal to one (Figure 1). 
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Figure 1. Example of a continuous probability density for soil organic matter 

content 
 
Equation 1 represents the general case, where the only restriction on F and P is that 
are valid functions. Practically these functions can be obtained through different kind 
of approaches but most of the time several assumptions and simplifications need to 
be made in order to get reliable estimates of their parameters. One of the 
assumptions rather imposed, for uncertain input variables that are spatially- and 
cross-correlated, is that they follow a normal distribution (see Figure 2) otherwise 
the UQ/UA would be too complex. Another assumption for input variables that are 
non-normally distributed (i.e. they have a form of skewness) is that some 
transformation of their values, such as the logarithm or the square root, are normally 
distributed and the uncertainty in these variables is defined in terms of their 
transformed values. Subsequently, the parameterization of the pdf of X (either the F 
or P) takes place through the normal distribution and X can be denoted as X ~ N (μ, 
σ2). The parameters of this pdf (i.e. mean (μ), variance (σ2), semivariogram and 
cross-variogram) are derived from literature, observations, or expert knowledge. 

 

 
Figure 2. Graphs of the cumulative distribution function F and the probability 

density function P, respectively, of a normal variable X 
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 The next step, after the joint pdfs for all inputs have been defined, is to generate 
samples of multiple input simulations drawn from these pdfs, by using pseudo-
random number generators which are incorporated in most statistical software tools 
and programming languages. When inputs are high-dimensional, the size of their 
sample must be very large as well in order to be representative across the whole 
range of allowable values for these inputs. One approach to calculate the required 
sample size of an input is, to check the cumulative frequency curves produced by the 
differences between its defined standard deviation (SD) and the SD calculated from 
a first batch of generated input simulations, for all multiple plots this input is linked 
to. If these differences are not normally distributed closely around 0 then the size of 
the sample should be increased, and the new cumulative frequency curves be 
checked again. This iteration can take place a few times until the above condition is 
met. Only then can the sample size be considered sufficient to represent the 
uncertain inputs in the UQ/UA process. 

2.6 Uncertainty Quantification in model outputs  

After the samples of the multiple input simulations are generated, then the MC 
method is applied to the model and it is run for each one of these input simulations. At 
the end of each MC run of the model, each required output simulation is produced and 
stored at the desired spatial and temporal support. These multiple output simulations 
form random samples from each output’s pdf. By applying statistical sampling theory, 
estimates of the parameters of these pdfs can be obtained and thus the uncertainty in 
model outputs be quantified. In Figure 3 it is demonstrated how uncertainty in 
INTEGRATOR outputs, e.g. Y1,…Yk, can be quantified through the generation of 
multiple simulations of the inputs, e.g. AP1, AP2,… APn.  
 

 
Figure 3. Workflow scheme for estimating uncertainty in INTEGRATOR outputs by 

applying Monte Carlo Simulation  
 
Before however the model is run, a few provisions should take place to make sure 

this demanding and time consuming step is properly implemented. First an assessment 
should be made about the computing time and the storage capacity required for the 
multiple runs of the model and its outputs respectively. If necessary, the computer 
recourses may be extended, but in cases this cannot be achieved then some alterations 
may be considered to reduce complexity. Another important factor to be considered is 
the streamline of the repeated running of the model which has to be set up in such a 
way that the amount of work is manageable. Additionally, the model should be run in 
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batch mode, and all inputs and outputs involved should be stored in an organised and 
transparent manner. The entire procedure can be checked before the full analysis takes 
place by running the model with a small subset of input simulations. 

2.7 Uncertainty Analysis  

The objective of UA is to determine the contribution of the individual sources of 
uncertainty to the overall output uncertainty. 
 
The simplest method to implement an UA is to apply the MC simulation again, but 

this time by considering uncertain only those inputs for which the contribution must 
be estimated. The rest of the inputs are assumed to be certain and fixed on their 
reference values. By computing the ratio of the variance estimated when only one 
input is made uncertain to the total variance estimated when all inputs are made 
uncertain, the relative uncertainty of each input can be derived. This approach though 
has some disadvantages since uncertainty is addressed based only on the inputs that 
are being checked while the rest of them having their fixed reference values and not 
necessarily true values, and also based on correlations between the uncertain and the 
fixed inputs being ignored. Nevertheless these disadvantages cannot be completely 
avoided, there are some techniques developed to tackle the problem more thoroughly 
and they can be found in Jansen et al. (1994), Saltelli et al. (2000), Crosetto and 
Tarantola (2001), and Jansen (2005). 

2.8 Communication of the UQ/UA results 

 The last step, after parameters of the output pdfs (e.g. mean, SD, CV, interquartile 
range, percentiles etc.) have been estimated, is the communication of these results to 
end-users and decision makers in an efficient and comprehensive way, so they can 
incorporate the information about uncertainty in their tasks (i.e. risk analysis). Several 
visualizations can be used to this end: box-plots, bar- or column charts, tables, 
graduated colour maps of uncertainty levels, maps of confidence limits, animations 
etc. Sufficient explanation about the meaning of these results is also required to help 
modellers assess the accuracy of the model and draw conclusions on how to enhance 
it. 
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3. APPLICATION OF THE GENERIC METHODOLOGY FOR 
SPATIAL UNCERTAINTY QUANTIFICATION / UNCERTAINTY 
ANALYSIS TO THE INTEGRATOR MODEL 

3.1 INTEGRATOR model 

INTEGRATOR is a dynamic model developed to assess the impacts of European-
scale changes in land-use, land-management and climate on N fluxes and GHG at a 
high spatial resolution, in the past and the future, focusing on annual changes in the 
period 1970-2030. It covers major ecosystems such as grassland, arable land, forest, 
heathlands and peat lands and it also incorporates interactions between agricultural 
and natural areas through the emissions of NH3 and NOx which account for the N 
deposition (De Vries et al. 2011c,d).  
 
INTEGRATOR consists of simplified process-oriented and empirical sub-models 

estimating N and GHG emissions. These sub-models are illustrated in Figure 4 and 
described below: 
a. The adapted MITERRA-Europe model estimating NH3, NOx, N2O and CH4 

emissions from housing and manure storage systems and also agricultural soils. 
b. Empirical models estimating NOx, N2O and CH4 emissions from natural areas. 
c. The YASSO soil model estimating CO2 emissions from agricultural and natural 

areas, in combination with EFISCEN for forest, MITERRA-Europe for agriculture 
and empirical relationships for peat lands. 

d. An emission-deposition matrix for NH3 and NOx estimating N deposition. 
 

 

 Figure 4. The INTEGRATOR model: its drivers, main modules and main outputs 
 (Source: De Vries  et al. 2011c,d) 
 
The above shown sub-models are modular and exchangeable and thus any model 

components could be simultaneously applied for uncertainty quantification. 
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Since for this research only the agricultural areas were considered, the only inputs, 

and sub-models of INTEGRATOR that were incorporated in the analysis were the 
ones illustrated in gold colour in Figure 4.  
 

The model outputs and their standard units are shown in Table 1. 
 

Table 1. Model outputs 
Flux Standard unit 1 
NH3 emission Kg NH3-N ha-1 yr-1 

N2O emission Kg N2O-N ha-1 yr-1 
NOx emission Kg NOx-N ha-1 yr-1 
N leaching into ground 
water (NleGW) 

Kg N ha-1 yr-1 

N leaching into surface 
water (NleSW) 

Kg N ha-1 yr-1 

CH4 emission Kg CH4 ha-1 yr-1 
1) Kg NH3-N ha-1 yr-1 means: the amount of N contained  

 in NH3 emissions, in Kg, per hectare, per year. 
 
The model inputs, determining the emission and leaching processes of these output 

fluxes, were the APs described in detail in Section 3.2. 
 
INTEGRATOR was applied for 25 (and not for 27) member countries of EU because 

for Malta and Cyprus there were no data available to be included in the analysis. The 
spatial support of the model was the NCU which is a spatially explicit unit consisting 
of clusters of 1 km2 grid cells. These clusters resulted from the combined partitioning 
of a number of input maps, based on the requirement of processes included in 
INTEGRATOR and their dependence on site and soil characteristics. So the NCUs 
consist of unique combinations of land use, soil type and agricultural structure 
(Truong, 2009). For EU-25 there were 35101 NCUs distinguished. The size of the 
NCUs was highly variable with a mean area of 163km2 and SD = 557km2 and this 
was because in flat areas with uniform soil type the NCUs were larger but in 
mountainous areas with variable soils they were much smaller. The implicit 
assumption of using the NCU as the spatial support for the application of UQ/UA was 
that the spatial variability within an NCU was not (explicitly) taken into account. For 
each NCU, averages of APs (see Section 3.3 for further details) were used which 
included spatial variability (Kros et. al. 2010). 
 
The model inputs were prepared as csv (Comma Separated Values) files where all 

the NCUs within EU-25 were assigned simulated values of APs via their NCU_ids. 
INTEGRATOR assessed every NCU, and model outputs were produced for every 
NCU as well. These outputs were finally aggregated (averaged) to: a. the Country 
level and b. the European level.  
 
The temporal support of the model inputs was referred to the year 2000. 

3.2 Defining the uncertain model inputs  

The APs that have been considered in the UQ/UA were delivered by the group of the 
INTEGRATOR developers. Uncertainty was limited to quantitative model inputs: (i) 
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soil properties, (ii) model parameters affecting N inputs to the system, i.e. N fixation, 
N deposition, N manure input and N fertilizer and (iii) model parameters affecting N 
and CH4 fluxes to and from agricultural systems.  
 
Although the spatial support of INTEGRATOR model was the NCU, not all 

parameters were available for each NCU within EU-25. Some parameters were linked 
to the NUTS level (e.g. N excretion rates), some to the Country level (e.g. animal 
numbers), in short CNTRY, and some others were linked to the European level (e.g. 
N fertilizer distribution). The latter were called GENERIC parameters, in short GEN. 
There were 56 APs selected and they are provided in Table 2 along with their codes, 
the spatial levels they were linked to and the output fluxes they affect. 
 

Table 2. Model inputs 
Nr Agricultural Parameters (APs) Code Level Affected  fluxes

 
Livestock excretion and emission 
data 

   

1 Animal numbers, dairy cattle aninr_ca CNTRY 
NH3, N2O, NOx, 
NleSW, 
NleGW, CH4  

2 Animal numbers, other cattle aninr_oc CNTRY 
NH3, N2O, NOx, 
NleSW, 
NleGW, CH4 

3 Animal numbers, pigs and poultry aninr_pp CNTRY 
NH3, N2O, NOx, 
NleSW, 
NleGW, CH4 

4 Animal numbers, other animals aninr_po CNTRY 
NH3, N2O, NOx, 
NleSW, 
NleGW, CH4 

5 N excretion rates, dairy cattle Nexf_ca NUTS 
NH3, N2O, NOx, 
NleSW, NleGW 

6 N excretion rates, other cattle Nexf_oc NUTS 
NH3, N2O, NOx, 
NleSW, NleGW 

7 N excretion rates, pigs and poultry Nexf_pp NUTS 
NH3, N2O, NOx, 
NleSW, NleGW 

8 
N excretion rates other animals 
(horses, sheep and goats and other 
animals) 

Nexf_po NUTS 
NH3, N2O, NOx, 
NleSW, NleGW 

9 C/N ratios manure Cnam NUTS 
NH3, N2O, NOx, 
NleSW, NleGW 

10 
Availability fraction of N 
deposition compared to N fertilizer 
(-) 

f_Nav_dep GEN 
NH3,  NleSW, 
NleGW 

11 

Availability fraction of organic N 
in animal manure (either applied or 
excreted by grazing) in crop 
residues and from soil mineralized 
N compared to N fertilizer (-) for 
arable land and grassland 

f_Nav_om GEN 
NH3,  NleSW, 
NleGW 

12 Housing fractions, dairy cattle fhs_ca NUTS NH3 
13 Housing fractions, other cattle fhs_oc NUTS NH3 
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Nr Agricultural Parameters (APs) Code Level Affected  fluxes

14 
Fraction of excreted amount stored 
as liquid manure in the housing 
system, cattle 

frlam_ca NUTS NH3, N2O 

15 
Fraction of excreted amount stored 
as liquid manure in the housing 
system, pigs and poultry 

frlam_pp NUTS NH3, N2O 

16 NH3 emission fraction from 
housing systems 

fNemhs_NH3 NUTS NH3 

17 NH3 emission fraction from 
manure storage systems 

fNemms_NH3 NUTS NH3 

18 N2O emission fraction from 
housing systems (liquid) 

fNemhsl_N2O NUTS N2O 

19 N2O emission fraction from 
manure storage systems (liquid) 

fNemmsl_N2O NUTS N2O 

20 
NO emission fraction from housing 
systems (liquid) 

fNemhsl_NO NUTS NOx 

21 
NO emission fraction from manure 
storage systems (liquid) 

fNemmsl_NO NUTS NOx 

22 N2O emission fraction from 
housing systems (solid) 

fNemhss_N2O NUTS N2O 

23 N2O emission fraction from 
manure storage systems (solid) 

fNemmss_N2O NUTS N2O 

24 
NO emission fraction from housing 
systems (solid) 

fNemhss_NO NUTS NOx 

25 
NO emission fraction from manure 
storage systems (solid) 

fNemmss_NO NUTS NOx 

 Nitrogen input data    

26 
Allocation fraction for arable and 
grassland in the manure and N 
input assessment procedure 

Wamhsara NUTS NleSW, NleGW 

27 
Weighting factor for grassland and 
fodder in the manure and N input 
assessment procedure 

Wamhsgrass NUTS NleSW, NleGW 

28 
Areas (fractions) of intensively and 
extensively managed grassland 
(Area_ext = Area_grass - Area_int)

Area_int NUTS NleSW, NleGW 

29 National fertilizer N inputs tNfe CNTRY 
NH3, N2O, 
NleSW, NleGW 

30 N deposition data Ndep NCU 
N2O, NOx, 
NleSW, NleGW 

31 N fixation, arable + fodder Nfix_ar NCU 
N2O, NOx, 
NleSW, NleGW 

32 N fixation, grass (int + ext) Nfix_gr NCU 
N2O, NOx, 
NleSW, NleGW 

33 N fixation, legume Nfix_le NCU 
N2O, NOx, 
NleSW, NleGW 

 
Nitrogen uptake /immobilization 
data 

   

34 Yields, arable Yieldopt_ar NCU 
NH3, N2O, NOx, 
NleSW, NleGW 
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Nr Agricultural Parameters (APs) Code Level Affected  fluxes

35 Yields, fodder Yieldopt_fo NCU 
NH3, N2O, NOx, 
NleSW, NleGW 

36 Yields, grass intensive Yieldopt_gi NCU 
NH3, N2O, NOx, 
NleSW, NleGW 

37 Yields, grass extensive Yieldopt_ge NCU 
NH3, N2O, NOx, 
NleSW, NleGW 

38 
Maximum N content in the 
harvested crops, arable 

ctNplmx_ar NCU 
NH3, N2O, NOx, 
NleSW, NleGW 

39 
Maximum N content in the 
harvested crops, fodder 

ctNplmx_fo NCU 
NH3, N2O, NOx, 
NleSW, NleGW 

40 
Maximum N content in the 
harvested crops, grass intensive 

ctNplmx_gi NCU 
NH3, N2O, NOx, 
NleSW, NleGW 

41 
Maximum N content in the 
harvested crops, grass extensive 

ctNplmx_ge NCU 
NH3, N2O, NOx, 
NleSW, NleGW 

42 N index Nind NCU 
NH3, N2O, NOx, 
NleSW, NleGW 

43 Uptake fraction Fup NCU 
NH3, N2O, NOx, 
NleSW, NleGW 

44 
Ratio between minimum and 
maximum N uptake 

Frmin NCU 
NH3, N2O, NOx, 
NleSW, NleGW 

45 
N input at which the yield does not 
further respond 

Ninmx NCU 
NH3, N2O, NOx, 
NleSW, NleGW 

46 Soil C/N ratio CNso_ms NCU NleSW, NleGW 
 Soil emission data    

47 NH3 emission factors from soil 
systems for all manure types 

fNemap_NH3 NCU NH3 

48 N2O emission fractions from soil 
inputs 

fNemsi_N2O NCU N2O 

49 Ratio between NOx and N2O 
emission fractions 

rNON2O NCU 
N2O, NOx, 
NleSW, NleGW 

 
Leaching, runoff and climatic 
data 

   

50 N leaching fractions from the soil fNle NCU NleSW, NleGW 

51 
N leaching fractions from stored 
manure 

Flems NUTS NleSW, NleGW 

52 Surface runoff fractions Fsr NCU NleSW, NleGW 
53 Sub-surface runoff fractions Fro NCU NleSW, NleGW 

 CH4 emissions    
54 a (dairy cattle) a_CH4_ca NUTS CH4 
55 b (dairy cattle) b_CH4_ca NUTS CH4 

56 CH4 emission other cattle CH4_oc NUTS CH4 

3.3 Quantifying the uncertainty in the APs  

All the information regarding the pdfs of the model inputs, with their spatial- and 
cross-correlations was delivered by the INTEGRATOR group and it was obtained 
partly from European datasets and partly from expert knowledge. 
 
The approach which was followed for the quantification of the uncertainty in the 

model inputs was described in Kros et al. (2010). For every AP, it was defined:  
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1. The distribution type (normal , lognormal) 
The normal and the log-normal distribution were chosen to facilitate the UQ/UA 

procedure. In case of lognormally distributed APs the uncertainty was defined in 
terms of their loge (natural logarithm) transformed values. 
 
2. The standard deviation (SD) or the coefficient of variation (CV = SD/mean) 
Following expert judgment, either the SD or the CV was specified, depending on the 

user’s preferences. In some cases it was easier to specify an absolute measure for the 
error (SD) whereas in other cases it made more sense to specify an error as a 
proportion of the mean (CV). 
 
3. The Min and Max values  
Minimum and maximum values of the APs were set: 

 in case of fractions (i.e. N leaching fractions from the soil, fNle) a minimum of 0 
and a maximum of 1 were used; 

 in other cases minimum and maximum values were not specified but a physical 
minimum (generally 0, sometimes minus infinity) and a physical maximum  
(generally infinity) were used instead. 
 

4. The spatial-correlations  
The common geostastitical approach to include spatial correlations in the UQ/UA 

procedure would be the definition of semivariograms and thus for each AP to estimate 
the sill, the nugget, the range and the model (e.g. spherical, exponential etc.) as shown 
in Figure 5. The semivariogram is a mathematical function which indicates spatial-
correlation between measurements at sample locations. It is commonly represented as 
a graph that shows the semi-variance in measure with distance between all pairs of 
sampled locations. 
 

 
Figure 5. Example of a semivariogram where h=distance and γ(h)=semi-variance 

(Source:http://www.unc.edu/courses/2007spring/enst/562/001/images/lectures/lecture41/
semivariogram.gif) 

 
However, since no data were available to derive these semivariograms, it was 

decided to include spatial correlations in the UQ/UA in a more pragmatic way as it is 
recommended by Lesschen et al. (2007). In that paper, it is explained how spatial 
correlation can be included in an uncertainty analysis of a soil nutrient balance, by 
assuming that the variance of 1km grid-cell values is constant within a 20km grid-cell.  
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In accordance with Lesschen et al. (2007) it was assumed that the values of an AP 

were constant within an NCU, implying that the spatial correlation coefficient ρplot, 
between the plots within an NCU, was equal to 1. So, by assuming that the value of an 

AP at the ith plot, Yi, had a variance (σ2) that was equal for all plots within an NCU, 
the aggregated value of the AP for an NCU, YaggNCU, was calculated by formula 2:  
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where n was the number of  aggregated plots within the NCU. 
 
Next, the variance of YaggNCU was calculated by formula 3, where Lesschen et al. 

(2007) have incorporated the degree of spatial correlation as an effect on the variance 
of the aggregated values: 
 















 








 222

2
1

plotnnn
n

2
σ

NCUaggY  (3) 

 
where ρplot was equal to 1. So formula 3 could be finally written as:   
 

2
σ

2
σ

NCUaggY
  (4) 

 
Since the number of plots within an NCU was extremely large, even for relatively 

small NCUs, it was assumed that n was infinite. Thus if in formula 3 the ρplot   was 0, 
then it would be written as: 
 

0
2

σ
NCUaggY

  (5) 

 
Formula 5 shows that the variance of the aggregated value for an NCU would have 

vanished if the spatial correlation between plots had been ignored.  
 
Based on the concept described above, it was decided the spatial correlation to be 

defined within the spatial levels distinguished in INTEGRATOR: NCU, NUTS2/3, 
and Country, with Europe as a whole being the model extent (see the spatial levels in 
an exemplar map of the Netherlands in Figure 6).  
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Figure 6. Map of the Netherlands depicting the NCU, NUTS, and Country spatial 

aggregation levels 
 

For each AP, spatial-correlation coefficients were set between plots in different:  
 NCUs within the same NUTS2/3 region, that was ρNCU 
 NUTS2/3 regions within the same country, that was  ρNUTS 
 Countries within Europe, that was ρCOUNTRY 
 
The closer the plots were located, the stronger the spatial correlation was between 

them and so the spatial-correlation coefficients satisfied: COUNTRYNUTSNCU     
 
In Figure 7 various scatter plots with corresponding spatial-correlation coefficients 

are illustrated. 
 



 21

 
Figure 7. Scatter plots showing the strength of correlation when the correlation 

coefficient takes on values from 0.1 up to 1 (Source: Kros et. al. 2010) 
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Depending on the spatial level the APs were linked to, the following approach was 
followed: 
 For NCU parameters, all the ρNCU, ρNUTS and ρCOUNTRY were taken into account  
 For NUTS parameters, only the ρNUTS and ρCOUNTRY were taken into account while 

the ρNCU was considered to be 1 (i.e. all the NCUs within an NUTS2/3 region were 
assumed to be perfectly correlated) 

 For CNTRY parameters, only the ρCOUNTRY was taken into account while the ρNCU 
and the ρNUTS were both considered to be 1 (i.e. all the NCUs within an NUTS2/3 
region, and also all the NUTS2/3 regions within a country were assumed to be 
perfectly correlated) 
 
The values of ρNCU, ρNUTS and ρCOUNTRY are discussed further in Section 3.3.1. 
 
