
Fast Greeks: Case of Credit Valuation

Adjustments

Vytautas Savickas (3444945)

Department of Mathematics

Utrecht University

A thesis submitted for the degree of

Master of Science

7 July 2011

0_frontmatter/figures/logo2.eps

1. Reviewer: Prof. Rob Bisseling

2. Reviewer: Prof. Karma Dajani

3. Reviewer: Dr. Norbert Hari

4. Reviewer: Dr. Drona Kandhai

Day of the defense: 7 July 2011

ii

Abstract

(Counterparty) Credit Valuation Adjustments (CVA) has become a prevailing form

of pricing default risk on over-the-counter (OTC) contracts. Due to the large size

of portfolios included in the CVA calculation and its computational complexity,

large computing grids are needed for the evaluation.

The main purpose of this thesis is to investigate an even morecomputationally

demanding problem, namely computing the sensitivities of CVA to the market

and model parameters, a topic which was hardly addressed in the literature so far.

We show that the pathwise sensitivities method can be applied for CVA and that

it gives significant speed improvement over the conventional finite-differencing

techniques. Additionally, we take advantage of the GPU technology to obtain the

Greeks fast enough for daily hedging and risk management activities.

Contents

List of Figures vi

1 Introduction 1

2 Counterparty Credit Valuation Adjustments 3

2.1 CVA Pricing . 6

2.2 CVA Greeks .7

3 Theory 8

3.1 Basic Definitions .8

3.2 Pricing by Simulation .. . 11

3.3 Multi-Currency Hull-White Interest Rate Model

with piece-wise constant volatility. 12

3.3.1 2-Currency Model with Correlations 14

3.3.2 m-Currency Model Extension .15

3.4 Credit Modelling .15

3.4.1 Reduced Form Models .15

3.5 Greek Computations for Derivative Instruments 16

3.5.1 Finite Difference Method .. 17

3.5.2 Likelihood-Ratio Method .17

3.5.3 Pathwise Method .18

3.5.4 Forward/Adjoint Differentiation 18

3.6 Pathwise Greeks: CVA .22

iv

CONTENTS

4 Methods 24

4.1 CVA Computation Scheme .24

4.1.1 Model Calibration .24

4.1.2 Scenario Generation .25

4.1.3 Computation of CVA .27

4.2 Computing Pathwise Greeks .. . 28

5 GPU computing 30

5.1 CUDA Environment .31

5.2 Pathwise Greeks on GPU .33

6 Results 34

6.1 Proof-of-Concept: Swaption Greeks 34

6.1.1 Swaption Deltas .35

6.1.2 Swaption Vegas .37

6.2 CVA Greeks .39

6.2.1 CVA Deltas .39

6.2.2 CVA Vegas .41

6.2.3 Scaling .42

6.3 GPU Accelerated CVA Greeks .. 44

6.3.1 Convergence .44

6.3.2 Scaling of the Parallel Implementation 45

7 Discussion 49

7.1 Future Work .50

A Appendices 53

A.1 Interchange of Derivative & Expectation 53

A.2 Proof of SWAP final formula .. 56

A.3 Pathwise Greek Derivations 57

A.4 Dangers of Interpolation for Greeks 64

A.5 GPU: single precision limitations 67

A.6 Development Platform Details 68

v

List of Figures

2.1 Market values of OTC contracts by type 4

2.2 Swap Potential Future Exposure Profile 5

2.3 Observable Market Data .. 7

4.1 CVA Valuation Scheme .28

5.1 Organization scheme of GPU multi-processor 32

6.1 Swaption sensitivities to changes in the yield curve. 35

6.2 Relative error convergence of swaption Deltas 36

6.3 Timings of CPU-based Deltas. 37

6.4 Relative error convergence of swaption Vegas 38

6.5 Timings of swaption Vegas. 39

6.6 CVA Deltas illustration 40

6.7 Relative convergence of pathwise CVA Greeks 40

6.8 CVA Vegas, displayed for every currency. 42

6.9 CVA Vegas: Convergence .. 42

6.10 Scaling of CVA execution time 43

6.11 Single-Threaded CVA: Speed up Factors 44

6.12 GPU-based CVA Deltas Convergence 45

6.13 GPU-based CVA Vegas Convergence 45

6.14 Scaling of CVA Greeks computation time with increasingsensitivities 46

6.15 Speed-up of pathwise Greeks method on GPU as a function of the number of

sensitivities .46

6.16 Scaling of computation time for GPU-based CVA Greeks w.r.t portfolio size . . 47

6.17 Speed-up of pathwise Greeks when scaling portfolio size 47

vi

LIST OF FIGURES

6.18 Speed-up of pathwise Greeks when scaling number of paths 48

A.1 Interpolated Bond Prices 65

A.2 Greeks of Interpolated Bond Price 66

A.3 Differences in interpolation methods 66

vii

1

Introduction

Counterparty risk is traditionally interpreted as credit risk between derivatives counterparties.

After the 2007 credit crisis, when important institutions as Bear Sterns, Lehman Brothers, Fan-

nie Mae and Freddie Mac failed, counterparty credit risk hasbeen recognized by the majority

of market participants as one of the key financial risks.

In the current trading environment, whenever a derivative is traded over-the-counter (OTC1),

a default risk charge should be factored into the total price. What does it mean to include

counterparty risk? This means that we additionally charge the counterparty, which owes us

payments, for the possibility that it defaults during the period of the contract and we lose the

rest of the cashflows, which may have been profitable for us.

As we move from single trades to full portfolio level CVA, pricing gets a lot more com-

plicated as the potential losses and gains, in case of default, can cancel out and are subject to,

often complicated, legal agreements such as netting rules2 and collaterization3. Moreover, the

contracts in question can be heavily correlated and influence our overall risk profile due to lack

of diversification. Portfolio-level CVA calculation and management will be mandatory for all

banks as of 2013, due to the new Basel 3 regulations [1].

1OTC contracts are traded (and privately negotiated) directly between the counterparties, without going through

an exchange or other intermediary. The OTC market is much less regulated with respect to disclosure of information

between the counterparties.
2 A netting agreement between two entities, say A and B, means that if A defaults and does not pay B, then

B can offset their losses by the same amount out of all payments it owes A. Without netting, B would have to pay

back A all of the payments if A defaults.
3Collaterization is the act where a borrower A pledges some asset to the lending counterparty B, so that B is

insured against the default of A (in case A defaults, B keeps the asset).

1

To control the counterparty risk at a portfolio level one hasto hedge it, in other words,

to buy or sell liquid, basic (vanilla) contracts that offseteither market or counterparty credit

exposure. In order to obtain the proper amounts of the corresponding contracts, the trader

needs to know the sensitivities of portfolio CVA to observable market parameters (yield curves,

stocks prices, volatility surface points, CDS rates).

As we have already mentioned, portfolio CVA evaluation is itself a very computationally

intensive task and using a naive way to find its sensitivities(the so-called Greeks) would in-

troduce unnecessary computational burden. In this thesis we will show that pathwise Greeks

methodology can be applied to CVA and that it is possible to take advantage of the GPU tech-

nology for pathwise Greeks calculation.

The fundamentals of CVA pricing are introduced in the next chapter and the mathematical

framework for pricing basic financial instruments is described in chapter3 together with the

multi-currency one-factor Hull-White interest rate modelthat will be used for CVA modelling.

Then, a step-by-step framework for CVA and pathwise Greeks calculation is detailed in chapter

4. In chapter5 the fundamentals behind GPU computing and specifically the NVIDIA CUDA

API are introduced and it is shown how to compute pathwise Greeks in this setting. Afterwards

the results of all simulations for both CPU and GPU-based CVAGreeks are given in chapter6

and the final discussion of their significance is given in chapter 7.

2

2

Counterparty Credit Valuation

Adjustments

Counterparty risk is a combination of credit risk (default of the counterparty) and market risk

(uncertain potential value of the derivative contract at the time point when a credit event hap-

pens). Counterparty risk typically arises from a broad class of financial products:

• OTC derivatives, such as:

• interest rate swaps and swaptions

• foreign exchange (FX) forwards and options

• credit default swaps

• Securities financing transactions:

• repo and reverse repo agreements

• securities borrowing and lending

The most commonly traded are interest rate derivatives (seeFigure2.1), hence during this

thesis we will be concentrating on them.

3

Figure 2.1: Market values of OTC contracts by type, data taken from BIS database [4]

Credit Exposure

The term exposure defines the loss we incur in the event of a counterparty default. Exposure is

characterized by the fact that a positive value of a financialinstrument corresponds to a claim

on a defaulted counterparty, whereas in case of negative value, we cannot walk away. This

means that if at the time of default, they owed us (the bank) money - we incur a loss, but if we

owed them - we would still need to pay them and would not incur again from the default.

Potential Future Exposure

The concept of potential future exposure (PFE) arises from the need to characterize what the

value of our OTC contract might be over time. The PFE illustrated in Figure2.2characterises

the value of an interest rate swap over time. At the current timet we know the current market

value of our swap and its past value, but we do not know its future value. Hence we have

to assume some model for its price and generate future scenarios, obtaining in this way a

distribution of future prices. PFE gives certain exposure bounds at a given confidence level

(99%), often considered as a worst case scenario. The expected positive exposure (EPE) is the

average positive future exposure. We illustrate both PFE and EPE in Figure2.2.

4

img/bic_data.eps

0 2 4 6 8 10 12
0

100

200

300

400

500

600

700

T−Years

E
xp

os
ur

e,
 E

U
R

EPE
99% quantile

Figure 2.2: Potential Future Exposure Profile of a single 10 year swap starting in 6 months.

The exposure becomes non-zero before the swap starts because even if the forward swap had

a fair rate at time-zero in 6 months time this swap rate might not be fair and the contract has a

potential positive or negative value. Hence if our counterparty goes into default before the start

date of the swap - we loose potentially profitable cashflows.

Pricing Counterparty Risk

Intuitively the risk-free price of a contract must be different from a risky (counterparty might

default) contract. The price of a risky derivative could be thought as the risk-free price less the

component correcting for the counterparty risk.

Prisky = Priskfree −CV A

The latter component is called (Counterparty) Credit Valuation Adjustment (CVA). This coun-

terparty risk charge should be calculated in a sophisticated way to account for all aspects that

5

img/10y_swap_epe_profile3pc.eps

2.1 CVA Pricing

define CVA, including:

• the default probability of the counterparty

• the default of the bank (in case of bilateral CVA, see Brigo and Mercurio [6])

• the underlying contract(s)

• netting of existing transactions with the same counterparty

• collaterisation (will not be addressed in this thesis, see Gregory [18])

• hedging aspects (Gregory [18])

2.1 CVA Pricing

By general definition the Credit Valuation Adjustment can becomputed as:

CVA(t) = LGD × E
Q
t

[
D(t, τ) · (NPV (τ))+ · 1{τ≤T}

]
(2.1)

where

• LGD - is the loss fraction (of total value), given default

• D(t, τ) - is the discount factor, discounting the value from time of default back to the

valuation time.

• NPV (τ)+ = max{0, NPV (τ)} - is the Net Present Value at timeτ of the underlying

contract(s). Here we only take the positive side of the valueas we are only interested in

how much we stand to loose, if the contract value is negative -this amount will be paid

back to the counterparty in case of their default; although this was already accounted for

in the original price of the contract.

• 1{τ≤T} - gives the condition that our counterparty defaults beforethe maturity of our

productT .

The CVA formula can be rewritten discretely (see Brigo and Mercurio [6]) as:

CVA(t) = LGD ×
[∫ T

t
E
Q
t

[
D(t, s) · (NPV (s))+ · λ(s)

]
ds

]

(2.2)

whereλ(s) is the instantaneous default probability at times which is discussed in detail in

section3.4

In this formulation we assume that the seller of the contract(the bank) cannot default,

which is a simplification. There are other formulations which consider conditional defaults of

both counterparties: BVA, DVA1.

1Bilateral Valuation Adjustment and Debt Valuation Adjustment

6

2.2 CVA Greeks

2.2 CVA Greeks

The sensitivities of CVA to observable market data (the so called ”Greeks”) are critical to trad-

ing activities. Greeks define the rate at which the value of CVA changes when some market

parameter changes. Most importantly the Greeks guide traders how to hedge the risks associ-

ated to the CVA. Mathematically speaking we are interested in the quantities:

∂CV A(t, θ)

∂θ

whereθ can be a single parameter or a vector of market parameters. Aswe are mainly in-

terested in CVA for portfolios composed of interest rate products - we shall look into cases

whenθ is a vector of zero-bond prices (or discrete yield curve points illustrated in Figure2.3a)

that are directly quoted in the market, or a matrix of swaption volatilities which are shown

in Figure2.3b(see product definition in equation (3.8) and book by Brigo and Mercurio [6]).

10 20 30 40 50
Years

1.5

2.0

2.5

3.0

3.5

4.0

Yield%

Yield Curve, Sep 9, 2010

(a) EUR Yield Curve

ATM Swaption Volatility Surface

1M
3M

6M

1Y

2Y

3Y

4Y

5Y

7Y

10Y

15Y

20Y

25Y

Expiry

1Y
2Y

3Y
4Y

5Y
6Y

7Y
8Y

9Y
10Y

15Y
20Y

30Y

Tenor

20

30

40

50

Vol %

(b) EUR ATM Swaption Volatility Surface

Figure 2.3: Observable Market Data

7

img/Yield_Curve_plot.eps
img/yield_vol_surface_plots.eps

3

Theory

In this chapter we will start by introducing the necessary mathematical background for deriva-

tives pricing, in particular interest rate swaps and swaptions. Then we introduce the one-factor

Hull-White interest rate model, show how it extends to two and more currencies and quickly

review credit default modelling. In the last section we review the methods used in computa-

tional finance to compute sensitivities of derivative contracts to input parameters and finalize

with an application to CVA.

3.1 Basic Definitions

The Financial Instruments that are considered throughout this thesis are:

• Zero-Coupon Bonds

• Forward Rate Agreements

• Interest Rate Swaps

• Interest Rate Swaptions

Definition We denote byP (t, T) the price of a zero-coupon bond at timet, with maturity date

T , for T ≥ t.

