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Abstract

In the last few years supercapacitors, high performance electricity storage systems,
have attracted the attention of researchers due to the fundamental interest and wide
range of applications. Carbon-based electrodes provide a larger capacitance thanks to
their large surface area which has already been widely studied for the case of a single-
plate capacitor. Hence, we have developed a new model trying to mimic the behaviour
of a supercapacitor by a multiple-stack electrode-electrolyte system. We first analyse
it solving Poisson-Nernst-Planck equations and by an equivalent equilibrium circuit
model, with a sudden switching-on of the potential. Then, we go a step further in
the circuit model to give solution for any time-dependent potential, though just a
triangular periodic one is chosen to be studied within the thesis. Finally, we also make
some simulations varying the geometry of the model.
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1 Introduction

1.1 Motivation

In the 1950s, the company General Electric started analysing porous carbon electrodes in
order to design capacitors with a huge effective surface area [1]. As is widely known from
basic electrostatics, the energy E stored in a capacitor of capacitance C equals,

E =
1

2
Cψ2, (1)

where ψ refers to the applied voltage. For a parallel plate capacitor, the capacitance has the
form

C =
εA

d
, (2)

with ε the dielectric constant of the region in between, A the area of the plates, and d their
separation distance. Thus, collected energy in such capacitor for a given potential increases
linearly with the area,

E =
ε

2d
Aψ2. (3)

Not long later, in 1957 H.Becker developed a “Low voltage electrolytic capacitor with porous
carbon electrodes” and he wrote about it: “It is not known exactly what takes place when
the devices are used as energy storing devices, but tests have demonstrated that when used as
a low voltage electrolytic capacitor, it exhibits an extremely high capacitance”[2]. Structure
that we will later discuss, double layer mechanism, was still unknown.

In 1999, Brian Evans Conway coined the term supercapacitor in order to refer to the
system which was enable to store electrical charge due to previously mentioned double-layer
and as result of reactions with pseudocapacitance charge transfer of ions between electrode
and electrolyte. Our interest in studying such system comes from the fact that it is an energy
harvesting method currently very demanded due to its applicability and increasingly being
used for transport applications where rapid charging and discharging are required [3].

The relation among the porous structures and the charging dynamics of supercapacitors
is poorly understood. Transmission line models ([4],[5],[6]) are capable to fit experimental
data. Nonetheless, parameters therein do not have a direct interpretation in terms of micro-
scopic properties of supercapacitors. Besides, at the moment molecular dynamics simulation
([7],[8],[9]), lattice Boltzmann simulations [10], and classical dynamic density functional the-
ory [11] can give some insight about the charging mechanisms of a single or a few nanopores
or a nanoscale anode-cathode model. However, predicted relaxation time scales are orders
of magnitude smaller than experimentally measured [12]. Recently a new model to mimic
the behaviour of carbon porous electrode has been developed by our research group, Soft
Condensed Matter, from Utrecht University [13]. It mainly consist of many parallel pla-
nar electrodes in which ions of an electrolyte form electric double layers, topic that will be
largely discusses below. Hence, our aim in this thesis is to study the charging dynamics of a
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supercapacitor solving the proposed Poisson-Nernst-Planck equations that describe the ion
dynamics and comparing it to the proposed equivalent equilibrium circuit model.

1.2 Previous Work

“If I have seen further it is by standing on the shoulders of Giants.” Isaac Newton 1675.

As any structure, knowledge is built up by adding pieces to an already existing base.
Hence, any good work must rely on previous ones with the aim of keeping constructing under
safe foundations. Therefore, before starting with the technical part of the thesis we would
like to shortly comment which references have been crucial in order to carry out this research
project.

To begin with I had to start diving into the topic by reading [14] which provided me a
clear insight of the topic I was about to dive into. Thus, this is the main source from where we
have extracted the needed information in order to develop a proper theoretical background,
detailed in section 2.

Regarding to section 3, we have to cite these two works [13] and [15]. Both have been in-
credibly useful in order to set a consistent base from which first reproduce some calculations.
On the one hand, the analytical solutions of the PNP equations were derived by following
[15], however we managed to use our own development based on techniques from [16] and
since we consider they might not be easy to follow for a Bachelor student, all the procedure
done to solve them is fully detailed in Appendix A.1. On the other hand, information about
RC equivalent circuit model has been extracted from [13] where the case of the sudden po-
tential was studied.

Later on, we went ahead with some new ideas and questions that I, along with my both
supervisors have come up with. One of them was the introduction of the so called cyclic
voltammetry within our system the after reading [17].
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2 Theoretical Background

In this section some useful theoretical analysis is presented as an introduction for the tools
we shall use when dealing with the real physical system since we consider it is rather useful
to built up a pre-knowledge on the topic.

2.1 Electric Double Layer (EDL)

To start with, the reader should have a qualitative idea about one of the most important
features of the system, the formation of Electric Double Layer. This phenomenon occurs
when a planar charged stack is placed in a electrolyte. Now you might wonder what an
electrolyte is. Basically it is a substance that produces an electrically conducting solution
when dissolved in a polar solvent, such as water. Regarding to electrolyte properties, it is
known that some salts tend to dissociate spontaneously in liquids such us water, creating ions.
By Thermodynamics we know spontaneous processes occur at constant T if the Helmholtz
free energy is reduced. Due to the relation, F = U−TS, we actually know how electrostatics
and entropy are involved in such processes. Basically, energy has to be done again their
natural Coulomb interaction, so U must increase. Thus, dissociation should happen just if
S increases as well. Created ions leave the surface (counterions) while the opposite charged
ones stay bounded (coions). Due to the Second Law of Thermodynamics (i.e., for entropic
reasons) they will have a tendency to distribute in the whole space as homogeneously as
possible. Hence, the equilibrium between both opposing effects lead to the so called electric
double layer. The typical distance between the EDL and the planar surface is called Debye
length, commonly defined as follows:

κ−1 =

√
εkBT

8πe2ρb
. (4)

with e being the standard notation for the charge of the electron, ρb the bulk density, kB the
Boltzmann constant and T the temperature of the system. This expression will be derived
in the next section.

2.2 Electrostatics in liquids

We start our discussion of the charging dynamics of the supercapacitor by analysing the
EDLs through the classical and perhaps the most simple example of the single charged wall
in contact with electrolyte.
The starting point, it’s of course, one of the fundamental laws in electrostatics, the so called
Poisson equation,

∇2ψ(r) = −4π

ε
Q(r), (5)

that relates the local charge density within the electrolyte, Q(r), to the electric potential
ψ(r). Besides, it can actually be rewritten as Q(z) = e(ρ+(z) − ρ−(z)), with ρ± density
of ± ions, due to the fact that our analysis is within a planar geometry in a x-y plane for
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z > 0. In order to simplify, φ(z) = eψ(z)
kBT

will be conveniently taken as dimensionless “effective
potential” for the following derivations. Therefore Eq.(5) equation becomes

∂2
zφ(z) = − 4πe2

εkBT
(ρ+(z)− ρ−(z)). (6)

Under equilibrium assumption we make an ansatz (which can be derived by the density
functional theory as well) by approximating ionic densities by the so called Boltzmann dis-
tribution,

ρ±(z) = ρb exp(∓φ(z)). (7)

By introducing the Boltzmann distribution to the Poisson equation, i.e., to Eq.(6), we get

∂2
zφ(z) = κ2 sinhφ(z), (8)

where κ−1, is the so called Debye length previously given in Eq.(4). When dealing with
second order differential equation two boundary conditions are required which are chosen to
be the following {

limz→∞ φ(z) = 0,

φ(0+) = −4πλBσ.
(9)

we conveniently introduce the so called Bjerrun length λB = e2

εkBT
, which is property of the

solvent and it is defined as the distance in which Coulomb interaction between two dissolved
unit charges e equals kBT .
The first condition comes from the fact that potential has to be finite at infinity and second
due to the fact that we apply global charge neutrality so the total ionic charge must be
opposite to the total charge on the surface, i.e,

σ = −
∫ ∞

0

Q(z)dz =
4πe

ε
φ′(z)

∣∣∣∣∣
∞

0

= −4πe

ε
φ′(0+). (10)

Thus, analytical solution to Eq.(8) along with the BC’s from Eq.(9) is known as Gouy-
Chapman solution (GCs)

φ(z) = 2 ln

[
1 + γ exp (−κz)

1− γ exp (−κz)

]
. (11)

where γ =
√

( κ
2πλBσ

)2 + 1− κ
2πλBσ

, so that ionic densities:

ρ±(z) = ρb

[
1∓ γ exp (−κz)

1± γ exp (−κz)

]2

. (12)

This analytic solution is interesting because should represent the limit for z →∞ of the time-
dependent system results,i.e., when the distance between parallel plates within the capacitor
goes to infinity.
For a fixed surface potential, φ(z = 0) = φ0 at the electrode, γ takes the following form:
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γ =
e
φ0
2 − 1

e
φ0
2 + 1

,

then, the potential and profile densities are plotted for different values of φ0:

(a) (b)

Figure 1: Profiles of the dimensionless potential φ(z) (a) and ionic concentrations ρ±(z)
ρs

(b)
as a function of the dimensionless distance, κz, for a planar electrode with different values
of φ0.