With the above procedure the spatial correlation was preserved during the 

uncertainty propagation analysis, and the uncertainty assigned to each NCU was 
finally incorporated in the model outputs which were aggregated to Country and 
European level. 
 

5. The cross-correlations  
Cross-correlations could have been defined by cross-variograms but due to lack of 

data on them it was decided cross-correlations coefficients, between related APs, to be 
finally used which were obtained through elicitation of expert knowledge. 
 
An example of an AP correlated with another AP, was the N excretion rate from 

cattle (fNexf_ca) which was correlated with N content in grass (ctNplmx_gi) because 
higher N intake through fodder can lead to higher excretions. Another example was 
the correlation between Yield (YIeldopt_gi) and N content in grass. The product of 
Yield  N content, representing the N removal from the soil, should not exceed a 
maximum amount, specified in INTEGRATOR. Therefore a negative correlation was 
assumed for this pair of parameters. 
 
 The selected pairs of APs, that were either positively or negatively correlated, are 

given in Table 3. 
 
Table 3. APs for which cross-correlations were 

considered 
AP i AP j ρcc(i,j) 

Nexf_ca ctNplmx_gi 0.5 
Yieldopt_gi ctNplmx_gi -0.8 
fNemhs_NH3 fNemhss_N2O 0.5 
fNemhss_N2O fNemhss_NO 0.8 

 
Since so far, the spatial-correlation coefficients for each AP between different 

locations: ρNCU, ρNUTS and ρCOUNTRY (vectors A in Figure 8) and also the cross-
correlation coefficients between different APs at the same location:  ρcc(i,j) (vectors B 
in Figure 8) had been defined, the next step was to calculate the spatial cross-
correlation coefficients between an APi  at one location with another APj at another 
location (vectors C in Figure 8). In order to limit the number of statistical parameters 
required for this calculation, it was assumed that the spatial cross-correlation 
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coefficients: ρNCU(i,j), ρNUTS(i,j), and ρCOUNTRY(i,j)  could be calculated by the 
following formulas: 
 

)()(),(),( jijiji NCUNCUccNCU     (6) 

  
)()(),(),( jijiji NUTSNUTSccNUTS    (7) 

)()(),(, jCOUNTRYCOUNTRYccCOUNTRY )( ρρρρ  ijiji  (8) 

where i and j referred to i and j APs. 
 

 
Figure 8. Schematic representation of spatial-correlations (A), 

cross-correlations (B), and spatial cross-correlations (C) 
using an exemplar map of the Netherlands where the 12 
provincial NUTS regions are depicted in different colours 

3.3.1 Building statistical models (joint pdfs) for the uncertainty in the APs 

3.3.1.1 Classes of CVs and SDs 

As it has been mentioned already, for some APs the CV was defined and for some 
others the SD. Due to limited quantitative information on the uncertainty in the APs, 
only three classes of CVs and SDs were used during the definition of their pdfs (for 
SDs only in case of parameters defined as fractions, in other cases the absolute value 
of the SD was used): 
 Low: 0.10, used for parameters: 

o based on good quality statistics on agronomic data: animal numbers; national N 
fertilizer inputs  

o N input with no change in yield 
o Uptake fraction 

 Moderate: 0.25, used for all parameters, except for these cases mentioned at high 
and low classes 
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 High: 0.50, used for guestimated input parameters:  
o N2O emission fractions from solid systems  
o NOx / N2O ratio 
o N fixation for arable and grass 

3.3.1.2  Robustness analysis of CVs and SDs 

Since the information on the assigned CVs or SDs was rather uncertain, a robustness 
analysis was carried out by using three uncertainty scenarios with Optimistic (Opt), 
Reference (Ref) and Pessimistic (Pes) values for the assumed input uncertainties. For 
the CVs, explicit values were assigned for each scenario (see Table 4). For the SDs, 
three different factors were used for each scenario respectively (see Table 5). For 
parameters that were not defined as fractions, the standard values of the SDs were 
used as Reference values. For parameters that were defined as fractions, the values 
which were set for the Reference scenario of the CVs were used as Reference values 
of the SDs as well. 
 

Table 4. Values of CV classes according to three 
robustness scenarios  

 Class of CV Opt Ref Pes 
Low  0.05 0.10 0.15 
Moderate  0.10 0.25 0.30 
High  0.40 0.50 0.60 

 
Table 5. Values of SD classes according to three 

robustness scenarios  
Class of SD Opt Ref Pes 
Low  0.5×SD SD  1.5× SD 
Moderate  0.5×SD SD  1.5× SD 
High  0.5×SD SD  1.5× SD 

3.3.1.3 Classes of spatial-correlations  

Same as with the CVs and SDs, the available information for the spatial correlations 
was also limited and finally only five classes of spatial-correlation coefficients were 
decided upon: 
 Perfect: 1, was used for ρ: 

o when a perfect correlation could be assumed (i.e. for APs that were not 
linked to the NCU but to a higher aggregation level, e.g. NUTS or Country 
level, then the ρNCU and/or ρNUTS were assumed to be 1 ) 

 High: 0.85, was used for ρ: 
o when it was obvious that a serious correlation existed 

 Moderate: 0.5, used for ρ: 
o when it was obvious that a correlation existed 

 Low: 0.2,  was used for ρ: 
o when there were slight indications that a correlation existed 

 None: 0, was used for ρ: 
o when it was obvious that absolutely no correlation existed 
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3.3.1.4 Robustness analysis of spatial-correlations 

Three robustness scenarios were also applied to the spatial-correlations coefficients 
in order the robustness of their assigned values to be investigated (see Table 6). 
 

Table 6. Values of spatial-correlations classes according 
to three robustness scenarios  

Class of spatial-correlations Opt Ref Pes 

Perfect  1 1 1 
High  0.8 0.85 0.9 
Moderate  0.3 0.5 0.7 
Low  0.1 0.2 0.3 
None  0 0 0 

 
The three different tables with the values reflecting the CV, SD and spatial-

correlations classes according to three robustness scenarios, for the 56 APs, are given 
in Appendix 1. 

3.3.2 Generating multiple simulations of APs values by repeated sampling 
from their pdfs 

The first step of the MC method is the generation of multiple inputs simulations 
randomly drawn from the inputs´ pdfs. This could be achieved by using the 
“rmultnorm” function (Multivariate Normal Random Number Generator, see further 
details below) incorporated in the statistical software R (http://www.r-project.org/) 
which is an open-source environment for statistical computing and visualization based 
on S statistical programming language. This generator is based on the multivariate 
normal distribution which is defined as follows: a multivariate random vector X with 
k elements, X = (X1, X2,.. Xk.), that follows a normally distribution is denoted as X ~ 
Nk (μ, R) where μ = mean vector and R = variance-covariance matrix (k x k). The R 
matrix, with all combinations of Xi and Xj pairs, is calculated with formula 9: 

 
ji σ.σj].ρ[i,j]R[i,   (9) 

where ρ[i, j] is the correlation coefficient matrix for Xi and Xj pairs, and σi , σj are the 
SDs of Xi and Xj respectively. 
 
The 56 APs were multivariate random vectors whose values varied over the 35101 

NCUs of EU-25. Therefore multiple input simulations could be drawn from the 
multivariate normal pdf of each AP as long as their mean vectors and their variance-
covariance matrices were known. 

The APs were either normally or lognormally distributed. So a normally distributed 
AP could be denoted as x(i), and a lognormally distributed AP could be denoted as 
y(i)=ex(i) which implied that x(i) was normally distributed. Thus the characterization of 
all APs (normal or lognormal) could be done through the characterization of the pdf 
of x(i). 

The pdf of the x(i), as explained above, could be defined by the mean (i), the 
standard deviation (i), and the spatial-correlation or spatial cross-correlation 
coefficient matrix. 
 

http://www.r-project.org/�
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By applying the common statistical model that is used to convert original observed 
values of a variable to their standardised values each of the x(i) could be written as: 

ξ(i)σ(i)μ(i)x(i)   (10) 

where (i) is a standard normal random variable (i.e. normally distributed random 
variable with μ(i) = 0 and (i) = 1). So a simulation of x(i) could be obtained by 
multiplying the simulated (i) with the (i) and then adding the (i) to the product. 
(This addition could take place in INTEGRATOR and not in R environment because 
only in INTEGRATOR were the (i) values available). 
 
In the case that CV(i) of x(i) was known instead of the (i),  the above formula could 

be written as: 

ξ(i))CV(i)(1μ(i)ξ(i)μ(i)CV(i)μ(i)x(i)   (11) 

In this case, a simulation of x(i) could be obtained by first simulating the (i), 
multiplying  it with the CV(i), and then adding 1 to it. Next, the (i) (in 
INTEGRATOR) could be added to the result. 
 
Since the relationship between x(i) and (i) was linear, correlations between the x(i) 

of different NCUs were equal to those between the (i) of these NCUs. Consequently 
the correlations as they were specified for the x(i) could be used for the simulations of 
the (i). These simulations could be generated by using the “rmultnorm” function 
(http://rss.acs.unt.edu/Rdoc/library/MSBVAR/html/rmultnorm.html) which generates 
multivariate normal random simulations for given mean and variance-covariance 
matrices. The usage of the function is the following:   
rmultnorm (n, mu, vmat, tol = 1e-10), and its arguments are:  
 n:  number of simulations to generate 
 mu: vector containing k multivariate means  
 vmat: (k x k) covariance matrix   
 tol: tolerance level used for SVD of the covariance 
 
Since for (i) the μ(i) = 0 and (i) = 1, then for (i) formula 9 could be written as:  
 

j]ρ[i,j]R[i,   (12) 
 
As a result, the generation of the multiple simulations of (i) could be obtained by 

using the spatial-correlation or spatial cross-correlation coefficient matrix ρ [i,j] as the 
vmat argument, and a vector of k 0s as the mu argument. 
 
For lognormally distributed parameters the simulated x(i) could be subsequently 

transformed to simulations of y(i) by calculating y(i)=ex(i). This could be implemented 
in INTEGRATOR because in order the exponent x(i) to be calculated the (i) is 
needed. 
 
Also within INTEGRATOR, the simulated values of APs below the Min or above 

the Max values, as specified for each AP, could be replaced by the Min or the Max 
value itself. Note that for lognormally distributed values the Min and the Max were 
specified for the y(i) instead of x(i). 

http://rss.acs.unt.edu/Rdoc/library/MSBVAR/html/rmultnorm.html�
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Another important aspect of the MC method is the number of the simulations 
required to ensure that the broad range of the values for each AP is sufficiently 
represented in the analysis. The method which was adopted to estimate this number 
was to check the cumulative frequency curves of the differences between the values of 
the preset CVs or SDs and the values of the CVs or SDs resulting from a first sample 
of generated input simulations of the APs from NUTS group. After a check with two 
samples took place (further information about it is provided in Section 4.1.1) it was 
decided that a sample of 1000 simulations was sufficient to represent the uncertainty 
in the APs. 

3.3.2.1 Building spatial-correlation coefficient matrices 

The values of the 56 APs were linked to each one of the 35101 NCUs so a spatial-
correlation coefficient RHO matrix of 35101 rows x 35101 columns had to be built 
for each AP with the ρNCU, ρNUTS and ρCOUNTRY incorporated. 
 
First of all, the values in the RHO matrix were filled in with the ρCOUNTRY which was 

the spatial-correlation coefficient between plots in different countries within Europe 
(all NCUs were located in Europe anyway). Then the diagonal of the matrix was 
replaced with 1s since the correlation of an NCU with itself is always 1. Then it was 
checked whether individual pairs of NCUs were located within the same country, if 
they were, then the value in the matrix was replaced with the ρNUTS coefficient. 
Finally, it was checked whether the NCU pairs belonged to the same NUTS region, if 
they were, then the value in the matrix was replaced with the ρNCU coefficient. This 
process however could not be finally executed for all NCUs, (a subset of 100 NCUs 
was initially checked) because it exceeded the computation and memory capacities of 
the available hardware. Thus it was not feasible to use the “rmultnorm” function to 
produce the RHO matrix for the 35101 NCUs. For this reason it was decided that a 
different method had to be applied which demanded though high skilled programming 
that was beyond the scope of this research. The new method was developed by Gerard 
Heuvelink, Tom Hoogland, and Dennis Walvoort (all three from Alterra, WUR) and 
the simulated values of APs linked to the NCU level were provided by them. 
 
The above problem however could be limited only to the 23 APs which were linked 

to NCU level and therefore all the NCUs with their spatial-correlation coefficients 
(ρNCU, ρNUTS and ρCOUNTRY) had to be included in the building of the RHO matrices. 
For the other three groups of the APs, a few assumptions were made which allowed 
the building of the RHO matrices by using the “rmultnorm” function. 
 
For the 26 APs that were linked to NUTS level it was assumed they had constant 

values between NCUs contained within a NUTS region, this meant ρNCU =1. So it was 
sufficient to simulate just one NCU from each NUTS region because all the other 
NCUs within the same region would have the same value. There were 688 NUTS 
regions for EU-25. Subsequently the dimension of the RHO matrix was reduced to 
688 rows x 688 columns and its generation was feasible by the available computers. 
Since for these APs the ρNCU =1, only the ρNUTS and ρCOUNTRY were incorporated in 
the RHO matrix. The values in it were filled in with the ρNUTS or ρCOUNTRY 
coefficients depending on where individual pairs of NUTS regions were located. 
Initially all values in the matrix were filled in with the ρCOUNTRY (all NUTS were 
located in Europe anyway). Then the diagonal of the matrix was replaced with 1s. 
Then it was checked whether pairs of NUTS regions were located within the same 
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country, and if they were then the value in the matrix was replaced with the ρNUTS 

coefficient. 
 
In the same way, for the five APs that were linked to CNTRY level, it was assumed 

that they had constant values between the NCUs contained within a NUTS region, 
(ρNCU =1), and also that they had constant values between the NUTS regions 
contained within a country, this meant that ρNUTS =1. So it was sufficient to simulate 
only 1 NCU from a NUTS region, and only 1 NUTS region from each country. The 
number of the countries was 25, so the dimension of the RHO matrix was further 
reduced to 25 rows x 25 columns and only the ρCOUNTRY was incorporated in the 
generation of the matrix. The values were initially filled in with the ρCOUNTRY 
coefficient (all individual CNTRY pairs were located within Europe). Finally the 
diagonal of the matrix was replaced with 1s. 
 
For the two APs which were linked to European level (GEN), it was assumed that 

they had constant values between countries, between NUTS regions and between 
NCUs and that meant all the coefficients: ρNCU, ρNUTS and ρCOUNTRY were 1. So the 
RHO matrix for each AP from GEN group was of 1 row x 1 column dimension and its 
single value was 1. 
 
Figure 9 provides an overview of the procedure followed for building the RHO 

matrix of each AP from NUTS group. 
 

 
Figure 9. RHO matrix for a NUTS parameter and the steps followed for its creation 

3.3.2.2 Building spatial cross-correlation coefficient matrices  

Due to the fact that among the APs being correlated with others there were two of 
them (AP36: Yieldopt_gi and AP40: ctNplmx-gi) that were linked to NCU level, it was 
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decided the cross-correlations to be incorporated in the method particularly developed 
for the APs at NCU level. Consequently, the creation of the spatial cross-correlation 
coefficient matrices were not part of this research but spatial cross-correlations were 
taken into account, during the analysis of the uncertainty propagation, since they were 
included in the simulated input values for the APs linked to NCU level. 

3.3.2.3 Developing R-scripts for the generation of 1000 input simulations for 
each group of the APs by incorporating the three robustness scenarios 

The 1000 input simulations for each AP linked to NUTS, CNTRY, and GEN level, 
by taking into account the three robustness scenarios, were produced by nine different 
scripts developed within the R environment: three scripts representing each scenario 
for each of the three groups of APs. The 1000 input simulations for each of the nine 
combinations as shown in Table 7 were stored in the so-called MC input files. 
 
Table 7. The nine R-scripts for the simulation of the APs 

Groups of Agricultural Parameters 
R_SCRIPTS 

NUTS  CNTRY GEN 

Opt Opt Opt 

Ref Ref Ref 

S
ce

n
ar

io
s 

Pes Pes Pes 

 
The steps of the algorithm for the generation of the MC input files were executed 

repeatedly for each AP in batch mode. This algorithm (e.g. for the NUTS group, 
concerning the Reference scenario), as well as the names, and the format of the MC 
input files required for their linkage with INTEGRATOR are described in Appendix 
2. 
 
One of the nine written scripts, i.e. the script for NUTS parameters concerning the 

Reference scenario, is provided in Appendix 3. The code in the other eight scripts was 
almost identical with the only difference being the “path” where the data, required for 
the generation of the MC input files, were stored. 

 
An example with one MC input file for the five APs of the CNTRY group is given in 

Appendix 4. 

3.3.2.4 Running the INTEGRATOR model for the generated input simulations 
in batch mode and storing its output simulations (UQ) 

The 9000 input files, produced by the nine R-scripts mentioned above, along with 
the 3000 input files for the APs of the NCU group, provided by the Alterra team, were 
imported to INTEGRATOR. The model was run separately in three rounds, one for 
each robustness scenario. Within every round, INTEGRATOR was provided with 
4000 input files, 1000 from each of the four groups of the APs. At the end of the 
model, 6000 output files, 1000 for each of the six output fluxes (i.e. NH3, NOx, NleSW, 
NleGW, CH4 and N2O) were produced at Country and at European level (see Figure 
10). 
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Figure 10. Setting of INTEGRATOR model for each robustness scenario 
 
Three R-scripts, one for each robustness scenario, were written to run 

INTEGRATOR for the 12000 input files in three rounds. In each of these R-scripts, 
the INTEGRATOR dll (dynamic link library) was loaded and in this way the model 
was called within the R-script. This dll was provided by the INTEGRATOR group. 
The 4000 input files from each individual group were supplied to INTEGRATOR 
repeatedly within a “for loop”. Additionally, the code in the script was built in such a 
way that the produced output simulations were stored automatically in output files 
within subdirectories that were structured in an organised manner to ensure a 
transparent access to them. 
 
The steps of the algorithm followed for running the model in batch mode and storing 

its MC output files, and also the names and the format of these files are described in 
Appendix 2. 
 
One of the three written R-scripts, i.e. the script for the Optimistic scenario, is given 

in Appendix 5. 
 
Two MC output files, e.g. for N2O emissions, one at County level and one at 

European level are given in Appendix 6. 

3.4 Analysing the contribution of individual uncertainty sources to the 
overall output uncertainty (UA) 

During this step, which concerned the Uncertainty Analysis, the uncertainty 
contribution of each individual group of the APs to the total output uncertainty was 
estimated. This was accomplished by running the model again but this time 
considering uncertain only the group of APs for which the contribution had to be 
estimated. The other three groups remained “certain” by keeping their default 
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averaged values which were stored in INTEGRATOR´s database. Therefore the 
model was run again in four separate rounds, and each time only one of the four 
groups was made uncertain (see Table 8). The uncertainty contribution of each group 
was calculated by dividing the variance of the outputs estimated when only this group 
was made uncertain by the variance of the outputs calculated when all four groups 
were uncertain during the first time the model was run (i.e. step of UQ). The outcome 
of each division was the uncertainty contribution of each individual group, 
respectively, to the overall output uncertainty. 
 

Table 8. Four INTEGRATOR rounds during each of them only one group of APs 
was made uncertain 

Uncertain Certain Uncertain Certain Uncertain Certain Uncertain Certain 
NCU group NCU group NCU group NCU group

NUTS group NUTS group NUTS group NUTS group
CNTRY group CNTRY group CNTRY group CNTRY group
GEN group GEN group GEN group GEN group

INTEGRATOR ROUND 1 INTEGRATOR ROUND 2 INTEGRATOR ROUND 3 INTEGRATOR ROUND 4

 

3.5 Summarizing the MC outputs 

The final step, after Uncertainty Quantification and Uncertainty Analysis had been 
completed, was to summarise the simulated values in the MC output files by 
estimating their statistical measures such as means, CVs, quartiles, interquartile range 
etc., and then use visualization tools in order to communicate these statistics to end-
users. This was achieved by splitting the summation step into the following A and B 
sub-steps:  
A. Check of the effect that: 
1. The spatial aggregation to Country, and European level had on the output 

uncertainty by examining the: 
 Outputs at European level, for the Reference scenario, by means of box-plots and 

column-line charts;  
 Outputs at Country level, for the Reference scenario, by means of box-plots for 

five representative EU-25 countries;  
 Outputs at Country level, for the Reference scenario, by means of column-line 

charts and choropleth maps for all countries of EU-25; 
2. The three robustness scenarios had on the output uncertainty by examining the 

outputs at European level, for each scenario, by means of box-plots and column 
charts. 

B. Estimation of the uncertainty contribution of the four individual groups of APs to 
the overall output uncertainty for the five chosen EU-25 countries and for the whole 
Europe as well, for the Reference scenario. The visualizations which were adopted 
here were stack-columns. 

 
The R programme was mainly used for the calculation and visualization of the 

statistics of the outputs, except for the choropleth maps that were produced with 
ArcMap 9.3.1., and the column charts that were produced with Microsoft Excel 2003. 

 
The R-script for the calculation of means, SDs and CVs of the outputs aggregated to 

Country level, for the Reference scenario, is provided in Appendix 7. 
 
