
Complexity of the bi-implication
fragment of Intuitionistic logic

Bachelor’s thesis
15 ECTS

Sanne Brinkhorst

Supervisors:
Jeroen Goudsmit

Albert Visser

August 10, 2011

2

Preface

This thesis has not one but two problems it investigates. Both are about in-
tuitionistic logic and its complexity, but the problems are quite different. The
first is a comparison between the complexity of the full propositional language
and fragments with limited connectives, in this case bi-implicaton. For classical
logic is proven that the bi-implication fragment is easier∗ then the full language,
but for intuitionistic logic this is not proven. I expect that it is also possible to
have an algorithm in a smaller complexity class for intuitionistic logic, but I did
not have enough time and/or knowledge to investigate this further.

The second part is a working-out of a proof that intuitionistic logic is pspace-
hard. This is a very elegant proof by Švejdar based on the structure of Kripke
models, the models we use to represent the semantics of intuitionistic logic. He
does not only prove that intuitionistic logic is pspace-complete for the full lan-
guage, but also for the implicational fragment. Statman [5] proved this earlier,
but he used proof theoretical methods and not model theoretical methods.

Not all classical axioms are valid in intuitionistic logic. These restrictions
might be useful for knowledge systems in artificial intelligence. In classical logic
there might be too much propositions that are accepted as true, even the ones
that we don’t want to accept. Furthermore are complexity problems are very
important in artificial intelligence. A knowledge system is not very useful if it
is very slow, so better algorithms can improve them a great deal.

I wish to thank my supervisors Jeroen Goudsmit and Albert Visser for their
ideas and advice. I started with an ambitious time scheme and without their
support and patience I would not have finished it.

Thanks to my boyfriend Alexander for the support in practical and abstract
matters. Without you I would not have taken the step to study artificial in-
telligence, a choice that changed my life for the better. Thanks to my parents,
family and friends for keeping up with someone who always unjustly thinks that
she will have more time for you in the future.

∗in case complexity classes p and np are not equal

Contents

1 Intuitionistic Logic 5
1.1 Introduction . 5
1.2 Natural deduction . 6
1.3 Kripke Models . 9
1.4 Soundness of Kripke models . 11

2 Decision problems and Complexity 13
2.1 Complexity . 14
2.2 Complexity classes . 15
2.3 Reducibility . 16
2.4 NP: SAT and TAUT . 17
2.5 PSPACE: INTAUT and TQBF 18

3 Bi-implicational fragment 21
3.1 Deciding bi-implicational formulas in classical logic 24
3.2 Complexity of classical decision algorithm 27
3.3 Intuitionistic decision algorithm? 28

4 Complexity of intuitionistic logic 31
4.1 Reduction from tqbf to IntTaut 31
4.2 pspace-completeness of L→ . 33

A Turing machines 37

3

4 CONTENTS

Chapter 1

Intuitionistic Logic

1.1 Introduction

In classical logic, reasoning is based on the assumption that a statement is
either true or false. The truth of propositions is based on the truth values of
the propositional variables. In this text we will use the set Var of propositional
variables and lower case latin letters, preferably p, q, r for variables. Every
propositional variable Var has a Boolean value. Boolean values are the set
B = {0, 1} such that if a variable is true, the Boolean value is 1 and if the variable
is false the value is 0. We can also assign Boolean values to propositions, which
are sentences of variables and logical connectives. Boolean values are always
computed modulo 2 because they can not be bigger than 1.

In this text, propositional formulas will be built up from the binary con-
nectives ∨, ∧ and →, the unary connective ¬, variables and the symbols > for
truth and ⊥ for falsity.

Definition 1.1 (Propositional language). Lp = Var | > | ⊥ | Lp → Lp |
Lp ∧ Lp | Lp ∨ Lp | ¬Lp

A valuation function v is a function Var→ B which returns for every variable
its Boolean value. To calculate the Boolean value of a proposition we use J−K,
a function of (Var → B) → B. It calculates the Boolean value of a connective
based on the valuation function of its arguments.

JpK : v 7→ v(p)
Jψ ∧ φK : v 7→ min(JψK(v), JφK(v))
Jψ ∨ φK : v 7→ max(JψK(v), JφK(v))
Jψ → φK : v 7→ J¬ψ ∨ φK(v)
J¬ψK : v 7→ (JψK(v) + 1)
J⊥K : v 7→ 0
J>K : v 7→ 1

With these formulas we can calculate the truth value of any proposition,
if we know the valuation function of the variables. We can also decide if a
proposition is a tautology, a proposition that is true for every valuation or
whether it is satisfiable, meaning that there is at least one valuation for which the
proposition is true. Both can be calculated by trying every possible valuation.
Because every variable has 2 possible values, a proposition with n variables has
2n possible valuations. This can be seen from the domain of v, being BVar.

5

6 CHAPTER 1. INTUITIONISTIC LOGIC

If one uses the subset V of Var which contains only the variables used in the
proposition, the number of functions is equal to |B||V|, which is 2n with n = |V|.

If JψK(v) is true, we write v � ψ. If v � ψ for all v, i.e. it is a tautology, we
write � ψ.

Example 1.1. p: it is raining

We can conclude that p ∨ ¬p is true without knowing anything about the
current weather. The possible valuations are p is true and p is false, in both
cases p ∨ ¬p is true. The proposition does not contain any information about
the weather.

In intuitionistic logic a formula is only valid if we can construct a proof for
it.∗ A proof of the conjunction A∧B is given by a pair of proofs (a, b) such that a
proves A and b proves B. The disjunction differs even more from classical logic.
A proof of the disjunction A∨B is a pair of which the first element contains the
information which of the disjuncts is correct and the second element gives the
proof of the correct disjunct. For example the first element of the proof (p, q)
is given by a number p ∈ {0, 1} such that if p = 0 then q is a proof of A and if
p = 1 then q is a proof of B.

A proof p of an implication A→ B is a construction that takes a proof a of
A and returns a proof p(a) of B .

Example 1.2.
A: “There exist at least twenty twin primes above 65516468355 · 2333333 ± 1”
B: “There exist at least nineteen twin primes above 65516468355 · 2333333 ± 1”

If we can prove A we have also a proof of B in a very simple way. A proof of
twenty of more twin primes above a certain number is also the proof of at least
nineteen twin primes above that number. At the moment we have no idea of the
truth of both A and B and we can certainly not prove it.† But we know that the
implication A→ B is intuitionistically valid. In classical logic A→ B is valid if
and only if ¬A∨B and we do not know whether A and B are true or false. Both
in classical and intuitionistic logic it is possible to rewrite A→ B to ¬B → ¬A.
A proof of ¬B in the example is one that proves there are eighteen or less twin
primes above 65516468355 · 2333333 ± 1. Any proof of nineteen or more twin
primes results in a contradiction. This proof of ¬B also is in contradiction with
any proof of twenty or more twin primes and is therefore also a proof of ¬A.

A proof of a negation ¬A is a proof that transforms every proof of A in a
contradiction. This may also be written as a special case of the implication:
p : A → ⊥. In both writings proof p applied to a : A gives us p(a) : ⊥. Now
we can give an intuitionistic interpretation of p ∨ ¬p: “we can either prove p
or every proof for p gives us a contradiction and we know which one is the case.”

1.2 Natural deduction

In the previous section we used the semantics of the connectives to decide the
validity of propositions. Another way to decide whether a proposition is a

∗From here on most of the information about intuitionistic logic is based on [6] and [7].
†The biggest known twin prime at the moment of writing, see [1]

1.2. NATURAL DEDUCTION 7

tautology or not is proving it in a deductive system. Below are the rules for
propositional logic which we will use in this thesis.‡ For formulas we use the
capital latin letters, preferably A,B,C. These can stand for any proposition in
Lp.

Definition 1.2. Γ ` ψ if there is a deduction for ψ with only assumptions
from Γ. A proposition ψ is valid if ` ψ, meaning that it can be deduced without
assumptions.

Γ is a finite set of assumptions. The base case is Γ, A ` A.