Of course it is important to note that GCs does not describe the whole picture, there
are cases in which ions are absorbed by the wall in which this solution is not valid anymore,
however, under the assumptions we are interested in, it does work.

2.3 Transport phenomena

We consider an electrolyte flowing along charged surfaces and then notice that fluid can not
only be driven by a pressure gradient but also by an electric field created due to a voltage
difference, a phenomenon known as electro-osmosis (motion of liquid induced by an applied
potential across a porous material, significant when in small channels). As a general remark,
let us assume our system has i species of zi valency, with ε dielectric constant η viscosity, T
temperature and it is in contact with electrodes. We first consider the continuity equation:

∂ρi(r, t)

∂t
+∇ · J i(r, t) = 0. (13)

Different contributions to flux are considered :

1. Diffusive. Given by Fick’s linear response law, under the assumption of steady state.
The flux goes from regions of high concentration to lower ones with a magnitude pro-
portional to the gradient,

Ji = −Di∇ρi,
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where Di is the diffusion coefficient or diffusivity. Note that this is a first order approx-
imation since we could as well consider higher (odd) order derivatives.

2. Conductive. It can be rewritten in terms of diffusion coefficient due to fluctuation-
dissipation by using Einsteins relation:

Ji = ρivi = Di
zieρiE

kBT
.

vi refers to the flux velocity and E to the electric field within the system. Velocity is
the ratio between the electric force (zieE) and the Stokesian friction term (6πηai, being
ai the ionic radius). Moreover, as usual, E = −∇ψ.

Therefore, after the mentioned considerations we find out that flux as following form:

Ji = Di(∇ρi +
zieρi
kBT

E). (14)

Note that this is consistent with the previous derivation since under equilibrium assumption
(Ji = 0) it is trivial to check that we actually recover the Boltzmann distribution of Eq.(7)
for the ionic density.

2.4 Poisson-Nernst-Planck equation

Joining all the concepts presented in Eqs.(6),(13) and (14) we can derive the so called classical
Poisson-Nernst-Planck (PNP) equations, in order to model the ionic dynamics, assuming not
only spatial but also time dependence. We focus on a planar geometry with normal coordinate
z and invariance in the x and y directions and we consider only one specie, unique i, such
that we can write the PNP equations as

∂2
zφ(z, t) = −κ2

[
ρ+(z, t)− ρ−(z, t)

2ρb

]
,

∂tρ±(z, t) = −∂zj±(z, t),

j±(z, t) = −D [∂zρ±(z, t)± ρ±(z, t)∂zφ(z, t)] .

(15)

Recall that, J±(r) · ẑ = j±(z), thus, j± describes the ionic flux along z axis. With this set
of equations, our main goal now is to set boundary conditions which help us describing our
system as accurately as possible.

2.5 Multiple stack model

As a short preview of the proposed model we wish to describe a cathode and an anode, both
are of thickness H and with a surface distance 2L as shown in Figure.14. In order to mimic
the porous structure of the cathode at potential Φ(t) and the anode at potential −Φ(t), we
defined the planes Zi = ±[L− (i−1)h] and set φ(∓Zi, t) = ±Φ(t). The porosity is mimicked
by h = H

n−1
for n ≥ 2, while the model reduces to the single-plate capacitor for case n = 1.
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Once the theoretical background is presented it is time to face up with the physical
Electrode-Electrolyte system concerning this thesis. First of all, the simplest set up is an-
alyzed in order to get a deeper understating of the problem. Later on, we increase the
dimension of the system as a way to introduce matrix notation and to finish with general n
problem, which is our final goal.

3 Single-plate capacitor

To begin with, single-plate capacitor case is used to analyse the system under easier condi-
tions, because although it contains the same physics, it is way more manageable and illumi-
nating.

3.1 Step function potential

Analysis of the simplest case with a sudden switching on the potential is presented by using
two different approaches, finding analytical solution to the PNP equations and solving the
equivalent RC circuit model.

Figure 2: Diagram of our stack electrode model for the case that it reduces to a single-plate
capacitor of 2L width. Such system is shown at t = 0, when potential difference is set to be
2Ψ and ionic densities take value ρ±(z, t = 0) = ρb.

As shown in Fig.2 potential difference is set at the initial time,i.e.:

φ(±L, t) =

{
0 t < 0,

∓Φ0 t ≥ 0.
(16)

This sudden switching on of the potential should produce a increase of the surface charge on
the electrode’s plates until it reaches a saturation value when is it completely charged. This
behaviour is qualitatively represented in Fig.3. Its time dependency will vary according to
the geometry of the system.

3.1.1 Analytical Solutions

Equations that describe the ionic dynamics of the system described in Figure.2 have already
been given in Eq.(15), which under some concrete assumptions can be analytically solved.
Boundary conditions, are given by the fact that electrodes have to be impermeable and the
voltage difference between both electrodes is 2Φ0, hence
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Figure 3: Qualitative illustration of how step function potential causes an increase on the
surface charge of the electrodes in the single-plate capacitor.

{
j±(±L, t) = 0,

φ(±L, t) = ∓Φ0.
(17)

These equations can be actually rewritten in such way that we make variables dimensionless
which will simplify the procedure to find out solution which is indeed hard in itself. Let us
define relative charge density and relative ion concentration as ρe = ρ+−ρ−

2ρb
and c = ρ++ρ−

2ρb
.

Similarly we make time and position dimensionless z∗ = z
L

and τ = tκD
L

. Relative charge and
concentration flux, je = −(∂z∗ρe + c∂z∗φ) and jc = −(∂z∗c+ ρe∂z∗φ). To end up with, let us
taking a dimensionless parameter λ = 1

κL
.

One remark regarding to notation: dimensionless physical quantities such as time or potential
will always be noted by using τ and φ (or Φ) while other quantities will be marked with the *
symbol (λ does not represent any quantity, that is why * is not used). PNP can be rewritten
dimensionless as follow:

∂2
zφ(z∗, τ) = −λ−2ρe(z

∗, τ),

∂τρe,c(z
∗, τ) = −λ∂z∗je,c(z∗, τ),

je(z
∗, τ) = −(∂z∗ρe(z

∗, τ) + c(z∗, τ)∂z∗φ(z∗, τ)),

je,c(±1, τ) = 0,

φ(±1, τ) = ∓Φ0.

(18)

Under assumption of small potential Φ0 � 1, then c ≈ 1, since a small potential at the
electrodes would make derivatives of potential remain small, hence, jc will be small in the
system. Joining first three equations above the following differential equation is obtained,
while boundary conditions are maintained:

∂ρe(z
∗, τ)

∂τ
= λ

∂2ρe(z
∗, τ)

∂z∗2
− 1

λ
ρe(z

∗, τ). (19)

By using the methods described in Appendix A.1 in Laplacian space Eq.(19) transforms as

sρe(z
∗, s)− ρe(z∗, 0) = λ

d2ρe(z
∗, s)

dz∗2
− 1

λ
ρe(z

∗, s). (20)

Note that the relative ionic density evaluated in t = 0 is null because ρ−(z∗, 0) = ρ+(z∗, 0).
Then, Eq.(20) becomes:
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d2ρe(z
∗, s)

dz∗2
= k2ρe(z

∗, s), (21)

where k2 = 1
λ2 (1 + sλ). Solutions are straightforward and applying the fact that we require

to be anti symmetric, i.e, B(s) = 0, our solution

ρe(z
∗, s) = A(s) sinh kz∗. (22)

where A(s) is explicitly shown in Apppendix A.1 since we consider it’s not essential for the
understanding of the derivation. By now, it is enough to know it’s a function of s. Boundary
conditions have to be transformed as well to the Laplacian space,{

je(±1, s) = 0,

φ(±1, s) = ∓Φ0

s
.