Definition The simply compounded spot interest rate prevailing at timet for the maturityT

is denoted byL(t, T); it is the constant rate at which an investment has to be made to

produce an amount of one unit of currency at maturity starting from P (t, T) units of

currency at timet when accruing occurs proportionally to the investment timeτ(t, T) =

8

3.1 Basic Definitions

T − t, more precisely:

L(t, T) =
1− P (t, T)

τ(t, T)P (t, T)
, t ≤ T, τ(t, T) = T − t (3.1)

Definition The Forward rate is a simply compounded interest rate nearlyequivalent to the

definition above, but it has starting date not at current timet, but at futureT and ends at

S. In other words, it is the rateL(T, S) measured at timet:

F (t, T, S) =
1− P (T, S)

τ(T, S)P (T, S)
=

1

τ(T, S)

(
P (t, T)

P (t, S)
− 1

)

, t ≤ T ≤ S (3.2)

Note:P (T, S) measured at timet is equal toP (t, S)/P (t, T)

Definition The instantaneous forward rate with maturityT , contracted att, is defined by:

f(t, T) = −∂ logP (t, T)

∂T
(3.3)

Definition The instantaneous short rate at timet is given by:

r(t) = f(t, t) (3.4)

Definition The (stochastic) discount factorD(t, T) between two time instantst andT is the

amount at timet that is “equivalent” to one unit of currency payable at timeT and is

given by:

D(t, T) = exp(−
∫ T

t
r(s)ds) (3.5)

Note: The quantity above is a random number when measured at time t, if r(t) is non-

deterministic. The discount factor is directly related to the zero-coupon bonds:

P (t, T) = E [D(t, T)] = EQ
[

e−
∫ T

t
r(s)ds

]

(3.6)

whereQ is the risk-neutral measure (see chapter 1 from Brigo and Mercurio [6] book for

detailed explanation).

Definition The (receiver) forward rate agreement (FRA) involves 3 timeinstants: the current

time t, the expiry timeT > t and the maturity timeS > T . This contract gives the

holder an interest-rate payment for the period betweenT andS. At the maturityS, a

fixed payment based on a fixed rateK is exchanged against a floating payment based on

9

3.1 Basic Definitions

the LIBOR1 spot rateL(T, S). Basically this contract allows one to lock-in the interest

rate between timesT andS at a desired rateK (e.g 3%).

Formally, at timeS one receivesτ(T, S)K · N units of currency and pays the amount

τ(T, S)L(T, S) · N , whereN is the contract nominal value andτ(T, S) is the year

fraction betweenT andS. The value of the contract at timeS is therefore:

N · [τ(T, S)(K − L(T, S))]

The total value of the contract at timet is :

FRA(t, T, S,N,K) = N [P (t, S)τ(T, S)K − P (t, T) + P (t, S)]

Setting the fixed rate to simply compounded forward interestrateF (t, T, S) renders the

FRA contract fair: the value at time-t is zero.

Definition A prototypical payer (forward-start) interest rate swap (PFS) is a contract that ex-

changes payments between two differently indexed legs2, starting from a future time

instant. At every instantTi in a specified set of datesT1, ..., TM the fixed leg pays

out the amountNτiK corresponding to a fixed interest rateK, a nominal valueN

and a year fractionτi betweenTi−1 andTi, whereas the floating leg pays the amount

NτiL(Ti−1, Ti) corresponding to the interest rateL(Ti−1, Ti) resetting at the previous

instantTi−1.

The interest rate swap can be easily viewed as a series of forward-rate-agreements, with

T := {T1, ..., TM} as the set of payment exchange dates andτ = {τ1, ..., τM} the inter-

val sizes in-between them. Here we assume that the fixed and floating payments occur at

the same time, although this may not always be the case.

PFS(t,T, τ,N,K) = (−1)

M∑

i=1

FRA(t, Ti−1, Ti, τi, N,K)

= NP (t, T0)−NP (t, TM) +−N
M∑

i=1

τiKP (t, Ti) (3.7)

For the derivation see AppendixA.1.

1LIBOR stands for London-Inter-Bank-Offer-Rate, this is the rate quoted in the market for which you can

immediately deposit money for a fixed period of time. The common periods are: Overnight, 3 day, 1 month, 3

month, 6 month, 1 year
2A leg we call a series of cash-exchanges from one counterparty to another (paying of fixed or floating interest

rate on agreed nominal value of the contract), usually the payments of both “legs” happen at the same time, but this

is not a restriction.

10

3.2 Pricing by Simulation

Definition The swap rate is defined as:

ST0,TM
(0) =

P (0, T0)− P (0, TM)
∑M

i=1 τiP (0, Ti)
,

whereT0 is the first reset date andTM is the last payment date. The swap (either payer

or receiver) has a value zero if its fixed rate is the same as theswap rate.

Why is the swap rate so important? Because on the market, instead of quoting the price

of a specific swap, banks quote the (fair) swap rate, hence thequotes are independent of the

nominal and this simplifies trading and pricing (swap value at the time of purchase is always

zero, just the trader adds a commission on it, often in a form of adjusted fixed rate).

Definition Swaption is an option on a swap, hence its current value can bewritten as:

Swaption(t) = EQ
[
D(t, T0) · (Swap(T0,T,Θswp))

+] (3.8)

whereD(t, T0) is the discount factor, discounting from the exercise dataT0, back to the

current timet, and{T} are the set of Swap cashflow exchange dates. The parameter

vectorΘswp contains all the swap related details, like fixed rate, currency, yield curve

data, etc.

Swaption can be priced in a Monte-Carlo framework and analytically in several ways.

For analytic swaption pricing in the benchmark tests in chapter 6 we are using the Hull

and White analytical formula. For detailed formulation andderivation please refer to

chapter 3.3.2 from the book by Brigo and Mercurio [6].

3.2 Pricing by Simulation

Simulation has already become an industry-approved methodfor estimating financial security

prices for which a simple closed-form solution does not exist.

Many problems in mathematical finance entail the computation of a particular integral (for

instance the problem of finding the arbitrage-free value of aparticular derivative). In many

cases these integrals can be valued analytically, and in still more cases they can be valued using

numerical integration, or computed using a partial differential equation (PDE). However when

the number of dimensions (or degrees of freedom) in the problem is large, PDEs and numerical

integrals become intractable, and in these cases Monte Carlo methods often give better results.

11

3.3 Multi-Currency Hull-White Interest Rate Model
with piece-wise constant volatility

For more than three or four state variables, formulae such asBlack-Scholes (i.e. analytic

solutions) do not exist, while other numerical methods suchas the Binomial options pricing

model and finite difference methods face several difficulties and are not practical. In these

cases, Monte Carlo methods converge to the true solution, require less memory and are easier

to program than other numerical methods. For simpler situations, however, simulation is not the

better solution because it is, in general, very time-consuming and computationally intensive.

Monte Carlo methods can deal with derivatives which have path dependent payoffs in a

fairly straight-forward manner. On the other hand Finite Difference and other PDE-solvers

struggle with path dependence.

3.3 Multi-Currency Hull-White Interest Rate Model
with piece-wise constant volatility

The first step towards pricing with Monte-Carlo simulation is model definition. We need to

define a set of SDEs1 that we are going to simulate and how they relate to the price of our

derivative products. This section is written in the notation of Brigo and Mercurio [6]. We

introduce the model and give the model-based bond-pricing formulas essential for interest rate

swap pricing in the future, which is needed to obtain the potential future exposure profile (see

chapter2).

We assume that the dynamics of the instantaneous short-rateprocess for base currencyd,

under associated risk-adjusted measureQ, is given by:

rd(t) = xd(t) + φd(t), rd(0) = r0d (3.9)

where the process{xd(t) : t ≥ 0} satisfies:

dxd(t) = −adxd(t)dt+ σd(t)dWd(t), xd(0) = 0 (3.10)

whereWd(t) is the standard Brownian motion underQ measure,r0d, ad suitable constants. The

functionsφd, σd are deterministic and well defined on the time interval[0, T] with T the given

time horizon (i.e. 50 years). In particularφd(0) = r0d.

1Stochastic differential equations: differential equations in which one or more terms is a stochastic process, i.e.

Brownian motion (A.1)

12

3.3 Multi-Currency Hull-White Interest Rate Model
with piece-wise constant volatility

If we denote byFd
t -the sigma-field generated byxd up to timet, then simple integration of

equation (3.9) gives fors < t:

rd(t) = xd(s)e
−ad(t−s) +

t∫

s

e−ad(t−u)σd(u)dWd(u) + φd(t) (3.11)

The second ”foreign” currency short-rate process is modelled analogously under its own

measureZ:

rf (t) = xf (t) + φf (t), rf (0) = r0f (3.12)

dxf (t) = −afxf (t)dt+ σf (t)dWf (t), xf (0) = 0 (3.13)

Now, consider the market instantaneous forward rates for the two curves ”d” and ”f” at time0:

fM
d (0, T) = −∂ logPM

d (0, T)

∂T
(3.14)

fM
f (0, T) = −

∂ logPM
f (0, T)

∂T
(3.15)

We can perfectly reproduce the initial term structure of discount factorsT → PM
d (0, T) and

T → PM
f (0, T) by the above models forrd andrf , if we set (see Brigo and Mercurio [6] for

details):

φd(t) = fM
d (0, T) +

σd(t)
2

2a2d
(1− e−adT)2 (3.16)

φf (t) = fM
f (0, T) +

σd(t)
2

2a2f
(1− e−afT)2 (3.17)

Equivalent condition for both curves (q = {d, f}) is:

exp



−
T∫

t

φq(u)du



 =
PM
q (0, T)

PM
q (0, t)

exp

(

−1

2
[Vq(0, T)− Vq(0, t)]

)

(3.18)

whereVq(t, T) = Ṽ (t, tj) +
n−1∑

s=j

Ṽ (ts, ts+1), tn = T as in our model we assume piecewise

constant volatility:σ(t) is constant fort ∈ (tj−1, tj] : σ(t) = σ(j) and for(ts, te] ⊂ (tj−1, tj]

we have:

Ṽq(ts, te) =

te∫

ts

(
Bq(u, T)

2σ2
q (j)

)
du (3.19)

13

3.3 Multi-Currency Hull-White Interest Rate Model
with piece-wise constant volatility

whereBq(t, T) =
1− e−aq(t−s)

aq
.

After solving the integral ([11]), this expression becomes:

Ṽq(ts, te) =
σ2
q (j)

2a3q

(
e−2aqT

(
eaqte − eaqts

) (
eaqte + eaqts − 4eaqT

)
+ 2aq(te − ts)

)
(3.20)

Now the bond pricing function under their respective measures for both currencies be-

comes:

Pq(t, x(t), T) = E∗



exp



−
T∫

t

rq(s)ds







 (3.21)

= E∗



exp



−
T∫

t

φq(s) + xq(s)ds







 (3.22)

= exp [Aq(t, T)−Bq(t, T)xq(t)] (3.23)

where

Aq(t, T) = log
PM
q (0, T)

PM
q (0, t)

+
1

2
[Vq(t, T)− Vq(0, T) + Vq(0, t)] (3.24)

for proofs see [20, 6]

3.3.1 2-Currency Model with Correlations

To be able to price derivatives dependent on two currencies,we introduce a Spot-FX1 process

S(t) denoting the amount of foreign currency needed to buy one unit of domestic currency.We

will consider the FX process to be a Geometric Brownian Motion process with mean given

by the difference between the two underlying short ratesrd adrf . We assume the following

no-arbitrage dynamics forS under foreign risk-neutral measureZ:

dS(t) = (rf (t)− rd(t)) S(t)dt+ v(t)S(t)dWS(t) (3.25)

Under domestic risk-neutral measureQ everything can be rewritten as:

rd(t) = φd(t) + xd(t) (3.26)

rf (t) = φf (t) + xf (t) (3.27)

dxd(t) = −adxd(t)dt+ σd(t)dW
Q
d (t), xd(0) = 0 (3.28)

dxf (t) = −afxf (t)dt+ σf (t)ρS,fσS(t)dt+ σf (t)dW
Q
f (t), xf (0) = 0 (3.29)

dS(t)

S(t)
= (rd(t)− rf (t))dt+ σS(t)dW

Q
S , S(0) > 0 (3.30)

1Instantaneous foreign-exchange rate, giving the current (time-t) currency exchange rate

14

3.4 Credit Modelling

Under the domestic measure the drift term of the foreign short rate processrf (t) has an ad-

ditional term−σf (t)ρf,SσS(t). This term ensures that the shifted foreign short rate process

(defined in3.12) is a martingale with respect to domestic measureQ. For details see chapter

[5.2.1] from [20]

In the model we assume a full matrix of correlation between the Brownian motionsW(t) =
[

dWQ
d , dWQ

f , dWQ
S

]T

dW(t) · dW(t)T =





1 ρd,f ρd,S
ρd,f 1 ρf,S
ρd,S ρf,S 1





3.3.2 m-Currency Model Extension

For pricing of a highly multi-currency portfolio (m = 50 currencies involved), we need to

simulate 50 short rate processes and 49 exchange rate processes relating the base currency with

each of the foreign ones. If we need the foreign-foreign exchange rates - we can simply make

a switch:
Sf1

Sf2

where eachSfi is a domestic-to-foreign exchange rate, in this way obtaining the

rf1 to rf2 exchange rate. Each of the short rate processes under domestic Q-measure gets an

additional drift term−σfi(t)ρfi,Si
σSi

(t) as we need to simulate all the processes in a consistent

framework. Also we use a fullm × m correlation matrix for the Brownian motionsWQ
fi
(t) ,

example in equation (4.1).

3.4 Credit Modelling

The Hull and White process only models the potential value ofour underlying interest rate

portfolio. Another essential part of the computation is modelling the default process. There

are two main types of models used in the industry: reduced form and structural models. In the

following section we briefly describe the fundamentals behind the prior type.

3.4.1 Reduced Form Models

Also called intensity models, reduced form models describedefault by means of exogenous

jump process: the default timeτ is the first jump of an important kind of stochastic process,

namely the Poisson process which can have deterministic or stochastic (Cox process) intensity.

With these models, the default is not triggered by market observables, but by exogenous com-

ponents independent of all market information. This familyof models is particularly suited

15

3.5 Greek Computations for Derivative Instruments

to model credit spread and in its basic formulation is easy tocalibrate to Credit Default Swap

(CDS) or corporate bond data [6]. The independence of other market data assumption can be

broken, i.e. we can introduce dependence of the default probability on some asset value (i.e.

interest rate, if our counterparty has very significant exposure to interest rate products).

In the simplest Poisson process (time-inhomogeneous Poisson process), the risk neutral

probability of a default (a jump) in the nextdt time, conditioned that we have not defaulted so

far is:

Q[τ ∈ [t, t+ dt)|τ > t] = λ(t)dt

Theλ(t) is called the intensity or the hazard rate at timet. It is possible to show [6] that

the probability of survival after timet is:

PS(t) = Q{τ > t} = e−
∫ t

0
λ(u)du

if the hazard function is deterministic and if not, then:

PS(t) = Q{τ > t} = E[e−
∫ t

0
λ(u)du]

λ(t) can have a similar form as short rate models, for example:

λ(t) = µ(t)dt+ σ(t)dW (t)

As stochastic credit modelling is a research topic by itself, during this thesis we will only

use a bootstrapped piecewise constant default probability:

PD(tj , tj+1) = PS(tj+1)− PS(tj), for t ∈ [tj , tj+1), j = {0, ..., N}

wheret0 = 0, the current time (or simulation starting time, when the base data is taken) and

TN+1 = T = is the time horizon. See chapter 22 from Brigo and Mercurio [6] book for

detailed discussions on credit models and related issues.