Γ ` A ∆ ` B
Γ,∆ ` A ∧B ∧I Γ ` A ∧B

Γ ` A ∧El
Γ ` A ∧B

Γ ` B ∧Er

Γ ` A
Γ ` A ∨B ∨Il

Γ ` B
Γ ` A ∨B ∨Ir

Γ ` A ∨B ∆, A ` C Λ, B ` C
Γ,∆,Λ ` C ∨E

Γ, A ` B
Γ ` A→ B

→ I
Γ ` A→ B Γ ` A

Γ ` B → E

Γ ` ⊥
Γ ` A ⊥E

Γ, A ` ⊥
Γ ` ¬A ¬I Γ ` ¬A Γ ` A

Γ ` ⊥ ¬E

For deductions of propositions without a set of assumptions we use derived
rules without context. We do not write the assumptions down every step, but
we prove the conclusion under these assumptions. Assumptions will be marked
with a number and the retraction will be marked with the same number next
to name of the rule. The base case is [A], a marked assumption.

‡There are rules for first order logic, see [6, page 7].

8 CHAPTER 1. INTUITIONISTIC LOGIC

A B
A ∧B ∧I

A ∧B
A

∧El
A ∧B
B

∧Er

A
A ∨B ∨Il

B
A ∨B ∨Ir

A ∨B

[A]
D
C

[B]
D′
C

C
∨E

[A]
D
B

A→ B
→ I

A→ B A
B

→ E

⊥
A
⊥E

[A]
D
⊥
¬A ¬I

¬A A
⊥ ¬E

Example 1.3. If we have a formula that requires a pair A∧B as input and we
have one half of this pair (A) we can construct a new formula B → C that only
requires the second half of the pair (B) as input. This is known as Currying.§

1(A ∧B)→ C

2A 3B
A ∧B ∧I

C
→ E

B → C
→ I, 3

A→ (B → C)
→ I, 2

((A ∧B)→ C)→ (A→ (B → C))
→ I, 1

Example 1.4. If we can deduce C from A and B and we can deduce B from A
we can also deduce C from A. From the previous rule we know that the result
is equivalent to (((A ∧ B) → C) ∧ (A → B) ∧ A) → C, a formula of which it
might be easier to see that it is true.

1A→ (B → C) 2A

B → C
→ E

3A→ B 2A
B

→ E

C
→ E

A→ C
→ I, 2

(A→ B)→ (A→ C)
→ I, 3

(A→ (B → C))→ ((A→ B)→ (A→ C))
→ I, 1

Example 1.5. A distribution of a conjunction over disjunctions is intuitionis-
tically valid.

§After the mathematician Haskell Curry. He reinvented the process invented by Moses
Schönfinkel. Schönfinkeling did not really catch on.

1.3. KRIPKE MODELS 9

A ∧ (B ∨ C)
B ∨ C ∧Er

1A ∧ (B ∨ C)
A

∧El 2B
A ∧B ∧I

(A ∧B) ∨ (A ∧ C)
∨Il

1A ∧ (B ∨ C)
A

∧El 3C
A ∧ C ∧I

(A ∧B) ∨ (A ∧ C)
∨Ir

(A ∧B) ∨ (A ∧ C)
∨E2, 3

A ∧ (B ∨ C)→ (A ∧B) ∨ (A ∧ C)
→ I, 1

Example 1.6. If we can deduce something from either A or B, it has to be
deducible from both A and B. We do not know beforehand which of them will
be the case, so both have to imply C.

1(A ∨B)→ C

2A
A ∨B ∨Il

C
→ E

A→ C
→ I, 2

1(A ∨B)→ C

3B
A ∨B ∨Ir

C
→ E

B → C
→ I, 3

(A→ C) ∧ (B → C) ∧I

((A ∨B)→ C)→ ((A→ C) ∧ (B → C))
→ I, 1

1.3 Kripke Models

In intuitionistic logic it is not possible to make truth tables, because not ev-
erything classically valid is also intuitionistic valid. Instead we can use Kripke
models. Kripke models are a useful way to prove that a proposition is false.
By constructing models one can show that a proposition is not true. Infinitely
many frames and models can be constructed, so it is not always easy to find the
model that shows the contradiction.

Kripke frames for intuitionistic logic are sets of nodes K with a partial order
≤ on these nodes.¶ A model is a frame with variables assigned to nodes k ∈ K.
If a variable p is true in node k we write k
 p (‘k forces φ’). One can see this
model as a time model with possible futures. The bottom node, in this text
indicated as 0, represesents our current knowledge. Accessible nodes represent
possible future situations with the knowledge we have at that moment. Once
we have accepted knowledge in a world, it holds for all accessible future nodes.

Figure 1.1: Countermodel for p ∨ ¬p

0

1 p

An example is the frame 〈K,≤〉 with K = {0, 1} and 0 ≤ 1. We do not
know anything now, but in the future we might know p. We write this as 1
 p.
Now we know 0 1 ¬p because 1
 p and if 0
 ¬p would hold, we would have

¶A partial order is a reflexive, transitive and anti-symmetric relation. The ≤ relation on
natural numbers is a partial order.

10 CHAPTER 1. INTUITIONISTIC LOGIC

a contradiction in 1. If we might know p in the future, we can not know ¬p
now. Both p and ¬p are not the case in 0, later we will see that we can conclude
0 1 p ∨ ¬p from this information and that we have a countermodel for p ∨ ¬p.
This model is not the only possible situation. In the future we also might know
¬p.

Figure 1.2: Countermodel for ¬p ∨ ¬¬p

0

2 ¬p1 p

0

21 p

In the model in figure 1.2 we have a countermodel for ¬p ∨ ¬¬p. We add
another node to the model in figure 1.1, being node 2 for which ¬p holds. If in
world 0 ¬¬p would hold, we would have a contradiction in world 2, therefore
0 1 ¬¬p. Because of 1
 p we already know 0 1 ¬p and therefore 0 1 ¬p∨¬¬p.

However, we do not actually assign propositions to nodes, but only variables.
Therefore we do not assign ¬p to node 2, but we do simply not assign p which
means that 2 1 p.

Definition 1.3. A Kripke model is a triple 〈K,≤,
〉 with a set of nodes K,
a partial ordering ≤ on these nodes and a binary relation
 on K × Var. This
relation is such that if ∀k, k′ k
 p and k′ ≥ k then k′
 p.

We can extend the definiton of Kripke models to sentences.
k
 φ ∧ ψ := k
 φ and k
 ψ.
k
 φ ∨ ψ := k
 φ or k
 ψ.
k
 φ→ ψ := for all l ≥ k if l
 φ then also l
 ψ.
k
 ¬φ := k
 φ→ ⊥
k 1 ⊥

Definition 1.4. A proposition is valid on a model if it is valid on all nodes in
that model. K
 φ if and only if ∀k ∈ K k
 φ

Definition 1.5. A proposition is valid if it is true for all models.
 φ if and
only if ∀K,K
 φ.

Lemma 1.1 (Preservation of truth). If k
 ψ and k′ ≥ k then also k′
 ψ.

Proof. We have k and k′ such that k ≤ k′ and k
 ψ∧φ. Now k
 ψ and k
 φ.
From the definition of Kripke models we know k′
 ψ and k′
 φ. Therefore
also k′
 ψ ∧ φ.

We have k and k′ such that k ≤ k′ and k
 ψ ∨ φ. This is valid if k
 ψ or
k
 φ. In the case k
 ψ also k′
 ψ and therefore k′
 ψ ∨ φ. If k 1 ψ then
k
 φ is the case. Then k′
 φ and k′
 ψ ∧ φ.

1.4. SOUNDNESS OF KRIPKE MODELS 11

The definition of the implication and negation is such that it is easy to see
that it preserves truth. Note that ≤ is transitive, i.e. k ≤ k′ and k′ ≤ k′′ also
means k ≤ k′′.

Another example is that of ((p → (q ∨ r)) → ((p → q) ∨ (p → r)) in figure
1.3. If this were true, all worlds w
 p would either all force q or all force r.
We take a model K
 p→ (q ∨ r) and show ∃k ∈ K k 1 (p→ q) ∨ (p→ r) and
therefore K 1 ((p → (q ∨ r)) → ((p → q) ∨ (p → r)). Because we have found
this countermodel we also know 1 ((p→ (q ∨ r))→ ((p→ q) ∨ (p→ r)).