The R-script for the box-plots (and the 5th, 25th, 50th, 75th, and 95th percentiles) of the 

outputs aggregated to European level, for the three robustness scenarios, is provided 
in Appendix 8. 
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The R-script for the stack-columns of the uncertainty contribution, for the five 
countries, for the Reference scenario, is provided in Appendix 9. 
 
In the following paragraphs a short explanation about the visualizations tools is 

provided to help readers of this report interpret the statistical information they 
describe. 
 
One of the tools used for the sub-step “A” was the box-plot (see Figure 13) which is 

a simple dispersion diagram commonly used in descriptive statistics. It is used to 
display the entire frequency distribution of a numerical dataset by dividing it into 
quartiles. The height of the box represents the interquartile range (IQR) which is the 
difference between the upper quartile (i.e. Q3 = 75th percentile) and the lower quartile 
(i.e. Q1= 25th percentile). The black thick line within the box depicts the median value 
(i.e. Q2 = 50th percentile). The two black, thinner horizontal lines below and above the 
box depict the minimum (Q1-1.5*IQR) and the maximum (Q3+1.5*IQR) values of 
the distribution respectively. The small circles above the maximum value and below 
the minimum are considered numerically distant from the rest of the data and they are 
called outliers. Outliers are often indicative either of a measurement error or a form of 
skewness (http://en.wikipedia.org/wiki/File:Boxplot_vs_PDF.svg). 
 
All the box-plots are accompanied by tables with values of the 5th, 25th, 50th, 75th, 

and 95th percentiles which are given in Appendix 11. 
 
Another tool, for sub-step “A”, was the column chart depicting the CV level of each 

output (i.e. proportion of the SD to the mean). The CV is a relative measure of 
dispersion that allows direct comparison of relative uncertainty in different data sets 
(i.e. different mean values). In some cases, the CVs of the outputs were combined 
with their SDs in column-line charts (see Figure 14).  
 
The visualization tool used for sub-step “B” was the “100%” stack-column which 

depicts in different colours the percentages of different categories that contribute to a 
total (see Figure 23). 
 
Before the visualization of the uncertainty in the outputs took place, a distinction was 

made: 
 The outputs that contribute to N increase: NH3, NOx, NleGW, and NleSW whose 

magnitude is measured in terms of their amount of N. The unit for N outputs is: N 
(Kg ha-1yr-1). 

 The outputs that contribute to CO2 increase: CH4 and N2O whose magnitude is 
expressed in terms of their Global Warming Potential (GWP). The unit for the GWP 
outputs is: CO2 (Kg ha-1yr-1). The N2O produced by INTEGRATOR is expressed as 
N contained in N2O and in order to be converted to N2O itself is multiplied with a 
factor of 44/28, where 44 is the molar weight of N2O and 28 the molar weight of 2 × 
N. Then the result is multiplied with a factor of 298 in order the N2O to be converted 
to GWP for a time horizon of 100 years based on 2007 IPCC 4th assessment report 
(see: http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf). The 
CH4 produced by INTEGRATOR is already expressed as CH4 (and not as C) and in 
order to be converted to GWP for a time horizon of 100 years is multiplied with a 
factor of 25. This means that in a horizon of 100 years, N2O becomes approximately 
19 ((44/28*298)/25) times more effective GHG than CH4. 

http://en.wikipedia.org/wiki/File:Boxplot_vs_PDF.svg�
http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf�
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4. RESULTS AND DISCUSSION 

4.1 Uncertainty in model inputs 

In this Section, it is discussed how the test for the required sample size of 
simulations took place by means of cumulative frequency curves (Sub-section 4.1.1) 
and also it is checked whether the generated samples of APs were normally 
distributed and had met their predefined CVs or SDs (Sub-section 4.1.2). The 
corresponding R-scripts are given in Appendix 10. 

4.1.1 Representativeness of the sample size  

The group of the 26 NUTS APs, for the Reference scenario, were chosen for the test 
of the sample size and three of them, the AP6: Nexf_co, the AP13: fhs_co, and the 
AP28: Area_int are discussed here. Initially a sample of 100 simulated values for each 
AP, linked to each one of the 688 NUTS regions, was produced. Then, the cumulative 
frequency curves of the differences between the values of the preset CVs and the CVs 
resulting from this sample were generated. These curves are depicted on the left side 
of Figure 11 along with their 5th, 50th, and 95th percentiles. As it can be seen the 
sample with the 100 simulations produced cumulative curves where the values of the 
differences: 
 were not yet (completely) normally distributed around 0 because the ranges between 

the 50th and the 5th percentiles were not yet equal to the ranges between the 95th and 
the 50th percentiles and the medians (i.e. corresponding values of x when Fn(x) = 
0.5)  varied between 0.003 - 0.008; 

 their 90 % ranges (i.e. the ranges between the 95th and 5th percentiles) varied 
between 0.055 - 0.066. 
 
These statistics though could be further improved by trying to achieve a much better 

normal distribution around 0 and also bring the 90% ranges even closer to 0. So a new 
iteration was done with a generated sample of 1000 simulations. As it can be seen 
from the curves on the right side of Figure 11, the new sample produced cumulative 
frequencies where the values of the differences: 
 approximated much better a normal distribution around 0 since the ranges between 

the 50th and the 5th percentiles were almost equal to the ranges between the 95th 
and the 50th percentiles and the medians  varied only between -0.001 - 0.000; 

 their 90 % ranges varied between 0.017 - 0.019. 
 
The differences between the values of the preset CVs and the CVs resulting from the 

sample with the 1000 simulations were considered small enough and thus it was 
decided that this sample was big enough to describe the uncertainty in the model 
inputs. In Figure 11, the red vertical dotted lines indicate the shift of the medians 
much closer to 0 when the sample size was increased from 100 to 1000 simulations. 
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Figure 11. Cumulative frequency curves showing the differences of the preset CVs 

from the CVs resulting from a sample of 100 and 1000 simulations, 
respectively, of three APs from the NUTS group, for the 688 NUTS 
regions 

AP6: Nexf_oc (N excretion rates, other cattle) 

100 simulations 1000 simulations

AP13: fhs_oc (Housing fractions, other cattle) 

100 simulations 1000 simulations

AP28:Area_int (Areas (fractions) of intensively 
and extensively managed grassland  
(Area_ext = 1- Area_int))

100 simulations 1000 simulations

  5th = -0.020 
50th =  0.003 
95th =  0.035 

  5th = -0.011 
50th = -0.001 
95th =  0.006 

  5th = -0.039 
50th = -0.008 
95th =  0.023 

  5th = -0.010 
50th =  0.000 
95th =  0.009 

  5th = -0.030 
50th =  0.005 
95th =  0.036 

  5th = -0.009 
50th = -0.001 
95th =  0.008 
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4.1.2 Quantified uncertainty in APs of NUTS, CNTRY and GEN group 

Two representative APs from each individual group, for the Reference scenario, 
were used in this Section, to verify their probability distribution, as well as their CVs 
or SDs resulting from the generated sample of 1000 simulated values. 
 
In Table 9, the six APs are provided along with their distribution types and the 

values of their preset CVs or SDs. 
 

Table 9. APs checked for their probability distributions 
and their CVs or SDs resulting from the sample 
of 1000 simulations 

AP Group Distribution CV SD 

fNemms NUTS Normal  0.25   

fNemhsls NUTS Lognormal  0.50 

aninr_ca CNTRY Normal  0.10   

aninr_ca CNTRY Normal  0.10   

f_Nav_dep GEN Normal  0.25  

f_Nav_om GEN Normal  0.25  

 
The curves illustrated in Figure 12 show that the sample of 1000 simulations, for 

each of the above APs, was normally distributed, and the resulted CVs or SDs (coded 
as: “Res.CV or SD”) had met their preset CVs or SDs (coded as: “Set CV or SD”). 
 
Note that the simulated values for the AP: fNemhsls produced a normal distribution 

and not a lognormal distribution because they were just products of ξ(i) simulations 
multiplied with the preset SD (i.e 0.50) and not simulations of y(i)=ex(i) where 

ξ(i)σ(i)μ(i)x(i)  . The calculation of y(i) values was implemented in 
INTEGRATOR (see also Section 3.3.2). 
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Figure 12. Probability distributions of two APs, from each individual group, 

produced from a sample of 1000 simulations, depicted along with their 
preset CVs or SDs and their resulted CVs or SDs respectively 

NUTS parameters 

Set  CV = 0.25 
Res. CV= 0.24 

Set   SD = 0.50 
Res. SD = 0.49 

CNTRY parameters 

Set  CV = 0.10 
Res. CV= 0.10 

Set  CV = 0.10 
Res. CV= 0.10 

GEN parameters 

Set  CV = 0.25 
Res. CV= 0.25 

Set  CV = 0.25 
Res. CV= 0.25 
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4.2 Uncertainty in model outputs 

In this Section, the results from the summation of the model outputs according to 
sub-step “A” (see also Section 3.5) are presented.  

4.2.1 Effect of European level outputs for the Reference scenario 

4.2.1.1 Results  

The effect of European level on the output uncertainty was visualised by: 
 Box-plots provided in Figure 13; 
 Column-line charts provided in Figure 14. 
 

 
Figure 13. Box-plots displaying uncertainty (expressed as SD) in N and GWP 

outputs at European level 
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Figure 14. Column-line charts for displaying relative uncertainty 

(expressed as CV) in N and GWP outputs, in 
conjunction with their SDs (in kg N ha-1 yr-1 for N 
outputs, and kg CO2 ha-1 yr-1 for GWP outputs), at 
European level 

 
The results based on Figure 14 and Table 10 show that the relative uncertainty in the 

European level outputs varies between 10 – 34 % and increases in the following 
direction: CH4, NH3 < N2O < NOx < NleSW, NleGW 

4.2.1.2 Discussion  

This Section provides a discussion on the uncertainty in the outputs in combination 
with the quantified uncertainty in the APs which propagated through the model. In 
addition, a brief explanation is given as to why outputs being affected by the same 
APs have different uncertainties. Note, however, that a detailed explanation on this 
kind of differences would require in-depth expertise of INTEGRATOR modellers 
and/or soil scientists. Additionally, in this Section, estimated values of means and 
CVs are compared with estimates from other related researches to check the statistical 
models (pdfs) used to describe the uncertainty in the APs for plausibility. 
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Results based on box-plots 
When examining the N outputs based on the box-plots in Figure 13 , it can be seen 

that NleSW and NleGW have higher uncertainties than NH3 and NOx. Based on Table 2, 
there are 37 APs affecting NleSW and NleGW whereas there are 31 and 30 APs affecting 
NH3 and NOx respectively. So a simplified explanation for the higher amount of 
uncertainty, propagated to NleSW and NleGW outputs, could be the larger number of 
uncertain APs that affected them. Nevertheless this may not be always the case. A 
better explanation that can be given is that among the 37 APs that affect NleSW and 
NleGW there are the AP31 and AP32 which have both high uncertainty (CV=0.50) and 
the AP49 which has also high uncertainty (SD=0.75) whereas the uncertainties in most 
of the APs that affect NH3 and NOx.are much lower (CV=0.25). 
 
Another observation that can be made is that NleSW has higher uncertainty than 

NleGW. The question thus raised here is, how this could be explained since they are 
both affected by the same APs. According to De Vries et al. (2011c), the leaching 
from the soil system is distributed between groundwater recharge and subsurface 
runoff to surface water, and the functions used in INTEGRATOR for the calculation 
of NleSW and NleGW are the following: 
 

msle
N

sr
N

le
N

ro
f

leSW
N

,
. 

 
 
 

 
le

N
ro
f

leGW
N .1 

 
 

Where: 
 

fro = The sub-surface runoff fraction (AP53) 
Nle = amount of N for leaching (calculated based on APs related to animals, N input, 

N uptake, soil emission) 
Nsr = amount of N for sub-surface runoff (calculated based on AP52 and other APs 

related to N input) 
Nle,ms = amount of N for leaching from manure storage (calculated based on AP51 and 

other APs related to  animal numbers and N excretion: AP1, ..., AP8) 
 
Therefore, there are many more uncertain APs involved in the release of the NleSW 

than the ones involved in the release of the NleGW and this may be the reason why the 
NleSW has higher uncertainty than NleGW. 
 
Emissions of NH3 have higher uncertainty than NOx and as it has been mentioned 

before there are 31 APs affecting NH3 and 30 APs affecting NOx. Therefore almost 
the same number of APs that affected NH3 affected NOx as well. This reveals that by 
simply counting the number of APs that affect an output, in order to draw conclusions 
about its propagated uncertainty, is a very simplified manner and may lead to 
misinterpretations. Since the uncertainties in the APs that affect NH3 and NOx have 
more or less the same level, the explanation for the higher uncertainty in NH3 could 
be that NH3 is more sensitive to variations in the APs that are affecting it. Good 
knowledge about emissions processes and the related functions incorporated in 
INTEGRATOR would definitely provide a much better explanation about the higher 
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level of uncertainty in NH3 emissions. The acquisition of this knowledge though could 
not be achieved within the time frame of this research. Therefore the reader of this 
report should combine the results, discussed in this Chapter, with other specific 
sources in order to get a sound interpretation. 
 
As far as the GWP outputs are concerned, N2O has higher uncertainty than CH4 and 

this can be explained by the high uncertainties in some of the APs that affect the N2O: 
AP22 and AP23 (SD=0.50), AP31, AP32 and AP48 (CV=0.50), and AP49 (SD=0.75) 
compared with the lower uncertainties in the AP1-AP4 (CV=0.1) and AP54-AP56 
(CV=0.25) that affect CH4. 

 
Another observation based on the box-plots is that NleSW, NleGW and N2O have one-

sided outliers. This can be explained by the fact that these outputs have been affected 
by the high SD (i.e.0.75) of AP49 which was lognormally distributed (one-tailed 
skewed) and as such influenced their frequency distributions. 
 

Results based on column-charts 
When examining the outputs based on the column-line charts shown in Figure 14, it 

can be seen that outputs with high uncertainty (i.e. high SD) and a high mean value 
too have low relative uncertainty. This explains why the NleSW, which has higher 
absolute uncertainty (SD) and higher mean value than NleGW in Figure 13, has lower 
relative uncertainty (CV) than NleGW.  

 
Plausibility of statistical models (pdfs)  
The plausibility of the statistical models (pdfs), used to represent the uncertainty in 

the APs, was checked by comparing the computed mean and CV values against 
estimates by Schulze et al. (2009) and by Velthof et al. (2009). The first group 
provides mean and CV values for GWP outputs, referring to the time period between 
2000 and 2005, calculated by a synergy of various models (i.e. EFISCEN, 
ORCHIDEE, LPJ, BIOME-BGC, YASSO and PASIM) For these values it can be 
assumed that any changes in them, within these five years, are rather small and thus 
these values can still be compared with results from this research. The second group 
provides mean values for N outputs, referring to 2000, obtained by MITERRA-
EUROPE which is a deterministic and static model (stand alone policy tool). The 
values from the three different sources are given in Table 10. 
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Table 10. Comparison between means (in kg N ha-1 yr-1 for N 
outputs, and kg CO2 ha-1 yr-1 for GWP outputs) and 
CVs for N and GWP outputs at European level, with 
corresponding means and CVs obtained from other 
sources 

European level 
This 

research 
Year 2000 

Schulze et 
al. 

Year 2000 

Velthof et 
al. 

Years 
between 

2000 -2005 
N outputs  mu CV mu CV mu CV
NH3 16 0.13   17  
NOx  4.2 0.24   2.0  
NleSW 18 0.27    
NleGW  7.5 0.34   

16 
 

GWP outputs       
CH4 1145 0.10 1134 0.51   
N2O 2524 0.17 1557 0.50   

N.B. Velthof et al. provide one value for N leaching and it refers to the 
sum of NleSW + NleGW 
 
Table 10 shows that some results of this research are similar to those by the other 

two researches. The higher N2O emissions from this research may be explained by the 
use of improved N2O emission factors (Lesschen et al. 2011). The lower uncertainty 
in both N2O and CH4 may be explained by the fact that during this research only the 
input uncertainty was taken into account, whereas the model uncertainty was not 
considered. The difference in the sum NleSW + NleGW can be explained by the fact that 
Velthof et al. (2009) estimated N leaching by running MITERRA-EUROPE model 
just once and using average values of APs whereas the values for this research were 
estimated by averaging over 1000 output simulations of APs with their uncertainties 
being incorporated in the model. In particular, the skewness of AP49 influenced the 
mean values of NleSW and NleGW. After all, it can be said that the pdfs used for the 
uncertainty in the APs were rather plausible. 

4.2.2 Effect of Country level outputs for the Reference scenario 

4.2.2.1 Results  

The effect of Country level on the output uncertainty was visualized by:  
 Box-plots, provided in Figure 15, describing the output uncertainty for five EU 

countries that were selected based on different characteristics (i.e. land cover, 
climate, and pressure of animals):  

o Netherlands: Atlantic climate, combination of grasslands, farmlands and high 
number of animals; 

o Greece: Mediterranean climate, arable land, low number of animals; 
o Ireland: Atlantic climate, mixed land cover (grazing-dairying-arable), high 

number of animals; 
o France: Combination of temperate (north) and Mediterranean climate (south), 

agricultural land, high number of animals; 
o Poland: Continental climate, intensively agricultural land, high number of 

animals. 
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 Column-line charts provided in Figure 16 and Figure 17, for all countries of EU-25; 
 Choropleth maps, provided in Figure 18, Figure 19 and Figure 20, portraying the 

variation of the means and the CDs of the outputs over all countries in EU-25, 
according to five classes. 
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Figure 15. Box-plots for displaying uncertainty in N and GWP outputs for each of the five EU 

countries 
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Figure 16. Column-line charts for displaying relative uncertainty in NH3, NOx 

and NleSW, in conjunction with their SDs (in kg N ha-1 yr-1 for N 
outputs, and kg CO2 ha-1 yr-1 for GWP outputs), for all countries of 
EU-25 
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Figure 17. Column-line charts for displaying relative uncertainty in NleGW, 

CH4 and N2O, in conjunction with their SDs (in kg N ha-1 yr-1 for N 
outputs, and kg CO2 ha-1 yr-1 for GWP outputs), for all countries of 
EU-25 
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Figure 18. Maps displaying classes of means and relative uncertainty in NH3 and 

NOx over all countries of EU-25 
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Figure 19. Maps displaying classes of means and relative uncertainty in NleSW and 

NleGW over all countries of EU-25 
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Figure 20. Maps displaying classes of means and relative uncertainty in CH4 and N2O 

over all countries of EU-25 
 
The results based on Figure 16, Figure 17 and Table 12 show that the relative 

uncertainty at Country level outputs is higher than at European level as it varies 
between 11 – 92% and it increases in the following direction: CH4, NH3 < N2O, NleSW 
< NOx, NleGW. 

4.2.2.2 Discussion  

Results based on box-plots 
When examining the outputs based on box-plots shown in Figure 15, it can be seen 

that the Netherlands has the highest uncertainty in all outputs. Other countries have 
more or less comparable levels of uncertainty. According to Oenema et al. (2001), the 
uncertainty in estimates of N2O and CH4 emissions, in agriculture, is rather large and 
mainly at local and country levels. This is due to the different nature and character of 
the agricultural sources, among regions and countries, as well as by the limited 
number and uneven spread of the measurements concerning related emission 
parameters. The Netherlands is characterised by its extensive areas of agricultural 
land with crops that demand high use of manure and fertilizers (e.g. potatoes, sugar 
beets, maize etc.), and also by its high number of cattle. Consequently, all APs related 
to animals, manure and fertilizer application were involved in the calculation of N and 
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GWP outputs for the Netherlands and as a result, the amount of uncertainty that 
propagated through the model has the highest level. 
 
Greece has the lowest uncertainty level in four outputs. This may be explained by the 

fact that its crops are mainly olives, grapes, fruit, cotton, tomatoes (i.e. little or no use 
of manure and fertilizers) and that the country has a limited number of animals. Thus, 
the uncertain APs that affected the N and GWP outputs had much less influence on 
them. 
 
The higher uncertainty in NH3, N2O and CH4 for Ireland, compared with Greece, 

France and Poland, may be explained by the large number of animals and also by the 
crops of barley, sugar beets, wheat and fresh vegetables that are typical of the country. 
Therefore an increased number of APs, compared with the other three countries may 
have affected these output emissions. 
 
France and Poland have almost the same level of uncertainty and this may be 

explained by the similar agricultural characteristics these two countries have. 
 

Results based on column–line charts 
When examining the outputs based on column–line charts, shown in Figure 16 and 

Figure 17, it can be seen that the outputs with the higher relative uncertainty are the 
NOx, NleSW, and NleGW. This is due to their low mean values (see Table 12 with mean 
and CV values for all countries) relatively compared with NH3. It can also be seen 
that CH4 has the lowest relative uncertainty since, as explained previously, its 
uncertainty has been affected only by seven APs. 

 
Results based on choropleth maps 
When examining the outputs based on the choropleth maps shown in Figure 18, 

Figure 19 and Figure 20 , it can be seen that NOx, NleGW, and N2O have high relative 
uncertainties in Finland, Estonia, Austria and Poland. This is due to the relatively low 
mean output values for these countries. 
 