(23)

Solution for dimensionless charge density in Laplacian space is given by:

σ∗(s) =
2A(s)

kλ
(1− cosh k). (24)

As explained in Appendix A.1, under Debye time, tD, some neighbour ions might have
swapped their position, however, neutrality is maintained because voltage had no time
change. In other words,the system shows little reaction for tD � t.
Under such condition we get:

σ∗(s) =
Kσ∗s

−1

1 + sτσ∗
, (25)

where Kσ∗ and τσ∗ terms are explicity shown in Appendix A.1. However, the main point is
that inverse for Eq.(25) is indeed straightforward,

σ∗(τ) = Kσ∗(1− e
− τ
τσ∗ ). (26)

Moreover, if κ−1 � L, i.e. , if we assume that width of the capacitor is much bigger than
Debye’s length, then the dimensionless quantities defined before become more manageable,

τσ∗ ≈ 1− λ

2
,

Kσ∗ ≈ ±2Φ0.

Under this assumption dimensionless charge density and the actual relaxation time :

σ∗(τ) ≈ ±2Φ0(1− e
−τ

1−λ2 ), (27)

trelax ≈
L

κD
(1− 1

2κL
). (28)
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with tRC = L
κD

. Note that dimensionless time can be actually rewritten as τ = tκ2Dλ,
where λ is an non-dimensional parameter so that we can plot the Eq.(27) for different values

by using ∝ exp
[
−tκ2D

1
λ
− 1

2

]
:

Figure 4: Plot of the analytic result of the surface charge density for small potential, Φ0=0.01,
by using λ−1 = 10, 20, 100, 200 vs the dimensionless time tκ2D.

Figure.4 is replication from [15] with our own code, since we consider it actually shows
some interesting futures of the double layer system. The dimensionless parameter λ represents
the ratio between the half distance among electrodes and the Debye length. So basically in
this plot we can see how fast is the system charged for different values of separations among
electrodes. The bigger the separation within the electrodes the faster the charge density
reaches the saturation value.

3.1.2 Circuit modelling

We can also model the single-plate capacitor as a RC circuit in order to compare results
got from the analytical ones. The EDLs are modeled by a capacitor of C capacitance and
electrolyte resistance by resistor of R resistance.

Figure 5: Our proposed equivalent RC circuit model for the simple case in which general
system is reduced to a single plate capacitor.

Initially a voltage difference of 2ψ is applied. Therefore, the capacitors, initially un-
charged, start to charge by Q(t) = C∆Ψ(t), where ∆Ψ(t) is the time-dependent voltage drop
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in the capacitor. By Kirchhoffs Law, the applied voltage difference has to be equal to the
drop in all the components of the circuit, which means 2Ψ = 2∆Ψ(t) + IR.
The current flowing through the system can be deduced by the Ohm’s law, I = Q̇(t) =
C∆Ψ̇(t) so we therefore have the differential equation that describes our system with the
initial condition of the capacitors being uncharged, i.e.,

∆Ψ̇(t) = [Ψ−∆Ψ(t)]
2

RC
,

∆Ψ(t = 0) = 0,

which solution is the following:

∆Ψ(t) = Ψ
[
1− e−

2t
RC

]
. (29)

By substituting the solution we are actually able to describe the charge within the capacitor
on time,

Q(t) = CΨ
[
1− e−

t
tRC

]
, (30)

with C = Aεκ and R = 2L
Aεκ2D

. Besides, tRC = RC
2

is known as RC time, previously defined
as,

tRC =
L

κD
. (31)

Eq.(28) is indeed a result of great importance because it shows that the relaxation time of
the system is basically equal to RC time when κL � 1 . Thus, we find that surface charge
from the analytical solution and charge of the RC circuit equation have the same behaviour.
Moreover, we can actually see how RC time depends on the geometry of the system. Current
is, thus, obtained:

I(t) =
2Ψ

R
e
−t
tRC . (32)

Figure 6: Plot of the time dependence of the dimensionless surface charge (orange) and
current (blue) of the single-plate capacitor in our RC circuit model.
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3.2 Time dependent potential

Now we would like to analyse the behaviour of the single-plate capacitor in case the applied
potential difference varies with time. Thus, we shall consider the case in which the applied
potential is not anymore a step function in which the potential remains constant over time
but could have any given time dependence. Required equations are already given in Eq.(28),
but now slightly modified introducing Ψ(t) since now the voltage is time dependent. The
solution to Eq.(28) is fully detailed in the Appendix A.2, obtaining the following expression
for the voltage within the capacitors

∆Ψ(t) =
1

tRC
e
− t
tRC

∫ t

0

Ψ(t′)e
t′
tRC dt′. (33)

Until this point we basically derived how the potential changes over time in the capacitors
under a time dependent potential. We now introduce cyclic voltammetry (CV) [17] which is
a powerful technique in the field of electrochemistry. Due to its simplicity, the triangular-
shaped potential from Fig.(7) is chosen, which varies linearly with time up to a maximum
Ψ0 at t = t0, after which it decays linearly towards Ψ(t) = 0 at t = 2t0. Therefore, we can
define θ = Ψ0

t0
, as the velocity at which the system reaches the fixed maximum potential.

Figure 7: Cualitative plot of the applied triangular shape potential.

This periodic function plotted in Figure.7 can be expanded in Fourier base as follows,

Ψ(t) = Ψ0

[
1

2
− 4

π2

∞∑
m=1,3,5...

1

m2
cos

(
mπ

t0
t

)]
. (34)

with Ψ0 the maximum value at which potential in set and t−1
0 the scan rate, both are parame-

ters chosen by us. I personally think it is important now to explicitly define non dimensional
time scales which will be used in the following sections once and again.

τRC =
t

tRC
, τ0 =

t

t0
, α =

tRC
t0
.

where α is the ratio between both time scales, which we might denominate “coupling constant
of the circuit”. It is important to note that unlike in the case of the sudden switching-on of
the potential, we find out that there are two different time-scales now, tRC of the circuit and
t0 of the source term. Once the Fourier transform of the applied potential is known general
solution is given by substituting it into Eq.(33),
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Figure 8: Plot of the applied triangular potential by using Eq.(34) with mmax = 1001.

∆Ψ(t) =
Ψ0

tRC
e
− t
tRC

[∫ t

0

[
1

2
− 4

π2

∞∑
m=1,3,5...

1

m2
cos

(
mπ

t0
t′
)]

e
t′
tRC dt′

]
. (35)

In order to get to full solution we just integrate as it is explained into Appendix A.3, getting
the following expression:

∆Ψ(t) = Ψ0

(1− e−
t

tRC )

2
− 4

π2

∞∑
m

1

m2

cos
(
mπ
t0
t
)

+mπα sin
(
mπ
t0
t
)
− e−

t
tRC

1 + (mπα)2

 . (36)

However, we might be interested on how the current changes over time. Therefore computing
the derivative of Eq.(36) it is straightforward to get:

I(t) =
2Ψ0

R

e− t
tRC

2
− 4

π2

∞∑
m

1

m2

(mπα)2 cos
(
mπ
t0
t
)
− (mπα) sin

(
mπ
t0
t
)

+ e
− t
tRC

1 + (mπα)2

 . (37)

(a) (b)

Figure 9: In Figure (a) Dimensionless current i = I
θC

plotted vs t
t0

during three periods where
t
t0
∈ [26,32] (b) Dimensionless current vs dimensionless potential. These plots were done by

using mmax = 1001.
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It is important to note that although the most natural dimensionless quantity i = I
Ψ0R−1

is not actually plotted but it is indeed more interesting to take i = I
θC

, so that for small
values of α we get the biggest values of the current.