Figure 1.3 shows a countermodel. The valuation is such that 0
 p→ (q∨r).
Because 1
 p and 1 1 r, we know 0 1 p → r. Similarly we can see 0 1 p → q
because of the valuation in 2. Both sides of the disjunction are not valid and
therefore the disjunction is not valid either. 0 1 (p→ q) ∨ (p→ r).

Figure 1.3: Countermodel for ((p→ (q ∨ r))→ ((p→ q) ∨ (p→ r))

0

2 p, r1 p, q

In intuitionistic logic A → ¬¬A is valid as in classical logic. We can show
this with natural deduction. Later we will see that Kripke models are sound
and therefore if we can deduce something with natural deduction it also holds
in all Kripke models.

Proof.

1¬A 2A
⊥ ¬E
¬¬A ¬I, 1

A→ ¬¬A → I, 2

The other way around, ¬¬A→ A is not valid for all A. This A is a metavari-
able that can be any sentence in Lp and when choosing A = p we can make a
countermodel. We show that there is a model K with a node k ∈ K such that
k
 ¬¬p but also k 1 p. Take the frame with worlds 0 and 1 with 0 ≤ 1 and
1
 p. Now 0
 ¬¬p but not 0
 p. There are two possibilities for a world
l ≥ 0, being l = 0 such that 0 = l and l = 1 such that 0 < l. In the first case
there is an accessible world, being 1, in which p is true. In the second case there
is also an accessible world, again being 1, in which p is true. Therefore 0
 ¬¬p
and 0 1 ¬¬p→ p.

1.4 Soundness of Kripke models

Kripke models are sound if everything that can be proven by natural deduc-
tion also holds on Kripke models. We will show this with an induction on the
structure of the deduction.

12 CHAPTER 1. INTUITIONISTIC LOGIC

Figure 1.4: Countermodel for ¬¬p→ p

0

1 p

Theorem 1.1 (Soundness of Kripke models). If Γ ` ψ then Γ
 ψ.

Definition 1.6. Γ
 ψ if and only if in each model K and each node k ∈ K,
if k
 γ for all γ ∈ Γ then also k
 ψ.

Proof. Let Γ a set of formula’s and ψ a formula. Suppose Γ ` ψ. We proceed
by using the structure of the proof of ψ.

We distinguish several cases. The base case is when ψ is in Γ. Suppose that
Γ = ∆, ψ. For all Kripke models K and nodes k ∈ K where k
 γ for all γ ∈ Γ.
Because ψ ∈ Γ we know k
 ψ. Therefore Γ
 ψ.

Case ψ = φ ∧ χ, ∧ introduction: Suppose Γ ` φ ∧ χ. From the deduction we
know Γ ` φ and Γ ` χ. With induction we know Γ
 φ and Γ
 χ. For an
arbitrary model K and an arbitrary node k we know that if k
 φ and k
 χ
then also k
 φ ∧ χ. From this it follows that Γ
 φ ∧ χ.

Case ψ = α ∨ β → γ, ∨ elimination: Suppose Γ,∆,Λ ` α ∨ β → γ. Let K be a
model. Suppose for every k in the model k
 Γ,∆,Λ. In particular k
 Γ and
consequently k
 α ∨ β. We distinguish two situations. In the first k
 α and
from k
 ∆, α it follows that k
 γ. In the other situation k
 β and k
 Λ, β
and hence k
 γ. Consequently Γ,∆,Λ
 α ∨ β → γ.

Case α → β, → elimination: Suppose Γ ` α → β and consequently Γ, α ` β.
Let K be a model. Suppose for every k in the model k
 γ for all γ ∈ Γ and
thus k
 α→ β. For every k
 Γ, α also k
 β, a consequence of the definition
of k
 α→ β. Concluding Γ
 α→ β and Γ, α
 β.

The proof of the soundness for Kripke models for the other deduction rules
are quite similar. If we use the empty set ∅ for the context we know that if ` ψ
also
 ψ.

Chapter 2

Decision problems and
Complexity

In logic we often want to know whether a proposition is true or false. This
is a decision problem. In decision problems there is a question that has to be
answered about an input. The question has only two possible answers, mostly
yes or no.

Example 2.1. Is this proposition for this valuation true?
Input: p ∨ q with p = > and q = ⊥
Answer: Yes

If there is an algorithm to answer such a question, the problem is decidable.
Some problems are not decidable because there is no algorithm that gives a yes
or a no.

Example 2.2. n and m is the biggest pair of twin primes

“On input 〈n,m〉 with n,m a pair of twin primes:
1. Try to find a bigger twin prime pair. If you find this, reject.
2. Otherwise, accept

The problem with this algorithm is that there is no way to decide whether
you are not going to find a bigger twin prime pair. You only know whether
you have found one or you have not found one yet. If we run this algorithm
on 〈65516468355 · 2333333 − 1, 65516468355 · 2333333 + 1〉 it is possible that the
algorithm never ends. If there is no bigger pair of twin primes the algorithm
will never get out of step 1 and keep looking for a bigger pair.

At the moment we can not decide this problem, but it is not necessarily
impossible. We simply do not have a decision procedure. There are also prob-
lems which will always be undecidable. A decision algorithm for those problems
will always lead to a contradiction. Not just because the algorithm is not good
enough and we have to find a better one, but because we can find an instance
of the problem that cannot be solved by any algorithm that decides this kind
of problems. An example Atm which contains the encodings 〈T,w〉 of pairs of a
Turing machine T and an input w for which T accepts when running on w.

Example 2.3 (Example from [4]). We have a hypothetical Turing machine H
that decides whether a Turing machine M accepts on input w. We construct
Turing machine M .

13

14 CHAPTER 2. DECISION PROBLEMS AND COMPLEXITY

M= “On input 〈N〉:
1. Run H on 〈N, 〈H〉〉.
2. If H rejects, accept. Otherwise, reject

Now run M on 〈M〉. This accepts if H rejects on 〈M, 〈M〉〉 and rejects if
H accepts 〈M, 〈M〉〉. Machine M always does the opposite of what H says it
does. Therefore we know that H cannot decide this problem.

2.1 Complexity

Not every decidable problem is equally hard to solve. Complexity theory inves-
tigates the amount of time or memory that is used to solve a problem.∗

Example 2.4. String s does contain at least one a.
Algorithm “On input s:

1. Start with the first character of s.
2. Check the character. If this is an a, accept.
3. If there is a next character, do step 2 for the next character.
4. Otherwise, reject ”

This is an algorithm that always halts. It quits when an a is encountered
and if no a is encountered, the algorithm halts too, because it returns “no”
when the end of the string is reached. If you run this algorithm on a number
of strings with the same length, for example strings with 10 characters, the run
time of the algorithm will not be equal for every string. The string that starts
with an a will be decided really quick, the algorithm stops at the first step. If
the string contains no a’s, step 2 and 3 will be repeated for every character of
the string and after that the algorithm will reject. But these steps will only be
repeated for as many times as there are characters in the string. The algorithm
starts at one side of the string and only moves to the other end and never goes
back to a character already tested.

In complexity analysis we are interested in the worst case, which is the
longest possible running time for a string of certain length. But the exact
running time of a algorithm is often a complex expression and more precise
than useful. An algorithm that runs in n+ 100 time is for small n’s slower than
one in n2, but for large inputs it will definitely be faster. We are interested
in the behavior of the running time for large inputs. For large n’s the biggest
polynomial of the function is the most important. Therefore we use an estimate
of the function called the big-O notation.

Definition 2.1. Let f, g be functions N 7→ R>0. f(n) = O(g(n)) if c, n0 ∈ N>0

exist such that for every n ≥ n0

f(n) ≤ cg(n)

With this definition we can conclude n100 6= O(n99) because no matter how
big we choose c, from a certain n (being n = c) n100 is always bigger than
cn99. The other way around n99 = O(n100) because n100 grows faster than
n99. Choosing n100 as an estimation for n99 is not a very useful thing to do.
∗Most information in this chapter is from [4].