Plausibility of statistical models (pdfs)  
The plausibility of the pdfs of this research was checked once again by comparing 

the mean values of the Country level outputs with estimated mean values by Velthof 
et al. (2009) produced by the MITERRA-EUROPE model. The values from the two 
sources are provided in Table 11.  
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Table 11. Comparison between mean values of outputs, for 
five EU countries, with corresponding mean values 
obtained from a different source  

      Mean values 

  
5 EU 

countries 

This 
research 

Year 2000 

Velthof 
et al. 
Year 
2000 

NL 57 57 
GR 6.8 8.0 
IE 19 22 
FR 17 19 

NH3 

PL 14 15 
NL 6.0 7.0 
GR 3.1 2.0 
IE 4.2 7.0 
FR 4.6 3.0 

NOx 

PL 4.9 1.0 
NL 68 72 
GR 20 7.0 
IE 17 20 
FR 26 17 

N
 o

u
tp

u
ts

  
(k

g 
N

 h
a-1

 y
r-1

) 

NleSW + NleGW 

PL 23 15 
NL   
GR   
IE   
FR   

CH4 

PL   
NL 4157 3746 
GR 1641 937 
IE 3204 1405 
FR 2740 937 

G
W

P
 o

u
tp

u
ts

 
 (

kg
 C

O
2 

ha
-1

 y
r-1

) 

N2O 

PL 2714 937 
N.B. Velthof et.al did not include parameters that affected CH4 
emissions and so there were no values available for them.  
 
The values of NH3 by Velthof et al. (2009) are similar to the ones obtained in this 

research. The differences in values of NOx, N leaching, and N2O between the two 
sources stem from the fact that Velthof et al. (2009) (as explained already in the 
Section about European level outputs) ran MITTERA-EUROPE only once with 
averages values of APs,  and not with their uncertainties incorporated and averaged 
over 1000 input simulations. 
 
The mean and CV values of N and GWP outputs, for all countries of EU-25 are 

provided in Table 12. 
 
 
 



 51 

Table 12. Values of means (in kg N ha-1 yr-1 for N outputs, and kg CO2 ha-1 yr-1 for GWP outputs) and CVs of N and GWP 
outputs (min CV=0.11, max CV=0.92), for all countries in EU-25  

  NH3 NOx NleSW NleGW CH4 N2O 

EU- 25 COUNTRY mu CV mu CV mu CV mu CV mu CV mu CV 
Austria (AT) 21 0.48 7.2 0.78 24 0.71 8.3 0.92 1505 0.14 4690 0.71
Belgium (BE) 44 0.21 5.6 0.40 34 0.50 14 0.64 3996 0.14 4144 0.30
Bulgaria (BG) 5.3 0.17 1.5 0.36 4.2 0.54 3.2 0.53 332 0.14 868 0.25
Czech Republic (CZ) 13 0.20 4.6 0.42 16 0.44 9.1 0.60 805 0.13 3102 0.31
Germany (DE) 28 0.18 8.7 0.36 40 0.41 11 0.53 1730 0.13 4953 0.27
Denmark (DK) 21 0.22 1.5 0.37 20 0.46 12 0.63 1853 0.12 1221 0.27
Estonia (EE) 4.4 0.21 2.2 0.87 4.4 0.63 3.8 0.68 321 0.15 1387 0.69
Spain (SP) 8.9 0.17 1.6 0.27 10 0.36 5.0 0.45 711 0.13 773 0.21
Finland (FI) 4.2 0.16 1.2 0.81 8.9 0.53 7.2 0.61 360 0.13 1100 0.63
France (FR) 17 0.16 4.6 0.26 20 0.38 6.1 0.45 1241 0.15 2740 0.20
Greece (GR) 6.8 0.16 3.1 0.43 12 0.40 8.0 0.46 584 0.16 1641 0.35
Hungary (HU) 10 0.23 2.7 0.47 9.2 0.50 6.3 0.50 436 0.12 1519 0.37
Ireland (IE) 19 0.20 4.2 0.31 11 0.42 5.7 0.53 1976 0.21 3204 0.21
Italy (IT) 25 0.20 7 0.40 27 0.32 11 0.43 1332 0.11 3731 0.33
Lithuania (LT) 8.9 0.29 3 0.52 12 0.48 8.5 0.64 587 0.14 1825 0.39
Luxembourg (LU) 27 0.21 5.4 0.69 22 0.70 11 0.72 2877 0.16 3662 0.48
Latvia (LV) 3.4 0.17 0.89 0.63 3.8 0.47 2.9 0.60 257 0.15 581 0.45
Netherlands (NL) 57 0.21 6 0.53 46 0.46 21 0.64 4987 0.12 4157 0.36
Poland (PL) 14 0.21 4.9 0.38 15 0.45 8.0 0.61 788 0.15 2714 0.29
Portugal (PT) 14 0.26 4.0 0.38 15 0.44 11 0.55 824 0.14 1996 0.31
Romania (RO) 8.5 0.17 1.6 0.30 7.2 0.37 3.7 0.41 603 0.14 956 0.20
Sweden (SE) 7.7 0.21 0.89 0.48 11 0.57 5.5 0.63 750 0.14 790 0.29
Slovenia (SI) 23 0.21 8.6 0.47 13 0.49 6.2 0.48 1265 0.14 4970 0.35
Slovakia (SK) 11 0.19 3.3 0.44 13 0.42 5.4 0.46 660 0.13 1951 0.32

United Kingdom (UK) 18 0.17 3.7 0.32 14 0.33 7.5 0.40 1779 0.16 2778 0.21
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4.2.3 Effect of the three robustness scenarios at European level 

4.2.3.1 Results  

The effect of the three robustness scenarios on the output uncertainty, at European 
level, was visualized by: 
 Box-plots, provided in Figure 21, describing the output uncertainty according to 

each scenario; 
 Column charts, provided in Figure 22, describing the relative output uncertainty 

according to each scenario. 
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Figure 21. Box-plots displaying uncertainty in N and GWP outputs, for each robustness scenario, 

at European level 
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Figure 22. Column charts displaying relative uncertainty in N and 

GWP outputs, for the three robustness scenarios, at 
European level 

 
The results based on Figure 22 and Table 13 show that the relative uncertainty in 

all model outputs, with all three scenarios considered, varies from 12% (max Opt) to 
55% (max Pes) and it increases in the same direction as for the Reference scenario. 

4.2.3.2 Discussion  

Results based on box-plots 
When examining the three scenarios based on box-plots shown in Figure 21, it can 

be seen that the uncertainty in each output increases greatly from the Optimistic to 
the Pessimistic scenario for all outputs. For NH3, NleGW, and CH4 the mean values 
are kept almost at the same levels whereas for NOx, NleSW, and N2O the mean values 
increase slightly going from Optimistic to Pessimistic scenario. This can be 
explained by the skewness of the lognormally APs that affected these fluxes and as a 
result their mean values were influenced as well. 
 

Results based on column charts 
When examining the three scenarios based on column charts shown in Figure 22 , 

the increased relative uncertainty in the model outputs, going from the Optimistic to 
the Pessimistic scenario, looks even profounder compared with the overview given 
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by the box-plots. This is because going from the Optimistic to the Pessimistic 
scenario the relative uncertainty is 4-6 times higher. When going from the Reference 
scenario, for which the uncertainty analysis was carried out in detail, to the 
Pessimistic scenario the relative uncertainty is 1.3-2 times higher and inversely when 
going from the Reference to the Optimistic scenario the relative uncertainty is 2-3.3 
times lower. Table 13 is providing an additional overview with the CV values of all 
outputs for the three scenarios along with their CVrob (robustness) which is the CV 
calculated from the CV values of Opt, Ref and Pes scenarios for each model output 
respectively (e.g. 0.53 is the CV of: 0.04, 0.13, 0.20) 
 

Table 13. Values of CVs for N and GWP outputs according 
to each scenario, and their CVrob, at European 
level 

European level CV CVrob 

N outputs Opt Ref Pes 
All 3 

scenarios 
NH3 0.04 0.13 0.20 0.53 
NOx 0.08 0.24 0.45 0.59 
NleSW 0.12 0.27 0.55 0.57 

NleGW 0.10 0.34 0.46 050 

GWP outputs         

CH4 0.03 0.10 0.14 0.51 

N2O 0.07 0.17 0.33 0.56 

 
Based on Table 13, the CVrob (i.e. “the uncertainty in the uncertainty”) has a 

magnitude of approximately 50% and the relative uncertainty in the model outputs, 
according to the three scenarios, varies:  
 between   3 - 12 % for  the Optimistic; 
 between 10 - 34 % for  the Reference; 
 between 14 - 55 % for  the Pessimistic. 
 
Consequently, the relative uncertainty obtained by this research, which is most 

likely in the range of 12-55%, can be considered low since for an environmental 
assessment at EU scale a real maximum of 55% is quite reliable. And this can be 
explained by the following example: if an output has relative uncertainty 10% and 
“the uncertainty in the uncertainty” is 50%, then the relative uncertainty for this 
output still remains in a range of 5-15% only. 

4.3 Uncertainty contribution of each group of APs to the total output 
uncertainty for the Reference scenario 

4.3.1 Results  

In this Section, the results from the summation of the model outputs according to 
sub-step “B” (see Section 3.5) are presented.  
 
The uncertainty contribution of NCU, NUTS, CNTRY and GEN group to the 

overall output uncertainty was visualized by: 
 Stack-columns, provided in Figure 23, describing the uncertainty contribution of 

each individual group to Country level outputs, concerning the five countries of 
EU-25 that were selected during sub-step “A”; 
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 Stack-columns, provided in Figure 24, describing the uncertainty contribution of 
each individual group to European level outputs. 
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Figure 23. Stack-columns displaying uncertainty contribution of each group of APs to N and 

GWP outputs, for each of the five EU countries  
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Figure 24. Stack-columns displaying uncertainty contribution of each group of APs to N and 

GWP outputs, at European level 
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The results, based on Figure 23 and Figure 24, indicate that the APs of the NCU 
group have the most significant contribution to the total output uncertainty. 

4.3.2 Discussion  

When examining the stack-columns for the five countries shown in Figure 23, it 
can be seen that the group contributing mostly to the uncertainty in NOx, NleSW, 
NleGW and N2O fluxes is the NCU group. The GEN group has a small contribution 
to NleSW and NleGW (for Greece and Poland) and this seems rather logical since AP10 
and AP11, which affect NleSW and NleGW, belong to the GEN group. For NH3 
emissions, the NUTS group, and at a lesser extent the GEN group (and slightly the 
CNTRY group) are contributing as well. The larger contribution of GEN group to 
NH3 emissions for Greece and Poland, compared with the other countries, can be 
explained by the fact that GEN APs affect mainly the amount of NH3 emissions in 
countries where chemical fertilizers are used. Mediterranean countries like Greece 
are using urea as fertilizer which has a relatively high emission factor. This is the 
reason why in countries where most of NH3 emissions are released from animal 
excretion and application of manure, such as the Netherlands, there is hardly any 
contribution of the GEN group to the uncertainty in the NH3 emissions. 
 
For CH4, the NUTS group is the only one that contributes to the output uncertainty 

(except for the slight percentage of CNTRY group that also contributes to the 
outputs produced for Greece). The latter could be explained by the fact that AP54, 
AP55, and AP56 belong to the NUTS group and obviously had a heavier influence on 
CH4 emissions than the CNTRY APs. 
 
When examining the stack-columns for the whole EU-25, shown in Figure 24, it 

can be seen that the uncertainty percentages from each group have almost the same 
patterns as the ones discussed above.  
 
By summarizing the results, which showed that the NCU group is the most 

important source to the total output uncertainty, the conclusion that can be drawn is 
that by gathering more detailed data on NCU parameters as well as more knowledge 
about the processes these parameters are associated with the output uncertainty of 
INTEGRATOR model can be reduced. Furthermore, another conclusion can be also 
made based on the fact that the verification of the model takes place by checking its 
estimates against independent measurements and against results from inverse 
modelling (De Vries et al. 2011b). And this conclusion is that the gathering of field 
observations that can be used for a calibration may also lead to lower uncertainty 
ranges in the APs. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Main conclusions 

After having completed all steps of the uncertainty propagation methodology to the 
INTEGRATOR model, the general conclusion that can be made is that the objective 
of this research has been met. The uncertainty in the APs was characterized by 
defining the parameters of their pdfs and exploring the impact of their uncertainty on 
N fluxes and CH4 emissions using Optimistic (Opt), Reference (Ref) and Pessimistic 
(Pes) scenarios for the assumed input uncertainties (Robustness analysis). The model 
was run by applying the Monte Carlo simulation. The uncertainty in the model 
outputs was quantified by computing the statistics of the output´s pdfs. The 
uncertainty contribution of the APs to overall output uncertainty was also analysed. 
The following paragraphs provide the main conclusions drawn from the results of 
this research and their comparison with other independent sources. 
 
By using the Reference values for the assigned uncertainties in the APs, the results 

at European level showed that the propagated relative uncertainty in model outputs 
ranges from 10 to 34% and increases in the direction: CH4,em, NH3,em < N2Oem < 
NOx,em < NleSW, NleGW. The results at County level showed that the propagated 
relative uncertainty in model outputs ranges from 11 to 92% and increases in the 
direction: CH4,em, NH3,em < N2Oem, NleSW < NOx,em, NleGW. The results by 
examining five representatives EU countries showed that differences in uncertainties 
(expressed as SDs) among countries are caused by APs related to numbers of 
animals and application of manure and fertilizers. The Netherlands has the highest 
uncertainty in all outputs. 
 
When comparing the three robustness scenarios, the results showed that the relative 

uncertainty in model outputs for the Pessimistic scenario is 1.3-2 times higher than 
for the Reference scenario, it ranges from 12 to 55% and it increases in the same 
direction as for the Reference scenario. Inversely, the relative uncertainty for the 
Optimistic scenario is about 2-3.3 times lower than for the Reference scenario and it 
ranges from 3 to 12% only. In general, the results obtained from the Robustness 
analysis indicate that a quite robust statement can be made: the relative uncertainty is 
less than 55% for all considered model outputs and most likely in the range of 12-
55%. 
 
The uncertainty contribution of each group of APs to the total output uncertainty 

showed that the APs from NCU have the highest contribution and therefore 
additional data on them is required for the reduction of the overall output 
uncertainty. 
 
The validation of the statistical models (pdfs) used for the uncertainty in the APs 

showed that statistics calculated during this research were similar to statistics from 
other related researches and thus the employment of these models can be judged 
efficient for the objective of this research. 

5.2 Addressing the research questions 

This Section provides a summary about how each research question (see also 
Section 1.4) was addressed: 
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RQ1: How can statistical models (joint pdfs) be built that fully characterize the 
uncertainty in the APs by taking into account their spatial- and cross-correlations? 

The uncertainty in the APs was represented by means of pdfs. The parameters of 
these pdfs were derived partly from European datasets and partly from expert 
knowledge by assuming that the values of the APs were normally or lognormally 
distributed. For each AP the following parameters were defined: the CVs or SDs, the 
spatial- and cross-correlations coefficients between plots within the four spatial 
levels of INTEGRATOR (NCU, NUTS, Country and Europe), and the minimum and 
maximum value. Additionally an analysis on these statistics was performed by three 
robustness scenarios: Optimistic, Reference and Pessimistic. The APs, depending on 
the spatial level they were linked to, were divided in four groups: NCU, NUTS, 
CNTRY, and GEN. 
 

RQ2: How can realizations of APs be sampled efficiently from their pdfs by using 
stochastic simulation techniques? 
After the pdf of each AP was defined, the next step was the generation of a sample 

of 1000 simulated values for each AP, randomly drawn for their pdfs. This was done 
by using the “rmultnorm” function (Multivariate Normal Random Number 
Generator) incorporated in R software. Before this generator was used, the following 
statistical model for each simulated value x(i) was adopted:  ξ(i)σ(i)μ(i)x(i)   
Where : 
μ(i) was the mean value for each AP 
σ(i) was the SD for each AP 
ξ(i) a standard normal variable 
 
 The values of σ(i) were estimated with RQ1, and the values of μ(i) were available 

in  INTEGRATOR´s database, so the simulation of x(i) could be achieved only 
through the simulation of ξ(i). Since x(i) and ξ(i) had a linear relationship, ξ(i) could 
be simulated by using the spatial-correlations coefficient matrices as specified for 
x(i). So an R-script was developed where the spatial-correlations coefficient matrices 
for each AP were built first and then the simulation of ξ(i) took place by using the 
“rmultnorm” function. Finally the 1000 simulations, produced for each group of 
APs, were stored in files with names and format according to INTEGRATOR 
requirements. 
 
RQ3: How can the Monte Carlo uncertainty propagation analysis be carried out in 
batch mode and its results be stored automatically? 
The Monte Carlo uncertainty propagation analysis took place through the execution 

of an R-script where the INTEGRATOR dll was loaded. The running of the model 
for the 1000 input files from each group of APs, and the storing of the output files 
was implemented within a “for loop”. The steps of the loop were the following:  
1. Each input simulation from each group was provided; 
2. The model was run; 
3. One output simulation for NH3, NOx, NleSW, NleGW, CH4, and N2O respectively 

was produced at Country and European Level, and it was stored in a 
corresponding folder. 

 
The above three steps were repeated 1000 times in batch mode. 
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RQ4: How can the results of the uncertainty propagation analysis be summarised and 
visualised and thus efficiently communicated to end-users across Europe? 
The 1000 output simulations for the six output fluxes, produced at Country and 

European level, were summarized by checking: 
 The effect the spatial aggregation to European level had on the output uncertainty;  
 The effect the spatial aggregation to Country level had on the output uncertainty;  
 The effect the three robustness scenarios had on the output uncertainty. 
 
The summation of the results took place by visualizing the SD, CV and the mean 

values with box-plots, column-(line) charts, choropleth maps and tables. 
 

RQ5: Which APs are the main uncertainty sources contributing to the total output 
uncertainty?  
The uncertainty contribution of each group of APs to the total output uncertainty 

was implemented by running the model again another four times where each time 
only one of the four groups was made uncertain. The rest of the groups were fixed at 
their default averaged values. The uncertainty contribution of each group was 
derived by dividing the variance of the outputs estimated when only this group was 
made uncertain by the variance of the outputs estimated when all four groups were 
uncertain during the first time the model was run. An R-script was written for the 
estimation of these contributions and the results, which were visualised with stack-
columns, showed that the NCU group is the main uncertainty source contributing to 
the total output uncertainty. 

5.3 Recommendations for further research 

Some steps that can be recommended for further research are the following: 
 Include uncertainties in output fluxes released from non-agricultural soils as well;  
 Include uncertainty in model inputs such as climatic variables, land cover, soil 

type, soil pH  etc. concerning  both agricultural and non-agricultural soils; 
 Include model structure uncertainty by quantifying residual errors of modelling 

approaches used to calculate N emissions (e.g. N2O from natural areas); 
 Assess uncertainty in INTEGRATOR outputs by comparing them with outputs 

produced from other models with different complexity and data requirements. Such 
an approach is described in the paper of De Vries et al. (2011a) who compared land 
N budget (i.e. N inputs – N removals) of agricultural systems in Europe, for the 
year 2000, that was estimated by four different models: INTEGRATOR, IDEAg, 
MITERRA-EUROPE, and IMAGE. This approach is an optimal way to get the 
present insight into the problem of quantifying uncertainties in N output fluxes; 

 Investigate how uncertainty in INTEGRATOR outputs can be further reduced by 
improving the emission and leaching/runoff factors as well as the simple process-
based and empirical approaches incorporated in the model to calculate N and GHG 
emissions. 
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APPENDICES 
 