Figure.9 (a) is plotted in such time range due to the fact that first oscillations do not
give the same current amplitudes because time is not large enough to make the exponential
vanish and reach stability, i.e. t

tRC
= t

t0

t0
tRC

= 26
α

.

t

tRC
=

{
2600 α = 0.01,

2.6 α = 10.

Since t
tRC
≥ 2.6 , then e−2.6 ≈ 0.07. Therefore, we can indeed conclude that for such time the

contribution of the exponential have essentially disappeared and the system is found to be
in a steady state. This is rather important in order to plot Figure.9 (b) because the cycles
need to be stable to get a well defined shape and show why we called it cyclic voltymmetry.
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4 General Electrode-Electrolyte System.

4.1 First approach to matrix notation by example case n=2

We personally consider that before going to the n general case, could be pretty helpful the case
n = 2, since it concerns almost same physics and mathematics but is by far more manageable.
Therefore, RC model is analysed by using the step potential and cyclic voltammetry.

4.1.1 Step function potential

The proposed circuit is the following,

Figure 10: RC circuit for the case n = 2

Applying the Kirchhoffs laws, we will end up with the following equations:

I = I1 + I2,

2Ψ− 2∆Ψ1(t)− IR = 0,

−∆Ψ2(t)− I2R
′ + ∆Ψ1(t) = 0.

As in the previous case, current changes with time in capacitors, I1(t) = 2C∆Ψ̇1(t) and
I2(t) = C∆Ψ̇2(t). Therefore, by simple substitution among the equations describe just above
following differential equations are obtained

∆Ψ̇1(t) =
Ψ

RC
−
(

1

RC
+

1

2R′C

)
∆Ψ1(t) +

1

2R′C
∆Ψ2(t),

∆Ψ̇2(t) =
1

R′C
∆Ψ1(t)− 1

R′C
∆Ψ2(t),

with the following initial conditions:

∆Ψ1(t = 0) = 0 , ∆Ψ2(t = 0) = 0.

It is now useful to translate these equations to matrix form since for the general case will be
way easier to work with.

˙(
∆Ψ1(t)
∆Ψ2(t)

)
=

Ψ

RC

(
1
0

)
− 1

2R′C

(
1 + 2R′/R −1
−2 2

)
︸ ︷︷ ︸

b

(
∆Ψ1(t)
∆Ψ2(t)

)
. (38)



4 GENERAL ELECTRODE-ELECTROLYTE SYSTEM. 16

Eq.(38) can be written as Ẋ = A−BX. One important fact is that matrix B can be diago-
nalized, since the spectral theorem guarantees that any square matrix with real coefficients
is orthogonal diagonalizeable. Hence, we can safely make use of the concepts from basic
linear algebra so that B matrix can be rewritten as B = UDU−1, being U the normalized
matrix with the eigenvectors of B in columns and D the diagonal matrix whose elements
are the eigenvalues that correspond to each eigenvector. Since the matrix b is the one being
diagonalized we explicity note that B = b

2R′C
= b

2R′
R
RC

= b
2rtRC

. For this case we can actually

try to get fully analytical solutions from which we hopefully can extract some useful infor-
mation and conclusions. For simplicity we diagonalize the previously mentioned matrix B as
a function of the relation between resistors, r = 2R

′

R
. As an important remark regarding to

notation Λi is used as the non dimensional eigenvalue extracted from the diagonalization of
b matrix and λi instead for the eigenvalues of matrix B, they are both related as follows:

λi =
Λi

2rtRC
.

We find the eigenvalues of B, λi as and eigenvectors vi as:

λ1 =
3 + r + k

4rtRC
→ v1 =

(
1− r − k

4
, 1

)
,

λ2 =
3 + r − k

4rtRC
→ v2 =

(
1− r + k

4
, 1

)
,

with k =
√
r2 − 2r + 9, which have been chosen due to the fact that this factors appear

once and again in the following derivations. For this specific case the previously mentioned
matrices, thus, take the following form:

D =
1

2rtRC

(
Λ1 0
0 Λ2

)
, U =

(
1−r−k

4
1−r+k

4

1 1

)
, U−1 =

(
− 2
k

k−r+1
2k

2
k

k+r−1
2k

)
, A =

Ψ0

2tRC

(
1
0

)
.

As important remark, eigenvalues in D matrix are sorted by value, being Λ1 ≥ Λ2.
As we will prove in Section 4.2.3, we can write the general solution to proposed Eq.(58) in
the following way:

X(t) = U [1− e−Dt]D−1U−1A. (39)

where all matrices are, being n = 2 and without lost of generality , the ones defined above.
Before stepping into computational simulations I consider it is rather important to extract
some information about Eq.(39) in order to verify if it actually describes the system we are
looking for. To start with, it can be easily checked that at t = 0 the initial condition is
indeed fulfilled, X(t = 0) = 0. Moreover for large t, as both eigenvalues are positive, we get
X(t→∞) = UD−1U−1A, which means

X(t→∞)

Ψ0

=
2r

k

(
1−r−k

4
1−r+k

4

1 1

)( 1
Λ1

0

0 1
Λ2

)(
−1
1

)
,

if we carry out the matrix multiplication then we end up getting,
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X(t→∞)

Ψ0

=
r

k

(
4

3+r−k −
4

3+r+k
1−r+k
3+r−k −

1−r−k
3+r+k

)
, (40)

which shows the fact that for long enough times both capacitors will reach some full charge
capacity. Although this expression might look useless at a first glance it will be useful to check
if our plot is correct. If the potential is plotted for the simplest possible case analytically
speaking, that is to say, r = 1. From Eq.(40) we can predict that for large times,

X(t −→∞)

Ψ0

=

(
1
1

)
.

Moreover I consider it would be interesting to look for the charge within the capacitors
by multiplying with the capacitance Q(t) = CX(t). Thus, the behaviour of the charge is
basically the same, with the weighted factor that takes into account different values of the
capacitance with the matrix C that represent capacitance so it is a diagonal matrix with
weighted values times C.

(a) (b)

Figure 11: In plot (a) dimensionless potential ∆Ψi
Ψ

vs t
tRC

, in (b) dimensionless charge Q
ΨC

is plotted vs t
tRC

to show the behaviour of the capacitors from the RC circuit model for the
example case n = 2. Blue line refers to the inner capacitor and orange to the outer one.

In Figure.11(a) we can see that the inner capacitor’s, the one related to the biggest
eigenvalue, charging process is faster, as expected. Results shown in Figure.11(b) make sense
since the capacitance of the outer capacitor is half of the other one doe to the fact that the
inner one is twice in contact with the electrolyte.
From Eq.(39) we can derive the current as follows:

I(t) = CẊ(t) = CUDe−DtD−1U−1A. (41)

At this point, in order to continue with the simplification of the expression, we think it is
important that the reader realized that we can safely take this step, since D and e−Dt are
both diagonal matrices, they commute and we can actually exchange their positions getting
the following,
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I(t) = CUe−DtU−1 Ψ

RC
e1,

with e1 = (1, 0, ..., 0), reduced to e1 = (1, 0) within this example analysis of case n = 2.

i(t) =
I(t)

ΨR−1
=

(
2 0
0 1

)
Ue−DtU−1e1, (42)

this equation although simple, show us an interesting future of the multi-parallel-plate system.
When substituting t = 0 we get no current in the outer branch of the circuit,

i(t = 0) =

(
2 0
0 1

)
UU−1e1 =

(
2
0

)
, (43)

which means that at early times t� tRC the circuit will behave exactly as the simple model
one and when times go on then current will start flowing to the outer capacitors. Moreover,
when time goes to infinity it is straightforward to check that current goes to 0 in the whole
system, because the capacitors charge completely and current cannot flow anymore.
The analytical expression for the current matrix is given by the following equation in terms
of r,

i(t) =

(
−1−r−k

k
e−

Λ1
2r
τRC + 1−r+k

k
e−

Λ2
2r
τRC

− 2
k
e−

Λ1
2r
τRC + 2

k
e−

Λ2
2r
τRC

)
, (44)

For the case r = 1 then k = 2
√

2 this matrix reduces to:

i(t) =

(
e−

2−
√

2
2

τRC + e−
2+
√

2
2

τRC

1√
2

[
e−

2−
√

2
2

τRC − e− 2+
√

2
2

τRC

]) , (45)

Eq.(45) is plotted to indeed check that our predictions made just with basic algebra are
completely fulfilled.

