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2 Introduction

When we speak about computational linguistics in the context of the field
of Artificial Intelligence, we can divide the research field of computational
linguistics into three main subdivisions:

� Mathematical Linguistics is concerned with the mathematical foun-
dations of natural language: in what way can we ascribe mathemati-
cal structure to language? Given a language formalism, what are the
structures that it describes? And what is it’s complexity with respect
to time and space?

� Cognitive Modeling tries to give approximations of the way natural
language processing occurs in the human mind.

� Engineering focuses on the development of technologies that facili-
tate efficient parsing of natural language.

This thesis is mainly concerned with mathematical linguistics: we focus on
several grammatical frameworks and explore their generative capacity, i.e.
what (formal) languages are recognized and what structures are assigned to
sentences? Even within mathematical linguistics, there are numerous ap-
proaches to formal grammar, and we will restrict ourselves to Generative
Grammar and Categorial Grammar. The approach of Generative Gram-
mar is characterized by it’s predictive behavior: it consists of a set of rules
that determine what structures are grammatical and what structures are
not. Perhaps the best known example is Context Free Grammar. Categorial
Grammar on the other hand, is based on a type system with which we assign
types to words, together with a logic acting on types with which one can
derive grammatical sentences through a proof system, hence sometimes the
expression type-logical grammar is used. Another approach we should men-
tion is Tree Adjoining Grammar (TAG) because since its introduction, it
has been well-studied and there are several interesting connections between
TAG and Generative as well as Categorial Grammar.

As for the contents of this thesis, in the background of Categorial Grammar
and more specifically of classical Lambek Calculus and the Lambek-Grishin
Calculus, I have done several investigations into the research field of Catego-
rial Grammar. Most of the work originates from questions about generative
capacity, in particular we look at formalisms that go beyond the expressive
power of Context Free Grammar. Because I have investigated two different
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approaches to formal language, I’ve decided to split this thesis into two in-
dependent parts. Although both parts have the same approach, there is a
difference in perspective between the two:

� The first (and shortest) part reflects on Pregroup Grammar and a
symmetric extension in the light of a distributional formalism intro-
duced by Coecke et al. in [7]. It is inspired by Category Theory
and abstract algebra, and shows a gentle combination of a composi-
tional and a distributional perspective on computational linguistics,
united through the theory of Cartesian Closed Categories and Weakly
Distributive Categories.

� The second part is an investigation into Displacement Calculus [25]
and it’s generative capacity, and takes the perspective of the Catego-
rial Grammar framework versus the Generative Grammar framework.
We try to argue a convergence between the two frameworks through
an equivalence between Displacment Grammar and Multiple Context-
Free Grammar.
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Part I

Symmetric Pregroup Grammar:
extending pregroups with duality
and interaction

In 2010, Coecke, Sadrzadeh and Clark [7] introduced a mathematical frame-
work that integrates a compositional and a distributional model of mean-
ing. They do so by pairing pregroup grammars (which are closely related
to the Lambek Calculus) with vector spaces, which are both instantiations
of compact closed categories. Linguistic analysis, however, reveals that the
pregroup category is not expressive enough to account for phenomena be-
yond context-freeness. We will look at the Lambek-Grishin Calculus (LG),
a symmetric extension of the Lambek Calculus which has as its basis two
residual families of connectives and can be extended with distributivity pos-
tulates. In the light of LG, we will extend the pregroup category by mapping
the types in LG to a bimonoidal extension of pregroup grammar, which we
will refer to as pregroup+. When we do not allow distributivity postulates,
it turns out that the pregroup+ category naturally collapses into what ef-
fectively is a normal pregroup. However, adding distributivity postulates
requires that the two operations differ, and that they can only communi-
cate through these postulates. We will furthermore show that the resulting
pregroup+ category instantiates a weakly distributive category in accordance
with [6], and we will show that the FV ec category as well, can be extended
to a weakly distributive category.
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3 Introduction

[7] have introduced an approach that integrates a compositional gram-
matical model, pregroup grammar, with a distributional model of word
meaning using vector spaces. Because both pregroup grammar and vec-
tor space models are instantiations of so-called compact closed categories,
they paired the two structures to handle grammaticality in a symbolic way
and word/sentence meaning in a distributional fashion, of which the latter
has proven to be quite useful in practical applications. Their approach can
be depicted in a simple diagram:

language

FV ec FV ec × P P

me
an
ing

gram
m
ar

Informally, the idea is that tuples in the FV ec×P category are assigned
to words. Each morphism in the P category corresponds to a morphism in
the FV ec category so that derivation steps in a pregroup can be carried out
synchronously with computations on the vector spaces of the sequence of
words. In this way, we have a compositional component that allows us to
determine whether or not a sequence of words is a grammatical sentence,
while the vector space model calculates the meaning from the word level to
the sentence level synchronously.

Several computational grammar formalisms have been proposed in order
to capture linguistic phenomena beyond context-freeness such as crossing
dependencies, etc. The Lambek-Grishin Calculus, introduced by [20], seems
to be able to capture these phenomena and [16] has elaborated well on the
Lambek Calculus and it’s algebraic counterpart, which he called pregroups.
A straightforward idea, in the light of the work of Coecke et al. is to study
possible extensions of the pregroup formalism that resemble the extension of
classical Lambek Calculus to a version that contains a dual residuated triple
and the so-called Grishin interactions, where the latter seem to permit the
system to exhibit a powerful mechanism for handling crossing dependencies
and other.
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4 The Lambek-Grishin Calculus

We define the Lambek-Grishin Calculus as a 7-tuple (Cat,⊗, /, /,⊕,⊘,⦸)
with the following axiomatization:

A→ A
Ax.

A→ B B → C
A→ C

Trans.

A→ C/B
A⊗B → C

Res /

B → A/C Res /
B ⦸C → A
C → B ⊕A Res ⦸
C ⊘A→ B

Res ⊘

Note that introducing the dual residuated triple (⊕,⊘,⦸) doesn’t in-
crease weak generative capacity according to [2]. The interesting part
involves letting the ⊗ and ⊕ families interact through distributivity laws,
which are given here in the form that in [21], is referred to as (dist):

A⊗B → C ⊕D
C ⦸A→D/B D1

A⊗B → C ⊕D
B ⊘D → A/C D2

A⊗B → C ⊕D
C ⦸B → A/D D3

A⊗B → C ⊕D
A⊘D → C/B D4

The distributivity laws can be applied to give proofs for more compli-
cated sequents such as np⊗(((i/np)⊘((np/s)⦸i))⊗np)→ s because we are
now allowed to rotate and swap the ordering of the types such that all input
and output types are contracted. In this particular sequent, the outer np
formulas are moved into the inner formula by means of distribution, where
they can contract with the (i/np) and (np/s) formulae, respectively. See
Figure 1 for the full proof.

(i/np)→ (i/np) Ax.

(i/np)⊗ np→ i
Res / (np/s)⦸ i→ (np/s)⦸ i Ax.

i→ (np/s)⊕ ((np/s)⦸ i) Res ⦸

(i/np)⊗ np→ (np/s)⊕ ((np/s)⦸ i) Trans.

(i/np)⊘ ((np/s)⦸ i)→ (np/s)/np D4

((i/np)⊘ ((np/s)⦸ i))⊗ np→ np/s Res /

np⊗ (((i/np)⊘ ((np/s)⦸ i))⊗ np)→ s
Res /

Figure 1: A LG proof for np⊗ (((i/np)⊘ ((np/s)⦸ i))⊗ np)→ s
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5 Pregroup+

Now that we have defined the Lambek-Grishin Calculus, we can begin our
exploration into the algebraic approach. First, let’s recall the definition of
a pregroup by [3]:

Definition 1. A pregroup is an ordered monoid (C,≤, ⋅,1, ⋅l, ⋅r) such that:

� p ⋅ pr ≤ 1 ≤ pr ⋅ p

� pl ⋅ p ≤ 1 ≤ p ⋅ pl

� 1 acts as a multiplicative unit

and al and ar are called respectively left and right adjoints of a.

Then, on a given pregroup P we can define a pregroup grammar by a
set of words Σ, a distinguished goal type s and a typing function δ that
assigns types (elements of the pregroup on which the grammar is defined)
to words in Σ. It can be shown that grammaticality in a pregroup can be
checked by only making use of the contraction rules, by checking whether
a concatenation of types a1 ⋅ a2...an is less than or equal to s (when we let
1a = a1 ≤ a).

We can map (Nonassociative) Lambek Calculus into a pregroup format
using the following homomorphism [⋅]:

[A] = a [A⊗B] = [A] ⋅ [B]
[A/B] = [A] ⋅ [B]l [A/B] = [A]r ⋅ [B]

A first idea for extension can be to add a new operator and two new
adjoints, and by giving a similar type translation for the ⊕ family of LG,
obtain a + family within the pregroup structure. Doing so, we obtain the
following structure, which I will call a pregroup+:

Definition 2. A pregroup+ is a partially ordered bimonoid (C,≤, ⋅,+,1,0, ⋅l, ⋅r, ⋅u, ⋅d)
such that:

� (C,≤, ⋅,1, ⋅l, ⋅r) is a pregroup

� p + pu ≤ 0 ≤ pu + p

� pd + p ≤ 0 ≤ p + pd

� 0 acts as a comultiplicative unit
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and au and ad are called respectively up and down adjoints of a.

On a given pregroup+ P +, we can construct a pregroup+ grammar in
the same way as we did for pregroups. We now can map the ⊕ family into
pregroup+ types by extending our [⋅] translation:

[A⊕B] = [A] + [B] [A⊘B] = [A] + [B]u [A⦸B] = [A]d + [B]

Conceptually, we can graph a matrix of each element and it’s adjoints,
giving an intuition of how we look at elements and adjoints:

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰
⋯ plu = pul pu pru = pur ⋯
⋯ pl p pr ⋯
⋯ pld = pdl pd prd = pdr ⋯
⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠

As [3] states, in a pregroup, it is required that inverses collapse, i.e.
plr = p = prl. For the up and down inverse we have the same requirements.
The above matrix shows how we can view pregroup elements on a line,
and how up and down inverses create a 2-dimensional element matrix. So
the inverses of an element show what path has been traversed through this
matrix, e.g. plurd denotes a step to the left, then up, then right and finally,
a step down, returning at the origin. In this way, we may conclude that
plurd = p.
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6 Distributivity

The (dist) laws give rise to the following characteristic LG theorems:

(A⦸B)⊗C → A⦸ (B ⊗C) C ⊗ (B ⦸A)→ (C ⊗B)⦸A
C ⊗ (A⊘B)→ A⊘ (C ⊗B) (B ⊘A)⊗C → (B ⊗C)⊘A

Under the mapping [⋅], we would end up with the following ordering postu-
lates:

(ad + b) ⋅ c ≤ ad + (b ⋅ c) c ⋅ (b + au) ≤ (c ⋅ b) + au
c ⋅ (ad + b) ≤ ad + (c ⋅ b) (b + au) ⋅ c ≤ (b ⋅ c) + au

Because we have in a pregroup+ that adu = a = aud, it is easy to see that the
four postulates lead to weakly distributive laws by the following:

(a + b) ⋅ c = (aud + b) ⋅ c ≤ aud + (b ⋅ c) = a + (b ⋅ c) (d1)
c ⋅ (b + a) = c ⋅ (b + adu) ≤ (c ⋅ b) + adu = (c ⋅ b) + a (d2)
c ⋅ (a + b) = c ⋅ (aud + b) ≤ aud + (c ⋅ b) = a + (c ⋅ b) (d3)
(b + a) ⋅ c = (b + adu) ⋅ c ≤ (b ⋅ c) + adu = (b ⋅ c) + a (d4)

It may be clear already that if we use the seemingly more ’restricted’ dis-
tributivity postulates, we have to apply the same trick used to derive the
weakly distributive laws in our derivations. Instead of doing this, it is more
economic to directly introduce the derived postulates.
Now consider the example from section 2:
np⊗ (((i/np)⊘ ((np/s)⦸ i))⊗ np→ s.
This sequent is derivable in LG with distributivity. Translating the types,
we obtain:

[np] = np
[s] = s
[(((i/np)⊘ ((np/s)⦸ i))]
= [i/np] + [((np/s)⦸ i))]u
= (i ⋅ npl) + ([(np/s)]d + [i])u
= (i ⋅ npl) + ((npr ⋅ s)d + i)u
= (i ⋅ npl) + (iu + (npr ⋅ s)du) ((a ⋅ b)l = bl ⋅ al)
= (i ⋅ npl) + (iu + (npr ⋅ s)) (up and down inverses collapse)