Appendix 1. Tables with the pdf parameters of each AP according  to the three robustness scenarios  
Reference scenario 
Code Level Distribution CV  SD Min Max Unit ρNCU ρNUTS ρCOUNTRY 
aninr_ca CNTRY Normal 0.1  0 inf Head 1 1 0.5 
aninr_oc CNTRY Normal 0.1  0 inf Head 1 1 0.5 
aninr_pp CNTRY Normal 0.1  0 inf Head 1 1 0.5 
aninr_po CNTRY Normal 0.1  0 inf Head 1 1 0.5 
Nexf_ca NUTS Normal 0.25  0 inf kg N / head 1 0.85 0.5 
Nexf_oc NUTS Normal 0.25  0 inf kg N / head 1 0.85 0.5 
Nexf_pp NUTS Normal 0.25  0 inf kg N / head 1 0.85 0.5 
Nexf_po NUTS Normal 0.25  0 inf kg N / head 1 0.2 0.2 
Cnam NUTS Normal 0.25  0 inf kg C / Kg N 1 0.2 0.2 
f_Nav_dep GEN Normal 0.25  0 1 - 1 1 1 
f_Nav_om GEN Normal 0.25  0 1 - 1 1 1 
fhs_ca NUTS Normal 0.25  0 1 - 1 0.5 0.2 
fhs_oc NUTS Normal 0.25  0 1 - 1 0.5 0.2 
frlam_ca NUTS Normal 0.25  0 1 - 1 0.85 0.5 
frlam_pp NUTS Normal 0.25  0 1 - 1 0.85 0.5 
fNemhs_NH3 NUTS Normal 0.25  0 1 - 1 0.85 0.5 
fNemms_NH3 NUTS Normal 0.25  0 1 - 1 0.85 0.5 
fNemhsl_N2O NUTS Lognormal  0.25 -inf 0 - 1 0.85 0.5 
fNemmsl_N2O NUTS Lognormal  0.25 -inf  0 - 1 0.85 0.5 
fNemhsl_NO NUTS Lognormal  0.25 -inf  0 - 1 0.85 0.5 
fNemmsl_NO NUTS Lognormal  0.25 -inf  0 - 1 0.85 0.5 
fNemhss_N2O NUTS Lognormal  0.5 -inf  0 - 1 0.85 0.5 
fNemmss_N2O NUTS Lognormal  0.5 -inf  0 - 1 0.85 0.5 
fNemhss_NO NUTS Lognormal  0.5 -inf  0 - 1 0.85 0.5 
fNemmss_NO NUTS Lognormal  0.5 -inf  0 - 1 0.85 0.5 
wamhsara NUTS Normal 0.25  0 1 - 1 0.5 0.2 
wamhsgrass NUTS Normal 0.25  0 inf - 1 0.5 0.2 
Area_int NUTS Normal 0.25  0 inf - 1 0.5 0.2 
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Reference scenario 
Code Level Distribution CV  SD Min Max Unit ρNCU ρNUTS ρCOUNTRY 
tNfe CNTRY Normal 0.1  0 inf ton N / country 1 1 0.5 
Ndep NCU Normal 0.25  0 inf kg N / ha 0.5 0.2 0.2 
Nfix_ar NCU Normal 0.5  0 inf kg N / ha 0.5 0.2 0.2 
Nfix_gr NCU Normal 0.5  0 inf kg N / ha 0.5 0.2 0.2 
Nfix_le NCU Normal 0.25  0 inf kg N / ha 0.5 0.2 0.2 
Yieldopt_ar NCU Normal 0.25  0 inf ton FW / ha 0.85 0.5 0.2 
Yieldopt_fo NCU Normal 0.25  0 inf ton FW / ha 0.85 0.5 0.2 
Yieldopt_gi NCU Normal 0.25  0 inf ton FW / ha 0.85 0.85 0.5 
Yieldopt_ge NCU Normal 0.25  0 inf ton FW / ha 0.85 0.5 0.5 
ctNplmx_ar NCU Normal 0.25  0 inf g N / kg FW 0.5 0.2 0.2 
ctNplmx_fo NCU Normal 0.25  0 inf g N / kg FW 0.5 0.5 0.2 
ctNplmx_gi NCU Normal 0.25  0 inf g N / kg FW 0.5 0.5 0.2 
ctNplmx_ge NCU Normal 0.25  0 inf g N / kg FW 0.85 0.85 0.5 
Nind NCU Normal 0.25  0 inf - 0.5 0.2 0.2 
fup NCU Normal 0.1  0 1 - 0.5 0.5 0.2 
frmin NCU Normal 0.25  0 inf - 0.5 0.5 0.2 
Ninmx NCU Normal 0.25  0 inf Kg N /ha 0.5 0.5 0.2 
CNso_ms NCU Normal 0.25  0 inf kg C / kg N 0.5 0.5 0.2 
fNemap_NH3 NCU Normal 0.25  0 1 - 0.5 0.5 0.2 
fNemsi_N2O NCU Normal 0.5  0 1 - 0.2 0.2 0.2 
rNON2O NCU Lognormal  0.75 -inf 0 - 0.5 0.2 0.2 
fNle NCU Normal 0.25  0 1 - 0.5 0.5 0.2 
flems NUTS Normal 0.5  0 1 - 1 0.85 0.5 
fsr NCU Normal 0.25  0 1 - 0.5 0.5 0.2 
fro NCU Normal 0.25  0 1 - 0.5 0.5 0.2 
a_CH4_ca NUTS Normal 0.25  0 inf kgCH4/kg milk 1 0.85 0.5 
b_CH4_ca NUTS Normal 0.25  0 inf kg CH4 per head 1 0.85 0.5 
CH4_oc NUTS Normal 0.25  0 inf kg CH4 per head 1 0.85 0.5 
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Optimistic scenario 
Code Level Distribution CV  SD Min Max Unit ρNCU ρNUTS ρCOUNTRY 
aninr_ca CNTRY Normal 0.05  0 inf Head 1 1 0.3 
aninr_oc CNTRY Normal 0.05  0 inf Head 1 1 0.3 
aninr_pp CNTRY Normal 0.05  0 inf Head 1 1 0.3 
aninr_po CNTRY Normal 0.05  0 inf Head 1 1 0.3 
Nexf_ca NUTS Normal 0.1  0 inf kg N / head 1 0.8 0.3 
Nexf_oc NUTS Normal 0.1  0 inf kg N / head 1 0.8 0.3 
Nexf_pp NUTS Normal 0.1  0 inf kg N / head 1 0.8 0.3 
Nexf_po NUTS Normal 0.1  0 inf kg N / head 1 0.1 0.1 
Cnam NUTS Normal 0.1  0 inf kg C / Kg N 1 0.1 0.1 
f_Nav_dep GEN Normal 0.1  0 1 - 1 1 1 
f_Nav_om GEN Normal 0.1  0 1 - 1 1 1 
fhs_ca NUTS Normal 0.1  0 1 - 1 0.3 0.1 
fhs_oc NUTS Normal 0.1  0 1 - 1 0.3 0.1 
frlam_ca NUTS Normal 0.1  0 1 - 1 0.8 0.3 
frlam_pp NUTS Normal 0.1  0 1 - 1 0.8 0.3 
fNemhs_NH3 NUTS Normal 0.1  0 1 - 1 0.8 0.3 
fNemms_NH3 NUTS Normal 0.1  0 1 - 1 0.8 0.3 
fNemhsl_N2O NUTS Lognormal  0.125 -inf 0 - 1 0.8 0.3 
fNemmsl_N2O NUTS Lognormal  0.125 -inf 0 - 1 0.8 0.3 
fNemhsl_NO NUTS Lognormal  0.125 -inf 0 - 1 0.8 0.3 
fNemmsl_NO NUTS Lognormal  0.125 -inf 0 - 1 0.8 0.3 
fNemhss_N2O NUTS Lognormal  0.25 -inf 0 - 1 0.8 0.3 
fNemmss_N2O NUTS Lognormal  0.25 -inf 0 - 1 0.8 0.3 
fNemhss_NO NUTS Lognormal  0.25 -inf 0 - 1 0.8 0.3 
fNemmss_NO NUTS Lognormal  0.25 -inf 0 - 1 0.8 0.3 
wamhsara NUTS Normal 0.1  0 1 - 1 0.3 0.1 
wamhsgrass NUTS Normal 0.1  0 inf - 1 0.3 0.1 
Area_int NUTS Normal 0.1  0 inf - 1 0.3 0.1 
tNfe CNTRY Normal 0.05  0 inf ton N / country 1 1 0.3 
Ndep NCU Normal 0.1  0 inf kg N / ha 0.3 0.1 0.1 
Nfix_ar NCU Normal 0.4  0 inf kg N / ha 0.3 0.1 0.1 
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Optimistic scenario 
Code Level Distribution CV  SD Min Max Unit ρNCU ρNUTS ρCOUNTRY 
Nfix_gr NCU Normal 0.4  0 inf kg N / ha 0.3 0.1 0.1 
Nfix_le NCU Normal 0.1  0 inf kg N / ha 0.3 0.1 0.1 
Yieldopt_ar NCU Normal 0.1  0 inf ton FW / ha 0.8 0.3 0.1 
Yieldopt_fo NCU Normal 0.1  0 inf ton FW / ha 0.8 0.3 0.1 
Yieldopt_gi NCU Normal 0.1  0 inf ton FW / ha 0.8 0.8 0.3 
Yieldopt_ge NCU Normal 0.1  0 inf ton FW / ha 0.8 0.3 0.3 
ctNplmx_ar NCU Normal 0.1  0 inf g N / kg FW 0.3 0.1 0.1 
ctNplmx_fo NCU Normal 0.1  0 inf g N / kg FW 0.3 0.3 0.1 
ctNplmx_gi NCU Normal 0.1  0 inf g N / kg FW 0.3 0.3 0.1 
ctNplmx_ge NCU Normal 0.1  0 inf g N / kg FW 0.8 0.8 0.3 
Nind NCU Normal 0.1  0 inf - 0.3 0.1 0.1 
fup NCU Normal 0.05  0 1 - 0.3 0.3 0.1 
frmin NCU Normal 0.1  0 inf - 0.3 0.3 0.1 
Ninmx NCU Normal 0.1  0 inf Kg N /ha 0.3 0.3 0.1 
Cnso_ms NCU Normal 0.1  0 inf kg C / kg N 0.3 0.3 0.1 
fNemap_NH3 NCU Normal 0.1  0 1 - 0.3 0.3 0.1 
fNemsi_N2O NCU Normal 0.4  0 1 - 0.1 0.1 0.1 
rNON2O NCU Lognormal  0.375 -inf 0 - 0.3 0.1 0.1 
fNle NCU Normal 0.1  0 1 - 0.3 0.3 0.1 
flems NUTS Normal 0.4  0 1 - 1 0.8 0.3 
fsr NCU Normal 0.1  0 1 - 0.3 0.3 0.1 
fro NCU Normal 0.1  0 1 - 0.3 0.3 0.1 
a_CH4_ca NUTS Normal 0.1  0 inf kgCH4/kg milk 1 0.8 0.3 
b_CH4_ca NUTS Normal 0.1  0 inf kg CH4 per head 1 0.8 0.3 
CH4_oc NUTS Normal 0.1  0 inf kg CH4 per head 1 0.8 0.3 
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Pessimistic Scenario 
Code Level Distribution CV  SD Min Max Unit ρNCU ρNUTS ρCOUNTRY 
aninr_ca CNTRY Normal 0.15  0 inf Head 1 1 0.7 
aninr_oc CNTRY Normal 0.15  0 inf Head 1 1 0.7 
aninr_pp CNTRY Normal 0.15  0 inf Head 1 1 0.7 
aninr_po CNTRY Normal 0.15  0 inf Head 1 1 0.7 
Nexf_ca NUTS Normal 0.3  0 inf kg N / head 1 0.9 0.7 
Nexf_oc NUTS Normal 0.3  0 inf kg N / head 1 0.9 0.7 
Nexf_pp NUTS Normal 0.3  0 inf kg N / head 1 0.9 0.7 
Nexf_po NUTS Normal 0.3  0 inf kg N / head 1 0.3 0.3 
Cnam NUTS Normal 0.3  0 inf kg C / Kg N 1 0.3 0.3 
f_Nav_dep GEN Normal 0.3  0 1 - 1 1 1 
f_Nav_om GEN Normal 0.3  0 1 - 1 1 1 
fhs_ca NUTS Normal 0.3  0 1 - 1 0.7 0.3 
fhs_oc NUTS Normal 0.3  0 1 - 1 0.7 0.3 
frlam_ca NUTS Normal 0.3  0 1 - 1 0.9 0.7 
frlam_pp NUTS Normal 0.3  0 1 - 1 0.9 0.7 
fNemhs_NH3 NUTS Normal 0.3  0 1 - 1 0.9 0.7 
fNemms_NH3 NUTS Normal 0.3  0 1 - 1 0.9 0.7 
fNemhsl_N2O NUTS Lognormal  0.375 -inf 0 - 1 0.9 0.7 
fNemmsl_N2O NUTS Lognormal  0.375 -inf 0 - 1 0.9 0.7 
fNemhsl_NO NUTS Lognormal  0.375 -inf 0 - 1 0.9 0.7 
fNemmsl_NO NUTS Lognormal  0.375 -inf 0 - 1 0.9 0.7 
fNemhss_N2O NUTS Lognormal  0.75 -inf 0 - 1 0.9 0.7 
fNemmss_N2O NUTS Lognormal  0.75 -inf 0 - 1 0.9 0.7 
fNemhss_NO NUTS Lognormal  0.75 -inf 0 - 1 0.9 0.7 
fNemmss_NO NUTS Lognormal  0.75 -inf 0 - 1 0.9 0.7 
wamhsara NUTS Normal 0.3  0 1 - 1 0.7 0.3 
wamhsgrass NUTS Normal 0.3  0 inf - 1 0.7 0.3 
Area_int NUTS Normal 0.3  0 inf - 1 0.7 0.3 
tNfe CNTRY Normal 0.15  0 inf ton N / country 1 1 0.7 
Ndep NCU Normal 0.3  0 inf kg N / ha 0.7 0.3 0.3 
Nfix_ar NCU Normal 0.6  0 inf kg N / ha 0.7 0.3 0.3 
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Pessimistic Scenario 
Code Level Distribution CV  SD Min Max Unit ρNCU ρNUTS ρCOUNTRY 
Nfix_gr NCU Normal 0.6  0 inf kg N / ha 0.7 0.3 0.3 
Nfix_le NCU Normal 0.3  0 inf kg N / ha 0.7 0.3 0.3 
Yieldopt_ar NCU Normal 0.3  0 inf ton FW / ha 0.9 0.7 0.3 
Yieldopt_fo NCU Normal 0.3  0 inf ton FW / ha 0.9 0.7 0.3 
Yieldopt_gi NCU Normal 0.3  0 inf ton FW / ha 0.9 0.9 0.7 
Yieldopt_ge NCU Normal 0.3  0 inf ton FW / ha 0.9 0.7 0.7 
ctNplmx_ar NCU Normal 0.3  0 inf g N / kg FW 0.7 0.3 0.3 
ctNplmx_fo NCU Normal 0.3  0 inf g N / kg FW 0.7 0.7 0.3 
ctNplmx_gi NCU Normal 0.3  0 inf g N / kg FW 0.7 0.7 0.3 
ctNplmx_ge NCU Normal 0.3  0 inf g N / kg FW 0.9 0.9 0.7 
Nind NCU Normal 0.3  0 inf - 0.7 0.3 0.3 
fup NCU Normal 0.15  0 1 - 0.7 0.7 0.3 
frmin NCU Normal 0.3  0 inf - 0.7 0.7 0.3 
Ninmx NCU Normal 0.3  0 inf Kg N /ha 0.7 0.7 0.3 
CNso_ms NCU Normal 0.3  0 inf kg C / kg N 0.7 0.7 0.3 
fNemap_NH3 NCU Normal 0.3  0 1 - 0.7 0.7 0.3 
fNemsi_N2O NCU Normal 0.6  0 1 - 0.3 0.3 0.3 
rNON2O NCU Lognormal  1.125 -inf 1 - 0.7 0.3 0.3 
fNle NCU Normal 0.3  0 1 - 0.7 0.7 0.3 
flems NUTS Normal 0.6  0 inf - 1 0.9 0.7 
fsr NCU Normal 0.3  0 inf - 0.7 0.7 0.3 
fro NCU Normal 0.3  0 inf - 0.7 0.7 0.3 
a_CH4_ca NUTS Normal 0.3  0 inf Kg CH4/kg milk 1 0.9 0.7 
b_CH4_ca NUTS Normal 0.3  0 inf kg CH4 per head 1 0.9 0.7 
CH4_oc NUTS Normal 0.3  0 inf kg CH4 per head 1 0.9 0.7 
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Appendix 2. Algorithms for: A. Generating the MC input files – B. Running 
the model and storing the MC output files 

 
A. Generating the MC input files 
The steps of the algorithm developed for the generation of the 1000 MC input files 

for the APs of the NUTS group were the following: 
1. The individual NUTS regions with their ids were created 
2. The pdf parameters for each AP from NUTS group, for the Reference scenario, 

were read 
3. The spatial-correlation coefficients matrices for each AP from NUTS group were 

produced within a “for loop” 
4. The 1000 simulations of (i) were generated by the “rmultnorm” function  
5. The simulated value of (i) was post-processed depending on whether the (i) or 

the CV(i) value was available 
6. The 1000 MC input files for each AP (per NUTS region) were produced within a 

“for loop” and they were stored in corresponding folders. 
 
With similar algorithms, 1000 Monte Carlo input files were created for each AP 

from the CNTRY group (per Country), and for each AP from the GEN group (for the 
whole Europe).  

 
The sequence number of each separate input file was indicated in the file name 

itself.  For instance, the input files for NUTS parameters were:  
NUTSPAR0001.CSV  
NUTSPAR0002.CSV 
…,  
NUTSPAR0999.CSV 
NUTSPAR1000.CSV 
 
 The format of the MC input files, for each of the three groups, was the following:  
 

NUTS parameters:  The file had 688 rows with each one of them representing one 
NUTS region, and 80 columns that are described below: 
 
Column 1: “NUTS_id” 
Column 2: “COUNTRY_id” 
Column 3: “Dist_id” of AP1 (Distribution type: N for Normal and L for Lognormal) 
Column 4: “Disp_id” of AP1 (Dispersion type: C for CV and S for SD) 
Column 5: “ParAP1” (i) (Simulated value for AP1 where i the number of the current 

simulation) 
Column 6: “Dist_id” of AP2 
Column 7: “Disp_id” of AP2 
Column 8: “ParAP2” (i) 
Column 9: “Dist_id” of AP3 
Column 10: “Disp_id” of AP3 
Column 11: “ParAP3” (i) 
… 
… 
Column 2+3n: “ParAPn” (i) (where n=26)  
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 CNTRY parameters: The file had 25 rows with each one of them representing one 
country of EU-25, and 17 columns that are described below: 
 

Column 1: “COUNTRY_id” 
Column 2: “COUNTRY_nr” 
Column 3: “Dist_id” of AP1 
Column 4: “Disp_id” of AP1 
Column 5: “ParAP1” (i) 
Column 6: “Dist_id” of AP2 
Column 7: “Disp_id” of AP2 
Column 8: “ParAP2” (i) 
Column 9: “Dist_id” of AP3 
Column 10: “Disp_id” of AP3 
Column 11: “ParAP3” (i) 
... 
... 
Column 2+3n: “ParAPn” (i) (where n=5) 
 

GEN parameters: The file had 1 row representing the whole Europe, and 6 columns, 
bearing the information for the 2 APs of the GEN group, that are described below: 
 
Column 1: “Dist_id” of AP1 
Column 2: “Disp_id” of AP1 
Column 3: “ParAP1” (i) 
Column 4: “Dist_id” of AP2 
Column 5: “Disp_id” of AP2 
Column 6: “ParAP2” (i) (where n=2) 
 
B. Running the model and storing the MC output files 
 The steps of the algorithm developed for running the model in batch mode and 

storing its output files were the following: 
1. The dll was loaded 
2. The functions defined in the dll were called  
3. The input and output parameters (directories) were set up 
4. Each input file from NCU, NUTS, CNTRY and GEN groups was provided 
5. The model was run 
6. One output file for NH3, NOx, NleSW, NleGW, CH4, and N2O was produced at 

Country and European level and it was stored in a corresponding folder. 
 
Steps 4, 5 and 6 were being repeated 1000 times, within a “for loop”.  
 
The sequence number of each separate output file was indicated in the file name 

itself. For example:  
 for N2O emissions:  

N2Oemis0001.CSV, N2Oemis0002.CSV,…, N2Oemis0999.CSV,  N2Oemis 
1000.CSV; 

 for CH4 emissions:  
CH4emis0001.CSV, CH4emis0002.CSV,…, CH4emis0999.CSV,  CH4emis 
1000.CSV ; 

 and so on for the rest of the model outputs. 
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These output files contained two columns: the “polyID” and the “val”. The 

“polyID” was linked to each country of EU-25 in the Country level outputs, and to 
Europe in the European level outputs. The “val” column was bearing the information 
about the output value for the six fluxes. 
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Appendix 3. R-script for the generation of 1000 MC input files for the APs of 

NUTS group for the Reference scenario 
 
#SCRIPT FOR THE GENERATION OF 1000 MC INPUT FILES FOR NUTS APs  
 
#clean-up memory: 
rm(list = ls()) 
 
#read the NCUs with their associated NUTS and COUNTRIES: 
NCU = read.csv(file = 'NCU26.csv', header = TRUE, sep = ",", 
na.strings = '#N/A') 
 
#group by the NUTS with their COUNTRIES from NCU(indirectly with  
#the aggregation function with FUN=min): 
NUTS = aggregate(NCU$NCU_NR, list(NUTS = NCU$FSS_NUTS_N, COUNTRY = 
NCU$COUNTRY), min) 
 
#read the agricultural parameters with their associated statistical 
#info and their correlations: 
paramALL = read.csv(file = 'Parameters_Ref.csv', header = TRUE, sep 
= ",") 
 
#select only the NUTS parameters: 
param = subset(paramALL, paramALL$Level=="NUTS") 
 
#define n as the number of rows of NUTS: 
n = dim(NUTS)[1] 
 
#define m as the number of parameters: 
m = dim(param)[1] 
 
#load "mtvnorm" package: 
library(MSBVAR) 
 
#define the number of MC runs: 
k=1000 
 
#create the initial dataframe ds containing the NUTS and the 
#COUNTRIES: 
ds = data.frame(NUTS$NUTS, NUTS$COUNTRY) 
 
#then assign an index to NUTS parameters in list and make a loop to 
#create the RHO matrix for every parameter: 
for (parindex in 1:m) { 
 
#initialize correlation matrix with rhoCOUNTRY: 
RHO = matrix(data = param$rhoCOUNTRY[parindex], nrow = n, ncol = n) 
 
#replace diagonal with 1s: 
for (i in 1:n){ 
  RHO[i,i] = 1}   
 
#replace correlation of pairs in the same country with rhoNUTS: 
for (i in 1:(n-1)) { 
 for (j in (i+1):n)  { 
   if (NUTS$COUNTRY[i] == NUTS$COUNTRY[j]) 
     RHO[i,j] = param$rhoNUTS[parindex]  
     RHO[j,i] = RHO[i,j] } }  
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#simulate the ξ(i)(ksi) from the multivariate normal distribution: 
sim = rmultnorm(n = k, rep(0, times=n), vmat = RHO, tol = 1e-10) 
 
#post-process the simulations of ksi depending on parameters 
#characterized by CV or SD: 
if(!is.na(param$CV[parindex])) 
      sim = sim * param$CV[parindex]+ 1 
   else 
      sim = sim * param$SD[parindex]  
    
#append the transposed matrix "t(sim)" with the simulated values to 
#the dataframe ds: 
ds = data.frame(ds, t(sim)) 
 
# end of parindex loop: 
} 
 
# make a loop to generate the MC input files with the required 
#format: 
for (MC in 1:k)  { 
 
#create a second dataframe ds2 which contains only the 2 first 
#columns from the ds: 
ds2 = data.frame(ds[,1:2]) 
 
#rename the columns of ds2 to the required names: 
names(ds2)= c("NUTS_id", "COUNTRY_id") 
 
#make a loop for every parameter to create a dataframe with 3 
#intermediate columns containing info for its pdf (N for  
#Normal or L for Lognormal), its dispersion(S for SD or C for  
#CV)and its simulated values: 
for (i in 1:m) { 
ds3= 
data.frame(substring(param$Distribution[i],1,1),ifelse(!is.na(param$
SD[i]), "S", "C"), ds[,(i-1)*k+2+MC]) 
 
