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The aim of science is to seek the simplest explanation of complex facts.
We are apt to fall into the error of thinking that the facts are simple

because simplicity is the goal of our quest. The guiding motto in the life
of every natural philosopher should be, ”Seek simplicity and distrust it”.

-Alfred North Whitehead, The Concept of Nature

The Category Theory Behind the Doplicher Roberts
Reconstruction Theorem

Sander Wolters
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Chapter 1

DHR Analysis

Category theory is becoming increasingly important as a tool for studying
the foundations of quantum physics. This thesis deals with one particular
application of category theory to the study of quantum field theories, namely
the DHR analysis. The story told here was told before in the work of Halvor-
son and Müger [19] [30]. Originally the Doplicher-Roberts reconstruction
theorem upon which the DHR analysis rests was proven by Doplicher and
Roberts in [11] and [12]. In the work of Halvorson and Müger a different
proof of the theorem is given, based on Deligne’s embedding theorem [9] [4]
and an unpublished manuscript of Roberts [33].

There are valuable lessons on the foundations of quantum field theory
that can be learned from the DHR analysis. For a certain class of quantum
field theories, made more precise later using the DHR selection criterion,
the analysis shows how to construct a gauge group and a field algebra act-
ing concretely on a Hilbert space from a net of local observable algebras
and a state on this net. This may help to establish a connection between
the algebraic formulation of quantum field theory and the canonical Hilbert
space formulation. It also shows that algebraic quantum theory may be able
to account for facts like the spin-statistics theorem as it is not as empty of
field operators as it looks at first glance. The construction may also help
shed light on the nature of the gauge group. Using Tannaka-Krein dual-
ity and Deligne’s embedding theorem we can study compact (super)groups
by studying symmetric TC*-categories like the DHR category that we will
encounter later in this chapter.

A different reason why the DHR analysis is important is the following.
An important issue in algebraic quantum theory is the role of inequivalent
representations of the observables (the observables take the shape of the
quasilocal algebra). The DHR analysis may help with this issue by means
of superselection theory. One of the main engines of the DR reconstruction
theorem is the following theorem which is a combination of Tannaka-Krein
duality, Deligne’s embedding theorem and some ’super’-terminology that is
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explained in Section 4.1.

Theorem 1.0.1. Let C be a C*-tensor category that has direct sums (biprod-
ucts), an irreducible tensor unit, subobjects, conjugates and a unitary sym-
metry and SHf be the category of finite-dimensional super Hilbert spaces
over C. Then there exists a faithful tensor ∗-functor E : C → SHf . Further-
more there is a compact supergroup (G, k), unique up to isomorphism of su-
pergroups such that C is equivalent as a tensor ∗-category to Repf ((G, k),C),
the category of finite dimensional representations of the supergroup (G, k)
over C. The equivalence is given by a functor F : C → Repf ((G, k),C) such
that the following diagram, where ω denotes the forgetful functor, commutes.

C

F
��

E // SHf

Repf ((G, k),C)
ω

77ppppppppppp

A C*-tensor category as in the theorem will be called a STC* category.
If the category does not have a symmetry but only a unitary braiding, we
will call it a BTC* category. Chapters 2, 3 and 4 are devoted to proving the
theorem assuming minimal prerequisites. The needed category theory for
these chapters is developed during the text, so no familiarity with category
theory is necessary. In the current chapter we assume the above theorem
and use it in the DHR analysis. In Section 1.1 we discuss some of the
basics of algebraic quantum field theory. Section 1.2 introduces the DHR
category that has representations of the quasilocal algebra satisfying the
DHR selection criterion as its objects. It is shown that for theories where the
DHR selection criterion makes sense and spacetime is flat with dimension 3
or greater, the DHR category is a STC* category. If the spacetime dimension
is 1 or 2, then it is a BTC* category. Section 1.3 introduces the notion of
a field system with gauge symmetry. A field system with gauge symmetry
contains a Hilbert space representation (H,π) of the quasilocal algebra U

and local fields acting on this space as a net of von Neumann algebras
O → F(O). A field system also contains a compact gauge group that has a
unitary action on H. Dealing with only local fields, it turns out that every
subrepresentation of the representation (H,π) of U is a DHR representation.
After this we start out with a net of observable algebras and a vacuum state
on this net. Using Theorem 1.0.1 we construct a gauge group and a field
algebra. We will find that there is a complete normal field system with
gauge symmetry associated to the algebraic data, which is unique up to
equivalence of field systems.

Next to nothing from this chapter will be used in the other chapters.
The reader that finds this chapter more confusing than enlightening can
safely skip it. Alternatively it can be read after the other chapters. The
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discussion of the DHR analysis presented in this chapter is brief and a lot of
important details are omitted1. Even though a thorough discussion of the
DHR analysis is beyond the scope of this text, the analysis is too important
to skip entirely.

1.1 Algebraic Quantum Field Theory

The DHR analysis is part of the algebraic formulation of quantum field
theories. Algebraic quantum field theory, or AQFT for short, is not that
well-known so we will use this section to give a minimal account of AQFT.
The reader that wants to learn more may find the references [18] [19] [34]
helpful.

Definition 1.1.1. Define a diamond O in Minkowski spacetime2 as the
intersection of the causal future of a spacetime point x with the causal past
of a spacetime point y which is in the future of x. Let K denote the set of
all diamonds in Minkowski spacetime.

Next suppose that we have a mapping O → U(O), which assigns to each
O ∈ K a unital C*-algebra U(O).

Definition 1.1.2. A Banach algebra is an algebra U over C (or over R,
but we restrict our attention to the complex numbers) that has a norm ‖·‖
relative to which U is a Banach space and that is submultiplicative. The
latter means that for every a, b ∈ U we have ‖ab‖ ≤ ‖a‖ · ‖b‖. If the algebra
is unital, i.e. has a multiplicative identity e, then we demand that ‖e‖ = 1.
A C*-algebra is a Banach algebra U with an involution ∗ such that for every
u ∈ U we have ‖u∗u‖ = ‖u‖2.

Any C*-algebra that appears in this chapter is assumed to be unital
unless stated otherwise. The multiplicative unit will most often be denoted
by 1. We will consider sets of C*-algebras {U(O)|O ∈ K} where the elements
of U(O) represent observables3, localized inO. We refer to the mappingO →
U(O) as the net of observable algebras. Thinking of elements of {U(O)|O ∈
K} as local observables it is natural to make the following assumption.

Assumption 1.1.3. Let {U(O)|O ∈ K} be a net of observable algebras over
Minkowski spacetime. Then the net is assumed to be an inductive system in

1In particular Poincare covariance of the net of observables and of the DHR represen-
tations. The reader can find a discussion in [19]

2It is also possible to discuss AQFT in curved spacetime but we will not consider this
any further. See [17] for the curved spacetime case.

3It is not trivial to say that local observables make up an algebra. Take for example the
normal Hilbert space formalism of quantum mechanics where observables are represented
by self-adjoint operators. If Q̂ and P̂ are two noncommuting self-adjoint operators then
the composition P̂ Q̂ is not self-ajoint.
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the following sense. If O1 ⊂ O2 holds for the two diamonds, then there is
an embedding (isometric ∗-homomorphism) U(O1) ↪→ U(O2).

Loosely translated this means that an observable localized in a diamond
O1 is also an observable in each bigger spacetime region. The assumption
of inductivity implies that we can talk about the inductive limit of the net.
The C*-completion of this inducitve limit is called the quasilocal algebra U.
The quasilocal algebra is a C*-algebra containing observables that can be
uniformly approximated by local observables. Later on we will make some
more assumptions on the net of observables.

Readers that are familiar with the canonical formulation of quantum
field theory may be wondering if the discussion thusfar has anything to do
with quantum field theory in the slightest. In the canonical formulation of
quantum field theories one uses a Hilbert space and there are self-adjoint
operators on this space corresponding to physical quantities. There are also
field operators that need not be self-adjoint but are no less important tools.
For a given Hilbert space H, the bounded linear operators on this space
B(H) form a unital C*-algebra as the reader can check. But on the other
hand, an abstract C*-algebra need not be equivalent to the bounded linear
operators on some Hilbert space. In order to get any connection between the
canonical formalism and the algebraic formulation we need to start thinking
about representations.

Definition 1.1.4. Let U be a C*-algebra. A representation of U is a pair
(H,π), where H is a Hilbert space and π is a ∗-homomorphism π : U →
B(H). The representation is called faithful if the morphism π is an iso-
morphism. Two representations (H,π) and (H ′, φ) of U are called unitarily
equivalent if there exists an unitary map U : H → H ′ such that for each
a ∈ U we have Uπ(a) = φ(a)U .

Instead of just 1 Hilbert space, we can get a whole lot of different Hilbert
spaces for the quasi-local algebra of a net. If all representations were uni-
tarily equivalent there would be no problem, but in general there will be
inequivalent reprsentations. What role will these inequivalent representa-
tions play in AQFT? We consider two somewhat opposite stances one can
take regarding this issue. The first position is that of the socalled ’Algebraic
Imperialist’. The algebraic imperialist claims that the physical content of
the theory is in the net O → U(O) and the states on the quasilocal algebra
(explained in a moment) U4. Representations (H,π) are useful tools but
have no ontological significance whatsoever. The second position is that of
the ’Hilbert Space Conservatist’, which looks like it is closer to the views of
theoretical physicists working with the canonical QFT formulation. In this

4Actually one should also include a subgroup of Aut(U) corresponding to the symme-
tries, but we did not even discuss what a symmetry is in AQFT
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position the theory is described by the net O → U(O) and one represen-
tation (H,π) of U. The DHR analysis will shed some light on inequivalent
representations, and we will come back to the two different stances at the
end of this chapter. For now, let us shift out attention to the states in
AQFT.

Definition 1.1.5. Let U be a C*-algebra. Then a state ω on U is a positive
normalized linear functional on U. Positive means that for every a ∈ U we
have ω(a∗a) ≥ 0 and normalized means that for the multiplicative unit e ∈ U

we have ω(e) = 1.

Is there any connection between the previous definition of a state and
the definition of a state as a ray in a Hilbert space? If we look at the
Gelfand-Naimark-Sagal theorem then the answer is yes.

Theorem 1.1.6. (Gelfand-Naimark-Sagal) Let U be a C*-algebra and ω
be a state on U. Then there exists a representation (H,π), unique up to
unitarily equivalence, such that the following holds. There is a unit vector
Ω ∈ H such that

• ω(a) = 〈Ω, π(a)Ω〉, for each a ∈ U.

• Ω is cyclic for π(U), i.e. π(U)Ω is dense in H

Proof. We will give a sketch of the proof leaving some of the details to the
reader. First define the set I = {x ∈ U|ω(x∗x) = 0}. This set is closed in
U (with respect to the norm topology). It is also a left ideal of U as we will
show. Suppose that a ∈ U and x ∈ I, then

ω((ax)∗(ax))2 = ω(x∗(a∗ax))2 ≤ ω(x∗x)ω(x∗a∗aa∗ax) = 0.

Next consider the vector space U/I. For x, y ∈ U define

〈x+ I, y + I〉 = ω(y∗x).

This map provides a well-defined inner product on U/I. Define the Hilbert
space H to be the completion of U/I with respect to the norm induced by
this inner product. Consider, for an a ∈ U the map π(a) : U/I → U/I
defined by (x + I) 7→ ax + I. As I is a left ideal this map is well-defined
and linear. As we want to show that π(a) ∈ B(H), we need to show that
this operator is bounded (note that we used π(a) to denote the map on
U/I as well as it’s extension on H, which is sloppy but harmless). For
b ∈ U we write b ≥ 0 if b is self-adjoint and the spectrum of b is a subset of
[0,∞). The boundedness of π(a) can be shown using that for every x ∈ U we
have x∗a∗ax ≤ ‖a‖2 x∗x. Readers that want to prove this identity may find
the following hints helpful. First of all it can be shown that ‖a∗a‖ − a∗a is
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positive in U. This implies that for each x ∈ U we have 0 ≤ x∗(‖a∗a‖−a∗a)x.
The boundedness now follows from

‖ax+ I‖2 = ω(x∗a∗ax) ≤ ‖a‖2 ω(x∗x) = ‖a‖2 ‖x+ I‖2

which in turn implies that ‖π(a)‖ ≤ ‖a‖. We have a well-defined map
π : U→ B(H). It is straightforward to check that this map defines a repre-
sentation of U. The unit vector Ω is defined as Ω = e+I, where e is the mul-
tiplicative unit of U. It immediately follows that ω(a) = 〈e+ I, ae+ I〉 =
〈Ω, π(a)Ω〉. The cyclic property of Ω follows from π(U)(e + I) = U/I and
the definition of H.

This proves the existence of the representation and we move onto unique-
ness. Suppose that we have another such representation (K,φ) and (cyclic)
unit vector Ω′. Subsequently 〈Ω, π(a)Ω〉H = 〈Ω′, φ(a)Ω′〉K holds for each
a ∈ U. Define U on a dense subspace of H as U(π(a)Ω) = φ(a)Ω′. We find
that U is well-defined and an isometry because

‖π(a)Ω‖2H = 〈π(a)Ω, π(a)Ω〉H = 〈Ω, π(a∗a)Ω〉H
=
〈
Ω′, φ(a∗a)Ω′

〉
K

=
∥∥φ(a)Ω′

∥∥2

K
.

The isometry U extends to an isomorphism H → K. Finally note that for
every x ∈ U

Uπ(a)π(x)Ω = Uπ(ax)Ω = φ(a)φ(x)Ω′ = φ(a)Uπ(x)Ω

proving that the representations are unitarily equivalent.

Every state gives a normalized vector in some Hilbert space. This raises
questions like; how do we describe transition probabilities or measurement
probabilities in the algebraic setting? These notions do have counterparts
in the algebraic formalism [35], but we will not go into that here. Another
problem in the algebraic formulation is that by focusing only on the observ-
ables we have closed our eyes to the field operators. How can we hope to
account for facts like the spin-statistics theorem without using field opera-
tors? Again the DHR analysis will shed some light on this issue. In order
to apply the DHR analysis we need additional assumptions on the net of
observable algebras. The next definition will help with the formulation of
the assumptions.

Definition 1.1.7. Let B(H) denote the bounded linear operators on a Hilbert
space H. A von Neumann algebra5 R, is a ∗-subalgebra of B(H) satisfying

• The identity e ∈ R,
5Von Neumann algebras are key players in AQFT but this thesis is not the place to

elaborate on this.
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• If we denote R′ = {b ∈ B(H)|[b, a] = 0,∀a ∈ R}, then (R′)′ = R.

Instead of this algebraic definition of a von Neumann algebra which
uses the commutant R′ of R, we could have given the equivalent topological
definition. In the topological definition the second demand is replaced by the
demand that R is closed in B(H) with respect to the weak operator topology.
We need the following data for the DHR analysis: a net of observables
O → U(O) and a state ω0 on the quasilocal algebra U, which we will call the
vacuum state. For the remainder of the thesis, we will assume that each of
the following conditions are satisfied by this data.

Assumption 1.1.8. (Microcausality) Let O1,O2 be diamonds in Minkowski
spacetime that are spacelike separated. Then [U(O1),U(O2)] = {0}.

The assumption of microcausality can be seen as a restriction coming
from the theory of relativity6.

Assumption 1.1.9. (Property B in the vacuum sector) Let (H0, π0) be
the GNS (Gelfand-Naimark-Sagal) representation of U with respect to ω0.
The net of von Neumann algebras O → R0(O) = π0(U(O))′′ satisfies the
following property. Let O1 and O2 be 2 diamonds such that O1 ⊂ O2. Then
each nonzero projection E ∈ R(O1) there exists an isometry V ∈ R(O2)
such that V V ∗ = E.

This assumption looks a lot more technical. It can be seen as a conse-
quence of other assumptions, the spectrum condition, additivity and micro-
causality that have a more clear interpretation. If the von Neumann algebras
involved are type III factors, then property B is satisfied. We can think of
property B as the assumption that the von Neumann algebras π0(U(O))′′

are enough like type III factors. Property B is discussed in Section 2 and
Section 7 of [19].

Assumption 1.1.10. (Haag duality in the vacuum sector) For each dia-
mond O ∈ K The pair (U, ω0) satisfies π0(U(O′))′ = π0(U(O))′′. Here O′
stands for all spacetime points that are spacelike separated from O.

Assuming microcausality we have the following notion of locality. Sup-
pose thatO1 andO2 are spacelike separated. Then the elements of π0(U(O1))
and π0(U(O2)) commute pairwise. As a consequence we find for each dia-
mond O that

π0(U(O))′′ ⊂ π0(U(O′))′

holds. Haag duality is the stronger claim that the subset symbol can be
replaced by an equality. It says that π0(U(O))′′ cannot be enlarged without

6Here we implicitly assume that we will be dealing exclusively with relativistic field
theories. An arbitrary quantum field theory need not relativistic, it is just a quantum
theory with an infinite number of degrees of freedom.
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violating locality. It is possible to perform the DHR analysis assuming
essential duality instead of Haag duality. Essential duality is stronger than
locality but weaker than Haag duality. For essential duality a bigger net
is constructed that is assumed to satisfy Haag duality. Essential duality
is discussed in Section 10.7 of [19] and in [34] [17]. Haag duality in the
vacuum sector is connected to the absence of spontaneously broken gauge
symmetries.

Assumption 1.1.11. (Separability) The vacuum Hilbert space H0 is sepa-
rable.

Assumption 1.1.12. (Nontriviality) For each O ∈ K, π0(U(O)) contains
at least one operator that is not a multiple of the identity.

The last two assumptions play only a small role in the DHR analysis.

1.2 The DHR Category

This section is based on Section 8 of Halvorson [19], where full proofs of all
the propositions and theorems cited here can be found. We start out with a
net of observable algebras O → U(O), the quasilocal algebra of this net U,
and a vacuum state on the quasilocal algebra ω0. Throughout this section
we will denote the GNS representation on U with respect to ω0 by (H0, π0).
We will restrict our attention to massive quantum field theories, i.e. field
theories that have no long-range forces. Although work has been done in the
more general case [5] [6], the massive case is involved enough for this chap-
ter. In massive theories, where the fields can only have local excitations, the
DHR selection criterion helps to pick out the physical representations of the
quasilocal algebra.

DHR Selection Criterion: A representation (H,π) of U is of interest,
only if for each diamond O

π|U(O′) ∼= π0|U(O′)

holds. This means that on O′, the spacelike complement of O, the represen-
tation is unitarily equivalent to the vacuum representation.

One of the main goals of this chapter is to get insight in the role that dif-
ferent (inequivalent) representations of the net of observables play in AQFT.
It may seem weird to dismiss representations a priori when we do not know
what representations mean in AQFT. On the other hand, the selection crite-
rion for massive theories seems plausible when we think of the vacuum-like
appearance that all states have with respect to measurements at great dis-
tances7.

7For further motivation of the DHR selection criterion, see Remark 8.58 in [19]
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Definition 1.2.1. Define a DHR representation to be a representation of U

satisfying the DHR selection criterion. Then the DHR category DHR(U, ω0)
is defined to be the category that has DHR representations as objects and
bounded intertwining operators as arrows.

By definition DHR(U, ω0) is a C*-category. To help give more structue
to DHR(U, ω0) we look at a different but related category.

Definition 1.2.2. Let ρ be a ∗-endomorphism of U and O be a diamond in
spacetime. Then ρ is localized in O if

ρ(a) = a, ∀a ∈ U(O′)

holds. The morphism ρ is called localized if there exists a diamond O such
that ρ is localized in O.

Definition 1.2.3. Let ρ be a ∗-endomorphism of U, localized in O. Then
ρ is called transportable if it satisfies the following property. Let O1 be any
diamond. Then there exists a ∗-endomorphism ρ1 localized in O1 and a
unitary u ∈ U such that

uρ(a) = ρ1(a)u, ∀a ∈ U.

Definition 1.2.4. Define the category ∆ as follows. The objects are the
localized, transportable morphisms of U. The arrows are defined by

Hom∆(ρ, ρ′) = {t ∈ U|tρ(a) = ρ′(a)t, ∀a ∈ U}.

Composition of arrows is inherited from U. If t ∈ Hom∆(ρ, ρ′) and s ∈
Hom∆(ρ′, σ), then s ◦ t = st.

The set of localized transportable morphisms that are localized in the
diamond O is denoted by ∆(O).

It is clear that s ◦ t as defined above is an element of Hom∆(ρ, σ) as

stρ(a) = s(tρ(a)) = s(ρ′(a)t) = (sρ′(a))t = (σ(a)s)t = σ(a)st.

Note that composition is associative and that for every localized trans-
portable morphism ρ the unit 1 of U acts as the identity arrow. Before
connecting ∆ to DHR(U, ω0) we will first show that ∆ is a C*-category.
This amounts to showing that ∆ is a C-linear category with a positive ∗-
operation and a norm ‖·‖ρ,ρ′ on each Hom∆(ρ, ρ′) that makes it into a
Banach space. Furthermore the norms satisfy

‖st‖ρ,σ ≤ ‖s‖ρ′,σ ‖t‖ρ,ρ′ , ‖t
∗t‖ρ,ρ = ‖t‖2ρ,ρ

for all ρ, ρ′, σ, s ∈ Hom∆(ρ′, σ) and t ∈ Hom∆(ρ, ρ′). The C*-structure
on ∆ comes from U. Let s ∈ Hom∆(ρ, ρ′) and ∗ : U → U be the positive
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∗-operation on U. A straightforward check reveals that s∗ ∈ Hom∆(ρ′, ρ).
The other structure on the Hom-sets, norms included can also be taken
straight from U as the reader can verify. In short ∆ is a C*-category. The
next proposition connects the category ∆ to the category DHR(U, ω0).

Proposition 1.2.5. The mappings F : ∆→ DHR(U, ω0), given by F (ρ) =
π0 ◦ρ on the objects of ∆, and F (s) = π0(s) on the morphisms of ∆ define a
functor of C*-categories. This functor defines an equivalence of categories.

The proof of this proposition, given in [19], shows that mappings give a
well-defined functor and subsequently shows that this functor is faithful, full
and essentially surjective. In proving that the functor is full and essentially
surjective, Haag duality of the vacuum sector is invoked. The functor F can
be used to transfer structure of ∆ to the category DHR(U, ω0), structure
that we will now explore. We start by showing that ∆ has direct sums
(biproducts) and subobjects. It is here that property B of the net of ob-
servables becomes important. Suppose that ρ1 ∈ ∆(O1) and ρ2 ∈ ∆(O2).
Choose a diamondO such that (O1∪O2)− ⊂ O. Suppose that e is a non-zero
projection in U(O1). Using property B there are isometries v1, v2 ∈ U(O)
such that v1v

∗
1 + v2v

∗
2 = 1. Define

ρ(a) = v1ρ1(a)v∗1 + v2ρ2(a)v∗2, ∀a ∈ U.

Then ρ is localized in O and can be shown to be transportable. The object ρ
defines a biproduct ρ1⊕ ρ2 in ∆. For subobjects we make use of property B
once again. Let ρ ∈ ∆ be localized in O and e ∈ Hom∆(ρ, ρ) be a projection.
By definition we have

ea = eρ(a) = ρ(a)e = ae, ∀a ∈ U(O′).

Using Haag duality we can conclude that e ∈ U(O). Choose a diamond O1

such that O ⊂ O1. By property B there is an isometry v ∈ U(O1) such that
e = vv∗. Define

ρ′(a) = v∗ρ(a)v, ∀a ∈ U,

then ρ′ can be shown to be a localized transportable morphism, thus an
object of ∆. The identity

ρ′(a)v∗ = v∗ρ(a)vv∗ = v∗ρ(a)e = v∗eρ(a) = v∗ρ(a), ∀a ∈ U

shows that v ∈ Hom∆(ρ′, ρ) defines an isometry. This shows that ∆ has
subobjects. Thusfar we have shown that ∆ is a C*-category that has direct
sums and subobjects.

The next step is to turn ∆ into a C*-tensor category. The identity
automorphism ι : U→ U will play the role of tensor unit. As an object of ∆
it is irreducible in the sense that Hom∆(ι, ι) = Cidι. In order to define the
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tensor bifunctor we first note that if ρ and σ are objects of ∆, then so is ρσ.
If ρ is localized in O1 and σ is localized in O2, then ρσ is localized in O1∪O2.
Now take O3 to be any diamond. As ρ and σ are transportable, there exist
ρ′ and σ′ localized in O3 and unitaries u ∈ Hom∆(ρ, ρ′), v ∈ Hom∆(σ, σ′).
Then ρ′σ′ is localized in O3 and uρ(v) ∈ Hom∆(ρσ, ρ′σ′) is unitary and
satisfies

uρ(v)ρσ(a) = uρ(vσ(a)) = uρ(σ′(a)v) = uρ(σ′(a))ρ(v) = ρ′σ′(a)uρ(v),

showing that ρσ is transportable. Define

ρ⊗ σ = ρσ, ρ, σ ∈ Obj(∆),

s⊗ t = sρ(t), s ∈ Hom∆(ρ, ρ′), t ∈ Hom∆(σ, σ′),

then (∆,⊗, ι) defines a C*-tensor category. There are a lot of details that
need to be checked, some are given in [19], the others are straightforward
calculations.

In order to apply Tannaka-Krein duality and Deligne’s embedding the-
orem to ∆ we need conjugates and a unitary symmetry. We will define a
unitary braiding on ∆ in several steps. It will turn out that only for a di-
mension of spacetime of at least 3, this braiding is a symmetry. We start by
defining arrows

cρ1,ρ2(u1, u2) : ρ1 ⊗ ρ2 → ρ2 ⊗ ρ1,

of ∆ that depend on socalled spectator morphisms. Suppose that ρ1 ∈
∆(O1) and that ρ2 ∈ ∆(O2). Pick Õ1 and Õ2 to be spacelike separated
diamonds. Because ρ1 and ρ2 are transportable there exist morphisms ρ̃1 ∈
∆(Õ1), ρ̃2 ∈ ∆(Õ2) and unitaries u1 ∈ Hom∆(ρ1, ρ̃1), u2 ∈ Hom∆(ρ2, ρ̃2).
The morphisms ρ̃i are the spectator morphisms. The following lemma helps
us by showing that ρ̃1 ⊗ ρ̃2 = ρ̃2 ⊗ ρ̃1.

Lemma 1.2.6. Let ρ ∈ ∆(O1) and σ ∈ ∆(O2), where O1 and O2 are
spacelike separated. Then σρ = ρσ.

Using ρ̃1 ⊗ ρ̃2 = ρ̃2 ⊗ ρ̃1 we define

cρ1,ρ2(u1, u2) = u∗2 ⊗ u∗1 ◦ u1 ⊗ u2 = ρ2(u∗1)u∗2u1ρ1(u2).

It is clear that the arrows cρ1,ρ2(u1, u2) are unitary. To what extent do these
arrows depend on the spectator morphisms? The next proposition is pivotal
in answering this question.

Proposition 1.2.7. The arrow cρ1,ρ2(u1, u2) can be defined in terms of
ρ1, ρ2, Õ1 and Õ2 and therefore does not depend on the choice of ρ̃1, ρ̃2, u1

and u2. The arrow cρ1,ρ2(u1, u2) does not change if the diamonds Õi, i ∈
{1, 2} are replaced by diamonds Ôi that are spacelike separated and have the
property that Õi ⊂ Ôi.
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As a consequence of the proposition cρ1,ρ2(u1, u2) does not change if
(Õ1, Õ2) is translated or if the diamonds Õi are replaced by spacelike sep-
arated diamonds Ôi that contain Õi or are contained in it. This shows
that cρ1,ρ2(u1, u2) depends very little on the choice of the Õi. In fact, if the
spacetime has a dimension of at least 3, and as long as the diamonds Õ1 and
Õ2 are spacelike separated, cρ1,ρ2(u1, u2) is the same for every choice of the
Õi. If the dimension of spacetime is at most 2, 1-dimensional spacetime just
being 1-dimensional space, then cρ1,ρ2(u1, u2) depends only on the relative
orientation of the Õi. We write Õ1 < Õ2 if Õ1 is to the left of Õ2. For
a fixed orientation and Õ1, Õ2 spacelike separated cρ1,ρ2(u1, u2) is indepen-
dent of the further choice of Õi. In order to demonstrate the dependence on
spatial orientation consider the following case. First take Õ1 = O1, ρ̃1 = ρ1,
u1 = idρ1 = 1 and Õ2 < Õ1. We find

cρ1,ρ2(1, u2) = u∗2ρ1(u2), Õ2 < Õ1.

Reverse the orientation and take Ô1 = Õ2, ρ̂1 = ρ̃2, u′1 = u2, Ô2 = O1,ρ̂2 =
ρ1 and u′2 = 1. We find

cρ2,ρ1(u2, 1) = ρ1(u∗2)u2 = cρ1,ρ2(1, u2)∗, Ô1 < Ô2.

The arrows cρ1,ρ2(u1, u2) depend only on the orientation, therefore we have
shown that if two different spatial orientations are used, then

cρ1,ρ2(u1, u2) = cρ2,ρ1(u′1, u
′
2)∗.

We can now define a braiding on ∆.

Definition 1.2.8. Let ρ1 and ρ2 be objects of ∆. Suppose that spacetime has
a dimension of 2 or less. Define cρ1,ρ2 = cρ1,ρ2(u1, u2) where Õ2 < Õ1 with
the Õi spacelike separated. Now assume that spacetime has a dimension of
at least 3. Define cρ1,ρ2 = cρ1,ρ2(u1, u2) where the Õi are spacelike separated.