2.2. COMPLEXITY CLASSES 15

Algorithms with running times n2 and n5 are both in O(n5), but the first
is definitely a faster algorithm. Therefore it is common to pick the smallest
possible function for g(n). The big-O notation is transitive.

Lemma 2.1 (Big-O is transitive). If f(n) is in O(g(n)) and g(n) is in O(h(n))
then is f(n) also in O(h(n)).

Proof. Let f(n) ≤ c1 · g(n) for all n ≥ n1. Let g(n) ≤ c2 · h(n) for all n ≥ n2.
If we multiply both sides of a ≤ relation with the same positive constant, the
relation still holds. Therefore c1 · g(n) ≤ c1 · c2 · h(n) for all n ≥ n2. The ≤
relation is transitive. From that we can see f(n) ≤ c1 · c2 · h(n). This holds for
all n ≥ max(n1, n2).

2.2 Complexity classes

The problem in example 2.4 is a linear time problem. There is a linear relation
between the length of the input and the time needed to calculate the answer.
Space complexity is expressed as a function of n (with n the length of the input)
that tells us the number of tape spaces that a Turing machine needs to use to
decide the problem in the worst case. When using pseudo-code algorithms the
space complexity is expressed in used memory in terms of the size of the input.

Definition 2.2. time(f(n)) is the class of problems decidable in O(f(n)) time
on a deterministic Turing machine.
ntime(f(n)) is the class of problems decidable in O(f(n)) time on a non-
deterministic Turing machine.

Definition 2.3. Class p is the class of all functions decidable on a deterministic
Turing machine in polynomial time.

p =
⋃
k

time(nk).

Definition 2.4. Class np is the class of all functions decidable on a non-
deterministic Turing machine in polynomial time.

np =
⋃
k

ntime(nk).

Definition 2.5. exptime =
⋃
c

time(cn)

The classes for complexity are related. If a problem is in p because we can
solve it in polynomial time on a deterministic Turing machine, we also can solve
it in polynomial time on a non-deterministic Turing Machine. Every problem
in p is also in np. From this we can conclude p ⊆ np.†

Besides time complexity there also is space complexity. The space complexity
is the maximum number of cells a Turing Machine scans when calculating the
output. This is expressed by a function f(n) with n the length of the input.

Definition 2.6. space(f(n)) = the class of problems decidable in O(f(n))
space on a deterministic Turing Machine.
†There are two possibilities of this situation, being p = np or p ⊂ np. At the moment there

is no proof for either of the situations. It is one of the major open problems in mathematics.

16 CHAPTER 2. DECISION PROBLEMS AND COMPLEXITY

Figure 2.1: The complexity classes with p 6= np

As with time, there is the class nspace for the problems that are decidable on
non-deterministic Turing Machines. Savitch’ theorem tells us that nspace(f(n))
⊆ space(f2(n)).‡

Definition 2.7. pspace =
⋃
k

space(nk)

We could define npspace the same way with pspace but this is useless. A
polynomial squared is still a polynomial and therefore pspace = npspace. In
relation to the time complexity classes np ⊆ pspace, because in every time step
there can be set one place step, so in nk time the maximal number of steps in
one way that can be taken are nk.

2.3 Reducibility

A reduction is a way to use the solution of one problem to solve another. For
example, you’re at home and you want to know whether the supermarket is
open. You can go there and see for yourself. But you can also look up the
opening hours and find out what time and day it is now, for example on the
internet. If the supermarket is far away the last solution is a quicker one, only
if you have access to the internet at home, which is most likely. But if you only
have access to the internet at the library next to the supermarket, this solution
is not really useful anymore.

Example 2.5. Solving clique with half-clique

A clique is a subgraph wherein every node is connected to every other node
in the clique. clique is the language of all 〈G, k〉 with G a graph with a clique
containing k nodes. half-clique is the language of encodings of graphs 〈G〉
‡The proof for this is quite long, see for example [4, page 309]

2.4. NP: SAT AND TAUT 17

with a clique containing half of the total number of nodes

Solving half-clique when you know how to solve clique is not that hard.
You count the nodes, divide this number by two and see if there is a clique this
size by running clique on 〈G,n/2〉. But it is also possible to solve clique with
half-clique using the following Turing machine:

M= “On input 〈G, k〉
1. Count the number of nodes, call this n
2. If k = 2n run half-clique on 〈G〉
3. If k < 2n add m−2k fully connected nodes and run half-clique

on 〈G〉
4. If k > 2n add 2k −m unconnected nodes and run half-clique

on 〈G〉
5. If any of these steps accepts, accept. Otherwise, reject.

The constraint that a reduction has to take place in polynomial time is to
make sure the amount of time to reduce the problem to a different one and to
solve the new problem combined is not in a different class.

Definition 2.8. A problem p is complete for class x if:
1. p is in class x
2. all problems in class x are reducible in polynomial time to p.

The first part can be proved by an algorithm that solves the problem in the
time or space corresponding to class x. I.e. if we have an algorithm that solves
problem p in ntime(nk) for some k ≥ 0 then p is in np. A problem is x-hard if
it is at least as hard as all other x-complete problems, which means that we can
reduce every known x-complete problem to the new problem. Luckily for us this
is a transitive relation so if we prove that p is at least as hard as one x-complete
problem, it is at least as hard as all other problems in x. For example if we can
solve a problem by reducing it to clique, we can also solve it by reducing it
to half-clique, for example by reducing the reduction again. If we know that
clique is np-complete (which is the case) we now know that half-clique is
np-complete because we can reduce clique to half-clique.

A reduction has to be in polynomial time. This way, the solution of a
problem in np by reducing it and solving the reduced problem is still in np. If
the reduction would be in exponential time the solution is no longer guaranteed
to be in np.

2.4 NP: SAT and TAUT

The satisfiability problem is an example of an np-complete problem. A boolean
formula is satisfiable if there is at least one valuation of the variables that makes
the formula true.

Example 2.6. p ∨ q

This is a satisfiable formula. There are three valuations that make the
formula true, being only p is true, only q is true or p and q are both true.

Example 2.7. p ∧ ¬p

18 CHAPTER 2. DECISION PROBLEMS AND COMPLEXITY

This formula is not satisfiable. There is one variable and whether this is true
or false, the conjunction is false.

A slightly different but related problem is that of the tautology. A boolean
formula is a tautology if all possible valuations make the formula true. Example
2.6 is not a tautology because there is one valuation that makes the formula
false, being p and q both false.

sat is the set of all encodings of satisfiable formulas and taut is the set of
all encodings of tautologies. taut ⊂ sat because if a formula is true for all
valuations, there is also at least one valuation that makes the formula true.

2.5 PSPACE: INTAUT and TQBF

IntTaut is the set of encodings of tautologies in intuitionistic logic. This can
be solved via the Kripke models. Ladner [3] gives an algorithm that solves S4
models for modal logic, models with partial order frames, in pspace.

sat and taut are sets of formula’s in propositional logic. Formula’s in first
order logic, predicate calculus, are harder to calculate. In predicate logic we use
the same symbols as in propositional logic, extended with the quantifiers ∃ and
∀. The existential quantifier ∃ has the meaning that ∃x φ is valid if there is a
value for x such that φ is valid. The universal quantifier ∀ has the meaning that
∀x φ is valid if φ is valid for all values of x.

J∃x φK : v 7→ max(JφKv〈x 7→ 0〉, JφKv〈x 7→ 1〉)
J∀x φK : v 7→ min(JφKv〈x 7→ 0〉, JφKv〈x 7→ 1〉)

Here v〈x 7→ 0〉 is a normal valuation v but with x false and v〈x 7→ 1〉 is the
same valuation but with x true.

The set tqbf is the set of True fully Quantified Boolean Formulas. Fully
quantified Boolean formulas are formulas with variables that are Booleans and
every variable is in the scope of a quantifier. A formula φ can be evaluated and
if it is true the encoding of φ is in tqbf. Every QBF can be written with all
quantifiers at the beginning.

On input 〈φ〉, with φ a fully quantified Boolean formula:
1. If φ has no quantifiers, evaluate φ and accept
2. If φ is ∃xψ, evaluate ψ once with x is true and once with x is false.

