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Abstract

(Counterparty) Credit Valuation Adjustments (CVA) hasdrae a prevailing form
of pricing default risk on over-the-counter (OTC) contsadDue to the large size
of portfolios included in the CVA calculation and its comatibnal complexity,
large computing grids are needed for the evaluation.

The main purpose of this thesis is to investigate an even mamgutationally
demanding problem, namely computing the sensitivities @A @ the market
and model parameters, a topic which was hardly addressée iité¢rature so far.
We show that the pathwise sensitivities method can be apfidieCVA and that
it gives significant speed improvement over the conventiéinge-differencing
techniques. Additionally, we take advantage of the GPUrteldgy to obtain the
Greeks fast enough for daily hedging and risk managemenitaas.
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Introduction

Counterparty risk is traditionally interpreted as credikrbetween derivatives counterparties.
After the 2007 credit crisis, when important institutiorssBear Sterns, Lehman Brothers, Fan-
nie Mae and Freddie Mac failed, counterparty credit riskibeen recognized by the majority
of market participants as one of the key financial risks.

In the current trading environment, whenever a derivaiesided over-the-counter (OF)C
a default risk charge should be factored into the total prigéhat does it mean to include
counterparty risk? This means that we additionally changecbunterparty, which owes us
payments, for the possibility that it defaults during theiqe of the contract and we lose the
rest of the cashflows, which may have been profitable for us.

As we move from single trades to full portfolio level CVA, girig gets a lot more com-
plicated as the potential losses and gains, in case of defam cancel out and are subject to,
often complicated, legal agreements such as netting’rates collaterization Moreover, the
contracts in question can be heavily correlated and inflienc overall risk profile due to lack
of diversification. Portfolio-level CVA calculation and magement will be mandatory for all
banks as of 2013, due to the new Basel 3 regulati@hs [

'OTC contracts are traded (and privately negotiated) direetween the counterparties, without going through
an exchange or other intermediary. The OTC market is muelhréggilated with respect to disclosure of information
between the counterparties.

2 A netting agreement between two entities, say A and B, meaatsftA defaults and does not pay B, then
B can offset their losses by the same amount out of all paysrientves A. Without netting, B would have to pay
back A all of the payments if A defaults.

3Collaterization is the act where a borrower A pledges sorsetas the lending counterparty B, so that B is
insured against the default of A (in case A defaults, B kebpsasset).



To control the counterparty risk at a portfolio level one ba$edge it, in other words,
to buy or sell liquid, basic (vanilla) contracts that offggther market or counterparty credit
exposure. In order to obtain the proper amounts of the quoreing contracts, the trader
needs to know the sensitivities of portfolio CVA to obserteatmarket parameters (yield curves,
stocks prices, volatility surface points, CDS rates).

As we have already mentioned, portfolio CVA evaluation sl a very computationally
intensive task and using a naive way to find its sensitiviftas so-called Greeks) would in-
troduce unnecessary computational burden. In this thesig/il show that pathwise Greeks
methodology can be applied to CVA and that it is possible ke tdvantage of the GPU tech-
nology for pathwise Greeks calculation.

The fundamentals of CVA pricing are introduced in the nexpathr and the mathematical
framework for pricing basic financial instruments is ddsed in chapteB together with the
multi-currency one-factor Hull-White interest rate mottedt will be used for CVA modelling.
Then, a step-by-step framework for CVA and pathwise Grealautation is detailed in chapter
4. In chapters the fundamentals behind GPU computing and specifically DN\ CUDA
API are introduced and it is shown how to compute pathwisel& @ this setting. Afterwards
the results of all simulations for both CPU and GPU-based Gvéeks are given in chaptér
and the final discussion of their significance is given in ¢bap
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Counterparty Credit Valuation
Adjustments

Counterparty risk is a combination of credit risk (defaultiee counterparty) and market risk
(uncertain potential value of the derivative contract attilme point when a credit event hap-
pens). Counterparty risk typically arises from a broadst#dinancial products:
e OTC derivatives, such as:
e interest rate swaps and swaptions
e foreign exchange (FX) forwards and options
e credit default swaps
e Securities financing transactions:
e repo and reverse repo agreements
e securities borrowing and lending
The most commonly traded are interest rate derivativesKgpee?2.1), hence during this

thesis we will be concentrating on them.
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Figure 2.1: Market values of OTC contracts by type, datartdk@m BIS databasel]

Credit Exposure

The term exposure defines the loss we incur in the event of @eqmarty default. Exposure is
characterized by the fact that a positive value of a finano&lfument corresponds to a claim
on a defaulted counterparty, whereas in case of negativee vale cannot walk away. This
means that if at the time of default, they owed us (the bank)aye we incur a loss, but if we

owed them - we would still need to pay them and would not incgaia from the default.

Potential Future Exposure

The concept of potential future exposure (PFE) arises flmemeed to characterize what the
value of our OTC contract might be over time. The PFE illusdlan Figure2.2 characterises
the value of an interest rate swap over time. At the curremé tiwe know the current market
value of our swap and its past value, but we do not know itsréut@lue. Hence we have
to assume some model for its price and generate future $agnabtaining in this way a
distribution of future prices. PFE gives certain exposusarls at a given confidence level
(99%), often considered as a worst case scenario. The exppasitive exposure (EPE) is the
average positive future exposure. We illustrate both PREERE in Figure2.2
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Figure 2.2: Potential Future Exposure Profile of a single é@ryswap starting in 6 months.
The exposure becomes non-zero before the swap starts bemarsif the forward swap had
a fair rate at time-zero in 6 months time this swap rate mightie fair and the contract has a
potential positive or negative value. Hence if our courdenpgoes into default before the start
date of the swap - we loose potentially profitable cashflows.

Pricing Counterparty Risk

Intuitively the risk-free price of a contract must be diffat from a risky (counterparty might
default) contract. The price of a risky derivative could beutght as the risk-free price less the
component correcting for the counterparty risk.

Pm'sky = Prisk‘free - CVA

The latter component is called (Counterparty) Credit VaueAdjustment (CVA). This coun-
terparty risk charge should be calculated in a sophisticetgy to account for all aspects that
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2.1 CVA Pricing

define CVA, including:

the default probability of the counterparty

the default of the bank (in case of bilateral CVA, see Brigd Btercurio [6])
the underlying contract(s)

netting of existing transactions with the same counteypart
collaterisation (will not be addressed in this thesis, sesgGry [L8])
hedging aspects (Gregor{d])

2.1 CVA Pricing

By general definition the Credit Valuation Adjustment carcbenputed as:

CVA(t) = Lgp x EZ [D(t,7) - (NPV (7)) - 1grery] (2.1)

where

L¢p - is the loss fraction (of total value), given default

D(t, ) - is the discount factor, discounting the value from time efadilt back to the
valuation time.

NPV (r)t = maz{0, NPV(7)} - is the Net Present Value at timeof the underlying
contract(s). Here we only take the positive side of the valigve are only interested in
how much we stand to loose, if the contract value is negattis-amount will be paid
back to the counterparty in case of their default; althoum was already accounted for
in the original price of the contract.

1<y - gives the condition that our counterparty defaults betbiee maturity of our
product?'.

The CVA formula can be rewritten discretely (see Brigo anddveo [6]) as:

CVA(t) = Lap x [ / ' EZ [D(t,s) - (NPV(s))" - \(s)] ds (2.2)

where \(s) is the instantaneous default probability at timevhich is discussed in detail in

section3.4

In this formulation we assume that the seller of the contfftoe bank) cannot default,

which is a simplification. There are other formulations wheonsider conditional defaults of
both counterparties: BVA, DVA

!Bilateral Valuation Adjustment and Debt Valuation Adjustnt



2.2 CVA Greeks

2.2 CVA Greeks

The sensitivities of CVA to observable market data (the deddGreeks”) are critical to trad-
ing activities. Greeks define the rate at which the value oA €kanges when some market
parameter changes. Most importantly the Greeks guidersdu®v to hedge the risks associ-
ated to the CVA. Mathematically speaking we are interestdatie quantities:

OCV A(t,0)

00

wheref can be a single parameter or a vector of market parametersvefere mainly in-
terested in CVA for portfolios composed of interest ratedoicis - we shall look into cases
whend is a vector of zero-bond prices (or discrete yield curve gaifustrated in Figur®.39
that are directly quoted in the market, or a matrix of swaptiolatilities which are shown
in Figure2.3b(see product definition in equatioB.8) and book by Brigo and Mercurid]).

ATM Swaption Volatility Surface

Yield Curve, Sep 9, 201

Yield %

L L L L L Year:
10 20 30 40 50

(a) EUR Yield Curve (b) EUR ATM Swaption Volatility Surface

Figure 2.3: Observable Market Data
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Theory

In this chapter we will start by introducing the necessaryhamatical background for deriva-

tives pricing, in particular interest rate swaps and sveaysti Then we introduce the one-factor
Hull-White interest rate model, show how it extends to twd amore currencies and quickly

review credit default modelling. In the last section we esvithe methods used in computa-
tional finance to compute sensitivities of derivative caats to input parameters and finalize
with an application to CVA.

3.1 Basic Definitions

The Financial Instruments that are considered througlnisithesis are:
e Zero-Coupon Bonds
e Forward Rate Agreements
e Interest Rate Swaps
¢ Interest Rate Swaptions

Definition We denote byP (¢, T') the price of a zero-coupon bond at timyevith maturity date
T, forT > t.

Definition The simply compounded spot interest rate prevailing at tirfoe the maturity T’
is denoted byL(t,T); it is the constant rate at which an investment has to be nade t
produce an amount of one unit of currency at maturity stgrfrom P(¢,T) units of
currency at time when accruing occurs proportionally to the investment tirttie7’) =



3.1 Basic Definitions

T — t, more precisely:

L=PT) o)y =T -t (3.1)

LoD = e mpary '

Definition The Forward rate is a simply compounded interest rate neaylyvalent to the
definition above, but it has starting date not at current tinieit at futureZ” and ends at
S. In other words, it is the raté(7', S) measured at time

1 - P(T, S) 1 (P(t,T)

F(t,T,S) = = PGS

(T,S)P(T,S) 7(T,S) - 1) , t<T<S (3.2)

Note: P(T', S) measured at timeis equal toP(t, S)/P(t,T)

Definition The instantaneous forward rate with matufitycontracted at, is defined by:

~Olog P(t,T)

f@t,T)= 5T (3.3)
Definition The instantaneous short rate at tifrie given by:
r(t) = f(t,1) (3.4)

Definition The (stochastic) discount fact@(¢,7") between two time instantsand T’ is the
amount at time that is “equivalent” to one unit of currency payable at tiffiend is
given by:

T
D(t,T) = e;rp(—/t r(s)ds) (3.5)

Note: The quantity above is a random number when measuredhet tif (¢) is non-
deterministic. The discount factor is directly relatedhe zero-coupon bonds:

P(L,T) =E[D(t,T)] = E2 [e— I 7"<S>fﬂ (3.6)

where @ is the risk-neutral measure (see chapter 1 from Brigo anccitier [6] book for
detailed explanation).

Definition The (receiver) forward rate agreement (FRA) involves 3 tinstants: the current
time ¢, the expiry timeT" > ¢ and the maturity time5 > 7. This contract gives the
holder an interest-rate payment for the period betwBeandS. At the maturityS, a
fixed payment based on a fixed rdfeis exchanged against a floating payment based on



3.1 Basic Definitions

the LIBOR' spot rateL(T', S). Basically this contract allows one to lock-in the interest
rate between time$g and.S at a desired rat&” (e.g 3%).

Formally, at timeS one receives (7', S)K - N units of currency and pays the amount
7(T,S)L(T,S) - N, whereN is the contract nominal value andT’, S) is the year
fraction betweerf” andS. The value of the contract at tinfeis therefore:

The total value of the contract at tinaés :
FRA(t,T,S,N,K) = N[P(t,S)r(T,S)K — P(t,T) + P(t,95)]

Setting the fixed rate to simply compounded forward inter&tstF'(¢, 7', S) renders the
FRA contract fair: the value at timeis zero.

Definition A prototypical payer (forward-start) interest rate swap$Pis a contract that ex-
changes payments between two differently indexed?|egimrting from a future time
instant. At every instanf; in a specified set of dat€g,, ..., Ty, the fixed leg pays
out the amountVr; K corresponding to a fixed interest rai&, a nominal valueN
and a year fraction; betweenT; ; andT;, whereas the floating leg pays the amount
N, L(T;—1,T;) corresponding to the interest raté7;_,,T;) resetting at the previous
instantT;_1.