Making use of the weakly distributivity postulates, we obtain the following
chain of inequalities:
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np ⋅ ((i ⋅ npl) + (iu + (npr ⋅ s))) ⋅ np ≤
np ⋅ ((i ⋅ npl ⋅ np) + iu + (npr ⋅ s)) ≤ (d4)
np ⋅ (i + iu + (npr ⋅ s)) ≤ (left contraction)

np ⋅ npr ⋅ s ≤ (up contraction)
s (right contraction)

Little intuition is needed to see that distributivity requires two operators to
act on types, thus it is, though also conceptually tempting, a necessity to
introduce a comultiplication operator. However, in the case we allow the co-
multiplication and the multiplication operators to collapse but keep the up
and down inverses, we can equally well describe the non-distributive case.
Furthermore, it can easily be shown that the resulting (non-distributive)
monoidal structure falls within context-freeness as well as is the case with
pregroup grammars and the Lambek-Grishin Calculus without distributivity
(pregroup grammars can be shown to be context-free by giving a nondeter-
ministic pushdown-automaton, a similar automaton can recognize pregroup+

grammars). This might lead one to think there is a strong connection be-
tween the Lambek-Grishin Calculus and pregroup+ grammar. Furthermore,
Moot in [24] shows that LG generates some interesting languages that
LTAG generates as well. In appendix A, we give the LG as well as the
pregroup+ grammars for respectively the copy language and crossing depen-
dencies. With some exercise, we can see that these pregroup+ grammars
generate exactly the copy language and crossing dependencies respectively.
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7 Adding the ⊕ operator to FVect

Since we are interested in the LG with distributivity (beyond context-
freeness) we will need our pregroup+ structure to be a bimonoid. If we want
to interpret this in the compositional distributional framework, we want to
add a ⊕ operator into the FVec category. There are numerous possibilities
here, but a problem arises: in the model of [7], tensored vectors are entan-
gled ones, with their weights coming from a corpus-determined weighting
matrix. If we would distribute the ⊗ and ⊕ operators, we would have to
look up our weights every time we apply a distributivity law. So when we
have a vector living in the vector space C ⊗ (A ⊕ B), thus having weights
combining C with A⊕B, we would need to obtain a new weight for C ⊗B
in order to distribute to a vector living in the vector space A ⊕ (C ⊗ B).
One way to avoid this problem is simply stating that ⊕ = ⊗. In this case
the FVect category might be too degenerate for linguistic purposes. Another
option we have is to treat ⊕ as disjoint sum, and thus composing two objects
while retaining their individual information. For disjoint sum, we have the

following: If {Ð→a1, ..,Ð→an} is a base of A and {Ð→b1 , ..,
Ð→
bn} is a base of B, then

{(Ð→a1,
Ð→
0 ), .., (Ð→an,

Ð→
0 ), (Ð→0 ,Ð→b1), .., (

Ð→
0 ,
Ð→
bn)} is a base of A⊕B.

Then, for vectors Ð→a and
Ð→
b respectively in A and B, we have:

Ð→a = ∑iCiÐ→ai with Ð→ai a base vector
Ð→
b = ∑j Cj

Ð→
bj with

Ð→
bj a base vector

Ð→a ⊕Ð→b = ∑iCi(Ð→ai ,
Ð→
0 ) +∑j Cj(

Ð→
0 ,
Ð→
bj )

To overcome the problem of the tensored vectors, we want to make sure that
we can apply all distributivity postulates first, then look up the appropriate
weights, and then apply contractions. For this, we need to establish the
following theorem:

Theorem 1. For a Pregroup+ grammar with distributivity, each chain of
inequalities α1 ≤ α2... ≤ αn can be rewritten into an equivalent form β1 ≤
β2... ≤ βm for which the following holds:

� α1 = β1
� αn = βm
� For some i ≥ 0 ∶ β1 ≤ ... ≤ βi are applications of distributivity laws and
βi ≤ ... ≤ βm are applications of contraction rules

PROOF Let α1 ≤ α2... ≤ αn be a chain of inequalities. We call α1 the
initial type sequence and αn the final type sequence. The idea is to shift
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all applications of distributivity postulates to the left in order to obtain a
sequence of distributions and a sequence of contractions. Set β1 = α1 and
βn = αm. In the trivial cases that α1 ≤ α2... ≤ αn consists of distributions
only or contractions only, we let β1 ≤ β2... ≤ βm = α1 ≤ α2... ≤ αn.
Now consider some αj = ...(c ⋅ (a + b))... and αj+1 = ...a + (c ⋅ b)... and the
case where α1 ≤ α2... ≤ αj contains some contractions. We then have the
following cases:

� all contractions only occur in the context. Then, bring the distribution
αj ≤ αj+1 to the front.

� αj−1 = (c ⋅ pl ⋅ p) ⋅ (a + b). Then apply multiple distributions and a
contraction at the end to get (c⋅pl ⋅p)⋅(a+b) ≤ a+((c⋅pl ⋅p)⋅b) ≤ a+(c⋅b)

� αj−1 = c ⋅ ((pl ⋅ p) + (a + b)). Then apply multiple distributions and a
contraction at the end to get c ⋅((pl ⋅p)+(a+b)) ≤ (pl ⋅p)+(c ⋅(a+b)) ≤
(pl ⋅ p) + (a + (c ⋅ b)) ≤ a + (c ⋅ b)

� The other cases follow by extrapolation

With this information, we can handle distributivity at the vector (meaning)
side by first distributing the vectors, then assigning weights to the vectors,
and handle all contractions in the way of the model of [7].
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8 Conclusion

We have elaborated on a symmetric extension of the pregroup formalism,
intended as a suitable category to be used in extension to the model devel-
oped by [7]. The model that we have described so far can, similar to the
FVec × P model, be depicted in a simple diagram:

language

FV ec+ FV ec+ × P + P +

mea
nin

g gram
m
ar

The pregroup+ category with (d1) and (d2) instantiates the non-planar
weakly distributive category as described by [6]. It is important to note that
Cockett and Seely distinguish the case where the two tensors are symmetric,
i.e. invariant under permutation of its arguments, in which case (d3) and (d4)
are induced, but that in the pregroup+ category with the four distributivity
postulates, we do not have symmetric tensors, so we cannot classify it as
a symmetric weakly distributive category. As the upper bound on the weak
generative capacity of LG is still open, further study may include complexity
issues (upper bound for pregroup+). As for parsing possibilities, the theorem
of the last section shows that we can split parsing into two parts: applying
all possible distributions, and running each result on a nondeterministic
pushdown automaton to handle the resulting contractions.
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Part II

Displacement Calculus and
Generative Capacity

Morrill, Valent̀ın and Fadda ( [25], [8]) introduced the theory of Displace-
ment Calculus, an extension of the Lambek Calculus that typically deals
with discontinuities via insertion and wrapping points. We will define a
restricted version, so-called first-order Displacement Calculus and discuss
some of it’s possible definitions with respect to how insertion/wrapping
points are treated. We will proceed to showing how general first-order Dis-
placement Calculus is capable of describing several mild context-sensitive
languages, viz. counting and crossing dependencies. Finally, we will show
that general first-order Displacement Calculus is equivalent to well-nested
simple Range Concatenation Grammar.
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9 Introduction

9.1 Formal Language Theory Beyond the Context-free Bound-
ary

Throughout the last decades, research in computational linguistics has in-
creasingly focused on formalisms that, in terms of generative capacity, go be-
yond the context-free boundary. Although Context-free Grammar has been
well-studied, there are several claims against the context-freeness of natural
language ( [31], [10]). An important phenomenon that can not be directly
expressed by Context Free Grammar are crossing dependencies in Dutch and
Swiss German. For this reason, there has been a lot of development in the
field of computational linguistics to find formalisms that adequately handle
these and several other phenomena (viz. counting dependencies) that occur
in natural language. In this thesis, we focus on the approach of Catego-
rial Grammar (CG) on one side and the approach of Multiple Context Free
Grammar (MCFG) on the other side. MCFG is a tuple-based extension of
Context Free Grammar which has shown to be equivalent to simple Range
Concatenation Grammar (sRCG). We will also briefly discuss Tree Adjoin-
ing Grammar in the introduction because there is a correspondence between
TAG and so-called well-nested MCFG.
The outline of this part is as follows: Section 1 comprises a (short) overview
of the relevant formalisms and discusses our motivation for using Displace-
ment Calculus, in section 2 we introduce Displacement Calculus and discuss
it’s generative capacity, in section 3 we introduce simple Range Concate-
nation Grammar as a convenient way to express MCFG. Furthermore, we
will discuss the difference between well-nested MCFG and non well-nested
MCFG in terms of generative capacity. We will also prove a new normal form
for well-nested sRCG. In section 4 we prove the equivalence of first-order
Displacement Calculus and well-nested sRCG and give some consequences
of our main theorem. Section 5 then returns to the claim made in the first
section by providing directions for further research.
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10 Exploring the domain of Mild Context-Sensitivity

10.1 TAGs and the introduction of Mild Context-Sensitivity

The notion of Mild Context-Sensitivity was informally introduced by Joshi
in [12]. By his definition, a Mildly Context Sensitive Language (MCSL)
has the following three properties:

� Limited Crossing Dependencies

� The Constant Growth Property, which states that there is a constant
c such that for every w ∈ L, there is a w′ ∈ L with ∣w∣ < ∣w′∣ ≤ ∣w∣ + c.
Informally, this says that the difference between two strings that are
closest in length is at most a fixed bound. It ensures that counting and
crossing dependencies are allowed, but not languages such as {a2n ∣n ≥
0}.

� Polynomial Parsability

Limited Crossing Dependencies sound somewhat vague, but the idea is that
structures occur in language in which dependencies between words cross
each other, as in the language {anbmcndm∣n,m ≥ 0}. We assume limited to
mean having a maximum number of crossing dependencies (one might argue
that sentences with 18 crossing dependencies are not really comprehensible
by a human).
Joshi et al. also argue in [11] that the so-called MIX3 language may not
be a MCSL, a statement which we will turn to in the next few sections.
Joshi then introduced the formalism known as Tree Adjoining Grammar
(TAG), in which tree structures are combined by means of two operations
called substitution and adjunction. Such a grammar consists of tree struc-
tures called elementary trees and auxiliary trees, and the language that is
associated with each possible tree structure that can be built from the gram-
mar. We will see in the next subsections why TAG is related to the subject
of this part.

10.2 The Categorial Approach

The cornerstone of Categorial Grammar is the Lambek Calculus, originating
from the work of Lambek [15] which in 1965 was conjectured to be equiv-
alent in generative capacity with Context Free Grammar [5]. It was not
until 1993 that this conjecture was proved by Pentus [26]. In the Categorial
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approach as in the case of Context Free Grammar, there were several propos-
als for extensions of basic Lambek Calculus. These extensions include the
multimodal Lambek Calculus (NL◇) advocated by Moortgat [19], and the
Lambek-Grishin Calculus (LG), which was introduced by [20]. A restricted
version of the multimodal system, NL◇− , in which only non-expanding struc-
tural rules are used, was shown to fall in the Context-Sensitive Languages
[23], but the exact class of languages that LG describes, is still unknown.
Although [22] had tried to prove equivalence of LG and TAG, the result
of [17] falsifies the result of the former by showing that LG is capable of
generating the intersection of a context-free language and the permutation
closure of a context-free language. These languages fall beyond the genera-
tive capacity of Tree Adjoining Grammar.

In this part, we will focus on another, more recent proposal by [25] to
extend Lambek Calculus to handle discontinuous dependencies in natural
language. This work led to a Calculus of Displacement (D) in which strings
can be separated in several strings with detached parts. Because of the way
strings are separated, an equivalence between what I will call general first-
order Displacement Calculus and well-nested simple Range Concatenation
Grammar can be easily constructed. The motivation for this is twofold:

1. We want to compare Categorial Grammar to Generative Grammar.

2. We want to further investigate the role of well-nested MCFG/sRCG,
for reasons we will elaborate on in the next few subsections.