Figure 12: Dimensionless currents i = I
ΨR−1 plotted for RC time scale, solution of the RC

circuit model for the example case n = 2
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Although getting the exact form for the current in the case n = 2 does not seem some-
thing really useful, due to the fact that this could be easily calculated just by multiplying
the matrices using the computer, we personally think it’s rather interesting to see how ex-
ponential of different eigenvalues are linearly combined for each of the currents in the circuit
model. Since this is the only case we consider it’s doable and gives us some basic knowledge
of how things work before enter into general case.

4.1.2 Time-dependent potential

For the time dependent potential case with n = 2, we just consider slight change into the A
matrix so that the potential within it is no more constant, therefore we are now considering
A(t). As done before general solution is presented which will later be largely discussed. Here
we will just focus on the final expression for the solution X(t) of Eq.(63) given by:

X(t) =
Ψ0

2tRC
U

∫ t

0

ψ(s)

Ψ0

eD(s−t)ds U−1e1. (46)

Eq.(46) is basically equivalent to Eq.(35) valid for any chosen form of ψ(t). As before, we
will make use of the triangular potential plotted in Fig.7 which makes our lives easier since
the integral has already been solved in Appendix A.3. Solution is presented in an compact
way:

X(t) =
Ψ0

2tRC
U

(
Ω11 0
0 Ω22

)
U−1e1, (47)

where Ωii(t) = 1
λi

[
(1−e−λit)

2
− 4

π2

∑∞
m

1
m2

cos
(
mπ
t0
t
)

+( mπ
t0λi

) sin
(
mπ
t0
t
)
−e−λit

1+( mπ
t0λi

)2

]
are the results of the

integration of the potential. Remaining matrices above have already been defined for the
case n = 2 in section 4.1.1. We find important, however, to note that the matrix Ωi has
time-dimension due to the fact that we have the eigenvalue’s inverse as pre-factor.
As done for the step potential case, the next steps will be towards getting the analytical
solutions. Reducing the general problem to n = 2 case we end up getting

X(t) =
Ψ0

4ktRC

(
−Ω11(1− r − k) + Ω22(1− r + k)

4(−Ω11 + Ω22)

)
, (48)

which for the case analysed before, r = 1:

X(t)

Ψ0

=
1

4tRC

(
Ω11 + Ω22√
2(Ω22 − Ω11)

)
. (49)

The derivative of the elements is given by,

Ω̇i(τ0) =

e−Λi
2r

τ0
α − 8

π2

∞∑
m

1

m2

(2mπαr
Λi

)2 cos (mπτ0)− 2mπαr
Λi

sin (mπτ0) + e−
Λi
2r

τ0
α

1 + (2mπαr
Λi

)2

 .
Knowing this, it is indeed interesting to look how the current changes in time by just com-
puting the derivative,



4 GENERAL ELECTRODE-ELECTROLYTE SYSTEM. 20

i(t) =
I(t)

Ψ0R−1
=

1

4k

(
2 0
0 1

)(
Ω̇22(1− r + k)− Ω̇11(1− r − k)

4(Ω̇22 − Ω̇11)

)
. (50)

It is possible to check that current is null at t = 0, as expected, knowing the following
relation:

∞∑
m=0

1

(2m+ 1)2
=
π2

8
.

Regarding to the general solution it could be interesting to go through the easiest case again
where r = 1, i.e., 2R′ = R. Under this condition k = 2

√
2 and Eq.(50) becomes,

i(t) =
1

2

(
Ω̇11 + Ω̇22

1√
2
[Ω̇22 − Ω̇11]

)
. (51)

Similarly to Eq.(45) we have explicitly shown how the matrix elements of Ω are linearly
combined to describe the current.

(a) i1 vs t
t0

(b) i1 vs ∆Ψ1
Ψ0

(c) i2 vs t
t0

(d) i2 vs ∆Ψ2
Ψ0

Figure 13: Dimensionless current I
3θC

plotted in time units of t
t0

using in Figures (a), (c)
and vs dimensionless potential in (b),(d) by using mmax = 1001. Each color represents one
current for one specific value of α as shown in the color label.

The current, I, through the resistor R, is given by the sum of both currents I1 and I2.
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4.2 General case

So far we have analysed two concrete cases, n = 1, in which general system was reduced to
single-plate capacitor and n = 2 as a first approach to the matrix problem. Hence, we now
need to go one step further considering n electrodes case, as shown in Figure.14.
Porous carbon supercapacitor are now modeled by n equidistant (h) electrodes such that
whole thickness of the capacitor equals H = (n − 1)h. For convenience we shall choose a
coordinate system in which z = 0 lies in the centre of the capacitor so that Zi = ±(L−(i−1)h)
where index i = 1, ..., n. Moreover, all plates but the outer ones, are permeable to mimic
porosity and those ones are made impermeable in order to close the system.

Figure 14: n parallel plates electrode model

4.2.1 Analytical solutions using step- potential

In order to get the general analytical solutions we can actually re use the set of equations
used in Section 2.1 since they are still valid.

∂2
zφ(z∗, τ) = −ρe(z

∗, τ)

λ2
,

∂τρe,c(z
∗, τ) = −λ∂z∗je,c(z∗, τ),

je(z
∗, τ) = −(∂z∗ρe(z

∗, τ) + c(z∗, τ)∂z∗φ(z∗, τ)),

jc(z
∗, τ) = −(∂z∗c(z

∗, τ) + ρe(z
∗, τ)∂z∗φ(z∗, τ)),

what has to be changed are to boundary conditions since now 2n are required:

je,c[±(1 + (n− 1)
h

L
, τ ] = 0,

φ[±(1 + i
h

L
, τ)] = ∓Φ0,

In this case we consider it’s no more helpful to follow all the steps to reach the solution since
we found way more clarifying the simple case and this is just an extension. Therefore we will
present the solution given by [15]:

σ∗n(τ) = Kn,σ∗(1− e−
τ
τn ). (52)
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For h > 10κ−1 then the approximation made in Section 2.1 is still valid,thus, Kn,σ∗ = 2Φ0.
Now I would like to discuss two different values of τn = tn

tRC
. First one is presented in [15] as:

τni = 2n− 1− λ

2
+
h

L

i−2∑
k=0

2(n− k)− 3, (53)

which we found it could actually be simplified as:

τni = 2n− 1− λ

2
+ r(i− 2)(2n− 2− i), (54)

where r = h
L

in order to be consistent with the notation of the RC model.

(a) r=0.01 (b) r=0.1

(c) r=0.5 (d) r=1

Figure 15: Dimensionless surface charge plotted vs t
tRC

using Eq.(52) and Eq.(54) for Φ0 =
0.01 and λ = 0.01 being n = 5. As usual, blue line goes for the inner capacitor and last one,
purple, for the outer one.

For different values of λ there is no major change in the shape of plots, therefore we
consider they do not add more information. Besides when taking the limit of the simple case,
this expression reduces to the one found in Section 3.1.1, τ ∗σ = 1 − λ

2
as it should. Another

interesting future is that for very large n we can approximate τnn as:

τnn ≈ 2n+ r(n2 − 2n) (55)
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On the other hand there is another time scale proposed in [13], which have been created
by fitting available data. However, it does just describe the relaxation time for the nth
capacitor, due to the fact that relaxation rate is dominated by the smallest eigenvalue, which
corresponds to the last capacitor.

τn = 2n− 1 + r(n− 1)(0.75n− 0.91). (56)

Eq.(56) correctly reduces to τ = 1 for n = 1, for which H
L

= 0, getting the same result as
in Eq.(54) for small values of λ. Besides for large values of n we can actually compare both
expression since Eq.(56) can be approximated as follows,

τn ≈ 2n+ r(0.75n2 − 0.91n). (57)

This is rather interesting since for future applications we might be interested in very large
values of n, therefore this expressions might give us some insight about it.