The interest rate swap can be easily viewed as a series ddfdmate-agreements, with
T :={T1,...,Tn} as the set of payment exchange datesard{ri, ..., 7as} the inter-
val sizes in-between them. Here we assume that the fixed atthfigpayments occur at
the same time, although this may not always be the case.

M
PFS(t,7,7,N,K) = (-1)> FRA(t,T;_1,T;,7:, N, K)
i=1

M
= NP(t,Ty) - NP(t,Ty) + =N > _#KP(tL,T))  (3.7)
=1

For the derivation see Appendix 1.

'LIBOR stands for London-Inter-Bank-Offer-Rate, this i ttate quoted in the market for which you can
immediately deposit money for a fixed period of time. The cammeriods are: Overnight, 3 day, 1 month, 3
month, 6 month, 1 year

2A leg we call a series of cash-exchanges from one countgrimaanother (paying of fixed or floating interest
rate on agreed nominal value of the contract), usually tlyengats of both “legs” happen at the same time, but this
is not a restriction.

10



3.2 Pricing by Simulation

Definition The swap rate is defined as:
P(0,Tp) — P(0,Tu)
Zi]\il TiP(Ov Tl)

whereTj is the first reset date arith, is the last payment date. The swap (either payer

STO,TM (0) =

)

or receiver) has a value zero if its fixed rate is the same aswhae rate.

Why is the swap rate so important? Because on the market, instead of quoting the price
of a specific swap, banks quote the (fair) swap rate, hencqubtes are independent of the
nominal and this simplifies trading and pricing (swap valttha time of purchase is always
zero, just the trader adds a commission on it, often in a fdradjusted fixed rate).

Definition Swaption is an option on a swap, hence its current value caribien as:
Swaption(t) = EX [D(t,Ty) - (Swap(Tp, T, @swp))+] (3.8)

whereD(t,Ty) is the discount factor, discounting from the exercise dgtéack to the
current timet, and {7} are the set of Swap cashflow exchange dates. The parameter
vector O, contains all the swap related details, like fixed rate, aaygeyield curve

data, etc.

Swaption can be priced in a Monte-Carlo framework and aialjy in several ways.
For analytic swaption pricing in the benchmark tests in t¢aapwe are using the Hull
and White analytical formula. For detailed formulation atefivation please refer to
chapter 3.3.2 from the book by Brigo and Mercur@. [

3.2 Pricing by Simulation

Simulation has already become an industry-approved mdtrastimating financial security
prices for which a simple closed-form solution does nottexis
Many problems in mathematical finance entail the compuiatica particular integral (for

instance the problem of finding the arbitrage-free value péasicular derivative). In many
cases these integrals can be valued analytically, andlimstie cases they can be valued using
numerical integration, or computed using a partial diffeied equation (PDE). However when
the number of dimensions (or degrees of freedom) in the prolig large, PDEs and numerical
integrals become intractable, and in these cases Monte @&thods often give better results.

11



3.3 Multi-Currency Hull-White Interest Rate Model
with piece-wise constant volatility

For more than three or four state variables, formulae sud@lak-Scholes (i.e. analytic
solutions) do not exist, while other numerical methods saghhe Binomial options pricing
model and finite difference methods face several difficsllaad are not practical. In these
cases, Monte Carlo methods converge to the true solutigajreeless memory and are easier
to program than other numerical methods. For simpler $inst however, simulation is not the
better solution because it is, in general, very time-consgrand computationally intensive.

Monte Carlo methods can deal with derivatives which havé papendent payoffs in a
fairly straight-forward manner. On the other hand Finitéfé@ence and other PDE-solvers
struggle with path dependence.

3.3 Multi-Currency Hull-White Interest Rate Model

with piece-wise constant volatility

The first step towards pricing with Monte-Carlo simulatiesnnmodel definition. We need to
define a set of SDEsthat we are going to simulate and how they relate to the pricgup
derivative products. This section is written in the notatmf Brigo and Mercurio §]. We
introduce the model and give the model-based bond-pri@ngdlas essential for interest rate
swap pricing in the future, which is needed to obtain the mtabfuture exposure profile (see
chapter2).

We assume that the dynamics of the instantaneous shonpn@tess for base currendy
under associated risk-adjusted meagdyés given by:

ra(t) = zq(t) + ¢a(t), rq(0) =19 (3.9)
where the processr,(t) : t > 0} satisfies:
dl‘d(t) = —ad;rd(t)dt + O‘d(t)de(t), .I'd(O) =0 (310)

wherelV,(t) is the standard Brownian motion und@rmeasurey), a4 suitable constants. The

functions¢,, o4 are deterministic and well defined on the time intef@all’] with 7" the given

time horizon (i.e. 50 years). In particulag(0) = 7.

!stochastic differential equations: differential equasién which one or more terms is a stochastic process, i.e.
Brownian motion A.1)

12



3.3 Multi-Currency Hull-White Interest Rate Model
with piece-wise constant volatility

If we denote bﬁf—the sigma-field generated hy; up to timet, then simple integration of
equation 8.9) gives fors < ¢:

t
raft) = a(s)e ) [ €D g u)aWaw) + 6a) (3.11)

s

The second "foreign” currency short-rate process is mededinalogously under its own
measurez:

rp(t) = ap(t) + op(t), rp(0) =1§ (3.12)
dry(t) = —ayxp(t)dt + op(t)dWe(t), x7(0) =0 (3.13)

Now, consider the market instantaneous forward rates &tvito curves "d” and "f” at time):

_Olog PM(0,T)

M _

fa (0,T) = 5T (3.14)
o B 8logPJ{V[ 0,7)

f7(0,T) = % (3.15)

We can perfectly reproduce the initial term structure otdisit factorsT” — P}7(0,7) and
T — P}”(O,T) by the above models for; andr, if we set (see Brigo and Mercuri@][for

details):
M aa(t)? —ayT\2
ba(t) = f4" (0,T) + ——5—(1 — e ") (3.16)
2a3
2
op(t) = f11(0,T) + Ugg (1—e uT)2 (3.17)
f

Equivalent condition for both curves & {d, f}) is:

T
exp { / oo (w)du

M
5 OT) (—3 V,(0.T) - Vq<0,t>]> (3.18)

-~ PM(0,t) 2
~ n_l ~
whereV,(t,T) = V(t,t;) + Z V(ts,ts+1), tn, = T as in our model we assume piecewise
s=j

constant volatility:o (¢) is constant fot € (t;_1,t;] : o(t) = o(j) and for(ts, t.] C (tj-1,t;]

we have: .
Vy(ts, te) :/(Bq(u,:r’)%g(j)) du (3.19)

ls

13



3.3 Multi-Currency Hull-White Interest Rate Model
with piece-wise constant volatility

1 — e~ @q(t—s)
whereB,(t,T) = ¢

q
After solving the integral ([1]), this expression becomes:

2 .
‘A‘/q(ts’te) _ O;;,;) (e—QGqT (eaqte o eaqts) (eaqte + eaqts o 4€aqT) + 2aq(te _ ts)) (320)
q

Now the bond pricing function under their respective measuor both currencies be-

comes:
r T
P,(t,xz(t),T) =  E* |exp (/rq(s)d8>] (3.21)
- L
= E* |exp ( /¢q(s) —I—J:q(s)ds)] (3.22)
L t
= exp[Ag(6T) — By(t Ty ()] (3.23)
where
A t,T)=1o M—FE[V(tT)—V(OT)—FV(Ot)] (3.24)
R _quM(O,t) 2 1V L L '

for proofs seef0, 6]

3.3.1 2-Currency Model with Correlations

To be able to price derivatives dependent on two currensiesntroduce a Spot-FXprocess
S(t) denoting the amount of foreign currency needed to buy orteofidiomestic currency.We
will consider the FX process to be a Geometric Brownian Motiwocess with mean given
by the difference between the two underlying short rateadr;. We assume the following
no-arbitrage dynamics fa¥ under foreign risk-neutral measure

dS(t) = (rp(t) — ra(t)) S(t)dt + v(t)S()dWs(t) (3.25)

Under domestic risk-neutral measu@eaverything can be rewritten as:

ra(t) = $alt) + za(t) (3.26)
rrt) = ¢p(t) +wp(t) (3.27)
deg(t) = —agrg(t)dt + og(t)dW(t), z4(0) =0 (3.28)
drp(t) = —agwg(t)dt+ op(t)ps,pos(t)dt + op(t)dW R (t), z;(0) =0 (3.29)
%(tt)) = (ra(t) —rp(0))dt + as(t)dWE, S(0) >0 (3.30)

!Instantaneous foreign-exchange rate, giving the curt@ne) currency exchange rate
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3.4 Credit Modelling

Under the domestic measure the drift term of the foreigntstade process(t) has an ad-
ditional term—o(t)pf sos(t). This term ensures that the shifted foreign short rate gsoce
(defined in3.12) is a martingale with respect to domestic meas@re~or details see chapter
[5.2.1] from [20]
In the model we assume a full matrix of correlation betweerBrownian motiondV (t) =
T
[dW?, aw e, aw
L paf pas

AW () - dWNHT = | pay 1 prs
pas prs 1

3.3.2 m-Currency Model Extension

For pricing of a highly multi-currency portfolionf = 50 currencies involved), we need to
simulate 50 short rate processes and 49 exchange rate ggegetating the base currency with
each of the foreign ones. If we need the foreign-foreign argle rates - we can simply make

a switch: 5h where eaclb, is a domestic-to-foreign exchange rate, in this way oltairtihe

ry tory, e];?change rate. Each of the short rate processes under doesteasure gets an
additional drift term—o, (t)py, 5,05, (t) as we need to simulate all the processes in a consistent
framework. Also we use a fulih x m correlation matrix for the Brownian motioﬁéfg(t) ,
example in equation4(l).

3.4 Credit Modelling

The Hull and White process only models the potential valuewfunderlying interest rate
portfolio. Another essential part of the computation is lbdg the default process. There
are two main types of models used in the industry: reduced ford structural models. In the
following section we briefly describe the fundamentals bétihe prior type.

3.4.1 Reduced Form Models

Also called intensity models, reduced form models desatiéault by means of exogenous
jump process: the default timeis the first jump of an important kind of stochastic process,
namely the Poisson process which can have deterministiochastic (Cox process) intensity.
With these models, the default is not triggered by markeentables, but by exogenous com-
ponents independent of all market information. This fanofymodels is particularly suited
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3.5 Greek Computations for Derivative Instruments

to model credit spread and in its basic formulation is easyatiorate to Credit Default Swap
(CDS) or corporate bond daté][ The independence of other market data assumption can be
broken, i.e. we can introduce dependence of the defauliapility on some asset value (i.e.
interest rate, if our counterparty has very significant expe to interest rate products).

In the simplest Poisson process (time-inhomogeneous dfoja®cess), the risk neutral
probability of a default (a jump) in the next time, conditioned that we have not defaulted so
far is:

Q[r € [t,t+dt)|T > t] = A(t)dt

The \(t) is called the intensity or the hazard rate at titmét is possible to showq] that
the probability of survival after timeis:

PS(t) = Q{7 > t} = ¢ Jo MW
if the hazard function is deterministic and if not, then:
PS(t) = Qfr > t} = B[~ Jo )y
A(t) can have a similar form as short rate models, for example:
A(t) = p(t)dt + o(t)dW (t)

As stochastic credit modelling is a research topic by itghifing this thesis we will only
use a bootstrapped piecewise constant default probability

PD(tj>tj+1) = PS(t]—i-l) - PS(tj)v fort € [tj7tj+1)7 .7 = {07 7N}

wheret, = 0, the current time (or simulation starting time, when theebdata is taken) and
Ty, = T = is the time horizon. See chapter 22 from Brigo and Mercu@jobpok for
detailed discussions on credit models and related issues.

3.5 Greek Computations for Derivative Instruments

There are several ways of computing Greeks, each of themitsitwn advantages and dis-
advantages. In this section we will refer to functiétit, 9) as the value of the derivative
instrument at timeg and market input parameter vectiand to the functionf (7', 0) as the
payoff of this derivative at tim& > t. Hence,F'(¢t,0) = E [f(T,0)]
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3.5 Greek Computations for Derivative Instruments

3.5.1 Finite Difference Method
OF(t,0) F(t,0+h-e)— F(t,0)
04 h
In the above formulation, we can calculate the forward déifiee derivative of (¢, ) with

(3.31)

respect to the:'th market parameter using a smallc R (bump size), where;, is a unit

vector. This method is also known as "bump & revalue”. Thiprapch is numerically stable,
but often gives a bit biased derivatives if the functipis highly non-linear (as this derivative is
taken from first order Taylor series approximation) and weaoiocapture higher order effects.
For larger precision one might use higher order methodst uhot that common in practice.