#create a short name for the NUTS parameters: 
parname = param$Code[i] 
 
#rename the columns of ds3 to the required names: 
names(ds3)= c(paste("Dist_id",parname, sep=""), paste("Disp_id", 
parname, sep=""), paste("Par", parname, sep="")) 
 
#create a new dataframe ds2 by merging the old ds2 and ds3: 
ds2 = data.frame(ds2,ds3)} 
 
#write the final MC input "csv" files: 
write.table(ds2, file = 
sprintf("E:\\Vicky_Ioannidi\\Reference_Scenario\\INTEGRATOR_ref\\inp
uts\\Nuts_param\\NUTSPAR%04d.csv", MC), row.names = FALSE, col.names 
= TRUE, sep = ",") 
 
# end of the MC loop: 
} 
 
#END OF SCRIPT 
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Appendix 4. Example of one Monte Carlo input file for the five APs of the CNTRY group 

  
 



 79

Appendix 5. R-script for running the model for the Optimistic scenario and 
storing its MC output files 

 
#SCRIPT FOR RUNNING THE MODEL IN BATCH MODE AND STORING ITS OUTPUTS  
 
# set the working directory 
setwd("E:\\Vicky_Ioannidi\\Optimistic_Scenario\\INTEGRATOR_Opt\\newi
nt") 
 
# load the DLL 
dyn.load("integratorua.dll") 
 
# get the function addresses defined in the DLL 
is.loaded("setmodeldirectory") 
is.loaded("initializedll") 
is.loaded("provideparamfile") 
is.loaded("run") 
is.loaded("getvalues") 
is.loaded("closeintegrator") 
is.loaded("getvalueslu") 
 
# setup input and output parameters 
theDir = character(length = 255) 
theDir = 
"E:\\Vicky_Ioannidi\\Optimistic_Scenario\\INTEGRATOR_Opt\\newint" 
theFolder = 
"E:\\Vicky_Ioannidi\\Optimistic_Scenario\\INTEGRATOR_Opt\\outputs\\i
npNCU_Nuts_Cntry_Gen\\" 
ier = as.integer(0) 
res =.Fortran("setmodeldirectory",err=ier,dir=theDir) 
str(res) 
thePath = character(length = 255) 
thePath  = 
"E:\\Vicky_Ioannidi\\Optimistic_Scenario\\INTEGRATOR_Opt\\output" 
res =.Fortran("initializedll",err=ier, path=thePath) 
str(res) 
 
# reserve space for the 4 variables 
theNCUFile  = character(length = 255) 
theNutsFile  = character(length = 255) 
theCntryFile  = character(length = 255) 
theGenFile  = character(length = 255) 
paramname = character(length=255) 
 
# provide repeatedly the input files from NCU, NUTS, CNTRY and GEN  
# groups  
for (i in 1:1000){ #start of "for loop" 
 theNCUFile = sprintf("E:\\Vicky_Ioannidi\\real_opt2\\real%04d.csv", 
i) 
 theLevel = as.integer(2) #NCU level 
 res 
=.Fortran("provideparamfile",err=ier,level=theLevel,file=theNCUFile) 
 str(res) 
 theNutsFile = 
sprintf("E:\\Vicky_Ioannidi\\Optimistic_Scenario\\INTEGRATOR_Opt\\in
puts\\Nuts_param\\nutspar%04d.csv", i) 
 theLevel = as.integer(1)#nuts level 
 res 
=.Fortran("provideparamfile",err=ier,level=theLevel,file=theNutsFile
) 
 str(res) 
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 theCntryFile = 
sprintf("E:\\Vicky_Ioannidi\\Optimistic_Scenario\\INTEGRATOR_Opt\\in
puts\\Cntry_param\\coupar%04d.csv", i) 
 theLevel = as.integer(0)#country level 
 res 
=.Fortran("provideparamfile",err=ier,level=theLevel,file=theCntryFil
e) 
 str(res) 
 theGenFile = 
sprintf("E:\\Vicky_Ioannidi\\Optimistic_Scenario\\INTEGRATOR_Opt\\in
puts\\Gen_param\\genpar%04d.csv", i) 
 theLevel = as.integer(3)#generic level 
 res 
=.Fortran("provideparamfile",err=ier,level=theLevel,file=theGenFile) 
 str(res) 
 
 # run the model 
 res =.Fortran("run",err=ier) 
 str(res) 
 # level: 0=EU, 1=country, 2=nuts, 3=ncu 
 # Stat: 1 = sum over area (kton), 2=weigthed mean (kg/ha) 
 Stat = as.integer(2)  
 
  
 # WRITE OUTPUT FILES AT COUNTRY LEVEL 
 level = as.integer(1)  
 # dimension of values MUST be given by number  
 valuesC = double(length=38) 
 numberC = as.integer(38) 
 
 paramname = ("N2Oemis") 
 res 
=.Fortran("getvalues",param=paramname,lev=level,stat=Stat,val=values
C,numb=numberC,err=ier) 
 str(res) 
 res$polyID = seq(1:length(res$val))-1 
 write.table(cbind(res$polyID,res$val), 
file=sprintf(paste(theFolder, 
"\\Cntry_level\\N2Oemis\\N2Oemis%04d.csv", sep=""), i), sep=",", 
row.names = FALSE, col.names =c("polyID","val")) 
  
 paramname = ("NH3emis") 
 res 
=.Fortran("getvalues",param=paramname,lev=level,stat=Stat,val=values
C,numb=numberC,err=ier) 
 str(res) 
 res$polyID = seq(1:length(res$val))-1 
 write.table(cbind(res$polyID,res$val), 
file=sprintf(paste(theFolder, 
"\\Cntry_level\\NH3emis\\NH3emis%04d.csv", sep=""), i), sep=",", 
row.names = FALSE, col.names =c("polyID","val")) 
  
 paramname = ("NOxemis") 
 res 
=.Fortran("getvalues",param=paramname,lev=level,stat=Stat,val=values
C,numb=numberC,err=ier) 
 str(res) 
 res$polyID = seq(1:length(res$val))-1 
 write.table(cbind(res$polyID,res$val), 
file=sprintf(paste(theFolder, 



 81

"\\Cntry_level\\NOxemis\\NOxemis%04d.csv", sep=""), i), sep=",", 
row.names = FALSE, col.names =c("polyID","val")) 
  
 paramname = ("CH4emis") 
 res 
=.Fortran("getvalues",param=paramname,lev=level,stat=Stat,val=values
C,numb=numberC,err=ier) 
 str(res) 
 res$polyID = seq(1:length(res$val))-1 
 write.table(cbind(res$polyID,res$val), 
file=sprintf(paste(theFolder, 
"\\Cntry_level\\CH4emis\\CH4emis%04d.csv", sep=""), i), sep=",", 
row.names = FALSE, col.names =c("polyID","val")) 
  
 paramname = ("NleGW") 
 res 
=.Fortran("getvalues",param=paramname,lev=level,stat=Stat,val=values
C,numb=numberC,err=ier) 
 str(res) 
 res$polyID = seq(1:length(res$val))-1 
 write.table(cbind(res$polyID,res$val), 
file=sprintf(paste(theFolder, "\\Cntry_level\\NleGW\\NleGW%04d.csv", 
sep=""), i), sep=",", row.names = FALSE, col.names 
=c("polyID","val")) 
  
 paramname = ("NleSW") 
 res 
=.Fortran("getvalues",param=paramname,lev=level,stat=Stat,val=values
C,numb=numberC,err=ier) 
 str(res) 
 res$polyID = seq(1:length(res$val))-1 
 write.table(cbind(res$polyID,res$val), 
file=sprintf(paste(theFolder, "\\Cntry_level\\NleSW\\NleSW%04d.csv", 
sep=""), i), sep=",", row.names = FALSE, col.names 
=c("polyID","val")) 
 
 # WRITE OUTPUT FILES AT EUROPE LEVEL 
 level = as.integer(0)  
 # dimension of values MUST be given by number 
 valuesE = double(length=1) 
 numberE = as.integer(1) 
 
 paramname = ("N2Oemis") 
 res 
=.Fortran("getvalues",param=paramname,lev=level,stat=Stat,val=values
E,numb=numberE,err=ier) 
 str(res) 
 res$polyID = seq(1:length(res$val))-1 
 write.table(cbind(res$polyID,res$val), 
file=sprintf(paste(theFolder, 
"\\Europe_level\\N2Oemis\\N2Oemis%04d.csv", sep=""), i), sep=",", 
row.names = FALSE, col.names =c("polyID","val")) 
  
 paramname = ("NH3emis") 
 res 
=.Fortran("getvalues",param=paramname,lev=level,stat=Stat,val=values
E,numb=numberE,err=ier) 
 str(res) 
 res$polyID = seq(1:length(res$val))-1 
 write.table(cbind(res$polyID,res$val), 
file=sprintf(paste(theFolder, 
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"\\Europe_level\\NH3emis\\NH3emis%04d.csv", sep=""), i), sep=",", 
row.names = FALSE, col.names =c("polyID","val")) 
  
 paramname = ("NOxemis") 
 res 
=.Fortran("getvalues",param=paramname,lev=level,stat=Stat,val=values
E,numb=numberE,err=ier) 
 str(res) 
 res$polyID = seq(1:length(res$val))-1 
 write.table(cbind(res$polyID,res$val), 
file=sprintf(paste(theFolder, 
"\\Europe_level\\NOxemis\\NOxemis%04d.csv", sep="") ,i), sep=",", 
row.names = FALSE, col.names =c("polyID","val")) 
  
 paramname = ("CH4emis") 
 res 
=.Fortran("getvalues",param=paramname,lev=level,stat=Stat,val=values
E,numb=numberE,err=ier) 
 str(res) 
 res$polyID = seq(1:length(res$val))-1 
 write.table(cbind(res$polyID,res$val), 
file=sprintf(paste(theFolder, 
"\\Europe_level\\CH4emis\\CH4emis%04d.csv", sep=""), i), sep=",", 
row.names = FALSE, col.names =c("polyID","val")) 
  
 paramname = ("NleGW") 
 res 
=.Fortran("getvalues",param=paramname,lev=level,stat=Stat,val=values
E,numb=numberE,err=ier) 
 str(res) 
 res$polyID = seq(1:length(res$val))-1 
 write.table(cbind(res$polyID,res$val), 
file=sprintf(paste(theFolder, 
"\\Europe_level\\NleGW\\NleGW%04d.csv", sep=""), i), sep=",", 
row.names = FALSE, col.names =c("polyID","val")) 
  
 paramname = ("NleSW") 
 res 
=.Fortran("getvalues",param=paramname,lev=level,stat=Stat,val=values
E,numb=numberE,err=ier) 
 str(res) 
 res$polyID = seq(1:length(res$val))-1 
 write.table(cbind(res$polyID,res$val), 
file=sprintf(paste(theFolder, 
"\\Europe_level\\NleSW\\NleSW%04d.csv", sep=""), i), sep=",", 
row.names = FALSE, col.names =c("polyID","val")) 
 
 
#end of "for loop" 
} 
 
res2 =.Fortran("closeintegrator") 
dyn.unload("integratorua.dll") 
 
#END OF SCRIPT 
 



 83

Appendix 6. Two MC output files with values for N2O emissions at Country 
and at European level 

 
1. Country level 
polyID val 

0 -99999 
1 2.491507 
2 5.138366 
3 0.776849 
4 -99999 
5 -99999 
6 2.410541 
7 2.308482 
8 1.680739 
9 0.998365 

10 0.727804 
11 1.183139 
12 -99999 
13 2.536951 
14 -99999 
15 0.986919 
16 1.375434 
17 5.807291 
18 -99999 
19 -99999 
20 1.774581 
21 -99999 
22 -99999 
23 1.124262 
24 4.551751 
25 0.577001 
26 -99999 
27 -99999 
28 4.663023 
29 -99999 
30 1.107753 
31 1.090217 
32 0.93709 
33 1.033482 
34 2.371039 
35 1.186418 
36 -99999 
37 3.968247 

Note: The cells with the code “-99999” are referring to countries that were stored in 
INTEGRATOR´s database but they were not included in EU-25 and thus no output value 
was produced for them.  
 
2. European level 
polyID val 

0 1.93578 
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Appendix 7. R-script for calculating means, SDs and CVs of the model outputs 
at Country level for the Reference scenario 

 
#SCRIPT TO CALCULATE: means, SDs and CVs for CH4, N2O, NH3, NleGW, 
#NleSW, NOx when INTEGRATOR inputs=NCU+NUTS+CNTRY+GEN APs  
#and outputs = aggregated to Country Level 
 
#clean up memory 
rm(list = ls()) 
 
#create the initial dataframes for INTEGRATOR outputs with the 
#PolyID and Country_ID 
dsCH4 = read.csv(file = 'Countries.csv', header = TRUE, sep = ",", 
na.strings = '#N/A') 
dsN2O = read.csv(file = 'Countries.csv', header = TRUE, sep = ",", 
na.strings = '#N/A') 
dsNH3 = read.csv(file = 'Countries.csv', header = TRUE, sep = ",", 
na.strings = '#N/A') 
dsNleGW = read.csv(file = 'Countries.csv', header = TRUE, sep = ",", 
na.strings = '#N/A') 
dsNleSW = read.csv(file = 'Countries.csv', header = TRUE, sep = ",", 
na.strings = '#N/A') 
dsNOx = read.csv(file = 'Countries.csv', header = TRUE, sep = ",", 
na.strings = '#N/A') 
 
 
#make a loop to read the multiple output files for all the N 
#emissions and N leaching and create their final dataframes 
NMC =1000 
for (i in 1:NMC) 
{ 
   CH4emis = 
read.csv(file=sprintf("E:\\Vicky_Ioannidi\\Reference_Scenario\\INTEG
RATOR_Ref\\outputs\\inpNCU_Nuts_Cntry_Gen\\Cntry_level\\CH4emis\\CH4
emis%04d.csv", i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   dsCH4 = data.frame(dsCH4, CH4emis$val) 
 
   N2Oemis = 
read.csv(file=sprintf("E:\\Vicky_Ioannidi\\Reference_Scenario\\INTEG
RATOR_Ref\\outputs\\inpNCU_Nuts_Cntry_Gen\\Cntry_level\\N2Oemis\\N2O
emis%04d.csv", i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   dsN2O = data.frame(dsN2O, N2Oemis$val) 
 
   NH3emis = 
read.csv(file=sprintf("E:\\Vicky_Ioannidi\\Reference_Scenario\\INTEG
RATOR_Ref\\outputs\\inpNCU_Nuts_Cntry_Gen\\Cntry_level\\NH3emis\\NH3
emis%04d.csv", i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   dsNH3 = data.frame(dsNH3, NH3emis$val) 
 
   NleGW = 
read.csv(file=sprintf("E:\\Vicky_Ioannidi\\Reference_Scenario\\INTEG
RATOR_Ref\\outputs\\inpNCU_Nuts_Cntry_Gen\\Cntry_level\\NleGW\\NleGW
%04d.csv", i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   dsNleGW = data.frame(dsNleGW, NleGW$val) 
 
   NleSW = 
read.csv(file=sprintf("E:\\Vicky_Ioannidi\\Reference_Scenario\\INTEG
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RATOR_Ref\\outputs\\inpNCU_Nuts_Cntry_Gen\\Cntry_level\\NleSW\\NleSW
%04d.csv", i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   dsNleSW = data.frame(dsNleSW, NleSW$val) 
 
   NOxemis = 
read.csv(file=sprintf("E:\\Vicky_Ioannidi\\Reference_Scenario\\INTEG
RATOR_Ref\\outputs\\inpNCU_Nuts_Cntry_Gen\\Cntry_level\\NOxemis\\NOx
emis%04d.csv", i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   dsNOx = data.frame(dsNOx, NOxemis$val) 
} 
 
#rename the columns of the final dataframes 
names(dsCH4)[3:ncol(dsCH4)]=c(paste("CH4emis_MC",(1:NMC), sep="")) 
names(dsN2O)[3:ncol(dsN2O)]=c(paste("N2Oemis_MC",(1:NMC), sep="")) 
names(dsNH3)[3:ncol(dsN2O)]=c(paste("NH3emis_MC",(1:NMC), sep="")) 
names(dsNleGW)[3:ncol(dsNleGW)]=c(paste("NleGW_MC",(1:NMC), sep="")) 
names(dsNleSW)[3:ncol(dsNleSW)]=c(paste("NleSW_MC",(1:NMC), sep="")) 
names(dsNOx)[3:ncol(dsNOx)]=c(paste("NOxemis_MC",(1:NMC), sep="")) 
 
#STATISTICS for CH4emis 
 
#create a dataframe to store the values for mean, sd and cv 
dsCH4_stat = data.frame(dsCH4[,1:2], matrix(data=0, 38, 3)) 
 
#rename the 3-5 columnns of dsCH4_stat 
names(dsCH4_stat)[3:5]= c("mu", "sd", "cv") 
 
#make a loop to calculate the mean, sd and cv for all countries 
for (k in 1:38){  
      temp = dsCH4[k,(3:1002)] 
      mu=mean(as.numeric(temp)) 
      sd = sd(as.numeric(temp)) 
      cv =(sd/mu) 
      dsCH4_stat[k,3]=mu 
      dsCH4_stat[k,4]=sd 
      dsCH4_stat[k,5]=cv 
      } 
 
#write the dsCH4_stat dataframe to a csv file 
write.csv(dsCH4_stat, file="CH4_inpNCU_Nuts_Cntry_Gen_outCntry.csv") 
 
#STATISTICS for N2Oemis 
 
#create a dataframe to store the values for mean, sd and cv 
dsN2O_stat = data.frame(dsN2O[,1:2], matrix(data=0, 38, 3)) 
 
#rename the 3-5 columnns of dsN2O_stat 
names(dsN2O_stat)[3:5]= c("mu", "sd", "cv") 
 
#make a loop to calculate the mean, sd and cv for all countries 
for (k in 1:38){  
      temp = dsN2O[k,(3:1002)] 
      mu=mean(as.numeric(temp)) 
      sd = sd(as.numeric(temp)) 
      cv =(sd/mu) 
      dsN2O_stat[k,3]=mu 
      dsN2O_stat[k,4]=sd 
      dsN2O_stat[k,5]=cv 
      } 
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#write the dsN2O_stat dataframe to a csv file 
write.csv(dsN2O_stat, file="N2O_inpNCU_Nuts_Cntry_Gen_outCntry.csv") 
 
#STATISTICS for NH3emis 
 
#create a dataframe to store the values for mean, sd and cv 
dsNH3_stat = data.frame(dsNH3[,1:2], matrix(data=0, 38, 3)) 
 
#rename the 3-5 columnns of dsNH3_stat 
names(dsNH3_stat)[3:5]= c("mu", "sd", "cv") 
 
#make a loop to calculate the mean, sd and cv for all countries 
for (k in 1:38){  
      temp = dsNH3[k,(3:1002)] 
      mu=mean(as.numeric(temp)) 
      sd = sd(as.numeric(temp)) 
      cv =(sd/mu) 
      dsNH3_stat[k,3]=mu 
      dsNH3_stat[k,4]=sd 
      dsNH3_stat[k,5]=cv 
      } 
 
#write the dsNH3_stat dataframe to a csv file 
write.csv(dsNH3_stat, file="NH3_inpNCU_Nuts_Cntry_Gen_outCntry.csv") 
 
#STATISTICS for NleGW 
 
#create a dataframe to store the values for mean, sd and cv 
dsNleGW_stat = data.frame(dsNleGW[,1:2], matrix(data=0, 38, 3)) 
 
#rename the 3-5 columnns of dsNleGW_stat 
names(dsNleGW_stat)[3:5]= c("mu", "sd", "cv") 
 
#make a loop to calculate the mean, sd and cv for all countries 
for (k in 1:38){  
      temp = dsNleGW[k,(3:1002)] 
      mu=mean(as.numeric(temp)) 
      sd = sd(as.numeric(temp)) 
      cv =(sd/mu) 
      dsNleGW_stat[k,3]=mu 
      dsNleGW_stat[k,4]=sd 
      dsNleGW_stat[k,5]=cv 
      } 
 
#write the dsNleGW_stat dataframe to a csv file 
write.csv(dsNleGW_stat, 
file="NleGW_inpNCU_Nuts_Cntry_Gen_outCntry.csv") 
 
#STATISTICS for NleSW 
 
#create a dataframe to store the values for mean, sd and cv 
dsNleSW_stat = data.frame(dsNleSW[,1:2], matrix(data=0, 38, 3)) 
 
#rename the 3-5 columnns of dsNleSW_stat 
names(dsNleSW_stat)[3:5]= c("mu", "sd", "cv") 
 
#make a loop to calculate the mean, sd and cv for all countries 
for (k in 1:38){  
      temp = dsNleSW[k,(3:1002)] 
      mu=mean(as.numeric(temp)) 
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      sd = sd(as.numeric(temp)) 
      cv =(sd/mu) 
      dsNleSW_stat[k,3]=mu 
      dsNleSW_stat[k,4]=sd 
      dsNleSW_stat[k,5]=cv 
      } 
 
#write the dsNleSW_stat dataframe to a csv file 
write.csv(dsNleSW_stat, 
file="NleSW_inpNCU_Nuts_Cntry_Gen_outCntry.csv") 
 
#STATISTICS for NOxemis 
 
#create a dataframe to store the values for mean, sd and cv 
dsNOx_stat = data.frame(dsNOx[,1:2], matrix(data=0, 38, 3)) 
 
#rename the 3-5 columnns of dsNOx_stat 
names(dsNOx_stat)[3:5]= c("mu", "sd", "cv") 
 