Figure 16: Plot of the two different time scales proposed above. τnn
2n

refers to Eq.(54) and τn

2n

Eq.(56) using r = 1, 0.5, 0.1, 0.01 for n ∈ [20, 200].

(a) (b)

Figure 17: Plot of the two different time scales, τnn refers to Eq.(54) and τn Eq.(56) using
r =1,0.5,0.1,0.01.Plot (a) shows for small and (b) for big n.

Results plotted in Figure.17 and .18 could be expected since the difference between them
are subjected to the term multipliying h

L
. Moreover we see that τn is large when n is large

which suggests that the large relaxation time of super capacitors stems from their large
internal surface area achieved though many small pores.
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4.2.2 Circuit modelling for the step potential

For the RC general case we actually take into account the fact that the inner electrodes are
facing electrolyte twice while the outer ones just once, by the setting capacitances as 2C and
C respectively.

Figure 18: Equivalent RC circuit for the general case

For this case, exactly same principles are applied but we are dealing with a set of n
equations. This generalization is presented based on the case n = 2 which is way more
clarifying and therefore we can straightly present the matricial equation,

˙
∆Ψ1(t)
∆Ψ2(t)
∆Ψ3(t)

...
∆Ψn(t)

 =
Ψ

RC


1
0
.
.
0

− 1
2R′

R
RC



1 + H
L(n−1)

−1

−1 2 −1

−1
. . . . . .
. . . . . . −1
−1 2 −1

−2 2




∆Ψ1(t)
∆Ψ2(t)
∆Ψ3(t)

...
∆Ψn(t)

 , (58)

note that, in this case, for the top left element we used H = h(n−1) to rewrite r = 2R′/R =
h/L = H/L(n− 1) hence, 1 + r = 1 +H/[L(n− 1)]. Furthermore, as done for n = 2, Eq.(58)
can be written simplified as Ẋ = A−BX, where B is a tridiagonal matrix.

We usually consider writing long derivations on the Appendix, however for this particular
case, we think it is worth to explain it within the main text because it is not a long derivation
and we consider it rather important. Our aim is to solve the differential equation given in
Eq.(58). For doing so, we shall use the matrix decomposition of B explained in section 4.1.1:

U−1Ẋ(t) = U−1A−DU−1X(t)

taking Y (t) = U−1X(t) and A′(t) = U−1A

Ẏ (t) = A′ −DY (t), (59)

basically is solved by integrating each element of the matrix equation ,∫ Yi(t)

Yi(0)

dYi
A′i − λiYi

=

∫ t

0

dt,
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being the initial condition Xi(t = 0) = 0 , then Yi(t = 0) = 0

ln[A′i − λiYi]

∣∣∣∣∣
Yi(t)

0

= −λit

λiYi(t) = (1− e−λit)A′i,

thus,
DY (t) = (1− e−Dt)A′

UY (t) = U(1− e−Dt)D−1U−1A

which finally leads to the general solution already mentioned,

X(t) = U [1− e−Dt]D−1U−1A, (60)

Charge is then given by,

Q(t) = Ψ0CU [1− e−Dt]D
−1

2tRC
U−1e1, (61)

(a) r=0.01 (b) r=0.1

(c) r=0.5 (d) r=1

Figure 19: Dimensionless charge Q
Ψ0C

vs t
tRC

using the solution of the RC circuit being n=5

for different values of r weighted by a factor of 1
50

which allows us to make a comparison with
Figure.15.
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The current can be written as:

i(t) =


2

2
. . .

2
1

Ue−DtU−1e1, (62)

(a) r=0.01 (b) r=0.1

(c) r=0.5 (d) r=1

Figure 20: Dimensionless current I
ΨR−1 vs t

tRC
using the solution of the RC circuit being n=5

for a step function potential with different values of r. Blue line gives i1(t = 0) = 2 but the
scale in y axes is changed in order to have a more detailed vision of how currents change over
time. Legends follow the same order as Figure.19.
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4.2.3 Circuit modelling for the time-dependent potential

As mentioned for the case n = 2 example the general time dependent case can be analysed
by solving the following differential equation:

Ẋ(t) = A(t)−BX(t), (63)

In order to solve the time dependent potential case we shall begin with Eq.(59) which should
be slightly modified in order to be correct since now we are considering A(t),

Ẏi(t) = A′i(t)− λiYi(t),
as before we can integrate the equation in all its i coefficients making use of the method
developed for the simple case in the Appendix,

Yi(t) = e−λit
∫ t

0

eλisA′i(s)ds. (64)

which is equal to :

X(t) = Ue−Dt
∫ t

0

eDsU−1A(s)ds. (65)

Substituting the expression of A(t) = ψ(t)
2tRC

e1,

X(t) =
Ψ0

2tRC
U

∫ t

0

ψ(s)

Ψ0

eD(s−t)ds U−1e1. (66)

where Ωn is computed as the integral over all the elements in the diagonal matrix

∫ t

0

ψ(s)

Ψ0

eD(s−t)ds =

e
−tλ1

∫ t
0
ψ(s)
Ψ0
esλ1ds

. . .

e−tλn
∫ t

0
ψ(s)
Ψ0
esλnds

 = Ωn(t) (67)

therefore we can once again write the general solution in a more elegant way by:

X(t) =
Ψ0

2tRC
UΩnU

−1e1. (68)

It’s now straightforward to derive both, charge and current as done before,

Q(t)

CΨ0

=


2

2
. . .

2
1

U
Ωn

2tRC
U−1e1. (69)

with Ωi(t)
2tRC

= r
Λi

[
(1−e−λit)

2
− 4

π2

∑∞
m

1
m2

cos
(
mπ
t0
t
)

+( mπ
t0λi

) sin
(
mπ
t0
t
)
−e−λit

1+( mπ
t0λi

)2

]
a dimensionless quantity

as well. Thus, current is given by:
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i(t) =
I(t)

Ψ0R−1
=


2

2
. . .

2
1

UΩ̇nU
−1e1, (70)

where Ω̇i(τ0) = e−
Λi
2r

τ0
α

2
− 4

π2

∑∞
m

1
m2

( 2mπαr
Λi

)2 cos (mπτ0)− 2mπαr
Λi

sin (mπτ0)+e−
Λi
2r

τ0
α

1+( 2mπαr
Λi

)2 . Which I is actually

the same as above’s expression derivative but we think it is now convenient to rewrite it in
terms of τ0 and α explicitly. Within the case analysed before, i.e., r = 1, let us first go with
next case n = 3:

(a) α=0.01 (b) α=0.1

(c) α=1

Figure 21: Dimensionless current I
5θC

vs t
t0

using the solution of the RC circuit being n=3
for r = 1 with mmax = 101. No more values of α are shown since the amplitude gets so small
we consider they do not add any useful information for the reader. i refers to the sum of all
the currents

For this chosen case, r = 1, we can go up to case n = 10. Before presenting it we had to
make some adjustments to plots in order to make them more meaningful. For instance,

∑n
k ik

is not included due to the fact it would not be able to distinguish any differences among the
rest of the currents.
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(a) α=0.01 (b) α=0.1

(c) α=1 (d)

Figure 22: In plots (a),(b),(c) I
19θC

vs t
t0

using the solution of the RC circuit being n = 10
for r = 1 with mmax = 101. Values of axes are removed because we want the reader to have
a qualitative understanding of the figures. In plot (d) two periods for I

(2n−1)θC
throughout

the R resistor for different values of n being mmax = 51 and r = 1.

Once charging dynamics have been presented we think it is interesting to show some
algebraic features about the system extracted from matrix b from Eq.(58) giving our own
interpretation related to the system,

Figure 23: Plot of the distribution of the eigenvalues of b matrix within a system with n = 50
and r = 1. The sum over all them,

∑n
i Λi = 2n.
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Figure 24: Visual illustration of the eigenvectors of matrix b, taken from the columns of
matrix U, for a system with n = 5. Each chart represents an eigenvalues, from (a) v1 to
(e) v5, shown as a combination of weight-factors related to the currents that go through the
branches of the circuit.