3.5.2 Likelihood-Ratio Method
Talking in the general setting, the value of a derivativeniost cases, can be expressed as:
= [ 18- m(S)is (3.32)

where f(.5) is the payoff function of underlying and py(.S) is the probability density of
the underlying factor with parametefis For the derivatives, under certain conditions (to be
discussed later) one can interchange the integral and thailee, obtaining:

/f 3179 dS /f alngg(S)pg(S)dS:E[f(S)alngg(S)J
)

90 90
(3.3

where the last expression should be evaluated either &alytor with numerical integra-
tion. Pros:
¢ No differentiation off(.S), can handle discontinuous payoffs
o Simplifies implementation if payoffs are complicated, rdbifferentiable (binary option)
Cons:
e The derivative of the density might be complicated to obtain
e Large varianceD(h~!) of the estimator, limit on time-step size (see chapter 72
the book by Glassermani ).
Of course for this approach one needs an expression for tistgéunction of the under-
lying p(s) and this is very complicated to do in the case’df A computation. We will come
back to this method shortly when discussing the Vibrato Md#rlo method.
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3.5 Greek Computations for Derivative Instruments

3.5.3 Pathwise Method

The ability to interchange the expectation and the detigadilows for one more method to be
used to calculate the Greeks for derivatives:

ol ] o

To evaluate the expression on the right hand side we eithepuote it analytically (if pos-
sible) or we assume a model for the dynamics of the underlginipen we perform a Monte-
Carlo simulation of the underlying proceSscompute the derivative of the payoff

of (S,w)
o0 (3.35)

on every simulated patir, and then average the values, obtaining an unbiased estohtite
sensitivity as we have not introduced any truncation erens a finite-difference style Greeks
computation method.

Advantages of the pathwise method:
e handles path-dependent payoffs
¢ handles multi-asset options
e handles square-root diffusion processes

Disadvantages:
e does not handle well discontinuous payoffs
For more details see the book on Monte-Carlo meth8fisahd the paper by M.Gilef].

3.5.4 Forward/Adjoint Differentiation

Very often the payoff functiory is complicated and can be written as a composition of func-
tions f o X o ¢ o S. Now our main problem is finding a good method to compute thivale
tive of the payoff (call itf(S)) with respect to some market parameter (or a vector of them)
0. Let's say that the payoff function depends primarily on sostochastic process vector
X(9) = (X1(9), X2(9), ..., X,,(S)), which depends on the value of another funcijgf) =
(q1(S), .--,qm (S)), which depends on our market observableand on parameter(vectof)
Then, we can write our derivative of interest using the chale as:

d(S) _ df(S) dX(S) da(S)

do ~ dX(S) dq(S) do (3.36)
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3.5 Greek Computations for Derivative Instruments

This formulation does not change the value of the derivabué the way we compute it:
e We now need to compute 3 derivatives (or Jacobians in caseabtbivvalued functions)
instead of one.
e These part-by-part Jacobians are usually much easier ¢mputing the complete deriva-
tive immediately
e We have matrix-vector multiplications present and heneeotider of multiplication mat-
ters and there are two possibilities:
e Forward mode means that we multiply the Jacobians stantorg the back, going
forward
e Backward mode means that we start at the front and go to tHedfdloe chain.

Example: Pathwise Delta Calculation

Let's take X (¢) to be a multi-dimensional stock price process with:
dX(t) = a(X(t))dt + o(X(t))dW (t) (3.37)

whereX (t) = [X1(t), Xa(t),..., Xmn(t)], W(t) is d-dimensional Brownian Motion (see Ap-
pendixA.1), « : R™ — R™ ando : R™ — R™*? are deterministic functions artdstands
for time. In our caseX could be a vector of stock prices.

Then, we define functiop(X(7")) : R™ — R to be the discounted payoff at tinféof a
derivative, that has pricE [¢(X (T))] at time zero.

As X (t) is a continuous-time stochastic process, before startiagsimulation, we dis-
cretize the process using the forward Euler discretizet@reme, obtaining:

X(n+1)=Xn)+a(X(n) -h+oX0)-Zn+1)-vVh, X(0)=X(0) (3.38)

wheren is the discretized time index, is the timestepX (n) is the value ofX at timen - h
andZ(n + 1) is an independently drawsftdimensional standard normal random number.

The price of the derivative with discounted paygffX (V) with N = % is calculated
using the average of independent simulationg(0f (/V)). Now we consider estimating the
derivative vector:

OE[g(X(N))] _ [OE[g(X(N))] OE[g(X(N))] IE [g(X (N))]
9X(0) 9X:1(0)  9X2(0) 7T 9Xm(0)

(3.39)
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3.5 Greek Computations for Derivative Instruments

By using the pathwise method, we can obtain an unbiasedastiim
= -]
The minimum condition in order foi3(40 to hold is that procesX is smooth and functiop
is Lipschitz continuous. These are further explained inémpxA.1.
Hence now we can estimate the derivative by taking the aeedagvative of every simu-
lated path. The derivative vector (for each path{1,--- , L})

dg(XI(N)) _ [ag@i(N)) dg(X'(N)) ago%i(N))]
X (0) 0X1(0)  9X5(0) 77 0X,(0)

(3.41)

might be complicated to compute directly hence we splitti iparts by the chain rule (from
now on we will have in mind one simulated path and ignore thb palex:):

A B
—f—

09(X(N) _ 9g(X(N)) 9X(N)
0X(0) OX(N) 0X(0)

Above A is anm-dimensional row vector ané® is anm x m Jacobian matrix. B is still

(3.42)

complicated to compute directly, we split the expressida smaller subparts:

dg(X(N) _ 0g(X(N)) OX(N) OX(N-1)  9X(1) (3.43)
9X(0) OX(N) X(N-1) X(N-2) X(0) '
Each of the above matricd3(n) = m has entries:
X(n
Dy = 0; + h+ Z L Zi(n+1), 8,y = Loi=Fk (3.44)
ik — Uik 8 l 0 else .
wherea ando are evaluated at time - 1 on the current path valu& (n)
The derivative can now be rewritten as:
dg(X(N) _ 9g(X(N))
= R -D(N—-1)-D(N—=2)-...-D(0 3.45
ox0) = gy DO DD -2)-...-D(O) (3.45)
Forward & Backward Evaluation
For forward style evaluation we define:
F(0) = 1, identity matrixm x m (3.46)

F(n)= D(n)-F(n—1)
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3.5 Greek Computations for Derivative Instruments

0g(X(N) _ 9g(X(N))
9X(0) dX(N)

F(0),F(1),...,F(N). Here, as each db(n) matrices isn x m, the number of FLOPSat

every iteration is of orde©(m?), so we have in totaD(m? - N') operations to obtai'(N)

Thus

-F(N) can be evaluated iteratively by computing (in this order)

and then one more vector-matrix multiplication.

In a backward (adjoint) style we define:

N T
s - (2500 @47
0X(N)
B(n)= D(n)"-B(n+1)
This Way@ga%((o])\f) — B(0)". For each of theV iterations to compute3(0) starting with

B(N), we perform a vector-matrix multiplication, costing @¢m?) FLOPS per iteration. In
total we makeO(m? - (N + 1)) FLOPS - which is an order of magnitude faster!

Extension: Vibrato Monte Carlo

This method is a mixture of likelihood ratio meth@l5.2 and pathwise sensitivities. The
main idea is to simulate a set of Wien&rl incrementsV = {0W;,0Ws,...,0Wyx_1} for
each path'X(O), e ,X(N — 1), excluding the last step. Then we compute a conditional (i.e
Gaussian, dependent on underlying model) probabilityidiﬂioan(X(N)|W). Toincrease
the performance this distribution should have an analyfaranula which is usually the case

with stochastic processes used in finance. Assumingfhaas Gaussian distribution:
X(N)W,2) = pw +ow - Z (3.48)

wherepyy is the given meangyy is the standard deviation arfflis a standard normal random
variable. Then, the price of our derivative can be written as

V =Ew [Ez [f(X(N))[W]] (3.49)

To compute the Greeks the derivative is interchanged wihfitist expectation and then the
log-likelihood method is applied for the last timestep:

ov 0

20~ "W |59

B2 L)W =Bw B[00 T 52w || @so)

'Floating point operations
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3.6 Pathwise Greeks: CVA

wherepy is the distribution ofX (N) conditioned oriV.

The benefit of this method is that one can apply the pathwisekarto discontinuous
payoffs, as the payoff function is not differentiated in ffr@cess. Hence, a big part of the
speed-up offered by the the pathwise Greeks method is kepatathe same time the suitable
product range is expanded. The method was initially desdriy M. Giles P6]. As we
currently are not covering fast Greeks for CVA on binaryeymwoducts we will not use this
method in the thesis, however this is a very promising diwador further research.

3.6 Pathwise Greeks: CVA

Using the assumption that credit process is deterministe,can rewrite the CVA pricing
formula 2.1) as:

T
CVA(t) = Lap % { / E; [D(t,s) - (NPV(s))"] ~)\(s)ds] (3.51)

To apply the pathwise Greeks method for CVA, one has to betalidderchange the deriva-
tive with both the outer integral and the inner expectatibime conditions for a single integral-
derivative interchange

o [ 0(X(5.0))
5 [ fexts.onas = [0 (3:52)

are:
o differentiability of X (s, §) with respect td.
e a.e. differentiability of functionf w.r.t. 6
e Lipschitz continuity off (hencef has a.e. bounded derivative).

In our case,
N

NPV (s) = Z Swap(s, Ty, O swp) (3.53)
k=1
and each swap value is a linear function of the zero-coupon padces at time (3.7).

The zero-coupon bond price at (future) timeas given by 8.21) is a linear function of
time-zero bond priceE’M(O, T') with an additional non-linear part depending on the sinealat
state variabler(s), which is continuous and differentiable w.r4.; points and independent
of the zero-coupon bond prices. This leads to the conclusianN PV (s) is a continuous

function, differentiable w.r.t. market zero-coupon bonites P (0, 7)) and model volatility
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3.6 Pathwise Greeks: CVA

pointso;. The detailed derivations of swap derivatives are preseint¢he AppendixA.3, if
the reader would like to see the details.

The stochastic, path-dependent, discount fa@¢t, s) = e~ Jr “+e(W)du s again a
continuous function of zero-bond prices vigu) (3.18 and volatilitiess; through ther(u)
part. Furthermore the functiof)™ = max(-,0) is Lipschitz continuous. Hence the product
D(t,s)-(NPV(s))" is a Lipschitz continuous function, differentiable a.ethwiespect to zero
bonds and volatility parameters.

As the expectation of a Lipschitz continuous and diffelsig function stays Lipschitz
continuous and differentiable (see Appendia for proofs), henc&, [D(t,s) - (NPV (s))*]
also satisfies the needed conditions for the interchangerofadive and expectation.

The last termA(s), is deterministic and independent of zero bond or volgtdiata, there-
fore againk, [D(t,s) - (NPV (s))"]-A(s) isa.e. Lipschitz continuous and differentiable (w.r.t
PM(0,T) ando;).

Applying the theorem from Appendi&.1, we are able to interchange the derivative with
the outer integral and inner expectation in order to use #ikwise Greeks method for CVA,

obtaining:
OCV A(t) i d(D(t,s) - NPV (s))
t t,s) - s
————— =Lgp x /Et 1p(t,s)-NPV(s)>0 “A(s)ds| (3.54)
00 00
t
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4

Methods

In this chapter we will introduce step-by-step the methodglused to compute CVA and to
obtain the sensitivities both in the single-core and in taalel GPU-based implementations.
The advantages of using GPU co-processors for fast Greahkputation are discussed in the
end of the chapter.

4.1 CVA Computation Scheme

Computing CVA on a portfolio of multi-currency swaps can leparated into several steps:

Calibration of underlying models to simple market instrumse

Generation of short rate and credit scenarios

Computation of the exposure profile for each of the nettirig! se

Discounting exposures to current time and weighting theth e corresponding default
probabilities

4.1.1 Model Calibration

The model is calibrated when its parameters are determmeigch a way that it captures
current prices and dynamics of liquidly traded market unstents. Only then we use the model
for pricing of exotic market instruments and, in our casedrvaluation adjustments.