If either of these evaluations accepts, accept
3. If φ is ∀xψ, evaluate ψ once with x is true and once with x is false.

If both evaluations accept, accept

The evaluation of QBF’s is in exponential time but in polynomial space.
Every quantified variable can be true or false and both cases will be evaluated,
making the time exponential. But for every variable only the value has to be
stored and this takes only constant place. The space complexity is in nk.

The reduction of other problems from pspace to tqbf can be made for all
problems in pspace at once because it is based on the contents of the tape of
the evaluations of these problems. The tape space is in O(nk), but the time is
polynomial. We can make a list of the states, with on the first line the begin
state and on the last line the accepting state. This list is O(2c(n)) long. We
are going to construct a quantified Boolean formula that represents the list of
states.

2.5. PSPACE: INTAUT AND TQBF 19

We can construct a formula φc1,c2,t which is true if we can go from state c1
to a new configuration c2 in at most t steps. The base cases are φ is true for
φc1,c2,1 if and only if c2 follows from a single transition on c1. The other case is
φc1,c2,0 is true if and only if c1 = c2. For values of t bigger than 1 we decide the
validity of φ with a conjunction of steps taken from the first to the last state.

Every decidable problem has a start configuration and an accept configura-
tion on the tape. We want to decide ψcbegin,caccept,t with t at least as big as the
maximal number of possible configurations of the tape. We choose t a power of
2 because this will make our calculation easier. If we go from cbegin to caccept

there is a configuration m halfway. It is possible to get from cbegin to m and we
can also get from m to caccept, both in half the time that it takes to get from
cbegin to caccept.

ψc1,c2,t if and only if ∃mψc1,m, t
2

and ψm,c2, t
2

We divide the list in halves and decide for both halves whether they are
true. This way you split t in half every step, but you also double the length of
the formula. With t bigger than the maximal number of steps and the problem
being in exptime, the formula will be exponentially big. A reduction has to be
in polynomial time, so this is not the solution.

We want a formula φ which only makes one new φ′ and not two. We do this
by adding a second quantifier.

φc1,c2,t = ∃m∀(c3, c4) ∈ {(c1,m), (m, c2)}[φc3,c4, t
2
]

This is only valid if there is a m such that both φc1,m, t
2

and φm,c2, t
2

are
valid. The set notation is not a valid notation for quantified Boolean formula’s.
We can replace this by the notation

∀(c3, c4)∃m[((c3, c4) = (c1,m) ∨ (c3, c4) = (m, c2))→ φc3,c4, t
2
]§

.
If we choose t = 2cf(n) with c a constant and f(n) a polynomial, the size of

the formula φcbegin,cend,t will be in O(f(n)). A recursive step adds a constant
number of configurations to the formula, so this is linear with the length of
the input. There will be log(t) recursions because every step halves the list
of configurations, so this is log(2cf(n)) = O(f(n)). Choosing the right m for
each formula is non-deterministic. Savitch’s theorem tells us that every non-
deterministic Turing machine that solves a problem in f(n) can be converted to
a deterministic Turing machine that solves the problem in f2(n). Because f(n)
is a polynomial function, f2(n) will also be polynomial. Therefore we have a
reduction in polynomial time and space and is TQBF pspace-complete.

§This is equivalent. ∀x ∈ {y, z}Q(x) can be rewritten to ∀x[(x = y ∨ x = z)→ Q(x). The
second notation requires that the implication is true for all possible values of x and not only
x = y and x = z, but if the assumption is false (i.e. x 6= y and x 6= z) the implication is
always true. This notation still uses a pair notation which is also not defined for quantified
Boolean formula’s. This can be rewritten with quantifiers for both c3 and c4, but the pair
notation is easier to read.

20 CHAPTER 2. DECISION PROBLEMS AND COMPLEXITY

Chapter 3

Bi-implicational fragment

For this part we use the following language:

Definition 3.1. L↔ = Var | L↔ ↔ L↔ | >

We can interpret this as:
Jφ↔ ψK : v 7→ (JφK(v) + JψK(v) + 1)

In classical logic the following rules can be derived for the bi-implicational
fragment:

B ↔ A

A↔ B

A↔ A

>
symmetry self-cancellation

A↔ >
A

(A↔ B)↔ C

A↔ (B ↔ C)
identity associativity

All these rules can be proven in classical logic with truth tables, see table
3.1

With commutativity and associativity we can easily check the truth of propo-
sitions. For example the following deduction:

Example 3.1.
(a↔ b)↔ (b↔ a)
(a↔ b)↔ (a↔ b)
((a↔ b)↔ a)↔ b

((a↔ (b↔ a))↔ b

(a↔ (a↔ b))↔ b

((a↔ a)↔ b)↔ b

(a↔ a)↔ (b↔ b)
> ↔ >
>

The same proposition can be deduced in different ways. For example ((a↔ b)↔ a)↔ b
in the third row may be directly rewritten to (a↔ (a↔ b))↔ b which makes

21

22 CHAPTER 3. BI-IMPLICATIONAL FRAGMENT

Table 3.1: Truth tables for classical deduction rules for L↔
p p↔ > p
0 0 0
1 1 1

p > p↔ p
0 1 1
1 1 1

p q (p↔ q) (q ↔ p)
0 0 1 1
0 1 0 0
1 0 0 0
1 1 1 1

p q r (p↔ q)↔ r p↔ (q ↔ r)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

the deduction one step shorter. Because every rule can be used in both direc-
tions, the deduction is also valid in both directions. In this chapter are single
lines used between the rows of deductions, but these can be read as double lines.

Because of the associativity the parentheses in a proposition can be moved to
any position. We can conclude that the parentheses in a classical bi-implication
formula contain no information.

Definition 3.2 (Equivalence). Formulas ψ and φ are equivalent if
 ψ ↔ φ.
This relation is reflexive, transitive and symmetric.

Lemma 3.1. For every φ there is a ψ such that φ↔ ψ and in ψ all parentheses
are in the rightmost position

Proof. If we only use the associativity rule that writes the parentheses to the
right we will end with a formula with the parentheses in the rightmost position.
(A ↔ B) ↔ C � A ↔ (B ↔ C). Not all formula’s are in this form, so we
add the rules that if A � B then also (A ↔ C) � (B ↔ C) and (C ↔ A) �
(C ↔ B). For every formula A there is a reflexive transitive closure �∗ such
that A �∗ A′.

This A′ is unique for every A, no A has two rightmost notations. If there
would be two rightmost notations, A �∗ B,B′ then B and B′ would be equiv-
alent save the brackets. In that case there is a C such that B,B′ � C. But
B and B′ are obtained by a reflexive transitive closure, so C would have to be
reached by zero steps. Therefore B and B′ are the same.

Multiple φ’s may have the same ψ and are therefore equivalent. If φ ↔ ψ
and φ′ ↔ ψ then also φ↔ φ′.

23

Example 3.2.
((p↔ q)↔ r)↔ s

(p↔ q)↔ (r ↔ s)
p↔ (q ↔ (r ↔ s))

(p↔ q)↔ (r ↔ s)
p↔ (q ↔ (r ↔ s))

From now on, parentheses will only be used for clarity. If there a no paren-
theses, assume the rightmost notation.

The commutativity allows us to swap every variable in a formula with any
other in that formula.

Lemma 3.2. Every Φ = A↔ φ↔ β1 ↔ . . .↔ βn ↔ ψ ↔ Γ can be rewritten
to Ψ = A↔ ψ ↔ β1 ↔ . . .↔ βn ↔ φ↔ Γ

Proof.
The proof is an induction on n, the number of elements between φ and ψ. The
subformula φ ↔ β1 ↔ . . . ↔ βn ↔ ψ can be rewritten without changing any-
thing in the subformula’s A and Γ. The first and last element of the subformula
can be exchanged if

φ↔ β1 ↔ . . .↔ βn−1 ↔ ψ

can be rewritten to
ψ ↔ β1 ↔ . . .↔ βn−1 ↔ φ

Two variables next to each other can be exchanged, therefore every

φ↔ β1 ↔ . . .↔ βn−1 ↔ βn ↔ ψ

can be rewritten to

(φ↔ β1 ↔ . . .↔ βn−1 ↔ ψ)↔ βn

Now ignoring the last variable we rewrite this to

(ψ ↔ β1 ↔ . . .↔ βn−1 ↔ φ)↔ βn

which can be rewritten to

ψ ↔ β1 ↔ . . .↔ βn−1 ↔ βn ↔ φ

Every recursive step has a formula of length n−1. If a formula contains two
occurrences of variables these can be exchanged because of the symmetry rule
B ↔ A
A↔ B

.