10.3 The Rewriting Approach

At the side of Context Free Grammar we find Multiple Context Free Gram-
mar, which was developed by [30]. Multiple Context Free Grammars manip-
ulate tuples of strings, and exhibit a control property in that the generative
capacity grows according to a control parameter. Linear MCFG was shown
to be equivalent to simple Range Concatenation Grammar, Linear Context
Free Rewriting Systems and set-local MCTAG, a generalizing extension of
Tree Adjoining Grammar. The equivalence with simple Range Concatena-
tion Grammar especially is important, because sRCG has been provided
with several normal forms, which make the parsing of such grammars very
convenient.
Multiple Context Free Grammar were claimed to may be more appropriate
to describe the Mild Context-Sensitive Languages. For example, in [10]
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who introduced a formalism known as Literal Movement Grammar, it is ar-
gued that “The class of mildly context-sensitive languages seems to be most
adequately approached by [MCFGs].” Because MCFG conforms to two of
the three restrictions of Mild Context-Sensitivity. However, linear MCFG
is NP-complete, and MCFG in general even is EXPTIME-complete, thus
they may not be an appropriate approach to Mild Context-Sensitivity. In
this light, [14] investigated a subset of MCFG, so-called well-nested MCFG
(MCFGwn), which do have a polynomial recognition procedure [REF]. Fur-
thermore, by the very recent result of [28], MIX3 = {w ∈ {a, b, c}∗∣∣wa∣ =
∣wb∣ = ∣wc∣ ≥ 0} language, introduced by [1] is contained in 2-MCFG. Com-
paring this in retrospect to the claim made in [11]:

“MCSGs capture only certain kinds of dependencies, such as nested
dependencies and certain limited kinds of crossing dependencies (for

example, in subordinate clause constructions in Dutch or some variations
of them, but perhaps not in the so-called MIX language )”,

we find ourselves in the position to claim that well-nested MCFG may be
the most appropriate formalism that describes the class of Mildly Context
Sensitive Languages (MCSL). Although it is not known as we speak (that is,
a proof has not been provided yet), it is assumed that the MIX3 language
is not in the class of well-nested MCFG, and thus it is sensible to investi-
gate the generative power of first-order Displacement Calculus (a variant of
Displacement Calculus that puts a restriction on the complexity of types in
terms of an order, which we will define in chapter 11), instead of it’s higher-
order variant, which has been shown to generate the MIX3 language [8].
Furthermore, it is known that LG as well can generate the MIX3 language
by [17]. Tree Adjoining Grammar coincides with 2-MCFGwn by an indirect
encoding of TAG into second-order Abstract Categorial Grammar with a co-
order of 3 c̃itedegroote02, and the equivalence of ACG2,3 and 2-MCFGwn
( [18], [27]). In this sense, we can argue that TAG is the minimal MCSG
formalism, whereas MCFGwn is a general notion of the class of MCSL. For
some greater clarity, we have included a diagram that depicts a complexity
hierarchy of the discussed formalisms.

21



CFG,1-MCFG(wn)

TAG,2-MCFGwn

MCFGwn

MCFG

10.4 The Convergence of Categorial and Generative Gram-
mar

Given the knowledge available about Tree Adjoining Grammar, several Cat-
egorial Grammar formalisms and the establishment of Multiple Context Free
Grammar and its well-nested variant, we depict the relation between Cat-
egorial Grammar versus Rewriting Systems in terms of generative capacity
as follows:

(N)L,CFG

TAG,2-MCFGwn

D1,MCFGwn

D,LG?,MCFG
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Note that for LG, an equivalence has not yet been established. In the
last section, I will argue D and MCFG might be equivalent, and that both
D and MCFG may be good candidates for a comparison with LG.
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11 Displacement Calculus

11.1 Introduction

Glyn Morrill, Oriol Valent̀ın, Mario Fadda developed the Displacement Cal-
culus as a generalization of the Lambek Calculus. Instead of using structural
rules, as is done in Multi-Modal Categorial Grammar and LG, Displacement
Calculus is based on so-called Displacement Algebra, in which multiple wrap
operations are defined in order to handle discontinuities in language.

11.2 Displacement Calculus

The key point of Displacement Calculus is the use of a special element,
called the ”separator”. The separator denotes an infixation or extraction
point in between words, thus making it possible to intercalate words with
appropriate typing into the place of the separator. The underlying algebra
therefore needs to contain a special prime element, and is defined as follows:

Definition 3. A graded syntactic algebra is a free algebra (L,+,0,1) where:

� (L,+,0) is a monoid

� 1 ∈ L is a prime, i.e. has no other factors than 0 and itself

We can sort the syntactical elements of such a graded syntactic algebra by
the number of separators it contains, thus obtaining sort domains for every
i, denoted Li. We are then ready to define a displacement algebra. Here, we
will differ from the way the authors define a Displacement Algebra in that
we define wrap operations on specific points so that later, we can have types
point at specific separator elements.

Definition 4. A Displacement Algebra is a sorted algebra ({Li}i∈N ,+,×>,×<,0,1)
where:

� {Li}i∈N is the partition of L into sort domains,

� (L,+,0,1) is a graded syntactic algebra,

� + ∶ Li ×Lj → Li+j is concatenation,

� ×k ∶ Li+1×Lj → Li+j with k ∈ N are wrap operations, i.e. s×k t denotes
the result of replacing the kth separator in s by t.
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As in the Lambek(-Grishin) Calculus, the Displacement Calculus acts
on typed expressions, therefore, having defined the underlying algebra, we
need a type system:

Definition 5. The set of types Tp of a displacement algebra D is constructed
with (●, /, /, I,⊙, ↓k, ↑k, J) with the following interpretations into D:

[A ●B] = {s1 + s2∣s1 ∈ [A]&s2 ∈ [B]} [A⊙k B] = {s1 ×k s2∣s1 ∈ [A]&s2 ∈ [B]}
[A/B] = {s2∣∀s1 ∈ [A] ∶ s1 + s2 ∈ [B]} [A ↓k B] = {s2∣∀s1 ∈ [A] ∶ s1 ×k s2 ∈ [B]}
[B/A] = {s1∣∀s2 ∈ [A] ∶ s1 + s2 ∈ [B]} [B ↑k A] = {s1∣∀s2 ∈ [A] ∶ s1 ×k s2 ∈ [B]}

[I] = {0} [J] = {1}

We define the sort of a type as the number of separators it contains.
Furthermore we add inductive definitions of type order and type length,
since we need it later on.

Definition 6. The length function len ∶ Tp→ N is defined as follows:

len(I) = len(J) = len(p) = 1 where p is a primitive type
len(A ●B) = len(A/B) = len(B/A) =
len(A⊙B) = len(A ↓k B) = len(B ↑k A) = len(A) + len(B)

Definition 7. The order function ord ∶ Tp→ N is defined as follows:

ord(I) = ord(J) = ord(p) = 0 where p is a primitive type
ord(A ●B) = ord(A⊙B) =max(ord(A), ord(B))
ord(A/B) = ord(A ↓k B) =max(ord(A) + 1,B)
ord(B/A) = ord(B ↑k A) =max(ord(B), ord(A + 1))

We use α∣kβ to denote the result of replacing the kth separator in α by

β. Furthermore, the image
Ð→
A is defined as:

Ð→
A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A if sA = 0;
A{[ ], ..., [ ]}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sA

if sA > 0.

Because at this time, we are only interested in types of order 1, we can
do with the first-order fragment of the Displacement Calculus, which only
has introduction rules for ● and ⊙k and elimination rules for /, / and ↑k, ↓k:

Definition 8. The (syntactic) natural deduction system of the first-order
fragment of the Displacement Calculus looks as follows:
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....
α ∶ A

....
γ ∶ A/C

α + γ ∶ C E/

....
γ ∶ C/A

....
α ∶ A

γ + α ∶ C E/
....

α ∶ A

....
β ∶ B

α + β ∶ A ●B I●
0 ∶ I Ax.I

....
α ∶ A

....
γ ∶ A ↓k C

α∣kγ ∶ C
E ↓k

....
γ ∶ C ↑k A

....
α ∶ A

γ∣kα ∶ C
E ↑k

....
α ∶ A

....
β ∶ B

α∣kβ ∶ A⊙k B
I⊙k

1 ∶ J Ax.J

We denote the first-order fragment of D by D1.

Definition 9. A D-grammar G is a tuple (Σ, δ, S) where:

� Σ is a finite set of words

� δ is a function assigning types to words in Σ

� S is the distinguished start type

We will write D ⇒ w ∶ S to express that w ∶ S is a theorem of D.
We are ready to define both the string and tree languages for Displacement
Grammar.

Definition 10. Let G = (Σ, δ, S) be a D-grammar. We define string and
tree languages:

� The string language of G is defined as LS(G) = {w ∶ S∣w ∈ Σ∗and D
⇒ w ∶ S}.

Natural deduction proofs can be viewed as trees that have axioms as
leaves and the theorem as the root. Each deduction rule that is used then
corresponds to edges directing from the conclusion vertex to one or more
premise vertices. We use this obvious encoding to define the tree language
for Displacement Grammar:

Definition 11. Let G = (Σ, δ, S) be a D-grammar and let w = w1...wn be
a word over Σ∗. A derivation tree of G with respect to w is a binary tree
D = (V, l,E, r) such that:
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� There are exactly n leaves v1...vn with l(vi) = wi ∶ δ(wi).

� For every internal vertex v0, for either it’s one daughter vertex v1 or
it’s two daughter vertices v1, v2 it holds that l(v0) is the conclusion of
some deduction rule applied to respectively either v1 or v1, v2.

� l(r) = w ∶ S
The tree language of G is defined as LT (G) = {D∣D is a derivation tree of
G for some w ∈ Σ∗}.

Displacement Calculus has a clear control parameter: the maximum sort
allowed in any sequent. [25] distinguish only the cases of 1D and 2D. I will
generalize this in order to show what kind of structures can be recognized at
each level of displacement. Notation will be nD for a particular n. Further-
more we define the order of a D-grammar G as ord(G) = max(ord(δ(t)))
with t ranging over Σ. In other words, the order of such a grammar equals
the maximum order of the types. The length of a D-grammar G is further-
more defined as len(G) = max(len(δ(t))) with t ranging over Σ, i.e. the
length of a grammar is the maximum length of it’s types. Then, we can de-
fine the first-order fragment of Displacement Grammar as those grammars
D such that ord(D) = 1.

11.3 The generative capacity of first-order Displacement Cal-
culus

In [8], some expressivity results on the Displacement Calculus were pre-
sented. In particular, it is shown that D can recognize the permutation
closure of any context-free language, and that for every n, there exists a D-
grammar that recognizes MIXn = {w ∈ {a1...an}∗∣∣a1∣w = ∣a2∣w = ... = ∣an∣w}.
Also, they give grammars for the non-context free languages {anbncn∣n ≥ 1}
and {ww∣w ∈ {a, b}+}. Note that these languages all are recognized in 1D.
Here, I will improve results by showing that in D1, the cube language, i.e.
{www∣w ∈ {a, b}+}, and {wwww∣w ∈ {a, b}+} can be recognized in 2D, as
can 4 or 5 dependencies and crossing dependencies. Generalizing, I will show
that {wn∣w ∈ {a, b}+} can be recognized in n

2D1 if n is even, and n+1
2 D1 if

n is odd. Also, I will give a generalization for dependencies and crossing
dependencies.

11.3.1 The Copy and Double Copy Languages

The grammar from [8] for the copy language {ww∣w ∈ {a, b}+} is as follows:
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S′ = S ⊙1 I
a ∶ A;J/(A/S);J/(S ↓ (A/S))
b ∶ B;J/(B/S);J/(S ↓ (B/S))

The idea is that we first can derive a + 1 + a ∶ S or b + 1 + b ∶ S so that
a + a ∶ S ⊙ I (b + b ∶ S ⊙ I) are in the copy language, but that we can
derive 1 + a ∶ S ↓ (A/S) and intercalate this structure into a derived S
structure, obtaining for example b + 1 + a + b ∶ A/S. The type given for a
ensures that we must also concatenate another a to the left, finally deriving
a + b + a + b ∶ S ⊙ I, which is also in the copy language. It is clear that these
steps can be repeated. As an example, the following is a natural deduction
proof of a + b + a + b ∶ S ⊙1 I:

0 ∶ I
a ∶ A

b ∶ B
1 ∶ J b ∶ J/(B/S)

1 + b ∶ B/S E/

b + 1 + b ∶ S E/
1 ∶ J a ∶ J/(S ↓1 (A/S))

1 + a ∶ S ↓1 (A/S) E/

b + 1 + a + b ∶ A/S E ↓1

a + b + 1 + a + b ∶ S E/
a + b + a + b ∶ S ⊙1 I

I⊙1

So what about the double copy language {www∣w ∈ {a, b}+}? If we were
to use only one separator, we could derive structures like a + b + a + b + b +
a ∈ {wwwR∣w ∈ {a, b}+}, but that’s still a mildly context-sensitive pattern.
Inspired by set-local multi component tree adjoining grammar (MCTAG),
we want to use two separators as insertion points but ensure that we have
to synchronously intercalate two structures. This can be done in 2D by
introducing new types that act as a ‘lock’ for intercalation, that is to say,
one intercalation causes the derived structure to be of a type that can only
be unlocked by another intercalation. The grammar looks as follows:

S′ = (S ⊙2 I)⊙1 I a ∶ A;J/(A/(J/(A/S)));J/(S ↓> (A/T ));J/(T ↓< S)
b ∶ B;J/(B/(J/(B/S)));J/(S ↓> (B/U));J/(U ↓< S)

As an example, the second assignment for b allows the derivation of b + 1 +
b + 1 + b ∶ S, so that b + b + b ∶ (S ⊙ I)⊙ I is in the cube language. Now, we
can intercalate 1 + a ∶ S ↓> (A/T ) to derive a + b + 1 + a + b + 1 + b ∶ T . The
only way to ’unlock’ this structure is to intercalate 1 + a ∶ T ↓< S, resulting
in a+ b+ 1+ a+ b+ 1+ a+ b ∶ S, causing a+ b+ a+ b+ a+ b ∶ (S ⊙ I)⊙ I to be
recognized. A natural deduction proof for a + b + a + b + a + b ∶ (S ⊙2 I)⊙1 I
looks as follows:
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b ∶ B
1 ∶ J

b ∶ B
1 ∶ J b ∶ J/(B/(J/(B/S)))

1 + b ∶ B/(J/(B/S)) E/

b + 1 + b ∶ J/(B/S) E/

1 + b + 1 + b ∶ B/S E/

b + 1 + b + 1 + b ∶ S E/
1 ∶ J a ∶ J/(S ↓1 (A/T ))

1 + a ∶ S ↓1 (A/T ) E/

b + 1 + a + b + 1 + b ∶ A/T E ↓1

a + b + 1 + a + b + 1 + b ∶ T E/
1 ∶ J a ∶ J/(T2 ↓2 S)

1 + a ∶ T2 ↓2 S
E/

a + b + 1 + a + b + 1 + a + b ∶ S E ↓2
a + b + 1 + a + b + a + b ∶ S ⊙2 I

I⊙2

a + b + a + b + a + b ∶ (S ⊙2 I)⊙1 I
I⊙1

This pattern can be generalized to {wn∣w ∈ {a, b}+} for (n−1)D assuming
we can replace any separator, i.e. not just the outermost ones. For greater
clarity, we added superscripts to denote the ith occurrence of a basic type,
whereas subscripts denote different types:

a ∶ A;Jn/(An/...J1/(A1/S));J/(S ↓1 (A T1));J/(Ti ↓i S) for 2 ≥ i ≤ n
b ∶ B;Jn/(Bn/...J1/(B1/S));J/(S ↓1 (B U1));J/(Ui ↓i S) for 2 ≥ i ≤ n

The idea of this generalization is that we first can derive a+(1+a)(n−1) ∶ S
and we can intercalate 1 + a (1 + b) n − 1 times of which the very first
intercalation starts at the leftmost separators and also concatenates a a (b)
to the left, resulting in a + a + (1 + a + a)n−1 ∶ S (b + a + (1 + b + a)n−1 ∶ S).
Setting the start symbol to S(⊙I)n−1, such a grammar exactly recognizes
n copies of a word over {a, b}+. Figure 2 shows what a natural deduction
proof for wn looks like.
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11.3.2 Counting and Crossing Dependencies

It may have become clear that each separator may carry in its type ‘local’
and ‘global’ left and right leaves. In this sense, it is not surprising that
counting dependencies up to 4 dependencies can be recognized in 1D, for one
separator can have two local left and right leaves for the inner dependencies
that intersperse the outer dependencies, which are carried as ‘global’ left
and right leaves. Up to four crossing dependencies can recognized by first
counting the left and third dependency, and then interspersing the second
and fourth dependencies. The grammars for four counting dependencies
{anbncndn} and crossing dependencies respectively are as follows:

S′ = B ⊙1 I S′ =D⊙1

a ∶ A a ∶ A/J ; (C ↓ A)/J
b ∶ ((A/(B/D))/C)/J ; ((B ↓1 (A/(B/D)))/C)/J b ∶ J/(C ↓ B);J/(D ↓ B)

c ∶ C c ∶ A/C
d ∶D d ∶ B/D

Note that our grammars differ from the ones introduced in [8]. This is
only for the sake of simplicity, since the generalizations will be somewhat
easier to read. A typical derivation of 4 crossing dependencies starts with c
to derive b + 1 + c ∶ C, then concatenating to d and a respectively to derive
a + b + 1 + c + d ∶ A. One then can go on to derive b + 1 + c ∶ A ↓ C and inter-
calate this in the place of the separator. Because the start type is A⊙ I, it
is necessary to concatenate to the ‘global’ a and d left and right structures
to derive an accepted string. See Figure 3 for a natural deduction proof.
For counting dependencies, the idea is to first derive an + 1 + cn ∶ C and
at a point intercalating 1 + b ∶ C ↓ B and concatenating to d, producing
an + 1 + b + cn + d ∶ D. With D ⊙1 I as start symbol, this string can be
accepted or we can intercalate another 1 + b and concatenate the result to
d. So the first dependency is counted, and once the second dependency is
inserted, the previous counting is lost and we go on counting the second
dependency.
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Again, these structures can be generalized: nD can recognize up to 2n+2
counting dependencies and up to n+1 crossing dependencies. The following
grammars generalize the above ones:

Counting Dependencies:

S′ = (...((A2 ⊙1 I
1)⊙1 I

2)...)⊙1 I
m−2
2 (m − 1 if m is odd)

a1 ∶ A1

ai ∶ Ai for i is odd and 1 < i <m
am ∶ Am

a2 ∶ (A1/(A2/Am))/Am−1)/J1)/Am−2)/Am−3)/J2)/.../A4)/A3)/J
m−2
2

a2 ∶ ((A2 ↓1 U1)/A3)/J
ak ∶ ((U k

2
−1 ↓ k

2
U k

2
)/Ak+1)/J for k is even and 1 < k <m

am−2 ∶ ((Um−2
2

−1 ↓m−2
2

(A1/(A2/Am)))/Am−1)/J if m is even

am−1 ∶ ((Um−1
2

−1 ↓m−1
2

(A1/A2))/Am−1)/J if m is odd

Crossing Dependencies: Let n be the number of crossing dependencies.
Let m = 2n. Then the following grammar describes n crossing dependencies.

S′ = (...((A2 ⊙1 I
1)⊙1 I

2)...)⊙1 I
m−2
2

a1 ∶ (...((((A1/Am−1)/J)/Am−3)/J)/.../A3)/J
ai ∶ Ai for i is odd and 1 < i ≤m − 1

a1 ∶ (A1 ↓1 U1)/J
ak ∶ (U k−1

2
↓ k+1

2
U k−1

2
)/J for k is odd and 1 < k <m − 3

am−3 ∶ ((Um−4
2
↓m−2

2
A1)/J)/Am−1

a2 ∶ (A1 ↓1 T1)/J
a2 ∶ (A2 ↓1 T1)/J
al ∶ (T l

2
↓ l

2
+1 T l

2
+1)/J for l is even and 2 < l <m − 2

am−2 ∶ (Tm−2
2

−1 ↓m−2
2

(A2/Am))/J

The general derivation structures as natural deduction proofs for count-
ing dependencies are depicted in Figure 4:
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12 Well-nested simple Range Concatenation Gram-
mar

In this subsection, we define well-nested simple Range Concatenation Gram-
mar or sRCGwn and prove that every sRCG (not only well-nested) can be
written in a lexical form which will turn out to be quite similar to Greibach
Normal Form for Context-Free Grammar.

12.1 Well-nested simple Range Concatenation Grammar

The following definitions are taken from [13].

Definition 12. A simple RCG is a tuple (N,T,V,P,S) where:

� N is a finite set of predicate names with an arity function dim ∶ N →N

� T and V are finite disjoint sets of terminals and variables

� S ∈ N is the start symbol with dim(S) = 1

� P is a finite set of clauses of the form
A(α1, .., αdim(A))→ A1(X1

1 , ..,X
1
dim(A1)

), ..,Am(Xm
1 , ..,X

m
dim(Am)

)
for m ≥ 0 where:

1. A,A1, ..,Am ∈ N
2. Xi

j ∈ V for 1 ≤ i ≤m,1 ≤ j ≤ dim(Ai)
3. αi ∈ (T ∪ V )∗ for 1 ≤ i ≤ dim(A)

� For all c ∈ P , every variable X ∈ V occurring in c occurs exactly once
in the left-hand side and exactly once on the right-hand side (simple)

Range Concatenation Grammars as well as Multiple Context-Free Gram-
mars has a natural control parameter. The order of a RCG (MCFG) is

defined by max(dim(N)) where dim(N) = ⋃∣N ∣i=1{dim(ni)} for ni ∈ N . We
shorten A(α1, ..., αdim(A)) by A(Ð→α ).

Definition 13. A sRCG R is well-nested if for each clause c ∈ P is holds
that the right hand side argument variables are well-nested with respect to
their left-hand side ordering.

A well-nested sRCG will be denoted sRCGwn. For example, in a sRCGwn,
clauses like A(X,Y,Z,U)→ B(X,U)C(Y,Z) are permitted, but clauses like
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A(X,Y,Z,U) → B(X,Z)C(Y,U) are not. sRCGwn is a proper subclass of
sRCG and [14] has elaborated well on the difference class sRCG−sRCGwn.

In order to define the string and tree languages of sRCG, we need to
define the derive relation which specifies how we apply the clauses to an
input string. Because we can have several bindings of variables in the clauses,
we need the notion of ranges and of clause instantiations.

Definition 14. Let w = w1...wn be a word over T ∗ where wi ∈ T for 1 ≤ i ≤ n.

� The set of all positions is defined as Pos(w) ∶= {0, ..., n}.

� A range in w is a pair ⟨l, r⟩ ∈ Pos(w) × Pos(w) with l ≤ r.

� The yield of a range is defined ⟨l, r⟩(w) = wl+1...wr.

� The concatenation of two ranges ρ1 = ⟨l1, r1⟩ and ρ2 = ⟨l2, r2⟩ is defined
as follows:

ρ1 ⋅ ρ2 = { ⟨l1, r2⟩ if r1 = l2;
undefined otherwise.

� For every a ∈ T , the ranges function is defined as ranges(a,w) =
{⟨i − 1, i⟩∣1 ≤ i ≤ n, ⟨i − 1, i⟩(w) = a}

� A range vector ρ ∈ (Pos(w)×Pos(w))k is a k-dimensional range vector
for w iff ρ = ⟨⟨l1, r1⟩, ..., ⟨lk, rk⟩⟩ where ⟨li, ri⟩ is a range in w for 1 ≤
i ≤ k.

Definition 15. Let G = (N,V,T,P,S) be an sRCG, let c = A(Ð→α ) →
A1(Ð→α 1)...Am(Ð→αm) be a clause in P and let w = w1...wn be a word over
T ∗ where wi ∈ T for 1 ≤ i ≤ n. Furthermore, let Ð→α (i) denote the ith argu-
ment of Ð→α .

� Occterm = {t′∣t′ is an occurrence of some t in the clause }

� Occeps = {Epsi∣1 ≤ i ≤ dim(A),Ð→α (i) = ε}

� An instantiation with respect to w is a function f ∶ Occterm ∪ V ∪
Occeps → {∠i, j⟩∣i ≤ j, i, j ∈ N} such that:

1. For all t′ ∈ Occterm that occur in Ð→α , f(t′)(w) = a,

2. For all X ∈ V , f(X) = ⟨j, k⟩ for some 0 ≤ j ≤ k ≤ n,
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3. For all Eps ∈ Occeps, there is a j with 0 ≤ j ≤ n with f(Eps) =
⟨j, j⟩. For every ε-argument Ð→α (i) we define f(Ð→α (i)) = f(Epsi),

4. For all adjacent x, y in one of the elements of Ð→α there are i, j, k
with f(x) = ⟨i, j⟩ and f(y) = ⟨j, k⟩. Then we define f(xy) = ⟨i, k⟩.

� If f is an instantiation with respect to c and w, then A(f(Ð→α )) →
A1(f(Ð→α 1))...Am(f(Ð→αm)) is an instantiated clause.

To determine whether a string w over T ∗ is in the language of an sRCG,
we instantiate the start clause relative to w, and in each derivation step, we
replace the left-hand side of an instantiated clause with it’s right-hand side.
We are now ready to define the string language of an sRCG.

Definition 16. Let G = (N,T,V,P,S) be an sRCG. The string language
of G is defined as LS(G) = {w ∣ S(0, ∣w∣)⇒∗ ε}

Because we want to compare strong generative capacity we need to define
the tree language for sRCG as well.