A netting set is a portfolio of contracts with one single Bnthat can be treated as a default-linked group,
meaning that in the event of default, this group will loseugabll together, while other netting sets will not be
directly affected
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4.1 CVA Computation Scheme

For calibration one has to choose a set of traded instrun{éfts.., S,,} that depend on
the market variables of intere§t, ..., x; }. These values can be stock or commodity prices,
interest rates or volatilities. For the CVA problem in peutar, one tries to take the sg$;} of
all instruments in the portfolio exposed to the countespask.

Each of theS; = fi(t,z1,..., 2k, y1, ...,y }, Wheref; is a function returning the current
price, which often (but not always) has an analytical forrd &m, ..., y, } are a set of model
parameters unobservable in the market that have to be éstim@he calibration process is
finding the seY = {71, ..., g4} such that:

S i (Y) = Silla
i=1

is minimized w.r.t a chosen distance measdreThe details of the calibration process will
not be covered in this thesis. A lot of work on calibrationpedally global calibration has
been done by C.Albanes8][ For instrument specific calibration see the book by Brigd a
Mercurio [6].

4.1.2 Scenario Generation

We first consider a discretized version of our SDE syst8r6{. Using forward Euler dis-
cretization we obtain a list of/ + 1 (one domestic and/ foreign) discretized short-rate
processes:

fa(n) = Xa(n) + dpa(n)
Pr1(n) = Xp1(n) + ¢p1(n)

Fear(n) = Xpar(n) + dpar(n)
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4.1 CVA Computation Scheme

and M + 1 zero-mean martingale processes urfdeneasure:

Xgn+1) = Xy(n) — agXg(n)dt + oq(n)VdtZy, X4(0) = X4(0) =0
Xpn+1) = Xpn) —apXpn)dt+op(n)psi piosi(n) +op(n)VdtZy,
X71(0) = Xf1(0) =0

XfM(n+1) = XfM(n)—anXfM(n)dt—i-an(n)ng,fMagM(n)
+O'fM(n)\/EZM,

Xa(0) = Xpar(0) =0

Furthermore we also discretize tlié geometric Brownian motion processes describing the
stochastic exchange rate between domestic and each ofréigrf@urrencies:

Sin+1) = Si(n) (1 + (7g(n) — #p1(n)) dt + aSl(n)\/EZMH) ,
51(0) = 5170 >0

Sun+1) = Sun) (1 + (Pa(n) — #rar(n)) dt + aSM(n)MZW) ,

SM(O) = SM70 >0

in all the above thelt is the time-stepand < n < N = ¥ is the step index witlT" being
the chosen time horizon. The vect8r= (Zy, Z1, ..., Zoar) is a multivariate normal random
vector, independently drawn at each time-step with symmedwvariance matrix:

[ Pd, f1 Pd, f2 .. Pd,S, v Pd, S 1
* L ppp o PRS- PRLSM
* * 1 ' ' ' :
Y=y * * 1 (4.1)
PSn—1,Sm
- * 1 -
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4.1 CVA Computation Scheme

4.1.3 Computation of CVA

For CVA evaluation we pick a discrete set of dafds} = T to compute the exposure profile
(Figure2.2). During our test we did have a monthly exposure grid, whiategus a reasonably
accurate CVA value.

Then, we simulate#sim number of interest rate and foreign exchange rate scenarios
Xi(T) = {X;,.a(7),.... Xj 7, (T)} (as defined in sectiod.1.9 and for eactT;, we compute
the value of the portfolio in the base currency for each ofgbeerated paths:

P(T;, X5(, ZSWm i), Ok(T3), Ok) - FX4(T3) (4.2)

where X;(7;) is the (zero-mean) state variable veciog(7T;) is the (time-zero) yield curve
of the same currency as the swdg, describes all instrument-specific details (fixed rates,
payment frequencies, start date, tenor) and.(8X is the currency conversion rate to base
currency if the swap is valued in foreign currency.

Now we have state variables;(T;) on every simulated path and can compute the zero-
coupon bond price®(7;, T, X;(7;)) defined in 8.21). Therefore, the value of each swap at
time T; can be computed analyticall®.(?) for every simulated scenario.

In practice (for CVA computation) portfolios are composddetting sets (description in
chapter2), which do not overlap and sum up to the full portfolio exmbse the counterparty
risk. After we obtain the simulated values of the swaps (ahéranstruments) we aggregate
their values into the respective netting sets {1,...,Q}:

Nset Valug (T;, X; (7, Z Swap, (X;(7;), ¢k(T3), Or) - FXi(T;)
keNset,

Then we obtain the expected loss of each netting set by ryutiipits value with the corre-
sponding default probability (as a difference between eoutive survival probabilities):

ExpectedLos&;, T;, X;(T;)) = (Nset Valug(T;, X;(T:))) " - (SP,(T;) — SP,(Ti-1))

Note: we assume independence between the dynamics ofimmeeand credit processes
To obtain the CVA of the whole portfolio on a single simulateath, we sum over all
discounted expected losses:

CV A(ty, X Z ZD (to, Ti, X;(T;)) - ExpectedLosgy, Ti, X;(T;)) (4.3)
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4.2 Computing Pathwise Greeks

whereD(ty, T;, X;(7;)) is the stochastic discount fact@.$), discounting from timeJ; back
to time zeroty. Afterwards we finalize by averaging the obtained values allesimulated
scenariosX;:

#nsim

1
A = — Alto, X;(T 4.4
CV A(to) Zsim ;:1 CVA(to, X;(T)) (4.4)
The general CVA valuation schema is shown below:

Swap T1 T2 .. TN
s1
S2
S3
sS4
S5
Sk
Sk+1

| CVA -

Figure 4.1: CVA valuation scheme: The swap values at eacheoéxposure dates are aggre-
gated to corresponding netting sets, then all of them arghted with default probabilities and
in the end the expected losses are summed up to total CVA.

4.2 Computing Pathwise Greeks

Our results will be concentrated on two types of Greeks:
¢ Deltas - sensitivities of the price to movements of each efyiileld curve points.
¢ Vegas - sensitivities of the price to movements of each obthpoints (see sectio.3
for definition). Note that this is not the direct sensitivity to the volafiurface points; to
convert the sensitivity from "model sigma” to volatility sace points, one needs to do a
bump & recalibrate type of routine, which is out of the scoptht thesis.

In section3.6 we have shown that the pathwise Greeks method is applicalil&/A com-
putation with deterministic default rates, Hull and Whiteadel and portfolio of analytically
valuable derivatives(we give some insight into CVA on exaolrivatives in sectioi.1).

Hence, if we want to compute the sensitivity of CVA of this tholio to some market
parameter (or parameter vectdér)we evaluate the partial derivative per simulated path and
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4.2 Computing Pathwise Greeks

average the results to obtain an unbiased Greek estimate:

#sim

OCV A(to) X" aCV Alto, X;(T))
o = 0

(4.5)
j=1

In the described CVA computation framework, we can compWwé @er path as a sum of

discounted expected losses at different points in tith8)(which yields a very convenient

way to compute Greeks by using simple derivative rules:

ACV Alto, X;(T)) dD( to,‘-T X;(7))
l Z Z - ExpectedLosgy, T;, X;(T:))
0 ExpectedLosgy, T;, X;(T;))

£ Dlto, T, X,(7))- -

(4.6)

Having a realised state variable vectoy(T) on every path gives us an analytic formula to
compute the exposure. Thus, we can take an analytic desvatiit:

0 ExpectedLosgy, T;, X;(T;))

= 1nsetvalug (7;,X;(T,))>0 - (SPq(Ti) — SPy(Ti-1))

00
ONset Valug(T;, X;(7;))
20 4.7)
for the same reason we can take the derivative of the valuesabf netting set:
00 00
keNset,
OFXk(T;
+ Swap (X(T), éx (T, 00) - 2T g

00

we left the derivations for partial derivatives of intereste swap and foreign exchange rate
in Appendix A.3. A very important observation was made when analyticallykiog into
derivatives and Jacobian matrices of interest rate swapsdom the future under the one-
factor Hull and White model: the chain of Jacobians has diagstructures, hence using
matrix formulation of the problem and applying the backwdifferentiation, investigated in
3.5.4 does not bring significant speed improvements and intesladarge memory overhead.
Therefore in all implementations the derivatives were @atd using vector operations. We
give a detailed picture of this argument in the Appenilig.
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5

GPU computing

GPGPU (General-Purpose-Graphics-Processing-Unitht#aby has shown great potential in
conventional derivatives pricing (European, Americani@Qys, etc. Abbas-Turki and Lapeyre
[2]) as well as in some risk-management applications (VaRnGlet al. [L3]) ).

The primary motivation for computing CVA and Fast Greeks oBRU co-processor is
the potential speed-up the technology offers. The comiputatf CVA itself on a specialized
proprietary CPU grid* for a large (> 50000 instruments) portfolio using highly optimized
code takes often more than 2 hours. In comparison, the samputation on one NVIDIA
Fermi architecture based card (full computer details in &mjx A.3) takes approximately 4
minutes.

Using conventional methods (bump & revalue), the companiatime of CVA Greeks in-
creases linearly with the number of sensitivities:

e As the portfolio is based on up & currencies, each of them having yield curves with
35 points , we would need to bump & revalue 1750 times!

e Thisis nearly 5 days of parallel GPU computation, or arousldays on the mentioned
CPU grid.

o If we include sensitivities to the volatility surface forataof the currencies and foreign-
exchange rates, the computational burden grows even more.

Hence we have investigated the applicability of the GPUrietdgy to the pathwise Greek
computations for the Counterparty Valuation Adjustments.

Details could not be disclosed due to ING Bank policy.
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5.1 CUDA Environment

5.1 CUDA Environment

To investigate the adequacy of GPU co-processors for the Gk&#eks computation we have
used a NVIDIA GPU card (see details in Appendi6), which was programmed using the
NVIDIA CUDA programming language. CUDA (Compute Unified Dew Architecture) is the
name of the general purpose parallel computing architecitimodern NVIDIA GPUs. The
name CUDA is commonly used in a wider context to refer not émiyne hardware architecture
of the GPU, but also to the software components used to protrat hardware. In this sense,
the CUDA environment also includes the NVIDIA CUDA compikand the system drivers and
libraries for the graphics adapter.

From the hardware point of view, CUDA is implemented by oigeg the GPU as a
collection of streaming multiprocessors, which operateoeting to the Single-Instruction-
Multiple-Thread (SIMT) paradighh. A modern GPU can contain tens of multiprocessors
(MPs), each consisting of 32 stream processors (SPs) eapélaxecuting an independent
thread (see figur.1). The Tesla 2070 device that was used for this project has R4 Wwith
four types of on-chip memory available:

a set of 32-bit registers (local, one set per stream progesso

shared memory (48 kB per block for CUDA 2.0 Compute Capahilévices, shared be-
tween SPsin a MP)

a constant cache (64 kB, shared between SPs in single MPondad

a texture cache (shared between SPs in single MP, read-only)

'other paradigms are: SISD (single instruction, single)J&BMD (single instruction multiple data), MIMD
(multiple instruction multiple data), see book by Patterand Hennessy2B] for more information.
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5.1 CUDA Environment

SP SP P SP

SP Sp sP SP

Instruction unit
Shared memaory

Texture cache | | Const cache
Device memory

ﬂ PCl-2

Host memory

Figure 5.1: Organization scheme of a typical NVIDIA CUDA&im multi-processor

The amount of on-chip memory is very limited in comparisonhi® total global memory
available on a graphics device (hundreds of kilobytes vers¢\gigabytes). However, the
advantage is given by the access time, which is two ordersaghitude lower than the global
memory access time.

The CUDA programming model is based upon the concept of akenmich is a function
executed multiple times in parallel, each instance runming separate thread. Then, the
threads are organized into one-, two- or three-dimensiblogks, which in turn are organized
into one- or two-dimensional grids. The blocks are complatedependent of each other and
can be executed in any order. Threads within a block are gtesd to be run on a single
multiprocessor. This makes synchronization and efficiefdarmation sharing using the on-
chip memory of the MP possible.

In a device having Compute Capability 2.0 or higher, eachtiprocessor is capable of
concurrently executing 1024 active thread30([25]). In practice, the number of concurrent
threads per SM is also limited by the amount of shared memuaiytlaus, it does not always
reach the maximum allowed value.

The CUDA environment also includes a software stack. Fomgta, CUDA v4.0 consists
of a hardware layer, system libraries implementing the CUR?, a CUDA C compiler and
two higher level mathematical libraries (CUBLAS and CUFFTYDA C is a simple exten-
sion of the C programming language, which includes sevexal keywords and expressions
that make it possible to distinguish the host (i.e. CPU) ded@PU coded0]. The CUDA
API contains as well th&hrust library which supports multiple CUDA-optimized algoritism
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5.2 Pathwise Greeks on GPU

(vector operations, sequence generators, lists), whightaio be a parallel equivalent of the
C++ Standard Template Library.