Theorem 1.2.9. The arrows cρ1,ρ2 define a unitary braiding on the tensor
category (∆,⊗, ι). For spacetimes that have a dimension of at most 2, this
is the unique braiding on ∆ such that cρ1,ρ2 = 1 when ρi ∈ ∆(Oi) with the
Oi spacelike separated and O2 < O1. For spacetimes that have a dimension
of at least 3, this is the unique braiding on ∆ such that cρ1,ρ2 = 1 when
ρi ∈ ∆(Oi) with the Oi spacelike separated. For spacetimes that have a
dimension of at least 3, the braiding is a symmetry.

The only thing standing between the category ∆ and the application of
Tannaka-Krein duality with Deligne’s embedding theorem is the absence of
conjugates. An introduction to conjugates and the dimension of objects in
terms of conjugates is given in Section 3.3. Instead of considering the whole
category ∆ we pick the full subcategory ∆f that has conjugates.
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Definition 1.2.10. Let ∆f be the full subcategory of ∆ such that the ob-
jects of this category are those that admit a conjugate relative to which their
dimension is finite. More precisely, ρ is an object of ∆f , if there exists a
solution (ρ, r, r) of the conjugate equations in ∆ such that d(ρ) = r∗ ◦ r is a
finite number times idι.

The cateogry ∆f is closed under direct sums, subobjects and tensor prod-
ucts. Putting everything together, we found the following in this section.
We started out with the C*-category DHR(U, ω0) of DHR representations.
This category is equivalent, as a C*-category, to the category ∆ of localized
transportable morphisms of the quasilocal algebra. The full tensor subcate-
gory ∆f of this category is a BTC*-category. If spacetime has a dimension
of at least 3 this category is a STC*-category.

1.3 Field Systems with Gauge Symmetry

This section is based on Section 9 and Section 10 of [19]. First we define a
field system with gauge symmetry. This is as close as we are going to get to
the canonical formalism of QFT in this chapter. The field system is a repre-
sentation (H,π) of the quasilocal algebra U with local fields and an internal
symmetry group acting on it. It turns out that every subrepresentation of
U contained in the field system is a DHR representation. Proofs and details
are ommited. The proofs can be found in [19] but require a background
on operator algebras and representation theory of compact groups8. After
looking at field systems we start out with the algebraic data (U, ω0). As
discussed in the previous section, we can construct from this data an STC*
category ∆f that is equivalent to a full subcategory of DHR(U, ω0). We
apply Tannaka-Krein duality and Deligne’s embedding theorem to this cat-
egory to recognize it as the category of finite dimensional representations of
a compact supergroup. Subsequently we take several steps to construct a
field system with gauge symmetry from ∆f , where the Tannaka supergroup
acts as the gauge group.

Throughout this section, let U be the quasilocal algebra of a net O →
U(O) of observable algebras. Let ω0 be a vacuum state on U and (H0, π0)
the corresponding GNS representation.

Definition 1.3.1. A field system with gauge symmetry for the data (U, ω0)
is a quadruple (H,π,F, (G, k)). Where

• (H,π) is a representation of U.

• F comes from a net of von Neumann algebras O → F(O). The net has
an irreducible action on H.

8The books by Kadison and Ringrose [22] [23] may aid in providing knowledge on
operator algebras.
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• (G, k) is a compact9 supergroup of acting faithfully on H through uni-
tary operators U(g). This means that G is a compact group and that
k ∈ G is central and of order 2.

The following holds for the quadruple:

1. The vacuum representation (H0, π0) is a subrepresentation of (H,π).
This means that there is an isometry V : H0 → H such that V π(a) =
π0(a)V holds for every a ∈ U.

2. The isometry V maps H0 into the subspace of H consisting of vectors
that are invariant under the action of G.

3. Suppose that O1 and O2 are spacelike separated. Then the elements of
F(O1) commute pairwise with the elements of π(U(O2)).

4. The group G induces and action on each F(O). Each g ∈ G leaves
F(O) globally fixed for every O. The fixed points of F(O) under the
action of g ∈ G are the elements of π(U(O))′′ ⊂ F(O).

5. For every diamond O, V (H0) is cyclic for F(O). This means that the
closed linear span of F(O)V (H0) is H.

Notice that the field algebra F is made out of only local fields F(O). This
is because we restrict to field theories where the fields can only have local
excitations. Regarding the use of supergroups (G, k) instead of just groups
G, it will become a little more clear in Section 4.1. Despite the less natural
appearance of a compact supergroup compared with a compact group, the
k ∈ G will play an important role regarding the statistics of the fields. We
will only scratch the surface of the important subject that is statistics in the
DHR analysis.

We will identitify H0 with its image under de isometry V from demand
(1). Demand (2) tells us that H0 is a G-invariant subspace of H. It turns
out that H0 is precisely the G-invariant subspace of H.

By microcausality we know that observables which localized at space-
like separated regions commute. For field operators we do not expect the
same to hold. In conventional quantum field theory bosonic field opera-
tors at spacelike separated regions commute while fermionic field operators
at spacelike separated regions anticommute. Demand (3) can be seen as a
weaker version of the normal commutation rules for field operators.

The action of G on the local fields from demand (4) is given by

αg(F ) = U(g)FU(g)∗, F ∈ F(O), g ∈ G.

Demand (4) tells us that G is an internal symmetry group of the fields. The
action of G on the local fields does not change the spacetime localization of

9compact with respect to the strong operator topology
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the field operators. It also demonstrates the gauge-invariance of the local
observables.

Demand (5) deserves a little more attention. It tells us that using fields
only from F(O) we can reach every subspace of H from the vacuum. This
fact is connected to the Reeh-Schlieder theorem. As this theorem is one
of the cornerstones of AQFT, we will briefly discuss it. For the moment
we will consider two additional assumptions that can be made on the net
of local observables. The first assumption is the spectrum condition. It is
a more abstract version of the claim that the spectrum of the momentum
operator is in the forward lightcone. The latter claim is equivalent to saying
that the energy is positive in every Lorentz frame. In order to formulate the
spectrum condition we need the following fact.

Lemma 1.3.2. Let T be a group that has a strongly continuous action α
on U and suppose that ω0 is T -invariant in the sense that ω0(αxa) = ω0(a)
holds for all a ∈ U and x ∈ T . Then the GNS representation (H0, π0) of U

induced by ω0 carries a strongly continuous unitary representation U of T
such that

1. π(αxa) = U(x)π(a)U(x)∗, ∀a ∈ U, x ∈ T ,

2. U(x)Ω0 = Ω0, ∀x ∈ T.

The vector Ω0 ∈ H0 is the cyclic vector from the GNS construction
Theorem 1.1.6.

Assumption 1.3.3. (Spectrum Condition) Let T be the translation group
and assume that it carries a strongly continuous action on U. Further sup-
pose that the vacuum state ω0 is T -invariant. Then (U, ω0) satisfies the
spectrum condition if there is a subset T+ ⊂ T such that T+ ∩ (−T+) = {0}
holds, with −T+ = {−x|x ∈ T+}, and the following condition is satisfied.
Let U be the induced unitary representation of T on H0. Then the spectrum
of the representation is contained in T+.

The reader may wonder how the spectrum can be a subset of T as the
spectrum of an operator is a subset of C. But note that we are taking the
spectrum of the representation, which is a family of operators. Giving a
proper definition of the spectrum would take the discussion too far adrift.
In Section II.5 of [18] some more background is provided. The second as-
sumption that we need is additivity and claims that there is no smallest
length scale in the theory.

Assumption 1.3.4. (Additivity) Let T be the translation group and assume
that it carries a strongly continuous action α on U. Using the notation
R(O) = π(U(O))′′, the net O → R(O) satisfies additivity if for each dia-
mond O the set {R(O + x)|x ∈ T} generates R as a C*-algebra. Here we
used the notation R(O + x) = π(αx(U(O)))′′.
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Convincing reasons to adopt additivity are lacking, as well as convincing
reasons to refute it. It may well be that in the future a succesful theory
of quantum gravity is found where spacetime is quantized. This would be
bad news for additivity. If we assume additivity as well as the spectrum
condition we can get the Reeh-Schlieder theorem.

Theorem 1.3.5. (Reeh-Schlieder) Let the spectrum condition and additivity
be satisfied for the data (U, ω0). Then for each diamond O, the GNS vector
Ω0 is cyclic for π(U(O))′′.

If the net O → π(U(O))′′ satisfies microcausality, even more can be said
[19]. The theorem is of importance because of the nonlocal correlations of
the vacuum state it entails. It implies for example that there can be no local
number operators. Note the strong resemblance between the Reeh-Schlieder
theorem and the demand (5) in the definition of a field system with gauge
symmetry.

After this brief excursion we drop the spectrum condition and additivity
and return to the field systems. Thusfar we did not comment on the role of
k ∈ G in the supergroup (G, k) of the field system. This central element of
order 2 helps us to pick out the fermionic and bosonic field operators in the
field algebra.

Definition 1.3.6. Let (H,π,F, (G, k)) be a field system with gauge symme-
try for (U, ω0), and F ∈ F(O). Then F is called a Bose field operator if
αk(F ) = F . The operator F is called a Fermi field operator if αk(F ) = −F .

Definition 1.3.7. Let (H,π,F, (G, k)) be a field system with gauge sym-
metry for (U, ω0). Then the fields are said to satisfy normal commutation
relations if the following property holds for each pair of spacelike separated di-
amonds O1 and O2. Take field operators Fi ∈ F(Oi) satisfying αk(Fi) = εiFi
where ε ∈ {−1, 1}. Then these local fields satisfy

F1F2 = (−1)(1−ε1)(1−ε2)/4F2F1.

Field systems are intimately connected to DHR representations. The fol-
lowing proposition shows that DHR representations are the building blocks
of field systems. Later we will see the how DHR representations can be used
to construct a field system. This proposition is the only result that makes
use of Assumption 1.1.11, separability of H0.

Proposition 1.3.8. Let (H,π,F, (G, k)) be a field system with gauge sym-
metry for (U, ω0). Let RepF(U) denote the category of subrepresentations of
the representation (H,π) of U, viewed as a full subcategory of the category
of representations of U. Then there exists a faithful functor

F : RepF(U)→ DHR(U, ω0).

Using the equivalence DHR(U, ω0) ∼= ∆ of the previous section this functor
yields a faithful functor G : RepF(U)→ ∆f into the BTC* category ∆f .
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Field systems are thus made out of DHR representations (with conju-
gates), but can all DHR representations arise in this way? The DR recon-
struction theorem answers this question affirmative, but before we can state
it we need two more definitions.

Definition 1.3.9. A field system with gauge symmetry (H,π,F, (G, k)) for
(U, ω0) is said to be complete if each DHR representation that corresponds
to an object of ∆f occurs as a subrepresentation of (H,π).

Definition 1.3.10. Let (H1, π1,F1, (G1, k1)) and (H2, π2,F2, (G2, k2)) be
two field systems with gauge symmetry for (U, ω0). Then the field systems
are called equivalent if there is a unitary operator W : H1 → H2 such that
the following holds.

1. Wπ1(a) = π2(a)W, ∀a ∈ U,

2. WU1(G1) = U2(G2)W ,

3. WF1(O) = F2(O)W for each diamond O.

We can now state the main theorem of this chapter.

Theorem 1.3.11. (Doplicher-Roberts reconstruction theorem) For the data
(U, ω0) there exists a field system with gauge symmetry (H,π,F, (G, k)) that
is complete and has normal commutation relations. Any field system with
gauge symmetry for this data, which is complete and has normal commuta-
tion relations, is equivalent to (H,π,F, (G, k)).

This theorem was first proven by Doplicher and Roberts [11] [12]. We will
discuss the different version given in Halvorson and Müger [19] [30]. This
proof applies Tannaka-Krein duality combined with Deligne’s embedding
theorem to the category ∆f to obtain the gauge group. The field algebra is
constructed using the functor E : ∆f → SHf provided by Deligne’s embed-
ding theorem and the work of Roberts [33]. We start with the construction
of a gauge group for (U, ω0). The first result that we need is Tannaka-Krein
duality, which is proven in Chapter 3.

Theorem 1.3.12. (Tannaka-Krein Duality) Let C be a STC* and E : C →
Hf a symmetric ∗-preserving fiber functor into the category of finite dimen-
sional Hilbert spaces. Let GE be the compact group of monoidal natural
transformations of E to itself. Then there exists a symmetric faithful ten-
sor ∗-functor F : C → Repf (GE ,C) where Repf (GE ,C) is the category of
finite dimensional representations of GE. If ω : Repf (GE ,C) → Hf is the
forgetful functor, then we have ω ◦ F = E. The functor F is an equivalence
of symmetric tensor ∗-categories.

In order to apply this to ∆f we need a functor E as above. Deligne’s
embedding theorem, which is proven in Chapter 4, comes to the rescue.
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Theorem 1.3.13. (Deligne’s embedding theorem) Let C be an even STC*.
Then there exists a symmetric ∗-preserving fiber functor E : C → Hf .

A STC* category is even if the canonical twist, defined in Section 4.1,
is trivial. Only even STC* categories are enough like the category of finite
dimensional representations of a compact group to admit an equivalence F .
But if we shift our attention to the category of finite dimensional represen-
tations of compact supergroups, as explained in Section 4.1, and use the
category of finite dimensional super Hilbert spaces, then we find

Theorem 1.3.14. Let C be any STC* category. Then there exists a compact
supergroup (G, k) which is unique up to an isomorphism of supergroups, and
an equivalence F : C → Repf ((G, k),C) of symmetric tensor ∗-categories.

In particular, if ω : Repf ((G, k),C)→ SHf is the forgetful functor, then
the composition E = ω ◦ F : C → SHf is a faithful symmetric ∗-preserving
tensor functor into the STC* category of finite dimensional super Hilbert
spaces.

We apply this to the data (U, ω0). We have to restrict to Minkowski
spacetimes that have a dimension of at least 3, otherwise ∆f is not a STC*
category but just a BTC* category. Applying Theorem 1.3.14 then gives us
a compact supergroup (G, k) and an embedding E : ∆f → SHf . Both are
important in the construction of the field algebra which we now consider.
Define F0 as the set of triples

(a, ρ, ψ), a ∈ U, ρ ∈ Obj(∆f ), ψ ∈ E(ρ),

subject to the following equivalence relation. If s ∈ Hom∆f
(ρ, ρ′) and con-

sequently E(s) ∈ HomSHf (E(ρ), E(ρ′)), then

(as, ρ, ψ) = (a, ρ′, E(s)ψ).

The reader is invited to check that this defines an equivalence relation. In the
next few steps we will add structure to F0. The details of the constructions
can be found in Section 10.2 and Section 10.3 of [19]. First we turn the set
F0 into a vector space. Scalar multiplication is defined by

λ(a, ρ, ψ) = (λa, ρ, ψ) = (a, ρ, λψ).

The first equality is the definition while the second equality follows from the
equivalence relation by using E(λidρ) = λidE(ρ). Addition is defined by

(a1, ρ1, ψ1) + (a2, ρ2, ψ2) = (a1w
∗
1 + a2w

∗
2, ρ, E(w1)ψ1 + E(w2)ψ2),

where the wi ∈ Hom∆f
(ρi, ρ) are isometries satisfying

w1w
∗
1 + w2w

∗
2 = idρ, w∗iwj = δijidρi .
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Such isometries always exist as ∆f has direct sums. Using the equivalence
relation in the definition of F0 one can show that this definition does not
depend on the choice of the isometries. If we identify U with the subset
{(a, ι, e(1))|a ∈ U} ⊂ F0, where ι is the tensor unit of ∆f and e : C→ E(ι)
is the arrow belonging to the tensor functor E, then the following relation
tells us that it is a linear subspace of F0

(a1, ρ, ψ) + (a2, ρ, ψ) = (a1 + a2, ρ, ψ).

For each localized transportable morphism ρ in ∆f the vector space E(ρ) is
also a linear subspace of F0 if we identify it with {(1, ρ, ψ)|ψ ∈ E(ρ)} ⊂ F0.
This can be seen from

(a, ρ, ψ1) + (a, ρ, ψ2) = (a, ρ, ψ1 + ψ2).

We used direct sums to define addition in F0, now we use tensor products
to define multiplication, turning F0 into an associative algebra. Define

(a1, ρ1, ψ1)(a2, ρ2, ψ2) = (a1ρ1(a2), ρ1 ⊗ ρ2, dρ1,ρ2(ψ1 ⊗ ψ2)),

where dρ1,ρ2 : E(ρ1) ⊗ E(ρ2) → E(ρ1 ⊗ ρ2) comes from the tensor functor
E. The element (1, ι, e(1)) acts as a multiplicative unit. The subspace U is
a subalgebra of F0. The next step is to turn F0 into a ∗-algebra, for which
we need the following definition.

Definition 1.3.15. Let H and H ′ be 2 Hilbert spaces. Define an anti-linear
mapping

J : HomH(H ⊗H ′,C)→ HomH(H,H ′),〈
J (s)(x), x′

〉
H′

= s(x⊗ x′), ∀x ∈ H,x′ ∈ H ′,

where s ∈ HomH(H ⊗H ′,C).

The reader that has doubts if J (s) is well-defined may want to look
up the Riesz representation theorem. Pick a ρ ∈ Obj(∆f ) and a conjugate
(ρ, r, r) for ρ, where r : ι → ρ ⊗ ρ and r : ι → ρ ⊗ ρ satisfy the conjugate
equations. Applying the previous definition to

e−1 ◦ E(r∗) ◦ dρ,ρ : E(ρ)⊗ E(ρ)→ C,

we find a morphism J [e−1 ◦ E(r∗) ◦ dρ,ρ] : E(ρ)→ E(ρ).
We turn F0 into a ∗-algebra by defining:

(a, ρ, ψ)∗ = (r∗ρ(a∗), ρ,J [e−1 ◦ E(r∗) ◦ dρ,ρ]ψ).

It follows that U is a ∗-subalgebra of F0.

Proposition 1.3.16. Let O be a diamond. Define F0(O) to be the set whose
elements are those F = (a, ρ, ψ) in F0 such that a ∈ U(O) and ρ ∈ ∆(O).
Then F0(O) is a ∗-subalgebra of F0.

22



The compact group G of the Tannaka supergroup (G, k) consists of
monoidal natural transformations of E to itself. So if g ∈ G then for each
ρ ∈ ∆f we have an arrow gρ ∈ HomSHf (E(ρ), E(ρ)). This can be used to
define an action of G on F0 by

αg(a, ρ, ψ) = (a, ρ, gρψ), a ∈ U, ψ ∈ E(ρ), g ∈ G.

Proposition 1.3.17. The action given above defines a group isomorphism
g 7→ αg of the Tannaka group G into the group AutU(F0) of ∗-automorphisms
of F0 that leave U pointwise fixed.

It is not hard to check that this action of G leaves every F0(O) globally
fixed. Furthermore, the symmetry of SHf , the fact that E is a symmetric
functor and the observation that for the symmetry of ∆f , cρ1,ρ2 = idρ1⊗ρ2
holds whenever ρ1 and ρ2 are localized in spacelike separated regions, gives
normal commutation relations. To be more precise.

Proposition 1.3.18. Let O1 and O2 be spacelike separated diamonds. Let
Fi ∈ F0(O) satisfy αk(Fi) = εiFi, where εi ∈ {−1, 1}. Then

F1F2 = (−1)(1−ε1)(1−ε2)/4F2F1.

We want to make a representation (H,π) of the ∗-algebra F0. This is
done by applying the GNS construction to the composition ω0 ◦m : F0 → C,
where ω0 : U → C is the vacuum state and m : F0 → U is a positive linear
map which we will now define.

First note that because ∆f is a STC* category, it is semisimple by Propo-
sition 3.2.14. If ρ ∈ Obj(∆f ), then ρ = ρ1 ⊕ ... ⊕ ρn, where each ρi is irre-
ducible. Define pρι : ρ→ ρ to be the projection on the direct sum of those ρi
that are isomorphic to ι. This projection is interesting because E(pρι ) = P ρ0 ,
where P ρ0 : E(ρ)→ E(ρ) is the projection in on the subspace of vectors that
are invariant under the action πE(ρ)(g) = gρ of G.

Proposition 1.3.19. Define the map m : F0 → U by

m(a, ρ, ψ) = (apρι , ρ, ψ).

Then m is a well-defined linear map. It is positive in the sense that for each
F ∈ F0 we have m(F ∗F ) ≥ 0. It is faithful in the sense that if m(F ∗F ) = 0,
then F = 0. Let A = (a, ι, e(1)) ∈ F0 and F ∈ F0, then m(A) = A and
m(AF ) = Am(F ).

Thus ω = ω0 ◦ m is a faithful state on the ∗-algebra F0. Take the
GNS representation10 (H,π) of F0 with respect to ω. Define F to be the
norm closure of π(F0) and F(O) to be the weak closure of π(F0(O). As a

10Note that F0 is not a C*-algebra, but only a ∗-algebra
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consequence F is the C*-inductive limit of the net of von Neumann algebras
O → F(O). We shall call F the Roberts field net for the fiber functor E
carrying the representation (H,π).

It was pionted out before that E(pρι ) = P ρ0 , where P ρ0 : E(ρ) → E(ρ)
is the projection on a pointwise G-invariant subspace. This entailts that
for each F ∈ F0 and g ∈ G we have m(αgF ) = m(F ). The state ω is G-
invariant and by Lemma 1.3.2 the representation (H,π) carries a a unitary
representation g 7→ U(g) of G.

Theorem 1.3.20. Let (G, k) be the Tannaka supergroup belonging to the
STC* category ∆f . Take FRE to be the Roberts field for the fiber functor E :
∆f → SHf carrying the representation (HR

E , π
R
E). Then (HR

E , π
R
E ,F

R
E , (G, k))

is a field system with gauge symmetry for (U, ω0). This field system is com-
plete and has normal commutation relations.

Now suppose that we use two different fiber functors Ei : ∆f → SHf to
obtain two different Roberts fields FREi . By (the super version of) Theorem
3.6.2 there is a unitary monoidal natural transformation E1 → E2. Using
this natural transformation it can be shown that the field nets FREi provide
equivalent field systems ([19] Section 10.5). The construction of the field
system does therefore not depend on the choice of the fiber functor.

But what if we take an arbitrary complete normal field system with
gauge symmetry (H,π,F, (G, k)) for (U, ω0)? Why should this be equiv-
alent to (HR

E , π
R
E ,F

R
E , (G, k))? The field algebra F can be used to con-

struct a fiber functor EF : ∆f → SHf . For this fiber functor we can
construct a Roberts field algebra FREF

. It can be shown that the resulting
field system is equivalent to (H,π,F, (G, k)). Consequently it is equivalent
to (HR

E , π
R
E ,F

R
E , (G, k)). This proves uniqueness up to equivalence of field

systems. Details can be found in [19] Section 10.5.

1.4 Inequivalent Representations

As promised in Section 1.1, we come back to the algebraic imperialist and
the Hilbert space conservatist. The algebraic imperialist claims that all the
physical content of a quantum field theory is in the net O → U(O), the
states on the quasilocal algebra U, and the symmetries of U. The Hilbert
space conservatist claims that we need the net, the symmetries and a repre-
sentation (H,π). After walking through the DHR analysis, it may seem that
the algebraic imperialist has a point. At least for theories that adhere to the
DHR selection criterion and Minkowski spacetimes that have a dimension of
at least 3, we were able to construct a global gauge group and a field algebra.
So it looks like the gauge group and fields, despite being handy tools, are
not fundamental. These can be obtained from the net of observable algebras
and the states on the quasilocal algebra. However, we needed a little more
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than just the data of the algebraic imperialist. The DHR selection criterion
helped to pick the physically relevant representations of U from the set of all
representations of U. This was a very important step in the DHR analysis
as it was the structure of DHR(U, ω0) rather than the structure of the set
or category of all representations that allowed us to proceed with the DHR
analysis. Actually, there was another step where we went from DHR(U, ω0)
to a full subcategory of it that is equivalent to ∆f but we will come to that
important point later.

The Hilbert space conservatist also seems to have a point. There is a pre-
ferred representation (H,π) of U. This is the representation in the complete
normal field system corresponding to (U, ω0). In this representation, the
superselection sectors are given by the (unitary) equivalence classes of the
DHR representations, and the field operators act as intertwiners between
these sectors. But we do not need to add (H,π) to the data. We know
enough to derive this representation if we have the vacuum state ω0 and the
category DHR(U, ω0) at our disposal.

The stance that all the physical content of a quantum field theory is
given by the net O → U(O), the states on U, the symmetries of U and the
category DHR(U, ω0) is called representation realism in [19]. The repre-
sentation realist claims that inequivalent representations are of fundamental
importance. We need the physically relevant inequivalent representations
and especially the relations between them if we want to follow the DHR
analysis. But how are the inequivalent representations related in AQFT?
They are not related by dynamics. The Hamiltonian that generates the
time evolution is an observable. The corresponding operator in the field
system can only map vectors in a superselection sector to vectors in that
same sector. Inequivalent representations give different sectors.

That inequivalent representations are not dynamically related does not
mean that there are no important relations between them. An interesting
relation is proposed in the work of Baker and Halvorson [3] on antimatter.
Before we get into this matter (no pun intended), we first go back to the
issue of conjugates. Before we could use Tannaka-Krein duality we first had
to pass from the category ∆ to the category ∆f . This raises questions.
How many DHR representations did we throw out? Why do only the DHR
representations that have a conjugate representation matter? Is there a
physical motivation for using conjugates? Notice that we do not fuss on
the finiteness demand on the dimension. This is due to Corollary 4.6.6 that
tells us that the dimension is automatically finite. The answer to the first of
the three questions above is none if and only if we assume that each DHR
representation satisfies finite statistics. The demand of finite statistics can
be seen as a weakening of the Bose and Fermi statistics that also allows for
parastatistics. A discussion of finite statistics and arguments for it to hold
can be found in [13] [34] [15]. Note that in the previous section we claimed
that starting out with a field system, the DHR representations that come
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from the subrepresentations (sectors that can be reached from the vacuum
by the action of local fields) always have conjugates. So if we go from field
systems to the DHR category, every representation obtained has conjugates,
and assuming finite statistics, every DHR representation has conjugates.

Even though under mild conditions we lose nothing in passing from ∆
to ∆f , we can still ask if conjugation can be physically motivated. If this is
the case, then we have also found a relation between inequivalent represen-
tations as a DHR-representation is often inequivalent to its conjugate. In [3]
conjugation is strongly linked to antimatter as follows. Suppose that ω is a
matter state on U corresponding through the GNS construction to an object
ρ of ∆f . Then we can take the conjugate object ρ. States ω in the folium
of ρ are then the corresponding antimatter states. Notice that different an-
timatter states give the same representations up to unitary equivalence. It
is interesting to see antimatter in AQFT. In the foundations of QFT, par-
ticles seem to have no fundamental significance [14] [38] [20]. Antimatter is
conventionally seen as ’matter’ made out of antiparticles, yet AQFT makes
no use of particles as these are not fundamental. Still there is a notion of
antimatter.

The irreducible tensor unit ι of ∆f corresponds to the vacuum repre-
sentation π0 in DHR(U, ω0). Let ρ in ∆f have a conjugate (ρ, r, r). Then
r : ι→ ρ⊗ρ is an isometry up to a scalar. We see that the vacuum represen-
tation is a subobject of the DHR representations corresponding to ρ⊗ρ and
ρ⊗ρ. This fits well with the idea that matter and antimatter can annihilate.

For now we leave the subject of antimatter as well as the DHR analysis.
Starting the next section we will set out to prove the main mathematical
machinery behind the DHR analysis, namely Tannaka-Krein duality and
Deligne’s embedding theorem.
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Chapter 2

Tannaka’s Theorem

In this chapter we will prove Tannaka’s theorem for compact Lie groups.
Given a compact Lie groupG this theorem shows how we can reconstruct this
group from the structure of the representations of this group. This theorem
is part of Tannaka-Krein duality for compact groups. The other part of
this duality and the general theory will be the focus of the next chapter.
We will prove Tannaka’s theorem in two different ways that are initimately
connected. The motivation for discussing two proofs comes in part from
Chapter 3 where Tannaka-Krein duality is discussed with a heavy emphasis
on category theory. A lot of the (additional) material presented here is
intended to help clarify the more abstract definitions and constructions in
the second chapter. The two different methods show different aspects of
Tannaka-Krein duality.

The first two sections give some background material. In the first section
we give an overview of the basics of representation theory of compact Lie
groups. The reader familiar with representations of Lie groups can safely
skip this section. the second section is devoted to proving the theorem of
Peter and Weyl for compact Lie groups and some consequences of this the-
orem. In particular we will show that for any compact Lie group we can
always find a faithful representation. The theory is put to work in the third
and fourth sections. In the third section we will prove Tannaka’s theorem
for the first time. By making use of Hopf algebras we construct a topolog-
ical group GR from algebra homomorphisms of (real-valued) representative
functions. This group is shown to be isomorphic to the original group G.
The fourth section discusses the algebraic group GC as the complexification
of GR. The material presented in the fourth section is not necessary for
understanding the rest of this thesis. This does, however not mean that it is
not important or interesting. If the reader wants to go beyond the material
presented in Chapter 3, and study for example Tannaka-Krein duality for
quantum groups, Section 4 gives some of the basics that are used in the
relevant literature [21]. But even without looking beyond the material of

27



this thesis the material in Section 4 is interesting in its own right.
In the fifth section we more or less start over at the point where the

second section ended. We start with a minimal introduction to category
theory. We define the forgetful functor ω : Repf (G,C) → V ectC from the
category of finite dimensional representations of G over C to the category of
finite dimensional vector spaces over C. We then construct a group Aut⊗ω
using certain natural transformations of the forgetful functor to itself. This
group plays the same role as GR in Section 3. In Section 6 we will review the
basics of Fourier theory for compact groups. The Fourier theory and some
basic category theory are subsequently used to prove Tannaka’s theorem for
a second time.