Figure 3.1 is a visual example. You can see this problem as a game with
bricks. You have to swap the first and the last brick (the green and the blue
ones) and are only allowed to swap two bricks next to each other.

24 CHAPTER 3. BI-IMPLICATIONAL FRAGMENT

Figure 3.1: Visual example of exchanging elements of a formula.

3.1 Deciding bi-implicational formulas in classi-
cal logic

The proposition (p ↔ ((q ↔ q) ↔ (r ↔ p))) ↔ ((r ↔ (p ↔ q)) ↔ (q ↔
p) is true. The deduction for this is quite long but simple. It starts with
repeatedly applying the associativity and commutativity rules and so rewriting
the formula to a version in which the appearances of the variables are grouped.
In the deduction below the associativity and commutativity steps are omitted,
this would take many steps and we have seen in section 3 that this is a valid
deduction. After that we apply the rule A↔ A

> and have have a proposition

only consisting of ↔ and >. The special case of the rule, > ↔ >> is valid and
can be applied several times to conclude >.

Example 3.3.

(p↔ ((q ↔ q)↔ (r ↔ p)))↔ ((r ↔ (p↔ q))↔ (q ↔ p)
· · ·

((p↔ p)↔ (p↔ p))↔ (((q ↔ q)↔ (q ↔ q))↔ (r ↔ r))
(> ↔ >)↔ ((> ↔ >)↔ >)

· · ·
>

In another case we can see that (p ↔ ((q ↔ q) ↔ (r ↔ p))) ↔ ((r ↔ p) ↔
(q ↔ p)) is not a tautology.

Example 3.4.

3.1. DECIDING BI-IMPLICATIONAL FORMULAS IN CLASSICAL LOGIC25

(p↔ ((q ↔ q)↔ (r ↔ p)))↔ ((r ↔ p)↔ (q ↔ p))
· · ·

((p↔ p)↔ (p↔ p))↔ (((q ↔ q)↔ q)↔ (r ↔ r))
(> ↔ >)↔ ((> ↔ q)↔ >)

· · ·
q

What matters in deciding a proposition is the number of appearances of
a variable in that proposition. If that number is even for all variables the
proposition is true. If one variable appears an odd number, the proposition is
not a tautology. Now we have to formalize this.

For the proof of the algorithm we use the space E, which is the space of odd
and even numbers modulo 2, E = {0, 1} where the following rules apply:
0 + 0 = 0
1 + 1 = 0
0 + 1 = 1 = 1 + 0
Like normal operations on natural numbers addition in E is commutative and
associative.∗

We will use the operator L−M : L↔ → X. In X are functions that tell us
whether a variable in ψ appears odd or even in ψ. A function in X is at finitely
many places unequal to 0. I.e. in a formula ψ is a finite number of variables
with odd appearances. Every variable appears at most once and the variables
are ordered. (There is a bijection between N, the natural numbers, and Var.)

Definition 3.3.

X =
∑

p∈Var

p · E

What we want of formula of the type L↔ → {>,⊥}, something that maps a
sentence in L↔ to truth values. We can do this by using an extra step: L↔ → X

and X→ B

Definition 3.4. The function L−M : L↔ → X is defined:
LpM = 1 · p
LA↔ BM = LAM + LBM
L>M = 0

Example 3.5.
L(p↔ (q ↔ p))↔ pM

= Lp↔ (q ↔ p)M + LpM
= (LpM + Lq ↔ pM) + LpM
= (LpM + (LqM + LpM) + LpM
= (p+ (q + p)) + p
= p+ q + p+ p
= p+ p+ p+ q
= p+ q

Now we have a mapping from the formula to an expression in X. The final
step is to map X to truth-values.

∗Bi-implicational formulas are also associative and commutative. Because of this it does
not matter whether we use these properties before or after the mapping of the formula to X.

26 CHAPTER 3. BI-IMPLICATIONAL FRAGMENT

Definition 3.5. The interpretation of sentences in X to Boolean values is such
that 0 in X maps to 1 in the Boolean values. Everything else maps to 0.

LΦM translates a formula Φ from L↔ to spaceX. It is not possible to translate
something in X back to exactly the same formula it was L↔. All pairs of the
same variable are removed. For the translation from X to L↔ we use the
operator J·K.

Definition 3.6. The function J−K : X→ L↔ is defined:
J0K = >
JxK = x
Jx+ bK = JxK↔ JbK

with x ∈ Var

Note that Ja+ bK translates to a↔ b only if a 6= b. The space X is defined
such that every variable occurs at most once, so the case a = b is not possible.

Example 3.6. Translating example 3.5 back to Lp.
Jq + pK

= JpK↔ JqK
= p↔ q

This means that JLΦMK is not always equal to Φ. This is because the infor-
mation in X only tells us whether a variable has odd or even occurrences. JLΦMK
gives us a Φ′ with all pairs of occurrences of the same variable removed. We
can deduce Φ′ from Φ with the deduction rules in section 3 and know from that
Φ↔ Φ′.

Lemma 3.3. For all x ∈ X JxK is a tautology if and only if x = 0.

Proof. J0K = > and > is a tautology.
Let JxK be a tautology with x = p+x′ and p ∈ Var. We know that p is not in

x′ en therefore not in Jx′K. Now choose a valuation v such that v(p) is not equal
to v(Jx′K). It follows that v(p) 6= v(Jx′K) and therefore v 2 JxK. Consequently
JxK is not a tautology, so x has to be 0.

Definition 3.7. |− | is the number of variables used in a proposition. It is not
the number of occurrences of variables, i.e. |p↔ p↔ q| = 2.

Lemma 3.4. For all propositions Φ is JLΦMK equivalent to Φ.

Proof. This is proven by an induction on the number of used variables.
If |Φ| = 0 then LΦM = 0 because no variable in Var is ever used. Because

J0K = > we know JLΦMK = > which is equivalent to >.
Let |Φ| = n with variables p1 . . . pn. Now we have a proposition Ψ such that

|Ψ| = n− 1 and Ψ uses the variables p2 . . . pn. P is a proposition with only the

variable p1. P =
m occurrences of p︷ ︸︸ ︷
p1 ↔ . . .↔ p1 and m is equal to the number of occurences of

p1 in Φ.

∀Φ∃Ψ, P Φ↔ (Ψ↔ P)

LΦM = LΨ + P M

LΦM = LΨM + LP M

3.2. COMPLEXITY OF CLASSICAL DECISION ALGORITHM 27

If m is even then LP M = 0 and LΦM = LΨM + LP M = LΨM.

JLΦMK = JLΨMK

p1 is even in Φ and also even in JLΦMK. If JLΨMK↔ Ψ then also JLΦMK↔ Φ.
If m is odd LP M = p1 and LΦM = LΨM + p1.

JLΦMK = JLΨM + p1K

JLΦMK = JLΨMK↔ p1

p1 is odd in Φ and also odd in JLΦMK. If JLΨMK↔ Ψ then also JLΦMK↔ Φ.

Lemma 3.5. If Φ and Ψ are equivalent then LΦM = LΨM.

Proof. JLΦ↔ ΨMK↔ (Φ↔ Ψ) is a tautology. If Ψ and Φ are equivalent, Ψ↔ Φ
is a tautology and equivalent to JLΨ ↔ ΦMK, which is also a tautology, because
it is equivalent to a tautology. Because of lemma 3.3 and the definition of L−M
we know LΦ ↔ ΨM = 0 = LΨM + LΦM, which means that every variable appears
even. This is only the case if a variable appears even in both LΨM and LΦM or
odd in both functions.