5.2 Pathwise Greeks on GPU

The algorithm for computing CVA sensitivities is suitabte parallel computation on the GPU,
because we are evaluating potential losses and the séigstio changes in market data per
generated Monte-Carlo scenario. In particular, the pliotis evaluated per netting-set using
the “path-per-thread” parallelism. Thus, we have a 3 stagk €bmputation scheme:

1. Market and portfolio data preparation and upload to th& G&d
2. Evaluation of portfolio sensitivities per generatechpatparallel

3. Parallel aggregation of sensitivities from all threaut® ia single structure and sending
of the data back to the host.

Due to careful design of the CVA computation scheme, the #ioim CPU to GPU com-
putation of Greeks is mainly an implementation challeng®er€ are a couple of optimizations
that we used to achieve higher computation speeds:

e Coalesced memory reads & writeZh]
e Pre-computation of common values for all threads {&., T') (3.249)
e Special treatment of sparse sensitivity vectors, whosetstre is known beforehand

Additionally, we were using Fermi architecture cards whhelve an automatic caching feature,

hence shared memory was handled automatically.
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6

Results

In this chapter we present various results showing bothdheezrgence and the speed up prop-
erties of the pathwise Greeks method. Our first set of exgarisnwas based on the benchmark
single-threaded interest rate library while the last set Wased on the parallel GPU-based
implementation.

In the beginning of this chapter we show the results for a siaa§3.8) which was chosen
in the early stages of development to demonstrate the paitefthe pathwise Greeks method
for interest rate derivatives. A swaption (“an option on aply was chosen over a simple swap,
because it is sensitive to changes in the yield curve anddlla¢ility parameter (¢). Therefore,
we could easily make tests for both pathwise Deltas and Vegéerwards we display the
results of computing CVA Greeks with a single-threaded Ciplémentation and assess the
overall potential of pathwise Greeks method. In the lastiseave show convergence, speed
up and scaling results of GPU-based pathwise CVA Greeksimghtation.

6.1 Proof-of-Concept: Swaption Greeks

During our first experiment we considered a swaption with:
e 1 year expiration timéy
e 10 year tenor of the underlying swdfy
o K = 4.6% fixed rate, received every 6 months
e 6M EURIBOR paid every 6 months
e 10,000 EUR Notional
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6.1 Proof-of-Concept: Swaption Greeks

The input data we had was 35 points on the yield curve and Bradid piece-wise constant
volatility points, so our goal was to compute 35 Deltas anceg§ag. We priced the mentioned

swaption and computed its Greeks in 3 ways:
e Computed Quasi-Monte Carlo (QMC) based swaption price aatliated Greeks using

the pathwise method.

e Computed QMC based swaption price and evaluated Greeks fusite-differencing with
a bump sizér = 1075,

e Computed the analytic Hull and White model based swaptime @nd used finite-differencing
with b = 10~ to obtain the Greeks.

6.1.1 Swaption Deltas

In Figure6.1we display the sensitivity of the swaption price to the déseryield curve points.
The first and last Deltas come from the underlying floating petyments and the intermediate,
small Deltas come from the fixed leg sensitivities to changéise yield curve.

4
35
3
2.5
2
1.5
1
0.5

0 —
12 3 4 5 6 7 8 9 101 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Delta (slope)

-0.5
-1

Discrete Yield Curve Points

Figure 6.1: Swaption price sensitivities to changes indy@lirve. On the x-axis we have the
quoted yield curve point indices (only 30 significant onesentustrated); on y-axis we have

the derivative(slope) of the swaption value with respeathtanges in each of the buckets. A
change of 1 basis point in yield curve gives a Slwpg®JR change in the swaption value.

In Table6.1 we compare the convergence of QMC Deltas under the two disduseth-
ods, pathwise and bump & revalue towards the reference bumgva&lue Deltas based on the
analytic formula in sectio3.8. Additionally, to give a better illustration we show theatle
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6.1 Proof-of-Concept: Swaption Greeks

convergence of all Deltas to the analytic ones in Figu2 In theory the bumped Greeks
should have a small bias, however it is not visible in the Qrdpe to a very small “bump”
h=10"5.

Pathwise QMC Bump & Revalue QMC
Paths Point 1| Point2 | Point 3| Point 1| Point 2| Point 3
500 0.0884 | 3.1732| 0.0087| 0.0884| 3.1732| 0.0087

1000 0.0924| 3.3203| 0.0091 | 0.0924| 3.3203| 0.0091
2000 0.0949 | 3.4085| 0.0093| 0.0949| 3.4085| 0.0093
5000 0.0954 | 3.4288| 0.0094 | 0.0954 | 3.4288| 0.0094
10000 | 0.0964| 3.4643| 0.0095| 0.0964 | 3.4643| 0.0095
50000 | 0.0969| 3.4802| 0.0095| 0.0969 | 3.4828| 0.0095

| Analytic | 0.0969| 3.4788| 0.0095] 0.0969| 3.4788] 0.0095 |

Table 6.1: Convergence of Pathwise and Bumped Deltas bas€@ML to Bumped Deltas
based on analytic formula for 3 randomly chosen points oryiglel curve. The numbers in
both cases converge at equivalent speeds, as we increasentber of simulated paths.
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7% -

6%

5%

4%

3%

Normalized Error
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0%

Pathwise (500)
Pathwise (1000) -
Pathwise (2000) -
Pathwise (5000) -|

Pathwise (10000)
Pathwise (50000) -

Bumped (500) -{
Bumped (1000) -
Bumped (2000) -
Bumped (5000) |

Bumped (10000) -
Bumped (50000) -

Figure 6.2: Relative error convergence of swaption Deli#se left half of the graph shows
the relative error of the pathwise Deltas, while the right Hastrates the relative error of the
bumped Deltas. In each case the number of simulated patfesases from left to right. The
convergence rates of both methods are practically idéntica
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6.1 Proof-of-Concept: Swaption Greeks

Additionally we compare the time necessary to compute tileypae and bumped Deltas.
Our results show that the pathwise method has the same ag@sahe bumped method but
speeds up the computation approximatglyimes. Moreover, we found that the speed up
is independent of the number of simulated paths, indicaditige scalability of the method.
Detailed results are charted in Figles.

2500
2130
2000

1500 W Pathwise

® Bumped
1000
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Execution Time (seconds)

500

244
29 60 105 " 104
P S =~
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Number of Simulated Paths

Figure 6.3: Timings of CPU-based Deltas. The red and blue slaow the timings for the
pathwise and, respectively, bumped Deltas for differemhioer of paths. The Greeks were
computed to every single point in the quoted EUR vyield curve.

6.1.2 Swaption Vegas

We made an equivalent experiment to see the convergencedhofipa and bumped swaption
Vegas. In Tablés.2 we show only one Vega out of five as our swaption was mainlyitbesns
to the first volatility piece while the other values were elds zero and prone to machine
precision errors.

Using the information from Figur&.4 we can conclude that yet again pathwise Vegas
exhibit equivalent accuracy as the bumped ones. Howevespéed up of Vega computation
(Figure 6.5) for a single swaption is small §%) because a lot of time is spent evaluating
the Vega of state variable(t) (see derivations in Appendi&.3). Performance improvement
should be visible when the number of Vegas becomes muctrlarge
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6.1 Proof-of-Concept

. Swaption Greeks

Paths Pathwise QMC|| Bump & Revalue QMC
500 3.2926 3.2926
1000 3.3301 3.3301
2000 3.3886 3.3886
5000 3.4036 3.4036
10000 3.4211 3.4211
50000 3.4443 3.4443
Analytic | 3.4458 | 3.4458 |

Table 6.2: Convergence of pathwise and bumped Vegas bas@dasi-Monte-Carlo simula-
tion towards the bumped Vegas based on the analytic Hull anigeVibrmula for swaptions.
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Figure 6.4: Relative error convergence of swaption Veg#ls increasing number of simulated
paths. Again, the pathwise Vegas are on the left side of thetgand the bumped ones are on
the right. We observe similar rates of convergence in eithse.
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6.2 CVA Greeks
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Figure 6.5: Timings of swaption Vegas calculation. The patk method gives only a 5%
advantage because the evaluation of Vegas is much more tatopally intensive and just a
small number (5) of sensitivities is considered.

6.2 CVA Greeks

Our next task was to investigate the Greeks of CVA on pod#otif interest rate swaps. First we
tested the method using the benchmark single-threaded @pdmentation. In the following
subsections we show the results for Deltas in case of CVA amgdesswap, and Vegas in case
of a swap triplet (EUR, USD, GBP). As it was very time consugnio compute bumped CVA
Greeks on a single-threaded CPU implementation we have theeldumped Greeks from a
GPU implementation as a reference.

6.2.1 CVA Deltas

For CVA Deltas computation we considered CVA on:
e T = 10-year Swap (EUR)
e ReceivingK = 4.6% fixed rate (EUR)
e Paying 6-month floating EURIBOR rate
¢ Notional of the Swap being 10,000 EUR

We computed pathwise and bumped Deltas to 35 yield curvap(tuR), but we display
only the significant ones in Figur@6. To show convergence of the Greeks with increasing
number of simulated paths, we took the bumped Deltas dorte 88536 simulations on the
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6.2 CVA Greeks

GPU as the reference point. Figud& shows the relative convergence of pathwise, CPU-based
Deltas to the GPU-based bumped Deltas. Already with 300@spae are, on average, within
3% relative error, which is a very good result - we can obtaiibegaccurate Greeks for hedging

purposes while keeping the computational costs low.
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Figure 6.6: CVA sensitivities to changes in the yield cur@n the x-axis we have the quoted
yield curve point indices; on the y-axis we have the denedtlope) of the CVA with respect to
changes in each of the buckets. A change of 1 basis point iightecurve gives a SlopeEUR
change in CVA.
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Figure 6.7: Relative convergence of pathwise CVA Deltasigodumped GPU CVA-calculator
based Deltas. Each of the lines represent the relative efreoDelta with respect to one of the
yield curve points.
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6.2 CVA Greeks

One should note that there is hardly any more convergencgrnshéier 3000 paths: we
remain within 3% relative error. The error comes not from paghwise Greeks but from the
bumped GPU-calculator Greeks. The problem is that thegasallel floating-point operations
on the GPU are only single-precision and they introduce doumeation error as well as slight
uncertainty of the result. Therefore each CVA valuation ltamprecise (more on this in Ap-
pendixA.5). Pathwise Greeks do not have this problem as we do not takennal derivatives
absolutely anywhere. Therefore the accuracy of pathwiseKaris as high as the estimated
CVA value itself.

6.2.2 CVA Vegas

The CVA calculator uses a single constargarameter calibrated to the whole swaption surface
(Figure 2.39, instead of the piecewise constant construct mentionagtld@rswaption results
(section6.1.]). Hence, for better visualization purposes, we chose tcausiplet of interest
rate swaps instead of a single swap used with CVA Deltas. ,Tious/ega computation we
considered CVA on:

Three 10-year Swaps (EUR, USD, GBP)

Receiving 4.6% fixed rate(s)

Paying 6-month floating rate(s)

Notional of each of the Swaps was 10,000 (in their respectiveencies)
We made convergence tests for Vegas by changing the numhmtiid used in Monte-
Carlo simulation froml to 3000. We did not test with larger numbers of paths as the compu-
tation using the single-threaded CPU implementation waesady very time-consuming. As
a benchmark, we again used the GPU-based bumped Vegas eochwith 65536 paths. The
convergence results, pictured in Figu®, show that with 3000 simulated paths we are at
< 6% relative error for each currency Vega. Their values are ligependent on the sim-
ulated state variables, hence for good convergence we nagsetmore paths than for Delta
estimation.
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6.2 CVA Greeks
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Figure 6.8: CVA Vegas, displayed for every currency.
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Figure 6.9: CVA Vegas convergence with increasing numbeatis used in QMC simulation.
We used GPU-based bumped Vegas as a benchmark.

6.2.3 Scaling

The last test on our single-threaded implementation wastfopn an initial investigation
of the scaling properties of the pathwise and the bump & vevahethods. First, we made
multiple timed runs for both cases while keeping the numlbairoulated paths fixed (only 3
due to time constraints) and changing the number of seitigi§\vand the portfolio size:

e We started with a single (EUR) swap.