2.1 Representation Theory

In this section G denotes a Lie group that is not assumed compact unless
stated otherwise. Before we start with representations we first state the
following fact for compact Lie groups. This fact, which we will occasionally
need, is the existence of the invariant Haar integral defined by the invariant
Haar measure. A proof can be found in Bröcker and tom Dieck [7].

Theorem 2.1.1. Let G be a compact Lie group and C0(G,C) the C-vector
space of continuous complex-valued functions on G. Then there exists a
unique invariant integral C0(G,C) → C, f 7→

∫
G f(x)dx that has the fol-

lowing properties:

1. It is linear, monotone and normalized (
∫

1 = 1).

2. Left invariance
∫
G f(yx)dx =

∫
G f(x)dx, ∀y ∈ G.

The invariant Haar integral is also right invariant.

Definition 2.1.2. Let G be any Lie group. A representation of G (also
called a G-module) on a finite dimensional vector space V over the field C
is a continuous action

ρ : G× V → V

of G on V such that for each group element x ∈ G the translation πV (x) :
v 7→ ρ(x, v) is a linear map. The space V is called the representation space
and the dimension of V as a complex vector space is called the dimension
dim(V ) of the representation.

From the definition of a group action we know the following facts. If
e ∈ G is the identity then πV (e) = idV . Let x, y ∈ G, then πV (x) ◦ πV (y) =
πV (xy). Combined these two relations imply that for every group ele-
ment the translation πV (x) is a linear automorphism of V with inverse
πV (x−1). The map x 7→ πV (x) defines a homomorphism πV : G→ Aut(V ).

28



Conversely, any such homomorphism πV defines an action of G on V by
(x, v) 7→ πV (x)(v). By choosing a basis we can identitfy Aut(V ) ∼= GL(n,C).
This motivates the following definition.

Definition 2.1.3. A matrix representation of G is a continuous homomor-
phism πV : G → GL(n,C) of groups. A representation is called faithful if
the associated homomorphism G→ Aut(V ) is injective.

Definition 2.1.4. A morphism f : (V, ρ) → (V ′, ρ′) between representa-
tions is a linear map which is equivariant, i.e. which satisfies f ◦ ρ(x, v) =
ρ′(x, f(v)) for all x ∈ G and v ∈ V . In shorthand notation this becomes
f(x.v) = x.f(v). These morphisms are also called intertwining operators. It
is straightforward to check that this defines a category of representations.

Example 2.1.5. (Direct sum representation) Using direct sums, tensor
products or dual spaces it is possible to construct new representations from
old ones. Let (V, ρ) and (W,ρ′) be two representations of G. We may con-
struct the direct sum representation as follows. Take the vector space V ⊕W
and define the action of G by x.(v, w) = (x.v, x.w). For matrix represen-
tations this amounts to the following. Given two matrix representations
G → GL(m,C), x 7→ A(x) and G → GL(n,C), x 7→ B(x), we obtain the
direct sum representation G→ GL(m+ n,C) by forming the block matrix.

x 7→
(
A(x) 0

0 B(x)

)
.

Example 2.1.6. (Subrepresentations) Let (V, ρ) be a representation and
U ⊂ V be a subspace that is invariant under the action of G. By this
we mean that for every x ∈ G and v ∈ U we have that x.v ∈ U . Then
(U, ρ|G×U ) defines a subrepresentation or submodule. The action of the sub-
representation is given by the restriction of the action to the subspace. A
representation (V, ρ) is called irreducible if the only subrepresentations are
V and 0.

Example 2.1.7. (Tensor product representation) Let (V, ρ) and (W,ρ′) be
representations of G. The tensor product representation is the representation
that has as a vector space V ⊗ W and the following action x.(v ⊗ w) =
x.v ⊗ x.w. Let v1, ..., vn be a basis of V and w1, ..., wm a basis of W . The
nm elements of the form vi⊗wj form a basis of V ⊗W . If x acts on V and
W via the matrices (rij) and (sij), then x acts on V ⊗W via the matrix
(rijskl) whose entry in the (i, k)th row and (j, l)th column is rijskl. More
explicitly

x.(vj ⊗ wl) =
∑
i

rij(x)vi ⊗
∑
k

skl(x)wk =
∑
i,k

rij(x)skl(x)vi ⊗ wk.
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Definition 2.1.8. Define the trivial representation as the 1 dimensional
vector space C with the homomorphism G→ EndC, g 7→ 1. Every element
acts as the identity.

Example 2.1.9. (Dual representation) The set Hom(V,W ) of intertwining
operators has the structure of a vector space. We define a action of G on
this space in the following way. Let f ∈ Hom(V,W ) and x ∈ G, then
(x.f)(v) = x.f(x−1.v). If we take W to be the trivial representation C, then
this representation is called the dual representation of V and is denoted by
Hom(V,C) = V ∨. The action on V ∨ is given by (x.f)(v) = f(x−1.v). Let
v1, ..., vn be a basis for V and v∨1 , ..., v

∨
n the dual basis of V ∨. Suppose that

x.vj =
∑

i rij(x)vi and that x.v∨j =
∑

i sij(x)v∨i , then the two matrices are
related as follows

sij(x) = (x.v∨j )(vi) = v∨j (x−1.vi) = v∨j

(∑
k

rki(x−1)vk

)
= rji(x−1).

So x acts on the dual as the transpose of the inverse.

We can use the left-invariant normalized integral to define an invariant
inner product on the representation space V . Take 〈., .〉0 to be any inner
product on V . Then it is straightforward to check that

〈u, v〉 =
∫
G
〈πV (x)u, πV (x)v〉0dx

defines an inner product. Because of the left-invariance of the integral this
new inner product has the property that 〈πV (x)u, πV (x)v〉 = 〈u, v〉 for all
u, v ∈ V . Any orthogonal basis with respect to this inner product yields a
unitary matrix representation.

Example 2.1.10. (Conjugate representation) For a representation V we
can also define the conjugate representation V . The vector space of this
representation has the same additive structure as V but scalar multiplication
is defined by

C× V → V (z, v) 7→ zv

where at the righthand side the usual scalar multiplication is implied. The
action on V also gives an action on V by πV (x) = πV (x). Let 〈., .〉 be an
invariant inner product. Using this inner product we get an isomorphism of
representations V → V ∨ given by ι : v 7→ 〈−, v〉. Lets check this explicitly

ι(πV (x)v) = (w 7→ 〈w, πV (x)v〉).

πV ∨(x)(ι(v)) = πV ∨(x)(w 7→ 〈w, v〉) = (w 7→
〈
πV (x−1)w, v

〉
).

Due to the invariance of the inner product these two identities are the same
proving that this linear map is indeed an intertwining operator. It is an iso-
morphism because it maps a basis to a basis and therefore is an isomorphism
of vector spaces.
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Proposition 2.1.11. Let G be a compact Lie group. If V is a submodule
of the G-module U , then there is a complementary submodule W such that
U = V ⊕W . Each module is the direct sum of irreducible submodules.

Proof. Take an G-invariant inner product on U and let W be the orthogonal
complement of V in U . It is straightforward to check that W is a submodule.
The second claim follows from the first by induction on dimension of the
representation space.

So we can take direct sums and tensor products of representations. We
can construct a dual and a conjugate representation for any representation.
For now we are finished with constructions on representations and we will
move onto the subject of representative functions. Let G → GL(n,C),
x 7→ (rij(x)) be a matrix representation. Then we have continuous functions
rij : G → C. These functions are examples of representative functions. In
fact, it will turn out that all representative functions are linear combinations
of functions that are entries of some matrix representation.

Let C0(G,C) be the ring of continuous functions G → C. The transla-
tions in G induce actions of G on C0(G,C) in the following way

L : G× C0(G,C)→ C0(G,C), L(x, f)(y) = f(x−1y).

R : G× C0(G,C)→ C0(G,C), R(x, f)(y) = f(yx).

Definition 2.1.12. Let G act on C0(G,C) through R. A function f ∈
C0(G,C) is called a complex-valued representative function for G if f gen-
erates a finite-dimensional G-subspace of C0(G,C). By this we mean that
the smallest G-invariant subspace containing f is finite dimensional.

Let us take a look at the functions that come from the matrix represen-
tation G→ GL(n,C), x 7→ (rij(x)). For any matrix representation we have
the following rule rij(xy) =

∑
i rik(x)rkj(y). So if we translate rij over y we

have that the translated function x 7→ rij(xy) is a C-linear combination of
the functions rik with k ∈ {1, ..., n}. This shows that the functions coming
from representations are indeed representative functions. In order see the
converse, we take a slightly more abstract point of view. Let V be a repre-
sentation of G and V ∨ the corresponding dual representation. Given v ∈ V
and f ∈ V ∨ we define df,v ∈ C0(G,C) by df,v(x) = f(x.v). We obtain a
linear map

sV : V ∨ ⊗C V → C0(G,C), f ⊗ v 7→ df,v.

Let S(V ) denote the image of sV , then S(V ) is a finite dimensional G-
subspace of (C0(G,C), R) and (C0(G,C), L). To see that invariance under
the given actions holds note that L(g, df,v) = dgf,v and R(g, df,v) = df,gv.
Thus S(V ) consists of representative functions. Let e1, ..., en be a basis of
V and e∨1 , ..., e

∨
n the corresponding dual basis of V ∨. If we have x.ej =
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∑
i rij(x)ei then we see that de∨i ,ej = rij . So we recognize S(V ) as the space

generated by the functions rij that come from the representation V .
In the proof of the next proposition we will see that representative func-

tions always come from representations. The proposition also shows that
the set of representations of G has additional structure.

Proposition 2.1.13. If f is a representative function, then f generates
a finite-dimensional G-subspace of (C0(G,C), L). The representative func-
tions form a C-subalgebra T (G,C) closed under complex conjugation.

Proof. Let f be a representative function. Then f generates a finite di-
mensional G-subspace V of (C0(G,C), R). Let e1, ..., en be a basis of V
and e∨1 , ..., e

∨
n the corresponding dual basis of V ∨. Suppose that R(x, f) =∑

j aj(x)ej , then we have

sV (e∨j , f)(x) = e∨j

(∑
i

ai(x)ei

)
= aj(x).

f(x) = R(x, f)(1) =
∑
j

aj(x)ej(1) =
∑
j

sV (e∨j , f)(x)ej(1).

Consequently f is an element of S(V ). The first assertion now follows from
the fact that S(V ) is finite dimensional and invariant under the action of
L. The space T (G,C) is generated as a C-vector space by representative
functions coming from matrix representations. So for the second claim we
only look at representative functions that come from matrix representations.
Suppose that x 7→ (rij(x)) and x 7→ (tkl(x)) are two matrix representations.
By looking at their direct sum and tensor product representations, we can
see that rij + tkl and rijtkl are also representative functions. Looking at the
conjugate representation shows that the rij are also representative functions.

2.2 The Theorem of Peter and Weyl

In this section we use some basic analysis on compact (Lie) groups to prove
results that lead to the theorem of Peter and Weyl for compact Lie groups.
We show that the representative functions lie dense in C0(G,C) with re-
spect to the supremum norm topology. Thereafter we show that the C-
algebra T (G,C) of representative functions is the orthogonal direct sum of
submodules of representative functions belonging to isomorphism classes of
irreducible representations. We also prove some useful consequences of the
theorem of Peter and Weyl such as the fact that every compact Lie group
admits a faithful representation.

Take C0(G,C) to be the space of C-valued continuous functions on G.
Equipped with the supremum norm this space becomes a Banach space. We
recall the Arzela-Ascoli theorem from functional analysis in this setting.
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Theorem 2.2.1. (Arzela-Ascoli) A subset L of the space C0(G,C) equipped
with the supremum norm is compact if and only if L is closed, bounded and
equicontinuous.

We say that L is equicontinuous at a point x ∈ G if for each ε > 0
there is a neighborhood U of x such that |f(y)− f(x)| < ε for all y ∈ U
and f ∈ L. The set L is called equicontinuous if it is equicontinuous at
each point of G. In this subsection we will encounter linear maps (linear
operators) of normed spaces that take the following shape. Let H denote
the vector space C0(G,C). This can be equipped with the supremum norm,
but alternatively we can take the following inner product defined by using
the normalized invariant integral

〈u, v〉 =
∫
G
uv̄, ‖u‖2 = 〈u, u〉1/2 .

Completion of H with respect to this inner product gives a Hilbert space
Ĥ = L2(G). Take k : G × G → C to be a continuous function. Then the
following map K : (Ĥ, ‖.‖2)→ (H, ‖.‖sup), f 7→ Kf defined by

Kf(x) =
∫
G
k(x, y)f(y)dy

is a continuous linear operator. We know that for normed spaces a linear
operator is continuous if and only if it is bounded. The operator is bounded
because

|Kf(x)| ≤
∫
G
|k(x, y)| |f(y)| dy ≤ (sup{|k(x, y)| |x, y ∈ G}) ‖f‖2 .

We can use the Arzela-Ascoli theorem to prove that this operator K :
(Ĥ, ‖.‖2) → (H, ‖.‖sup) is compact. Composition with the identity map
(H, ‖.‖sup) → (Ĥ, ‖.‖2) then gives, with abuse of notation, a compact op-
erator K : (Ĥ, ‖.‖2) → (Ĥ, ‖.‖2). Recall that a operator between normed
spaces is called compact if it maps every bounded set into a precompact set.
A precompact set is a set L such that every sequence in L has a subsequence
that converges in L. Take B ⊂ Ĥ to be bounded relative to ‖.‖2 by a con-
stant C > 0 and fix an ε > 0. Choose a neighborhood V of the identity
e ∈ G such that for any z ∈ G we have that |k(x, z)− k(y, z)| < εC−1 when
xy−1 ∈ V . Then

|Kf(x)−Kf(y)| =
∣∣∣∣∫
G

(k(x, z)− k(y, z))f(z)dz
∣∣∣∣ ≤ εC−1 ‖f‖2 ≤ ε.

This shows that K(B) is equicontinuous. As we have already seen that K(B)
is bounded, the Arzela-Ascoli theorem gives that K(B) is precompact, and
K is compact. Now suppose that the function k is symmetric in the sense
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that k(x, y) = k(y, x) for all x, y ∈ G. Then it follows from Fubini’s theorem
that the operator K is symmetric in the sense that 〈Ku, v〉 = 〈u,Kv〉 holds
for all u, v ∈ L2(G). Recall that we can use the norm on L2(G) to construct
a norm on the operators by ‖K‖ = sup{‖Kf‖ | ‖f‖ = 1}. Notice that we
dropped the subscript 2 in the norm. The norm will always be assumed
to be ‖.‖2 in this subsection unless stated otherwise. If K is a symmetric
operator, then this definition is equivalent to ‖K‖ = {|〈Kf, f〉| | ‖f‖ = 1}.
A more complete discussion of the previous claims can be found in [37] or
[8]. We are now ready to prove the following proposition.

Proposition 2.2.2. Let K be a symmetric compact operator. Then ‖K‖ or
−‖K‖ is an eigenvalue of K.

Proof. If ‖K‖ = 0 then K = 0 and the proposition holds trivially, so let’s
assume that ‖K‖ 6= 0. Because we have ‖K‖ = {|〈Kf, f〉| | ‖f‖ = 1}, we
can find a sequence (fn)n such that limn→∞ |〈Kfn, fn〉| = ‖K‖ and that has
the property that ‖fn‖ = 1. Therefore there exists a subsequence such that,
with some abuse of notation, 〈Kfn, fn〉 converges to either ‖K‖ or −‖K‖.
Denote this limit by α. We have

0 ≤ ‖Kfn − αfn‖2 = ‖Kfn‖2 − 2α 〈Kfn, fn〉+ α2 ‖fn‖2

≤ 2α2 − 2α 〈Kfn, fn〉 .
.

The right-hand side converges to zero. We know that the operator K is
compact so there is a subsequence (Kfn) that converges to an element f .
By the above calculation we know that (αfn) also converges to f . Since
α 6= 0, we can define h = α−1f 6= 0. The (sub)sequence (fn) converges to
h. Now we know that Kh = αh.

After these preparations we can prove the spectral theorem for compact
symmetric operators. First note that the eigenvalues of a symmetric op-
erator must be real numbers. Also note that the eigenspaces for different
eigenvalues are pairwise orthogonal.

Theorem 2.2.3. (Spectral theorem) Let K : (Ĥ, ‖.‖)→ (Ĥ, ‖.‖) be a com-
pact symmetric operator and Hλ = {x|Kx = λx} be the eigenspace of the
eigenvalue λ. Then for each ε > 0 the subspace

⊕
|λ|≥εHλ is finite dimen-

sional and
⊕

λHλ is dense in Ĥ.

Proof. Suppose that
⊕
|λ|≥εHλ is not finite-dimensional. We can find a

sequence of orthonormal vectors (fn) such that Kfn = λnfn and λn ≥ ε. But
then we have that ‖Kfn −Kfm‖2 ≥ 2ε2. This contradicts the compactness
of the operator K. This proves the first claim. For the second claim take E
to be the closure of

⊕
λHλ in Ĥ. Take F to be the orthogonal complement

of E in Ĥ. Let e ∈ E and f ∈ F , then 0 = 〈Ke, f〉 = 〈e,Kf〉, so Kf is also
in F . The operator K induces a linear map F → F that is symmetric and
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compact. By the previous proposition we know that K has an eigenvalue.
This contradicts the construction of E unless F = {0}.

Now we can state the first main result of this section. It is one of the
two ingredients of the theorem of Peter and Weyl.

Theorem 2.2.4. The representative functions are dense in both C0(G,C)
and L2(G,C).

Proof. Let f : G → C be continuous and ε > 0. Because G is compact,
it follows from uniform continuity that we can choose a neighborhood U of
the identity e ∈ G such that U = U−1 and that |f(x)− f(y)| < ε whenever
x−1y ∈ U . Let δ : G → [0,∞) be a continuous function with support
contained in U such that δ(x) = δ(x−1) and

∫
G δ = 1. Now consider the

linear operator
K : L2(G)→ C0(G), f 7→ Kf

defined by

Kf(x) =
∫
G
δ(y)f(xy)dy =

∫
G
δ(y−1x)f(y)dy = (f ∗ δ)(x).

Here we used both the invariance of the integral and the properties of δ. We
have the following

‖Kf − f‖sup = sup
y∈G

∣∣∣∣∫
G
δ(x)(f(yx)− f(y))dx

∣∣∣∣ ≤ ∫
G
εδ(x)dx = ε

where we used that if δ(x) 6= 0, then x ∈ U so y−1yx ∈ U and |f(y)− f(xy)| <
ε. We are finished with the proof if every function Kf can be approximated
by a representative function. We have seen operators of this kind before and
recognize them as symmetric and compact. Using invariance of the integral
we can see that the operator is equivariant

K(y.f)(x) =
∫
G
f(y−1z)δ(z−1x)dz =

∫
G
f(z)δ(z−1y−1x)dz = (y.(Kf))(x).

Consequently the eigenspaces of K are G-invariant. Let λ0 = 0 and λn 6= 0
be the eigenvalues of K. By the spectral theorem for compact symmetric
operators

⊕
n≥0Hλn is dense in Ĥ. So

⊕
n≥0KHλn is dense in KĤ. Fur-

thermore KH0 = 0 and KHλn = Hλn so
⊕

n≥0KHλn =
⊕

n≥1Hλn . The
spaces Hλn are finite dimensional and G-invariant, so Hλn ⊂ T (G,C). As⊕

n≥1Hλn is finite dimensional and consists of representative functions, the
representative functions are dense in KĤ. The spectral theorem has shown
us that the representative functions are dense in KĤ and previously it was
shown that ‖Kf − f‖sup < ε implying that the representative functions are
dense in C0(G,C).
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We will use this theorem to prove that any compact Lie group admits
a faithful representation. In order to do so we need the descending chain
property of compact Lie groups. This is the property that a descending chain
of closed subgroups K1 ⊇ K2 ⊇ ... of G is eventually constant. If Ki+1 6=
Ki, then Ki+1 either has a lower dimension than Ki or fewer connected
components. AsG is compact, it is clear that the chain must remain constant
at some point.

Theorem 2.2.5. Every compact Lie group admits a faithful representation.

Proof. Assume that G 6= {e}. Then pick any x ∈ G with x 6= e. There exists
a continuous function f : G → C such that f(x) 6= f(e). By the previous
theorem there is a representative function u such that u(x) 6= u(e). The
kernel K1 of the corresponding representation is therefore a proper closed
subgroup of G. If K1 6= {e} take a new x ∈ K1 − {e}. Use the previous
argument to find a representation with a kernel K2 such that K1 ∩ K2 is
properly contained in K1. If π1 is the representation that has K1 as a
kernel and π2 has K2 as a kernel, then the direct sum representation π1⊕π2

has K1 ∩ K2 as a kernel. Repeating the arguments we find a descending
chain of closed subgroups and by the descending chain property, this chain
will become constant equal to {1} in a finite number of steps. Take the
representations belonging to K1 ∩ ... ∩Kn = {1}, that is take the π1, ...πn
and form the direct sum representation π1 ⊕ ...⊕ πn. This representation is
faithful.

Using an invariant inner product, the above theorem gives the existence
of a faithful unitary representation. Now we proceed to obtain the second
ingredient for the theorem of Peter and Weyl. We start with Schur’s lemma
which we will ocassionaly need.

Proposition 2.2.6. (Schur’s Lemma) Let G be any group and let V and
W be irreducible G-modules. An intertwining operator V →W is either an
isomorphism or the zero map. Any intertwiner f : V → V has the form
f(v) = λv for some λ ∈ C.

Proof. Let f : V →W be an intertwining operator. Then the kernel of f is
an submodule of the irreducible module V . If the kernel is V then f is the
zero map. If the kernel is not V and therefore {0} then f is injective and
f(V ) is a nonzero submodule of the irreducible module W . Consequently
f(V ) = W and f is an isomorphism. For the second claim suppose that
f is an isomorphism and let λ be an eigenvalue of f with eigenspace W .
Then W = {v ∈ V, f(v) = λv} is a G-submodule of V . The claim follows
by irreducibility of V .

Theorem 2.2.7. (Orthogonality Relations) Let V and W be nonisomorphic
irreducible representations. Take 〈., .〉 to be a G-invariant inner product on
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V or W . Let v1, v2 ∈ V and w1, w2 ∈W , then∫
G
〈x.v1, v2〉 〈x.w1, w2〉dx = 0.

Proof. Fix v1 = α and w1 = β to get a bilinear map b : V ×W → C given
by (v, w) 7→

∫
G 〈v, x.α〉 〈x.β, w〉dx. This bilinear form is G-invariant and

therefore defines a intertwining operator b′ : V → Hom(W,C) = W
∨ ∼= W .

Applying Schur’s lemma and keeping in mind that V and W are nonisomor-
phic, gives that this map is the zero map.

Definition 2.2.8. For a compact Lie group G, define Ĝ to be the set of
isomorphism classes of all irreducible representations of G.

Equipped with the orthogonality relations we can now prove the second
ingredient for the theorem of Peter and Weyl. This proposition shows that
T (G,C) is semisimple in the sense that it is the orthogonal direct sum of
G-modules that come from functions of irreducible representations.

Proposition 2.2.9. Let B be a G-submodule of (T (G,C), R). Then the
following holds:

1. B is the orthogonal direct sum of the sub-modules B ∩ S(U), where
S(U) ranges over the set Ĝ.

2. B is closed in T (G,C) with respect to both the inner product and the
supremum norm topologies.

Proof. Take U an irreducible representation of G. We saw at the end of the
first section that S(U) was the space spanned by the representative functions
coming from U . We will now use the orthogonality relations to show that
the S(U)-spaces are pairwise orthogonal. Let U and V be two nonisomor-
phic irreducible representations. Take bases u1, ..., un for U and v1, ..., vm for
V . We get matrix representations rij(x) = 〈x.ui, uj〉 and skl(x) = 〈x.vk, vl〉.
Applying the orthogonality relations gives

∫
G rijskldx = 0. From the discus-

sion in the first section and the proof of 2.1.13 we can see that the S(U)’s
generate T (G,C). So we can conclude that T (G,C) is the direct sum of the
S(U)’s where U ranges over all irreducible representations. To sum up, we
have shown that T (G,C) is semisimple and that the summands correspond-
ing to nonisomorphic irreducible representations are mutually orthogonal.
Note also that Schur’s lemma implies that if V and W are isomorphic irre-
ducible representations, then these are canonically isomorphic. So it suffices
to use isomorphism classes of irreducible representations instead of all irre-
ducible representations. This proves the first claim.

To prove (2), let f be an element of T (G,C) lying in the closure of B
with respect to the inner product topology. Now consider the orthogonal
projection on S(U) given by the map pU . Since

〈pU (f − b), pU (f − b)〉 ≤ 〈f − b, f − b〉
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for every b ∈ B we know that pU (f) ∈ pU (B), where the closure is in
S(U). But the space S(U) is finite dimensional, hence pU (f) ∈ pU (B). The
function f is contained in the pU (B) where U ranges over the isomorphism
classes of irreducible representations. By (1), f is in B. Finally we have
‖f‖2 ≤ ‖f‖sup so B is also closed with respect to the supremum norm
topology.

We can formulate the theorem of Peter and Weyl for compact Lie groups.
We know that the representative functions are dense in C0(G,C) and there-
fore are dense in L2(G). We also know that T (G,C) is equal to the orthogo-
nal direct sum of G-submodules S(U). These modules S(U) are constructed
using isomorphism classes of irreducible representations U . Combining these
observations gives the following theorem.

Theorem 2.2.10. (Peter and Weyl) Let Ĝ denote the set of isomorphism
classes of irreducible representations of the compact Lie group G. Then the
space L2(G) decomposes as a Hilbert sum

L2(G) =
⊕̂

δ∈Ĝ
S(U)δ.

Each term in the summand is an irreducible subspace that is invariant under
both actions R and L of G.

The following result will also be quite helpful in proving Tannaka’s the-
orem. It is the complex Stone-Weierstrass theorem. A proof of this theorem
can for example be found in Conway [8] Paragraph V.8. Recall that a set of
functions B ⊂ C0(X,C) is said to separate points if for each x, y ∈ X with
x 6= y there is a f ∈ B such that f(x) 6= f(y).

Theorem 2.2.11. (Stone-Weierstrass) Let G be a compact space. Take
B ⊂ C0(G,C) to be a subalgebra of the algebra of continuous functions with
the supremum norm. If B contains all complex constants, separates points
and is closed under complex conjugation, then B is dense in C0(G,C) with
respect to the supremum norm topology.

Proposition 2.2.12. Let G → GL(n,C), x 7→ (rij(x)) be a faithful repre-
sentation. Then the functions rij and rij generate T (G,C) as a C-algebra.

Proof. Let B be the C-algebra generated by rij and rij , then B is closed
under complex conjugation and contains the complex constants. Because
the representation is faithful, this algebra also separates points. By the
Stone-Weierstrass theorem B is dense in C0(G,C). So it is also dense in
T (G,C). The algebra B is also a G-module so it is closed in T (G,C) by
Proposition 2.2.9(2). The algebra B equals T (G,C).
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2.3 Hopf Algebras and Tannaka’s Theorem

In the previous two paragraphs we could just as easily have used the real
numbers R instead of the field of complex numbers C. If we replace C by R
everywhere, all arguments would still hold. There would only be superficial
changes. To name some examples: the conjugate representation V would be
the same as V and the condition in the Stone-Weierstrass theorem that the
set B ⊂ C0(G,R) is closed under conjugation would be redundant. For the
largest part of this section we will work with a field K that can be either the
real or complex numbers. The approach in this and the following section
is based on the discussion in Bröcker and tom Dieck [7] sections III.7 and
III.8.

Definition 2.3.1. Take the set GK to consist of all K-algebra homomor-
phisms T (G,K) → K, where K is either R or C. The set G̃R consists of
all C-algebra homomorphisms T (G,C) → C with the property that for all
f ∈ T (G,C) we have s(f) = s(f). So G̃R is a subset of GC.

After adding enough structure to the sets GK, it will turn out that GR is
isomorphic to the Lie group G. The set G̃R, after adding enough structure,
is also ismorphic to G as we will explain later. We start with adding more
structure to the algebra T (G,K). This structure will help to make GK into
a group.

Lemma 2.3.2. Let G and H be compact Lie groups. The K-algebra homo-
morphism

t : T (G,K)⊗K T (H,K)→ T (G×H,K)

sending u⊗ v to (x, y)→ u(x)v(y) is an isomorphism.

Proof. Proving that the map defines a K-algebra homomorphism is straight-
forward so we start with injectivity. Suppose that for all x ∈ G and y ∈ H we
have that u(x)v(y) = 0. Then it is easy to check that either u or v must be
the zero map. The kernel of t is therefore equal to {0}. To show surjectivity,
let f ∈ T (G×H,K) be given and let S ⊂ T (H,K) be the space generated
by the functions y 7→ f(x, y). Because f ∈ T (G×H,K), this space is finite-
dimensional. We can choose a basis e1, ..., en such that there are elements
y1, ..., yn ∈ H with ei(yj) = δij . We can now write f(x, y) =

∑
ui(x)ei(y).

Surjectivity follows when x 7→ ui(x) are in T (G,K). By the choice of the
basis we have ui(x) = f(x, yi), so these functions are indeed elements of
T (G,K).