#rename the 3-5 columnns of dsNOx_stat 
for (k in 1:38){  
      temp = dsNOx[k,(3:1002)] 
      mu=mean(as.numeric(temp)) 
      sd = sd(as.numeric(temp)) 
      cv =(sd/mu) 
      dsNOx_stat[k,3]=mu 
      dsNOx_stat[k,4]=sd 
      dsNOx_stat[k,5]=cv 
      } 
 
#write the dsNOx_stat dataframe to a csv file 
write.csv(dsNOx_stat, file="NOx_inpNCU_Nuts_Cntry_Gen_outCntry.csv") 
 
 
 
#END OF SCRIPT 
 
 



 88

Appendix 8. R-script for calculating the box-plots (and the 5th , 25th , 50th, 75th , 
and 95th  percentiles)  of the model outputs at European level for 
the three robustness  scenarios  

 
#SCRIPT FOR BOXPLOTS AND PERCENTILES: of NH3, NOx, NleGW, NleSW, 
N2O, #CH4 on singles windows for the 3 Robustness Scenarios  
#when inputs = NCU+NUTS+CNTRY+GEN APs and  
#outputs = aggregated to Europe Level 
 
#Clean up memory 
rm(list = ls()) 
 
#Create 6 dataframes for NH3, NOx, NleGW, NleSW, N2O, CH4 to store 
#the 1000 Monte Carlo(MC) outputs 
#for Optimistic, Reference, and Pessimistic Scenario  
 
#First create 6 matrices with 1000 rows and 3 columns each 
ds_NH3 = matrix(data=0,1000,3) 
ds_NOx = matrix(data=0,1000,3) 
ds_NleGW = matrix(data=0,1000,3) 
ds_NleSW = matrix(data=0,1000,3) 
ds_CH4 = matrix(data=0,1000,3) 
ds_N2O = matrix(data=0,1000,3) 
 
#Then create 6 dataframes from the previous matrices 
ds_NH3 = data.frame(ds_NH3) 
ds_NOx = data.frame(ds_NOx) 
ds_NleGW = data.frame(ds_NleGW) 
ds_NleSW = data.frame(ds_NleSW) 
ds_CH4 = data.frame(ds_CH4) 
ds_N2O = data.frame(ds_N2O) 
 
#Rename the names of the 6 dataframes to the names of the 3 
#Scenarios 
names(ds_NH3)= c("Opt", "Ref", "Pes") 
names(ds_NOx)= c("Opt", "Ref", "Pes") 
names(ds_NleGW)= c("Opt", "Ref", "Pes") 
names(ds_NleSW)= c("Opt", "Ref", "Pes") 
names(ds_CH4)= c("Opt", "Ref", "Pes") 
names(ds_N2O)= c("Opt", "Ref", "Pes") 
 
 
#Set the paths where the outputs for the 3 scenarios are stored 
thePath_Opt = 
"E:\\Vicky_Ioannidi\\Optimistic_Scenario\\INTEGRATOR_Opt\\outputs\\i
npNCU_Nuts_Cntry_Gen\\Europe_level\\" 
thePath_Ref = 
"E:\\Vicky_Ioannidi\\Reference_Scenario\\INTEGRATOR_Ref\\outputs\\in
pNCU_Nuts_Cntry_Gen\\Europe_level\\" 
thePath_Pes = 
"E:\\Vicky_Ioannidi\\Pessimistic_Scenario\\INTEGRATOR_Pes\\outputs\\
inpNCU_Nuts_Cntry_Gen\\Europe_level\\" 
 
 
#Make a loop to read the 1000 MC output files for NH3, NOx, NleGW, 
#NleSW, N2O, CH4 for Opt, Ref, and Pes scenarios  
#and store them in the corresponding dataframes 
NMC =1000 
for (i in 1:NMC) 
{ 
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   NH3emis_Opt = read.csv(file=sprintf(paste(thePath_Opt, 
"NH3emis\\NH3emis%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_NH3[i,1] = NH3emis_Opt$val 
   NH3emis_Ref = read.csv(file=sprintf(paste(thePath_Ref, 
"NH3emis\\NH3emis%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_NH3[i,2] = NH3emis_Ref$val 
   NH3emis_Pes = read.csv(file=sprintf(paste(thePath_Pes, 
"NH3emis\\NH3emis%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_NH3[i,3] = NH3emis_Pes$val  
 
   NOxemis_Opt = read.csv(file=sprintf(paste(thePath_Opt, 
"NOxemis\\NOxemis%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_NOx[i,1] = NOxemis_Opt$val 
   NOxemis_Ref = read.csv(file=sprintf(paste(thePath_Ref, 
"NOxemis\\NOxemis%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_NOx[i,2] = NOxemis_Ref$val 
   NOxemis_Pes = read.csv(file=sprintf(paste(thePath_Pes, 
"NOxemis\\NOxemis%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_NOx[i,3] = NOxemis_Pes$val 
 
   NleGW_Opt = read.csv(file=sprintf(paste(thePath_Opt, 
"NleGW\\NleGW%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_NleGW[i,1] = NleGW_Opt$val 
   NleGW_Ref = read.csv(file=sprintf(paste(thePath_Ref, 
"NleGW\\NleGW%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_NleGW[i,2] = NleGW_Ref$val 
   NleGW_Pes = read.csv(file=sprintf(paste(thePath_Pes, 
"NleGW\\NleGW%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_NleGW[i,3] = NleGW_Pes$val 
 
   NleSW_Opt = read.csv(file=sprintf(paste(thePath_Opt, 
"NleSW\\NleSW%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_NleSW[i,1] = NleSW_Opt$val 
   NleSW_Ref = read.csv(file=sprintf(paste(thePath_Ref, 
"NleSW\\NleSW%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_NleSW[i,2] = NleSW_Ref$val 
   NleSW_Pes = read.csv(file=sprintf(paste(thePath_Pes, 
"NleSW\\NleSW%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_NleSW[i,3] = NleSW_Pes$val 
 
   CH4emis_Opt = read.csv(file=sprintf(paste(thePath_Opt, 
"CH4emis\\CH4emis%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_CH4[i,1] = CH4emis_Opt$val*25 
   CH4emis_Ref = read.csv(file=sprintf(paste(thePath_Ref, 
"CH4emis\\CH4emis%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_CH4[i,2] = CH4emis_Ref$val*25 
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   CH4emis_Pes = read.csv(file=sprintf(paste(thePath_Pes, 
"CH4emis\\CH4emis%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_CH4[i,3] = CH4emis_Pes$val*25  
 
   N2Oemis_Opt = read.csv(file=sprintf(paste(thePath_Opt, 
"N2Oemis\\N2Oemis%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_N2O[i,1] = N2Oemis_Opt$val*468.286 
   N2Oemis_Ref = read.csv(file=sprintf(paste(thePath_Ref, 
"N2Oemis\\N2Oemis%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_N2O[i,2] = N2Oemis_Ref$val*468.286 
   N2Oemis_Pes = read.csv(file=sprintf(paste(thePath_Pes, 
"N2Oemis\\N2Oemis%04d.csv", sep=""), i), 
   header = TRUE, sep = ",",na.strings = '-99999') 
   ds_N2O[i,3] = N2Oemis_Pes$val*468.286  
} 
 
#Find the max values of the dataframes to define the ylim for the 
#boxplots below 
max(ds_NH3) 
max(ds_NOx) 
max(ds_NleGW) 
max(ds_NleSW) 
max(ds_CH4) 
max(ds_N2O) 
 
 
#BOXPLOTS of the columns of all dataframes on single windows 
 
#Open a new graphical window for the boxplots 
X11() 
 
#Set all axis labels horizontal 
par(las=1)  
 
#Draw the boxplots 
boxplot(ds_NH3, col="lavender", names=names(ds_NH3),  
pars=list(boxwex=.6, staplewex=.4), main=expression(NH[3]), 
ylim=c(0,30), vertical = TRUE, ylab=expression("N " * group("(", "kg 
" * ha^{-1} * yr^{-1}, ")"))) 
savePlot(filename="BoxplotsNH3_3Scen_Europe", type="png") 
 
boxplot(ds_NOx, col="lavender", names=names(ds_NOx), 
pars=list(boxwex=.6, staplewex=.4), main=expression(NO[x]), 
ylim=c(0,20), vertical = TRUE, ylab=expression("N " * group("(", "kg 
" * ha^{-1} * yr^{-1}, ")"))) 
savePlot(filename="BoxplotsNOx_3Scen_Europe", type="png") 
 
boxplot(ds_NleGW, col="lavender", names=names(ds_NleGW), 
pars=list(boxwex=.6, staplewex=.4), main=expression(N[leGW]), 
ylim=c(0,27), vertical = TRUE, ylab=expression("N " * group("(", "kg 
" * ha^{-1} * yr^{-1}, ")"))) 
savePlot(filename="BoxplotsNleGW_3Scen_Europe", type="png") 
 
boxplot(ds_NleSW, col="lavender", names=names(ds_NleSW), 
pars=list(boxwex=.6, staplewex=.4), main=expression(N[leSW]), 
ylim=c(0,72), vertical = TRUE, ylab=expression("N " * group("(", "kg 
" * ha^{-1} * yr^{-1}, ")"))) 
savePlot(filename="BoxplotsNleSW_3Scen_Europe", type="png") 
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boxplot(ds_CH4, col="lavender", names=names(ds_CH4), 
pars=list(boxwex=.6, staplewex=.4), main=expression(CH[4]), 
ylim=c(0,1700), vertical = TRUE, ylab=expression(GWP (CO[2]) * 
group("(", "kg " * ha^{-1} * yr^{-1}, ")"))) 
savePlot(filename="BoxplotsCH4_3Scen_Europe", type="png") 
 
boxplot(ds_N2O, col="lavender", names=names(ds_N2O), 
pars=list(boxwex=.6, staplewex=.4), main=expression(N[2] * "O"), for 
Europe, 3 scenarios"), ylim=c(0,8600), vertical = TRUE, 
ylab=expression(GWP (CO[2]) * group("(", "kg " * ha^{-1} * yr^{-1}, 
")"))) 
savePlot(filename="BoxplotsN2O_3Scen_Europe", type="png") 
 
# 5, 25, 50, 75 and 95 PERCENTILES for NH3, NOx, NleGW, NleSW, N2O, 
#CH4 for the 3 Scenarios 
 
percent = read.csv(file = 'Percentiles.csv', header = TRUE, sep = 
",", na.strings = '#N/A') 
p = c(0.05, 0.25, 0.50, 0.75, 0.95) 
 
#PERCENTILES for NH3 
 
ds_NH3per_3ScenEU = data.frame(percent, matrix(data=0, 5, 3)) 
 
names(ds_NH3per_3ScenEU) = c("NH3_3ScenEUpercentiles", "Opt", "Ref", 
"Pes") 
 
quant=5 
for (i in 1:quant){ 
  ds_NH3per_3ScenEU[i,2] = 
quantile(as.numeric(ds_NH3$Opt),probs=c(p[i])) 
            ds_NH3per_3ScenEU[i,3] = 
quantile(as.numeric(ds_NH3$Ref),probs=c(p[i])) 
            ds_NH3per_3ScenEU[i,4] = 
quantile(as.numeric(ds_NH3$Pes),probs=c(p[i])) 
} 
 
# write the ds_NH3per_5EU to a csv file 
write.csv(ds_NH3per_3ScenEU, file = "NH3_3ScenEUpercentiles.csv") 
 
 
#PERCENTILES for NOx 
 
ds_NOxper_3ScenEU = data.frame(percent, matrix(data=0, 5, 3)) 
 
names(ds_NOxper_3ScenEU) = c("NOx_3ScenEUpercentiles", "Opt", "Ref", 
"Pes") 
 
quant=5 
for (i in 1:quant){ 
  ds_NOxper_3ScenEU[i,2] = 
quantile(as.numeric(ds_NOx$Opt),probs=c(p[i])) 
            ds_NOxper_3ScenEU[i,3] = 
quantile(as.numeric(ds_NOx$Ref),probs=c(p[i])) 
            ds_NOxper_3ScenEU[i,4] = 
quantile(as.numeric(ds_NOx$Pes),probs=c(p[i])) 
} 
 
# write the ds_NOxper_5EU to a csv file 
write.csv(ds_NOxper_3ScenEU, file = "NOx_3ScenEUpercentiles.csv") 
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#PERCENTILES for NleSW 
 
ds_NleSWper_3ScenEU = data.frame(percent, matrix(data=0, 5, 3)) 
 
names(ds_NleSWper_3ScenEU) = c("NleSW_3ScenEUpercentiles", "Opt", 
"Ref", "Pes") 
 
quant=5 
for (i in 1:quant){ 
  ds_NleSWper_3ScenEU[i,2] = 
quantile(as.numeric(ds_NleSW$Opt),probs=c(p[i])) 
            ds_NleSWper_3ScenEU[i,3] = 
quantile(as.numeric(ds_NleSW$Ref),probs=c(p[i])) 
            ds_NleSWper_3ScenEU[i,4] = 
quantile(as.numeric(ds_NleSW$Pes),probs=c(p[i])) 
} 
 
# write the ds_NleSWper_5EU to a csv file 
write.csv(ds_NleSWper_3ScenEU, file ="NleSW_3ScenEUpercentiles.csv") 
 
 
#PERCENTILES for NleGW 
 
ds_NleGWper_3ScenEU = data.frame(percent, matrix(data=0, 5, 3)) 
 
names(ds_NleGWper_3ScenEU) = c("NleGW_3ScenEUpercentiles", "Opt", 
"Ref", "Pes") 
 
quant=5 
for (i in 1:quant){ 
  ds_NleGWper_3ScenEU[i,2] = 
quantile(as.numeric(ds_NleGW$Opt),probs=c(p[i])) 
            ds_NleGWper_3ScenEU[i,3] = 
quantile(as.numeric(ds_NleGW$Ref),probs=c(p[i])) 
            ds_NleGWper_3ScenEU[i,4] = 
quantile(as.numeric(ds_NleGW$Pes),probs=c(p[i])) 
} 
 
# write the ds_NleGWper_5EU to a csv file 
write.csv(ds_NleGWper_3ScenEU, file ="NleGW_3ScenEUpercentiles.csv") 
 
 
#PERCENTILES for CH4 
 
ds_CH4per_3ScenEU = data.frame(percent, matrix(data=0, 5, 3)) 
 
names(ds_CH4per_3ScenEU) = c("CH4_3ScenEUpercentiles", "Opt", "Ref", 
"Pes") 
 
quant=5 
for (i in 1:quant){ 
  ds_CH4per_3ScenEU[i,2] = 
quantile(as.numeric(ds_CH4$Opt),probs=c(p[i])) 
            ds_CH4per_3ScenEU[i,3] = 
quantile(as.numeric(ds_CH4$Ref),probs=c(p[i])) 
            ds_CH4per_3ScenEU[i,4] = 
quantile(as.numeric(ds_CH4$Pes),probs=c(p[i])) 
} 
 
# write the ds_CH4per_5EU to a csv file 
write.csv(ds_CH4per_3ScenEU, file = "CH4_3ScenEUpercentiles.csv") 
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#PERCENTILES for N2O 
 
ds_N2Oper_3ScenEU = data.frame(percent, matrix(data=0, 5, 3)) 
 
names(ds_N2Oper_3ScenEU) = c("N2O_3ScenEUpercentiles", "Opt", "Ref", 
"Pes") 
 
quant=5 
for (i in 1:quant){ 
  ds_N2Oper_3ScenEU[i,2] = 
quantile(as.numeric(ds_N2O$Opt),probs=c(p[i])) 
            ds_N2Oper_3ScenEU[i,3] = 
quantile(as.numeric(ds_N2O$Ref),probs=c(p[i])) 
            ds_N2Oper_3ScenEU[i,4] = 
quantile(as.numeric(ds_N2O$Pes),probs=c(p[i])) 
} 
 
# write the ds_N2Oper_5EU to a csv file 
write.csv(ds_N2Oper_3ScenEU, file = "N2O_3ScenEUpercentiles.csv") 
 
 
#END OF SCRIPT 
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Appendix 9. R-script for the stack-columns of the uncertainty contribution of 
each group of APs to the total output uncertainty, for five EU 
countries (i.e. NL, GR, IE, FR, PL), for the Reference  scenario 

 
#SCRIPT FOR THE STACK-COLUMNS: of the Uncertainty Analysis of all 
#outputs, for NL, GR, IE, FR, PL, for the Reference Scenario 
 
#Clean up memory 
rm(list = ls()) 
 
#set the path for COMB variances  
thePath  = 
"E:\\Vicky_Ioannidi\\Reference_Scenario\\Variances_outCntry\\Statist
ics_Ref\\Stat_inpNCU_NUTS_CNTRY_GEN_Ref\\output_statistics\\inpNCU_N
uts_Cntry_Gen_outCntry\\" 
 
NH3_COMB = read.csv(file =(paste(thePath, 
"NH3_inpNCU_Nuts_Cntry_Gen_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NOx_COMB = read.csv(file =(paste(thePath, 
"NOx_inpNCU_Nuts_Cntry_Gen_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NleGW_COMB = read.csv(file =(paste(thePath, 
"NleGW_inpNCU_Nuts_Cntry_Gen_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NleSW_COMB = read.csv(file =(paste(thePath, 
"NleSW_inpNCU_Nuts_Cntry_Gen_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
N2O_COMB = read.csv(file =(paste(thePath, 
"N2O_inpNCU_Nuts_Cntry_Gen_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
CH4_COMB = read.csv(file =(paste(thePath, 
"CH4_inpNCU_Nuts_Cntry_Gen_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
#set the path for NCU variances  
thePath  = 
"E:\\Vicky_Ioannidi\\Reference_Scenario\\Variances_outCntry\\Statist
ics_Ref\\Stat_inpNCU_Ref\\output_statistics\\inpNCU_outCntry\\" 
 
NH3_NCU = read.csv(file =(paste(thePath, "NH3_inpNCU_outCntry.csv", 
sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NOx_NCU = read.csv(file =(paste(thePath, "NOx_inpNCU_outCntry.csv", 
sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NleGW_NCU = read.csv(file =(paste(thePath, 
"NleGW_inpNCU_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NleSW_NCU = read.csv(file =(paste(thePath, 
"NleSW_inpNCU_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
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N2O_NCU = read.csv(file =(paste(thePath, "N2O_inpNCU_outCntry.csv", 
sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
CH4_NCU = read.csv(file =(paste(thePath, "CH4_inpNCU_outCntry.csv", 
sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
#set the path for NUTS variances  
thePath  = 
"E:\\Vicky_Ioannidi\\Reference_Scenario\\Variances_outCntry\\Statist
ics_Ref\\Stat_inpNUTS_Ref\\output_statistics\\inpNuts_outCntry\\" 
 
NH3_NUTS = read.csv(file =(paste(thePath, 
"NH3_inpNuts_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NOx_NUTS = read.csv(file =(paste(thePath, 
"NOx_inpNuts_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NleGW_NUTS = read.csv(file =(paste(thePath, 
"NleGW_inpNuts_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NleSW_NUTS = read.csv(file =(paste(thePath, 
"NleSW_inpNuts_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
N2O_NUTS = read.csv(file =(paste(thePath, 
"N2O_inpNuts_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
CH4_NUTS = read.csv(file =(paste(thePath, 
"CH4_inpNuts_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
#set the path for CNTRY variances  
thePath  = 
"E:\\Vicky_Ioannidi\\Reference_Scenario\\Variances_outCntry\\Statist
ics_Ref\\Stat_inpCNTRY_Ref\\output_statistics\\inpCntry_outCntry\\" 
 
NH3_CNTRY = read.csv(file =(paste(thePath, 
"NH3_inpCntry_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NOx_CNTRY = read.csv(file =(paste(thePath, 
"NOx_inpCntry_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NleGW_CNTRY = read.csv(file =(paste(thePath, 
"NleGW_inpCntry_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NleSW_CNTRY = read.csv(file =(paste(thePath, 
"NleSW_inpCntry_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
N2O_CNTRY = read.csv(file =(paste(thePath, 
"N2O_inpCntry_outCntry.csv", sep="")), 
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header = TRUE, sep = ",", na.strings = 'NA') 
 
CH4_CNTRY = read.csv(file =(paste(thePath, 
"CH4_inpCntry_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
#set the path for GEN variances  
thePath  = 
"E:\\Vicky_Ioannidi\\Reference_Scenario\\Variances_outCntry\\Statist
ics_Ref\\Stat_inpGEN_Ref\\output_statistics\\inpGen_outCntry\\" 
 
NH3_GEN = read.csv(file =(paste(thePath, "NH3_inpGen_outCntry.csv", 
sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NOx_GEN = read.csv(file =(paste(thePath, "NOx_inpGen_outCntry.csv", 
sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NleGW_GEN = read.csv(file =(paste(thePath, 
"NleGW_inpGen_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
NleSW_GEN = read.csv(file =(paste(thePath, 
"NleSW_inpGen_outCntry.csv", sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
N2O_GEN = read.csv(file =(paste(thePath, "N2O_inpGen_outCntry.csv", 
sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
CH4_GEN = read.csv(file =(paste(thePath, "CH4_inpGen_outCntry.csv", 
sep="")), 
header = TRUE, sep = ",", na.strings = 'NA') 
 
#Create the dataframes to store the variances from the 5 input 
#groups for all outputs 
NH3_Var= data.frame(NH3_COMB$Var, NH3_NCU$Var, NH3_NUTS$Var, 
NH3_CNTRY$Var, NH3_GEN$Var) 
NOx_Var= data.frame(NOx_COMB$Var, NOx_NCU$Var, NOx_NUTS$Var, 
NOx_CNTRY$Var, NOx_GEN$Var) 
NleGW_Var= data.frame(NleGW_COMB$Var, NleGW_NCU$Var, NleGW_NUTS$Var, 
NleGW_CNTRY$Var, NleGW_GEN$Var) 
NleSW_Var= data.frame(NleSW_COMB$Var, NleSW_NCU$Var, NleSW_NUTS$Var, 
NleSW_CNTRY$Var, NleSW_GEN$Var) 
N2O_Var= data.frame(N2O_COMB$Var, N2O_NCU$Var, N2O_NUTS$Var, 
N2O_CNTRY$Var, N2O_GEN$Var) 
CH4_Var= data.frame(CH4_COMB$Var, CH4_NCU$Var, CH4_NUTS$Var, 
CH4_CNTRY$Var, CH4_GEN$Var) 
 