Definition 17. Let G = (N,T,VG, P, S) be a sRCG, and let w = w1...wn
be a word over T ∗ where wi ∈ T for 1 ≤ i ≤ n. A derivation tree is a tree
D = (V, l,E, r) such that:

� There are exactly n pairwise different leaves u1...un with l(ui) = ⟨i−1, i⟩
for 1 ≤ i ≤ n, for all other leaves z we have l(z) = ⟨i, i⟩ for some i with
0 ≤ i ≤ n. Furthermore, for each leaf u we define r-yield(u) = {l(u)}.

� For every internal node v0 ∈ V , for every order v1...vk of the pairwise
different daughters that are internal nodes, if we have that l(vi) = Ai
for 0 ≤ i ≤ k, then for every clause A0(Ð→α 0) → A1(Ð→α 1)...Ak(Ð→α k), if
there is an instantiation A0(Ð→ρ 0) → A1(Ð→ρ 1)...Ak(Ð→ρ k) with respect to
w, such that:

– ρi ∈ r-yield(vi) for 1 ≤ i ≤ k,

– There is a daughter u of v0 that is a leaf iff either one of the
terminals or one of the ε-arguments in Ð→α 0 is mapped to l(u) by
this instantiation.

then Ð→α 0 ∈ r-yield(v0). Nothing else is in r − yield(v0).

� ⟨0, n⟩ ∈ r-yield(r)

� l(r) = S
Definition 18. Let G = (N,T,V,P,S) be an sRCG. The tree language of
G is defined as LT (G) = {D ∣ D is a derivation tree of some w ∈ T ∗}
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12.2 A lexicalized normal form for (simple) Range Concate-
nation Grammar

[3] defines a number of normal forms for Range Concatenation Grammar
which naturally extend from known normal forms for Context Free Gram-
mar, including ε-free normal form which derives from the determinization
of CFG’s and binarization, which extends the well-known Chomsky Normal
Form for Context Free Grammar. However, it is also known that CFG’s can
be lexicalized by transformation into the Greibach Normal Form, which is
shown in [9]. Here, we will show how to lexicalize simple Range Concatena-
tion Grammar (and thus MCFG and LCFRS as well) by a transformation
that is similar to the construction of the Greibach Normal Form for CFG.
We begin by defining binary RCG, lexicalizedness for sRCG, and move on
to prove the equivalence of sRCG and lexicalized sRCG. Lexicalization is an
important property since it can simplify parsing algorithms. Given that Cat-
egorial Grammar is by definition always lexicalized, knowing that sRCGwn
can be lexicalized plays an important role in proving it’s equivalence with
first-order Displacement Grammar, which we will turn to in the next section.

Just as any Context Free Grammar can be converted to an equivalent
ε-free form without useless rules (i.e. clauses that cannot be reached from
the start clause), it is also possible to make the same conversion for RCG.
Since these normal forms are directly extended from CFG normal forms and
they are not directly relevant to the intuition of a lexicalized normal form,
we won’t elaborate on them here. Rather, we direct the reader to [3] for
an overview. We will however, briefly describe Greibach Normal Form for
CFG, because it is not immediately obvious how and why this conversion
works.

Definition 19. A Context Free Grammar is in Chomsky Normal Form
(CNF) if all the rules are of the form:

� A→ BC with A,B,C non-terminals

� A→ a with A a non-terminal and a a terminal symbol

Definition 20. A Context Free Grammar is in Greibach Normal Form
(GNF) if all the rules are of the form:

� A → aα with A a non-terminal, a a terminal symbol and α a possibly
non-empty sequence of non-terminals.
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As we can see, a rule of a CFG in GNF is either a terminal rule, or a
rule whose right-hand side starts with a terminal. It is not at all obvious
how one obtains the Greibach Normal Form from a CFG. The construc-
tion however uses Chomsky Normal Form to obtain a lexicalized CFG. In
order to lexicalize a CFG, we want to be able to substitute the first right-
hand side non-terminal B by a terminal symbol a, but in order to preserve
language, we have to replace it by all possible right-hand sides of B-rules.
This substitution will therefore only work when all B-rules are already in
Greibach Normal Form. A second problem is that a CFG can contain cycles,
for example the rules A → BC and B → AD. To overcome these problems,
we want to have an ordering on the non-terminals such that each sequence
beginning with the lowest element of the ordering always rewrites (we only
look at the leftmost symbol on the right-hand side) to either a terminal
symbol (GNF) or a non-terminal that is a higher element in the ordering.
More formally, we want to have that for each rule Ai → Ajγ, i < j. If this
is the case, we have ensured that there are no left-cycles and that we can
perform the substitions mentioned above. This last fact is true because the
rules of the highest element of the ordering must be all terminal clauses, so
we can perform a language-preserving substitution that puts all the rules of
the single highest element of the ordering in Greibach Normal Form. Then
we can do the same until all rules are in GNF.

Note that for a rule Ai → Akγ with i > k we can definitely substitute
Ak by all possible right-hand sides of Ak rules, and repeat this until each
Ai rule is of the form Ai → Alδ with i ≤ l. For the cases that an Ai rule is
of the form Ai → Aiδ, we can use a method called left-recursion elimination
(which preserves language) to ensure that all cycles eventually disappear.

Now that we have given an informal explanation of what we need to make
the GNF construction work, we can formalize the construction for greater
clarity, before we move to a similar construction for sRCG. We refer the
reader here to [9].

For a CFG G = (N,T,R,S) in CNF, we construct the Greibach Normal
Form as follows:

1. Assign a (random) ordering {A1, ...,An} on the clauses in R.

2. Modify the clauses in such a way that if Ai → Ajγ, j ≤ k. This is done
as follows:

� Assume that the rules have been modified such that for 1 ≤ i ≤ k,
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for each rule Ai → Ajγ it is the case that i < j.
� For each rule Ak → Ajγ with k > j, replace the rule by a new

set of rules with Aj substituted by the right-hand side of each Aj
rule. Repeating this at most k − 1 times, all Ak rules are of the
form Ak → Ajγ with k ≤ j.

� Eliminate left-recursive rules Ak → Akγ.

3. Lexicalize the Ak rules, starting with An−1 and ending with A1:

� For each non-terminal rule Ak → Aj (we have k < j), replace the
rule by a new set of rules with Aj substituted by the right-hand
side of each Aj rule. If we start with An−1 and end with A1, we
ensure that each Aj rule is in Greibach Normal Form, and thus
the substitutions ensure that the new Ak rules are in GNF as
well.

4. Lexicalize the Bk rules. This is done in the same way as the Ak rules
are lexicalized, except that the order does not matter here.

5. Add a new start clause S′ → S.

Eliminating left-recursive rules is done by replacing each left-recursive
rule with a new rule, involving a new non-terminal, which is right-recursive.
Any rule A→ Aβ together with A→ a describes a language {aβn∣n ≥ 0}. We
can replace these rules by new rules, one of which is right-recursive, while
preserving this language. These are B → β, B → βB, A→ a and A→ aB.
In general, we replace all Ai rules at a time:

� Each Ai rule is either a left-recursive rule, or the first non-terminal
of it’s right-hand side is higher in order than Ai, so we have that
the Ai rules are divided in rules Ai → Aiβ1...Ai → Aiβn and rules
Ai → α1...Ai → αm.

� We choose a new non-terminal, Bi and add rules Bi → βj and Bi → βjB
for 1 ≤ j ≤ n.

� We add rules Ai → αj and Ai → αjBi for 1 ≤ j ≤m.

Now, we will turn to the lexicalization of (well-nested) simple RCG by
a construction that is essentialy very similar to the construction of the
Greibach Normal Form for a CFG. We begin with the definition of lexi-
calized sRCG:
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Definition 21. A sRCG R = (N,T,V,P,S) is lexicalized (and denoted by
LsRCG ) if each clause c ∈ P except the start clause contains exactly one
terminal symbol.

It is important here to note two important differences between RCG and
CFG:

1. In RCG, the order in which the right-hand side is written does not
matter for generative capacity, whereas in CFG this order is vitally
important. Rather, in an RCG, the order of words is present in the
arguments of the left-hand side predicate, and their distribution at the
right-hand side.

2. In a CFG in Chomsky Normal Form each lexicalized rule contains ex-
actly one terminal symbol, and the resulting CFG in Greibach Normal
Form contains only rules that contain exactly one terminal symbol.
This restriction does not trivially hold for ε-free sRCG without use-
less rules, although we will need it for we want to compare the strong
generative capacity of D1 with sRCGwn.

We can easily overcome the second difference: Any clause that contains
more than one terminal symbol can be replaced by a set of clauses that each
contain exactly one terminal symbol in a language-preserving way. We will
call an sRCG with this restriction a one-terminal sRCG.

Definition 22. A sRCG R = (N,T,V,P,S) is a one-terminal sRCG (and
denoted 1T -sRCG)if each clause c ∈ P except the start clause contains at
most one terminal symbol.

We will now turn to proving that given an sRCG G, we can construct
an equivalent one-terminal sRCG and an equivalent LsRCG. Because the
constructions use two operations, namely substitution and elimination of
left-recursion, we start by defining these operations and show that the string
language of an sRCG is invariant under substitution and invariant under
elimination of left-recursion.

Definition 23. Let R = (N,T,V,P,S) be a sRCG. Let c = A0(Ð→α0) →
A1(Ð→α1)...An(

Ð→
αn) be a clause in P and let A1 be the predicate that will

be substituted. We define then a substitution as the replacement of c by
all possible instantiations of an A1 clause. That is, for all A1 clauses of

the form A1(
Ð→
β ) → B1(

Ð→
β1)...Bm(Ð→βm), we add a new clause c′ = A0(α′0) →

B1(
Ð→
β1)...Bm(Ð→βm)A2(Ð→α2)...An(Ð→αn) where

Ð→
α′0 denotes Ð→α0 with variables from
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Ð→α1 that occur in Ð→α0 replaced by the variables in
Ð→
β . Finally, we remove the

original A0 clause.

Example. Let R be a sRCG given by the following clauses:

S(XY Z)→ A(X,Y,Z)
A(XY,Z,U)→ B(X,Y )C(Z,U)
B(XY,ZU)→D(X,U)E(Y,Z)
B(X,Y Z)→ E(X,Y )F (Z)
D(X,Y )→ B(X,Y )

Then, we substitute B in the A clause, giving a new set of clauses:

S(XY Z)→ A(X,Y,Z)
A(XT1Y T2, Z,U)→D(X,T2)E(T1, Y )C(Z,U)
A(XY T1, Z,U)→ E(X,Y )F (T1)C(Z,U)
B(XY,ZU)→D(X,U)E(Y,Z)
B(X,Y Z)→ E(X,Y )F (Z)
D(X,Y )→ B(X,Y )

Lemma 1. The string language of an sRCG is invariant under substitution.

Proof. Let R = (N,T,V,P,S) be an sRCG, and let R′ = (N,T,V ′, P ′, S)
be an sRCG in which one clause c ∈ P has been substituted by it’s left-
most right-hand side argument. Let c = A0(Ð→α0) → A1(Ð→α1)...An(Ð→αn) and let

A1(
Ð→
β )→ B1(

Ð→
β1)...Bm(Ð→βm) be all the A1 clauses.

Now, let w = w1...wn ∈ L(R), and let it’s rewriting sequence S(0, n) ⇒∗ ε
include a clause instantiation A0(ρ0)→ A1(ρ1)...An(ρn). Then, in the next
step, a clause instantiation A1(ρ1) → B1(σ1)...Bm(σm) for some A1 clause
is used. Then there is a clause instantiation

A0(ρ0)→ B1(σ1)...Bm(σm)A2(ρ2)...An(ρn)

for R′. Because this holds for every clause that is in P ′-P , we may conclude
that there exists a rewriting sequence S(0, n) ⇒∗ ε for R′ and thus, that
w ∈ L(R′).
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For the converse, let w = w1...wn ∈ L(R′), and let it’s rewriting sequence
S(0, n)⇒∗ ε include a clause instantiation

Inst = A0(ρ0)→ B1(σ1)...Bm(σm)A2(ρ2)...An(ρn)

for a clause c ∈ P ′-P .
LetA0(α0)→ A1(α1)...An(αn) andA1(β)→ B1(β1)...Bm(βm) be the clauses
that produced A0(α′0)→ B1(β1)...Bm(βm)A2(α2)...An(αn) of which Inst is
an instantiation. Then there are clause instantiations

A0(ρ0)→ A1(ρ1)...An(ρn)

and
A1(ρ1)→ B1(σ1)...Bm(σm)

for R. Because this holds for every clause c ∈ P ′-P , we may conclude that
there exists a rewriting sequence S(0, n)⇒∗ ε for R and thus, that w ∈ L(R).
We conclude that L(R) = L(R′). For inverse substitution, the proof is the
symmetric analog of the one given.