Then added one more (USD) swap (increase in number of setnes)

and one more (GBP) swap (increase in number of sensitiuities

Afterwards, we used 2, 3, 4 and 5 swaps for each currency @rease in number of
sensitivities, but additional valuations)
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6.2 CVA Greeks

The results of the test show that increasing the number sftsgties (adding different cur-
rency swaps) yields a sharp increase in bumped Greeks catigputime, which even quadru-
ples after adding a USD valued swap in the portfolio (seer€iguLQ. However, the pathwise
Greeks evaluation time increases proportionally to the bemof swaps and seems to be in-
dependent of the number of computed sensitivities. In fhet,speed-up introduced by the
pathwise method increases from 27 to 78 times as we increthermtumber of sensitivities
from 35 to 105 (3 yield curves) and stays constant when igigia portfolio size without in-
cluding new currencies. These observations are in line tivghresults from M.Giles1[5], who
mentions that the pathwise method brings speed improvenoaify with increasing number of

sensitivities.
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Figure 6.10: Scaling of CVA execution time depending on nendf products and number of
sensitivities for both pathwise and bump & revalue methods.
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6.3 GPU Accelerated CVA Greeks

B CPU: Bumped / Pathwise

90.000
80.000 78.2 77.0 77.8 77.5 77.8
70.000
60.000 525
S 50.000
Q
1]
L 40.000
30.000 27.2
20.000
10.000
0.000

lcur 2cur 3cur 3cur2swap  3cur3swap  3curdswap  3curSswap

Figure 6.11: Speed up factors of the pathwise method for C¥id3. Speed-up stands for
the ratio of the times spent on 1 CVA valuation + 35 bumps andldation & pathwise Deltas
computed on the fly.

6.3 GPU Accelerated CVA Greeks

In the following section we show our results for the convermge and the speed-up of GPU
accelerated CVA Greeks.

6.3.1 Convergence

We start by showing convergence of CVA Deltas and Vegas fowapSriplet (EUR, USD,
GBP) with identical details for each swap as in sectoR.2 We show the convergence of
pathwise Greeks towards bumped Greeks, both valued on the &P display the error for
oints | .
Deltas as average normalized erm #iz_; % for better visualization purposes
(Figure6.12. Pathwise Vegas convergence is displayed with simple alized errors as we
have a singles per currency (Figuré.13. Our obtained results are reasonably consistent
with convergence results obtained with the single-thrda@eU implementation (sectidh?2):
pathwise Deltas have average normalized esr@% with 3072 simulated paths and Vegas at
the same time have 6% normalized error. With an increasing number of paths thbvpiae
sensitivities converge to the bumped ones with remairing% error due to floating point
precision errors on the GPU (explained in Apperdi%).
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6.3 GPU Accelerated CVA Greeks
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Figure 6.12: Convergence of GPU-based CVA Deltas. The geanarmalized error is shown
per currency.
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Figure 6.13: Convergence of GPU-based CVA Vegas. The naretakerror is shown per
currency.

6.3.2 Scaling of the Parallel Implementation

In this subsection we show how the computing time of the Gssekles for the two evaluation
methods previously discussed. The first test we did was tagehthe number of computed
sensitivities. This was achieved by increasing the numbdifierent currency swaps from 1
to 18 where each of them had:

e Ty = 10-year tenor

o K = 4.6% fixed rate

¢ Fixed and floating payments every 6 months

¢ Notional of 10,000 in the denominated currency
The test has shown that the relative speed up of GPU-baskdipatGreeks versus bumped
Greeks increases up to 70 times (Fig6r&é5 and has a potential to be larger if we have a
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6.3 GPU Accelerated CVA Greeks

more diverse portfolio and compute even larger number afigeities. During our test the
time spent on computation of Greeks (Deltas and Vegas) wagyht from 717 seconds to
approximately 10 seconds as it is shown in Figbuk4
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Figure 6.14: Scaling of CVA Greeks computation time withregasing sensitivities.
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Figure 6.15: Speed-up of pathwise Greeks method on the GRUfaisction of number of
sensitivities.

Additionally, we investigated the stability of the speedgipgen by the pathwise Greeks
method. We fixed the number of currencies in the portfolio {&€BR, USD, GBP) and in-
creased the number of identical swaps per currency from 0@0.1Figure6.16illustrates the
observed execution times for both methods and Figut&shows their ratio. We see that the
speed up factor stays stable while increasing the portid@ia0 times.
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Figure 6.16: Scaling of computation time for GPU-based C\edks with the number of
swaps in portfolio.
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Figure 6.17: Speed up of pathwise Greeks method on the GPUGuast#on of the number of
swaps in portfolio.

For the last test of scalability we gradually increased thenlper of simulated paths from
256 to 65536 while keeping the number of swaps constant aadumed the ratio of the execu-
tion times between bumped and pathwise Greeks. The outoomsistent with our previous
results for CVA Greeks on CPU: the speed up factor stays appately constant, despite the
changing number of simulated paths (see Figuis).
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Figure 6.18: Speed-up of pathwise Greeks method on the GRUuation of the number of
simulated paths.

In general, we can conclude that the parallel pathwise ndetboning on a GPU gives
increasing speed up of the execution with increasing nurobsensitivities and shows stable
speed-up factors when increasing portfolio size (Figuf) or number of simulated paths
(Figure6.18. Hence, we expect improvement in computational time whetuating CVA
Greeks on a full portfolio with> 20 currencies and0, 000 trades of at least 70 times.
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Discussion

In this thesis we explored the possible ways to acceleraesémsitivities computation for
Counterparty Credit Valuation Adjustments. In chapBewe described three generic ap-
proaches to compute Greeks for various derivative instnisnand decided to further inves-
tigate the pathwise Greeks method due to its suitabilityMonte-Carlo simulation based pric-
ing schemes for derivatives. Then, we found that the pathwisthod can be applied to CVA
sensitivities when certain smoothness conditions on tlyefpand the underlying stochastic
process are satisfied. As the largest part of the ING paotfioliquestion consists of rather
simple, vanilla interest rate derivatives, priced undex ontwo factor Hull and White models
- we can directly apply this method for CVA on these products.

On the other hand, this method might not be suitable for pitygye payoffs including
indicator functionsly.;, since they are not Lipschitz continuous and a problem singgen
we make the second interchange of the derivative and the®tmn (sectior8.6). However,
this is not the case if the expectation of our discounted fddyaction has an analytic and
differentiable expression. Then, we simply skip the sedatetchange and find the derivative
after taking the expectation. Generally, if this is not ploiss we can use the extension proposed
by M.Giles, the Vibrato Monte-Carlo method, to get around timitation.

There are two main benefits of the pathwise method: compugtitime speed up and
added accuracy of the estimated Greeks. In the simulatiofowel that the pathwise Greeks
can be computed up to 80 times faster than bumped ones witBRUrimplementation. We
additionally have shown that the evaluation of pathwisee&secan be accelerated by using
GPU co-processors, where the method brought a speed up of Uptimes over the GPU-
based bumped Greeks. Due to the excellent scalability ofrtehod, the latter speed up
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factor could increase even more if we constructed a larggnzore diverse test portfolio with
additional sensitivities to compute.

Furthermore, throughout our tests comparing pathwise anmgpbd Greeks, we showed that
the accuracy difference between the methods is negligiblenvusing small enough bumps.
This yielded an easy way to test for correctness of the pathmiethod in different test cases.

We conclude that, within its framework, the pathwise Gremlethod offers a significant
advantage for computing CVA sensitivities. This improveitredlows for on-the-fly sensitivity
computations instead of the usual overnight runs for lamy&gios.

7.1 Future Work

There are several directions to expand this work. Currenityhave implemented and tested
this method for CVA on interest rate swaps only. For full aagge the product range should be
extended to include caps, floors, swaptions and more exa#oest rate and foreign-exchange
derivatives.

Valuation of CVA and its Greeks on exotic derivatives is deatcomplicated topic. If we
decide to price the exotics in a Monte-Carlo fashion, thematild be logical to use a “path-
wise within pathwise” approach to estimate CVA Greeks. Thight be very expensive in
both compute time and memory usage, but still gives an adgantompared to the bump &
revalue approach for the same situation. On the other hantk approximations like Gaussian
quadrature or Longstaff & Schwartz methods might be usegricing exotics. This would
yield a convenient framework for estimating pathwise Gseskin both cases the payoff func-
tions are approximated by smooth and differentiable patyiats or basis functions. In any
case, smart memory management and pre-computation ofdreaees will be essential for
having reasonably short execution times.

Furthermore, very often the payoffs of exotic derivativesgath-dependent (which is well
managed with the pathwise method) and have some binaryfégteres like range-accruals
and barrier options. In this case it might be wise to have aldook at the applicability of
Vibrato-Monte-Carlo method to handle the discontinuitidsile keeping the speed up of the
pathwise method.

A second direction to expand this work is to assume more deatpdd dynamics of the
underlying interest rate and credit models. One choice iséothe two-factor Hull and White
model for interest rates which would enable proper pricind &reeks evaluation of some of
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the callable contracts. Another possibility is to use alsistic credit model which introduces
the needed tools to describe correlations between defanliapilities and interest rates, a
problem also known as the “wrong-way risk” (counterpartgdit quality deteriorating while
the amount of money owed to the bank is increasing). In myiopjnt should be possible
to evaluate pathwise Deltas, Vegas and even sensitiviiebanges in the credit spreads. Of
course, one should be careful with these models: the pathwethod does not work well if
the underlying processes have jumps, because analytiatiees do not exist at jump times.
There are two possible solutions for this issue: approxonatf the derivative by smoothing
the jump or using Malliavin-calculus methods (see book byiilan and Thalmaier22]).

Another, completely different idea is to automate the défgiation process, as there are
multiple implementations, often open-source, of the dledaautomated differentiation li-
braries. These software packages scan through C, C++ oaRawde, find marked functions
and produce code for “copy-cat” functions computing analgerivatives of the main func-
tions with respect to their input parameters. At the time otimg this thesis, there was no
implementation capable of handling CUDA code or global otg@nd variables in C++ codes.
Nonetheless, it might be worthwhile to develop extensiamgtese libraries, as it would sig-
nificantly decrease the amount of time spent coding andhteite sensitivity-evaluation func-
tions.
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Appendix A

Appendices

A.1 Interchange of Derivative & Expectation

In the first section of the appendix we give the needed themgupport the interchange of
derivative and the integrals in chap®rWe start with some definitions:

Martingale

A discrete-time martingale is a stochastic procg&s} that satisfies for ath:

E(|Xy]) < o0 (A.1)
E(XTL+1|X17 ey Xn) =X, (AZ)

Similarly, a continuous-time martingale is a stochastmcpssy; such that for alk:
E(|1X¢]) < o0 (A.3)
E(Xi{Xq,q < s}) = X, Vs <t (A.4)
Brownian Motion

The Brownian motion, also known as the Wiener prodé%ss characterized by three proper-
ties;

1. Wy=0
2. The functiont — W, is almost surely continuous

3. W, has independent increments with — W, N(0,¢t — s),for0 < s <t
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A.1 Interchange of Derivative & Expectation

whereN(u, 0?) denotes the normal distribution with mearand variancer>.

An alternative definition is so-called Lévy characteti@atwhich says that the Wiener pro-
cess is an almost surely continuous martingale With= 0 and quadratic variatiof\;, W;] =
t (which means thaD‘th2 — tis also a martingale)

Expectation of a Lipschitz continuous function

In section3.6 we use the argument that the expectation preserves Lipsotittinuity of a
function. First we give a proof for a uniformly continuoushtiion.
Take a uniformly continuous functiofi(z, y) : R x R — R. Then we define function

g RS R, g:/Qf(z(w),y)dP

wherez : 2 — R is a real-valued random variable mapping from the prolstsiace2 and
y € R.

Takeyy € R. By uniform continuity, givere > 0, 36 > 0 s.t. | f(zo,v0) — f(z,y)| < €
for all (zo, o), (z,y) € R x R for which ||(xg,y0) — (z,y)|| < . Take an arbitrargw € Q
andy € R such thatjyy — y| < 4, then||(z(w),y0) — (2(w),y)|| < 0 which implies that
|f(z(w),y0) — f(2(w),y)] < e. Since this happens for arbitraxy this inequality holds for all
w € 2 and we have that:

[ﬂﬂawww—fuwxmmp<e

LLﬂdwww—ﬂdmyMP<e

l9(yo) — g(y)| <€

Hence if the functioryf is uniformly continuoug; is as well.
A function f is Lipschitz continuous (along its second argument) if:

Vy € R,VS > 0,3c e RE : [f(,y+0) — f(y)| <c-d (A.5)

Lipschitz continuity is implied by uniform continuity, hea we can directly conclude that
expectation preserves it.