Group multiplication G×G→ G, (x, y) 7→ xy induces a homomorphism
T (G,K) → T (G × G,K) by (x, y) 7→ f(xy). Note that the arrow of the
induced transformation is reversed. We should also check at this point that
(x, y) 7→ f(xy) indeed defines a representative function for the group G×G.
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This can be done in a straightforward fashion. Using this induced multi-
plication map and the isomorphism of the above lemma gives the following
K-algebra homomorphism

d : T (G,K)→ T (G×G,K) ∼= T (G,K)⊗K T (G,K)

that is called comultiplication. In a similar way the inverse map x 7→ x−1

induces a K-algebra homomorhism called the coinverse

c : T (G,K)→ T (G,K), c(f)(x) = f(x−1).

Evaluation at the unit element e ∈ G gives the algebra homomorphism

ε : T (G,K)→ K

called the counit. These algebra homomorphisms satisfy the following prop-
erties. The properties are simply the translations of the axioms for the group
G. Associativity of group multiplication yields the coassociativity of d

(d⊗ id) ◦ d = (id⊗ d) ◦ d.

The counit satisfies

(ε⊗ id) ◦ d = id = (id⊗ ε) ◦ d.

Let m and η be the multiplication and the unit in T (shorthand for T (G,K))

m : T ⊗K T → T , f ⊗ g 7→ f · g

η : K → T , 1 7→ 1

then we have for the coinverse

m ◦ (c⊗ id) ◦ d = η ◦ ε.

The algebra T (G,K) together with the above structure is called a Hopf alge-
bra. The prefix co- that was used throughout is because the direction of all
the arrows is reversed when compared with the arrows in the corresponding
group operations.

Using comultiplication, we can multiply two homomorphisms s, t ∈ GK
as follows

s · t : T d−→ T ⊗K T
s⊗t−→ K ⊗K ∼= K.

This map is again a K-algebra homomorphism. Suppose that s, t ∈ GC
have the property that s(f) = s(f) and t(f) = t(f) hold for all f ∈ T .
Then we again have (s · t)(f) = (s · t)(f). So the set G̃R is closed under this
operation.

Proposition 2.3.3. The above composition law makes GK into a group.
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Proof. First check associativity using the above coassosiativity

(r · s) · t = m(id⊗ t)((r · s)⊗ id)d = m(id⊗ t)(m⊗ id)(r ⊗ s⊗ id)(d⊗ id)d.

r · (s · t) = m(r ⊗ id)(id⊗m)(id⊗ s⊗ t)(id⊗ d)d.

It is straightforward to show that

m(r ⊗ id)(id⊗m)(id⊗ s⊗ t) = m(id⊗ t)(m⊗ id)(r ⊗ s⊗ id)

so applying coassociativity proves associativity. It is straightforward to
check that ε ∈ GK and that it functions as an identity element. The in-
verse of s ∈ GK is given by s ◦ c ∈ GK . This follows from

sc · s = m(sc⊗ s)d = m(s⊗ s)(c⊗ id)d = sm(c⊗ id)d = sηε = ε.

Thus 〈GK , ·〉 satisfies all group axioms.

Proposition 2.3.4. Each x ∈ G defines an evaluation homomorphism
i(x) ∈ GK by i(x) : T (G,K) → K, f 7→ f(x). Thus we have a map
i : G→ GK , x 7→ evx. This map is an injective homomorphism of groups.

Proof. We will first show that the map is a homomorphism. Take f ∈
T (G,K) and write d(f) =

∑
i ui ⊗ vi. We know that (s·t)(f) =

∑
i s(ui)t(vi)

so (i(x) · i(y))(f) =
∑

i ui(x)vi(y). But the righthand side is just f(xy) =
i(xy)(f). Therefore i(x) · i(y) = i(xy) showing that the evaluation map
is a homomorphism. Let x ∈ G be in the kernel of i. This means that
i(x)(f) = ε(f) for all f ∈ T (G,K). By the theorem of Peter and Weyl
the representative functions separate points of the compact space G. The
only way that f(x) = f(1) holds for every f ∈ T (G,K) is if x = e proving
injectivity.

The next step is to define a topology on GK . Take the coarsest topology
for which all the evaluation maps

λf : GK → K s 7→ s(f), f ∈ T (G,K).

are continuous. A map of topological spaces φ : X → GK is continuous
with respect to this topology if and only if for each f ∈ T (G,K) we have
that λf ◦ φ is continuous. The reader may notice that this topology on GK
coincides with the product topology that is defined using

GK = HomK(T (G,K),K) ⊂
∏

f∈T (G,,K)

K.

Proposition 2.3.5. Equipped with the above topology GK is a topological
group. The map i : G 7→ GK is a continuous map.
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Proof. The first claim amounts to showing that the multiplication and in-
verse maps are continuous. This is easily done when we look at the com-
position with λf for an arbitrary f . If we write d(f) =

∑
i ui ⊗ vi, then

the composition of multiplication GK × GK → GK and λf gives (s, t) 7→∑
i s(ui)t(vi), which is continuous. The approach for the inverse map is the

same. The second claim that we need to prove is that the map i is continu-
ous. The map λf i is equal to x 7→ f(x) and is clearly continuous.

The next proposition will help to give GR the structure of a compact
Lie group. The topological group GR will be identified with some subgroup
of the orthogonal group. First we give a fact from the theory of Lie groups.
This fact tells us that a subspace of a Lie group which is closed under the
group operation is a Lie subgroup precisely when it is topologically closed
in the Lie group. The proof can be found in Bröcker and tom Dieck [7] I.3.

Theorem 2.3.6. An abstract subgroup H of a Lie group G is a submanifold
of G if and only if H is closed in G.

Let r : G → GL(n,K), x 7→ (rij(x)) be a matrix representation. Then
this induces a map

rK : GK → GL(n,K), s 7→ (s(rij)).

Proposition 2.3.7. 1. The map rK is a continuous homomorphism such
that the following diagram commutes.

G

r
��

i // GK

rKyyttttttttt

GL(n,K)

2. If the rij and rij generate T (G,K) as a K-algebra, then rK is injective.

3. If r maps G into O(n), then rRGR ⊂ O(n) as a closed subgroup.

Proof. Take s, t ∈ GK and write rij(xy) =
∑

k rik(x)rkj(y). We get

rK(s · t) = ((s · t)(rij)) =

(∑
k

s(rik)t(rkj)

)
= rK(s)rK(t).

This proves that rK is a homomorphism of groups. This map is continuous
if all the maps s 7→ s(rij) are continuous. These maps are continuous by
the definition of the topology on GK . Checking that the diagram commutes
is straightforward, so we move on to (2). Under the assumption that the
rij and rij generate T (G,K) any homomorphism s : T (G,K) → K that
satisfies is completely determined by its values on the rij and rij . This
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proves (2). Let r(G) ⊂ O(n). Because (rij)t(rij) = E, where E denotes
the identity matrix, we have (s(rij))t(s(rij)) = E. It follows that the image
of rR is contained in O(n). It remains to show that rRGR is closed. To
prove this, it is sufficient to show that GR is a compact space. Consider any
faithful representation r : G→ O(n). By Proposition 2.2.12 the rij generate
T (G,R). An element f ∈ T (G,R) is therefore a polynomial f = P (rij)
in n2 variables where the variables correspond to the entries of a matrix in
O(n). The Lie group O(n) is compact, so the image of O(n) in R under P
is contained in some compact subset Xf ⊂ R. Using rR and P we obtain
the following continuous map

Λ = (λf ) : GR →
∏
f

Xf , f ∈ T (G,R).

The space
∏
f Xf is equipped with the product topology so it is compact

by Tychonoff’s theorem. The image of GR is comprised of precisely those
(tf )f that satisfy t1 = 1, tf ·g = tf · tg, tf+g = tf + tg, taf = atf and
tf = tf for 1, f, g ∈ T (G,R) and a ∈ R. This set is closed in

∏
f Xf . The

image of GR is closed in a compact space, hence compact. The map Λ is
a topological embedding (an homeomorphism onto its image). Injectivity is
straightforward and continuity of the inverse can again be checked by looking
at the composition with arbitrary λf . Because the map is an embedding and
the image is compact, the space GR is compact.

We can give a result for G̃R analogues to that of GR in part (3) of
the above proposition. If r maps G into the unitary compact group U(n),
then rCG̃R ⊂ U(n) is a closed subgroup. In this setting we have that
(rij)†(rij) = E implies that (s(rij))†(s(rij)) = E. Note that we need the
additional demand s(f) = s(f) for this to work. The rest of the proof works
in the same way as above.

Given any faithful unitary representation r : G → O(n) we get a con-
tinuous injective homomorphism rR : GR → O(n). The image is a closed
abstract group, so by Theorem 2.3.6 the image is a compact Lie group.
An atlas (κα, Uα)α of this compact Lie group can be pulled back to define
an atlas of GR by (κα ◦ rR, r−1

R (Uα))α. We must check that this manifold
structure is compatible with the group structure. Using that rR is a group
homomorphism it is straightforward to show that the group multiplication
map and the inverse map are indeed smooth. The next proposition shows
that this differentiable structure on the topological group GR is unique. The
proposition is also helpful in proving that the map i : G→ GR is an isomor-
phism of Lie groups. The proof of the proposition can be found in Bröcker
and tom Dieck [7] I.3.

Proposition 2.3.8. Let f : G → H be a group homomorphism between
Lie groups which is continuous as a map between manifolds. Then f is
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differentiable, hence a Lie group homomorphism. In particular, a topological
group has at most one Lie group structure.

Theorem 2.3.9. (Tannaka’s Theorem) The evaluation map i : G→ GR is
an isomorphism of Lie groups.

Proof. We already established that the map is a continuous injective group
homomorphism between Lie groups. Looking at the previous proposition it
suffices to show that the map is surjective. We will do this by constructing an
isomorphism of R-algebras T (GR,R) → T (G,R). Start with an arbitrary
representative function f ∈ T (G,R). To each function f ∈ T (G,R) there
corresponds a function λf : GR → R. The following calculation shows that
this is a representative function for GR.

t · λf (s) = λf (s · t) = (s · t)(f) =
∑
i

s(ui)t(vi) =
∑
i

λui(s)λvi(t).

If f correspond to a matrix coefficient of a representation r, then λf is the
corresponding coefficient of rR. We thus get a map

λ : T (G,R)→ T (GR,R), f 7→ λf .

This map is a homomorphism of algebras. The above calculation also shows
that the image of λ is GC-invariant. It is straightforward to check that the
λf separate points, contain the complex constants and that the image of
λ is closed under complex conjugation. By the complex Stone-Weierstrass
theorem the image of λ is dense in the space T (GR,R) with the supremum
norm. Proposition 2.2.9(2) with the above observation of GR-invariance
gives that the image of λ is equal to T (GR,R). Combining the surjective
algebra homomorphism λ with the following algebra homomorphism gives
the identity map.

i∗ : T (GR,R)→ T (G,R), s 7→ si.

This implies that both λ and i∗ are isomorphisms. Taking the completion
of the above algebras with respect to the supremum norms yields the iso-
morphism i∗ : C0(GR,R) → C0(G,R). This in turn implies surjectivity of
i, completing the proof.

So we have proven that GR is isomorphic to G. Using the discussion
that followed the proof of Proposition 2.3.7, we could also prove that G̃R
is isomorphic to G. The proof goes in the same way as that of Tannaka’s
theorem above. In the next section we will see how GC is related to G.
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2.4 Complexifications

In the previous section it was shown that GR is isomorphic to G as a Lie
group. In this section we will see how GC is related to G. The discussion
that we present here follows that of Bröcker and tom Dieck [7] III.8 rather
closely. Before we explore the structure ofGC we first need some terminology
from algebraic geometry. Let k be a field that is algebraically closed and let
An denote ordered n-tuples of elements of k. Take A = k[x1, ..., xn] to be
the ring of polynomials in n variables over k. We call a subset Y ⊂ An an
algebraic set if there exists a subset T ⊂ A such that Y = Z(T ), where we
defined Z(T ) = {p ∈ An|f(p) = 0,∀f ∈ T}. In some literature such a set
Z(T ) is called an affine algebraic variety. We will only call an algebraic set
an affine algebraic variety if it is irreducible in the sense that it cannot be
written as the union of two proper subsets that are both algebraic.

We will see that GC is an algebraic group. An algebraic group is a group
that is also an algebraic set. Let r : G → GL(n,C) be a real faithful rep-
resentation. Such a representation is always realizable by the construction
in the proof of Theorem 2.2.5. By the theorem of Stone-Weierstrass the
functions rij generate T (G,C) as a C-algebra. We can identify T (G,C) as
follows

T (G,C) ∼= C[Xij ]/I

where the ideal I is the kernel of the map C[Xij ] → T (G,C), Xij 7→ rij .
Let Z(I) be the algebraic set corresponding to the ideal I, Z(I) = {z ∈
Cn·n|f(z) = 0, f ∈ I}. Each z ∈ Z(I) defines a C-algebra homomorphism
C[Xij ]/I → C by evaluation in z. Conversely each C-algebra homomor-
phism C[Xij ]/I → C can be viewed as evaluation in a point z ∈ Z(I). The
coordinates zij of this point are given by the images of the Xij + I under
the morphism. Under the identification T (G,C) ∼= C[Xij ]/I the points of
Z(I) correspond one to one with C-algebra homomorphisms T (G,C)→ C.
Thus we have a bijection

σ : V (I)→ GC z 7→ (f + I 7→ f(z)).

Composition with rC gives the identity on Z(I), rC ◦ σ = idZ(I).

z 7→ σz 7→ (σz(rij)) = (σz(Xij + I)) = (Xij(z)) = (zij) = z.

We have thus proven the following proposition.

Proposition 2.4.1. Let r : G → GL(n,C) be a representation such that
the maps rij generate T (G,C) as a C-algebra. Then the map rC maps GC
bijectively onto Z(I) ⊂ GL(n,C) with inverse σ.

The set Z(I) is a closed subgroup of GL(n,C) so it is a Lie subgroup.
The subspace topology on GC defined by rC coincides with the topology
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previously defined on GC (coarsest topology rendering all projections λf
continuous). Because of the algebraic nature of Z(I) we can say more about
it. It is a fact that for an algebraic set Z(I) there is a open set U ⊂ Cn·n
such that Z(I) ∩ U is a analytic submanifold. A proof of this claim can
be found in Mumford [31]. But Z(I) is also a group so we can conclude
that Z(I) is an analytic submanifold. Group multiplication and inversion
on GL(n,C) are globally defined rational maps. Their restrictions to Z(I)
are therefore holomorphic.

Next we define an involution on GC, ∗ : GC → GC, s 7→ s∗ by

s∗ : T (G,C)→ C, f 7→ s(f).

This map is a well defined automorphism that is involutive in the sense that
(s∗)∗ = s. The fixed points of this involution are exactly the elements of
G̃R. We know that G̃R is isomorphic to GR because both are isomorphic to
G by the discussion in the previous section. It is also easy to show directly
that G̃R ∼= GR. First note that each f ∈ T (G,C) can be written as f1 + if2

where f1, f2 ∈ T (G,R). Define ρ : G̃R → GR as the restriction of s ∈ G̃R
to T (G,R). It is straightforward to check that this defines an isomorphism.
The set G̃R can be viewed as the real points of GC.

rCG̃R = rCGC ∩Rn·n.

Recall that r is a faithful real representation, otherwise the above identity
would not hold. For the remainder of this section we demand that r is a
unitary representation such that the rij generate T (G,C). We define an
involution ∗ : GL(n,C)→ GL(n,C) by A∗ = A

∨ = (At)−1. This involution
is related through the previous one on GC by the embedding rC. We have
that rC(s∗) = rC(s)∗. A matrix is unitary exactly when A∗ = A, so the
unitary elements of rCGC ⊂ GL(n,C) correspond to the elements of rCG̃R.
We know that G̃R are just the real points of GC. Therefore we can conclude
that rRGR = U(n) ∩ rCGC.

The next proposition will help us understand the topological structure of
GC. Before we can state and prove it we need a bit more preparation. Any
complex number z can be written in polar form reiθ with r ≥ 0. We can also
give a polar decomposition of the elements of GL(n,C). Let P (n) denote
the set of Hermitian positive definite matrices and U(n) is again the set of
unitary matrices. Every matrix A ∈ GL(n,C) can be written as the product
A = HP where H ∈ U(n) and P ∈ P (n). This decomposition is unique. If
we drop the uniqueness demand and allow P to be positive semidefinite then
the decomposition holds for any complex square matrix, not just invertible
ones. Take A ∈ GL(n,C) arbitrary, then M = A†A is a Hermitian positive
definite matrix. This means that M can be written as M = V ΛV −1 with
V unitary and Λ a diagonal matrix with positive entries on the diagonal.
Take Λ1/2 to be the diagonal matrix with the entries on the diagonal equal
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to (Λ1/2)ii =
√

Λii. Define M1/2 = V Λ1/2V −1 then this is also an element
of P (n). Define H = AM−1/2 where M−1/2 = (M1/2)−1 = (M−1)1/2. It is
easy to check that H is an unitary matrix and that HM1/2 = A. In short
we have a bijection

U(n)× P (n)→ GL(n,C), (H,P ) 7→ HP.

This map is in fact a homeomorphism. In the proof of the following propo-
sition we will look at the Lie algebra of U(n)∩ rCGC. We do not need much
from the theory of Lie algebras. In fact, we only need to know what a Lie
algebra is and how the exponential map is defined. Because Lie algebras
play a very small role in this thesis, the reader unfamiliar with Lie algebras
is referred to sections I.2 and part of I.3 of Bröcker and tom Dieck [7]. There
is more than enough background material in these sections.

Proposition 2.4.2. 1. Let Ǧ = rCGC. Suppose that A ∈ Ǧ has a polar
decomposition A = HP with H ∈ U(n) and P ∈ P (n). Then both H
and U are in Ǧ. Furthermore, the map

(Ǧ ∩ U(n))× (Ǧ ∩ P (n))→ Ǧ, (H,P ) 7→ HP

is a homeomorphism.

2. Ǧ∩P (n) is homeomorphic to a Euclidean space of dimension dim(G) =
dim(Ǧ ∩ U(n)).

3. Ǧ ∩ U(n) is a maximal compact subgroup of Ǧ

Proof. We start with (1). We know that A ∈ Ǧ has a polar decomposition
in H ∈ U(n) and P ∈ P (n). There exists a unitary matrix V such that
V PV −1 = Λ, with Λ a diagonal matrix with positive real numbers on the
diagonal. Then there exists a diagonal matrix Y such that D = exp(Y ).
Now we will make use of the fact that GC is an algebraic set. This gives
that Ǧ ⊂ GL(n,C) is an algebraic set. The map Xij 7→ (V XV −1)ij defines
an algebraic isomorphism Cn·n → Cn·n. Consequently V ǦV −1 is also an
algebraic set. By definition it must be equal to the zero locus of some
ideal J ⊂ C[Xij ], so we have V ǦV −1 = Z(J). If A = HP is in Ǧ, then
Āt = (A∗)−1 is also in Ǧ and so is ĀtA = P 2. This means that Λ2 ∈ Z(J).
Let Q(Xij) be a polynomial in J . Substituting Xij 7→ 0 if i 6= j and
Xii 7→ Xi yields a polynomial q(Xi, ..., Xn) in n variables. For any k ∈ Z
we know that Λ2k ∈ Z(J). This implies that q(exp(2ka1), ..., exp(2kan)) =
0 where ai = Yii > 0. If this holds for all k ∈ Z one can prove that
q(exp(ta1), ..., exp(tan)) = 0 for all t ∈ R and all Q ∈ J . Setting t = 1
gives that Λ ∈ Z(J) = V ǦV −1. This in turn shows that P = V ΛV −1 is
in Ǧ. The unitary matrix H is equal to AP−1 so it is also in Č. We are
left with the claim that the given map is a homeomorphism. This follows
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from the fact that the map is a continuous bijection and the restriction of
the homeomorphism U(n)× P (n)→ GL(n,C).

We will prove (2) by showing that the Lie algebra L of the Lie groep
Ǧ ∩ U(n) gives a homeomorphism L → Ǧ ∩ P (n) through the exponential
map X 7→ exp(iX). By the very definition of L it is an Euclidean space of
dimension dim(G) = dim(Ǧ ∩ U(n)). Suppose that X ∈ L, then we have
that for all t ∈ R, exp(tX) ∈ Ǧ ∩ U(n). The set Ǧ is an algebraic set and
can be written as Z(I) for some ideal I. Take p(Xij) ∈ I and substitute the
coordinates by the entries exp(tX). This yields an entire analytic function
that vanishes on all points t ∈ R. Consequently it vanishes on all t ∈ C.
For every t ∈ R we have that exp(itX) is in Ǧ. The Lie algebra L is
contained in the Lie algebra LU(n). This Lie algebra consists of skew-
Hermitian matrices from which it follows that itX is Hermitian. The image
under the exponential map exp(itX) therefore lies in Ǧ ∩ P (n). Thusfar
we have proven that the exponential map, maps L into Ǧ ∩ P (n). We
must show that this map is an homeomorphism. We can use the proof of
part (1) to show that the map is surjective. In that part of the proof we
learned that every P ∈ Ǧ∩P (n) can be written as an exponent P = exp(Y )
where Y is Hermitian. We also saw that exp(tY ) ∈ Ǧ for all t ∈ R. This
proves surjectivity. The fact that the map L → Ǧ ∩ P (n), X 7→ exp(iX)
is an homeomorphism now follows from the fact that it is the restriction
of a homeomorphism. This is the homeomorphism SH(n) → P (n), X 7→
exp(iX). Here SH(n) denotes the set of skew-Hermitian (n× n) matrices.

We are left with proving (3). The set Ǧ ∩ U(n) is closed in U(n) so it
is compact. We only need to check that it is maximal. Suppose that there
is a larger compact subgroup of Ǧ. Then this subgroup would contain an
element of Ǧ ∩ P (n). This cannot be the case because of (2).

Recall that earlier in this section we made the identification of rRGR
with Ǧ ∩ U(n). From this and the discussion in the previous section we
can conclude that G is isomorphic to Ǧ ∩ U(n). Recall that L was used to
denote the Lie algebra of Ǧ ∩ U(n). We can conclude that L is isomorphic
to LG. In the proof of the previous theorem we learned that LǦ was the
direct sum of L and iL. If we put this together we have the following linear
isomorphism

C⊗R LG ∼= C⊗R L ∼= L⊕ iL = LǦ ∼= LGC.

All the isomorphisms that are involved preserve Lie brackets. We have thus
shown the following.

Proposition 2.4.3. We have C⊗R LG ∼= LGC as Lie algebras.

Definition 2.4.4. The homomorphism i : G→ GC as well as the Lie group
GC are called the complexification of G.
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The complexification of G has the following universal property.

Proposition 2.4.5. Given a representation r : G → GL(n,C) (that need
not be faithful, unitary or real), there is a unique holomorphic representation
rC : GC → GL(n,C) such that rC ◦ i = r.

Proof. We start with existence. We construct rC as usual by rC(s) =
(s(rij)). We can identify T (G,C) with C[X1, ..., Xd]/I for some ideal I as
before. Under this identification GC is identified with Z(I). Each function
rij becomes an algebraic function Z(I)→ C. The map rC becomes an alge-
braic map Cd → Cm·m and is therefore holomorphic. This settles existence.
Now we prove uniqueness. We identify GC ∼= Ǧ ∼= (Ǧ∩U(n))× (Ǧ∩P (n)).
Suppose that we have the values of Ǧ ∩ U(n) for a given holomorphic rep-
resentation. If P ∈ Ǧ ∩ P (n) is of the form exp(iX) we can determine the
values of the representation on exp(tX) for all t ∈ R. Because the exponen-
tial map is holomorphic, this determines exp(tX) for each complex number
t.

2.5 The Forgetful Functor and the Tannaka Group

In this section we will reformulate Tannaka’s theorem in terms of category
theory. The following chapters will only make use of Tannaka’s theorem
as it is stated in this section. This section is also used to show that this
formulation is equivalent to that of the preceding sections. After completing
this section the hurried reader can skip to the next chapter where full Tan-
naka duality is discussed. In the last section of this chapter we will prove
Tannaka’s theorem as it is stated here without using (most) of the material
of Section 3. This does not amount to repeating the calculations of Section
3 with a different terminology. We will develop some new tools for this job,
namely abstract Fourier theory of compact groups. This Fourier theory will
not be used in later chapters but will provide useful if the reader wants to
explore Tannaka duality beyond the material presented in this thesis. As
the goals are set for the upcoming sections, we are ready to sail out once
again. Just as in Section 3 we will start with a compact group G and use
the representations of that group to construct a group that is isomorphic to
it. In order to define this group, which is called the Tannaka group, we need
some basic definitions from category theory. So that will be our starting
point.

Definition 2.5.1. We call C a category of it consists of

1. A class Obj(C) of objects X,Y, Z...

2. To any two objects X,Y in C we can associate a set HomC(X,Y ) of
morphisms (also called arrows). Sometimes we write f : X → Y for
f ∈ HomC(X,Y ).
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3. For any three objects X,Y and Z we have a function ◦ : HomC(Y, Z)×
HomC(X,Y ) → HomC(X,Z), (f, g) 7→ f ◦ g. This function is asso-
ciative in the sense that (f ◦ g) ◦ h = f ◦ (g ◦ h) holds whenever it is
defined.

4. For each object X there exists an arrow idX ∈ EndC(X) = HomC(X,X)
called the identity of X. If f : X → Y is an arrow the identity arrows
satisfy idY ◦ f = f and f ◦ idX = f . An arrow f : X → Y is called an
isomorphism if it has a two-sided inverse g : Y → X in the sense that
f ◦ g = idY and g ◦ f = idX .

Let’s look at some categories that play an important role here. Let VectC
be the category of finite dimensional vector spaces over C. This category
has finite dimensional vector spaces over C as objects and linear maps as
morphisms. The identity arrow is the identity map and the composition
operation is just the usual composition of linear maps. Let Hf denote the
category that has finite dimensional Hilbert spaces over C as objects and
linear maps between them as arrows. This is a lame example as this is just
V ectC with a different name. We would only see a difference if we drop
the finiteness condition on the dimension of the underlying vector spaces.
Previously we also encountered Repf (G,C), the category of continuous finite
dimensional representations of a compact group G. The objects are the
representations and the arrows are the intertwiners.

Definition 2.5.2. Let C and D be categories. A (covariant) functor F :
C → D is a map that maps objects of C to objects of D and arrows of
C to arrows of D. Each arrow f : X → Y of C is mapped to an arrow
F (f) : F (X) → F (Y ). The functor respects the composition ◦ in the sense
that F (f ◦ g) = F (f) ◦ F (g) and F (idX) = idF (X).

Let Repf (G,C) be the category of continuous finite dimensional repre-
sentations of a compact group G and VectC be the category of finite dimen-
sional vector spaces. We define the forgetful functor ω : Repf (G,C)→ VectC
as follows. Each representation is mapped to the underlying vector space
ω((V, πV )) = V and intertwiners are mapped to the corresponding linear
maps.

Definition 2.5.3. Suppose that F : C → D and G : C → D are functors. A
natural transformation u from F to G is defined as follows. For each object
X ∈ C we have an arrow uX : F (X) → G(X) of D. For all objects X and
Y of C and arrows f ∈ HomC(X,Y ) the following square should commute.

F (X)
F (f) //

uX
��

F (Y )

uY
��

G(X)
G(f)

// G(Y )
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A natural isomorphism is a natural transformation u such that all arrows
uX are isomorphisms.

Let End(ω) denote all natural transformations of the forgetful functor to
itself. Naturality of u ∈ End(ω) means that the following square commutes
for each linear map h : V → W that comes from an intertwining operator
h : (V, πV )→ (W,πW ).

V
uV //

h
��

V

h
��

W uW
//W

In the above square we used the sloppy notation uV for u(V,πV ) as the
maps of u are indexed by the objects of Repf (G,C) and not by the objects of
VectC. We will continue denoting representations by the underlying vector
spaces whenever we think that no confusion would arise. Each element
x of the group G defines a natural transformation π(x) ∈ End(ω). This
transformation is given by π(x)(V,πV ) = πV (x) ∈ End(V ). From the above
square we read that this transformation is natural if for each intertwiner
h : V →W we have that πW (x) ◦ h = h ◦ πV (x). This holds by definition of
the intertwiners.

We want to consider the natural transformations that behave like the
π(x). We therefore consider only natural transformations u that are tensor
preserving. By this we mean that uV⊗W = uV ⊗ uW holds for alle repre-
sentations V and W . Furthermore, if 1 denotes the trivial representation
(which, in the language of the following chapter, is a tensor unit) then we
demand that u1 = id1. We can also define a conjugation operation on
End(ω) by using the conjugation operation on representations. This map
End(ω) → End(ω), u 7→ u is defined as follows. uV (x) = uV (x). We say
that u ∈ End(ω) is selfconjugate if u = u. Note that the transformations
π(x) are selfconjugate.

We define the Tannaka group Gω = Aut⊗ω, which at this point is just a
set, as the selfconjugate tensor preserving elements of End(ω). For each x ∈
G the natural transformation π(x) is an element of Gω. It is straightforward
to check that this set is closed under composition of natural transformations.
Next we fix a topology for the Tannaka group. The set End(ω) has a
natural topology. This is the coarsest topology that renders all projections
End(ω)→ End(V ), u 7→ uV continuous. Note that the Tannaka group Gω
is a closed subset of End(ω) with respect to this topology.

Proposition 2.5.4. The Tannaka group Gω is a topological group.