Definition 24. Let R = (N,T,V,P,S) be a sRCG. Let Let A0(Ð→α0) →
A0(Ð→α1)A2(Ð→α2)...An(Ð→αn) be the form of all left-recursive A0 clauses in P .

Let A0(
Ð→
β0) → γ be the form of the remaining A0 clauses. We then de-

fine elimination of left-recursion as the replacement of all the left-recursive
clauses by new (right-recursive) clauses in which a new predicate is used.
That is, we choose a new nonterminal B0 with dim(B0) = dim(A0) and:

� For each left-recursive clause A0(Ð→α0) → A0(Ð→α1)...An(Ð→αn), we add two
new B0 clauses, namely

B0(
Ð→
β0)→ A2(Ð→α2)...An(Ð→αn)B0(Ð→α1)
B0(
Ð→
β′0)→ A2(Ð→α2)...An(Ð→αn)

where
Ð→
β′0 denotes

Ð→
β0 with all occurrences of variables in Ð→α1 deleted.

� For each of the remaining clauses A0(
Ð→
β0) → γ, we add for each left-

recursive clause A0(Ð→α0)→ A0(Ð→α1)A2(Ð→α2)...An(Ð→αn) the clause A0(β′0)→
γB0(

Ð→
β1) where

Ð→
β1 denotes the vector of variables with dim(B0) as it’s

length and
Ð→
β′0 denotes

Ð→
β0 with the variables of

Ð→
β1 inserted at corre-

sponding places.

� We remove all left-recursive clauses A0(Ð→α0)→ A0(Ð→α1)A2(Ð→α2)...An(Ð→αn).
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Example. Let R be a sRCG given by the following clauses:

S(XY )→ A(X,Y )
A(XY,Z)→ A(X,Z)C(Y )
A(X,Y )→D(X,Y )
A(X,Y Z)→ E(X,Y,Z)

Then, we introduce B′ and add new A and B′ clauses, giving a new set
of clauses:

S(XY )→ A(X,Y )
B′(X, ε)→ C(X)
B′(XY,Z)→ C(Y )B′(X,Z)
A(XT1, T2Y )→D(X,Y )B′(T1, T2)
A(XT1, T2Y Z)→ E(X,Y,Z)B′(T1, T2)
A(X,Y )→D(X,Y )
A(X,Y Z)→ E(X,Y,Z)

Lemma 2. The string language of an sRCG is invariant under elimination
of left-recursion.

Proof. Let R = (N,T,V,P,S) be an sRCG containing at least one useful
left-recursive clause in P , and let R′ = (N,T,V ′, P ′, S) be an sRCG in
which c has been eliminated by the construction given in the definition of
elimination of left-recursion. Let A0(Ð→α0) → A0(Ð→α1)A2(Ð→α2)...An(Ð→αn) be the

form of all left-recursive A0 clauses and let A0(
Ð→
β0) → γ be the form of the

remaining A0 clauses. Furthermore, let

B0(
Ð→
β0)→ A2(Ð→α2)...An(Ð→αn)B0(Ð→α1)
B0(
Ð→
β′0)→ A2(Ð→α2)...An(Ð→αn)
A0(
Ð→
β′0)→ γB0(

Ð→
β1)

A0(
Ð→
β0)→ γ

be the clauses produced by the elimination operation.
Now, let w = w1...wn ∈ L(R), and let it’s rewriting sequence S(0, n)⇒∗ ε

include a clause instantiation A0(ρ0) → A0(ρ1)A2(ρ2)...An(ρn). For the
next step, either a left-recursive A0 clause or a remaining A0 clause is in-
stantiated and used in the derivation, so we have either one of two types of
instantiations
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A0(ρ1)→ A0(σ1)A2(σ2)...An(σn)
A0(ρ1)→ γ

So we see that we have a number of copiesA2(σ2)...An(σn)......A2(ρ2)...An(ρn)
at the right-hand side, until finally, some remaining clause is used and we
have some γ to the left. Then, the following instantiations can be made in
R′:

A0(ρ0)→ γB0(η0)
B0(Ð→η0)→ A2(Ð→η2)...An(Ð→ηn)B0(Ð→η1)

⋮
B0(
Ð→
β0)→ A2(Ð→α2)...An(Ð→αn)

We may conclude that there exists a rewriting sequence S(⟨0, n⟩) ⇒∗ ε in
R′ for w and thus, that w ∈ L(R′).

For the converse, let w = w1...wn ∈ L(R′) and let it’s rewriting sequence
S(0, n)⇒∗ ε include a clause instantiation

Inst = B0(η0)→ A2(η2)...An(ηn)B0(η1)

Because this clause is reachable (otherwise, it could not be used in a correct
rewriting sequence), it must be preceded by a clause instantiation
A0(ρ0) → γB0(η0) and it finally precedes (because the clause is right-
recursive) an instantiation B0(σ0) → A2(σ2)...An(σn). So we see that we
have some γ followed by a number of copiesA2(σ2)...An(σn)......A2(ρ2)...An(ρn).
Then, the following instantiations can be made in R:

A0(ρ1)→ A0(σ1)A2(σ2)...An(σn)
A0(ρ1)→ γ

We may conclude that there exists a rewriting sequence S(⟨0, n⟩)⇒∗ ε in R
for w and thus, that w ∈ L(R).
We conclude that L(R) = L(R′). For the inverse case, the proof is the
symmetric analog of the one given.

Lemma 3. For every ε-free sRCG R = {N,T,V,P,S} there is an equivalent
one-terminal sRCG R′ = {N ′, T, V ′, P ′, S}.
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Proof.

� The set of terminals and the start symbol are the same for R and R′.

� The set of non-terminals and the set of variables of R are added new
non-terminals and variables as we construct P ′.

� The set of clauses P ′ is constructed by replacing each clause c ∈ P that
contains more than one terminal symbol with a set of new clauses, in
the following way:
Let c = A(α1, ..., αj)→ A1(X1, ...,Xn)...Am(Y1, ..., Yk) be a clause con-
taining more than one terminal symbol, and denote all occurring ter-
minal symbols b0 through br (b0 being the leftmost occurring terminal
symbol and br being the rightmost one). For each occurring terminal
symbol bi for 1 ≤ i ≤ r, add a new clause Bi(bi) → ε and replace c
by c′ = A(β1, ..., β2) → A1(X1, ...,Xn)...Am(Y1, ..., Yk)B1(T1)...Br(Tr)
where β1, ..., βj denote α1, ..., αj with each bi replaced by its corre-
sponding variable Ti.

Because the construction only applies consecutive inverse substitutions, by
lemma 1 we have that L(R) = L(R′).

Example. Consider the following sRCGwn for the double copy language
{w3∣w ∈ {a, b}∗}:

S(XY Z)→ A(X,Y,Z)
A(aX,aY, aZ)→ A(X,Y,Z)
A(bX, bY, bZ)→ A(X,Y,Z)
A(a, a, a)→ ε
A(b, b, b)→ ε

We replace all clauses but the start clause with new clauses. As an ex-
ample, for the second clause A(aX,aY, aZ)→ A(X,Y,Z) we add new rules
B(a)→ ε and C(a)→ ε and replace the original clause byA(aX,T1Y,T2Z)→
A(X,Y,Z)B(T1)C(T2).
The resulting grammar looks as follows:
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S(XY Z)→ A(X,Y,Z)
A(aX,T1Y,T2Z)→ A(X,Y,Z)B(T1)C(T2)
A(bX,T1Y,T2Z)→ A(X,Y,Z)D(T1)E(T2)
A(a,T1, T2)→ F (T1)G(T2)
A(b, T1, T1)→H(T1)I(T2)
B(a)→ ε
C(a)→ ε
D(b)→ ε
E(b)→ ε
F (a)→ ε
G(a)→ ε
H(b)→ ε
I(b)→ ε

Lemma 4. For every sRCG R = {N,T,V,P,S} with ε ∉ L(R), there is an
equivalent lexicalized sRCG R′ = {N ′, T, V,P ′, S′}.

Proof. The idea of the conversion is similar to that of the Greibach Normal
Form for CFG’s. We construct R′ from the ε-free form, with useless rules
eliminated. Essentially, the construction alters the set of non-terminals and
the set of clauses. These resulting sets are denoted N ′ and P ′ respectively,
and are assumed to become clear from the following construction:

1. Assign an ordering {A1, ...,An} on the clauses in P .

2. Modify the clauses in such a way that ifAj(α1, ..., αm)→ Ak(X1, ...,Xn)γ,
j ≤ k.

3. Eliminate left-recursive clauses Ak → Akγ, thereby introducing new
clauses Bk.

4. Lexicalize the clauses, starting with An−1 and ending with A1.

5. Lexicalize the Bk clauses.

6. Add a new start clause S′(X)→ S(X).

Given that we have assigned an ordering on the clauses, we can modify
the clauses such that if Aj(α1, ..., αm)→ Ak(X1, ...,Xn)γ, j ≤ k as follows:

For k from A1 to An:
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1. Assume that for 1 ≤ i ≤ k, Ai(α1, ..., αm) → Aj(X1, ...,Xp)γ only if
j > i.

2. If Ak(α1, ..., αm) → Aj(X1, ...,Xp)γ ∈ P and j < k, remove this clause
and add clauses with Aj(X1, ...,Xp) substituted with the righthand
side of each Aj clause. Note that when a Aj clause is lexicalized, we
move these terminal symbols to Ak in the logical sense.

3. If we repeat 2) at most k − 1 times, every clause is of the form

Ak(α1, ..., αm)→ Aj(X1, ...,Xo)
with j ≥ k.

4. If an Ak clause is left-recursive, i.e. it is of the form Ak(α1, ..., αm)→
Ak(X1, ...,Xm)γ, there must also be at least one terminal Ak clause
(else the Ak clause is useless and thus would not exist). We replace all
left-recursive clauses for a k by eliminating left-recursion as described
in definition 24.

Now we have that each An clause must be a terminal clause, and thus
is lexicalized since the construction starts off with an ε-free SRCG. Each
An−1 clause is either terminal or has An as the leftmost predicate in the
righthand side. Replace the latter clauses by each possible substitution of
variables by the terminal symbols in An. Repeat this for An − 2 until A1.
Now we can do the same for each Bi clause.

Now we show that L(R) = L(R′). Because the construction only ap-
plies consecutive substitutions and eliminations of left-recursion, we have
by lemma 1 and lemma 2 that L(R) = L(R′).

Example. Consider the following sRGCwn grammar, which is a slight
modification of a linguistic example drawn from [13]:

S(XY Z)→ A(X,Z)B(Y )
A(X,Y Z)→ A(X,Y )C(Z)
A(X,Y )→D(X)E(Y )
B(b)→ ε
C(c)→ ε
D(d)→ ε
E(e)→ ε
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Step 1: We assume an ordering, say {B,D,E,A,S,C}.
Step 2: Now we modify the clauses such that ifAj(α1, ..., αm)→ Ak(X1, ...,Xn)γ,
j ≤ k:

� We begin with the B clauses. As these are all terminal clauses, we
continue. The D and E clauses are also terminal.

� The second A clause is well-ordered, whereas the first is not. So we
replace the second clause with A(d, Y ) → E(Y ). Again, we replace
the obtained clause with a new one, and obtain A(d, e)→ ε.

� The second A clause is left-recursive, so we replace it by new A clauses
B′(X,Y Z) → C(Z)B′(X,Y ) and B′(ε,Z) → C(Z). Furthermore, for
the first A clause we add A(dX, eY )→ B′(X,Y ).

� The S clause is not well-ordered, so we replace it by two new clauses
S(dY eU)→ C(U)B(Y ) and S(dXY eZ)→ B′(X,Z)B(Y ).

Step 3: We lexicalize all non-lexicalized clauses. In this case, these are
B′(X,Y Z) → C(Z)B′(X,Y ) and B′(ε,Z) → C(Z), which we replace by
B′(X,Y c)→ B′(X,Y ) and B′(ε, c)→ ε respectively.
The grammar now looks as follows:

S(dY eU)→ C(U)B(Y )
S(dXY eZ)→ B′(X,Z)B(Y )
A(dX, eY )→ B′(X,Y )
A(d, e)→ ε
B′(X,Y c)→ B′(X,Y )
B′(ε, c)→ ε
B(b)→ ε
C(c)→ ε
D(d)→ ε
E(e)→ ε
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13 The equivalence of first-order Displacement Gram-
mar and well-nested simple Range Concatena-
tion Grammar

The idea of the correspondence between sRCGwn and D1 is to interpret the
rewriting clauses as abstract derivation possibilities where the typing of ter-
minals force off exactly those derivations that are possible in the sRCGwn:
the left hand side of each clause is the conclusion, the right hand side pred-
icates are premisses. Predicate names become types, the separation of ar-
guments in predicates are interpreted as separator locations. Given the
structures of the premisses, we need to make it possible to derive exactly
the conclusion by rightly assigning types to the terminals involved. So ter-
minal clauses (those with an empty right hand side) become axioms, and
since the start clauses are not lexicalized, we only reassign the types of the
start symbol in a sRCG to include the removal of insertion points and the
concatenation of some premisses.