3.5 Greek Computations for Derivative Instruments

There are several ways of computing Greeks, each of them withits own advantages and dis-

advantages. In this section we will refer to functionF (t, θ) as the value of the derivative

instrument at timet and market input parameter vectorθ and to the functionf(T, θ) as the

payoff of this derivative at timeT ≥ t. Hence,F (t, θ) = E [f(T, θ)]

16

3.5 Greek Computations for Derivative Instruments

3.5.1 Finite Difference Method

∂F (t, θ)

∂θ
≈ F (t, θ + h · ek)− F (t, θ)

h
(3.31)

In the above formulation, we can calculate the forward difference derivative off(t, θ) with

respect to thek’th market parameter using a smallh ∈ R+ (bump size), whereek is a unit

vector. This method is also known as ”bump & revalue”. This approach is numerically stable,

but often gives a bit biased derivatives if the functionf is highly non-linear (as this derivative is

taken from first order Taylor series approximation) and we donot capture higher order effects.

For larger precision one might use higher order methods, butit is not that common in practice.

3.5.2 Likelihood-Ratio Method

Talking in the general setting, the value of a derivative, inmost cases, can be expressed as:

E[f(S)] =

∫

R

f(S) · pθ(S)dS (3.32)

wheref(S) is the payoff function of underlyingS and pθ(S) is the probability density of

the underlying factor with parametersθ. For the derivatives, under certain conditions (to be

discussed later) one can interchange the integral and the derivative, obtaining:

∂E[f(S)]

∂θ
=

∫

R

f(S) · ∂pθ(S)
∂θ

dS =

∫

R

f(S) · ∂ log pθ(S)

∂θ
pθ(S)dS = E

[

f(S)
∂ log pθ(S)

∂θ

]

(3.33)

where the last expression should be evaluated either analytically or with numerical integra-

tion. Pros:

• No differentiation off(S), can handle discontinuous payoffs

• Simplifies implementation if payoffs are complicated, non-differentiable (binary option)

Cons:

• The derivative of the density might be complicated to obtain

• Large varianceO(h−1) of the estimator, limit on time-step size (see chapter 7.2.1from

the book by Glasserman [16]).

Of course for this approach one needs an expression for the density function of the under-

lying p(s) and this is very complicated to do in the case ofCVA computation. We will come

back to this method shortly when discussing the Vibrato Monte Carlo method.

17

3.5 Greek Computations for Derivative Instruments

3.5.3 Pathwise Method

The ability to interchange the expectation and the derivative allows for one more method to be

used to calculate the Greeks for derivatives:

∂E[f(S)]

∂θ
=

∫

R

∂f(S)

∂θ
· p(S)dS = E

[
∂f(S)

∂θ

]

(3.34)

To evaluate the expression on the right hand side we either compute it analytically (if pos-

sible) or we assume a model for the dynamics of the underlyingS; then we perform a Monte-

Carlo simulation of the underlying processS, compute the derivative of the payoff

∂f (S,w)

∂θ
(3.35)

on every simulated pathw, and then average the values, obtaining an unbiased estimate of the

sensitivity as we have not introduced any truncation errorsas in a finite-difference style Greeks

computation method.

Advantages of the pathwise method:

• handles path-dependent payoffs

• handles multi-asset options

• handles square-root diffusion processes

Disadvantages:

• does not handle well discontinuous payoffs

For more details see the book on Monte-Carlo methods [9], and the paper by M.Giles [26].

3.5.4 Forward/Adjoint Differentiation

Very often the payoff functionf is complicated and can be written as a composition of func-

tionsf ◦X ◦ q ◦ S. Now our main problem is finding a good method to compute the deriva-

tive of the payoff (call itf(S)) with respect to some market parameter (or a vector of them)

θ. Let’s say that the payoff function depends primarily on some stochastic process vector

X(S) = (X1(S),X2(S), ...,Xn(S)), which depends on the value of another functionq(S) =

(q1(S), ..., qm(S)), which depends on our market observableS and on parameter(vector)θ.

Then, we can write our derivative of interest using the chainrule as:

df(S)

dθ
=

df(S)

dX(S)
· dX(S)

dq(S)
· dq(S)

dθ
(3.36)

18

3.5 Greek Computations for Derivative Instruments

This formulation does not change the value of the derivative, but the way we compute it:

• We now need to compute 3 derivatives (or Jacobians in case of vector valued functions)

instead of one.

• These part-by-part Jacobians are usually much easier than computing the complete deriva-

tive immediately

• We have matrix-vector multiplications present and hence the order of multiplication mat-

ters and there are two possibilities:

• Forward mode means that we multiply the Jacobians starting from the back, going

forward

• Backward mode means that we start at the front and go to the back of the chain.

Example: Pathwise Delta Calculation

Let’s takeX(t) to be a multi-dimensional stock price process with:

dX(t) = a(X(t))dt + σ(X(t))dW (t) (3.37)

whereX(t) = [X1(t),X2(t), . . . ,Xm(t)], W (t) is d-dimensional Brownian Motion (see Ap-

pendixA.1), a : Rm → Rm andσ : Rm → Rm×d are deterministic functions andt stands

for time. In our caseX could be a vector of stock prices.

Then, we define functiong(X(T)) : Rm → R to be the discounted payoff at timeT of a

derivative, that has priceE [g(X(T))] at time zero.

As X(t) is a continuous-time stochastic process, before starting the simulation, we dis-

cretize the process using the forward Euler discretizationscheme, obtaining:

X̂(n+ 1) = X̂(n) + a(X̂(n)) · h+ σ(X̂(n)) · Z(n+ 1) ·
√
h, X̂(0) = X(0) (3.38)

wheren is the discretized time index,h is the timestep,X̂(n) is the value ofX̂ at timen · h
andZ(n+ 1) is an independently drawnd-dimensional standard normal random number.

The price of the derivative with discounted payoffg(X̂(N)) with N =
T

h
is calculated

using the average of independent simulations ofg(X(N)). Now we consider estimating the

derivative vector:

∂E [g(X(N))]

∂X(0)
=

[
∂E [g(X(N))]

∂X1(0)
,
∂E [g(X(N))]

∂X2(0)
, . . . ,

∂E [g(X(N))]

∂Xm(0)

]

(3.39)

19

3.5 Greek Computations for Derivative Instruments

By using the pathwise method, we can obtain an unbiased estimate if:

∂E [g(X(N))]

∂X(0)
= E

[
∂g(X(N))

∂X(0)

]

(3.40)

The minimum condition in order for (3.40) to hold is that processX is smooth and functiong

is Lipschitz continuous. These are further explained in AppendixA.1.

Hence now we can estimate the derivative by taking the average derivative of every simu-

lated path. The derivative vector (for each pathi ∈ {1, · · · , L})

∂g(X̂i(N))

∂X(0)
=

[

∂g(X̂i(N))

∂X1(0)
,
∂g(X̂i(N))

∂X2(0)
, . . . ,

∂g(X̂i(N))

∂Xm(0)

]

(3.41)

might be complicated to compute directly hence we split it into parts by the chain rule (from

now on we will have in mind one simulated path and ignore the path indexi):

∂g(X̂(N)

∂X(0)
=

A
︷ ︸︸ ︷

∂g(X̂(N))

∂X̂(N)
·

B
︷ ︸︸ ︷

∂X̂(N)

∂X(0)
(3.42)

AboveA is anm-dimensional row vector andB is anm × m Jacobian matrix. IfB is still

complicated to compute directly, we split the expression into smaller subparts:

∂g(X̂(N)

∂X(0)
=

∂g(X̂(N))

∂X̂(N)
· ∂X̂(N)

X̂(N − 1)
· ∂X̂(N − 1)

X̂(N − 2)
· · · · · ∂X̂(1)

X(0)
(3.43)

Each of the above matricesD(n) =
∂X̂(n+ 1)

∂X̂(n)
has entries:

Di,k = ∂i,k +
∂ai
∂xk

· h+

d∑

l=1

∂σi,l
∂xk

· Zl(n+ 1), ∂i,k =

{

1 i = k

0 else
(3.44)

wherea andσ are evaluated at timen · h on the current path valuêX(n)

The derivative can now be rewritten as:

∂g(X̂(N)

∂X(0)
=

∂g(X̂(N))

∂X̂(N)
·D(N − 1) ·D(N − 2) · . . . ·D(0) (3.45)

Forward & Backward Evaluation

For forward style evaluation we define:

F (0) = I, identity matrixm×m (3.46)

F (n) = D(n) · F (n − 1)

20

3.5 Greek Computations for Derivative Instruments

Thus
∂g(X̂(N)

∂X(0)
=

∂g(X̂(N))

∂X̂(N)
·F (N) can be evaluated iteratively by computing (in this order)

F (0), F (1), . . . , F (N). Here, as each ofD(n) matrices ism×m, the number of FLOPS1 at

every iteration is of orderO(m3), so we have in totalO(m3 · N) operations to obtainF (N)

and then one more vector-matrix multiplication.

In a backward (adjoint) style we define:

B(N) =

(

∂g(X̂(N))

∂X̂(N)

)T

(3.47)

B(n) = D(n)T ·B(n+ 1)

This way
∂g(X̂(N)

∂X(0)
= B(0)T . For each of theN iterations to computeB(0) starting with

B(N), we perform a vector-matrix multiplication, costing usO(m2) FLOPS per iteration. In

total we makeO(m2 · (N + 1)) FLOPS - which is an order of magnitude faster!

Extension: Vibrato Monte Carlo

This method is a mixture of likelihood ratio method3.5.2 and pathwise sensitivities. The

main idea is to simulate a set of WienerA.1 incrementsW = {∂W1, ∂W2, . . . , ∂WN−1} for

each path:X̂(0), . . . , X̂(N − 1), excluding the last step. Then we compute a conditional (i.e.

Gaussian, dependent on underlying model) probability distributionpX(X̂(N)|W). To increase

the performance this distribution should have an analytical formula which is usually the case

with stochastic processes used in finance. Assuming thatX̂ has Gaussian distribution:

X̂(N)(W,Z) = µW + σW · Z (3.48)

whereµW is the given mean,σW is the standard deviation andZ is a standard normal random

variable. Then, the price of our derivative can be written as:

V = EW [EZ [f(X(N))|W]] (3.49)

To compute the Greeks the derivative is interchanged with the first expectation and then the

log-likelihood method is applied for the last timestep:

∂V

∂θ
= EW

[
∂

∂θ
EZ [f(X(N))|W]

]

= EW

[

E

[

f(X̂(N))
∂ log(pX)

∂θ
|W
]]

(3.50)

1Floating point operations

21

3.6 Pathwise Greeks: CVA

wherepX is the distribution ofX̂(N) conditioned onW .

The benefit of this method is that one can apply the pathwise Greeks to discontinuous

payoffs, as the payoff function is not differentiated in theprocess. Hence, a big part of the

speed-up offered by the the pathwise Greeks method is kept and at the same time the suitable

product range is expanded. The method was initially described by M. Giles [26]. As we

currently are not covering fast Greeks for CVA on binary-type products we will not use this

method in the thesis, however this is a very promising direction for further research.

3.6 Pathwise Greeks: CVA

Using the assumption that credit process is deterministic,we can rewrite the CVA pricing

formula (2.1) as:

CV A(t) = LGD ×





T∫

t

Et

[
D(t, s) · (NPV (s))+

]
· λ(s)ds



 (3.51)

To apply the pathwise Greeks method for CVA, one has to be ableto interchange the deriva-

tive with both the outer integral and the inner expectation.The conditions for a single integral-

derivative interchange

∂

∂θ

∫

f(X(s, θ))ds =

∫
∂f(X(s, θ))

∂θ
ds (3.52)

are:

• differentiability ofX(s, θ) with respect toθ.

• a.e. differentiability of functionf w.r.t. θ

• Lipschitz continuity off (hencef has a.e. bounded derivative).

In our case,

NPV (s) =
N∑

k=1

Swap(s,Tk,Θswp) (3.53)

and each swap value is a linear function of the zero-coupon bond prices at times (3.7).

The zero-coupon bond price at (future) times, as given by (3.21) is a linear function of

time-zero bond pricesPM (0, T) with an additional non-linear part depending on the simulated

state variablex(s), which is continuous and differentiable w.r.t.σj points and independent

of the zero-coupon bond prices. This leads to the conclusionthatNPV (s) is a continuous

function, differentiable w.r.t. market zero-coupon bond pricesPM (0, T) and model volatility

22

3.6 Pathwise Greeks: CVA

pointsσj . The detailed derivations of swap derivatives are presented in the AppendixA.3, if

the reader would like to see the details.

The stochastic, path-dependent, discount factorD(t, s) = e−
∫ s

t
(x(u)+φ(u))du is again a

continuous function of zero-bond prices viaφ(u) (3.18) and volatilitiesσj through thex(u)

part. Furthermore the function(·)+ = max(·, 0) is Lipschitz continuous. Hence the product

D(t, s) ·(NPV (s))+ is a Lipschitz continuous function, differentiable a.e. with respect to zero

bonds and volatility parameters.

As the expectation of a Lipschitz continuous and differentiable function stays Lipschitz

continuous and differentiable (see AppendixA.1 for proofs), henceEt

[
D(t, s) · (NPV (s))+

]

also satisfies the needed conditions for the interchange of derivative and expectation.

The last term,λ(s), is deterministic and independent of zero bond or volatility data, there-

fore againEt

[
D(t, s) · (NPV (s))+

]
·λ(s) is a.e. Lipschitz continuous and differentiable (w.r.t

PM (0, T) andσj).

Applying the theorem from AppendixA.1, we are able to interchange the derivative with

the outer integral and inner expectation in order to use the pathwise Greeks method for CVA,

obtaining:

∂CV A(t)

∂θ
= LGD ×





T∫

t

Et

[

1D(t,s)·NPV (s)>0
∂(D(t, s) ·NPV (s))

∂θ

]

· λ(s)ds



 (3.54)

23

4

Methods

In this chapter we will introduce step-by-step the methodology used to compute CVA and to

obtain the sensitivities both in the single-core and in the parallel GPU-based implementations.

The advantages of using GPU co-processors for fast Greeks computation are discussed in the

end of the chapter.

4.1 CVA Computation Scheme

Computing CVA on a portfolio of multi-currency swaps can be separated into several steps:

• Calibration of underlying models to simple market instruments

• Generation of short rate and credit scenarios

• Computation of the exposure profile for each of the netting sets1

• Discounting exposures to current time and weighting them with the corresponding default

probabilities

4.1.1 Model Calibration

The model is calibrated when its parameters are determined in such a way that it captures

current prices and dynamics of liquidly traded market instruments. Only then we use the model

for pricing of exotic market instruments and, in our case, credit valuation adjustments.

1A netting set is a portfolio of contracts with one single entity that can be treated as a default-linked group,

meaning that in the event of default, this group will lose value all together, while other netting sets will not be

directly affected

24

4.1 CVA Computation Scheme

For calibration one has to choose a set of traded instruments{S1, ..., Sn} that depend on

the market variables of interest{x1, ..., xk}. These values can be stock or commodity prices,

interest rates or volatilities. For the CVA problem in particular, one tries to take the set{Si} of

all instruments in the portfolio exposed to the counterparty risk.