Lemma 3.6 (Soundness). If Φ is a tautology, LΦM = 0.

Proof. From lemma 3.4 we know that Φ ↔ JLΦMK. Because Φ is a tautology,
JLΦMK is also a tautology. Lemma 3.3 gives us that for every x, if JLxMK is a
tautology, LxM = 0. Therefore LΦM = 0.

Lemma 3.7 (Completeness). If LΦM = 0, Φ is a tautology.

Proof. From lemma 3.3 we know that if LΦM = 0 then JLΦMK is a tautology. From
lemma 3.4 we know that JLΦMK is equivalent to Φ. Because Φ is equivalent to a
tautology it is also a tautology.

3.2 Complexity of classical decision algorithm

Theorem 3.1 (Decision of the bi-implication fragment for classical logic).
There exists a n log n-time algorithm for deciding taut for the L↔-fragment
for classical logic.

Proof. This is the algorithm and its complexity.
“On input 〈Φ〉:

1. Sort the list with the variables first and then the ↔ and
parentheses

O(n log n)†

2. Check if every variable has an even number of occurrences.
If there is a variable that has an odd number of occurrences,
reject

O(n)

3. When reaching the ↔ accept” O(1)

†There is a wide variety of sorting algorithms, for example merge sort which is in O(n logn)

28 CHAPTER 3. BI-IMPLICATIONAL FRAGMENT

From lemma’s 3.1 and 3.2 we know that parentheses and the order of the
variables have no influence on the validity of a proposisition in L↔. Therefore
we know that we can sort the input without loss of information. This makes
the second step of the algorithm easier.

Because the list is sorted we can check the occurrences of the variables by
scanning the list once. If we have a sequence of p’s and then a sequence of
q’s we will never encounter another p. So if the sequence of p’s is odd when
we encounter a q, we will never find another p to make it even. If p is odd,
X = p and that will map to ⊥, even if all other variables are even. Therefore
the algorithm can reject when finding that a variable occurs odd.

Deciding taut for the complete propositional language is np-hard. For the
bi-implication fragment there is a n log n-algorithm, meaning that this is in class
p. If p 6= np then deciding L↔ is strict easier then Lp.

3.3 Intuitionistic decision algorithm?

We want to find a similar way to solve L↔ for intuitionistic logic. The algorithm
for classical logic greatly relied on associativity, allowing us to pair variables.

The rule
(A↔ B)↔ C

A↔ (B ↔ C)
is not true in intuinitionistic logic. A counterexample

can be given with A = p and B = ⊥ = C. If intuitionistic logic was associative
then

((p↔ (⊥ ↔ ⊥))↔ ((p↔ ⊥)↔ ⊥)

should be true. We will show this is not true by rewriting both sides of the
bi-implication.
p↔ (⊥ ↔ ⊥)

p↔ >
p

p↔ ((p↔ ⊥)↔ ⊥)

maps to
p↔ ((p↔ ⊥)→ ⊥∧⊥ → (p↔ ⊥))

Anything can be deduced from ⊥ i.e. ⊥
A

is a tautology and therefore we can

remove the part ⊥ → (p↔ ⊥) because of A ∧ >
A

‡

p↔ ((p↔ ⊥)→ ⊥)

p↔ ((p→ ⊥∧⊥ → p)→ ⊥)

Again ⊥ → p can be removed and p→ ⊥ infers ¬p.

p↔ (¬p→ ⊥)

p↔ ¬¬p
‡The proof of A↔ A ∧ > is left to the reader.

3.3. INTUITIONISTIC DECISION ALGORITHM? 29

The bi-implication in intuitionistic logic is associative if and only if p↔ ¬¬p,
which maps to p → ¬¬p ∧ ¬¬p → p. The first part of the conjunction is true.
For the second part we have a countermodel in figure 1.4. Due to the soundness
theorem the bi-implication is not associative.

Some rules do shorten a proposition. In the next chapter we will see that
solving IntTaut for Lp is a pspace-complete problem. If we can shorten the
input by polynomial time operations, the problem is most likely solved in less
time. Some patterns are equivalent to shorter patterns, but these patterns will
not always occur and we cannot exchange the variables to make these patterns.
Therefore this method is not guaranteed to work on all propositions.

For example A ↔ (A ↔ B) is equivalent to B, because if A is true it
is equivalent to B and if B is true it is a tautology. The structure (A ↔
B) ↔ (B ↔ A) is a tautology, something that can be proven with natural
deduction. When exploring longer formulas like A ↔ (B ↔ (C ↔ (C ↔ (B ↔
A)))) it seems that odd and even appearances of variables are still important
in intuitionistic logic, but this is only a guess. Without using associativity the
proof of this would be quite different from that of classical logic.

30 CHAPTER 3. BI-IMPLICATIONAL FRAGMENT

Chapter 4

Complexity of intuitionistic
logic

In [2] Švejdar provides a reduction of quantified Boolean formula’s to intuition-
istic logic. He does this by constructing an intuitionistic formula A∗ from the
quantified Boolean formula A.

4.1 Reduction from tqbf to IntTaut

We consider quantified Boolean formula’s of the form A = Qmpm . . . Q1p1B(p)
with B(p) a Boolean proposition using the variables p1 to pm and no quanti-
fiers. Every variable pn is bound by a quantifier Qn. We want to construct
an intuitionistic formula A∗. The construction of this formula will be done
by constructing A∗0 and A∗j+1 for all j < m. Finally A∗ is A∗m. If A∗ has a
countermodel, A is not valid.

In classical logic we have a countermodel of a QBF if and only if there is an
evaluation e of the variables pj+1 . . . pm

e−→ {>,⊥}m such that
e 2 Qj−1pj−1 . . . Q1p1B(p). This means that B(p) with all variables bigger
than j with a valuation and the variables 1 to j without valuation leads to a
contradiction.

If we have a formula defined by

D0 = ⊥, Dn+1 = (pn+1 → Dn) ∨ (¬pn+1 → Dn)

we can find a counterexample for Dn+1 by showing that neither (pn+1 → Dn)
nor (¬pn+1 → Dn) is true. The formula will contain two occurrences of Dn.
This means that the formula grows exponentially in n while we want it to be in
polynomial space.

To avoid the second appearance of Dn we introduce a new variable, being
qn+1, and rewrite D to a new version E with a single occurrence of En in En+1.

E0 = ⊥, En+1 = (En → qn+1)→ (pn+1 → qn+1) ∨ (¬pn+1 → qn+1)

This version of the formula contains a disjunction, but we can avoid using
that by using another variable s. In section 4.2 we will need a formula without
disjunction.

31

32 CHAPTER 4. COMPLEXITY OF INTUITIONISTIC LOGIC

Definition 4.1. A∗0 is equal to B(p)
For j > 0 and Qj = ∃ A∗j is:

(A∗j−1 → qj) ∧ ((pj → qj)→ sj) ∧ ((¬pj → qj)→ sj)→ sj

For j > 0 and Qj = ∀ A∗j is:

(A∗j−1 → qj) ∧ ((pj → qj) ∧ (¬pj → qj)→ qj)→ qj

Definition 4.2. k
 e if and only if k
 p ⇐⇒ e(p) = > for all p in the
domain of e.

Lemma 4.1. Let 0 ≤ j ≤ m and let e be an evaluation of atoms pj+1, . . . , pm.
Then e 2 Qjpj . . . Q1p1B(p) if and only if A∗j has a Kripke counter-example K
with for every node k
 e for all atoms pi with i > j.

First we consider A∗0. A counter-example is a valuation e such that e 2 B(p).
If we have this valuation we can also construct a Kripke counter-example. This
is the model with one node k such that k
 e, If we have a Kripke model K for
A∗0 this is not necessarily a one-point model, so we have to prove for all points
that we can make e.

Lemma 4.2.
∀p ∈ Var[∀k ∈ Ke � p ⇐⇒ k
 p]

Consider k′ ≥ k and assume k � A → B and we want to show k
 A → B.
If k′
 A then also e � A. Because of e � A → B also e � B. Now k′
 B and
therefore k′
 A→ B.