We compare D to well-nested sRCG, because ill-nested clauses such as
C(XY ZUc) → A(X,Z)B(Y,U) are not directly interpretable: we would
have as premisses X + 1 + Z ∶ A and Y + 1 + U ∶ B and as the conclusion
X+Y +Z+U+c ∶ C, so we would need to chew off the U , then intercalate Y +1
into X+1+Z and concatenate U again. This is not evidently possible because
we do not know the type of U . However, a clause such as C(XY ZUc) →
A(X,U)B(Y,Z) can be interpreted, by simple assigning ((A⊙B)⊙I)/C to
c.

Lemma 5. For every n-sRCGwn R, there is a weakly equivalent (n − 1)
D-grammar D.

Proof. We show that for every lexicalized LsRCGwn R, there exists a
weakly equivalent D-grammar D. Let R = (N,T,V,P,S) be a sRCGwn
having the above mentioned properties. We construct D = (Σ, δ, S′) as
follows:

� Σ = T

� S′ is obtained from the starting clause in R. For the start clause
S(X1...Xn)→ A1(Xi, ...,Xj)A2(Xk, ...Xl)...Am(Xo, ...,Xp), we add to
S′ the type that denotes the operations needed to convert Xi + 1 +
Xi+1...1 + Xj ∶ A1; ...;Xo + 1 + ... + 1 + Xp ∶ Am into X1 + X2 + ... +
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Xn. This can be intercalating 0’s everywhere and concatenating A1

to Am or intercalating one of the right hand side predicates into one
another since we have a well-nestedness restriction. (e.g. we could
have S(XY ZU) → A(X,U)B(Y,Z) such that we add to S′ the type
(A⊙ (B ⊙ I))

� The typing δ is obtained from the clauses in R. Since we already
have converted the start clause, we can divide the remaining clauses
into terminating clauses (clauses with an empty right hand side) and
non-terminating clauses (clauses with a non-empty right hand side).

� For each terminating clause A(a)→ ε, we add the pair (a,A) to δ.

� For each non-terminating clause A0(Ð→α0)→ A1(Ð→α1))...An(Ð→αn) we want
to interpret the clause as part of a deduction, in which the induction
hypothesis tells us that we already have a deduction for each of the
premisses of the form α′i ∶ Ai for 1 ≤ i ≤ n and where we want to deduce
α′0 ∶ A0 where α′i denotes αi, but with separators interspersed between
each dimension. Furthermore, we have one terminal a ∈ Ð→α0 for which
we want to derive a typing with which the deduction will succeed.
Graphically, this looks as follows:

α′1 ∶ A1 ... α′n ∶ An a ∶ A′

....
α′0 ∶ A0

and we need to derive the correct typing for A′. It is important to
make the following observation at this point:
The rules of a LsRCGwn are such that can only be intercalations of
predicate tuples inside other tuples (because of well-nestedness) and
concatenations. Furthermore, clauses with tuples are in fact clauses
with several continuous substrings. This observation shows us that to
make a deduction like the graphically depicted one above, we can do
with intercalations, concatenation and the use of separators, and thus
that it is possible to give a (unique) typing for a such that exactly this
deduction can be made in first-order Displacement Grammar. For α′0,
a is either the lefmost symbol of the lefmost argument of α′0 or the
rightmost symbol of the rightmost argument, or it is somewhere in
between. The type for a then becomes respectively either A0/B or
B/A0 or B ↓k A or (B ↓k A)/J or J/(B ↓k A) (these last two cases are
needed when a intercalates while keeping the dimension intact, thus
leaving a separator in the place of separator) where B is the type for
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α′0 with a removed, say α′′0 . Then, we need to derive the B type by
reverse engineering α′′0 . Here we can say that it is built up by either the
concatenation of two parts, or the intercalation of two parts, resulting
in B ∶= (C ●D)∣C ⊙kD∣C ⊙k (D ●J)∣C ⊙k (J ●D), the last two choices
again, needed when a part intercalates while keeping the dimension
intact. We repeat these steps to finally find a typing for a. We must
however note that ⊙k is not by definition associative in our definition
of Displacement Calculus (consider for example (A ⊙1 B) ⊙1 C vs.
A⊙1 (B⊙1C) with a+1+d+1+e ∶ A and b ∶ B, c ∶ C), so that there can
be a choice of typings. For example, to go from X+1+W ∶ B,Y +1+V ∶
C,Z + 1+U ∶D to X +Y +Z + 1+U +V +W ∶ A, we could have either
A ∶= B⊙1 (C ⊙1D) or A ∶= (B⊙1C)⊙1D, strictly giving two different
derivation trees but the same string yield. It is for this reason that we
cannot compare strong, but can compare weak generative capacity.

Now we need to show that L(R) = L(D).

(⇒) Assume w = w1...wn ∈ L(R). Then there exists a rewriting sequence
S(⟨0, n⟩)⇒∗ ε. We need to show that there exists a natural deduction proof
for w with the grammatical assignments of D. By construction, each wi
where 1 ≤ i ≤ n is in the lexicon, and has a typing that directly corresponds
to the predicate name of some terminal clause in R for wi. By construc-
tion, we also know that we can give a typing to each terminal symbol that
is present in a clause in R such that we mimic the derivation structure of
this clause so that if we have the premisses, we can derive it’s left-hand side
predicate. Since we have all type assignments that correspond to each ter-
minal clause, and every clause instantiated in the rewriting sequence must
eventually lead to a terminal clause, and we have type assignments such that
every clause can be mimicked, we may conclude that there exists a natural
deduction proof for w in D, and thus that w ∈ L(D).

(⇐) Assume w = w1...wn ∈ L(D). Then there exists a natural deduction
proof for w in D. Since all type assignments in D make it possible to
derive exactly the yield of each possible instantiated clause, we may conclude
that there exists a rewriting sequence S(⟨0, n⟩) ⇒∗ ε for R and thus that
w ∈ L(R). We conclude that L(R) = L(D) and end our proof.

Example. Consider the sRCGwn R = ({S,A},{a, b},{X,Y }, P, S) with P
as follows:
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S(XY )→ A(X,Y )
A(aX,aY )→ A(X,Y )
A(bX, bY )→ A(X,Y )
A(a, a)→ ε
A(b, b)→ ε

We have that L(R) = {ww∣w ∈ {a, b}+}, i.e. the single copy language. We
now show how to construct an equivalent 1D1 grammar. First, we convert
R to a one-terminal sRCG, and obtain the following clauses:

S(XY )→ A(X,Y )
A(aX,TY )→ A(X,Y )A′(T )
A(bX,TY )→ A(X,Y )B′(T )
A(a,T )→ A′(T )
A(b, T )→ B′(T )
A′(a)→ ε
B′(b)→ ε

We construct a D-grammar G = (T, δ, S) as follows:

� The start symbol is defined as S ∶= A⊙1 I, since we remove one dimen-
sion by reversing the start clause.

� We assign new types for each of the six remaining clauses:

1. For the terminal clauses, we add to δ (a,A′) and (b,B′).
2. A(aX,TY )→ A(X,Y )A′(T ) denotes the following abstract deriva-

tion:

X + 1 + Y ∶ A T ∶ A′ a ∶ A0....
a +X + 1 + T + Y ∶ A

We see that to obtain the conclusion, we have to intercalate 1+T
and concatenate the result to a to the left. So the typing for a
becomes A0 ∶= A/B, where B is the type of X + 1 + T + Y . This
is the result of intercalation of T together with a concatenated
separator, hence B ∶= A⊙1 (J ●A′). So we add a type assignment
(a,A/(A⊙1 (J ●A′))) to δ.

3. For A(bX,TY ) → A(X,Y )B′(T ), we add the type assignment
(b,A/(A⊙1 (J ●B′))) to δ.

4. A(a,T )→ A′(T ) denotes the following derivation:
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T ∶ A′ a ∶ A1....
a + 1 + T ∶ A

The type assignment for a becomes A1 ∶= (A/A′)/J (note here
that we could as well have given A1 ∶= A/(J ●A′)), and we add
to δ (a, (A/A′)/J).

5. For A(b, T )→ B′(T ), we add the type assignment (b, (A/B′)/J .

Our final grammar G looks as follows:

S′ = A⊙1 I
a ∶ A′; (A/A′)/J ;A/(A⊙1 (J ●A′))
b ∶ B′; (A/B′)/J ;A/(A⊙1 (J ●B′))

An example derivation of abab looks as follows:

0 ∶ I
a ∶ A/(A⊙1 (J ●A′))

b ∶ (A/B′)/J 1 ∶ J
b + 1 ∶ A/B′

E/
b ∶ B′

b + 1 + b ∶ A E/ 1 ∶ J a ∶ A′

1 + a ∶ J ●A′ I●
b + 1 + a + b ∶ A⊙1 (J ●A′)S I⊙1

a + b + 1 + a + b ∶ A E/
a + b + a + b ∶ A⊙1 I

I⊙1

Before we move to the proof of the converse statement, we define the set of
all possible decompositions of types, i.e. for A/(B/C) the set of all possible
decompositions is {RA/(B bsC),RB bsC ,RC}.

Definition 25. Let Tp be a finite set of D1 types. We inductively define
the set P (Tp):

1. Every A ∈ Tp is in P (Tp),

2. If some type A/B ∈ P (Tp), then B ∈ P (Tp),

3. If some type B/A ∈ P (Tp), then B ∈ P (Tp),

4. If some type A ●B ∈ P (Tp), then A,B ∈ P (Tp),

5. If some type A ↑k B ∈ P (Tp), then B ∈ P (Tp),

6. If some type B ↓k A ∈ P (Tp), then B ∈ P (Tp),

7. If some type A⊙k B ∈ P (Tp), then A,B ∈ P (Tp).

Lemma 6. For every nD1-grammar G, there is a strongly equivalent (n+1)-
sRCGwn R.
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Proof. Let G = (Σ, δ, S) be an n D-grammar with ord(D) = 1. We con-
struct R = (N,T,V,P,S′) as follows:

� N = P (Tp) where Tp is the image of δ (for reading comfort, we super-
script predicate names on R).

� T = Σ

� V is generated by the algorithm that produces P .

� P is generated by the following algorithm:

1. Initialization: P = {A(w)→ ε∣t ∈ Σ,A ∈ δ(w)}
2. Recursion: Until each type is fully decomposed (that is, for 2 to
len(G)), iteratively add for each clause c ∈ P new clauses that
simulate derivations in D, that is to say, Pnew is constructed as
in Figure 5:

Note that this conversion has a runtime complexity of O(∣Σ∣ ⋅ len(G)) =
O(∣Σ∣) and thus is linear in time. Now we need to show that LT (G) = LT (R).
(⇒) Let w = w1, ...,wn ∈ LT (G). By definition, there exists a derivation tree
D = (V, l,E, r)of G for w. We need to show that there exists a derivation
tree of R for w. We construct a derivation tree D′ = (V ′, l′,E′, r′) of R as
follows:
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� For each wi for 1 ≤ i ≤ n, we add a leaf vi to V ′ with r-yield(vi) =
{⟨i − 1, i⟩} and l′(vi) = Rδ(wi).

� For each internal vertex v0 ∈ V and it’s daughter vertices v1, v2 ∈ V
(starting from the first parent vertices of the leaves), we have three
cases:

1. It represents a [E /] ([E /]) rule where l(v1) = 1 ∶ J (l(v2) = 1 ∶ J).
In this case, let r-yield(v′2) = {(⟨i1, j1⟩, ..., ⟨im, jm⟩)}. Then we
add a leaf v′1 to V ′ with r-yield(v′1) = {⟨i1, i1⟩} and l′(v′1) = J . We
add a new internal vertex v′0 to V ′ with edges to v′1, v

′
2 and with r-

yield(v′0) = {(⟨i1, i1⟩, ⟨i1, j1⟩, ..., ⟨im, jm⟩)} and l′(v′0) = l(v0). For
the [E /] case, we swap v′1 and v′2.

2. It represents a standard [E /] ([E /]) rule. In this case, let r-
yield(v′1) = {⟨i, j⟩} and r-yield(v′2) = {⟨j, k⟩}. We add a new
internal vertex v′0 with edges to v′1, v

′
2 and with r-yield(v′0) =

{⟨i, k⟩} and l′(v0) = l(v0). Again, the case of [E /] is analog.