Each of theSi = fi(t, x1, ..., xk, y1, ..., yg}, wherefi is a function returning the current

price, which often (but not always) has an analytical form and {y1, ..., yg} are a set of model

parameters unobservable in the market that have to be estimated. The calibration process is

finding the setY = {ỹ1, ..., ỹg} such that:

n∑

i=1

||fi (Y)− Si||d

is minimized w.r.t a chosen distance measured. The details of the calibration process will

not be covered in this thesis. A lot of work on calibration, especially global calibration has

been done by C.Albanese [3]. For instrument specific calibration see the book by Brigo and

Mercurio [6].

4.1.2 Scenario Generation

We first consider a discretized version of our SDE system (3.26). Using forward Euler dis-

cretization we obtain a list ofM + 1 (one domestic andM foreign) discretized short-rate

processes:

r̂d(n) = X̂d(n) + φd(n)

r̂f1(n) = X̂f1(n) + φf1(n)

...

r̂fM (n) = X̂fM (n) + φfM (n)

25

4.1 CVA Computation Scheme

andM + 1 zero-mean martingale processes underQ measure:

X̂d(n + 1) = X̂d(n)− adX̂d(n)dt+ σd(n)
√
dtZ0, X̂d(0) = Xd(0) = 0

X̂f1(n + 1) = X̂f1(n)− af1X̂f1(n)dt+ σf1(n)ρS1,f1σS1(n) + σf1(n)
√
dtZ1,

X̂f1(0) = Xf1(0) = 0

...

X̂fM (n + 1) = X̂fM (n)− afMX̂fM (n)dt+ σfM (n)ρSM,fMσSM (n)

+σfM (n)
√
dtZM ,

X̂fM (0) = XfM (0) = 0

Furthermore we also discretize theM geometric Brownian motion processes describing the

stochastic exchange rate between domestic and each of the foreign currencies:

Ŝ1(n+ 1) = Ŝ1(n)
(

1 + (r̂d(n)− r̂f1(n)) dt+ σS1(n)
√
dtZM+1

)

,

S1(0) = S1,0 > 0

...

ŜM (n+ 1) = ŜM (n)
(

1 + (r̂d(n)− r̂fM (n)) dt+ σSM (n)
√
dtZ2M

)

,

SM (0) = SM,0 > 0

in all the above thedt is the time-step and0 ≤ n ≤ N =
T

dt
is the step index withT being

the chosen time horizon. The vectorZ = (Z0, Z1, ..., Z2M) is a multivariate normal random

vector, independently drawn at each time-step with symmetric covariance matrix:

Σ =
















1 ρd,f1 ρd,f2 . . . ρd,S1
. . . ρd,SM

∗ 1 ρf1,f2 . . . ρf1,S1 . . . ρf1,SM

∗ ∗ 1
.

...

∗ ∗ ∗ 1
.

...

∗ ∗ ∗ ∗
...

∗ ∗ ∗ ∗ ∗ 1 ρSM−1,SM

∗ ∗ ∗ ∗ ∗ ∗ 1
















(4.1)

26

4.1 CVA Computation Scheme

4.1.3 Computation of CVA

For CVA evaluation we pick a discrete set of dates{Ti} = T to compute the exposure profile

(Figure2.2). During our test we did have a monthly exposure grid, which gave us a reasonably

accurate CVA value.

Then, we simulate#sim number of interest rate and foreign exchange rate scenarios

Xj(T) = {Xj,d(T), ...,Xj,fM (T)} (as defined in section4.1.2) and for eachTi, we compute

the value of the portfolio in the base currency for each of thegenerated paths:

P (Ti,Xj(Ti)) =
K∑

k=1

Swapk(Xj(Ti), φk(Ti),Θk) · FXk(Ti) (4.2)

whereXj(Ti) is the (zero-mean) state variable vector,φk(Ti) is the (time-zero) yield curve

of the same currency as the swap,Θk describes all instrument-specific details (fixed rates,

payment frequencies, start date, tenor) and FXk(Ti) is the currency conversion rate to base

currency if the swap is valued in foreign currency.

Now we have state variablesXj(Ti) on every simulated path and can compute the zero-

coupon bond pricesP (Ti, T,Xj(Ti)) defined in (3.21). Therefore, the value of each swap at

timeTi can be computed analytically (3.7) for every simulated scenario.

In practice (for CVA computation) portfolios are composed of netting sets (description in

chapter2), which do not overlap and sum up to the full portfolio exposed to the counterparty

risk. After we obtain the simulated values of the swaps (and other instruments) we aggregate

their values into the respective netting setsq ∈ {1, . . . , Q}:

Nset Valueq (Ti,Xj(Ti)) =
∑

k∈Nsetq

Swapk (Xj(Ti), φk(Ti),Θk) · FXk(Ti)

Then we obtain the expected loss of each netting set by multiplying its value with the corre-

sponding default probability (as a difference between consecutive survival probabilities):

ExpectedLoss(q,Ti,Xj(Ti)) = (Nset Valueq(Ti,Xj(Ti)))
+ · (SPq(Ti)− SPq(Ti−1))

Note: we assume independence between the dynamics of interest rate and credit processes

To obtain the CVA of the whole portfolio on a single simulatedpath, we sum over all

discounted expected losses:

CV A(t0,Xj(T)) =
∑

i

∑

q

D(t0,Ti,Xj(Ti)) · ExpectedLoss(q,Ti,Xj(Ti)) (4.3)

27

4.2 Computing Pathwise Greeks

whereD(t0,Ti,Xj(Ti)) is the stochastic discount factor (3.5), discounting from timeTi back

to time zerot0. Afterwards we finalize by averaging the obtained values over all simulated

scenariosXj :

CVA(t0) =
1

#sim

#nsim
∑

j=1

CV A(t0,Xj(T)) (4.4)

The general CVA valuation schema is shown below:

Figure 4.1: CVA valuation scheme: The swap values at each of the exposure dates are aggre-

gated to corresponding netting sets, then all of them are weighted with default probabilities and

in the end the expected losses are summed up to total CVA.

4.2 Computing Pathwise Greeks

Our results will be concentrated on two types of Greeks:

• Deltas - sensitivities of the price to movements of each of the yield curve points.

• Vegas - sensitivities of the price to movements of each of theσj points (see section3.3

for definition). Note that this is not the direct sensitivity to the volatility surface points; to

convert the sensitivity from ”model sigma” to volatility surface points, one needs to do a

bump & recalibrate type of routine, which is out of the scope of this thesis.

In section3.6we have shown that the pathwise Greeks method is applicable to CVA com-

putation with deterministic default rates, Hull and White model and portfolio of analytically

valuable derivatives(we give some insight into CVA on exotic derivatives in section7.1).

Hence, if we want to compute the sensitivity of CVA of this portfolio to some market

parameter (or parameter vector)θ, we evaluate the partial derivative per simulated path and

28

img/cva_schema.eps

4.2 Computing Pathwise Greeks

average the results to obtain an unbiased Greek estimate:

∂CV A(t0)

∂θ
=

#sim
∑

j=1

∂CV A(t0,Xj(T))

∂θ
(4.5)

In the described CVA computation framework, we can compute CVA per path as a sum of

discounted expected losses at different points in time (4.3), which yields a very convenient

way to compute Greeks by using simple derivative rules:

∂CV A(t0,Xj(T))

∂θ
=

∑

i

∑

q

[
∂D(t0,T,Xj(T))

∂θ
· ExpectedLoss(q,Ti,Xj(Ti))

+ D(t0,T,Xj(T)) ·
∂ ExpectedLoss(q,Ti,Xj(Ti))

∂θ

]

(4.6)

Having a realised state variable vectorXj(T) on every path gives us an analytic formula to

compute the exposure. Thus, we can take an analytic derivative of it:

∂ ExpectedLoss(q,Ti,Xj(Ti))

∂θ
= 1Nset Valueq(Ti,Xj(Ti))>0 · (SPq(Ti)− SPq(Ti−1))

· ∂Nset Valueq(Ti,Xj(Ti))

∂θ
(4.7)

for the same reason we can take the derivative of the values ofeach netting set:

∂Nset Valueq(Ti,Xj(Ti))

∂θ
=

∑

k∈Nsetq

[
∂Swapk (Xj(Ti), φk(Ti),Θk)

∂θ
· FXk(Ti)

+ Swapk (Xj(Ti), φk(Ti),Θk) ·
∂FXk(Ti)

∂θ

]

(4.8)

we left the derivations for partial derivatives of interestrate swap and foreign exchange rate

in Appendix A.3. A very important observation was made when analytically looking into

derivatives and Jacobian matrices of interest rate swaps priced in the future under the one-

factor Hull and White model: the chain of Jacobians has diagonal structures, hence using

matrix formulation of the problem and applying the backwarddifferentiation, investigated in

3.5.4, does not bring significant speed improvements and introduces a large memory overhead.

Therefore in all implementations the derivatives were evaluated using vector operations. We

give a detailed picture of this argument in the AppendixA.3.

29

5

GPU computing

GPGPU (General-Purpose-Graphics-Processing-Unit) technology has shown great potential in

conventional derivatives pricing (European, American Options, etc. Abbas-Turki and Lapeyre

[2]) as well as in some risk-management applications (VaR, Chong et al. [13])).

The primary motivation for computing CVA and Fast Greeks on aGPU co-processor is

the potential speed-up the technology offers. The computation of CVA itself on a specialized

proprietary CPU grid1 for a large (> 50000 instruments) portfolio using highly optimized

code takes often more than 2 hours. In comparison, the same computation on one NVIDIA

Fermi architecture based card (full computer details in Appendix A.3) takes approximately 4

minutes.

Using conventional methods (bump & revalue), the computation time of CVA Greeks in-

creases linearly with the number of sensitivities:

• As the portfolio is based on up to50 currencies, each of them having yield curves with

35 points , we would need to bump & revalue 1750 times!

• This is nearly 5 days of parallel GPU computation, or around 145 days on the mentioned

CPU grid.

• If we include sensitivities to the volatility surface for each of the currencies and foreign-

exchange rates, the computational burden grows even more.

Hence we have investigated the applicability of the GPU technology to the pathwise Greek

computations for the Counterparty Valuation Adjustments.

1Details could not be disclosed due to ING Bank policy.

30

5.1 CUDA Environment

5.1 CUDA Environment

To investigate the adequacy of GPU co-processors for the CVAGreeks computation we have

used a NVIDIA GPU card (see details in AppendixA.6), which was programmed using the

NVIDIA CUDA programming language. CUDA (Compute Unified Device Architecture) is the

name of the general purpose parallel computing architecture of modern NVIDIA GPUs. The

name CUDA is commonly used in a wider context to refer not onlyto the hardware architecture

of the GPU, but also to the software components used to program that hardware. In this sense,

the CUDA environment also includes the NVIDIA CUDA compilerand the system drivers and

libraries for the graphics adapter.

From the hardware point of view, CUDA is implemented by organizing the GPU as a

collection of streaming multiprocessors, which operate according to the Single-Instruction-

Multiple-Thread (SIMT) paradigm1 . A modern GPU can contain tens of multiprocessors

(MPs), each consisting of 32 stream processors (SPs) capable of executing an independent

thread (see figure5.1). The Tesla 2070 device that was used for this project has 14 MPs with

four types of on-chip memory available:

• a set of 32-bit registers (local, one set per stream processor)

• shared memory (48 kB per block for CUDA 2.0 Compute Capability devices, shared be-

tween SPs in a MP)

• a constant cache (64 kB, shared between SPs in single MP, read-only)

• a texture cache (shared between SPs in single MP, read-only)

1Other paradigms are: SISD (single instruction, single data), SIMD (single instruction multiple data), MIMD

(multiple instruction multiple data), see book by Patterson and Hennessy [28] for more information.

31

5.1 CUDA Environment

Figure 5.1: Organization scheme of a typical NVIDIA CUDA Stream multi-processor

The amount of on-chip memory is very limited in comparison tothe total global memory

available on a graphics device (hundreds of kilobytes vs several gigabytes). However, the

advantage is given by the access time, which is two orders of magnitude lower than the global

memory access time.

The CUDA programming model is based upon the concept of a kernel, which is a function

executed multiple times in parallel, each instance runningin a separate thread. Then, the

threads are organized into one-, two- or three-dimensionalblocks, which in turn are organized

into one- or two-dimensional grids. The blocks are completely independent of each other and

can be executed in any order. Threads within a block are guaranteed to be run on a single

multiprocessor. This makes synchronization and efficient information sharing using the on-

chip memory of the MP possible.

In a device having Compute Capability 2.0 or higher, each multiprocessor is capable of

concurrently executing 1024 active threads ([30, 25]). In practice, the number of concurrent

threads per SM is also limited by the amount of shared memory and thus, it does not always

reach the maximum allowed value.

The CUDA environment also includes a software stack. For example, CUDA v4.0 consists

of a hardware layer, system libraries implementing the CUDAAPI, a CUDA C compiler and

two higher level mathematical libraries (CUBLAS and CUFFT). CUDA C is a simple exten-

sion of the C programming language, which includes several new keywords and expressions

that make it possible to distinguish the host (i.e. CPU) and the GPU code [30]. The CUDA

API contains as well theThrust library which supports multiple CUDA-optimized algorithms

32

img/cuda.eps

5.2 Pathwise Greeks on GPU

(vector operations, sequence generators, lists), which ought to be a parallel equivalent of the

C++ Standard Template Library.

5.2 Pathwise Greeks on GPU

The algorithm for computing CVA sensitivities is suitable for parallel computation on the GPU,

because we are evaluating potential losses and the sensitivities to changes in market data per

generated Monte-Carlo scenario. In particular, the portfolio is evaluated per netting-set using

the “path-per-thread” parallelism. Thus, we have a 3 stage CVA computation scheme:

1. Market and portfolio data preparation and upload to the GPU card

2. Evaluation of portfolio sensitivities per generated path in parallel

3. Parallel aggregation of sensitivities from all threads into a single structure and sending

of the data back to the host.

Due to careful design of the CVA computation scheme, the shift from CPU to GPU com-

putation of Greeks is mainly an implementation challenge. There are a couple of optimizations

that we used to achieve higher computation speeds:

• Coalesced memory reads & writes [25]

• Pre-computation of common values for all threads (i.e.A(t, T) (3.24))

• Special treatment of sparse sensitivity vectors, whose structure is known beforehand

Additionally, we were using Fermi architecture cards whichhave an automatic caching feature,

hence shared memory was handled automatically.

33

6

Results

In this chapter we present various results showing both the convergence and the speed up prop-

erties of the pathwise Greeks method. Our first set of experiments was based on the benchmark

single-threaded interest rate library while the last set was based on the parallel GPU-based

implementation.