54



A.1 Interchange of Derivative & Expectation

Conditions for the interchange of derivative and expectaitn

In the following we state the required conditions for theenshange of expectation and deriva-
tive:

00 00 (A.6)

Let {X,,n > 0} be a vector-valued state process representing, for exathglénterest

B0 _ [210)

rate (short rate) process. The procéss,) may be the discretization of a continuous-time
process.

Denote the discounted payoff of our derivatifeX), X = (Xi,...,Xr), whereT is the
maturity andf is a real valued function. Thus the price of the security is E [f(X)]

Now supposé€ X,,) is a random function of parametgéranging in the open interv&. For the
existence of pathwise derivatives, we require the follgrgonditions to hold:

0Xn(0) .. Xp(0+4+h)—X,(0) . : .

C1 % }lln_% Y exists with probability 1.

C2 Take the seD; of points wheref is differentiable, the®(X(¢) € Dy) = 1 for all
0co

C3 The functionf is Lipschitz continuous and hence has an a.e. bounded tiegiva

The following theorem is an adapted and expanded (to meltirhensions) version of
original theorem by McShan&4{)]. For clarity of the proof we introduce direct dependence of
fonw € Q skipping the random functioX

Interchange of Derivative and IntegralLet B be a set iM2 andA = {A;, As, ..., Ax} be an
open setirR”. Let f be areal-valued functiofw, o) — f(w, ) defined forw € B = {Vw €
B: P(w) > 0} and alla € A such that for these andq, the partial derivatives

filw,a) = %, ie {1, K}, K <o (A7)

exist and also that for each € A the integral
F() = [ fw.0)dPG) (A8)

B

exists and is finite. If there exist functions integrable over3 such that for allv € B and
aeA
|[fi(w, )] < bi(w) (A.9)
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A.2 Proof of SWAP final formula

then, for eacln € A, F' has a derivative with respect ¢g and

a) = /B Fi(w, a)dP(w) (A.10)

Let o; be a point ofA; and leto; 1, a; 2,53, ..., 5, ... D& & sequence of points if; all
different frome;, but converging tay; asn increases. Defing;,, = (a1, ag..., iy, ..., k)
to bea with perturbation ini direction.

f(w, Bin) = f(w, a)

gin(w) = (A.11)
Qgp — Q4
by definition of F, we have
F(Bi,) — F
T pmr. (A12)
Qin — Q4 B

By the theorem of mean value, for alle B there is a number(w) betweenw and;,, such
thatg; »,(w) = fi(w, a(w)) this gives us that:

|@in(@)] < bi(w), Yw € B (A.13)

Moreover the definition of derivative implies that the a.enit of ¢; ,,(w) is fi(w, «) for all.
w € B. So, by the dominated convergence theorem, (see theorenj24)) we have:

i, [ G (@)dP) = [ fiw.a)dBw) (A.14)
Combining with @A.12) we obtain:

lim (ﬂ in) / fi(w, a)dP(w (A.15)

n—oo —

. . F(Bin) —F .
HenceE|f;(«)] exists, and fop; , — «, 5, € A, Vi € K, the limit % exists

and is equal tof f;(w,a)dP(w). The latter being true for alle {1, ..., K'} O
B

A.2 Proof of SWAP final formula

In the following we show a quick derivation of the Swap prgiformula starting from the
definition of a Swap as a series of Forward-Rate-Agreemenitsveas referred in the section
3.1 Recall that FRA price at timeis calculated as:

FRA(T,S,N,K) = N [P(t,T) - r(T,S) - K — P(t,T) + P(t, 5)] (A.16)
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Hence:

M
Swap(t,T,N,K) =Y FRA(T;-1,T;, N, K)

M
=Y N [P(t,T;)7(Ti-1, T})K — P(t, Ti_1) + P(t,T;)]

M

M M
—N-K- Zr i1, T3) - P(t,T;) — NY P, T,.1) + N> P(t,T;)
= i=1 i=1

M
=N.|K- ZT 1, T)P(t,T;) — P(t,Ty) + P(t, Tyy)

As wanted.[J

A.3 Pathwise Greek Derivations

To efficiently use the pathwise Greek method and to decide iise forward or backward
differentiation, one has to investigate the structure efilinole chain of derivatives (Jacobian
matrices).

In this section we derive and display the structure of Dediad Vegas of a swaption. We
will represent the swaption price using definitidh8) on a specific, generated Monte-Carlo
scenario as:

Swaption(t, T07 {‘Tv .iL‘(T()), @mkt) = D(t7 .iL‘(T()), TO) ! (Swap(To, {‘Tv .iL‘(T()), @mkt))+

wherez(T)) is the realisation of the state variable on this path@pg, is all market data used
for swaption pricing. Then, we decompose the swap into a sufleating (£/C') and fixed
(FzC) coupons:

N-1
Swap(To, T, 2(To), Omit) = > (FaC(Ty, Ty, Tiy1) — FIC(Ty, Ty, Tiy1))
=0

where the fixed coupon is dependent on the zero-coupon bacel prand the floating one is
dependent on Forward raté{dRt):

F.’L‘C(TO,E,E+1) = N-K- P(T(]aﬂ-i-l) : T(ﬂyﬂ-‘rl)
FZC(T())T;HT‘Z'-FI) = N- Fwth(T()viTi)n-i-l) : T(n»n-ﬁ-l)

1 P(T())T‘Z)
FwdRt(Ty, T;, T; = -1
wdRH(To, Ti, Tit1) (T3, Tiy1) (P(T0>Tz’+1)
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A.3 Pathwise Greek Derivations

In the above we skipped the paramete($;) and©,,; to shorten notation, but the dependence
is still implied. Going forward, we use the zero-bond deifimitas in 8.21), just now our
reference time of evaluation is

P(Ty,x(To), Ti) = exp[A(To,T;) — B(To, T;) - 2(1o)]

PM(t,T, 1
Pty o |5 VI T) = V(6T + VL To)] - BT, ()
. 1 — e @7(Ti=To) , .
with B(Ty,T;) = - andV (¢, T) as defined in%.20).

Swaption Deltas

Delta for a swaption can be called a derivative with respeaech of the quoted zero bond
pricesPM(O, ;) due to the direct relation to the yielda.40). In the following derivations
we distinguish between the time indic&s= {7y, 71, ...,Tn} andQ = {Qo, Q1, ..., Qnr} -
the first ones represent the reset and maturity dates of e awupons, while the second ones
give the maturity dates of the quoted market zero-coupom$oAs Deltas are quite straight-
forward to derive, we will immediately leap into the matrrifnulation. Each< BOLD >
entry stands for a vector of function values or parametethenformulations below antH
constructs represents the Jacobian matrices/vectorsri@sponding partial derivatives. .The
overall expression for swaption Delta is of the form:

OSwaptzgnithEi,,ﬂé;(zo), @mkt)} = LSwap(To,T.2(To).Omie)>0 - D (¢, 10, 2(T0))
OSWAP(To, T, x(To), Omis)
{[ 0' < FxC(Ty, T;) > ]
0 < FxC(Ty, T;) > 0 < P(To, Tj) >
[ 9 <P(To, Ty) > } . [ 0 <P(t,Q;) > }
OSWAP (T, T,x(To), Omit) d < FIC(Ty, T;) >
[ & < FIC(Ty, T;) > ] ' [a < FwdRt(To, T, Tiy1) >}
[8 < FwdR#t(Typ, T, Ti11) >] ' [8 < P(To, T;) >} }

0 < P(To, T;) > 0 < P(t,Q;) >
8D(t TO .I'(T()))
To, T, 2(To), Omit)) T - L
We can decompose the stochastic discount factor
To To
D(t, Ty, z(Ty)) = exp (—/ x(u)du — qﬁ(u)du) (A.17)
t t
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derivative using equatiorB(19 as:

[aD(t,To,w(To)):| o D(t,To,l‘(To)) ) |: aP(t,To) :|
O<P(t,Q;)>]  PtT) 0 < P(t,Q;) >

(A.18)

and the derivative of the Forward rate as:

0 < FwdRt(To, Ty, Tiyq) >| [0 < FwdRt(To, T;, Titq) > ' 0 <P(Tp, T;) >
0 < P(t,Q;) > N 0 < P(To, Tj) > 0 < P(t,Q;) >

Then, the sensitivity of future zero-coupon baR(Iy, ;) to time-zero bond# (¢, Q;) is
decomposed to:

[8 < P(To, T)) >] _ [3 <P(To,T;) >] . [3 < P(t,T;) >] (A.19)

0<P(t,Q;) > 0<P(t,T;) > 0<P(t,Q;) >

where the; times do not necessarily match the cash exchange @ates

How the Jacobian matrices look like

Say we have an underlying swap with fixed andNV floating coupons with cash exchanges
onT = {T1,...,Tn}, t = current time, T, =first fixing date. In the following we go though
each of the mentioned Jacobians and discuss their strudeestart with the sensitivities of
the swap price to the values of the coupons:

OSWAP(t,T)
0 < FXC(t, Tini-‘,-l) >

=[1 .., 1] (A.20)

isa[l x N] vector with ones for fixed coupons and equivalent one witls for the sensitivity
to floating coupons (we assume that we pay floating, receied)ix

The relation of fixed rate coupons and bond prices yields gotial N x N matrix as we
have uniqueP(Ty, T;) per coupon:

N K-
7(To, T1) 0 0
8 < FxC(t, T, Tis1) NoK
0 < P(To,Ti) > : : - - ( . )
0 0 N.K.
I T(Tn-1,TN) |
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The derivatives of floating rate coupons w.r.t. forward satield again av x N diagonal
matrix due to one-to-one correspondence of coupons andfoseard rates.

N -7(Ty,Th) --- 0

0 < FIC(t,T;) > } B

A.22
0 < FWth(TO, T, Ti+1) > ( )

0 oo N-7(Tn-1,TN)
Then, the forward rates are constructed from pairs of zenal lpsices, hence the Jacobian
0 < FWth(To,Ti, Ti+1) >
0 < P(To, Ti) >

takes a form ofV x N bi-diagonal matrix:
- 1 ;

0 0
P(Ty, T1)? - 7(To, Th)
1 —P(Ty,T1) 0
(T, T2)P(Ty, 7o)  P(Ty, T2)21' (T, T»)
0 0

7(To,T3)P(Ty, T3)

0 1 —P(TO,TN,l)
L T(Tn-1,TN)P(To, Tn)  P(To,Tn)? - 7(Tn-1,TN)

The future bond price®(7y, T;) have column + diagonal relationship to the timeero-
coupon bond prices:

B —P(To,Tl) P(To,Tl) 7

P T 0 .. 0
0 <P(To, T;) > _ P(t, Tp) P(t, 1) ’
8 < P(t, Tl) > : . . .
“PMTY) 0 BTt Tiv)
| TP P Ty)

The final matrix is the Jacobian of the zero-bonds with tindkdes matching the coupon
times with respect to zero-bonds with time indices matchivggactual, underlying zero-bond
maturity times. We are not displaying the internals of it edépends on the interpolation
scheme used (see Appenddd), but it should be bi-diagonal, as each of non-quoted bond
prices is approximated by the two neighbouring ones.

OP(t,Ty,) OP(t,Tr,)

[a < P(t,Ty) >] _ 8P(t;’ o) ap(t’:QM) (A.23)
9 <P(t,Q) > OP(t, Ty, OP(t,TLy)
OP(t,Qo) ~ OP(t.Qm)
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One should note that these matrices are extremely sparse a®wsing the 1-factor Hull-
White model to describe the dynamics of the interest ratésna. M.Giles has assumed the
Libor Market model in his paperlp], where he had reasonably filled matrices and obtained
significant efficiency gains by using the backward multgicn scheme. We do not have the
large fill in our case and diagonal structures, hence it isveoy beneficial to compute the
matrices in the middle of the algorithm. In our implemertate have decided to restrict
ourselves to the standard pathwise derivative methodg wsity vector operations as it is more
memory efficient. When performing computations on the GPl&rmory access overhead can
become a very serious bottleneck.