3. It represents a [I●] rule where l(v1) = 1 ∶ J (l(v2) = 1 ∶ J). In this
case, let r-yield(v′2) = ⟨i, j⟩. Then we add a leaf v′1 to V ′ with r-
yield(v′1) = {⟨i, i⟩} and l′(v′1) = J . We add a new internal vertex
v′0 to V ′ with edges to v′1, v

′
2 and with r-yield(v′0) = {(⟨i, i⟩, ⟨i, j⟩)}

and l′(v′0) = l(v0). For E / case, we swap v′1 and v′2.

4. It represents a standard [I●] rule. In this case, let r-yield(v′1) =
{⟨i, j⟩} and r-yield(v′2) = {⟨j, k⟩}. We add a new internal vertex
v′0 with edges to v′1, v

′
2 and with r-yield(v′0) = {⟨i, k⟩} and l′(v0) =

l(v0).
5. It represents a [E ↓k] rule where l(v1) = 0 ∶ I (l(v2) = 0 ∶ I).

In this case, let r-yield(v′2) = {(⟨i1, j1⟩, ..., ⟨im, jm⟩)}. We add
a new internal vertex v′0 to V ′ with an edge to v′2 and with r-
yield(v′0) = {(⟨i1, j1⟩, ..., ⟨ik, jk+1⟩, ...⟨im, jm⟩)}. The [E ↑k] is
analog.

6. It represents a standard [E ↓k] rule. In this case, let r-yield(v′1) =
{(⟨i1, j1⟩, ..., ⟨im, jm⟩)} and r-yield(v′2) = {(⟨p1, q1⟩, ..., ⟨pl, ql⟩)}.
We add a new internal vertex v′0 to V ′ with edges to v1, v2 and
with

r-yield(v′0) =
{(⟨i1, j1⟩, ..., ⟨ik, jk⟩, ⟨p1, q1⟩, ..., ⟨pl, ql⟩, ⟨ik+1, jk+1⟩, ..., ⟨im, jm⟩)}.
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Note here that ⟨ik, jk⟩, ⟨p1, q1 collapses into ⟨ik, q1 if there is not
a separator but a terminal symbol, idem for the right side. The
[E ↑k] is analog.

7. It represents a [I⊙k] rule. In this case, let

r-yield(v′1) = {(⟨i1, j1⟩, ..., ⟨im, jm⟩)}
r-yield(v′2) = {(⟨p1, q1⟩, ..., ⟨pl, ql⟩)}.

We add a new internal vertex v′0 to V ′ with edges to v1, v2 and
with

r-yield(v′0) =
{(⟨i1, j1⟩, ..., ⟨ik, jk⟩, ⟨p1, q1⟩, ..., ⟨pl, ql⟩, ⟨ik+1, jk+1⟩, ..., ⟨im, jm⟩)}.

Note here that ⟨ik, jk⟩, ⟨p1, q1 collapses into ⟨ik, q1 if there is not
a separator but a terminal symbol, idem for the right side.

Once we have had all vertices of D, we obtain a derivation tree for R where
r-yield(r′) = ⟨0, n⟩ and l′(r′) = S′, and thus conclude that LT (G) ⊆ LT (R).
(⇐) Let w = w1, ...,wn ∈ LT (R). By definition, there exists a derivation tree
D = (V, l,E, r) of R for w. We need to show that there exists a derivation
tree of G for w. Basically, We construct a derivation tree D′ = (V ′, l′,E′, r′)
of G as follows:

� For each leaf vi ∈ V with r-yield(vi) = {⟨i− 1, i⟩}, we add a lexical leaf
v′i to V ′ with l′(vi)′ = wi ∶ l(vi),

� For each leaf v ∈ V with r-yield(v) = {⟨i, i⟩} for some i, add a leaf v′

to V ′ with l′(v′) = 1 ∶ J ,

� For every internal node v0 ∈ V that has only one daughter (thus repre-
senting a concatenation of ranges) v1 we add a leaf v′2 with l′(v′2) = 0 ∶ I

� For every internal vertex v ∈ V , let ρ ∈ r-yield(v). We add an internal
vertex v′ to V ′ with l′(v′) = ρ(w) ∶ l(v) and we copy the edges of v to
v′. In the case that v (v′) only has one daughter, say v1 (v′1), we have
added a new leaf v′2 with l′(v′2) = 0 ∶ I and so we add a new edge from
v′ to v′2.

If we have ‘copied’ the entire derivation tree D into a new tree D′ it is ob-
vious that D′ is a derivation tree for G, because all derivation steps in R
correspond to deduction rules in Displacement Calculus, with the only dif-
ference that 0,1 are not explicitly present, but because only intercalations
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of 0 are represented as a vertex with a single daughter, and only the con-
catenation of a separator 1 involves ε-arguments, we can safely make this
construction. We therefore may conclude that LT (R) ⊆ LT (G).

We conclude that LT (G) = LT (R) and thus complete the proof.

Example. RESPm = {ai1ai2b
j
1b
j
2...a

i
2m−1a

i
2mb

j
2m−1b

j
2m} was shown to be

in the difference class m-MCFL − m-MCFLwn [29]. As an example of
the previous lemma, we show that RESP2 ∈ 3-MCFLwn and argue that
this is generalizable to RESPm ∈ (m + 1)-MCFLwn. Consider RESP2 =
{anbncmdmenfngmhm}. The following 2-D1 grammar describes RESP2:

S′ = (C ⊙2 I)⊙1 I a ∶ A; (((T /F )/E)/J)/B
b ∶ B; ((T ↓1 (A/(T /F )))/E)/J
c ∶ ((T ↓1 (((C/H)/J)/G))/D)/J ; ((C ↓1 U)/D)/J
d ∶D
e ∶ E
f ∶ F
g ∶ ((U ↓2 C)/H)/J
h ∶H

Running the algorithm described in lemma 3, we obtain the following
clauses:
Initial stage:

RA(a)→ ε

R((((T /F )/E)/J)/B)(a)→ ε

RB(b)→ ε

R(((T ↓1(A/(T /F )))/E)/J)(b)→ ε

R(((T ↓1(((C/H)/J)/G))/D)/J)(c)→ ε

R(((C↓1U)/D)/J)(c)→ ε

RD(d)→ ε

RE(e)→ ε

RF (f)→ ε

RG(g)→ ε

R(((U↓2C)/H)/J)(g)→ ε

RH(h)→ ε

The next stage recursively eliminates one /, /, ↓k, ↑k, ●,⊙:
First step:
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R(((T /F )/E)/J)(X1Y1)→ R((((T /F )/E)/J)/B)(X1)RB(Y1)
R((T ↓1(A/(T /F )))/E)(X1, ε)→ R(((T ↓1(A/(T /F )))/E)/J)(X1)
R((T ↓1(((C/H)/J)/G))/D)(X1, ε)→ R(((T ↓1(((C/H)/J)/G))/D)/J)(X1)
R((C↓1U)/D)(X1, ε)→ R(((C↓1U)/D)/J)(X1)
R((U↓2C)/H)(X1, ε)→ R(((U↓2C)/H)/J)(X1)

Second through last step:

R((T /F )/E)(X1, ε)→ R(((T /F )/E)/J)(X1)
R(T ↓1(A/(T /F )))(X1,X2Y1)→ R((T ↓1(A/(T /F )))/E)(X1,X2)RE(Y1)
R(T ↓1(((C/H)/J)/G))(X1,X2Y1)→ R((T ↓1(((C/H)/J)/G))/D)(X1,X2)RD(Y1)
R(C↓1U)(X1,X2Y1)→ R((C↓1U)/D)(X1,X2)RD(Y1)
R(U↓2C)(X1,X2Y1)→ R((U↓2C)/H)(X1,X2)RH(Y1)
R(T /F )(X1,X2Y1)→ R((T /F )/E)(X1,X2)RE(Y1)
R(A/(T /F ))(Y1X1,X2Y2)→ RT (Y1, Y2)R(T ↓1(A/(T /F )))(X1,X2)
R(((C/H)/J)/G)(Y1X1,X2Y2)→ RT (Y1, Y2)R(T ↓1(((C/H)/J)/G))(X1,X2)
RU(Y1X1,X2Y2)→ RC(Y1, Y2, Y3)R(C↓1U)(X1,X2)
RC(Y1, Y2X1,X2Y3)→ RU(Y1, Y2, Y3)R(U↓2C)(X1,X2)
RT (X1,X2Y1)→ R(T /F )(X1,X2)RF (Y1)
R(T /F )(X1Y1,X2)→ RA(Y1)R(A/(T /F ))(X1,X2)
R((C/H)/J)(X1,X2Y1)→ R(((C/H)/J)/G)(X1,X2)RG(Y1)
RT (X1,X2Y1)→ R(T /F )(X1,X2)RF (Y1)
R(C/H)(X1,X2, ε)→ R((C/H)/J)(X1,X2)
RC(X1,X2,X3Y1)→ R(C/H)(X1,X2,X3)RH(Y1)
RS(X1X2X3)→ RC(X1,X2,X3)

We can simplify the result by lexicalizing the clauses. We then obtain the
following grammar:

RS(XY Z)→ RC(X,Y,Z)
RC(Xc, dY g, hZ)→ RC(X,Y,Z)
RC(Xc, dY g, h)→ RA(X,Y )
RA(aXb, eY f)→ RA(X,Y )
RA(ab, ef)→ ε

In this somewhat simpler description of the grammar, it is quite easy to
see that we can make a generalization of the grammar, even if we want to
have that i, j ≥ 0. For RESPm = {ai1ai2b

j
1b
j
2...a

i
2m−1a

i
2mb

j
2m−1b

j
2m∣i, j ≥ 0}, a

(m + 1)-sRCGwn can be depicted as follows:
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S(X1...Xm+1)→ C(X1, ...,Xm+1)
C(X1b1, b2X2b3, ..., bm−2Xmbm−1, bmXm+1)→ C(X1, ...,Xm,Xm+1)
C(X1, ...,Xm, ε)→ A(X1, ...,Xm)
A(a1X1a2, a3X2a4, ..., a2m−1Xma2m)→ ε
A(ε1, ..., εm)→ ε

Theorem 2. D1L = sRCLwn

Proof. This follows directly from lemma 2 and lemma 3.

Corollary 1. 0D(1)L = L = CFL

Proof. 1-sRCGwn is trivially equivalent to CFG, and CFL is equivalent
to L by [26].

Corollary 2. 1D1L = TAL
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14 Conclusion and further directions

We showed some expressivity results for Displacement Grammar which led
to the idea of the equivalence between D1 and sRCGwn. To accomplish this
result, we showed a lexicalized normal form for simple Range Concatenation
Grammar. As we argued in the introduction that well-nested MCFG/sRCG
may be the most appropriate way to describe the class of Mildly-Context
Sensitive Languages, we claim here that the first-order fragment of general
Displacement Calculus has the same status within the Categorial Grammar
view, also because it admits the same kind of control property we find in
MCFG. Putting this in the light of the result of [28], it could very well
be that the difference class MCFG −MCFGwn corresponds to the differ-
ence class D−D1, where D denotes normal general Displacement Calculus.
A first idea is to copy the result of Pentus by applying it to general Dis-
placement Calculus, but it appears not to be possible since Displacement
Calculus inherits incompleteness from the Lambek Calculus with respect to
the unit ( [25], [32] ).

Another idea within the Categorial approach concerns the upper bound
on generative capacity of the LG calculus, which is as yet still unknown.
Several authors have pointed to grammar formalisms that may be good
candidates, including Global Index Grammar (GIG), introduced by [4],
MCTAG, and MCFG. We think that GIG exceeds the expressive power of
LG, since it exceeds MCTAG and MCFG and none of the languages of which
we know that they can be generated in LG, are not included in MCTAG and
MCFG. Furthermore, we think that a comparison between D and LG may
be appropriate. As [17] shows, the control that LG exhibits for counting
dependencies, for example, can be done through transition schemes in both
residual families of connectives (if we regard a1/a2 as a transition from a
state a1 to a2). Normally, when we give type assignments involving the dual
residual connectives ⊘,⦸ (see [21], [17], [24] for further explanation and
examples), some parts are able to nest into an arbitrary leaf in the derivation
structure through the interaction principles, thus we need to exhibit the
control described to direct types to the leaves they should nest into, and
in this way structuring the language described. There is an alternative
definition of Displacement Calculus where ↑, ↓ can be used to let strings
intercalate anywhere in a structure instead of just at a separator position
that was pointed out beforehand. The only difference here is that in LG the
legitimate orders of words is forced off by directing types, whereas in the
alternative Displacement calculus, these orders are forced off by pointing
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out the strings that may be intercalated.
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