In Figure.24 there is a clear symmetry regarding to the contribution of weight-factors
associated to currents for each eigenvector with a common feature, the blue chart is always
the biggest one, which, if our interpretation is correct must be related to the first current.
Besides, it might be even more interesting to reverse it and have a look how eigenvectors
affect to the weights of each exponential of the eigenvalue. It might be helpful for the reader
to have a glance to Eqs.(44),(45) in order to have a more clear perspective of the refered
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situation,

Figure 25: Visual illustration of the weighting within different currents, each weight is asso-
ciated to an eigenvector from matrix b, taken from the columns of matrix U−1, for a system
with n = 5. Base associated to current is shown from (a) i5 to (e) i1,

One could expect finding a bigger contribution of the biggest or smallest values within
the linear combinations, however, from Figure.25 there is not any clear pattern or dominance
but apparently if total contributions are taken into account by summing up each chart they
all contribute equally. It is indeed interesting that i1 has equal positive contributions from
all eigenvectors.

To end with, and as further consideration, we are interested in not only the set up in
which r = 1 but also into different ones for which value of r gets closer to 0.01. Therefore,
some simulations for these values are included in Figures.26,27 where we can actually see
that for smaller values of r different i get closer until they become all the same.
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(a) r=1 (b) r=0.5

(c) r=0.1 (d) r=0.01

Figure 26: Dimensionless current i
5θC

vs t
t0

using the solution of the RC circuit being n=3

for α = 1 and different values of r with mmax = 51. In this plot
∑n

k i is not included due to
the fact it wouldn’t be able to distinguish any differences among the currents.

(a) r=1 (b) r=0.5

(c) r=0.1 (d) r=0.01

Figure 27: Dimensionless current i
5θC

vs t
t0

using the solution of the RC circuit being n=3

for α = 0.1 with different values of r and mmax = 51.In this graph
∑n

k i is not included due
to the fact it wouldn’t be able to distinguish any differences among the currents
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5 Conclusions and discussion.

In this thesis we studied the charging dynamics of the supercapacitor using the multiple stack
electrode-electrolyte model.

To begin with, in the first approach with the single-plate capacitor, we found out how
to solve analytically the PNP equations by making several assumptions. Thereby, solutions
have turned out to be quite limited: small applied electrode potential,(i.e,in the linear regime)
and for electrode-stack separation much larger than the Debye length (i.e, κ−1 � L) which
means that we are actually operating in time-scales close to RC time. These assumptions
although valid, brings with them some clear limitations within the study of supercapacitors,
for instance, the geometry of the set up and their real applicability, as they usually operate
at higher voltage. For those reasons, we believe although it is interesting procedure to follow,
it might not be as useful as numerical solving methods, where a wide range of conditions
could be analysed. Moreover, within the obtained results, the fact that for bigger values of
the electrode separation, thus, closer to RC time-scale, we obtain a faster charging process
(Figure.4) is indeed unexpected.

Next, from the solution, Eq.(30), of the proposed RC circuit model from Figure.5 we
showed that the charging process was indeed RC time and have similar behaviour from the
one predicted by the analytical solution. Right after that, we analyzed the stack model sys-
tem under a time dependent potential using the same RC equilibrium model. In the absence
of numerical data or analytical solutions to PNP equations for any given t dependent po-
tential to compare with, we have to focus on the understanding of our results. On th one
hand, for t0 � tRC applied potential would be an incredibly fast oscillating function, which
in the limit, would became sudden switching on and off, therefore, no EDL would have time
to form. On the other hand, for tRC � t0 we would adiabatically change the potential,i.e.,
through infinitesimal changes along equilibrium states and in such case, each equilibrium
point is linked to a stable EDL. Hence, values α ∈ [0.01, 10] are studied within the thesis. As
a final remark, we can see in Figure.21 how the amplitude of the dimensionless current I

(5θC

decreases for a bigger value of the “coupling constant”,i.e., t0 ≈ tRC .

Regarding to the general n stack problem within the analytical solution frame, one of the
main topics to discuss about are the proposed different time-scales. Figures.16,17 are indeed
interesting, since we estimate that for a real system r would have a value close to 0.01. So
even though we don’t really understand the origin of the proposed Eq.(54) we can actually
check that in both limits the behaviour is properly defined.

One interesting thing about the general RC circuit model is that we can actually change
the geometry by varying the parameter labeled as r = h

L
. The rest of this circuit,i.e., the

resistances, capacitances and number of branches in the circuit model are not fit parameters
but physically determined by our microscopic model. By doing so, we have actually checked
how all the branches of the circuit tend to the same amplitude with the only exemption of
the outer one which is different due to the imposed boundary condition to enclose the system.
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Besides, we believe that one of the main contributions of this thesis might be the solution,
Eq.(68), to the matrix differential equation from RC circuit Eq.(58) because it provides the
solution to a general n stack model for any given form of the applied potential. I managed to
derive it myself at the same time as my supervisor came across it using completely different
methods. Nonetheless, I believe that one of the main gaps of this thesis is the absence of nu-
merical data to compare with. Due to the corona-crisis we had some issues when connecting
to the supercomputer of the university and therefore it was not available. I personally think
it would have been the perfect complement for this thesis to strengthen the results obtained.
However, we are quite optimistic about them due to the calculations done before by one of
my supervisor Cheng Lian, which: “At small applied potentials, numerical simulations of the
PNP equations are reproduced accurately by an equivalent circuit model.” [13]. Thereby,
data suggest that we are indeed in the correct path to follow.

5.1 Outlook

In future works, it is important that some points that have not been fully answered within
this thesis are investigated,

• Undoubtedly more work needs to be done to understand the charging dynamics of
porous capacitors regarding to finite ion sizes effects, more realistic modeling of pore
morphology, position-dependent diffusion coefficients etc.

• Once the solution for the time dependent potential is known, further simulations with
different applied potential could be done in order to compare with the triangular one
chosen in the thesis.

• Regarding time scales discussed above there is still an very interesting open debate.

• More PNP calculations for bigger potentials and varying parameters to compare with
the available experimental data.

• For the step potential charging process has been taken into account but not the dis-
charging one once switched off.

• Study deeply a more accurate model to real system, i.e., increase the number of parallel
plates with r ≈ 0.01.

• Deeper analysis into the relation between eigenvectors and their combinations to get the
weight-factors for the different currents. Good understanding of this algebraic relations
might lead to finding out if there is any mode that makes the system go into resonance.
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A Appendix

A.1 Solution to PNP equation for the single-plate capacitor

In this first section of the appendix we give a detailed description of how PNP equations are
solved for the simple case.

∂2
zφ(z∗, τ) = −ρe(z

∗, τ)

λ2
,

∂τρe,c(z
∗, τ) = −λ∂z∗je,c(z∗, τ),

je(z
∗, τ) = −(∂z∗ρe(z

∗, τ) + c(z∗, τ)∂z∗φ(z∗, τ)),

jc(z
∗, τ) = −(∂z∗c(z

∗, τ) + ρe(z
∗, τ)∂z∗φ(z∗, τ)),

je,c(±1, τ) = 0,

φ(±1, τ) = ∓Φ0.

Under assumption of small potential Φ0 << 1, then c ≈ 1, and joining first three equa-
tions above the following differential equation is obtained, while boundary conditions are
maintained:

∂ρe(z
∗, τ)

∂τ
= λ

∂2ρe(z
∗, τ)

∂z∗2
− 1

λ
ρe(z

∗, τ). (71)

By using the methods I describe in Appendix A in Laplacean space eq. transforms as

sρe(z
∗, s)− ρe(z∗, 0) = λ

d2ρe(z
∗, s)

dz∗2
− 1

λ
ρe(z

∗, s). (72)

Note that the relative ionic density evaluated in t = 0 is null because ρ−(z∗, 0) = ρ+(z∗, 0).
Then, Eq.(20) becomes:

d2ρe(z
∗, s)

dz∗2
= k2ρe(z

∗, s), (73)

where k2 = 1
λ2 (1 + sλ). Solutions are straightforward and applying the fact that we require

to be anti symmetric, i.e, B(s) = 0, our solution,

ρe(z
∗, s) = A(s) sinh kz∗. (74)

where A(s) is explicitly shown in Apppendix A since I consider it’s not essential for the
understanding of the derivation by now it’s enough to know it’s a function of s. Boundary
conditions have to be transformed as well to the Laplacean space,

je(±1, s) = 0,

φ(±1, s) = ∓Φ0

s
.