Swaption Vegas

In the following we derive the analytic derivatives betwebka swaption price and calibrated
piecewise constant(t) pointso;, j € {1,...,n}. For simplicity we derive this again for a
single Monte-Carlo path in the swaption pricing scheme:

dSwaption(t, Ty, T, x(Ty), Oy, oOD(t, T,
P ( 80 ( 0) k‘t) _ (Swap(To,‘-T,IL'(TO),G)mkt))—i_M
O'j 80’j
+D(t T ) . a(Swap(T0> {‘Tv .I'(T(]), @mkt))+
540 80‘3
Continuing the derivations for sensitivities:
O(Swap(To, T, 2(Tp), O i)+ = (FxC(Ty; Ty, Tiwr) — FIC(To; Ty, Trpr))
80'j = 1{(Swap(T07‘J'7:c(To),Gmkt))>0}' Z 80'j
i=0

For anyi the following holds by the chain rule:

80’j 80’j iy Li41
OFIC(To; Ti, Tivr) N-r(T, T, )8FWth(T0§Tz’aTi+1)
ao.j iy Li41 80’j

To continue the derivations, we revise some of the detajis fthe model. We expressed
(3.2 the zero-bond price as:

P(Ty, T;) = exp [A(To, Ti) — B(To, Ti) - 2(Tp)]

where:
PMt.T)) 1
1 —exp (7(T; — Tp) - a)

B(Ty,T;) =

a
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Thexz(T,) random component was defined by the SDE:

dz(s) = —ax(s)ds+ o(s)dW(s), s>t
z(t) =0

using the Ito rule withf (s, z) = ze*, we get a simpler solution:
S
z(s) = x(t)e Y +/ o (u)e =W AW (u)
t
considering the piecewise constant volatility (sect8o8 and assuming that >t =¢; = 0
(for convenience), we obtain:

ls

tiy1 s
x(s) = Z [ai/ e_a(s_u)dW(u)} + 0t / e TWAW (1), ty < s < tei
ti ts

=1

Then the derivative of the zero-coupon bond w.r.t. volgtili; can be derived:

OP(To, T:) 0A(Ty, T;) 9z (Tp)
— 07V — P, T)- | —2"Y — B(Ty,T;)  ——2 A.24
i 1) (PG - B - T ) a2a
80‘j 2 aO'j aO'j 80‘j
Oz(To) 9z(To, 04) (A.26)
aO'j i1 aO'j
9z (T, {oi}) /ti“ATO —a(To—u) 770
— = 15, .. alfo—u A.27
80‘j {oi=0;} :, € dw (u) ( )
OV (To,T) =Vt tysr0n) | OV (1a, T, 0y)
— = A.28
80’j kzzl aO'j + 80’j ( )
OV (tester1) T 2V (ty, thi1) (A.29)
Joj g oj
whereV andV were defined initially in8.3) andt; A Ty = min(t;, Tp).
The forward rate by definition is:
1 P(Ty, Ti-1)
F(To; Ti-1,T3) = : -1
Toi i ) = 2 ) ( P(Ty, T;) )
hence its derivative with respect to the volatility is expressed as:
OF (To; T;-1,T;) 1 1 OP(Ty,T;-1)  P(Io,Ti-a) O0P(To,To)
Do - 1(Ti-1,T;) \ P(To, T;) Joj P(Ty, T;)? Do

where the zero-coupon bond Vegas have been already defigad#).

62



A.3 Pathwise Greek Derivations

Next we go to the discount factor tert(¢, 7j) in (A.17). The Vega of the discount factor
is evaluated as:

ODT) _ py gy (8(ft%(8)ds) 8(LTO%(S)d8))(A-3O)

Joj - Jo; - 0o
0 <— I w(S)dS) d[3V(tt) — V(t,Tp)]
_ (A.31)
80‘j 80‘j
0 (— ftTO a:(s)ds) 0 <— ftTO a:(s)ds) o 9a(s)
80’j B 80’j B _\/t 80]- ds (A32)

and the latter two were computed ih.28) and A.26).

FX-Greeks

If the swaption was valued not in domestic currency as the aaalysed so far, we have the
additional termZ X (T") to convert the swaption value from foreign to domestic aueye This
term is sensitive to both zero-coupon bond prices and Vitiegi of both currencies.

By definition, foreign-exchange rate is defined as an expiated difference between the
two short rates with additional Brownian Motion componehhe integration of the FX SDE
in (3.26) yields:

T
FX(T) = FX(t)-exp | [ (ra(t) —rp(t))dt + / ag(t)dWS(t)] (A.33)

T T
rd(t)dt] - exp {/rf(t)dt} - exp |:/ as(t)dWS(t)]

t

= FX(t)-exp

Th— s Tt

1/ Dy(t.Toq(t)) Dy (t, Ty (1))

These marked domestic and foreign discount factor parteaie sensitive to different sets of
market data and we discuss them separately. When compuéltgsDv.r.t. domestic data we

obtain:
OFX(T) -1 0Dy (t, T, x4(1))
=~ =FXT)- : A.34
ory(t.Q) ) Dt T @) 0PM(LQ)) A
where the last term is as iA(18). In case of pathwise Vega w.r¢, ; we have:
aFX(T) —1 8Dd(t, T, l‘d(t))
———=FX(T)- . A.35
Joa; D) D Towa®) — doay (A-33)

63



A.4 Dangers of Interpolation for Greeks

with the rightmost derivative already computed M 30).
The sensitivities w.r.t. foreign Deltas are equivalent:

OFX(T) _ ' -1 'an(t,T,xf(t))
o) ) DT 0P (L)

where the last term is solved equivalently #.18). The main part of the foreign currency

(A.36)

Vegas looks the same as for the domestic currency:

OFX(T) B -1 OD¢(t,T,xs(t))
= FX(T)- Df(t>Tv xf(t)) ‘ doy;

(A.37)

but here the last derivative term is slightly different, as mave a modified drift of the state
variable process (as in equatidhZ6):

dry(s) = —arxs(s)ds + o(s)ps,ros(s)ds + af(s)dW}Q(s), xzp(t) =0 (A.38)

integrating it with the help of functiorf (z, s) = x - ¢/* we obtain:

zp(s) = zp(t)e” (70 4 / e~ g 1 (u)pg pos(u)du + / e~ g o (w)dW s (u)

t t
(A.39)

The latter expression can be rewritten, keeping in mind teeguvise constant volatility func-
tionos(s) =044, ti < s < tip1, i € {1,..., N} and assuming that= 0 to:

t:
n i+1

zs(s) = Z |:O'f7i (7lea(su)de(u) + /

ea(su)ag(u)p&fdu)
i=1

ti

t t
+O'f,n+1 (/ e_a(s_“)de(u) +/6a(su)05(u)pg7fdu)]

n t'n,
wheret,, < s < t,41. Hence now, just like inA.26) = (s) is sensitive to one piece;; of
volatility function at a time. The rest of derivation is slarito single-currency case in the same
array of equations.

A.4 Dangers of Interpolation for Greeks

In the derivation of A.23) matrix we have skipped the internals of it. Here we woule lik
to shortly discuss the different zero-coupon-bond pri¢erpolation schemes and their differ-
ences.
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A.4 Dangers of Interpolation for Greeks

The continuously compounded interest rete, 7') and discount factor® (¢, T') are related

via:
log P(t,T)
Y(t,T) W (A.40)
Pt,T) = explY(t,T) (T —1t)] (A.41)

Say that two bonds maturing at tim&g and7} are liquidly traded on the market. We want to
find the price of a “custom” bond maturing years, 7y < T' < T;. There are 3 main ways
to interpolate the bond price:

1. Interpolation of the zero-yield curve points

(T = To)Y (t,Tv) + (Th — T)Y (t,Tp)

Y(t,T)= A.42
2. Interpolation of the discount factors
(T —To)P(t, Th) + (11 — T)P(t, 1)
P(t,T) = A.43
3. Interpolation of the log discount factors
T —Ty) log P(t, T Ty — T)log P(t, T
log P(t,T) = 7L = T)log P(t.Ty) + (Th — T) log P(t, To) (A.44)

(11 — Tp)

To show the differences of these methods we have picked arfadtcase with 2 quoted
zero coupon bonds (3-year and 5-year). The interpolatedcipon bond prices do not differ
much, even if we interpolate using different methods asshiswn in FigureA.1:

P(t,T) under different interpolatic
Price

0.961
— Int.Yield.C

0.941

0.92- —_— Int.Log.DF

0.90F

ossh ~— IntDF

Figure A.1: Interpolated Bond Prices
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A.4 Dangers of Interpolation for Greeks

but if we try to compare the sensitivities of the interpothbe®nd price with respect to the
quoted bond prices, we obtain significant differences inikgghts the neighbouring (quoted
in the market) points carry, this is pictured in Figuke2. In our case we have more a 40%

difference (see FigurA.3) in the computed Greeks.

P(t,T) sensitivity to Y(1) point P(t, T) sensitivity to Y(2) point
Slope Slope
35 40 45 g0 | ~ 35 20 45 50
—osf ' ) S — IntYield.C AN ' ' ’ —  IntYield.C
_1f \

o / —  IntLogDF \ ~ IntLogDF
~15F g -2f ~

_20L ) — IntDF sl \ ——  IntDF

_al \
(a) Sensitivity to 3y point (b) Sensitivity to 5y point

Figure A.2: Greeks of Interpolated Bond Price. Left figurewss the sensitivity of the inter-
polated price to the 3-year point and right figure shows $gitgito the 5-year point under
different interpolation methods.

Difference in bond pric Difference in sensitivit
EUR Slope

35 4.0

—-0.00z

-0.004 Int.DF-Int.Yield.C dDFYield)-dDFRLog)

—0.00€r

—0.00€r

Figure A.3: Bond price and sensitivity differences arisirgm chosen interpolation methods.
Left figure shows the difference between direct discountofaand yield curve interpolated
zero bond prices depending on valuglofThe right figure shows the difference between yield
curve and discount factor interpolation based sens#witi

Hence even if the interpolation method does not yield muffieréince in the interpolated
bond price, it does matter in the case of Greeks computation.

The practitioner should (at least) be consistent throughwaisystem how things are be-
ing interpolated. Additionally, if one has the freedom t@oke the method of interpolation,
the smartest choice would be to interpolate pure zero-aotjond prices as hedging is done

66


img/ptT_sensitivity_y1.eps
img/ptT_sensitivity_y2.eps
img/ptT_sens_diff1.eps
img/ptT_sens_diff2.eps

A.5 GPU: single precision limitations

directly with them.

A.5 GPU: single precision limitations

In chapter5 we have mentioned the floating point precision problem wresfopming bumped
Greeks evaluation using GPUs:

OCVA  CVA(B) — CVA(®H+h)
00 h

The problem rises from the fact that the currently suppagoeedllel add operations of NVIDIA
cards are only single-precision. As one is performing thglsiprecision operations, only 23-
bits are available for the “fraction” part of the number. histcase the numerical “epsilon”
(smallestr, s.t.1 + x > 1) is aroundl.9F — 7 (see article by Goldberd.[/]). Hence, we can,
roughly, add around 7 digits of 2 numbers correctly:

11,111,111 4+ 1.31516 = 11,111,112.0

and the rest of the number is rounded. Additionally, if we’tlase sorting procedures, due to
non-associativity of floating point operations, the paladldd operations return numbers that
have the tail part (after the digits) - somewhat random. Hence as we were performing CVA
calculation, thousands of single-precision numbers wdded and these errors left us with
precise 6-digits of the final answer.

This difference does not matter for CVA pricing, as we arkig about missing cents from
multi-million Euro values, but this rounding and parallddeerror affects the Greeks. Say that
the bumph = 1E — 10 and the parallel-add error is of sizé&’ — 6 x CVA size. Then, if the true
Greek in question is 20,000 (i.e. sensitivity of CVA to mowarthof some yield curve point)
andC'V' A = 2000, then the finite-difference approximation of it will be:

p-add error
CVA@®) — CVAB+h)+2-(2000 - 1E — 6)
1E—-10

A= = 20,000 + 40,000,000  (A.45)
which makes our Greek estimate unusable. The solution isd¢oaularger bump size, like
h = 1FE — 4, then the parallel add error, in this case, would becane.

Note that Greeks are usually normalized to show changes & @lue if a yield curve
point moves by 1 basis poiet 1E — 4, hence the final sensitivity number used by the trader
would be2 £+ 0.004 and this error is small enough to ignore, as CVA is an appraion itself.
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A.6 Development Platform Details

On the other hand, making a larger bump might give biasedkGtee to higher-order effects
in the CVA pricing formula, which might be undesirable in gliee.

A.6 Development Platform Details

All the code was written and tested on a computer provided\&y Wwith:
e Intel Xeon 3.2GHz (8-core) CPU
e NVIDIA Tesla C2070 (Fermi) GPU card
e 16GB memory.
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