In the beginning of this chapter we show the results for a swaption (3.8) which was chosen

in the early stages of development to demonstrate the potential of the pathwise Greeks method

for interest rate derivatives. A swaption (“an option on a swap”) was chosen over a simple swap,

because it is sensitive to changes in the yield curve and the volatility parameterσ(t). Therefore,

we could easily make tests for both pathwise Deltas and Vegas. Afterwards we display the

results of computing CVA Greeks with a single-threaded CPU implementation and assess the

overall potential of pathwise Greeks method. In the last section we show convergence, speed

up and scaling results of GPU-based pathwise CVA Greeks implementation.

6.1 Proof-of-Concept: Swaption Greeks

During our first experiment we considered a swaption with:

• 1 year expiration timeT0

• 10 year tenor of the underlying swapTN

• K = 4.6% fixed rate, received every 6 months

• 6M EURIBOR paid every 6 months

• 10,000 EUR Notional

34

6.1 Proof-of-Concept: Swaption Greeks

The input data we had was 35 points on the yield curve and 5 calibrated piece-wise constant

volatility points, so our goal was to compute 35 Deltas and 5 Vegas. We priced the mentioned

swaption and computed its Greeks in 3 ways:

• Computed Quasi-Monte Carlo (QMC) based swaption price and evaluated Greeks using

the pathwise method.

• Computed QMC based swaption price and evaluated Greeks using finite-differencing with

a bump sizeh = 10−8.

• Computed the analytic Hull and White model based swaption price and used finite-differencing

with h = 10−8 to obtain the Greeks.

6.1.1 Swaption Deltas

In Figure6.1we display the sensitivity of the swaption price to the discrete yield curve points.

The first and last Deltas come from the underlying floating rate payments and the intermediate,

small Deltas come from the fixed leg sensitivities to changesin the yield curve.

Figure 6.1: Swaption price sensitivities to changes in yield curve. On the x-axis we have the

quoted yield curve point indices (only 30 significant ones were illustrated); on y-axis we have

the derivative(slope) of the swaption value with respect tochanges in each of the buckets. A

change of 1 basis point in yield curve gives a Slope×EUR change in the swaption value.

In Table6.1 we compare the convergence of QMC Deltas under the two discussed meth-

ods, pathwise and bump & revalue towards the reference bump &revalue Deltas based on the

analytic formula in section3.8. Additionally, to give a better illustration we show the relative

35

img/Swaption_Analytic_Deltas_Graph.eps

6.1 Proof-of-Concept: Swaption Greeks

convergence of all Deltas to the analytic ones in Figure6.2. In theory the bumped Greeks

should have a small bias, however it is not visible in the graph due to a very small “bump”

h = 10−8.

Pathwise QMC Bump & Revalue QMC

Paths Point 1 Point 2 Point 3 Point 1 Point 2 Point 3

500 0.0884 3.1732 0.0087 0.0884 3.1732 0.0087

1000 0.0924 3.3203 0.0091 0.0924 3.3203 0.0091

2000 0.0949 3.4085 0.0093 0.0949 3.4085 0.0093

5000 0.0954 3.4288 0.0094 0.0954 3.4288 0.0094

10000 0.0964 3.4643 0.0095 0.0964 3.4643 0.0095

50000 0.0969 3.4802 0.0095 0.0969 3.4828 0.0095

Analytic 0.0969 3.4788 0.0095 0.0969 3.4788 0.0095

Table 6.1: Convergence of Pathwise and Bumped Deltas based on QMC to Bumped Deltas

based on analytic formula for 3 randomly chosen points on theyield curve. The numbers in

both cases converge at equivalent speeds, as we increase thenumber of simulated paths.

Figure 6.2: Relative error convergence of swaption Deltas.The left half of the graph shows

the relative error of the pathwise Deltas, while the right half illustrates the relative error of the

bumped Deltas. In each case the number of simulated paths increases from left to right. The

convergence rates of both methods are practically identical.

36

img/Swaption_Deltas_RelErr_Convergence.eps

6.1 Proof-of-Concept: Swaption Greeks

Additionally we compare the time necessary to compute the pathwise and bumped Deltas.

Our results show that the pathwise method has the same accuracy as the bumped method but

speeds up the computation approximately5 times. Moreover, we found that the speed up

is independent of the number of simulated paths, indicatinga fine scalability of the method.

Detailed results are charted in Figure6.3.

Figure 6.3: Timings of CPU-based Deltas. The red and blue bars show the timings for the

pathwise and, respectively, bumped Deltas for different number of paths. The Greeks were

computed to every single point in the quoted EUR yield curve.

6.1.2 Swaption Vegas

We made an equivalent experiment to see the convergence of pathwise and bumped swaption

Vegas. In Table6.2 we show only one Vega out of five as our swaption was mainly sensitive

to the first volatility piece while the other values were close to zero and prone to machine

precision errors.

Using the information from Figure6.4 we can conclude that yet again pathwise Vegas

exhibit equivalent accuracy as the bumped ones. However thespeed up of Vega computation

(Figure 6.5) for a single swaption is small (5%) because a lot of time is spent evaluating

the Vega of state variablex(t) (see derivations in AppendixA.3). Performance improvement

should be visible when the number of Vegas becomes much larger.

37

img/Swaption_Deltas_CPU_Timings.eps

6.1 Proof-of-Concept: Swaption Greeks

Paths Pathwise QMC Bump & Revalue QMC

500 3.2926 3.2926

1000 3.3391 3.3391

2000 3.3886 3.3886

5000 3.4036 3.4036

10000 3.4211 3.4211

50000 3.4443 3.4443

Analytic 3.4458 3.4458

Table 6.2: Convergence of pathwise and bumped Vegas based onQuasi-Monte-Carlo simula-

tion towards the bumped Vegas based on the analytic Hull and White formula for swaptions.

Figure 6.4: Relative error convergence of swaption Vegas with increasing number of simulated

paths. Again, the pathwise Vegas are on the left side of the graph and the bumped ones are on

the right. We observe similar rates of convergence in eithercase.

38

img/Swaption_Vegas-RelErr_Convergence.eps

6.2 CVA Greeks

Figure 6.5: Timings of swaption Vegas calculation. The pathwise method gives only a 5%

advantage because the evaluation of Vegas is much more computationally intensive and just a

small number (5) of sensitivities is considered.

6.2 CVA Greeks

Our next task was to investigate the Greeks of CVA on portfolios of interest rate swaps. First we

tested the method using the benchmark single-threaded CPU implementation. In the following

subsections we show the results for Deltas in case of CVA on a single swap, and Vegas in case

of a swap triplet (EUR, USD, GBP). As it was very time consuming to compute bumped CVA

Greeks on a single-threaded CPU implementation we have usedthe bumped Greeks from a

GPU implementation as a reference.

6.2.1 CVA Deltas

For CVA Deltas computation we considered CVA on:

• TN = 10-year Swap (EUR)

• ReceivingK = 4.6% fixed rate (EUR)

• Paying 6-month floating EURIBOR rate

• Notional of the Swap being 10,000 EUR

We computed pathwise and bumped Deltas to 35 yield curve points (EUR), but we display

only the significant ones in Figure6.6. To show convergence of the Greeks with increasing

number of simulated paths, we took the bumped Deltas done with 65536 simulations on the

39

img/Swaption_Vegas_CPU_Timings.eps

6.2 CVA Greeks

GPU as the reference point. Figure6.7shows the relative convergence of pathwise, CPU-based

Deltas to the GPU-based bumped Deltas. Already with 3000 paths we are, on average, within

3% relative error, which is a very good result - we can obtain quite accurate Greeks for hedging

purposes while keeping the computational costs low.

Figure 6.6: CVA sensitivities to changes in the yield curve.On the x-axis we have the quoted

yield curve point indices; on the y-axis we have the derivative(slope) of the CVA with respect to

changes in each of the buckets. A change of 1 basis point in theyield curve gives a Slope×EUR

change in CVA.

Figure 6.7: Relative convergence of pathwise CVA Deltas to the bumped GPU CVA-calculator

based Deltas. Each of the lines represent the relative errorof a Delta with respect to one of the

yield curve points.

40

img/CVA_deltas_picture.eps
img/convergence_of_rel_er_of_cva_deltas.eps

6.2 CVA Greeks

One should note that there is hardly any more convergence shown after 3000 paths: we

remain within 3% relative error. The error comes not from thepathwise Greeks but from the

bumped GPU-calculator Greeks. The problem is that the fast,parallel floating-point operations

on the GPU are only single-precision and they introduce sometruncation error as well as slight

uncertainty of the result. Therefore each CVA valuation is abit imprecise (more on this in Ap-

pendixA.5). Pathwise Greeks do not have this problem as we do not take numerical derivatives

absolutely anywhere. Therefore the accuracy of pathwise Greeks is as high as the estimated

CVA value itself.

6.2.2 CVA Vegas

The CVA calculator uses a single constantσ parameter calibrated to the whole swaption surface

(Figure2.3a), instead of the piecewise constant construct mentioned inthe swaption results

(section6.1.1). Hence, for better visualization purposes, we chose to usea triplet of interest

rate swaps instead of a single swap used with CVA Deltas. Thus, for Vega computation we

considered CVA on:

• Three 10-year Swaps (EUR, USD, GBP)

• Receiving 4.6% fixed rate(s)

• Paying 6-month floating rate(s)

• Notional of each of the Swaps was 10,000 (in their respectivecurrencies)

We made convergence tests for Vegas by changing the number ofpaths used in Monte-

Carlo simulation from1 to 3000. We did not test with larger numbers of paths as the compu-

tation using the single-threaded CPU implementation was already very time-consuming. As

a benchmark, we again used the GPU-based bumped Vegas computed with65536 paths. The

convergence results, pictured in Figure6.9, show that with 3000 simulated paths we are at

< 6% relative error for each currency Vega. Their values are highly dependent on the sim-

ulated state variables, hence for good convergence we need to use more paths than for Delta

estimation.

41

6.2 CVA Greeks

Figure 6.8: CVA Vegas, displayed for every currency.

Figure 6.9: CVA Vegas convergence with increasing number ofpaths used in QMC simulation.

We used GPU-based bumped Vegas as a benchmark.

6.2.3 Scaling

The last test on our single-threaded implementation was to perform an initial investigation

of the scaling properties of the pathwise and the bump & revalue methods. First, we made

multiple timed runs for both cases while keeping the number of simulated paths fixed (only 3

due to time constraints) and changing the number of sensitivities and the portfolio size:

• We started with a single (EUR) swap.

• Then added one more (USD) swap (increase in number of sensitivities)

• and one more (GBP) swap (increase in number of sensitivities).

• Afterwards, we used 2, 3, 4 and 5 swaps for each currency (no increase in number of

sensitivities, but additional valuations)

42

img/CVA_vegas_picture.eps
img/convergence_of_rel_er_of_cva_vegas.eps

6.2 CVA Greeks

The results of the test show that increasing the number of sensitivities (adding different cur-

rency swaps) yields a sharp increase in bumped Greeks computation time, which even quadru-

ples after adding a USD valued swap in the portfolio (see Figure 6.10). However, the pathwise

Greeks evaluation time increases proportionally to the number of swaps and seems to be in-

dependent of the number of computed sensitivities. In fact,the speed-up introduced by the

pathwise method increases from 27 to 78 times as we incrementthe number of sensitivities

from 35 to 105 (3 yield curves) and stays constant when raising the portfolio size without in-

cluding new currencies. These observations are in line withthe results from M.Giles [15], who

mentions that the pathwise method brings speed improvements only with increasing number of

sensitivities.

Figure 6.10: Scaling of CVA execution time depending on number of products and number of

sensitivities for both pathwise and bump & revalue methods.

43

img/cva_swap_scaling_CPU_3path.eps

6.3 GPU Accelerated CVA Greeks

Figure 6.11: Speed up factors of the pathwise method for CVA Deltas. Speed-up stands for

the ratio of the times spent on 1 CVA valuation + 35 bumps and 1 valuation & pathwise Deltas

computed on the fly.

6.3 GPU Accelerated CVA Greeks

In the following section we show our results for the convergence and the speed-up of GPU

accelerated CVA Greeks.

6.3.1 Convergence

We start by showing convergence of CVA Deltas and Vegas for a Swap triplet (EUR, USD,

GBP) with identical details for each swap as in section6.2.2. We show the convergence of

pathwise Greeks towards bumped Greeks, both valued on the GPU. We display the error for

Deltas as average normalized error
1

#points

#points
∑

i=1

|x̃i − xi|
|xi|

for better visualization purposes

(Figure6.12). Pathwise Vegas convergence is displayed with simple normalized errors as we

have a singleσ per currency (Figure6.13). Our obtained results are reasonably consistent

with convergence results obtained with the single-threaded CPU implementation (section6.2):

pathwise Deltas have average normalized error< 3% with 3072 simulated paths and Vegas at

the same time have< 6% normalized error. With an increasing number of paths the pathwise

sensitivities converge to the bumped ones with remaining< 1% error due to floating point

precision errors on the GPU (explained in AppendixA.5).

44

img/cva_swap_speedup_CPU_3path.eps

6.3 GPU Accelerated CVA Greeks

Figure 6.12: Convergence of GPU-based CVA Deltas. The average normalized error is shown

per currency.

Figure 6.13: Convergence of GPU-based CVA Vegas. The normalized error is shown per

currency.

6.3.2 Scaling of the Parallel Implementation

In this subsection we show how the computing time of the Greeks scales for the two evaluation

methods previously discussed. The first test we did was to change the number of computed

sensitivities. This was achieved by increasing the number of different currency swaps from 1

to 18 where each of them had:

• TN = 10-year tenor

• K = 4.6% fixed rate

• Fixed and floating payments every 6 months

• Notional of 10,000 in the denominated currency

The test has shown that the relative speed up of GPU-based pathwise Greeks versus bumped

Greeks increases up to 70 times (Figure6.15) and has a potential to be larger if we have a

45

img/cva_GPU_Delta_convergence.eps
img/cva_GPU_Vega_convergence.eps

6.3 GPU Accelerated CVA Greeks

more diverse portfolio and compute even larger number of sensitivities. During our test the

time spent on computation of Greeks (Deltas and Vegas) was brought from 717 seconds to

approximately 10 seconds as it is shown in Figure6.14.

Figure 6.14: Scaling of CVA Greeks computation time with increasing sensitivities.

Figure 6.15: Speed-up of pathwise Greeks method on the GPU asa function of number of

sensitivities.

Additionally, we investigated the stability of the speed upgiven by the pathwise Greeks

method. We fixed the number of currencies in the portfolio to 3(EUR, USD, GBP) and in-

creased the number of identical swaps per currency from 1 to 1000. Figure6.16illustrates the

observed execution times for both methods and Figure6.17shows their ratio. We see that the

speed up factor stays stable while increasing the portfolio1000 times.

46

img/CVA_Greeks_GPU_Timings_linear.eps
img/CVA_Greeks_GPU_Speedup.eps

6.3 GPU Accelerated CVA Greeks

Figure 6.16: Scaling of computation time for GPU-based CVA Greeks with the number of

swaps in portfolio.

Figure 6.17: Speed up of pathwise Greeks method on the GPU as afunction of the number of

swaps in portfolio.