Proof. The group operation is given by composition. The identity element
is the natural transformation u ∈ Gω for which uV = idV holds for each
representation. This is clearly natural, tensor preserving and selfconjugate.
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Finding an inverse is a bit more work. Take an arbitrary u ∈ Gω and consider
the projections uV ∈ End(V ). We have for each representation V the dual
representation V ∨. We also have the intertwiner ε : V ∨ ⊗ V → C given by
s⊗v 7→ s(v). Naturality of u implies that ε◦uV ∨⊗V = u1 ◦ ε which amounts
to ε = ε ◦ (uV ∨ ⊗ uV ). From this fact we can derive that uV ∨ ◦ utV = idV ∨ .
If we define u′ as u′V = (uV ∨)t, then we would have u′ ◦ u = u ◦ u′ = id
where id is the identity transformation. It is straightforward to check that
u′ is an element of the Tannaka group. By looking at the projections on the
representations one can verify that the inverse maps and multiplication are
continuous.

The map π : G → Gω given by x 7→ π(x) defines an continuous ho-
momorphism of groups. Tannaka’s theorem amounts to the claim that this
map is an isomorphism of Lie groups. Starting the following section, the
remainder of this chapter is concerned with deriving this result independent
of the results of Section 3. In this section we will show that the Tannaka
group is just the group G̃R in disguise. In order to show this, it helps
to consider isomorphism classes of irreducible representations instead of all
representations.

Proposition 2.5.5. Let Ĝ denote the set of isomorphism classes of irre-
ducible representations of G. Then the map

q : End(ω)→
∏
λ∈Ĝ

End(Vλ), u 7→ (uλ|λ ∈ Ĝ)

is an isomorphism of topological algebras.

Proof. Because every element of the Tannaka group is a natural transfor-
mation, the following diagram commutes for any V and W .

V //

uV

��

V ⊕W
uV⊕W

��

Woo

uW

��
W // V ⊕W Woo

This proves that uV⊕W = uV ⊕ uW . We know from Section 2 that every
representation is semisimple, so each u ∈ Gω is completely determined by
q(u). This proves injectivity and we move on to surjectivity. Let t = (tλ|λ ∈
Ĝ) be and element of

∏
λ∈ĜEnd(Vλ). We seek a natural transformation

such that for each λ ∈ Ĝ we have that uλ = tλ. Given a representation
V and a irreducible representation Vλ, then V is called Vλ-isotypical if it
is the direct sum of irreducible representations each of which is isomorphic
to Vλ. We can decompose any representation S into isotypical parts as
S = Σ⊕

λ∈Ĝ
Sλ. For each isomorphism class we have the following intertwining

isomorphism Ψλ : Vλ⊗Hom(Vλ, Sλ)→ Sλ given by Ψλ(v, f) = f(v). Define

52



uSλ = Ψλ ◦ (tλ ⊗ id) ◦ Ψ−1
λ and uS = Σ⊕

λ∈Ĝ
uSλ . This gives us a natural

transformation u such that uλ = tλ holds for every λ ∈ Ĝ. The rest of the
proof is easy.

The previous proposition will help us identify the Tannaka group as a
compact Lie group.

Proposition 2.5.6. The Tannaka group Gω is a compact Lie group if G is
a compact Lie group.

Proof. The proof that Gω is compact is performed in almost the same as
proving that GR is compact in Theorem 2.3.7(3). Since we presuppose that
G is a compact Lie group, we now have a normalized invariant inner product
at our disposal. This gives us the bilinear pairing

h : V ⊗ V → C, h(x̄, y) = 〈x, y〉 .

As this is an intertwiner we know for every u ∈ End(ω) the identity h ◦
uV⊗V = u1 ◦ h hold. In the Tannaka group this becomes h(uV (x), uV (y)) =
h(x̄, y), or 〈uV (x), uV (y)〉 = 〈x, y〉. The linear map uV is an element of the
unitary group U(V ). We can apply the same kind of reasoning as in the proof
of 2.3.7(3) and conclude that the group is compact. The disussion following
this proof shows how Gω can be given the structure of a Lie group.

As promised before we will show that in a natural way the compact Lie
groups Gω and G̃R are isomorphic. Suppose that we are given an C-algebra
homomorphism s ∈ G̃R. Pick an irreducible representation V and choose a
basis to get a matrix representation (rij). Define uV = (s(rij)) ∈ End(V ),
then the map

k : G̃R → Gω, s 7→ u = (uVλ = rC(s)|λ ∈ Ĝ)

defines an isomorphism of Lie groups. We need to check that the map is
a homeomorphism and a group homomorphism, but first we need to check
if the image is indeed formed by selfconjugate tensor preserving natural
transformations of the forgetful functor to itself. As we only look at the
isomorphism classes of irreducible representations, Schur’s lemma gives that
naturality should pose no problem. Using that s is a homomorphism of
C-algebras and the fact that s(f) = s(f), it is straightforward to check
that k(s) is selfconjugate and tensor preserving. Therefore the map is well
defined. We also know that the map is a homomorphism of groups because
of Proposition 2.3.7, which gave us rC(s · t) = rC(s)rC(t). Continuity and
injectivity of k are easy so we turn to surjectivity. Let u ∈ Gω and consider
uV ∈ End(V ). Pick a basis to get matrices uV = (aij) and πV = (rij).
Define s(rij) = aij . Using that u is selfconjugate, tensor preserving and
that uV⊕W = uV ⊕ uW it follows that the defined map s is an element of
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G̃R. In this way we define a continuous two sided inverse of k completing
the proof that k is an isomorphism of Lie groups. Let i : G→ G̃R be as in
Section 2.3, up to identification of G̃R with GR. The map k maps i(x) to
π(x) and we have that k = π ◦ i−1. This proves that π is an isomorphism of
Lie groups.

In the remainder of the chapter we will prove that π(x) : G→ Gω is an
isomorphism of Lie groups without using the theory of Section 2.3. We close
this section with the definition of another involution on End(ω). We define

∗ : End(ω)→ End(ω), u 7→ u∗ = (ū)∨ = (u∨)

where we have that (u∨)V = (uV ∨)∨. There is a good reason to denote this
involution by ∗. The map q of Proposition 2.5.5 transports this involution
to the canonical C∗-algebra structure on each End(Vλ). A natural trans-
formation u ∈ End(ω) is called unitary if u∗u = uu∗ = id. These elements
form a subgroup that is isomorphic

∏
λ∈Ĝ U(dim(Vλ)). The Tannaka group

is a closed subgroup of this product.

2.6 Tannaka’s Theorem Revisited

In this section we follow the discussion in Section 2 of Joyal and Street [21].

Definition 2.6.1. Let f ∈ C0(G,C) be a continuous function. The Fourier
transform of f , Ff ∈ End(ω) is defined by the integral expression

(Ff)V =
∫
G
f(x)πV (x)dx.

Define the convolution of two functions f, g ∈ C0(G,C) as (f ∗ g) =∫
G f(xy−1)g(y)dy. Also consider the ∗-involution on C0(G,C) given by
f∗(x) = f(x−1). The Fourier transform satisfies the following properties
with regard to these operations

F(f ∗ g) = Ff ◦ Fg, F(f∗) = (Ff)∗.

We know from Proposition 2.5.5 that any element of End(ω) is com-
pletely determined by the projections on the isomorphism classes of the
irreducible representations. The Fourier transform Ff of f is determined
by the components (Ff)(λ) = (Ff)Vλ , where λ ∈ Ĝ.

As an example we will look at the case that G is an abelian compact
Lie group. This allows us to see a connection of the Fourier theory of
compact groups with the usual Fourier theory. It also gives an opportunity to
introduce the characters of a compact Lie group. Characters are important
tools when studying abelian topological groups but we will sometimes use
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them in nonabelian cases. It can be shown (Bröcker and tom Dieck [7] I.3.7)
that a compact abelian Lie group is isomorphic to

G ∼= S1 × ...× S1 ×Z/m1 × ...×Z/mk

where the mi are natural numbers. Given a topological group G and a
representation V , the character of that representation is the function

χV : G→ C, x 7→ Tr(πV (x)).

The character of an irreducible representation is called an irreducible char-
acter. Characters have numerous properties because of their definition as a
trace. For instance we have that χV⊗W = χV · χW and χV⊕W = χV + χW .
The characters of two isomorphic representations are the same. Let f : V →
W be an isomorphism, then we have

χV (x) = Tr(πV (x)) = Tr(f−1πW (x)f) = Tr(πW (x)) = χW (x)

where we used the cyclic property of the trace. A consequence of this is
that χV = χV = χV ∨ . Define V G to be the fixed point set V G = {v ∈
V |πV (x)v = v,∀x ∈ G}. Define the following map that acts as a projector
of V onto the fixed point set p : V → V G, v 7→

∫
x.vdx. Using this projection

we get the following result.

dim(V G) = Tr(p) = Tr(
∫
πV (x)dx) =

∫
Tr(πV (x))dx =

∫
χV (x)dx.

We now apply the identity
∫
χV (x)dx = dim(V G) to the case of Hom(V,W )

and note that Hom(V,W )G = HomRepf (G)(V,W ). Using the relations
χHom(V,W ) = χV ∨⊗W = χV ∨χW = χV χW we get

〈χW , χV 〉 =
∫
χ̄V (x)χW (x)dx = dim(HomRepf (G)(V,W )).

If Vλ and Wµ are both irreducible representations, Schur’s lemma gives∫
χ̄λ(x)χµ(x)dx = δλµ.

Let V be any representation of G. We can write V = ⊕λnλVλ. From this we
can see that 〈χV , χV 〉 =

∑
λ n

2
λ. A representation is irreducible if and only if

〈χV , χV 〉 = 1. Suppose again that V and W are irreducible representations
of G. The following computation shows that the representation V ⊗W of
G×G is also irreducible.∫

G×G
χ̄V⊗WχV⊗W =

∫
G×G

χ̄V (x)χ̄W (y)χV (x)χW (y)dxdy

=
∫
G
χ̄V (x)χV (x)dx ·

∫
G
χ̄W (y)χW (y)dy = 1
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Conversely, every irreducible representation of G × G can be written as a
tensor product V ⊗W where V and W are irreducible representations of
G. We can prove this as follows. Suppose that U is a G × G module. The
following map is an isomorphism of representations.

φ :
⊕
λ∈Ĝ

HomG(Wλ, U)⊗Wλ → U, f ⊗ w 7→ f(w).

This isomorphism allows us to decompose U ∼=
⊕

λ,µ nλµVλ ⊗ Wµ. Let
Irr(G,C) denote the set of all irreducible representations of G, then the
previous observations provide us the following bijection.

Irr(G,C)× Irr(G,C)→ Irr(G×G,C), (V,W ) 7→ V ⊗W.

The discussion of characters thusfar was for any topological group G. Now
we restrict out attention once again to abelian topological groups. The above
bijection allows us to derive the irreducible representations of any abelian
compact Lie group from the irreducible representations of S1 and Z/m. Let
V be an irreducible representation of an abelian G. Each x ∈ G defines
an intertwiner πV (x) : V → V . By Schur’s lemma, this map must be a
scalar multiple of the identity. This implies that every subspace of V is a
G-invariant space and that V must be one dimensional. So every complex
irreducible representation of an abelian G has complex dimension one. The
representation is given by a single complex valued function that is equal to
the irreducible character of the representation χV : G → C. Because G is
compact, we can make the representation unitary. The irreducible characters
of S1 are the continuous group homomorphisms S1 → S1. These are just
the functions z 7→ zn with n ∈ Z. In the case that G = S1 the Fourier
transform becomes

(Ff)n =
∫
G
f(x)e2πinxdx.

The Fourier transform for the circle is just the familiar Fourier transform
for functions on the circle. The irreducible characters for Z/m are given by
x mod m 7→ exp(2πixk/m) for k ∈ {0, 1, ...,m− 1}. Finally we can give the
Fourier coefficients for G of the form S1 × ...× S1 ×Z/m1 × ...×Z/mk.

(Ff)n1,...,nj ,p1,...,pk =
∫
f(x1, ..., pk)e2πiΣinixie2πiΣipiyi/mdx1...dxjdy1...dyk

where ni ∈ Z and pi ∈ {0, 1, ...,mi−1}. It can be shown that the characters
of G form a group that is, in a natural way, isomorphic to G. This statement
is the abelian analogue of Tannaka’s theorem.

After this excursion we turn back to the case that G is any compact Lie
group. We would like to define an inverse of the Fourier transform. The

56



Fourier transform gives us a map

F : C0(G,C)→
∏
λ∈Ĝ

End(Vλ).

This map cannot be surjective as each point of the image is bounded as
‖Ff(λ)‖ ≤ ‖f‖∞. The norm on the left hand side is the norm of the C∗-
algebra End(Vλ). The image is contained in the set

bded∏
λ∈Ĝ

End(Vλ) ⊂
∏
λ∈Ĝ

End(Vλ)

which is a C∗-algebra. We now define a partial inverse of F .

F−1 : Σ⊕
λ∈Ĝ

End(Vλ)→ C0(G,C)

(F−1u)(x) = Σλ∈ĜTr(u(λ)πλ(x)−1)dλ.

In the above identity dλ is the dimension of the representation Vλ. The
reader can check that for the circle S1 the partial inverse gives the desired
formula of the inverse Fourier transformation. In order to discuss the prop-
erties of the Fourier transform, we need to derive the orthogonality relations.
Let λ, µ ∈ Ĝ and A ∈ Hom(Vµ, Vλ) be an intertwiner. Then∫

G
πλ(x)Aπµ(x)−1dx = δλµd

−1
λ Tr(A)idVλ .

If λ 6= µ it follows from Schur’s lemma that the left hand side of the above
equation is zero. If λ = µ then Schur’s lemma gives us that the map is
proportional to the identity. The constant of proportionality is found by
taking the trace. Suppose that A is of the special form A(y) = φ(y)v where
φ : Vλ → C is a linear form. For such an A the above identity becomes∫

G
πλ(x)(v)φ(πµ(x)−1(w))dx = δλµd

−1
λ φ(v)w.

As this holds for any linear form φ we have proven the following lemma.

Lemma 2.6.2. Let λ, µ ∈ Ĝ, then∫
G
πλ(x)v ⊗ πµ(x)−1wdx = δλµd

−1
λ w ⊗ v.

Proposition 2.6.3. (Orthogonality relations) Let λ, µ ∈ Ĝ, A ∈ End(Vλ)
and B ∈ End(Vµ), then∫

G
Tr(Aπλ(x))Tr(Bπµ(x)−1)dx = δλµd

−1
λ Tr(AB).∫

G
Tr(Aπλ(x))Tr(Bπµ(x))dx = δλµd

−1
λ Tr(AB†).
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Proof. We only prove the first relation as the second follows directly from
it. The relation is linear in both A and B so it suffices to check the relation
when A and B are of rank one. Take Ax = φ(x)v and By = ψ(y)w.
The orthogonality relation can be obtained from the identity of the previous
lemma by applying φ⊗ψ to both sides and subsequently taking the trace.

The trace defines an inner product by 〈A,B〉 = Tr(A†B). Keeping
this in mind, the following relation can be proven from the orthogonality
relations by applying Tr(B,−) on both sides.

Corollary 2.6.4. Let λ, µ ∈ Ĝ and A ∈ End(Vλ), then the following holds

dλ

∫
G
Tr(Aπλ(x))πµ(x)−1dx = δλµA.

We will use the following inner products. On C0(G,C) we take 〈f, g〉 =∫
G f̄(x)g(x)dx and on Σ⊕λEndVλ we take 〈u, v〉 = ΣλTr(u∗(λ)v(λ))dλ. The

inner product on C0(G,C) can be written as 〈f, g〉 = ε(f∗ ∗ g), where ε :
C0(G,C) → C is the evaluation map in the identity ε(f) = f(e). Now we
will continue exploring the Fourier transform and its (partial) inverse.

Proposition 2.6.5. The following identities hold

1. FF−1u = u,

2. F−1(uv) = (F−1u) ∗ (F−1v),

3. F−1(u∗) = (F−1u)∗,

4.
〈
F−1u,F−1v

〉
= 〈u, v〉.

Proof. The first three parts are easy. Writing out the Fourier tranforms and
the convolution that appear in identities (1) and (2), the statements follow
straight from the orthogonality relations. We move onto the last part. First
note the identity ε(F−1u) =

∑
λ Tr(u(λ))dλ.〈

F−1u,F−1v
〉

= ε((F−1u)∗ ∗ (F−1v)) = εF−1(u∗v)

=
∑
λ

Tr(u∗(λ)v(λ))dλ = 〈u, v〉

We can complete the domain of F−1 with respect to the norm coming
from the previously defined inner product. The completion is a Hilbert
space isomorphic to the Hilbert sum

⊕̂
λEnd(Vλ) where each End(Vλ) has

the norm ‖A‖2 = dλTr(A†A). By virtue of property (4) of Proposition 2.6.5
the continuous extension of F−1 defines an isometric embedding

F−1 :
⊕̂

λ
End(Vλ)→ L2(G).

58



Theorem 2.6.6. (Plancherel theorem for compact groups) The Fourier
transform F can be extended continuously to an isometry

F : L2(G) ∼→
⊕̂

λ
End(Vλ).

Proof. We know that F−1 is an isometric embedding. The subspace Im(F−1)
of L2(G) is closed because it is complete. Let f : G→ C be a representative
function. This function is a linear combination of functions coming from a
representation so it can be written as f(x) = Tr(AπV (x)). The subspace
Im(F−1) contains all representative functions. These functions lie dense in
L2(G) so Im(F−1) = L2(G).

Recall that we have two left actions L and R of G on C0(G,C)

L(x, f)(y) = f(x−1y), R(x, f)(y) = f(yx).

We also have two left actions on the Hilbert spaces End(Vλ) given by

L(x,A) = πλ(x)A, R(x,A) = Aπλ(x−1).

It is a straightforward check that the Fourier transform respects these actions

F(L(x, f)) = L(x,Ff), F(R(x, f)) = R(x,Ff).

A class function is defined as a f ∈ C0(G,C) that is invariant under the
combined action of L and R. By this we mean that

f(x−1yx) = f(y) ∀y ∈ G.

It is an easy exercise to check that a function is a class function if and only if
it is in the centre with respect to the convolution product. We are going to
restrict the Fourier transform to the central part. The following proposition
tells us what the centre of End(ω) looks like.

Proposition 2.6.7. An element u ∈ End(ω) is central if and only if, for
every representation V of G the linear map uV : V → V is an intertwining
operator.

Proof. Suppose that u is central. Then for each x ∈ G we have that
π(x)u = uπ(x). In particular πV uV = uV πV holds for each representa-
tion V . Conversely, let each uV : V → V be an intertwiner. If w ∈ End(ω)
then we have uV wV = wV uV . Therefore uw = wu and u is central.

Suppose that f ∈ C0(G,C) is a class function. Because the Fourier
transforms respects the actions of G, L(x, f) = R(x−1, f) implies that
π(x)(Ff) = (Ff)π(x). This shows that Ff is central and that for each
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λ ∈ Ĝ, the map (Ff)(λ) : Vλ → Vλ is an intertwiner. By Schur’s lemma it is
proportional to the identity. Call the constant of proportionality (Tf)(λ).

(Tf)(λ) =
1
dλ
Tr((Ff)(λ)) =

1
dλ

∫
G
f(x)Tr(πλ(x))dx

=
1
dλ

∫
G
f(x)χλ(x)dx.

Here χλ(x) is the irreducible character of Vλ. The relation (Ff)(λ) =
(Tf)(λ)idλ gives us the relations T (f ∗ g) = (Tf)(Tg) and T (f∗) = Tf .
The centre of End(Vλ) is equal to Cidλ. The centre of End(ω) is therefore
isomorphic to CĜ. Take any function g : Ĝ → C and define the inverse
Fourier transform as the function (T−1g) : G→ C given by

(T−1g)(x) =
∑
λ

g(λ)χλ(x)dλ.

Using Proposition 2.6.6 and the definitions of T and T−1 we derive

1. TT−1g = g,

2. T−1(gh) = (T−1g) ∗ (T−1h),

3. T−1(g∗) = (T−1g)∗,

4.
〈
T−1g, T−1h

〉
= 〈g, h〉.

In the last identity the inner product on the right hand side is defined by

〈g, h〉 =
∑
λ

ḡ(λ)h(λ)d2
λ.

Let L2(Ĝ) be the space of square summable functions with respect to the
spectral measure. The spectral measure on Ĝ is the measure that assigns
weights d2

λ to the singletons {λ}. Let C(G) denote the set of conjugacy
classes of G. There is a canonical measure on C(G) by taking the image
of the Haar measure along the projection G→ C(G). The space L2(C(G))
is isomorphic to the subspace of L2(G) of square summable class functions.
The following theorem is nothing more than the restriction of the Fourier
transform to the central parts.

Theorem 2.6.8. The Fourier transforms T and T−1 have continuous ex-
tensions to mutually inverse isometries

L2(C(G)) ∼↔ L2(Ĝ).

A collection X of representations of G is called closed when it contains

1. πV if it is isomorphic to some πW ∈ X ,
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2. πV if it is a subrepresentation of some πW ∈ X ,

3. πV ⊕ πW if πV , πW ∈ X ,

4. πV ⊗ πW if πV , πW ∈ X ,

5. πV if πV ∈ X ,

6. The trivial representation 1.

The set of representative functions of the members of X make up a subal-
gebra T (X ,C) of the algebra T (G,C) of representative functions.

Lemma 2.6.9. Let X be a closed collection of representations of G. Suppose
that for every x ∈ G, x 6= e there exists a representation πV ∈ X such that
πV (x) 6= e. Then X = Rep(G,C).

Proof. Suppose that X 6= Rep(G,C). This means that there is a λ ∈ Ĝ
such that πλ /∈ X . By the orthogonality relations (or the Peter Weyl theo-
rem 2.2.10) there is a function that is orthogonal to the whole of T (X ,C).
But the hypothesis implies that T (X ,C) separates points. By the Stone-
Weierstrass theorem T (X ,C) is dense in Rep(G,C). This is a contradic-
tion.

In Section 2.3, in the proof of Tannaka’s theorem we showed that i : G→
GR is an isomorphism by showing that there is an isomorphism of algebras
i∗ : T (GR,R) → T (G,R). Here we do the same. We show that π : G →
Gω induces, via restriction an isomorphism of algebras π∗ : T (Gω,C) →
T (G, C). Before we can do this, we need some more category theory.

Definition 2.6.10. Let C be a category. A subcategory D ⊂ C is defined
by a subsclass Obj(D) ⊂ Obj(C) and, for every X, Y ∈ Obj(D), a subset
HomD(X,Y ) ⊂ HomC(X,Y ). The arrow idX should be in HomD(X,X) for
each object X in D. The arrows in D should be closed under the composition
◦ of C. A subcategory D ⊂ C is called full if HomD(X,Y ) = HomC(X,Y )
for all X and Y in D.

Definition 2.6.11. Let C and D be categories. A functor F : C → D is
called faithful, respectively full, if the map

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y )),

is injective, respectively surjective, for all objects X and Y of C. The functor
is called essentially surjective if for every object Y of D there is an object
X of C such that F (X) ∼= Y .

Definition 2.6.12. Let C and D be categories. A functor F : C → D is
an equivalence of categories if there exists a functor G : D → C and natural
isomorphisms η : FG → idD and ε : idC → GF . Two categories are called
equivalent if there is an equivalence of categories.
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The proof of the following proposition can be found in MacLane [27]
Section IV.4. As the proof makes use of adjunctions the reader may want
to consult Section 3.3 of this thesis where a small introduction is given.

Proposition 2.6.13. A functor F : C → D is an equivalence of categories
if and only if F is faithful, full and essentially surjective

We have enough category theory to continue with the proof of Tannaka’s
theorem.

Lemma 2.6.14. The restriction functor π∗ : Repf (Gω,C)→ Repf (G,C) is
an equivalence of categories.

Proof. We define an extension functor and show that it defines an equiva-
lence of categories. Define

E : Repf (G,C)→ Repf (Gω,C)

as follows. For any representation V of G, the map u 7→ uV defines a
representation of Gω on V . This defines E(V, πV ) = (V, pV ). We have the
following commutative triangle

G

π

��

πV // GL(V )

Gω

pV

;;wwwwwwwww

From this diagram we also note that π∗(pV ) = πV . Take any intertwiner
h : (V, πV ) → (W,πW ) in Repf (G,C) and let e ∈ Gω. By definition of the
Tannaka group we know that h◦uV = uW ◦h and so h : (V, πV )→ (W,πW ) is
an intertwining operator for the representations of Gω. It is straightforward
to prove that E preserves tensor products, direct sums and conjugation.
In the terminology of the following chapter we will show that E is an ∗-
preserving equivalence of tensor categories. By the previous proposition it
satisfies to show that E is faithful, full and essentially surjective in order to
prove that defines an equivalence. The extension functor preserves all the
structure of Repf (G,C) and it is clearly full and faithful. It is an equivalence
of Repf (G,C) with some full subcategory of Repf (Gω,C). Note also that
if V is irreducible, then E(V ) is also irreducible. We can conclude that the
objects in the image of E form a closed collection X of representations of
Gω. Let u ∈ Gω such that u 6= id. Then there is a representation V of
G such that uV 6= idV . Consequently pV (u) 6= idV . This means that pV
separates u from e. The collection X separates points of the Tannaka group
and by 2.6.9 the collection is equal to Repf (Gω,C). Thus we have proven
that E defines an equivalence of categories. By symmetry of the definition
and the fact that π∗◦E = id the restriction functor π∗ defines an equivalence
of categories. We will encounter the constructions of this proof again in the
next chapter.

62



Lemma 2.6.15. The restriction map π∗ : T (Gω,C) → T (G,C) is an iso-
morphism of algebras.

Proof. We define an inverse e : T (G,C)→ T (Gω,C). Let f ∈ T (G,C) be a
representative function. Then f can be written as

f(x) =
∑
λ∈Ĝ

Tr(g(λ)πV (x))dλ

where g ∈
∑

λEnd(Vλ) is the Fourier transform of f , g = Ff . Define

e(f)(x) =
∑
λ∈Ĝ

Tr(g(λ)pV (u))dλ.

Lemma 2.6.14 proves that Ĝ = ˆ(Gω). This proves that e is a bijection. It
is also clear that e preserves the algebra structure. The lemma follows from
π∗ ◦ e = id

Theorem 2.6.16. (Tannaka’s theorem) For any compact group G, the map
π : G→ Gω is an isomorphism of Lie groups

Proof. Injectivity is a consequence of the Peter Weyl theorem. It suffices to
show that the map is surjective. Suppose that the equality∫

Gω

f(u)du =
∫
G
f(π(x))dx

holds for all f ∈ C0(Gω,C). Suppose further that Im(π) 6= Gω. Let f be
a positive function with support in the closed set that is the complement of
Im(π). Then we have∫

Gω

f(u)du > 0,
∫
G
f(π(x))dx = 0.

This is a contradiction. It therefore suffices to prove the above equality. We
will do this using Lemma 2.6.14 and the orthogonality relations. It suffices
to check this for f ∈ T (Gω,C) as these lie dense in C0(Gω,C). Let f be
such a representative function. Using Lemma 2.6.14 we can write it as

f(u) =
∑
λ∈Ĝ

Tr(g(λ)pλ(u))dλ,

so that
f(π(x)) =

∑
λ∈Ĝ

Tr(g(λ)πλ(x))dλ.

Applying the orthogonality relations gives the following relations that prove
the desired equality.∫

G
Tr(g(λ)πλ(x))dx =

{
g(I) if λ = I

0 if λ 6= I
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∫
Gω

Tr(g(λ)pλ(u))du =
{
g(I) if λ = I

0 if λ 6= I

This proves Tannaka’s theorem for the second time. The proof given in
this section holds for any compact topological group, not just compact Lie
groups. Nowhere in this section did we need results that were specific for
Lie groups. The situation is different is Sections 2.3 and 2.4. In Section 2.3
the descending chain property was used and Section 2.4 used the theory of
Lie groups at several points. In short, the approach presented in Sections
2.5 and 2.6 is more general as it extends Tanaka’s theorem to all compact
groups. The approach using Hopf algebras has the advantage that it could
be used to reveal some of the algebraic structure of compact Lie groups.
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Chapter 3

Tannaka-Krein Duality for
Compact Groups

The starting point of the previous chapter was a compact group G. From
this group we got the category Repf (G,C) and the forgetful functor ω :
Repf (G,C) → Hf . Here we used the category Hf instead of V ectC. The
category Hf has finite dimensional Hilbert spaces over C as its objects and
linear maps as arrows1. The main reason that we want Hilbert spaces rather
than vector spaces is because we want to use the involution that is given by
taking a Hermitian adjoint relative to the inner product. The only difference
with V ectC are the inner products. Recall that for every representations in
Repf (G,C) there is an invariant inner product, relative to which the repre-
sentation is unitary. The functor ω maps a unitary represention (πV , V, 〈·, ·〉)
to the underlying Hilbert space (V, 〈·, ·〉). The content of Tannaka’s theo-
rem is that the group of unitary monoidal natural transformations of the
forgetful functor to itself gives us our group G back up to an isomorphism.
In this chapter we do something similair, but more abstract. Starting with
a suitable abstract category C, and a suitable functor E : C → Hf , we prove
that the set GE of unitary monoidal natural transformations is a compact
group. It is subsequently shown that C is equivalent as a tensor ∗-category
to Rep(GE ,C). We will concentrate on categories C of the kind STC*. This
means that we look at tensor ∗-categories with finite dimensional hom-sets,
biproducts, subobjects, conjugates, an irreducible tensor unit and a unitary
symmetry. The functors under consideration are symmetric faithful func-
tors of tensor ∗-categories, called ∗-preserving symmetric fiber functors. All
terminology will be explained.