In order to solve this non trivial set of equations Laplace transform can be used due to the
fact that can replace a PDE with an ODE which is easy to solve in Laplacean space. Let us
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first introduce useful notation similar to the one used in the book Mathematical Methods for
Physics and Engineering [16].

L[f(z∗, τ)] =

∫ ∞
0

e−sτf(z∗, τ)dτ = f(z∗, s)

Following properties are well known:

1. L[∂f(z∗,τ)
∂τ

] = sf(z∗, s)− f(z∗, 0).

2. L[∂f(z∗,τ)
∂z∗

] = df(z∗,τ)
dz∗

.

3. L[∂
2f(z∗,τ)
∂z∗2

] = d2f(z∗,τ)
dz∗2

. Solution obtained can be actually integrate from negative spatial
boundary to any point in the space (z∗ ∈ [−1, 1]) and using (21). (Note that due to
symmetry sinh±k = ± sinh k and cosh±k = cosh k )

λ2

∫ z∗

−1

∂2
z∗φ(z∗, s)dz∗ = A(s)

∫ z∗

−1

sinh (kz∗)dz∗

−λ2[∂z∗φ(z∗, s))− ∂z∗φ(−1, s)] =
A(s)

k
[cosh (kz∗)− cosh (k)]

First boundary condition can be applied using eq.

je(±1, s) = 0 = −[∂z∗ρe(±1, s) + ∂z∗φ(±1, s)],

∂ρe(z
∗, s)

∂z∗

∣∣∣∣∣
(±1,s)

= A(s)k cosh (kz∗)

∣∣∣∣∣
±1

= A(s)k cosh (k)

Using these previous equations we get the second boundary condition

∂z∗φ(±1, s) = −A(s)k cosh (k),

Therefore by substitution the differential equation for effective potential in laplacian
space

−λ2∂z∗φ(z∗, s)) =
A(s)

k
cosh (kz∗) + Ξ(s)

with Ξ(s) = A(s)k cosh (k)[λ2− 1
k2 ] which makes equation visually easier. By integrating

once again

−λ2[φ(z∗, s)− φ(±1, s)] = Ξ(s)[z∗ − (±1)] +
A(s)

k2
[sinh kz∗ − (± sinh k)].

−λ2φ(z∗, s)∓ λ2 Φ0

s
] = Ξ(s)[z∗ ∓ 1)] +

A(s)

k2
[sinh kz∗ ∓ sinh k)].
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Subtracting both solutions, form of A(s) is achieved, taking into account the fact that
λ2 − k−2 = k−2sλ :

A(s) =
Φ0s

−1λ2k2

sinh k + sλk cosh k
. (75)

Finally expression for the Laplacian effective potential is given by the sum of both
solutions,

φ(z∗, s) = −A(s)

λ2k2
[sinh kz∗ + sz∗λk cosh k]. (76)

One of the most interesting things to do now that we have the solution is to study how
surface charge varies over time. Eq.(10) can rewritten using eq.1 setofeq directly in the
s space the dimensionless charge density σ∗(τ) = κ

ρb
σ(τ),

σ∗(s) =
1

λ

∫ 1

−1

ρe(z
∗, s)dz∗.

and by using 75 and 76

σ∗(s) = −A(s)

λ

∫ 1

−1

sinh kz∗dz∗ =
2A(s)

kλ
(1− cosh k). (77)

However, carrying out the inverse Laplace transform is extremely hard so we must, for
simplicity, make another assumption. To do so, it might be useful to introduce the
so called Debye time, defined as tD = κ−2L−1, which is the time it takes for an ion
to make a displacement of Debye length (κ) due to the Brownian motion carried out
by diffusion.We can imagine the initial state just before voltage is set, when ions are
homogeneously distributed within the electrolyte. tD right after voltage is on, some
neighbour ions might have swapped their position, however, neutrality is maintained
because voltage had no time change. In other words, system shows little reaction for
tD � t.
Therefore t � tD can be considered, which translated to dimensionless quantities de-
fined before by doing few changes tκD

L
� 1

κL
are :

τ � λ.

In s space , L[τ ]� L[λ] which is 1
s2
� λ

s

1� sλ. (78)

?? can be actually used in order to carry out a Taylor expansion around sλ = 0

σ∗(s) =
Kσ∗s

−1

1 + sτσ∗
, (79)
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where

Kσ∗ =
−2Φ0[1− (λ−1)]

tanhλ−1
,

τσ∗ =
1 + 1

2
(λ−1)2

tanh (λ−1)
− λ

2
− tanhλ−1(λ−1)

2(1− (λ−1)
,

By using tables, inverse for Eq.(25) is indeed straightforward, L−1[ s−1

1+τ0s
] = 1− e

τ
τ0

σ∗(τ) = Kσ∗(1− e
− τ
τσ∗ ).

Which is the solution we were looking for.

A.2 Solution to differential equation

In this section we give a solution to a linear differential equation for the simple case, that
will then be useful in order to solve general time dependent solution.
Differential equation for the RC model with a non constant potential:

∆Ψ̇(t) +
1

tRC
∆Ψ(t) =

1

tRC
Ψ(t),

∆Ψ(t = 0) = 0.

This is a linear differential equation of the form,

x
′
(t) + bx(t) = f(t).

We can always multiply this equation by this function:

µ(t) = e
∫
b(t)dt.

So the linear equation becomes,

[µ(t)x(t)]′ = µ(t)f(t),

x(t)− x(t = 0) =
1

µ(t)

∫ t

0

µ(t)f(t) = e−bt
∫ t

0

f(t)ebtdt. (80)

Thus, solution to the equation is given by:

∆Ψ(t) =
1

tRC
e
− t
tRC

∫ t

0

Ψ(t)e
t

tRC dt. (81)
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A.3 Integrating final solution

In this section we show how to integrate towards the solution. First term of the integral is
straightforward, however, this one is not. Once we know the Fourier transform of the applied
potential general solution is given substituting into Eq.(33),

∆Ψ(t) =
Ψ0

tRC
e
− t
tRC

[∫ t

0

[
1

2
− 4

π2

∞∑
m=1,3,5...

1

m2
cos

(
mπ

t0
t

)]
e

t
tRC dt

]
. (82)

For carrying out this integral we take for simplicity λ = t−1
RC and ω = mπ

t0
, so it is solved by∫ t

0

cos (ωt)eλtdt =
eλt [λ cos (ωt) + ω sin (ωt)]− λ

λ2 + ω2
(83)

Finally, solution leads to

∆Ψ(t) = Ψ0

[
(1− e−λt)

2
− 4

π2

∞∑
m

λ

m2

(
λ cos (ωt) + ω sin (ωt)− λe−λt

)
λ2 + ω2

]
. (84)

A.4 General solutions to the step-function potential

More plots of the results of the analytical solutions of the PNP equations are included in this
appendix:

Figure 28: Dimensionless surface charge plotted vs t
tRC

using the analytical solution to PNP
equations for the general model and time scale described in Eq.(54) for Φ0 = 0.01 and
λ = 0.01 being n=20.
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Using the results from the RC circuit model:

Figure 29: Dimensionless surface charge plotted vs t
tRC

using the results from the RC circuit

model weighted with 1
50

for Φ0 = 0.01 and λ = 0.01 being n=20.

Apparently, by looking to Figures.28, 29 surface charge rates show a identical behaviour
for small values of r while the charging process of the RC is, in general, faster than the
analytical ones with the exception of the blue lines for r = 1, i.e., the inner capacitor.
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A.5 Solutions to time-dependent potential

More plots for the time-dependent solutions are included in this last part of the appendix

Figure 30: Two periods of the dimensionles current, I
19θC

, plotted vs t
t0

using the solution to
time-dependent potential for the equivalent RC circuit model with n=10 and α = 0.01.

Figure 31: Two periods of the dimensionles current, I
19θC

, plotted vs t
t0

using the solution to
time-dependent potential for the equivalent RC circuit model with n=10 and α = 0.1.
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