Now we want an induction on j. We distinguish for j > 0 the cases Qj = ∃
and Qj = ∀.

Constructing a countermodel for the case Qj = ∃ If we have a classical coun-
terexample e 2 ∃pjQj−1pj−1 . . . Q1p1B(p) we know that Qj−1pj−1 . . . Q1p1B(p)
is false both with v(pj) = > and v(pj) = ⊥. This means that we will make two
separate countermodels and combine these later. For the case v(pj) = > we
will construct sub-model K> with root a>. On this root e> is valid. e> is the
valuation function for pm to pj+1 extended with pj . Model K> is a counter-
example to A∗j−1. Similarly is K⊥ with root a⊥ and e⊥ constructed. This is
another counter-model to A∗j−1∗. Note that e⊥ has the same valuation as e>
for pm to pj+1 but is extended with ¬pj . The two models are combined into
one model K by making a new root a that has access to both a> and a⊥. In
root a variables are assigned such that a
 e.

Constructing a countermodel for the case Qj = ∀
For the universal quantifier ∀ the construction of a counter-model to A∗j

is similar. There is a counter-model if either e> 2 Qj−1pj−1 . . . Q1p1B(p) or
e⊥ 2 Qj−1pj−1 . . . Q1p1B(p). Either K> with root a> or K⊥ with root a⊥ will
be constructed and be accessible from the new root a with a
 e.

In the process of construction we used variables p, q and s and we have to assign
values to these for the new node a. For pj+1 to pm we assign the truth values
according to e. The variables p1 . . . pj , q1 . . . qj−1 and s1 . . . sj−1 are negative in

4.2. PSPACE-COMPLETENESS OF L→ 33

Figure 4.1: Visualisation of A∗j

a

a⊥

K⊥

a>

K>

a. These variables will be used in the counter-models A∗i for i < j and if we
would assign these to a we would not be able to choose a different valuation
later because of the preservation of truth. The variable qj is in a equal to the
truth-value of A∗j+1 and sj has the same value as (pj → qj) ∨ (¬pj → qj).

Now we want to show that we have constructed a countermodel to A∗j .

((A∗j−1 → qj) ∧ ((pj → qj)→ sj) ∧ ((¬pj → qj)→ sj))→ sj

We have a
 A∗j−1 → qj because qj is defined with the same truth value as
Aj−1. We also know ((pj → qj)→ sj) ∧ ((¬pj → qj)→ sj) to be true, because
it is equivalent to ((pj → qj) ∨ (¬pj → qj)) → sj and the meaning of sj is
defined as equivalent to (pj → qj) ∨ (¬pj → qj).

We can show that a 1 (pj → qj) ∨ (¬pj → qj), because a> 1 pj → qj and
a⊥ 1 ¬pj → qj . From this we know that sj is false. This makes A∗j false because
it is an implication with the arguments true but the conclusion false. We have
constructed a counter-model from counterexample e.

Deducing the valuation from counter-model K for Qj = ∃ If we have a counter-
model K to Aj with j > 0 and Qj = ∃ we also have a valuation e. Model K
has a root a with a 1 A∗j and also a 1 sj . From this we know a 1 pj → qj
because a
 (pj → qj) → sj . This means that there is a node b ≥ a such that
b 1 pj → qj because b
 pj and also b 1 qj . We have defined qj by A∗j−1 → qj
thus b 1 A∗j−1. Thus we have a counterexample b for A∗j−1 with pj true on all
nodes. The node we now call b was called a> by constructing the model. The
same way we can find a node a⊥ ≥ a with a⊥
 ¬p1 and a⊥ 1 A∗j−1.

We now have e⊥ 1 Qj−1pj−1 . . . Q1p1B(p) and e> 1 Qj−1pj−1 . . . Q1p1B(p)
and from that we conclude e 1 ∃pj . . . Q1p1B(p).

For the case Qj = ∀ the valuation e can be found in a similar way.

4.2 pspace-completeness of L→
For the reduction we had no restrictions on which connectives could be used. It
is possible to make the same reduction with only the language of variables and
implications.

Definition 4.3. L→ = Var | L→ → L→

34 CHAPTER 4. COMPLEXITY OF INTUITIONISTIC LOGIC

In example 1.3 we have seen that the conjunction can be avoided in intu-
itionistic logic. We already avoided the use of disjunctions in our reduction. If
we rewrite the negation form ¬A to A→ ⊥, we only have variables, →, > and
⊥. The latter two can be replaced by yet another variable, rj with the constant
value true or false.

The result of this is that the implicational fragment of the language is also
pspace-complete.

Bibliography

[1] Chris K. Caldwell. The top twenty prime pages.

[2] Vı́tězslav Švejdar. On the polynomial-space completeness of intuitionistic
propositional logic. Archive for Mathematical Logic, 42:711–716, 2003.

[3] Richard Ladner. The computational complexity of provability in systems of
modal propositional logic. SIAM journal of computing, pages 467–480, 1977.

[4] Michael Sisper. Introduction to the Theory of Computation. Thomson course
technology, 2 edition, 2006.

[5] Richard Statman. Intuitionistic propositional logic is polynomial-space com-
plete. Theoretical Computer Science, 9:67–72, 1979.

[6] D. van Dalen. Intuitionistic Logic, pages 224 – 258. Blackwell, Oxford, 2001.

[7] D. van Dalen and A.S. Troelstra. Constructivism in Mathematics, volume
121 of Studies in Logic. North-Holland, Amsterdam, 1988.

35

36 BIBLIOGRAPHY

Appendix A

Turing machines

A Turing machine is a simple but powerful model of computation. It has un-
limited memory without restrictions and is able to calculate the same things a
normal computer can do. It has a read-write head and a tape from which the
read-write head can read and write. Based on what the head reads and the
current state of the machine there is a state transition, an output is written on
the tape and the head moves to the left or right based on the transition function.

Definition A.1. A Turing machine is a 7 -tuple (Q,Σ,Γ, δ, q0, qaccept, qreject),
where
1. Q is the set of states,
2. Σ is the input alphabet with /∈ Σ,
3. Γ is the tape alphabet with ∈ Γ and Σ ⊆ Γ,
4. δ : Q× Γ→ Q× Γ× {R,L} is the transition function,
5. q0 ∈ Q is the start state,
6. qaccept ∈ Q is the accept state, and
7. qreject ∈ Q is the reject state, where qaccept 6= qreject.

A nondeterministic Turing machine is a Turing machine with transition func-
tion δ : Q × Γ → P(Q × Γ × {L,R}). This means that for every step there
are multiple possibilities for the next step. The evaluation process of a non-
deterministic Turing machine can be seen as a tree whose branches represent
possible choices. A non-deterministic Turing machine accepts if there is at least
one branch in the tree that accepts.

A language is decidable if and only if there is a nondeterministic Turing
machine that decides it.

Time complexitiy of an algorithm on a Turing machine is given in the number
of steps that is taken. Assumed is that every step (consisting of reading the
input, writing the output, going to the new state and moving to the left or
right) takes a finite and equal amount of time.

In computational complexity we do not actually construct Turing machines
for every problem. The Church-Turing thesis states that every informal algo-
rithm equals a Turing machine algorithm.∗ If we have an algorithm to sort
comparable elements, we might have a hard time writing the input and states
∗The Church-Turing thesis is based on two separate papers by Alonzo Church and Alan

Turing. Church used λ-calculus to formalize algorithms and Turing used automatic-machines
for this.

37

38 APPENDIX A. TURING MACHINES

of a Turing machine that executes this algorithm. Therefore we use a more
abstract definition. We do not define the states and input precisely, we simply
say they exist. If we have a list L that we want to sort, we use the encoding
〈L〉 of this list without specifying how it is encoded. The machine S that sorts
the list requires that the list is encoded in that way. Instead of transitions we
give more general descriptions of the behaviour of S. We simply state what the
algorithm does, not how it is done. For example ”if L contains more that one
element, devide L in two parts L1 and L2 and apply S to 〈L1〉 and 〈L2〉.” This
does not only make it easier for the writer, but a reader can also see quite fast
whether an algorithm works and if the complexity analysis is right.