The first three sections give the background in category theory necessary
to formulate and prove Tannaka Krein duality. Readers with experience in

1At first sight it seems more natural to take unitary maps or at least isometries as
arrows instead of all linear maps, but this is not desirable. Thinking about applying the
theory to quantum physics the use of only unitary maps is too restrictive.
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category theory may want to skip these sections. In the fourth section
Tannaka-Krein duality is stated and proven up to an (important) technical
proposition. Sections 3.5 through 3.7 lead to a proof of this proposition.
These sections also give insight in the diversity of ∗-preserving symmetric
fiber functors that can occur for a given STC*. It turns out that any two such
functors are isomorphic through a unitary monoidal natural isomorphism.
Two different ∗-preserving symmetric fiber functors for the same STC* C
automatically give the same group GE up to an isomorphism. At the end of
the chapter the reader can find some other incarnations of Tannaka-Krein
duality. This very brief discussion is only meant to indicate the diversity
of the subject and to direct the interested reader to relevant papers. The
treatment of Tannaka duality as presented in Sections 3.1 through 3.7 is
based on Müger [30].

3.1 Tensor Categories

We give a brief introduction in the language of monoidal categories. More
material can be found in Mac Lane [27] or Deligne and Milne [10].

Definition 3.1.1. Let C and D be categories. The product category C × D
is the category that has as its objects Obj(C × D) = Obj(C)×Obj(D). The
arrows are given by HomC×D(X×Y, Z×W ) = HomC(X,Z)×HomD(Y,W ).
For each object X × Y the identity arrow is given by idX×Y = idX × idY .
Composition is defined as (f × g) ◦ (h × k) = (f ◦ h) × (g ◦ k). A functor
F : B × C → D from a product category is called a bifunctor.

If one argument of a bifunctor is fixed, this will give an ordinary functor
of the remaining argument. Suppose now we have a category C equipped
with a bifunctor

⊗ : C × C → C, (X,Y ) 7→ X ⊗ Y.

Suppose further that for any three objects X,Y and Z of C we have an
isomorphism

αX,Y,Z : X ⊗ (Y ⊗ Z)→ (X ⊗ Y )⊗ Z

such that the following diagram is commutative.

X ⊗ (Y ⊗ (Z ⊗ T ))

id⊗α
��

α // (X ⊗ Y )⊗ (Z ⊗ T ) α // ((X ⊗ Y )⊗ Z)⊗ T

X ⊗ ((Y ⊗ Z)⊗ T ) α // (X ⊗ (Y ⊗ Z))⊗ T

α⊗id

OO

We demand that the map α is a natural transformation and consequently
a natural isomorphism. The above diagram is called the pentagon axiom
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and α is called an associativity constraint. In the diagram the subscripts for
the maps were left out. We will continue to do this whenever this makes the
diagrams more transparant. Let, for any two objects X and Y of C there be
an isomorphism

cX,Y : X ⊗ Y → Y ⊗X
coming from a natural transformation c. This natural map is called the
commutativity constraint. The associativity constraint α and the commu-
tativity constraint c are called compatible is for any three objects X, Y and
Z of C the diagrams

X ⊗ (Y ⊗ Z)

id⊗c
��

α // (X ⊗ Y )⊗ Z c // Z ⊗ (X ⊗ Y )

α

��
X ⊗ (Z ⊗ Y ) α // (X ⊗ Z)⊗ Y c⊗id // (Z ⊗X)⊗ Y

(X ⊗ Y )⊗ Z

c⊗id
��

α // X ⊗ (Y ⊗ Z) c // (Y ⊗ Z)⊗X

α

��
(Y ⊗X)⊗ Z α // Y ⊗ (X ⊗ Z) id⊗c // Y ⊗ (Z ⊗X)

are commutative. Together these diagrams are called the hexagon axiom.
We will call the commutativity constraint a braiding if it is compatible with
the associativity constraint. Finally consider the triple (1, λ, ρ) where 1 is
an object of C called the identity object or tensor unit. The maps λ and ρ
are natural isomorphisms λX : 1⊗X → X and ρX : X ⊗ 1→ X such that
following diagram is commutative for all objects X and Y in C.

X ⊗ (1⊗ Y )

id⊗λ ''NNNNNNNNNNN
α // (X ⊗ 1)⊗ Y

ρ⊗idwwppppppppppp

X ⊗ Y

The natural isomorphisms λ and ρ must be compatible with the braiding in
the sense that the following diagram is commutative.

X ⊗ 1 c //

ρ
##GGGGGGGGG 1⊗X

λ{{wwwwwwwww

X

We demand that λ1 = ρ1 : 1⊗1→ 1. It can be shown that these properties
imply that the following diagrams are commutative

1⊗ (X ⊗ Y )

λ ((QQQQQQQQQQQQ
α // (1⊗X)⊗ Y

λ⊗id
��

X ⊗ (Y ⊗ 1)

id⊗ρ ((QQQQQQQQQQQQ
α // (X ⊗ Y )⊗ 1

ρ

��
X ⊗ Y X ⊗ Y
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Definition 3.1.2. A tensor category, or monoidal category, is a sixtuple
(C,⊗,1, λ, ρ, α) consisting of a category C, a bifunctor ⊗ : C × C → C, an
identity element 1 with natural maps λ and ρ as above and an associativity
constraint α. A tensor category is usually denoted by the underlying category
C. A braided tensor category is a tensor category with a commutativity
constraint c that is compatible with the associativity constraint. A braided
tensor category such that cY,X ◦ cX,Y = idX⊗Y holds for all objects X and
Y of C, is called a symmetric tensor category. If all the arrows in a tensor
category that come from α, λ and ρ are the identity arrow, the category is
called a strict tensor category.

Using the familiar tensor products of vector spaces and representations,
the categories VectC and Repf (G,C) are tensor categories. The flip sym-
metry

ΣV,W : V ⊗W →W ⊗ V, v ⊗ w 7→ w ⊗ v

makes these categories into symmetric tensor categories. Note that this map
is an intertwining operator for every pair X and Y . Also note that these
categories are not strict tensor categories.

Definition 3.1.3. Let C and D denote tensor categories. A tensor functor,
or monoidal functor, is a triple (F, d, e) where F : C → D is a functor of
categories. The map d is a natural isomorphism dX,Y : F (X) ⊗ F (Y ) →
F (X ⊗ Y ). If 1 and 1′ are the tensor units of C and D, respectively, then
e is an arrow in D, e : 1′ → F (1). The following three diagrams must be
commutative.

FX ⊗ (FY ⊗ FZ) id⊗d //

α′

��

FX ⊗ F (Y ⊗ Z) d // F (X ⊗ (Y ⊗ Z))

Fα
��

(FX ⊗ FY )⊗ FZ d⊗id // F (X ⊗ Y )⊗ FZ d // F ((X ⊗ Y )⊗ Z)

FX ⊗ 1′

id⊗e
��

ρ′ // FX 1′ ⊗ FX
e⊗id

��

λ′ // FX

FX ⊗ F1
d
// F (X ⊗ 1)

Fρ

OO

F1⊗ FX
d
// F (1⊗X)

Fλ

OO

In Mac Lane [27] functors of this kind are called strong tensor functors.
In the definition of a tensor functor in Mac Lane it is not required that the
natural transformation d is a natural isomorphism. It is easy to check that
the composition of two tensor functors is again a tensor functor. A tensor
functor is called strict if the arrows dX,Y and e are identities.

Definition 3.1.4. Let C and D be braided (symmetric) tensor categories.
A tensor functor F : C → D is braided (symmetric) if the following diagram
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is commutative for all objects X and Y of C.

F (X ⊗ Y )

F (c)

��

F (X)⊗ F (Y )doo

c

��
F (Y ⊗X) F (Y )⊗ F (X)doo

Definition 3.1.5. Let F and G be tensor functors C → D. A natural
transformation of tensor functors, or monoidal natural transformation, θ :
(F, dF , eF )→ (G, dG, eG) is a natural transformation between the underlying
functors θ : F → G such that the following two diagrams are commutative
for all objects X and Y in C.

FX ⊗ FY dF //

θX⊗θY
��

F (X ⊗ Y )

θX⊗Y
��

1′

eG   @@@@@@@@
eF // F1

θ1

��
GX ⊗GY dG // G(X ⊗ Y ) G1

Definition 3.1.6. A tensor functor F : C → D is an equivalence of tensor
categories if there exists a tensor functor G : D → C and monoidal natural
isomorphisms GF → idC and FG→ idD.

Similar to Proposition 2.6.13 we have that a tensor functor F : C → D is
an equivalence of tensor categories if and only if it is faithful, full and essen-
tially surjective [27]. From this point onwards we will only consider strict
tensor categories. The diagrams and equations become more transparant
without writing out the arrows coming from α, λ and ρ. Even though the
categories of interest, like Repf (G,C), are not strict we have no loss of gen-
erality. This is a consequence of the coherence theorem. A discussion of the
coherence theorem as well as a proof of the following proposition which is a
consequence thereof, can be found in Mac Lane [27].

Proposition 3.1.7. Any monoidal category C is equivalent as a tensor cat-
egory, via a (strong) monoidal functor F : C → D and a (strong) monoidal
functor F : D → C, to a strict monoidal category D.

3.2 Categories of type TC*

Definition 3.2.1. A category C is called pre-additive or an Ab-category if
the following two conditions hold. The set HomC(X,Y ) is an abelian group
for all objects X and Y of C and the composition ◦ is bi-additive with respect
to this group operation.
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Definition 3.2.2. Let C be an Ab-category and X,Y and Z be objects of C.
A biproduct diagram for the objects X and Y is a diagram

X

i1
))
Z

p1
ii

p2
55 Y

i2uu

with arrows p1, p2, i1 and i2, that satisfy the identities

p1i1 = idX , p2i2 = idY , i1p1 + i2p2 = idZ .

An Ab-category is said to have biproducts if it has biproducts for every pair
of objects X and Y . We will often call biproducts direct sums. This name
is motivated by the next example. If the Ab-category is a ∗-category (to be
defined later in this section) we further require that p1 = i∗1 and p2 = i∗2.
This amounts to demanding that i1 and i2 are isometries.

Later we will repeatedly use the following identities. Suppose that Z ∼=
X ⊕ Y with maps ij and pj . Then

p1i2 = p1(i1p1 + i2p2)i2 = idX ◦ p1i2 + p1i2 ◦ idY = p1i2 + p1i2

implying p1i2 = 0. On similar grounds p2i1 = 0. The argument can be
extended to any finite direct sum by using induction.

A biproduct is best defined as a product that is also a coproduct. As
we aim to develop no more category theory than we need for Tannaka-
Krein duality, we will not go into this. Let VectC again be the category of
vector spaces over C. For vector spaces X and Y the set Hom(X,Y ) has
the structure of a C-vector space, so in particular the Hom sets are abelian
groups with respect to addition. Composition of linear maps clearly respects
addition so we have an Ab-category. It is easy to check that the direct sum
Z = X ⊕ Y provides a biproduct for X and Y if we take the obvious maps
for p and i. The category Repf (G,C) is an Ab-category with direct sums
on similar grounds. Note that the maps i and p are intertwining operators.

Definition 3.2.3. Let C be a category. An object 0 is called a zero object if
for every object X of C the sets Hom(X,0) and Hom(0, X) are singletons.

Note that two zero objects are automatically isomorphic. In the example
of VectC, the zero dimensional vector space {0} acts as a zero object.

Definition 3.2.4. A category C is called an additive category if it is an
Ab-category that has biproducts (direct sums) and a zero object.

Definition 3.2.5. Let C be a category and k a field. Then C is called a
k-linear category if HomC(X,Y ) is a k-linear vector space for all objects X
and Y and the composition map ◦ : (f, g) 7→ f ◦g is bilinear. If C is a tensor
category we also require that ⊗ : (f, g) 7→ f ⊗ g is bilinear.
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Thusfar we defined pre-additive, additive and k-linear categories. Next
we define another kind of category by adding some more structure to a
C-linear category.

Definition 3.2.6. A positive ∗-operation on a C-linear category C is a
family of maps that associates to every arrow s ∈ HomC(X,Y ) an arrow
s∗ ∈ HomC(Y,X) such that the following properties hold. The map is in-
volutive in the sense that s∗∗ = (s∗)∗ = s and contravariant in the sense
that (s ◦ t)∗ = t∗ ◦ s∗ holds whenever it is defined. The map is antilinear
and is positive in the sense that s∗ ◦ s = 0 implies that s = 0. If C is a
tensor category, we also demand that (s⊗ t)∗ = s∗⊗ t∗. A C-linear (tensor)
category equipped with a positive ∗-operation is called a (tensor) ∗-category.

Let Hf denote the category of finite dimensional Hilbert spaces over C
with linear maps as arrows. Hermitian conjugation defines a positive ∗-
operation on Hf . Hermitian conjugation also works for Repf (G,C). Take
representations (X,πX), (Y, πY ) and an intertwining operator s : X → Y .
Use invariant inner products to make both representations unitary. The
equality πY (x)s = sπX(x) implies s̄tπY (x−1) = πX(x−1)s̄t proving that the
linear map s̄t = s∗ : Y → X is an intertwining operator.

Definition 3.2.7. Let C be a ∗-category. An arrow v : X → Y in C is
called an isometry if v∗ ◦ v = idX . The arrow is called unitary if it satisfies
v∗ ◦ v = idX and v ◦ v∗ = idY . A morphism p ∈ End(X) is called a
projector if p = p ◦ p = p∗. We say that the category C has subobjects if for
every projector p ∈ End(X) there exists an isometry v : X → Y such that
v ◦ v∗ = p.

Definition 3.2.8. A functor F between ∗-categories is called ∗-preserving
if F (s∗) = F (s)∗ for every arrow s. The isomorphisms dX,Y and e coming
with a functor between tensor ∗-categories are required to be unitary arrows.

The category VectC has subobjects. In this category the notions of
isometries, unitarity maps and projectors reduce to the familiar ones. Sub-
objects are just subspaces. For Repf (G,C) the concepts also take on a
familiar form; subobjects are G-invariant subspaces and projections are the
usual projections on G-invariant subspaces. Next we define a conjugation
on tensor ∗-categories. In the next section we will further explore this con-
jugation.

Definition 3.2.9. (provisional definition) Let C be a tensor ∗-category and
X an object of C. An object X of C is called a conjugate object of X if there
exist non-zero morphisms r : 1 → X ⊗ X and r : 1 → X ⊗ X that satisfy
the conjugate equations

idX ⊗ r∗ ◦ r ⊗ idX = idX
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idX ⊗ r
∗ ◦ r ⊗ idX = idX .

We say that (X, r, r) is a conjugate of X. If every non-zero object of C has
a conjugate we say that C has conjugates.

The category Hf has conjugates. Take any vector space V not equal to
{0}. Take for X the vector space dual to X. Pick a basis e1, e2, ... of V and
let e∨i denote the basis elements dual to that basis. Define the linear maps
r : C → X∨ ⊗ X and r : C → X ⊗ X∨ by r(1) =

∑
i e
∨
i ⊗ ei and r(1) =∑

i ei ⊗ e∨i . It is straightforward to check that the conjugation equations are
satisfied. These maps also work for Repf (G,C). In order to prove that the
trace map r is an intertwining operator, recall that πV ∨(x) = πV (x−1)t.

Definition 3.2.10. An object in a C-linear category is called irreducible if
End(X) = CidX .

In Chapter 2 irreducibility was defined for Repf (G,C) as the property
that a representation V has no proper subrepresentations, or equivalently
the impossibility of writing V as a nontrivial direct sum V1 ⊕ V2 of two
subsepresentations. The above definition of irreducibility of Z in C coincides
with the definition that Z is not isomorphic to a proper direct sum. By
proper we mean that we exclude direct sums like Z ⊕ 0. First suppose that
End(Z) = CidZ and Z ∼= X ⊕ Y . By irreducibility i1 ◦ p1 = λ1idZ and
i2 ◦ p2 = λ2idZ for some constants λ1, λ2 ∈ C. If we denote the zero element
of HomC(X,Y ) by 0X,Y then we find

λ1p2 = p2 ◦ λ1idZ = p2i1p1 = 0X,Y ◦ p1 = 0Z,Y ,

Implying that λ1 = 0. Similarly we find λ2 = 0, which contradicts i1p1 +
i2p2 = idZ . We can conclude that if End(Z) = CidZ , then Z is not isomor-
phic to a nontrivial biproduct. In the above calculation we used the identity
0X,Y ◦ p1 = 0Z,Y . This follows from

0Z,Y = 0Z,Y ◦ (i1p1 + i2p2) = 0Z,Y i1p1 + 0Z,Y i2p2

= (0Z,Y i1 + 0X,Y )p1 + 0Z,Y i2p2 = 0Z,Y (i1p1 + i2p2) + 0X,Y p1

= 0Z,Y + 0X,Y ◦ p1 = 0X,Y ◦ p1.

From now on we will not fuss about the zero morphisms and denote each
zero arrow by 0. Next assume that Z is not isomorphic to a nontrivial
biproduct. Then the only projection in End(X) is the identity arrow. If p1

is another projection, then so is idZ − p1. By definition C has subobjects,
providing isometries v1 : X → Z and v2 : Y → Z such that Z ∼= X ⊕ Y .
Using the observation that the identity is the only projection, the proof of
Proposition 3.2.14 shows that End(Z) ∼= C. This completes the proof that
the definitions of irreducibility are equivalent.

Using terminology from this section we can define the type of categories
that we will investigate in the following sections.
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Definition 3.2.11. A TC* category is a tensor ∗-category with finite di-
mensional hom-sets, conjugates, direct sums, subobjects and an irreducible
tensor unit 1. A BTC* category is a TC* category with a unitary braiding.
An STC* category is a TC* category with a unitary symmetry.

Thusfar we have seen that both Repf (G,C) and Hf are examples of TC*
categories. Both categories are also equipped with a natural symmetry, the
flip symmetry ΣX,Y : X ⊗ Y → Y ⊗X, given by ΣX,Y (x ⊗ y) = y ⊗ x. As
this map is unitary (in both categories) both categories are STC* categories.
In the next section we take a closer look at the conjugates as defined in
Definition 3.2.9. We close this section with the proof that TC* categories
are semisimple. In order to do so we need the fact that for an object X in
a TC* category C the finite dimensional C-algebra End(X) is semisimple.
The following lemma helps to prove this. A proof of this lemma can be
found in Lang [25].

Lemma 3.2.12. (Nakayama’s Lemma) Let R be a ring and M be a finitely
generated left R-module. Let J be the radical of R, defined as the intersection
of all maximal left ideals of R. If JM = M , then M = {0}.

Lemma 3.2.13. Let R be a finite dimensional algebra over C. Suppose that
the (unique) maximal nilpotent left-ideal of R is equal to {0}. Then R is
semisimple in the sense that it is the direct sum of simple algebras. A simple
algebra is one that has no non-trivial ideals.

Proof. Take the radical J of R. This provides a decreasing sequence J, J2, ...
of left-ideals of R. In particular it is a decreasing sequence of finite dimen-
sional C-vector spaces, hence it stabilizes. There is a n ∈ N such that
Jn = Jn+1 = J · Jn. If we apply Nakayama’s Lemma with M = Jn, then
Jn = {0}. As J is nilpotent, by assumption we have J = {0}. As R
is finitely generated, there can only be a finite number of maximal ideals.
Suppose that J = ∩mi=1Mi, where the Mi are maximal ideals. Next consider
the natural map

γ : R→ R/M1 × ...×R/Mm.

The kernel of this ring homomorphism is equal to J = {0}. Thus we have
obtained an embedding of R into a ring that is clearly semisimple. Conse-
quently R is semisimple.

Proposition 3.2.14. A TC* category is semisimple in the sense that every
object is the finite direct sum of irreducible objects.

Proof. Let X be an object of C. The space A = End(X) is a finite di-
mensional C-algebra with a positive involution given by ∗. By the previous
lemma we know that A is semisimple if it has no non-zero nilpotent ideals.
Suppose J is a nilpotent left ideal of A. Let s ∈ J , then s∗ ◦ s ∈ J . This
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means that there is a natural number k such that (s∗ ◦ s)k = 0. Using posi-
tivity of the ∗-operation and the fact that (s∗ ◦ s)∗ = s∗ ◦ s this implies that
s∗◦s = 0. Invoking positivity once more gives s = 0. The radical of End(X)
is trivial, hence it is semisimple. The map idX ∈ End(X) is therefore the
sum of projections pi such that pi◦End(X)◦pi ∼= C. By assumption the cat-
egory C has subobjects, therefore to each projector pi there is an associated
object Xi of C. It is straightforward to check that X ∼= ⊕iXi.

3.3 Adjunctions and Conjugates

The mathematical concept underlying conjugates is that of an adjoint func-
tor. One goal of this section gives an introduction into adjoints and to show
how the conjugates as in Definition 3.2.9 can be viewed as such. For the
remaining sections we will barely use adjoint functors explicitly. Even so, it
is frequently the case that adjoint functors are hidden just below the sur-
face of the material presented here. We start with some examples. Let Set
denote the category of all (small) sets, where the arrows are functions. Take
V ctC to be the category of all (small) vector spaces (not necessarily finite
dimensional) over C, where the arrows are the linear maps. Consider the
following two functors

Set
V ,,

VctC.
U

kk

The functor U sends each vector space to the underlying set and each linear
map to the underlying function. The functor U is just the forgetful functor.
A set X is mapped to the vector space V (X) that has X as a basis. The
vectors of V (X) are formal linear combinations of

∑
i cixi with ci ∈ C and

xi ∈ X. Take any function g : X → U(W ). This function extends to a linear
map f : V (X) → W given by f(

∑
cixi) =

∑
cig(xi). The resulting cor-

respondence ψ : HomSet(X,U(W )) → HomVctC(V (X),W ) has an inverse
φ(f) = f |X . For each set X and vector space we get a bijection

φX,W : HomVctC(V (X),W ) ∼= HomSet(X,U(W )).

These maps are components of a natural transformation φ that is natural
in both arguments. In order to see this we need some more terminology.

Definition 3.3.1. Let C be any category. Define the opposite category C0

of C as follows. The objects of C0 are the same as for C. For each arrow
f : X → Y of C there is an arrow f0 : Y → X of C0. Composition of arrows
is given by f0 ◦ g0 = (g ◦ f)0 whenever it is defined. A contravariant functor
F : C → D is defined as a (covariant) functor F : C0 → D.

Definition 3.3.2. Suppose that C has small hom-sets and let X be any
object of C. We define the covariant hom-functor by

kC(X) : C → Set , Y 7→ HomC(X,Y ), f 7→ f∗
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where for f : Y ′ → Y and h : X → Y ′ we define f∗h = f ◦h. It is easy to see
that this defines a functor. Likewise we define the contravariant hom-functor
by

hC(X) : C0 → Set , Y 7→ HomC(Y,X), f 7→ f∗

where for f : Y → Y ′ and h : Y ′ → X we define f∗h = h ◦ f : Y → X.

With the hom-functors we recongnize the sets HomVctC(V (X),W ) and
HomSet(X,U(W )) as image objects of functors. Checking that φX,W is
a natural transformation in both arguments amounts to showing that the
following two diagrams are commutative for all vector spaces W and W ′,
sets X and X ′, and linear maps f : W →W ′ and functions h : X → X ′.

VctC(V X,W )

(V h)∗

��

φX,W // Set(X,UW )

h∗

��

VectC(V X,W )

f∗

��

φX,W // Set(X,UW )

(Uf)∗

��
VctC(V X ′,W )

φX′,W

// Set(X ′, UW ) VctC(V X,W ′)
φX,W ′

// Set(X,UW ′)

In the diagrams the shorthand notation C(X,Y ) = HomC(X,Y ) was used.
We will use this notation whenever it simplifies the diagrams or equations.
In the next example we see something similair. Consider the following two
functors

FW : Rep(G,C)→ Rep(G,C), V 7→ V ⊗W, f 7→ f ⊗ idW

GW : Rep(G,C)→ Rep(G,C), V 7→ Hom(W,V ), f 7→ f∗

where Hom(W,V ) denotes a representation as in Example 2.1.9, not just a
set. For each triple of representations U , V and W define map

φWU,V : Rep(G,C)(U ⊗W,V )→ Rep(G,C)(U,Hom(W,V )).

This map sends f : U ⊗W → V to g = φf : U → Hom(W,V ) such that
g(u) maps w to f(w ⊗ u). In short g(u,w) = f(w ⊗ u). We need to check
that intertwining operators are mapped to intertwining operators.

πHom(W,V )(x)g(u,w) = πV (x)g(u, πW (x)−1w)

= πV (x)f(πW (x)−1w ⊗ πU (x)−1πU (x)u)

= πV (x)πV (x)−1f(w ⊗ πU (x)u) = g(πU (x)u,w)

where in the third equality we used that f is an intertwining operator. This
shows that the map is well-defined. Showing that it is a bijection is easy
to check. Like the previous example, the maps φWU,V form the components
of a natural transformation. Checking that φ is natural in each of the
three components is left to the reader. The examples motivate the following
definition.
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Definition 3.3.3. Let C and D be categories. An adjunction from C to D
is a triple (F,G, φ) : C → D where F and G are functors

C
F **
D.

G

ii

and φ is a function that assigns objects C in C and D in D a bijection
φC,D : D(FC,D) ∼= C(C,GD) which is natural in both C and D. F is called
the left-adjoint of G and G the right-adjoint of F .

There is also an algebraic version of Tannaka-Krein duality, the Tan-
naka duality for affine group schemes. In this algebraic version, which
shows strong similarities with Tannaka-Krein duality as it is discussed in
this thesis, rigid monoidal categories play an important role. The existence
of conjugates for TC* type categories is related to the demand of rigidity
on categories in the algebraic case. The main motivation for showing that
conjugates come from adjunctions is to make it easier to see a connection
because rigidity is formulated using adjunctions. We will not discuss Tan-
naka duality for affine group schemes in this thesis. The interested reader
can find further information in [10], [36]. As we get back to the task at
hand, suppose that C is a TC*. For any nonzero object X there is a triple
(X, r, r) such that these satisfy the conjugate equations given in Definition
3.2.9.

Lemma 3.3.4. Take X, X, r and r as above. If Y and Z are objects of C
then the following maps are inverses of each other.

s 7→ idX ⊗ s ◦ r ⊗ idY , C(X ⊗ Y,Z)→ C(Y,X ⊗ Z)

t 7→ r∗ ⊗ idZ ◦ idX ⊗ t, C(Y,X ⊗ Z)→ C(X ⊗ Y, Z).

Proof.

idX ⊗ r
∗ ⊗ idZ ◦ idX⊗X ⊗ t ◦ r ⊗ idY = idX ⊗ r

∗ ⊗ idZ ◦ r ⊗ idX⊗Z ◦ t = t.

In the last step the conjugate equations were used. The other half of the
proof can be given in the same way.

Similarly there is a bijection C(Y ⊗X,Z) → C(Y,Z ⊗X) given by t 7→
t⊗ idX ◦ idY ⊗ r with inverse s 7→ idZ ⊗ r∗ ◦ s⊗ idX . The lemma implies in
particular that every arrow rY : 1→ Y ⊗X is of the form rY = t⊗ idX ◦ r
for a unique arrow t : X → Y . The map rY defines a conjugate if and only if
t is invertible. This can be seen by defining rY = idX⊗ t∗−1 ◦r and checking
that the conjugate equations are satisfied. The same reasoning holds for
arrows rZ : 1→ X ⊗ Z. Any such arrow can be written as rZ : idX ⊗ s ◦ r
for a unique arrow s : X → Z and defines a conjugate for Z if and only if s
is invertible.
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The lemma provides bijections φXY,Z : C(X ⊗ Y,Z) → C(Y,X ⊗ Z) for
any triple of objects. The map φX is natural in both arguments Y and
Z. Proving this amounts to checking that the following two diagrams are
commutative for every arrow f : Y → Y ′ and g : Z → Z ′.

C(X ⊗ Y,Z)

(idX⊗f)∗

��

φXY,Z // C(Y,X ⊗ Z)

f∗

��

C(X ⊗ Y, Z)

g∗

��

φXY,Z // C(Y,X ⊗ Z)

(idX⊗g)∗
��

C(X ⊗ Y ′, Z)
φX
Y ′,Z

// C(Y ′, X ⊗ Z) C(X ⊗ Y,Z ′)
φX
Y,Z′

// C(Y,X ⊗ Z ′)

This proves that the functor 〈X ⊗−〉 : C → C is a right adjoint for the
functor

〈
X ⊗−

〉
: C → C.

There is a different yet equivalent way to look at adjunctions. Suppose
that (F,G, φ) is an adjunction from C to D. From this data we can construct
natural transformations η : idC → GF and ε : FG → idD such that the
composites

G
ηG→ GFG

Gε→ G, F
Fη→ FGF

εF→ F,

are the idenities. The transformations η and ε are called the unit and counit
respectively. It is proven in Section IV.1 of MacLane [27] that the functors F
and G together with such η and ε completely determine an adjunction. The
bijection φ can thus be found from this data. Let us turn to the construction
of η and ε from (F,G, φ). We have a bijection

φY,Z : D(FY,Z)→ D(Y,GZ).