For the last test of scalability we gradually increased the number of simulated paths from

256 to 65536 while keeping the number of swaps constant and measured the ratio of the execu-

tion times between bumped and pathwise Greeks. The outcome is consistent with our previous

results for CVA Greeks on CPU: the speed up factor stays approximately constant, despite the

changing number of simulated paths (see Figure6.18).

47

img/CVA_Greeks_GPU_Timings_Portfolio_Size.eps
img/CVA_Greeks_GPU_Speedup_Portfolio_Size.eps

6.3 GPU Accelerated CVA Greeks

Figure 6.18: Speed-up of pathwise Greeks method on the GPU asa function of the number of

simulated paths.

In general, we can conclude that the parallel pathwise method running on a GPU gives

increasing speed up of the execution with increasing numberof sensitivities and shows stable

speed-up factors when increasing portfolio size (Figure6.17) or number of simulated paths

(Figure6.18). Hence, we expect improvement in computational time when evaluating CVA

Greeks on a full portfolio with> 20 currencies and50, 000 trades of at least 70 times.

48

img/CVA_Greeks_GPU_Scaling_Number_Paths.eps

7

Discussion

In this thesis we explored the possible ways to accelerate the sensitivities computation for

Counterparty Credit Valuation Adjustments. In chapter3 we described three generic ap-

proaches to compute Greeks for various derivative instruments and decided to further inves-

tigate the pathwise Greeks method due to its suitability forMonte-Carlo simulation based pric-

ing schemes for derivatives. Then, we found that the pathwise method can be applied to CVA

sensitivities when certain smoothness conditions on the payoff and the underlying stochastic

process are satisfied. As the largest part of the ING portfolio in question consists of rather

simple, vanilla interest rate derivatives, priced under one or two factor Hull and White models

- we can directly apply this method for CVA on these products.

On the other hand, this method might not be suitable for binary-type payoffs including

indicator functions1{·}, since they are not Lipschitz continuous and a problem arises when

we make the second interchange of the derivative and the expectation (section3.6). However,

this is not the case if the expectation of our discounted payoff function has an analytic and

differentiable expression. Then, we simply skip the secondinterchange and find the derivative

after taking the expectation. Generally, if this is not possible, we can use the extension proposed

by M.Giles, the Vibrato Monte-Carlo method, to get around this limitation.

There are two main benefits of the pathwise method: computational time speed up and

added accuracy of the estimated Greeks. In the simulation wefound that the pathwise Greeks

can be computed up to 80 times faster than bumped ones with ourCPU implementation. We

additionally have shown that the evaluation of pathwise Greeks can be accelerated by using

GPU co-processors, where the method brought a speed up of up to 70 times over the GPU-

based bumped Greeks. Due to the excellent scalability of themethod, the latter speed up

49

7.1 Future Work

factor could increase even more if we constructed a larger and more diverse test portfolio with

additional sensitivities to compute.

Furthermore, throughout our tests comparing pathwise and bumped Greeks, we showed that

the accuracy difference between the methods is negligible when using small enough bumps.

This yielded an easy way to test for correctness of the pathwise method in different test cases.

We conclude that, within its framework, the pathwise Greeksmethod offers a significant

advantage for computing CVA sensitivities. This improvement allows for on-the-fly sensitivity

computations instead of the usual overnight runs for large portfolios.

7.1 Future Work

There are several directions to expand this work. Currently, we have implemented and tested

this method for CVA on interest rate swaps only. For full coverage the product range should be

extended to include caps, floors, swaptions and more exotic interest rate and foreign-exchange

derivatives.

Valuation of CVA and its Greeks on exotic derivatives is a rather complicated topic. If we

decide to price the exotics in a Monte-Carlo fashion, then itwould be logical to use a “path-

wise within pathwise” approach to estimate CVA Greeks. Thismight be very expensive in

both compute time and memory usage, but still gives an advantage compared to the bump &

revalue approach for the same situation. On the other hand, some approximations like Gaussian

quadrature or Longstaff & Schwartz methods might be used forpricing exotics. This would

yield a convenient framework for estimating pathwise Greeks as in both cases the payoff func-

tions are approximated by smooth and differentiable polynomials or basis functions. In any

case, smart memory management and pre-computation of reused values will be essential for

having reasonably short execution times.

Furthermore, very often the payoffs of exotic derivatives are path-dependent (which is well

managed with the pathwise method) and have some binary-typefeatures like range-accruals

and barrier options. In this case it might be wise to have a good look at the applicability of

Vibrato-Monte-Carlo method to handle the discontinuitieswhile keeping the speed up of the

pathwise method.

A second direction to expand this work is to assume more complicated dynamics of the

underlying interest rate and credit models. One choice is touse the two-factor Hull and White

model for interest rates which would enable proper pricing and Greeks evaluation of some of

50

7.1 Future Work

the callable contracts. Another possibility is to use a stochastic credit model which introduces

the needed tools to describe correlations between default probabilities and interest rates, a

problem also known as the “wrong-way risk” (counterparty credit quality deteriorating while

the amount of money owed to the bank is increasing). In my opinion, it should be possible

to evaluate pathwise Deltas, Vegas and even sensitivities to changes in the credit spreads. Of

course, one should be careful with these models: the pathwise method does not work well if

the underlying processes have jumps, because analytic derivatives do not exist at jump times.

There are two possible solutions for this issue: approximation of the derivative by smoothing

the jump or using Malliavin-calculus methods (see book by Malliavin and Thalmaier [22]).

Another, completely different idea is to automate the differentiation process, as there are

multiple implementations, often open-source, of the so-called automated differentiation li-

braries. These software packages scan through C, C++ or Fortran code, find marked functions

and produce code for “copy-cat” functions computing analytic derivatives of the main func-

tions with respect to their input parameters. At the time of writing this thesis, there was no

implementation capable of handling CUDA code or global objects and variables in C++ codes.

Nonetheless, it might be worthwhile to develop extensions for these libraries, as it would sig-

nificantly decrease the amount of time spent coding and testing the sensitivity-evaluation func-

tions.

51

Acknowledgements

I am grateful to all people who brought their contribution inone way or another to this work.

I want to thank my supervisor Dr. Drona Kandhai who introduced me to the topic of Counter-

party Credit Valuation Adjustments and Dr. Norbert Hari whowas my direct supervisor during

my internship at ING and was always ready to discuss issues onthis topic and ideas that arose.

I am also thankful to Prof. Rob Bisseling for discussions on parallel algorithms and to Tim

Wood for introducing me to GPU programming and his advice on optimizing the code. Last

but not least, I want to thank Andrada for her support and invaluable comments.

52

Appendix A

Appendices

A.1 Interchange of Derivative & Expectation

In the first section of the appendix we give the needed theory to support the interchange of

derivative and the integrals in chapter3. We start with some definitions:

Martingale

A discrete-time martingale is a stochastic process{Xi} that satisfies for alln:

E(|Xn|) < ∞ (A.1)

E(Xn+1|X1, ...,Xn) = Xn (A.2)

Similarly, a continuous-time martingale is a stochastic processYt such that for allt:

E(|Xt|) < ∞ (A.3)

E(Xt|{Xq, q ≤ s}) = Xs,∀s ≤ t (A.4)

Brownian Motion

The Brownian motion, also known as the Wiener processWt is characterized by three proper-

ties;

1. W0 = 0

2. The functiont → Wt is almost surely continuous

3. Wt has independent increments withWt −Ws N(0, t − s), for 0 ≤ s < t

53

A.1 Interchange of Derivative & Expectation

whereN(µ, σ2) denotes the normal distribution with meanµ and varianceσ2.

An alternative definition is so-called Łévy characterization which says that the Wiener pro-

cess is an almost surely continuous martingale withW0 = 0 and quadratic variation[Wt,Wt] =

t (which means thatW 2
t − t is also a martingale)

Expectation of a Lipschitz continuous function

In section3.6 we use the argument that the expectation preserves Lipschitz continuity of a

function. First we give a proof for a uniformly continuous function.

Take a uniformly continuous functionf(x, y) : R× R → R. Then we define function

g : R → R, g =

∫

Ω
f(z(ω), y)dP

wherez : Ω → R is a real-valued random variable mapping from the probability spaceΩ and

y ∈ R.

Takey0 ∈ R. By uniform continuity, givenǫ > 0, ∃δ > 0 s.t. |f(x0, y0) − f(x, y)| < ǫ

for all (x0, y0), (x, y) ∈ R × R for which ||(x0, y0) − (x, y)|| < δ. Take an arbitraryω ∈ Ω

andy ∈ R such that|y0 − y| < δ, then ||(z(ω), y0) − (z(ω), y)|| < δ which implies that

|f(z(ω), y0)− f(z(ω), y)| < ǫ. Since this happens for arbitraryω, this inequality holds for all

ω ∈ Ω and we have that:
∫

Ω
|f(z(ω), y0)− f(z(ω), y)| dP < ǫ

∣
∣
∣
∣

∫

Ω
f(z(ω), y0)− f(z(ω), y)dP

∣
∣
∣
∣
< ǫ

|g(y0)− g(y)| < ǫ

Hence if the functionf is uniformly continuousg is as well.

A function f is Lipschitz continuous (along its second argument) if:

∀y ∈ R,∀δ > 0,∃c ∈ R+
0 : |f(·, y + δ)− f(·, y)| ≤ c · δ (A.5)

Lipschitz continuity is implied by uniform continuity, hence we can directly conclude that

expectation preserves it.

54

A.1 Interchange of Derivative & Expectation

Conditions for the interchange of derivative and expectation

In the following we state the required conditions for the interchange of expectation and deriva-

tive:
∂E[f(X)]

∂θ
= E

[
∂f(X)

∂θ

]

(A.6)

Let {Xn, n ≥ 0} be a vector-valued state process representing, for example, the interest

rate (short rate) process. The process(Xn) may be the discretization of a continuous-time

process.

Denote the discounted payoff of our derivativef(X), X = (X1, . . . ,XT), whereT is the

maturity andf is a real valued function. Thus the price of the security isp = E [f(X)]

Now suppose(Xn) is a random function of parameterθ ranging in the open intervalΘ. For the

existence of pathwise derivatives, we require the following conditions to hold:

C1
∂Xn(θ)

∂θ
= lim

h→0

Xn(θ + h)−Xn(θ)

h
exists with probability 1.

C2 Take the setDf of points wheref is differentiable, thenP(X(θ) ∈ Df) = 1 for all

θ ∈ Θ

C3 The functionf is Lipschitz continuous and hence has an a.e. bounded derivative

The following theorem is an adapted and expanded (to multiple dimensions) version of

original theorem by McShane [24]. For clarity of the proof we introduce direct dependence of

f onω ∈ Ω skipping the random functionX

Interchange of Derivative and Integral.Let B be a set inΩ andA = {A1,A2, ...,AK} be an

open set inRK . Letf be a real-valued function(ω,α) → f(ω,α) defined forω ∈ B̂ = {∀ω ∈
B : P(ω) > 0} and allα ∈ A such that for theseω andα, the partial derivatives

fi(ω,α) =
∂f(ω,α)

∂αi
, i ∈ {1, ...,K},K < ∞ (A.7)

exist and also that for eachα ∈ A the integral

F (α) =

∫

B
f(ω,α)dP(ω) (A.8)

exists and is finite. If there exist functionsbi integrable overB such that for allω ∈ B̂ and

α ∈ A

|fi(ω,α)| ≤ bi(ω) (A.9)

55

A.2 Proof of SWAP final formula

then, for eachα ∈ A, F has a derivative with respect toαi and

DFi(α) =

∫

B
fi(ω,α)dP(ω) (A.10)

Let αi be a point ofAi and letαi,1, αi,2, αi,3, ..., αi,n, ... be a sequence of points inAi all

different fromαi, but converging toαi asn increases. Defineβi,n = (α1, α2..., αi,n, ..., αK)

to beα with perturbation ini direction.

qi,n(ω) =
f(ω, βi,n)− f(ω,α)

αi,n − αi
(A.11)

by definition ofF , we have

F (βi,n)− F (α)

αi,n − αi
=

∫

B
qi,n(ω)dP(ω) (A.12)

By the theorem of mean value, for allω ∈ B̂ there is a numberα(ω) betweenα andβi,n such

thatqi,n(ω) = fi(ω,α(ω)) this gives us that:

|qi,n(ω)| ≤ bi(ω), ∀ω ∈ B̂ (A.13)

Moreover the definition of derivative implies that the a.e. limit of qi,n(ω) is fi(ω,α) for all.

ω ∈ B̂. So, by the dominated convergence theorem, (see theorem 10-1 [24]) we have:

lim
n→∞

∫

B
qi,n(ω)dP(ω) =

∫

B
fi(ω,α)dP(ω) (A.14)

Combining with (A.12) we obtain:

lim
n→∞

F (βi,n)− F (α)

αi,n − αi
=

∫

B
fi(ω,α)dP(ω) (A.15)

HenceE[fi(α)] exists, and forβi,n → α, βi,n ∈ A, ∀i ∈ K, the limit
F (βi,n)− F (α)

αi,n − αi
exists

and is equal to
∫

B
fi(ω,α)dP(ω). The latter being true for alli ∈ {1, ...,K}

A.2 Proof of SWAP final formula

In the following we show a quick derivation of the Swap pricing formula starting from the

definition of a Swap as a series of Forward-Rate-Agreements as it was referred in the section

3.1. Recall that FRA price at timet is calculated as:

FRA(T, S,N,K) = N [P (t, T) · τ(T, S) ·K − P (t, T) + P (t, S)] (A.16)

56

A.3 Pathwise Greek Derivations

Hence:

Swap(t,T, N,K) =
M∑

i=1

FRA(Ti−1, Ti, N,K)

=

M∑

i=1

N · [P (t, Ti)τ(Ti−1, Ti)K − P (t, Ti−1) + P (t, Ti)]

= N ·K ·
M∑

i=1

τ(Ti−1, Ti) · P (t, Ti)−N
M∑

i=1

P (t, Ti−1) +N
M∑

i=1

P (t, Ti)

= N ·
[

K ·
M∑

i=1

τ(Ti−1, Ti)P (t, Ti)− P (t, T0) + P (t, TM)

]

As wanted.�

A.3 Pathwise Greek Derivations

To efficiently use the pathwise Greek method and to decide if to use forward or backward

differentiation, one has to investigate the structure of the whole chain of derivatives (Jacobian

matrices).