#Rename the columns of the dataframes of the variances 
names(NH3_Var)= c("COMB", "NCU", "NUTS", "CNTRY", "GEN") 
names(NOx_Var)= c("COMB", "NCU", "NUTS", "CNTRY", "GEN") 
names(NleGW_Var)= c("COMB", "NCU", "NUTS", "CNTRY", "GEN") 
names(NleSW_Var)= c("COMB", "NCU", "NUTS", "CNTRY", "GEN") 
names(N2O_Var)= c("COMB", "NCU", "NUTS", "CNTRY", "GEN") 
names(CH4_Var)= c("COMB", "NCU", "NUTS", "CNTRY", "GEN") 
 
 
#Create 6 matrices for the relative variances of all outputs with 5 
#rows(5 countries) and 5 columns (5 different input groups) 
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NH3 = matrix(data=0,5,5) 
NOx = matrix(data=0,5,5) 
NleGW = matrix(data=0,5,5) 
NleSW = matrix(data=0,5,5) 
N2O = matrix(data=0,5,5) 
CH4 = matrix(data=0,5,5) 
 
#Then create 6 dataframes from the previous matrices 
NH3_Rel_Var = data.frame(NH3) 
NOx_Rel_Var = data.frame(NOx) 
NleGW_Rel_Var = data.frame(NleGW) 
NleSW_Rel_Var = data.frame(NleSW) 
N2O_Rel_Var = data.frame(N2O) 
CH4_Rel_Var = data.frame(CH4) 
 
#Rename the columns of the dataframes of the relative variances 
names(NH3_Rel_Var)= c("COMB", "NCU", "NUTS", "CNTRY", "GEN") 
names(NOx_Rel_Var)= c("COMB", "NCU", "NUTS", "CNTRY", "GEN") 
names(NleGW_Rel_Var)= c("COMB", "NCU", "NUTS", "CNTRY", "GEN") 
names(NleSW_Rel_Var)= c("COMB", "NCU", "NUTS", "CNTRY", "GEN") 
names(N2O_Rel_Var )= c("COMB", "NCU", "NUTS", "CNTRY", "GEN") 
names(CH4_Rel_Var)= c("COMB", "NCU", "NUTS", "CNTRY", "GEN") 
 
 
#Create a vector with the COUNTRY_NR of the 5 countries 
m = c(29, 16, 18, 14, 31) 
 
#Make a "for" loop to calculate the relative variances of all 
#outputs for the 5 countries (NL, GR, IE, FR, PL) 
 
for (i in 1:5){ 
  NH3_Rel_Var[i,1] = NH3_Var$COMB[m[i]]/NH3_Var$COMB[m[i]] 
  NH3_Rel_Var[i,2] = NH3_Var$NCU[m[i]]/NH3_Var$COMB[m[i]] 
  NH3_Rel_Var[i,3] = NH3_Var$NUTS[m[i]]/NH3_Var$COMB[m[i]] 
  NH3_Rel_Var[i,4] = NH3_Var$CNTRY[m[i]]/NH3_Var$COMB[m[i]] 
  NH3_Rel_Var[i,5] = NH3_Var$GEN[m[i]]/NH3_Var$COMB[m[i]] 
   
  NOx_Rel_Var[i,1] = NOx_Var$COMB[m[i]]/NOx_Var$COMB[m[i]] 
  NOx_Rel_Var[i,2] = NOx_Var$NCU[m[i]]/NOx_Var$COMB[m[i]] 
  NOx_Rel_Var[i,3] = NOx_Var$NUTS[m[i]]/NOx_Var$COMB[m[i]] 
  NOx_Rel_Var[i,4] = NOx_Var$CNTRY[m[i]]/NOx_Var$COMB[m[i]] 
  NOx_Rel_Var[i,5] = NOx_Var$GEN[m[i]]/NOx_Var$COMB[m[i]] 
 
  NleGW_Rel_Var[i,1] = NleGW_Var$COMB[m[i]]/NleGW_Var$COMB[m[i]] 
  NleGW_Rel_Var[i,2] = NleGW_Var$NCU[m[i]]/NleGW_Var$COMB[m[i]] 
  NleGW_Rel_Var[i,3] = NleGW_Var$NUTS[m[i]]/NleGW_Var$COMB[m[i]] 
  NleGW_Rel_Var[i,4] = NleGW_Var$CNTRY[m[i]]/NleGW_Var$COMB[m[i]] 
  NleGW_Rel_Var[i,5] = NleGW_Var$GEN[m[i]]/NleGW_Var$COMB[m[i]] 
 
  NleSW_Rel_Var[i,1] = NleSW_Var$COMB[m[i]]/NleSW_Var$COMB[m[i]] 
  NleSW_Rel_Var[i,2] = NleSW_Var$NCU[m[i]]/NleSW_Var$COMB[m[i]] 
  NleSW_Rel_Var[i,3] = NleSW_Var$NUTS[m[i]]/NleSW_Var$COMB[m[i]] 
  NleSW_Rel_Var[i,4] = NleSW_Var$CNTRY[m[i]]/NleSW_Var$COMB[m[i]] 
  NleSW_Rel_Var[i,5] = NleSW_Var$GEN[m[i]]/NleSW_Var$COMB[m[i]] 
 
  N2O_Rel_Var[i,1] = N2O_Var$COMB[m[i]]/N2O_Var$COMB[m[i]] 
  N2O_Rel_Var[i,2] = N2O_Var$NCU[m[i]]/N2O_Var$COMB[m[i]] 
  N2O_Rel_Var[i,3] = N2O_Var$NUTS[m[i]]/N2O_Var$COMB[m[i]] 
  N2O_Rel_Var[i,4] = N2O_Var$CNTRY[m[i]]/N2O_Var$COMB[m[i]] 
  N2O_Rel_Var[i,5] = N2O_Var$GEN[m[i]]/N2O_Var$COMB[m[i]] 
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  CH4_Rel_Var[i,1] = CH4_Var$COMB[m[i]]/CH4_Var$COMB[m[i]] 
  CH4_Rel_Var[i,2] = CH4_Var$NCU[m[i]]/CH4_Var$COMB[m[i]] 
  CH4_Rel_Var[i,3] = CH4_Var$NUTS[m[i]]/CH4_Var$COMB[m[i]] 
  CH4_Rel_Var[i,4] = CH4_Var$CNTRY[m[i]]/CH4_Var$COMB[m[i]] 
  CH4_Rel_Var[i,5] = CH4_Var$GEN[m[i]]/CH4_Var$COMB[m[i]] 
}   
 
#Write the 6 dataframes to csv files 
write.csv(NH3_Rel_Var, file = "NH3_Rel_Var.csv") 
write.csv(NOx_Rel_Var, file = "NOx_Rel_Var.csv") 
write.csv(NleGW_Rel_Var, file = "NleGW_Rel_Var.csv") 
write.csv(NleSW_Rel_Var, file = "NleSW_Rel_Var.csv") 
write.csv(N2O_Rel_Var, file = "N2O_Rel_Var.csv") 
write.csv(CH4_Rel_Var, file = "CH4_Rel_Var.csv") 
 
 
#Read the relative variances of all outputs 
relat_NH3 = 
read.csv("E:/Vicky_Ioannidi/Reference_Scenario/Variances_outCntry/St
ack_Bars/NH3_Rel_Var.csv", header=T, sep=",") 
relat_NOx = 
read.csv("E:/Vicky_Ioannidi/Reference_Scenario/Variances_outCntry/St
ack_Bars/NOx_Rel_Var.csv", header=T, sep=",") 
relat_NleGW = 
read.csv("E:/Vicky_Ioannidi/Reference_Scenario/Variances_outCntry/St
ack_Bars/NleGW_Rel_Var.csv", header=T, sep=",") 
relat_NleSW = 
read.csv("E:/Vicky_Ioannidi/Reference_Scenario/Variances_outCntry/St
ack_Bars/NleSW_Rel_Var.csv", header=T, sep=",") 
relat_N2O = 
read.csv("E:/Vicky_Ioannidi/Reference_Scenario/Variances_outCntry/St
ack_Bars/N2O_Rel_Var.csv", header=T, sep=",")  
relat_CH4 = 
read.csv("E:/Vicky_Ioannidi/Reference_Scenario/Variances_outCntry/St
ack_Bars/CH4_Rel_Var.csv", header=T, sep=",")  
 
#Expand right side of clipping rect to make room for the legend 
par(xpd=T, mar=par()$mar+c(0,0,0,8)) 
 
#Create the stack-columns for all outputs 
barplot(t(relat_NH3[,2:5]), main=expression(NH[3]), ylab="Total", 
col=topo.colors(4), space=0.1, cex.axis=0.8, las=1, 
names.arg=t(relat_NH3[,1]), cex=0.8, ylim = c(0,1.1))  
#Place the legend at(6, 1) using topo colors 
legend(6, 1, names(relat_NH3[,2:5]), cex=0.8, fill=topo.colors(4)) 
# Save plot  
savePlot(filename="Stackcol_NH3", type="png") 
 
barplot(t(relat_NOx[,2:5]), main=expression(NO[x]), ylab="Total", 
col=topo.colors(4), space=0.1, cex.axis=0.8, las=1, 
names.arg=t(relat_NOx[,1]), cex=0.8, ylim = c(0,1.1)) 
#Place the legend at(6, 1) using topo colors 
legend(6, 1, names(relat_NOx[,2:5]), cex=0.8, fill=topo.colors(4)) 
# Save plot  
savePlot(filename="Stackcol_NOx", type="png") 
 
barplot(t(relat_NleGW[,2:5]), main=expression(N[leGW]), 
ylab="Total", col=topo.colors(4), space=0.1, cex.axis=0.8, las=1, 
names.arg=t(relat_NleGW[,1]), cex=0.8, ylim = c(0,1.1))  
#Place the legend at (6, 1) using topo colors 
legend(6, 1, names(relat_NleGW[,2:5]), cex=0.8, fill=topo.colors(4)) 
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# Save plot  
savePlot(filename="Stackcol_NleGW", type="png") 
 
barplot(t(relat_NleSW[,2:5]), main=expression(N[leSW]), 
ylab="Total", col=topo.colors(4), space=0.1, cex.axis=0.8, las=1, 
names.arg=t(relat_NleSW[,1]), cex=0.8, ylim = c(0,1.1))  
#Place the legend at (6, 1) using topo colors 
legend(6, 1, names(relat_NleSW[,2:5]), cex=0.8, fill=topo.colors(4)) 
# Save plot  
savePlot(filename="Stackcol_NleSW", type="png") 
 
barplot(t(relat_N2O[,2:5]), main=expression(N[2]*O), ylab="Total", 
col=topo.colors(4), space=0.1, cex.axis=0.8, las=1, 
names.arg=t(relat_N2O[,1]), cex=0.8, ylim = c(0,1.1)) 
#Place the legend at (6, 1) using topo colors 
legend(6, 1, names(relat_N2O[,2:5]), cex=0.8, fill=topo.colors(4)) 
# Save plot  
savePlot(filename="Stackcol_N2O", type="png") 
 
barplot(t(relat_CH4[,2:5]), main=expression(CH[4]), ylab="Total", 
col=topo.colors(4), space=0.1, cex.axis=0.8, las=1, 
names.arg=t(relat_CH4[,1]), cex=0.8, ylim = c(0,1.1))  
#Place the legend at (6, 1) using topo colors 
legend(6, 1, names(relat_CH4[,2:5]), cex=0.8, fill=topo.colors(4)) 
# Save plot  
savePlot(filename="Stackcol_CH4", type="png") 
 
 
#END OF SCRIPT 
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Appendix 10. R-script for the generation of: 1. the cdfs of the differences 
between the preset CVs or SDs and the CVs or SDs resulting from 
1000 simulations of each NUTS AP, 2. the pdfs of each NUTS AP, 
for the Reference scenario 

 
#SCRIPT to calculate: mu, sd, and cv resulting from the 1000 
#simulations of the 26 NUTS parameters,  
#to generate the cumulatives curves of the differences of  
#the preset CVs or SDs from the resulted CVs or SDs respectively, 
#and also to generate the pdfs of each AP  
 
#clean-up memory 
rm(list = ls()) 
 
#read the 688 NUTS regions  
ds = read.csv(file = '688NUTSids_COUids.csv', header = TRUE, sep = 
",", na.strings = '#N/A') 
 
#read 1000 MC input files for the 26 NUTS parameters 
for (j in 1:26){ 
NMC =1000 
for (i in 1:NMC) 
{ 
NUTSPAR = 
read.csv(file=sprintf("C:\\Robustness_Scenarios_NEW26\\Reference_Sce
nario26\\NUTS_Par_Ref_group26\\1000Simulations_NUTSpar\\nutspar%04d.
csv", i), 
header = TRUE, sep = ",", na.strings = '#N/A') 
ds = data.frame(ds, NUTSPAR[,j*3+2]) 
} 
} 
 
#create a vector with the names of the parameters 
parnames= c("ParNexf_ca", "ParNexf_oc", "ParNexf_pp", "ParNexf_po", 
"ParCnam", "Parfhs_ca", "Parfhs_oc", "Parfrlam_ca", "Parfrlam_pp",  
"ParfNemhs_NH3", "ParfNemms_NH3", "ParfNemhsl_N2O","ParfNemmsl_N2O", 
"ParfNemhsl_NO", "ParfNemmsl_NO","ParfNemhsls_N2O", 
"ParfNemmss_N2O","ParfNemhss_NO","ParfNemmss_NO", 
"Parwamhsara","Parwamhsgrass", "ParArea_int", "Parflems", 
"Para_CH4_ca", "Parb_CH4_ca", "ParCH4_oc") 
 
#rename the columns of the ds according to parnames 
for (j in 1:26){ 
names(ds)[((j-1)*NMC+3):(j*NMC+2)]= 
c(paste(parnames[j],"_MC",(1:NMC),sep="")) 
} 
 
#build a dataframe to store the above mentioned differences for the 
#26 NUTS parameters over the 688 NUTS regions  
ds_stat = data.frame(ds[,1:2], matrix(data=0, 688, 26)) 
 
#rename the columns of the ds_stat where the differences for each 
#parameter will be stored 
names(ds_stat)[3:28]= c("ParNexf_ca", "ParNexf_oc", "ParNexf_pp", 
"ParNexf_po", "ParCnam", "Parfhs_ca", "Parfhs_oc", "Parfrlam_ca", 
"Parfrlam_pp","ParfNemhs_NH3", "ParfNemms_NH3", "ParfNemhsl_N2O", 
"ParfNemmsl_N2O", "ParfNemhsl_NO", "ParfNemmsl_NO", 
"ParfNemhsls_N2O", "ParfNemmss_N2O","ParfNemhss_NO","ParfNemmss_NO", 
"Parwamhsara","Parwamhsgrass", "ParArea_int", "Parflems", 
"Para_CH4_ca", "Parb_CH4_ca", "ParCH4_oc") 
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#read the info of the NUTS parameters with their set CVs and SDs 
param = read.csv(file = 'Parameters_NUTSRef.csv', header = TRUE, sep 
= ",") 
 
#make a dataframe to store the mu, sd, cv of the 26 NUTS parameters 
#resulted from their samples of 1000 simulations 
ds_store = data.frame(param[,1], matrix(data=0, 26, 3)) 
 
#rename the names of the ds_store 
names(ds_store)= c("Nuts_AP", "mu", "sd", "cv") 
 
#calculate: mu, sd, cv of the 1000 simulations of the 26 NUTS 
#parameters and store them in the ds_store,  
#and then calculate the differences of the set cv (or sd) from the 
#resulted cv (or sd) and store them in the ds_stat 
for (k in 1:688){  
   for(j in 1:26){ 
      temp = ds[k,((j-1)*NMC+3):(j*NMC+2)] 
      mu=mean(as.numeric(temp)) 
      sd = sd(as.numeric(temp)) 
      cv =(sd/mu) 
      ds_store[j,2]=mu 
      ds_store[j,3]=sd 
      ds_store[j,4]=cv 
      if(!is.na(param$CV[j])) 
         ds_stat[k,j+2]= param$CV[j]- cv 
      else 
         ds_stat[k,j+2]= param$SD[j]- sd 
   } 
} 
 
#write the ds_store to a csv file 
write.csv(ds_store, file = "MU_SD_CV_NUTS1000sim.csv") 
 
 
#plot the cdfs of the differences and store them in jpg files 
for(j in 1:26){ 
   plot(ecdf(ds_stat[,j+2])) 
   savePlot(filename=sprintf("Cumulative_V2%02d", j), type="jpg") 
} 
 
#calculate the 5th, 50th and 95th percentiles of the cdfs for the 
#2nd, 7th, and 22nd NUTS parameter 
quantile(as.numeric(ds_stat[,2+2]), probs = c(0.05,0.50,0.95), na.rm 
= TRUE) 
quantile(as.numeric(ds_stat[,7+2]), probs = c(0.05,0.50,0.95), na.rm 
= TRUE) 
quantile(as.numeric(ds_stat[,22+2]), probs = c(0.05,0.50,0.95), 
na.rm = TRUE) 
 
#plot the pdfs of the NUTS APs and store them in jpg files  
for (j in 1:26){ 
plot(density(as.numeric(ds[k,((j-1)*NMC+3):(j*NMC+2)])), type="l", 
lty=1, col="red", xlab="x ", 
ylab="Density", main=paste("pdf of AP:", parnames[j], sep =" ")) 
savePlot(filename=paste("pdf_", parnames[j], sep =""), type="jpg") 
} 
 
#END OF SCRIPT 
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Appendix 11. Tables with percentiles 
 
Table 14. Percentiles of the outputs, for Europe, for the Reference scenario 

EUROPEAN LEVEL OUTPUTS Percentiles 
 5th 25th 50th 70th 95th 

NH3 13 15 16 18 20 

NOx 2.7 3.5 4.2 4.8 6.0 

NleSW 11 14 18 21 27 

N outputs 
(kg N ha-1 yr-1) 

NleGW 4.0 5.6 7.2 9.1 12 

CH4 958 1064 1144 1225 1342 GWP outputs 
(kg CO2 ha-1 yr-1) N2O 1840 2226 2496 2779 3357 

 
 

Table 15. Percentiles of the outputs, for five EU countries, for the Reference 
scenario 

Percentiles COUNTRY 
LEVEL 

OUTPUTS 

5 EU 
Countries 5th 25th 50th 70th 95th 

NL 39 48 56 64 78 
GR 5.2 6.0 6.7 7.5 8.7 
IE 14 17 19 22 26 
FR 13 15 17 19 22 

NH3 

PL 9.8 12 14 16 20 
NL 2.4 3.8 5.2 7.3 12 
GR 1.5 2.2 2.8 3.7 5.6 
IE 2.6 3.3 4.0 4.8 6.6 
FR 2.9 3.7 4.4 5.3 6.7 

NOx 

PL 2.4 3.6 4.6 5.9 8.6 
NL 16 31 44 59 87 
GR 5.7 8.8 12 15 22 
IE 4.7 7.6 10 13 19 
FR 9.3 14 19 24 34 

NleSW 

PL 6.3 10 14 19 28 
NL 3.9 11 19 29 47 
GR 3.5 5.3 7.4 10 15 
IE 1.6 3.5 5.3 7.4 11 
FR 2.4 4.1 5.7 7.8 11 

N
 o

u
tp

u
ts

 
(k

g 
N

 h
a-1

 y
r-1

) 

NleGW 

PL 2.2 4.3 6.9 11 17 
NL 4024 4584 4989 5352 5934 
GR 439 520 582 643 741 
IE 1309 1707 1941 2251 2650 
FR 959 1114 1231 1367 1539 

CH4 

PL 598 716 786 863 976 
NL 2317 3107 3850 4932 7036 
GR 901 1231 1539 1962 2729 
IE 2245 2712 3123 3593 4390 
FR 1933 2331 2715 3068 3720 

G
W

P
 o

u
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u
ts

 
(k

g 
C

O
2 

ha
-1

 y
r-1

) 

N2O 

PL 1630 2148 2628 3137 4172 
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Table 16. Percentiles of the outputs, for Europe, for the three robustness scenarios 

Percentiles EUROPEAN 
LEVEL 

OUTPUTS 

Robustness 
Scenarios 

5th 25th 50th 70th 95th 

Opt 14 15 15 16 16 

Ref 13 15 16 18 20 NH3 

Pes 12 15 17 19 23 

Opt 2.2 2.3 2.5 2.6 2.9 

Ref 2.7 3.5 4.2 4.8 6.0 NOx 

Pes 2.4 3.7 5.1 6.9 10 

Opt 10 11 12 13 14 

Ref 11 14 18 21 27 NleSW 

Pes 8.4 14 19 26 38 

Opt 5.5 6.2 6.7 7.3 8.2 

Ref 4.0 5.6 7.2 9.1 12 

N
 o
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tp

u
ts

 
(k
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N

 h
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 y
r-1

) 

NleGW 

Pes 2.4 4.7 7.1 10 16 

Opt 1093 1130 1155 1184 1217 

Ref 958 1064 1144 1225 1342 CH4 

Pes 894 1043 1148 1273 1424 

Opt 1698 1814 1904 1989 2117 

Ref 1840 2226 2496 2779 3357 G
W

P
 o

u
tp

u
ts

 
(k

g 
C

O
2 

ha
-1

yr
-1

) 

N2O 

Pes 1735 2415 2990 3765 5076 
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