If we pick Z = FY then ηY is the image of idFY under φY,FY . In short
ηY : Y → GFY is given by ηY = φY,FY (idFY ). If we set Y = GZ then we
take εZ as the image of idGZ under φ−1

GZ,Z . The proof that these arrows make
up suitable natural transformations is given in MacLane [27]. If we apply
this construction to the functors 〈X ⊗−〉 : C → C and

〈
X ⊗−

〉
: C → C

and φ given by Lemma 3.3.4, we find ηY = r ⊗ idY and εY = r∗ ⊗ idY .
The adjunction can completely be described by the functors 〈X ⊗−〉 and〈
X ⊗−

〉
and the arrows r : 1→ X ⊗X and r : 1→ X ⊗X.

Let X,Y be objects of C with conjugates (X, rX , rX) and (Y , rY , rY )
and suppose that s : X → Y is a morphism of C. Then in a natural way we
can construct a morphism s : X → Y by defining

s = idY ⊗ r
∗
X ◦ idY ⊗ t

∗ ⊗ idX ◦ rY ⊗ idX .

As every TC* is semisimple, for any object X there exist isometries wi :
Xi → X such that w∗i ◦ wi = idXi ,

∑
iwi ◦ w∗i = idX and every Xi is an

irreducible object. It would be nice if the corresponding maps wi : Xi → X
would give a decomposition of X into irreducible components. It turns out
that we need to include another axiom in the definition of conjugates in
order to guarantee this.
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Definition 3.3.5. (final version) Let C be a tensor ∗-category and X an
object of C. An object X of C is called a conjugate object of X if there exist
morphisms r : 1 → X ⊗ X and r : 1 → X ⊗ X that satisfy the conjugate
equations. Let s : X → Y be a morphism in C and s : X → Y be as above.
Then we demand that (s)∗ = s∗. We say that C has conjugates if there is a
conjugate (X, r, r) for each object and (s)∗ = s∗ holds for each morphism.

Lemma 3.3.6. Let C be a TC* category and X an object of C. Suppose that
X ∼= ⊕iXi effected by isometries wi : Xi → X, where the Xi are irreducible
objects. Suppose that (X, rX , rX) is a conjugate for X and (Xi, rXi , rXi)
are conjugates for the Xi. Let wi : Xi → X be as above. Then the wi are
isometries effecting the decomposition X ∼= Xi in irreducible objects Xi.

Showing that wi∗ ◦ wi = idXi is a straightforward computation. One
needs the conjugate equations and the relation wi

∗ = w∗i . As the involved
identities are long and not very illuminating, the reader that wants to prove
this lemma may want to consult Section 3.5 where a diagrammatic method
is discussed that greatly simplifies the calculations.

Conjugates can be used to define a dimension of objects and a trace of
endomorphisms. The next definition defines conjugates of particular inter-
est. If we restrict to conjugates of this kind the notions of dimension and
trace will be independent of the particular choice of r and r.

Definition 3.3.7. Let C be a TC* and X an object of C that has a conjugate
(X, r, r). Let X ∼=

⊕
iXi be the decomposition of X in irreducible compo-

nents and wi : Xi → X be the isometries corresponding to the projections
pi. By the previous lemma we have a similar decomposition X ∼=

⊕
iXi

with isometries wi : Xi → X. A solution to the conjugate equations r : 1→
X ⊗X, r : 1→ X ⊗X is called a standard conjugate if it is of the form

r =
∑
i

(wi ⊗ wi) ◦ ri, r =
∑
i

(wi ⊗ wi) ◦ ri

where (Xi, ri, ri) are conjugates for Xi which are normalized in the sense
that r∗i ◦ ri = r∗i ◦ ri.

A conjugate (X, r, r) is standard if and only if we have normalized con-
jugates (Xi, (w∗i ⊗ w∗i ) ◦ r, (w∗i ⊗ w∗i ) ◦ r) for the Xi. This definition of
standardness looks different from that given in Müger [30]. In a paper by
Longo and Roberts [26] it is shown that both definitions are equivalent.
However, this paper is about to C∗-tensor categories. As we will later see
the Hom-sets of a TC* can be given unique norms rendering it a C∗-tensor
category. Conversely, any C∗-tensor category with directs sums, subobjects,
conjugates and an irreducible tensor unit is a TC* category. The equiva-
lence of the different standardness definitions is presented in the following
lemma.
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Lemma 3.3.8. Let C be a TC* and (X, r, r) be a conjugate for X. Then
(X, r, r) is a standard conjugate if and only for every arrow s : X → X we
have

r∗ ◦ (idX ⊗ s) ◦ r = r∗ ◦ (s⊗ idX) ◦ r.

We prove that standardness implies the stated identity. In order to do
so, we use the relations w∗i ◦wj = 0 and w∗i ◦wj = 0 for i 6= j that follow from
the definition of biproducts. Assume that (X, r, r) is a standard conjugate.

r∗ ◦ (idX ⊗ s) ◦ r =
∑
i,j

r∗i ◦ ((w∗i ◦ wj)⊗ (w∗i ◦ s ◦ wj)) ◦ r

=
∑
i

r∗i ◦ (idXi
⊗ (w∗i swi)) ◦ r.

By irreducibility w∗i ◦ s ◦wi : Xi → Xi is of the form, λidXi for some λ ∈ C.
Writing out the right hand side of r∗ ◦ (idX ⊗ s) ◦ r = r∗ ◦ (s⊗ idX) ◦ r gives
that the relation is satisfied if for each i we have that r∗i ◦ ri = r∗i ◦ ri. This
holds by definition of a standard conjugate. A proof of the converse, which
is the fact that the property of Lemma 3.3.8 implies standardness, can be
found in Longo and Roberts [26] in the shape of Lemma 3.9.

For the remainder of this section we will not work out every detail of
the presented material. This would take too much time and space. The
interested reader can find full proofs of all claims (and more) in Sections 2
and 3 of Longo and Roberts [26]. The following lemma shows that restricting
our attention to standard conjugates does not restrict the number of objects
under consideration.

Lemma 3.3.9. Let C be a TC*. Every non-zero object X has a standard
conjugate.

Proof. First consider the case that X is an irreducible object. A solution
r, r to the conjugate equations is standard if and only if r∗ ◦ r = r∗ ◦ r.
By rescaling both r and r this can be satisfied. Note that in order for the
conjugate equations to hold we can only rescale as r → λr, r → λ

−1
r, λ ∈ C.

By positivity of the ∗-operation, r∗ ◦ r > 0 so this restriction leaves us with
enough freedom. Now take X to be any object, then it is a finite direct sum
X ∼=

⊕
iXi of irreducible objects Xi. For each Xi we can find a standard

conjugate (Xi, ri, ri). Put X =
⊕

iXi. Let wi : Xi → X, wi : Xi → X be
the isometries corresponding to the direct sum decompositions of X and X.
Define r =

∑
iwi ⊗ wi ◦ ri and r =

∑
iwi ⊗ wi ◦ ri. This defines a standard

conjugate for X.

The following lemma shows how we can get a standard conjugate for
a subobject of X if we know a standard conjugate of X. The subsequent
lemma shows how we can get a standard conjugate for X⊗Y from standard
conjugates of X and Y .
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Lemma 3.3.10. Let (X, r, r) be a standard conjugate of X and p : X → X
a projection. Define

p = (r∗ ⊗ idX) ◦ (idX ⊗ p⊗ idX) ◦ (idX ⊗ r) : X → X.

Then p is a projection. There are isometries such that v ◦ v∗ = p and
w ◦ w∗ = p. The triple (Y ,w∗ ⊗ v∗ ◦ r, v∗ ⊗ w∗ ◦ r) defines a standard
conjugate for Y .

Lemma 3.3.11. Let (X, r, r) and (Y , r′, r′) be standard conjugates of X and
Y respectively. Defining r′′ = (idY ⊗r⊗idY )◦r′ and r′′ = (idX⊗r′⊗idX)◦r
the triple (Y ⊗X, r′′, r′′) defines a standard conjugate for X ⊗ Y .

Proving that the constructions satisfy the conjugate equations and are
standard is left to the reader. In the following definition/proposition we
define for each object X a trace TrX . As long as standard conjugates are
used the trace is independent of which standard conjugate is used.

Proposition 3.3.12. Let C be a TC* and X an object of C with standard
conjugate (X, r, r). Define the trace map as

TrX : End(X)→ C, s 7→ r∗ ◦ idX ⊗ s ◦ r.

This map is well defined in the sense that it does not depend on the choice
of standard conjugate. It satisfies the following two properties.

TrX(s ◦ t) = TrY (t ◦ s), ∀s : X → Y, t : Y → X,

TrX⊗Y (s⊗ t) = TrX(s)TrY (t), ∀s : X → X, t : Y → Y.

A full proof can be found in Section 3 of Longo and Roberts [26]. This
proof works as follows. First a scalar product for s, t : X → Y is defined by

〈s, t〉 = r∗ ◦ idX ⊗ (s∗ ◦ t) ◦ r

This product satisfies the properties 〈s, s〉 ≥ 0 and 〈s, q ◦ t〉 = 〈q∗ ◦ s, t〉
whenever the compositions are defined. It is subsequently shown in Lemma
3.7 that for standard conjugate this product in independent of the choice
of the standard conjugate. This is the first claim of the proposition as we
have that TrX(s) = 〈idX , s〉. In this lemma it is also proven that the scalar
product is tracial in the sense that 〈s, t〉 = 〈t∗, s∗〉. The first property of the
proposition is a consequence of this fact.

TrX(s ◦ t) = 〈idX , s ◦ t〉 = 〈s∗ ◦ idX , t〉 = 〈s∗, t〉
= 〈t∗, s〉 = 〈t∗ ◦ idY , s〉 = 〈idY , t ◦ s〉 = TrY (t ◦ s).

The second property can easily be proven using the standard conjugate from
Lemma 3.3.11. Using this lemma the proof amounts to writing out the left
hand side.

TrX⊗Y (s⊗ t) = r′∗ ◦ idY ⊗ r
∗ ⊗ idY ◦ idY ⊗X ⊗ s⊗ t) ◦ idY ⊗ r ⊗ idY ◦ r

′

= r′∗ ◦ idY ⊗ r
∗ ◦ idX ⊗ s ◦ r ⊗ t ◦ r

′ = TrX(s)TrY (t)
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Proposition 3.3.13. Let C be a TC* and X a object of C. Define the di-
mension of X as d(X) = TrX(idX). For any standard conjugate (X, r, r) of
X we have d(X) = r∗ ◦ r. The dimension is additive in the sense that
d(X ⊕ Y ) = d(X) + d(Y ) and multiplicative in the sense d(X ⊗ Y ) =
d(X)d(Y ). It satisfies the properties d(X) = d(X) and d(X) ≥ 1 with
d(X) = 1 implying that X is invertible (X ⊗X ∼= 1).

Proof. Multiplicativity follows straight from Proposition 3.3.12. Regard-
ing additivity, suppose that we have isometries w1 : X → W ⊕ Y and
w2 : Y → X ⊕ Y . Take for X ⊕ Y the standard conjugate (X ⊕ Y , r =∑

iwi ⊗ wi ◦ ri, r =
∑

iwi ⊗ wi ◦ r).

d(X⊕Y ) = r∗◦r =
∑
i,j

r∗i (w
∗
i ⊗ w∗i )(wj ⊗ wj)rj =

∑
i

r∗i ◦ ri = d(X)+d(Y ).

If (X, r, r) is a standard conjugate for X then (X, r, r) is a standard con-
jugate for X. This proves that d(X) = d(X). Because the ∗-operation is
positive, d(X) > 0. We know that 1 is in the direct sum of X ⊗X. Com-
bining this observation with the already proven properties provides us with
d(X)2 ≥ 1 implying d(X) ≥ 1. If d(X) = 1 then 1 is the only nonzero
object in the direct sum, implying that X is invertible.

3.4 Tannaka-Krein Duality

We are done with the categorical preparations and now get ready to state
the Tannaka-Krein duality theorem. First a small recollection of what we
did in the previous chapter. Starting out with a compact group G we studied
the structure of the category of finite dimensional representations of G, the
STC* category Repf (G,C). The Tannaka group Gω was constructed as the
group of unitary monoidal natural transformations of the forgetful functor
ω : Repf (G,C) → V ectC to itself. The Tannaka group was shown to be a
compact group isomorphic to G. Stated differently, we found an equivalence
of tensor ∗-categories Repf (Gω,C) ∼= Repf (G,C). In this section we do
something similar. We start out with a STC* C and a suitable functor
E : C → Hf that reminds of the forgetful functor. Replacing V ectC by
Hf allows us to compare the ∗-operations of the categories. The unitary
monoidal natural transformations of the functor E to itself form a compact
group GE . It will turn out that C ∼= Repf (GE ,C) as symmetric tensor ∗-
categories. The material in this section is based on Appendices B1 and B2
of Müger [30]. We start with defining a suitable functor η.

Definition 3.4.1. Let C be a STC* category. A fiber functor for C is a faith-
ful C-linear tensor functor E : C → V ectC. A ∗-preserving fiber functor for
C is a faithful functor E : C → Hf of tensor ∗-categories. E is called sym-
metric if for all objects X and Y of C, E(cX,Y ) ◦ dX,Y = dX,Y ◦ΣE(X),E(Y ).
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The functor is thus called symmetric if it maps the symmetry of C to the
flip symmetry of Hf . If a STC* category C is equipped with a symmetric ∗-
preserving fiber functor it is clear that C is equivalent to a tensor subcategory
of Hf . In this chapter we assume to have a symmetric ∗-preserving fiber
functor for each STC* category under consideration. The next chapter is
concerned with constructing a fiber functor for any given STC* category.
The result of this investigation is Deligne’s embedding theorem.

Lemma 3.4.2. Let C be a STC* category and E : C → Hf a symmetric ∗-
preserving fiber functor. The set GE ⊂ End(E) of unitary monoidal natural
transformations of E to itself is a compact group.

Proof. Composition provides group multiplication and the identity natural
transformation acts as a unit. The identity transformation is clearly an
element of GE . Let g ∈ GE then g−1 is defined by (g−1)X = gX

t. We
should check that g−1 ∈ GE . This amounts to showing that it is natural
and monoidal. Naturality means that for any linear map f : X → Y in
C we have that E(f) ◦ (g−1)X = (g−1)Y ◦ E(f). Taking the adjoint of
both sides of the equation E(f) ◦ gX = gY ◦ E(f) gives E(f)† ◦ (g−1)Y =
(g−1)X ◦E(f)†. Note that E is ∗-preserving so this is equivalent to the claim
that E(f∗) ◦ (g−1)Y = (g−1)X ◦ E(f∗) holds for every f∗ : Y → X. As the
∗-map is involutive this proves naturality and we move onto proving that
g−1 is monoidal. We have maps dX,Y : E(X) ⊗ E(Y ) → E(X ⊗ Y ) and
e : C → E(1C) that are unitary. Using this unitarity, taking the adjoint
of the equality (gX ⊗ gY ) ◦ dX,Y = dX,Y ◦ gX⊗Y gives the desired equality
((g−1)X ⊗ (g−1)Y ) ◦ dX,Y = dX,Y ◦ (g−1)X⊗Y . Similarly we deduce e =
(g−1)1 ◦ e. This makes GE into a group. Proving that it is a compact
topological group proceeds in the same way as in Section 2.3 and Proposition
2.5.6. We identify GE as a closed subset of

∏
X∈C U(E(X)) where U(E(X))

are the unitary transformations E(X)→ E(X). By Tychonov’s theorem the
space

∏
X∈C U(E(X)) is compact and therefore GE is also compact. The

multiplication and inverse maps are easily checked to be continuous.

Each Hilbert space E(X) carries a unitary representation of GE . We
have the following continuous homomorphism of groups

πX : GE → End(E(X)), g 7→ πX(g) = gX .

We use this fact to prove the following proposition.

Proposition 3.4.3. Let C be a STC* category and E : C → Hf a symmetric
∗-preserving fiber functor. Then there exists a symmetric faithful tensor ∗-
functor F : C → Repf (Gη,C) such that ω◦F = E where ω : Repf (GE ,C)→
Hf is the forgetful functor.
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Proof. Define for any object X of C, F (X) = (E(X), πX) with πX as above.
Each arrow s : X → Y is mapped to F (s) = E(s). We need to check that
E(s) : (E(X), πX) → (E(Y ), πY ) is an intertwining operator. Using that g
is defined as a natural transformation we can easily see that

F (s) ◦ πX(g) = E(s) ◦ gX = gY ◦ E(s) = πY (g) ◦ F (s).

As F clearly respects composition of arrows it is a well-defined functor. The
facts that F is faithful and ∗-preserving follow directly from the properties of
E. The unitary maps dFX,Y : F (X)⊗F (Y )→ F (X⊗Y ) and eF : C→ F (1C)
are borrowed from E. We define dFX,Y = dEX,Y and eF = eE . These maps
should be arrows in Repf (GE ,C) so we need to check again if we have
defined intertwining operators. For dFX,Y this follows from the fact that g is
a monoidal natural transformation as can be seen by

dFX,Y ◦ (πX(g)⊗ πY (g)) = dEX,Y ◦ gX ⊗ gY = gX⊗Y ◦ dEX,Y = πX⊗Y (g) ◦ dFX,Y .

Because each g is monoidal it follows that g1 = idE(1) must hold for each
g ∈ GE . The functor F therefore maps the tensor unit 1 of C to the trivial
representation (E(1), π1). Next we equip the tensor unit C of Hf with the
trivial representation. If C happened to be in the image of E then it was
already given the trivial representation so this raises no conflict. The map
eF is an intertwining operator. The rest of the claims are easy to check.

The following proposition is needed to prove Tannaka-Krein duality. The
proof of this proposition will occupy the following three sections. Although
proving this proposition will be a lot of work the efforts are well rewarded.
During the computations we will see the diversity of the possible fiber func-
tors for a given STC* category. It turns out that each fiber functor would
give the same group GE up to an isomorphism. From this point onwards
we presuppose that C is a essentially small category. This means that it is
equivalent to a small category, i.e. a category of which the class of objects
ObjC is a set. This makes it possible to define a set I as in the following
proposition.

Proposition 3.4.4. Define {Xi|i ∈ I} to be a set of irreducible pairwise
inequivalent objects of the STC* category C such that every object is iso-
morphic to a finite direct sum of elements of {Xi|i ∈ I}. Take S ⊂ I to be
any finite subset. Then the following holds for the closed linear span

spanC{πS1(g)⊕ ...⊕ πS|S|(g)|g ∈ GE} =
⊕
s∈S

End(E(Xs)).

Modulo Proposition 3.4.4 we can state and prove Tannaka-Krein duality.

Theorem 3.4.5. (Tannaka-Krein Duality) Let C be a STC* category and
E : C → Hf a symmetric ∗-preserving fiber functor. Let GE and F : C →
Repf (GE ,C) be as previously defined. Then F is an equivalence of symmet-
ric tensor ∗-categories.
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Proof. Analogous to Proposition 2.6.13 it is true that F defines an equiva-
lence of symmetric tensor ∗-categories if it is a symmetric tensor ∗-functor
that is faithful, full and essentially surjective. Looking at Proposition 3.4.3
it remains to be checked that F is full and essentially surjective. We
start with proving that F is full. Both categories C and Repf (GE ,C) are
semisimple, therefore it suffices to prove the following two claims. First
we show that if X ∈ Obj(C) is irreducible, then F (X) is irreducible. Sec-
ond, we show that if X and Y are inequivalent irreducible objects of C,
then the hom set HomRepf (GE ,C)(F (X), F (Y )) = {0}. The first claim fol-
lows from Proposition 3.4.4 if we take S to be a singleton. Every endo-
morphism s : E(X) → E(X) can be approximated by a representation
πX(g) : E(X) → E(X). It follows that End(E(X)) = Cid. The second
claim also follows from Proposition 3.4.4, but in this case we take S to
be a set with two elements. Take s ∈ HomRepf (GE ,C)(F (X), F (Y )). By
definition of F we know that s ∈ HomHf (E(X), E(Y )) with the property
that s ◦ πX(g) = πY (g) ◦ s holds for any g ∈ GE . By Proposition 3.4.4,
s ◦ u = v ◦ s holds for any pair of endomorphism u : E(X) → E(X) and
v : E(Y )→ E(Y ). Choosing u = 0 and v = 1 shows that s = 0. This proves
that F is full, and we move onto proving that it is essentially surjective.
The category C is equivalent to a full tensor subcategory of Repf (GE ,C).
The representations that constitute this tensor subcategory form a set that
is closed in the sense of Section 2.6. If the subcategory separates points,
then Lemma 2.6.9 immediatly proves essential surjectivity. Let g ∈ GE be
nontrivial. Then there is an object X ∈ ObjC such that gX 6= idE(X). This
means that πX(g) 6= idE(X), hence the representations {F (X)|X ∈ ObjC}
separate the points of GE .

For a compact group G the category Repf (G,C) is a STC* category
and the forgetful functor ω : Repf (G,C)→ Hf is a symmetric ∗-preserving
fiber functor. The group Gω is just the Tannaka group and the fact that
F : Repf (G,C) → Repf (Gω,C) defines an equivalence of symmetric tensor
∗-categories is easy to see.

3.5 Algebras and Fiber Functors

The theory developed in this section will be important in more than one
way. It will help prove Proposition 3.4.4, thereby completing the proof of
Tannaka-Krein duality. It will also help in showing that the group con-
structed using Tannaka-Krein duality is unique up to an isomorphism. This
is done by proving that for any two symmetric ∗-preserving fiber functors,
there is a unitary monoidal natural isomorphism between them. Finally, in
the next chapter the theory of this section will help in the construction of a
∗-preserving fiber functor. This section is based on Appendices B3 and B4
of Müger [30].
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Take C to be a TC* category and let Ei : C → Hf with i ∈ {1, 2} be ∗-
preserving fiber functors. From this point onwards we are going to study the
set Nat(E1, E2) of natural transformations E1 → E2. We will not do this
directly. Rather, we construct an algebra A(E1, E2), that acts as a predual
for Nat(E1, E2). More precisely, Nat(E1, E2) is the algebraic dual space
for A(E1, E2). The space A(E1, E2) can be made into a unital C*-algebra,
(which is commutative when considering STC* categories and symmetric
∗-preserving fiber functors, as we will discuss in the next section) which will
lead to interesting results.

First let C to be a TC* category and let Ei : C → V ectC with i ∈ {1, 2}
be fiber functors, not necessarily ∗-preserving. Define the C-vector space

A0(E1, E2) =
⊕
X∈C

Hom(E2(X), E1(X)).

Let [X, s] denote the element of A0(E1, E2) that takes the value s : E2(X)→
E1(X) in X ∈ ObjC and is 0 everywhere else. We can make A0(E1, E2) into
an associative C-algebra by defining

[X, s] · [Y, t] = [X ⊗ Y, d1
X,Y ◦ s⊗ t ◦ (d2

X,Y )−1]

where the maps diX,Y : Ei(X)⊗ Ei(Y )→ Ei(X ⊗ Y ) come from the tensor
functors Ei. We need to check that this multiplication operation is associa-
tive. This means that ([X, r] · [Y, s]) · [Z, t] = [X, r] ·([Y, s] · [Z, t]) holds for all
X,Y, Z ∈ ObjC and possible choices of r, s and t. Recall the commutative
diagrams belonging to a tensor functor given in Definition 3.1.3. Because
we restricted our attention to strict monoidal categories, the maps α, λ and
ρ are taken to be the identity maps. These diagrams provide us with the
following commutative diagram.

E2(X)⊗ E2(Y ⊗ Z) d2 // E2(X ⊗ Y ⊗ Z)

E2(X)⊗ E2(Y )⊗ E2(Z)

r⊗s⊗t
��

id⊗d2
OO

d2⊗id
// E2(X ⊗ Y )⊗ E2(Z)

d2

OO

E1(X ⊗ Y )⊗ E1(Z)

d1

��

E1(X)⊗ E1(Y )⊗ E1(Z)d1⊗idoo

id⊗d1
��

E1(X ⊗ Y ⊗ Z) E1(X)⊗ E1(Y ⊗ Z)
d1

oo

Writing out ([X, r] · [Y, s]) · [Z, t] and [X, r] ·([Y, s] · [Z, t]) associativity follows
directly from the fact that the above diagram is commutative. The maps
ei : C → Ei(1) coming from the tensor functors can be used to define a
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multiplicative unit. This multiplicative unit is given by [1, e1 ◦ (e2)−1]. The
diagrams of Definition 3.1.3 give us

diX,1 ◦ idEi(X) ⊗ ei = idEi(X), di1,X ◦ ei ⊗ idEi(X) = idEi(X)

from which we can deduce that

[1, e1 ◦ (e2)−1] · [X, s] = [X, s] = [X, s] · [1, e1 ◦ (e2)−1].

We have thus shown that A0(E1, E2) is an associative algebra with multi-
plicative unit.

Lemma 3.5.1. Let C be a TC* category and let Ei : C → V ectC, i ∈ {1, 2}
be fiber functors. Then the following subspace of A0(E1, E2) is a 2-sided
ideal.

I(E1, E2) = spanC{[X, a◦E2(s)]−[Y,E1(s)◦a]|s : X → Y, a : E2(Y )→ E1(X)}.

Proof. First note that by naturality of the di we have the following equalities

E2(s)⊗ E2(idZ) ◦ (d2
X,Z)−1 = (d2

Y,Z)−1 ◦ E2(s⊗ idZ),

d1
Y,Z ◦ E1(s)⊗ E1(idZ) = E1(s⊗ idZ) ◦ d1

X,Z .

Using these equalities we find

([X, a ◦ E2(s)]− [Y,E1(s) ◦ a]) · [Z, t]
= [X ⊗ Z, d1

X,Z ◦ (a ◦ E2(s))⊗ t ◦ (d2
X,Z)−1]

− [Y ⊗ Z, d1
Y,Z ◦ (E1(s) ◦ a)⊗ t ◦ (d2

Y,Z)−1]

= [X ⊗ Z, d1
X,Z ◦ a⊗ t ◦ (d2

Y,Z)−1 ◦ E2(s⊗ idZ)]

− [Y ⊗ Z,E1(s⊗ idZ) ◦ d1
X,Z ◦ a⊗ t ◦ (d2

Y,Z)−1].

Defining X ′ = X ⊗ Z, Y ′ = Y ⊗ Z, s′ = s⊗ idZ : X ′ → Y ′ and

a′ = d1
X,Z ◦ a⊗ t ◦ (d2

Y,Z)−1 : E2(Y ′)→ E1(X ′)

the above identity becomes [X ′, a′ ◦E2(s′)]− [Y ′, E1(s′)◦a′], which is clearly
an element of I(E1, E2). Thus we have proven that I(E1, E2) is a left ideal.
Proving that it is a right ideal proceeds in the same way.

[Z, t] · ([X, a ◦ E2(s)]− [Y,E1(s) ◦ a])

= [Z ⊗X, d1
Z,X ◦ t⊗ (a ◦ E2(s)) ◦ (d2

Z,X)−1]

− [Z ⊗ Y, d1
Z,Y ◦ t⊗ (E1(s) ◦ a) ◦ (d2

Z,Y )−1]

= [Z ⊗X, d1
Z,X ◦ t⊗ a ◦ (d2

Z,Y )−1 ◦ E2(idZ ⊗ s)]
− [Z ⊗ Y,E1(idZ ⊗ s) ◦ d1

Z,X ◦ t⊗ a ◦ (d2
Z,Y )−1]

= [X ′′, a′′ ◦ E2(s′′)]− [Y ′′, E1(s′′) ◦ a′′] ∈ I(E1, E2).
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Let A(E1, E2) denote the quotient algebra A0(E1, E2)/I(E1, E2). At the
risk of possible confusion we shall denote the images of [X, s] ∈ A0(E1, E2)
under the canonical map

γ : A0(E1, E2)→ A(E1, E2) = A0(E1, E2)/I(E1, E2)

again by [X, s]. The algebra A(E1, E2) can be thought of as generated by
the elements [X, s], subject to the relations

[X,αs+ βt] = α[X, s] + β[X, t], α, β ∈ C, s, t : E2(X)→ E1(X),

[X, a ◦ E2(s)] = [Y,E1(s) ◦ a], s : X → Y, a : E2(Y )→ E1(X).

As promised we will show that the algebra A(E1, E2) has additional
structure, but in order to make the proofs more transparant we will introduce
some new notation. We use the following graphical notation for arrows in a
monoidal category.

X

X

idX : X → X

X

s

Y

s : X → Y

X Y

X ′ Y ′

s t s⊗ t : X ⊗ Y → X ′ ⊗ Y ′

Identity arrows are denoted by vertical lines and arrows s : X → Y
are denoted by a box. Tensor products of arrows are denoted by horizontal
juxtaposition of the boxes. The composition of two arrows is written as the
vertical juxtaposition of the two boxes. The arrows coming from braidings,
tensor functors and conjugations are given by

X Y
�
�
�

Y X

@@

@@ = cX,Y : X ⊗ Y → Y ⊗X ��X X
= rX : 1→ X ⊗X

X X

��
= r∗ : X ⊗X → 1

E(X) E(Y )

E(X ⊗ Y )

d = dEX,Y

As an example consider the following trivial equality.

X Z

Y W

t

s
=

X Z

Y W

s

t
s⊗ idW ◦ idX ⊗ t = idY ⊗ t ◦ s⊗ idZ

s : X → Y, t : Z →W.

The next example is one of the conjugate equations.
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X

��
��
X

=

X

X

idX ⊗ r∗ ◦ r ⊗ idX = idX

Using this notation we will prove the following proposition

Proposition 3.5.2. Let C be a TC* category and let Ei : C → Hf , i ∈ {1, 2}
be ∗-preserving fiber functors. Then A(E1, E2) has a positive ∗-operation. It
is an antilinear and antimultiplicative involution such that a∗a = 0 implies
that a = 0.