In this section we derive and display the structure of Deltasand Vegas of a swaption. We

will represent the swaption price using definition (3.8) on a specific, generated Monte-Carlo

scenario as:

Swaption(t, T0,T, x(T0),Θmkt) = D(t, x(T0), T0) · (Swap(T0,T, x(T0),Θmkt))
+

wherex(T0) is the realisation of the state variable on this path andΘmkt is all market data used

for swaption pricing. Then, we decompose the swap into a sum of floating (FlC) and fixed

(FxC) coupons:

Swap(T0,T, x(T0),Θmkt) =
N−1∑

i=0

(FxC(T0, Ti, Ti+1)− FlC(T0, Ti, Ti+1))

where the fixed coupon is dependent on the zero-coupon bond priceP and the floating one is

dependent on Forward rate (FwdRt):

FxC(T0, Ti, Ti+1) = N ·K · P (T0, Ti+1) · τ(Ti, Ti+1)

FlC(T0, Ti, Ti+1) = N · FwdRt(T0, Ti, Ti+1) · τ(Ti, Ti+1)

FwdRt(T0, Ti, Ti+1) =
1

τ(Ti, Ti+1)

(
P (T0, Ti)

P (T0, Ti+1)
− 1

)

57

A.3 Pathwise Greek Derivations

In the above we skipped the parametersx(T0) andΘmkt to shorten notation, but the dependence

is still implied. Going forward, we use the zero-bond definition as in (3.21), just now our

reference time of evaluation ist:

P (T0, x(T0), Ti) = exp [A(T0, Ti)−B(T0, Ti) · x(T0)]

=
PM (t, Ti)

PM (t, T0)
· exp

[
1

2
[V (T0, Ti)− V (t, Ti) + V (t, T0)]−B(T0, Ti) · x(T0)

]

with B(T0, Ti) =
1− e−a·τ(Ti−T0)

a
andV (t, T) as defined in (3.20).

Swaption Deltas

Delta for a swaption can be called a derivative with respect to each of the quoted zero bond

pricesPM (0, Qi) due to the direct relation to the yields (A.40). In the following derivations

we distinguish between the time indicesT = {T0, T1, ..., TN} andQ = {Q0, Q1, ..., QM} -

the first ones represent the reset and maturity dates of the swap coupons, while the second ones

give the maturity dates of the quoted market zero-coupon bonds. As Deltas are quite straight-

forward to derive, we will immediately leap into the matrix formulation. Each< BOLD >

entry stands for a vector of function values or parameters inthe formulations below and
[·
·
]

constructs represents the Jacobian matrices/vectors of corresponding partial derivatives. The

overall expression for swaption Delta is of the form:

[
∂Swaption(t, T0,T, x(T0),Θmkt)

∂ < P(t,Qj) >

]

= 1Swap(T0,T,x(T0),Θmkt)>0 ·D(t, T0, x(T0))

·
{[

∂SWAP(T0,T,x(T0),Θmkt)

∂‘ < FxC(T0,Ti) >

]

·
[
∂ < FxC(T0,Ti) >

∂ < P(T0,Ti) >

]

·
[
∂ < P(T0,Ti) >

∂ < P(t,Qj) >

]

+

[
∂SWAP(T0,T,x(T0),Θmkt)

∂ < FlC(T0,Ti) >

]

·
[

∂ < FlC(T0,Ti) >

∂ < FwdRt(T0,Ti,Ti+1) >

]

·
[
∂ < FwdRt(T0,Ti,Ti+1) >

∂ < P(T0,Ti) >

]

·
[
∂ < P(T0,Ti) >

∂ < P(t,Qj) >

]}

+ (Swap(T0,T, x(T0),Θmkt))
+ · ∂D(t, T0, x(T0))

∂ < P(t,Qj) >

We can decompose the stochastic discount factor

D(t, T0, x(T0)) = exp

(

−
∫ T0

t
x(u)du−

∫ T0

t
φ(u)du

)

(A.17)

58

A.3 Pathwise Greek Derivations

derivative using equation (3.18) as:
[
∂D(t, T0, x(T0))

∂ < P(t,Qj) >

]

=
D(t, T0, x(T0))

P (t, T0)
·
[

∂P (t, T0)

∂ < P(t,Qj) >

]

(A.18)

and the derivative of the Forward rate as:
[
∂ < FwdRt(T0,Ti,Ti+1) >

∂ < P(t,Qj) >

]

=

[
∂ < FwdRt(T0,Ti,Ti+1) >

∂ < P(T0,Ti) >

]

·
[
∂ < P(T0,Ti) >

∂ < P(t,Qj) >

]

Then, the sensitivity of future zero-coupon bondP (T0, Ti) to time-zero bondsP (t,Qj) is

decomposed to:
[
∂ < P(T0,Ti) >

∂ < P(t,Qj) >

]

=

[
∂ < P(T0,Ti) >

∂ < P(t,Ti) >

]

·
[
∂ < P(t,Ti) >

∂ < P(t,Qj) >

]

(A.19)

where theQj times do not necessarily match the cash exchange datesTi.

How the Jacobian matrices look like

Say we have an underlying swap withN fixed andN floating coupons with cash exchanges

on T = {T1, ..., TN}, t = current time,T0 =first fixing date. In the following we go though

each of the mentioned Jacobians and discuss their structure. We start with the sensitivities of

the swap price to the values of the coupons:
[

∂SWAP(t,T)

∂‘ < FxC(t,Ti,Ti+1) >

]

=
[
1, ..., 1

]
(A.20)

is a[1×N] vector with ones for fixed coupons and equivalent one with−1s for the sensitivity

to floating coupons (we assume that we pay floating, receive fixed).

The relation of fixed rate coupons and bond prices yields a diagonalN ×N matrix as we

have uniqueP (T0, Ti) per coupon:

[
∂ < FxC(t,Ti,Ti+1) >

∂ < P(T0,Ti) >

]

=














N ·K·
τ(T0, T1) 0 · · · 0

N ·K·
0 τ(T1, T2) · · · 0
...

...
. . .

...
0 0 · · · N ·K·

τ(TN−1, TN)














(A.21)

59

A.3 Pathwise Greek Derivations

The derivatives of floating rate coupons w.r.t. forward rates yield again aN ×N diagonal

matrix due to one-to-one correspondence of coupons and usedforward rates.

[
∂ < FlC(t,Ti) >

∂ < FwdRt(T0,Ti,Ti+1) >

]

=






N · τ(T0, T1) · · · 0
...

. ..
...

0 · · · N · τ(TN−1, TN)




 (A.22)

Then, the forward rates are constructed from pairs of zero bond prices, hence the Jacobian
[
∂ < FwdRt(T0,Ti,Ti+1) >

∂ < P(T0,Ti) >

]

takes a form ofN ×N bi-diagonal matrix:
















−1

P (T0, T1)2 · τ(T0, T1)
0 . . . 0

1

τ(T1, T2)P (T0, T2)

−P (T0, T1)

P (T0, T2)2 · τ(T1, T2)
. . . 0

0
1

τ(T2, T3)P (T0, T3)

. . . 0

...
...

. . .
...

0 . . .
1

τ(TN−1, TN)P (T0, TN)

−P (T0, TN−1)

P (T0, TN)2 · τ(TN−1, TN)

















The future bond pricesP (T0, Ti) have column + diagonal relationship to the time-t zero-

coupon bond prices:

[
∂ < P(T0,Ti) >

∂ < P(t,Ti) >

]

=













−P (T0, T1)

P (t, T0)

P (T0, T1)

P (t, T1)
0 . . . 0

−P (T0, T2)

P (t, T0)
0

P (T0, T2)

P (t, T2)
. . . 0

...
...

...
. . .

...
−P (T0, TN)

P (t, T0)
0 0 . . .

P (T0, TN)

P (t, TN)













The final matrix is the Jacobian of the zero-bonds with time indices matching the coupon

times with respect to zero-bonds with time indices matchingthe actual, underlying zero-bond

maturity times. We are not displaying the internals of it as it depends on the interpolation

scheme used (see AppendixA.4), but it should be bi-diagonal, as each of non-quoted bond

prices is approximated by the two neighbouring ones.

[
∂ < P(t,Ti) >

∂ < P(t,Qj) >

]

=









∂P (t, TL1
)

∂P (t,Q0)
...

∂P (t, TL1
)

∂P (t,QM)
: ... :

∂P (t, TLN
)

∂P (t,Q0)
...

∂P (t, TLN
)

∂P (t,QM)









(A.23)

60

A.3 Pathwise Greek Derivations

One should note that these matrices are extremely sparse as we are using the 1-factor Hull-

White model to describe the dynamics of the interest rates intime. M.Giles has assumed the

Libor Market model in his paper [15], where he had reasonably filled matrices and obtained

significant efficiency gains by using the backward multiplication scheme. We do not have the

large fill in our case and diagonal structures, hence it is notvery beneficial to compute the

matrices in the middle of the algorithm. In our implementation we have decided to restrict

ourselves to the standard pathwise derivative method, using only vector operations as it is more

memory efficient. When performing computations on the GPU - memory access overhead can

become a very serious bottleneck.

Swaption Vegas

In the following we derive the analytic derivatives betweenthe swaption price and calibrated

piecewise constantσ(t) pointsσj, j ∈ {1, ..., n}. For simplicity we derive this again for a

single Monte-Carlo path in the swaption pricing scheme:

∂Swaption(t, T0,T, x(T0),Θmkt)

∂σj
= (Swap(T0,T, x(T0),Θmkt))

+ ∂D(t, T0)

∂σj

+D(t, T0) ·
∂(Swap(T0,T, x(T0),Θmkt))

+

∂σj

Continuing the derivations for sensitivities:

∂(Swap(T0,T, x(T0),Θmkt))
+

∂σj
= 1{(Swap(T0,T,x(T0),Θmkt))>0}·

N−1∑

i=0

∂(FxC(T0;Ti, Ti+1)− FlC(T0;Ti, Ti+1))

∂σj

For anyi the following holds by the chain rule:

∂FxC(T0;Ti, Ti+1)

∂σj
= N · ∂P (T0,Ti+1)

∂σj
· τ(Ti, Ti+1) ·K

∂FlC(T0;Ti, Ti+1)

∂σj
= N · τ(Ti, Ti+1)

∂FwdRt(T0;Ti, Ti+1)

∂σj

To continue the derivations, we revise some of the details from the model. We expressed

(3.21) the zero-bond price as:

P (T0, Ti) = exp [A(T0, Ti)−B(T0, Ti) · x(T0)]

where:

A(T0, Ti) = log
PM (t, Ti)

PM (t, T0)
+

1

2
[V (T0, T1)− V (t, Ti) + V (t, T0)]

B(T0, Ti) =
1− exp (τ(Ti − T0) · a)

a

61

A.3 Pathwise Greek Derivations

Thex(T0) random component was defined by the SDE:
{

dx(s) = −ax(s)ds+ σ(s)dW (s), s > t

x(t) = 0

using the Ito rule withf(s, x) = xeas, we get a simpler solution:

x(s) = x(t)e−a(s−t) +

∫ s

t
σ(u)e−a(s−u)dW (u)

considering the piecewise constant volatility (section3.3) and assuming thats > t = t1 = 0

(for convenience), we obtain:

x(s) =
ts∑

i=1

[

σi

∫ ti+1

ti

e−a(s−u)dW (u)

]

+ σts+1

∫ s

ts

e−a(s−u)dW (u), ts ≤ s < ts+1

Then the derivative of the zero-coupon bond w.r.t. volatility σj can be derived:

∂P (T0, Ti)

∂σj
= P (T0, Ti) ·

(
∂A(T0, Ti)

∂σj
−B(T0, Ti) ·

∂x(T0)

∂σj

)

(A.24)

∂A(T0, Ti)

∂σj
=

1

2

[
∂V (T0, Ti)

∂σj
− ∂V (t, Ti)

∂σj
+

∂V (t, T0)

∂σj

]

(A.25)

∂x(T0)

∂σj
=

n∑

i=1

∂x(T0, σi)

∂σj
(A.26)

∂x(T0, {σi})
∂σj

= 1{σi=σj}

∫ ti+1∧T0

ti

e−a(T0−u)dW 0(u) (A.27)

∂V (T0, Ti)

∂σj
=

n−1∑

k=1

∂Ṽ (tk, tk+1, σk)

∂σj
+

∂Ṽ (tn, T, σn)

∂σj
(A.28)

∂Ṽ (tk, tk+1)

∂σj
= 1{σi=σj

} ·
2Ṽ (tk, tk+1)

σj
(A.29)

whereV andṼ were defined initially in (3.3) andti ∧ T0 = min(ti, T0).

The forward rate by definition is:

F (T0;Ti−1, Ti) =
1

τ(Ti−1, Ti)
·
(
P (T0, Ti−1)

P (T0, Ti)
− 1

)

hence its derivative with respect to the volatilityσj is expressed as:

∂F (T0;Ti−1, Ti)

∂σj
=

1

τ(Ti−1, Ti)

(
1

P (T0, Ti)

∂P (T0, Ti−1)

∂σj
− P (T0, Ti−1)

P (T0, Ti)2
· ∂P (T0, Ti)

∂σj

)

where the zero-coupon bond Vegas have been already defined in(A.24).

62

A.3 Pathwise Greek Derivations

Next we go to the discount factor termD(t, T0) in (A.17). The Vega of the discount factor

is evaluated as:

∂D(t, T0)

∂σj
= D(t, T0) ·




∂
(

−
∫ T0

t ϕ(s)ds
)

∂σj
+

∂
(

−
∫ T0

t x(s)ds
)

∂σj



(A.30)

∂
(

−
∫ T0

t ϕ(s)ds
)

∂σj
=

∂
[
1
2V (t, t)− V (t, T0)

]

∂σj
(A.31)

∂
(

−
∫ T0

t x(s)ds
)

∂σj
=

∂
(

−
∫ T0

t x(s)ds
)

∂σj
= −

∫ T0

t

∂x(s)

∂σj
ds (A.32)

and the latter two were computed in (A.28) and (A.26).

FX-Greeks

If the swaption was valued not in domestic currency as the case analysed so far, we have the

additional termFX(T) to convert the swaption value from foreign to domestic currency. This

term is sensitive to both zero-coupon bond prices and volatilities of both currencies.

By definition, foreign-exchange rate is defined as an exponentiated difference between the

two short rates with additional Brownian Motion component.The integration of the FX SDE

in (3.26) yields:

FX(T) = FX(t) · exp





T∫

t

(rd(t)− rf (t)) dt+

T∫

t

σS(t)dWS(t)



 (A.33)

= FX(t) · exp





T∫

t

rd(t)dt





︸ ︷︷ ︸

1/Dd(t,T,xd(t))

· exp



−
T∫

t

rf (t)dt





︸ ︷︷ ︸

Df (t,T,xf (t))

· exp





T∫

t

σS(t)dWS(t)





These marked domestic and foreign discount factor parts areeach sensitive to different sets of

market data and we discuss them separately. When computing Deltas w.r.t. domestic data we

obtain:

∂FX(T)

∂PM
d (t,Qj)

= FX(T) · −1

Dd(t, T, xd(t))
· ∂Dd(t, T, xd(t))

∂PM
d (t,Qj)

(A.34)

where the last term is as in (A.18). In case of pathwise Vega w.r.t.σd,j we have:

∂FX(T)

∂σd,j
= FX(T) · −1

Dd(t, T, xd(t))
· ∂Dd(t, T, xd(t))

∂σd,j
(A.35)

63

A.4 Dangers of Interpolation for Greeks

with the rightmost derivative already computed in (A.30).

The sensitivities w.r.t. foreign Deltas are equivalent:

∂FX(T)

∂PM
f (t,Qj)

= FX(T) · −1

Df (t, T, xf (t))
· ∂Df (t, T, xf (t))

∂PM
f (t,Qj)

(A.36)

where the last term is solved equivalently to (A.18). The main part of the foreign currency

Vegas looks the same as for the domestic currency:

∂FX(T)

∂σf,j
= FX(T) · −1

Df (t, T, xf (t))
· ∂Df (t, T, xf (t))

∂σf,j
(A.37)

but here the last derivative term is slightly different, as we have a modified drift of the state

variable process (as in equation (3.26)):

dxf (s) = −afxf (s)ds+ σf (s)ρS,fσS(s)ds + σf (s)dW
Q
f (s), xf (t) = 0 (A.38)

integrating it with the help of functionf(x, s) = x · eaf s we obtain:

xf (s) = xf (t)e
−af (s−t) +

s∫

t

e−af (s−u)σf (u)ρS,fσS(u)du+

s∫

t

e−af (s−u)σf (u)dWf (u)

(A.39)

The latter expression can be rewritten, keeping in mind the piecewise constant volatility func-

tion σf (s) = σf,i, ti ≤ s < ti+1, i ∈ {1, ..., N} and assuming thatt = 0 to:

xf (s) =
n∑

i=1



σf,i





ti+1∫

ti

e−a(s−u)dWf (u) +

ti+1∫

ti

e−a(s−u)σS(u)ρS,fdu





+σf,n+1





t∫

tn

e−a(s−u)dWf (u) +

t∫

tn

e−a(s−u)σS(u)ρS,fdu









wheretn < s < tn+1. Hence now, just like in (A.26) xf (s) is sensitive to one pieceσf,i of

volatility function at a time. The rest of derivation is similar to single-currency case in the same

array of equations.

A.4 Dangers of Interpolation for Greeks

In the derivation of (A.23) matrix we have skipped the internals of it. Here we would like

to shortly discuss the different zero-coupon-bond price interpolation schemes and their differ-

ences.

64

A.4 Dangers of Interpolation for Greeks

The continuously compounded interest rateY (t, T) and discount factorsP (t, T) are related

via:

Y (t, T) =
log P (t, T)

τ(T − t)
(A.40)

P (t, T) = exp [Y (t, T) · (T − t)] (A.41)

Say that two bonds maturing at timesT0 andT1 are liquidly traded on the market. We want to

find the price of a “custom” bond maturing inT years,T0 ≤ T ≤ T1. There are 3 main ways

to interpolate the bond price:

1. Interpolation of the zero-yield curve points

Y (t, T) =
τ(T − T0)Y (t, T1) + (T1 − T)Y (t, T0)

τ(T1 − T0)
(A.42)

2. Interpolation of the discount factors

P (t, T) =
τ(T − T0)P (t, T1) + (T1 − T)P (t, T0)

τ(T1 − T0)
(A.43)

3. Interpolation of the log discount factors

log P (t, T) =
τ(T − T0) log P (t, T1) + (T1 − T) log P (t, T0)

τ(T1 − T0)
(A.44)

To show the differences of these methods we have picked a fictional case with 2 quoted

zero coupon bonds (3-year and 5-year). The interpolated zero coupon bond prices do not differ

much, even if we interpolate using different methods as it isshown in FigureA.1:

3.5 4.0 4.5 5.0
T

0.88

0.90

0.92

0.94

0.96

Price

PHt,TL under different interpolation

Int.DF

Int.Log.DF

Int.Yield.C

Figure A.1: Interpolated Bond Prices

65

img/ptT_interplated.eps

A.4 Dangers of Interpolation for Greeks

but if we try to compare the sensitivities of the interpolated bond price with respect to the

quoted bond prices, we obtain significant differences in theweights the neighbouring (quoted

in the market) points carry, this is pictured in FigureA.2. In our case we have more a 40%

difference (see FigureA.3) in the computed Greeks.

3.5 4.0 4.5 5.0
T

-2.5

-2.0

-1.5

-1.0

-0.5

Slope

PHt,TL sensitivity to YH1L point

Int.DF

Int.Log.DF

Int.Yield.C

(a) Sensitivity to 3y point

3.5 4.0 4.5 5.0
T

-4

-3

-2

-1

Slope

PHt,TL sensitivity to YH2L point

Int.DF

Int.Log.DF

Int.Yield.C

(b) Sensitivity to 5y point

Figure A.2: Greeks of Interpolated Bond Price. Left figure shows the sensitivity of the inter-

polated price to the 3-year point and right figure shows sensitivity to the 5-year point under

different interpolation methods.

3.5 4.0 4.5 5.0
T

-0.008

-0.006

-0.004

-0.002

EUR

Difference in bond price

Int.DF-Int.Yield.C

3.5 4.0 4.5 5.0
T

-0.4

-0.3

-0.2

-0.1

Slope

Difference in sensitivity

dDFHYieldL-dDFHLogL

Figure A.3: Bond price and sensitivity differences arisingfrom chosen interpolation methods.

Left figure shows the difference between direct discount factor and yield curve interpolated

zero bond prices depending on value ofT . The right figure shows the difference between yield

curve and discount factor interpolation based sensitivities.

Hence even if the interpolation method does not yield much difference in the interpolated

bond price, it does matter in the case of Greeks computation.

The practitioner should (at least) be consistent throughout the system how things are be-

ing interpolated. Additionally, if one has the freedom to choose the method of interpolation,

the smartest choice would be to interpolate pure zero-coupon-bond prices as hedging is done

66

img/ptT_sensitivity_y1.eps
img/ptT_sensitivity_y2.eps
img/ptT_sens_diff1.eps
img/ptT_sens_diff2.eps

A.5 GPU: single precision limitations

directly with them.

A.5 GPU: single precision limitations

In chapter5 we have mentioned the floating point precision problem when performing bumped

Greeks evaluation using GPUs:

∂CV A

∂θ
=

CV A(θ)− CV A(θ + h)

h

The problem rises from the fact that the currently supportedparallel add operations of NVIDIA

cards are only single-precision. As one is performing the single-precision operations, only 23-

bits are available for the “fraction” part of the number. In this case the numerical “epsilon”

(smallestx, s.t.1 + x > 1) is around1.9E − 7 (see article by Goldberg [17]). Hence, we can,

roughly, add around 7 digits of 2 numbers correctly:

11, 111, 111 + 1.31516 = 11, 111, 112.0

and the rest of the number is rounded. Additionally, if we don’t use sorting procedures, due to

non-associativity of floating point operations, the parallel add operations return numbers that

have the tail part (after the7 digits) - somewhat random. Hence as we were performing CVA

calculation, thousands of single-precision numbers were added and these errors left us with

precise 6-digits of the final answer.

This difference does not matter for CVA pricing, as we are talking about missing cents from

multi-million Euro values, but this rounding and parallel add error affects the Greeks. Say that

the bumph = 1E−10 and the parallel-add error is of size1E−6×CVA size. Then, if the true

Greek in question is 20,000 (i.e. sensitivity of CVA to movement of some yield curve point)

andCVA = 2000, then the finite-difference approximation of it will be:

∆̃ =
CV A(θ)− CV A(θ + h)±

p-add error
︷ ︸︸ ︷

2 · (2000 · 1E − 6)

1E − 10
= 20, 000 ± 40, 000, 000 (A.45)

which makes our Greek estimate unusable. The solution is to use a larger bump size, like

h = 1E − 4, then the parallel add error, in this case, would become±40.

Note that Greeks are usually normalized to show changes in CVA value if a yield curve

point moves by 1 basis point= 1E − 4, hence the final sensitivity number used by the trader

would be2± 0.004 and this error is small enough to ignore, as CVA is an approximation itself.

67

A.6 Development Platform Details

On the other hand, making a larger bump might give biased Greek due to higher-order effects

in the CVA pricing formula, which might be undesirable in practice.

A.6 Development Platform Details

All the code was written and tested on a computer provided by ING with:

• Intel Xeon 3.2GHz (8-core) CPU

• NVIDIA Tesla C2070 (Fermi) GPU card

• 16GB memory.

68

REFERENCES

References

[1] Basel III: A global regulatory framework for more resilient banks and banking systems.

Technical report, Basel Committee on Banking Supervision,BIS. 1

[2] L. Abbas-Turki and B. Lapeyre. American options pricingon multi-core graphic cards.

In Business Intelligence and Financial Engineering, 2009. BIFE’09. International Con-

ference on, pages 307–311. IEEE, 2009.30

[3] C. Albanese, T. Bellaj, G. Gimonet, and G. Pietronero. Coherent global market simula-

tions for counterparty credit risk, Oct. 2010.25

[4] BIS. Semiannual OTC derivatives statistics at end-December 2010. URL

http://www.bis.org/statistics/derstats.htm. 4

[5] D. Brigo. CCFEA. Credit and Default Modeling. Unit 7: Counterparty Risk with Stochas-

tic Dynamical Models: Impact of Volatilities and Correlations.courses.essex.ac.uk, 2009.

URL http://courses.essex.ac.uk/CF/CF907/unit7essex.pdf.

[6] D. Brigo and F. Mercurio.Interest rate models: theory and practice: with smile, inflation,

and credit. Springer Verlag, 2006. ISBN 3540221492.6, 7, 9, 11, 12, 13, 14, 16, 25

[7] D. Brigo and A. Pallavicini. Counterparty risk and Contingent CDS valuation under

correlation between interest-rates and default.papers.ssrn.com, (August 2006), 2008.

[8] D. Brigo, A. Pallavicini, and R. Torresetti. Credit models and the crisis, or: how I learned

to stop worrying and love the CDOs.Quantitative Finance Papers, pages 1–66, 2009.

[9] R. Caflisch. Monte Carlo and Quasi-Monte Carlo methods.Acta numerica, 7(-1):1–49,

1998.18

[10] L. Capriotti and M. Giles. Fast correlation greeks by adjoint algorithmic differentiation.

Quantitative Finance Papers, 2010.

[11] N. H. Carlos A. Gonzalez Sterling. Technical Note on Hull and White Model with piece-

wise constant volatility. Technical report, ING, Amsterdam, 2009.14

[12] N. Chen and P. Glasserman. Malliavin Greeks without Malliavin calculus, July 2007.

ISSN 0304-4149.

[13] J. Chong, K. Keutzer, and M. Dixon. Acceleration of Market Value-at-Risk Estimation.

papers.ssrn.com. 30

[14] D. Duffy. Monte Carlo Frameworks: Building Customisable High-Performance C++

Applications. 2009.

69

http://www.bis.org/statistics/derstats.htm
http://courses.essex.ac.uk/CF/CF907/unit7essex.pdf

REFERENCES

[15] M. Giles and P. Glasserman. Smoking adjoints: Fast monte carlo greeks.Risk, 19:88–92,

Jan. 2006.43, 61

[16] P. Glasserman.Monte Carlo methods in financial engineering. Springer Verlag, 2004.17

[17] D. Goldberg. What every computer scientist should knowabout floating-point arithmetic.

ACM Computing Surveys, 23(1):5–48, 1991.67

[18] J. Gregory. Counterparty credit risk: the new challenge for global financial markets.

Wiley, 2010.6

[19] L. Grzelak, C. Oosterlee, and S. Van Weeren. Extension of stochastic volatility equity

models with the Hull-White interest rate process.Quantitative Finance, pages 1–17, Dec.

2009. ISSN 1469-7688. doi: 10.1080/14697680903170809.

[20] L. A. Grzelak. On Cross-Currency Models with Stochastic Volatility and Correlated In-

terest Rates Multi-Currency Model with Short-Rate Interest Rates.Centrum, pages 1–27,

2011.14, 15

[21] I. Kechagioglou. Credit/Interest rate hybrid models of the short rate for pricing counter-

party risk adjustment.papers.ssrn.com, (September):1–41, 2009.

[22] P. Malliavin and A. Thalmaier.Stochastic calculus of variations in mathematical finance,

volume 3. Springer Verlag, 2006.51

[23] D. McLeish. Monte Carlo simulation and finance, volume 276. Wiley, 2005.

[24] E. J. McShane.Unified integration. 1989.55, 56

[25] NVIDIA. CUDA programming Guide 4.0. Technical report,NVIDIA, 2011. 32, 33

[26] Monte Carlo evaluation of sensitivities in computational finance., 2007. Oxford Univer-

sity Computing Laboratory, Oxford-Man Institute of Quantitative Finance.18, 22

[27] N. Packham. Correlation parameterization and calibration for the LIBOR market model.

(4122659), 2005. URLhttp://packham.net/data/Thesis.pdf.

[28] D. Patterson and J. Hennessy.Computer organization and design: the hardware/software

interface. Morgan Kaufmann, 2008.31

[29] M. Pykhtin. Counterparty Credit Risk.Wiley Online Library.

[30] S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk,and W. Hwu. Optimization

principles and application performance evaluation of a multithreaded GPU using CUDA.

In Proceedings of the 13th ACM SIGPLAN Symposium on Principlesand practice of

parallel programming, pages 73–82. ACM, 2008.32

[31] D. Williams. Probability with martingales. Cambridge Univ Pr, 1991. ISBN

0521406056.

70

http://packham.net/data/Thesis.pdf

	List of Figures
	1 Introduction
	2 Counterparty Credit Valuation Adjustments
	2.1 CVA Pricing
	2.2 CVA Greeks

	3 Theory
	3.1 Basic Definitions
	3.2 Pricing by Simulation
	3.3 Multi-Currency Hull-White Interest Rate Model with piece-wise constant volatility
	3.3.1 2-Currency Model with Correlations
	3.3.2 m-Currency Model Extension

	3.4 Credit Modelling
	3.4.1 Reduced Form Models

	3.5 Greek Computations for Derivative Instruments
	3.5.1 Finite Difference Method
	3.5.2 Likelihood-Ratio Method
	3.5.3 Pathwise Method
	3.5.4 Forward/Adjoint Differentiation

	3.6 Pathwise Greeks: CVA

	4 Methods
	4.1 CVA Computation Scheme
	4.1.1 Model Calibration
	4.1.2 Scenario Generation
	4.1.3 Computation of CVA

	4.2 Computing Pathwise Greeks

	5 GPU computing
	5.1 CUDA Environment
	5.2 Pathwise Greeks on GPU

	6 Results
	6.1 Proof-of-Concept: Swaption Greeks
	6.1.1 Swaption Deltas
	6.1.2 Swaption Vegas

	6.2 CVA Greeks
	6.2.1 CVA Deltas
	6.2.2 CVA Vegas
	6.2.3 Scaling

	6.3 GPU Accelerated CVA Greeks
	6.3.1 Convergence
	6.3.2 Scaling of the Parallel Implementation

	7 Discussion
	7.1 Future Work

	A Appendices
	A.1 Interchange of Derivative & Expectation
	A.2 Proof of SWAP final formula
	A.3 Pathwise Greek Derivations
	A.4 Dangers of Interpolation for Greeks
	A.5 GPU: single precision limitations
	A.6 Development Platform Details