Proof. For this proof we will pretend that the functors Ei are strict tensor
functors. The proof for non-strict fiber functors works in the same way if
we insert the maps diX,Y and ei whenever needed to make the maps involved
well defined. We start with defining a antilinear involution on A0(E1, E2).
It is defined on the generators by

[X, s]? = [X, t] = [X, idE1(X)⊗E2(r∗)◦idE1(X)⊗s
∗⊗idE2(X)◦E1(r)⊗idE2(X)]

where (X, r, r) is a standard conjugate for X. Since we used standard con-
jugates (X, r, r) we should ask the question if this definition depends on the
particular choice of conjugates. It turns out that it does, but the difference
in [X, s]? for different choices of standard conjugates is an element of the
ideal I(E1, E2). The canonical map

γ : A0(E1, E2)→ A(E1, E2)

maps the difference to zero. In order to show this, pick another standard
conjugate (X ′, r′, r′) for X. Then there exists a unique unitary arrow u :
X → X

′ such that r′ = u ⊗ idX ◦ r (Section 3 in Longo and Roberts [26]).
Consider ([X, s]?)′ = [X ′, t′], where t′ is expressed in terms of the primed
conjugates.

[X, t]− [X ′, t′]

= [X, idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ s
∗ ⊗ idE2(X) ◦ E1(r)⊗ idE2(X)]

− [X ′, id
E1(X

′
)
⊗ E2(r∗′) ◦ id

E1(X
′
)
⊗ s∗ ⊗ id

E2(X
′
)
◦ E1(r′)⊗ id

E2(X
′
)
]

We have the following identities

idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ s
∗ ⊗ idE2(X) ◦ E1(r)⊗ idE2(X)

= idE1(X) ⊗ E2(r′∗) ◦ idE1(X) ⊗ s
∗ ⊗ id

E2(X
′
)
◦ E1(r)⊗ id

E2(X
′
)
◦ E2(u).
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id
E1(X

′
)
⊗ E2(r′∗) ◦ id

E1(X
′
)
⊗ s∗ ⊗ id

E2(X
′
)
◦ E1(r′)⊗ id

E2(X
′
)

= E1(u) ◦ idE1(X) ⊗ E2(r′∗) ◦ idE1(X) ⊗ s
∗ ⊗ id

E2(X
′
)
◦ E1(r)⊗ id

E2(X
′
)
.

These identities can easily be seen from the graphical representation. For
instance the first equality is represented by

��
s∗ s∗

��
=

��

��

E2u

E2u∗

If we define a : E2(X ′)→ E1(X) by

a = idE1(X) ⊗ E2(r′∗) ◦ idE1(X) ⊗ s
∗ ⊗ id

E2(X
′
)
◦ E1(r)⊗ id

E2(X
′
)
,

we see that

[X, t]− [X ′, t′] = [X, a ◦ E2(u)]− [X ′, E1(u) ◦ a].

This is clearly an element of I(E1, E2). We would like to define the ∗-
operation on A(E1, E2) as the arrow that makes the diagram

A0(E1, E2)

?

��

γ // A(E1, E2)

∗
��

A0(E1, E2) γ
// A(E1, E2)

commutative. This map is only well defined if the composition γ ◦ ? :
A0(E1, E2)→ A(E1, E2) maps the ideal I(E1, E2) to zero. Choose X,Y ∈ C,
s : X → Y , a : E2(Y )→ E1(X) and conjugates (X, rX , rX) and (Y , rY , rY ).

[X, a ◦ E2(s)]∗ − [Y,E1(s) ◦ a]∗

= [X, idE1(X) ⊗ E2(r∗X) ◦ idE1(X) ⊗ (a ◦ E2(s))∗ ⊗ idE2(X) ◦ E1(rX)⊗ idE2(X)]

− [Y , idE1(Y ) ⊗ E2(r∗Y ) ◦ idE1(Y ) ⊗ (E1(s) ◦ a)∗ ⊗ idE2(Y ) ◦ E1(rY )⊗ idE2(Y )]

= [X, ã ◦ E2(s̃)]− [Y ,E1(s̃) ◦ ã]

where ã : E2(Y )→ E1(X) and s̃ : X → Y are defined by

ã = idE1(X) ⊗ E2(r∗X) ◦ idE1(X) ⊗ a
∗ ⊗ idE2(Y ) ◦ E1(rX)⊗ idE2(Y )

s̃ = idY ⊗ r
∗
X ◦ idY ⊗ s

∗ ⊗ idX ◦ rY ⊗ idX .
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Again, diagrams present the easiest way to see the calculations. The calcu-
lation showing that [X, t]? = [X, ã ◦ E2(s̃)] is given below as an example.

��
E2s

∗

��

��
a∗

�� =

��

��

��
a∗ E2s

∗

��
E1(X)

E2(X)

=

��
a∗

��
��

E2s
∗

��
=

��
a∗
E2s

∗

��

Note that in the last step the conjugate equations were used. Thusfar
we have proven that the ∗-operation on A(E1, E2) is well defined and does
not depend on the choice of the standard conjugates that are used in the
definition. It is easy to check that we have

[X,λs]∗ = λ[X, s]∗, [X, s+ t] = [X, s] + [X, t], λ ∈ C.

It remains to be checked that the ∗-operation is involutive, anti-multiplicative
and positive. By anti-multiplicative we mean that

([X, s] · [Y, t])∗ = [Y, t]∗ · [X, s]∗, [X, s], [Y, t] ∈ A(E1, E2).

Checking this property is straightforward if one sticks to the standard con-
jugate for X ⊗ Y as given in Lemma 3.3.11. The next diagram shows that
the ∗-operation is involutive if we write ([X, s]∗)∗ = [X, t]

E1(X)

E2(X)

=

��

��

��

��
=t s s

E1(X)

E2(X)

Note that we used the conjugate equations twice. We end by proving
that the ∗-involution is positive. Pick a [X, s] ∈ A(E1, E2) and a conjugate
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(X, r, r) for X. We have [X, s]∗ · [X, s] = [X ⊗X, t], where t : E2(X ⊗X)→
E1(X ⊗X) is given by

t = d1
X⊗X◦idE1(X)⊗E2(r∗)◦idE1(X)⊗s

∗⊗idE2(X)◦E1(r)⊗idE2(X)⊗s◦(d
2
X,X

)−1.

Using the arrows r : X ⊗X → 1 and E1(r∗) ◦ t : E2(X ⊗X) → E1(1) we
can see that

[X ⊗X, t] = [X ⊗X,E1(r) ◦ E1(r∗) ◦ t] = [1, E1(r∗) ◦ t ◦ E2(r)].

The latter identity is equal to [1, E1(r∗) ◦ idE1(X) ⊗ (s ◦ s∗) ◦ E1(r)] as is
shown in the diagram below.

��
s∗

��

��
s

' $

=

��
s∗

��
��

s

' $

=

��
s∗

s

��

Define u = idE1(X) ⊗ s∗ ◦ E1(r), then the previous calculation gives us

[X, s]∗ · [X, s] = [X ⊗X, t] = [1, u∗u].

This is equal to 0 if and only if u = 0. Applying the conjugate equations
once more reveals that this is equivalent with s = 0. This proves positivity,
provided that every element of A(E1, E2) can be written in the form [X, s].
Now consider an arbitrary element

∑
i [Xi, si] of A(E1, E2). Pick isometries

vi : Xi → X such that
∑

i vi ◦ v∗i = idX and X =
⊕

iXi.

[Xi, si] = [Xi, E1(v∗i ) ◦ E1(vi) ◦ si] = [X,E1(vi) ◦ si ◦ E2(v∗i )].

Therefore every element of A(E1, E2) is of the form [X, s] as we can write∑
i

[Xi, si] = [X,
∑
i

E1(vi) ◦ si ◦ E2(v∗i )] = [X, t].

Proposition 3.5.3. Let C be a TC* category and let Ei : C → Hf , i ∈ {1, 2}
be ∗-preserving fiber functors. Then there is a C∗-norm on A(E1, E2) defined
by

‖a‖ = inf
b,γ(b)=a

sup
X∈C
‖bX‖X

where the infinum is taken over the representers b ∈ A0(E1, E2) of a and
‖·‖X denotes the C∗-norm for linear maps between the Hilbert spaces E2(X)→
E1(X)
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Proof. In the standard introductory textbooks on functional analysis one
finds the proof that on the space of bounded operators on a Hilbert space
B(H), the operator norm defines a C∗-norm. That is, a submultiplicative
norm ‖·‖, such that ‖A∗A‖ = ‖A‖2 holds for every A ∈ H. Exactly in
the same way one can prove that the operator norm on B(H,K), the space
of bounded linear maps between the Hilbert spaces H → K defines a C∗-
norm. The only difference in the proof is that one has to label the inner
products to keep track of which Hilbert space they refer to. Looking only
at finite dimensional Hilbert spaces, and the spaces E1(X) and E2(X) in
particular, this means that there is a C∗-norm ‖·‖X that we can use. The
norm supX∈C ‖bX‖X on A0(E1, E2) is submultiplicative because the maps
diX,Y are unitary. Define u = d1

X,Y ◦ s⊗ t ◦ (d2
X,Y )−1, then in A0(E1, E2)

‖[X, s] · [Y, t]‖ = ‖[X ⊗ Y, u]‖ = ‖u‖X⊗Y ≤ ‖s‖X ‖t‖Y = ‖[X, s]‖ · ‖[Y, t]‖ .

We pass from A0(E1, E2) onto the quotient algebra by taking the infinum
over all representers. Using the properties of the norm on A0(E1, E2), it
is straightforward to check that this construction in general ensures that
the map ‖·‖ on A(E1, E2) has all the properties of a norm except maybe
nondegeneracy. We need to check that ‖a‖ = 0 implies that a = 0. First note
that ‖[X, s]‖ = ‖s‖X and that in the proof of the previous proposition we
showed that every element of A(E1, E2) can be written as some [X, s]. This
immediatly implies nondegeneracy but also shows that the submultiplicative
property of the norm on A0(E1, E2) is carried over to A(E1, E2). Using the
notation of the proof of the previous proposition we can also see the C*-
condition on the norm

‖[X, s]∗[X, s]‖ = ‖[1, u ∗ u]‖ = ‖u‖21 = ‖s‖2X = ‖[X, s]‖2 .

Definition 3.5.4. Let C be a TC* and let Ei : C → H, i ∈ {1, 2} be
∗-preserving fiber functors. Then A(E1, E2) denotes the ‖·‖-completion of
A(E1, E2). This is a unital C*-algebra.

We are almost ready to establish a connection between Nat(E1, E2) and
A(E1, E2). We only need one more proposition, which by the way is inter-
esting in its own right.

Proposition 3.5.5. Let C be a TC* category, D a strict tensor category
and E1, E2 : C → D be strict tensor functors. Then every monoidal natural
transformation is a natural isomorphism.

Proof. Let α : E1 → E2 be a monoidal natural transformation. For each
object X of C we construct an arrow βX : E2(X)→ E1(X) such that βX is
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a two sided inverse for αX . Let (X, r, r) be a conjugate for X. Define βX
by

βX = (idE1(X) ⊗ E2(r∗)) ◦ (idE1(X) ⊗ αX ⊗ idE2(X)) ◦ (E1(r)⊗ idE2(X)).

Because α is assumed to be monoidal we have the identities

E1(r∗) = E2(r∗) ◦ (αX ⊗ αX), (αX ⊗ αX) ◦ E1(r) = E2(r).

These are used in the following computations which show that βX is a two
sided inverse for αX .

βX ◦ αX = idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ αX ⊗ idE2(X) ◦ E1(r)⊗ idE2(X) ◦ αX
= idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ αX ⊗ αX ◦ E1(r)⊗ idE1(X)

= idE1(X) ⊗ E2(r∗) ◦ E2(r)⊗ idE1(X) = idE1(X).

αX ◦ βX = αX ◦ idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ αX ⊗ idE2(X) ◦ E1(r)⊗ idE2(X)

= idE2(X) ⊗ E2(r∗) ◦ αX ⊗ αX ⊗ idE2(X) ◦ E1(r)⊗ idE2(X)

= idE2(X) ⊗ E2(r∗) ◦ E2(r)⊗ idE2(X) = idE2(X).

Recall that for fiber functors Ei : C → V ectC the natural transformations
are given by

Nat(E1, E2) = {(αX)X∈C ∈
∏
X∈C

Hom(E1(X), E2(X))|

E2(s) ◦ αX = αY ◦ E1(s),∀s : X → Y }

We can define a pairing between A0(E1, E2) and the space of natural trans-
formations Nat(E1, E2). Let α be an element of Nat(E1, E2) and a =∑n

i=1[Xi, ai] be in A0(E1, E2), then define

〈α, a〉 =
n∑
i=1

TrE1(Xi)(ai ◦ αXi)

Proposition 3.5.6. Let C be a TC* category and let Ei : C → V ectC,
i ∈ {1, 2} be fiber functors. Then the pairing given above descends to a
pairing between Nat(E1, E2) and the quotient algebra A(E1, E2) such that
Nat(E1, E2) ∼= A(E1, E2)∗. Any element a ∈ A(E1, E2)∗ corresponds to a
monoidal natural transforation if and only if a is multiplicative.
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Proof. Recall that A0(E1, E2) was defined as the direct sum of the vector
spaces Hom(E2(X), E1(X)). The dual to this direct sum is the direct prod-
uct vector space

∏
X∈C Hom(E2(X), E1(X))∗. Note that the pairing

Hom(E2(X), E1(X))×Hom(E1(X), E2(X)) (s, t) 7→ TrE1(X)(s ◦ t)

is nondegenerate. This provides us with a nondegenerate pairing between
A0(E1, E2) and

∏
X∈C Hom(E1(X), E2(X)) from which we can conclude

A0(E1, E2)∗ ∼=
∏
X∈C

Hom(E1(X), E2(X)).

As we know, the algebra A(E1, E2) is the quotient of A0(E1, E2) with the 2-
sided ideal I(E1, E2). The dual space A(E1, E2)∗ corresponds precisely with
those elements of A0(E1, E2)∗ that are identically 0 on I(E1, E2). Assume
that α = (αX)X∈C ∈

∏
X∈C Hom(E1(X), E2(X)) satisfies 〈α, a〉 = 0 for all

a ∈ I(E1, E2). This is equivalent to that statement

〈α, [X, b ◦ E2(s)]− [Y,E1(s) ◦ b]〉 = 0, s : X → Y, b : E2(Y )→ E1(X).

By the definition of the pairing and using the cyclic property of the trace
this is equivalent to

TrE1(X)(b ◦ E2(s) ◦ αX) = TrE1(X)(b ◦ αY ◦ E1(s)),

holds for all s : X → Y and b : E2(Y ) → E1(X). By nondegeneracy of the
trace this can only hold for each b : E2(Y )→ E1(X) if

E2(s) ◦ αX = αY ◦ E1(s) ∀s : X → Y.

This proves that Nat(E1, E2) ∼= A(E1, E2)∗. It remains to show that the
monoidal natural transformations correspond to the multiplicative elements
of A(E1, E2)∗. Let φ = 〈α, ·〉 ∈ A(E1, E2)∗ be multiplicative. This means
that

φ([X, s] · [Y, t]) = φ([X, s]) · φ([Y, t]) ∀[X, s], [Y, t] ∈ A(E1, E2).

Equivalently

〈α, [X, s] · [Y, t]〉 = 〈α, [X, s]〉 〈α, [Y, t]〉 ∀[X, s], [Y, t] ∈ A(E1, E2).

Using the definition of the pairing and some properties of the trace we find

TrE1(X⊗Y )(d
1
X,Y (s⊗ t)(d2

X,Y )−1αX⊗Y )

= TrE1(X)(s ◦ αX)TrE1(Y )(t ◦ αY )

= TrE1(X)⊗E1(Y )((s ◦ αX)⊗ (t ◦ αY ))

= TrE1(X)⊗E1(Y )((s⊗ t) ◦ (αX ⊗ αY )).
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Recognizing that the left hand side is equal to

TrE1(X)⊗E1(Y )((s⊗ t) ◦ (d2
X,Y )−1 ◦ αX⊗Y ◦ d1

X,Y ),

by repeated application of the cyclic property of the trace, nondegeneracy
of the trace gives us that the above equeality can only hold for each s⊗ t if

αX⊗Y = d2
X,Y ◦ αX ⊗ αY ◦ (d1

X,Y )−1, ∀X,Y ∈ Obj(C).

The map φ should send the multiplicative unit [1, e1 ◦ (e2)−1] to 1. This
is equivalent to TrE2(1)(α1 ◦ e1 ◦ (e2)−1) = 1. This in turn is equivalent
with α1 ◦ e1 = e2. This shows that α ∈ Nat(E1, E2) satisfies all demands in
Definition 3.1.5, and is therefore monoidal.

Proposition 3.5.7. Let C be a TC* category and let Ei : C → Hf , i ∈ {1, 2}
be ∗-preserving fiber functors. Then a monoidal natural transformation α ∈
Nat(E1, E2) is unitary if and only if the corresponding φ ∈ A(E1, E2)∗ is
a character. This means that φ is linear, multiplicative and ∗-preserving in
the sense that φ(a∗) = φ(a).

Proof. We only need to check that φ is ∗-preserving. Pick [X, s] ∈ A(E1, E2)
and a monoidal α ∈ Nat(E1, E2). Using Tr(AB) = Tr(A∗B∗) we find

φ([X, s]) = TrE1(X)(s ◦ αX) φ([X, s]) = TrE2(X)(s
∗ ◦ α∗X).

φ([X, s]∗)

=
〈
α, [X, idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ s

∗ ⊗ idE2(X) ◦ E1(r)⊗ idE2(X)]
〉

= TrE1(X)(idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ s
∗ ⊗ idE2(X) ◦ E1(r)⊗ idE2(X) ◦ αX)

= E2(r∗) ◦ s∗ ⊗ αX ◦ E1(r) = E2(r∗) ◦ (αX ◦ α−1
X ◦ s

∗)⊗ αX ◦ E1(r)

= E2(r∗) ◦ αX ⊗ αX ◦ (α−1
X ◦ s

∗)⊗ idE1(X) ◦ E1(r)

= E1(r∗) ◦ (α−1
X ◦ s

∗)⊗ idE1(X) ◦ E1(r)

= TrE1(X)(α
−1
X ◦ s

∗) = TrE2(X)(s
∗ ◦ α−1

X )

The second equality is by definition of the pairing. The third equality
follows from the definition of the trace as in in Proposition 3.3.12. If the
reader wants to verify that this definition of the trace coincides with the
usual trace in V ectC note that the trace is independent of the particular
choice of standard conjugates and that taking the standard conjugates r :
C → X∨ ⊗ X and r : C → X ⊗ X∨ defined by r(1) =

∑
i e
∨
i ⊗ ei and

r(1) =
∑

i ei ⊗ e∨i leads to the usual notion of trace. In the fourth equality
we used that α is invertible, which holds by Proposition 3.5.5. In the sixth
equality we used that α is a monoidal natural transformation. The above
calculation gives us

φ([X, s]∗) = φ([X, s]) ∀[X, s] ⇔ α∗X = α−1
X ∀X ∈ C.
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3.6 Uniqueness of Fiber Functors

Combining Proposition 3.5.6 and Proposition 3.5.7 tells us that for two ∗-
preserving fiber functors Ei : C → Hf , i ∈ {1, 2} there is a unitary monoidal
natural isomorphism α : E1 → E2 if A(E1, E2)∗ contains a character. If the
fiber functors are symmetric we can say more.

Proposition 3.6.1. Let C be an STC* category and let Ei : C → V ectC,
i ∈ {1, 2} be symmetric fiber functors. Then A(E1, E2) is commutative.

Proof. Suppose that

Ei(cX,Y ) ◦ diX,Y = diX,Y ◦ ΣEi(X),Ei(Y ).

Pick [X, s],[Y, t] ∈ A0(E1, E2) with s : E2(X) → E1(X) and t : E2(Y ) →
E1(Y ).

[X, s] · [Y, t] = [X ⊗ Y, d1
X,Y ◦ s⊗ t ◦ (d2

X,Y )−1].

[Y, t] · [X, s] = [Y ⊗X, d1
Y,X ◦ t⊗ s ◦ (d2

Y,X)−1]

= [Y ⊗X, d1
Y,X ◦ ΣE1(X),E1(Y ) ◦ s⊗ t ◦ ΣE2(Y ),E2(X) ◦ (d2

Y,X)−1]

= [Y ⊗X,E1(cX,Y ) ◦ d1
X,Y ◦ s⊗ t ◦ (d2

X,Y )−1 ◦ E2(cY,X)]

If we define X ′ = X ⊗ Y , Y ′ = Y ⊗X, s′ = cX,Y : X ′ → Y ′ and

a′ = d1
X,Y ◦ s⊗ t ◦ (d2

X,Y )−1 ◦ E2(cY,X) : E2(Y ′)→ E1(X ′)

we can see that

[X, s] · [Y, t] = [X ′, a′ ◦ E2(s′)], [Y, t] · [X, s] = [Y ′, E1(s′) ◦ a′].

The difference is clearly in I(E1, E2). The canonical map γ maps the differ-
ence to 0.

Thus the algebra A(E1, E2) from Definition 3.5.4 is a commutative unital
C*-algebra. As we will show this implies that there are a lot of characters
in A(E1, E2)∗. More precisely, a compact Hausdorff space full of characters.
Restricting the characters to A(E1, E2), this gives characters in A(E1, E2)∗

proving the existence of a unitary monoidal natural isomorphism. In short,
if we show thatA(E1, E2)∗ contains at least 1 character, then we have proven
the following theorem.

Theorem 3.6.2. Let C be a STC* category and let E1 : C → Hf , E2 : C →
Hf be ∗-preserving symmetric fiber functors. Then there exists a unitary
monoidal natural transformation α : E1 → E2. In particular, the Tannaka
groups GEi obtained from these fiber functors are isomorphic.
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The material in this section is based on Pedersen [32]. The only aim is
to prove the next theorem, so the hurried reader may skip the rest of this
section. This theorem is important because of two reasons. First of all it
completes the proof of the uniqueness claim in Theorem 3.6.2 as it shows
the existence of characters in A(E1, E2)∗. It also plays an important role in
the proof of Proposition 3.4.4.

Let A be a commutative unital C*-algebra and A∗ be its Banach space
dual. Define

P (A) = {φ ∈ A∗|φ(1) = 1, ‖φ‖ ≤ 1},

X(A) = {φ ∈ A∗|φ(1) = 1, φ(ab) = φ(a)φ(b), φ(a∗) = φ(a),∀a, b ∈ A}.

P (A) and X(A) are equipped with the w*-topology. A net (φλ)λ∈Λ con-
verges with respect to this topology to φ if and only if for each a ∈ A the
net (φλ(a))λ∈Λ converges to φ(a).

Theorem 3.6.3. Let A be a commutative unital C*-algebra and A∗ its
Banach space dual. Let P (A) and X(A) be as above, then

1. X(A) ⊂ P (A).

2. X(A) is compact with respect to the w*-topology on P (A).

3. The map A → C(X(A)) given by a 7→ eva, where eva(φ) = φ(a), is
an isomorphism of C*-algebras.

4. The convex hull of X(A) is w*-dense in P (A).

We will prove these four claims one by one and explain the new termi-
nology that is used. The first claim does not require much preparation.

Definition 3.6.4. Let A be a unital Banach algebra and a ∈ A. The spec-
trum of a, σ(a) is defined by

σ(a) = {α ∈ C|a− α is not invertible}.

The spectral radius of a, r(a) is defined as r(a) = sup{|α| |α ∈ σ(a)}.

On multiple occasions we will need the following proposition. A proof of
it can be found in Pedersen [32], Section 4.1.

Proposition 3.6.5. Let A be a unital Banach algebra and a ∈ A. Then
the spectrum σ(a) of a is a compact nonempty subset of C and the spectral
radius of a is the limit of the convergent sequence (‖an‖1/n)n∈N.

Corollary 3.6.6. Let A be a unital Banach algebra and a ∈ A be self-
adjoint, i.e. a = a∗. Then ‖a‖ = r(a).
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Proof. If a = a∗, then
∥∥a2
∥∥ = ‖a∗a‖ = ‖a‖2. This implies that for each

n ∈ N,
∥∥a2n

∥∥ = ‖a‖2
n

. By the previous proposition

r(a) = lim
n→∞

‖an‖1/n = lim
n→∞

∥∥a2n
∥∥1/2n

= ‖a‖ .

This proves the claim.

We can prove the first claim of Theorem 3.6.3.

Proof. Let x ∈ A and φ ∈ X(A). First note that σ(φ(x)) ⊂ σ(x). Suppose
that this does not hold and take a λ ∈ σ(φ(x)), λ /∈ σ(x). This implies that
φ(x)−λ = φ(x−λ) is not invertible but x−λ is invertible. Denote the inverse
of x−λ by b. As φ is a character we have 1 = φ(1) = φ(b(x−λ)) = φ(b)φ(x−
λ) which is clearly a contradiction. This proves that σ(φ(x)) ⊂ σ(x). By
definition of the spectral radius we have r(φ(x)) ≤ r(x). Consequently

‖φ(a)‖2 = ‖φ(a∗a)‖ = r(φ(a∗a)) ≤ r(a∗a) = ‖a∗a‖ = ‖a‖2 .

Here we used the previous corollary for the self-adjoint operator a∗a. This
proves the claim that X(A) ⊂ P (A).

The second claim of Theorem 3.6.3 requires more preparation. We will
work to proving Alaoglu’s theorem which shows that the unit ball in A∗ is
w*-compact. By 3.6.3(1) the set X(A) is a subset of P (A), which is a closed
subset of the unit ball. The set of characters X(A) is closed with respect
to the w*-topology and P (A) is a compact Hausdorff space with respect to
this topology. This implies that X(A) is also w* compact. There is a lot of
terminology in this section that was not used in the previous sections. For
the sake of completeness, and at the risk of boring the reader, we give the
necessary terminology in order to talk about w* topologies and convergence
of nets.

Definition 3.6.7. A subbasis S for a topology on a set X is a collection of
subsets of X, whose union equals X. The topology generated by the subbasis
S is defined to be the collection of all unions of finite intersections of S. Let
F be a family of functions, f : X → Yf where Yf has a topology Tf and
X is a set. We construct the coarsest topology that makes all the functions
of F continuous. We take the topology that has as a subbasis {f−1(A)|A ∈
Tf , f ∈ F}. This topology is called the initial topology induced by F . Now
take a normed space X. This space has a dual X∗ and a corresponding
pairing X × X∗ → C, (x, φ) 7→ 〈x, φ〉 = φ(x). The space X can be viewed
as a separating space of functionals on X∗. By separating we mean that if
φ, ψ ∈ X∗ and φ 6= ψ then there exists an x ∈ X such that 〈x, φ〉 6= 〈x, ψ〉.
The initial topology on X∗ induced by this family of functionals 〈x, ·〉, x ∈ X
is called the w* topology.
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We will make use of nets in the proof of Alaoglu’s theorem. The next
two definitions explain the terminology surrounding nets.

Definition 3.6.8. A net in a space X is a pair (Λ, i) where Λ is a directed
set and i is a map from Λ into X. A directed set is a partially ordered set
such that for each λ1, λ2 ∈ Λ there is a λ ∈ Λ such that λ1 ≤ λ and λ2 ≤ λ.
The standard notation for a net will be (xλ)λ∈Λ, where xλ denotes i(λ). A
net can be thought of as a generalization of a sequence. A sequence is a net
for which Λ = N. A subnet of a net (Λ, i) in X is a net (M, j) in X together
with a map h : M → Λ such that j = i ◦ h and such that for every λ ∈ Λ
there is a µ(λ) ∈M with h(µ) ≥ λ for every µ ≥ µ(λ).

Definition 3.6.9. A net (xλ)λ∈Λ in X is said to be eventually in Y ⊂ X if
there is a λ(Y ) ∈ Λ such that xλ ∈ Y for every λ ∈ Λ for which λ ≥ λ(Y ).
A net is frequently in Y if for each λ ∈ Λ there is a µ ∈ Λ with µ ≥ λ and
xµ ∈ Y . A net (xλ)λ∈Λ in a topological space X is said to converge to x ∈ X
if it is eventually in each neighborhood of x. We denote this by xλ → x. A
point x ∈ X is a accumulation point for a net (xλ)λ∈Λ in X if the net is
frequently in each neighborhood of x. A net (xλ)λ∈Λ in X is called universal
if for every subnet Y of X the net is either eventually in Y or eventually in
X/Y . A universal net in a topological space will converge to every one of
its accumulation points.

We need three more results before proving Alaoglu’s theorem. The first
is a theorem about the existence of universal nets. We do not prove it here
as we do not want to get too far away from Tannaka-Krein duality. The
interested reader can find a proof in Section 1.3 of Pedersen [32].

Theorem 3.6.10. Every net (xλ)λ∈Λ in X has a universal subnet.

Lemma 3.6.11. Let X be a topological space, Y ⊂ X be equipped with
the subspace topology and x ∈ X. Then x ∈ Y if and only if for each
neighborhood A of x, A ∩ Y 6= ∅ holds.

Proof. Suppose that A ∩ Y = ∅ for a neighborhood A of x. Without loss
of generality we can assume that A is open in X. This implies that X/A
is closed and contains Y , yet it does not contain x. This contradicts the
definition of the closure of a set. Conversely, if x /∈ Y , then X/Y is an open
neighborhood of x that is disjoint from Y .

Theorem 3.6.12. The following conditions on a topological space X are
equivalent:

1. Every open covering of X has a finite subcovering

2. If ∆ is a system of closed subsets of X, such that no intersection of
finitely many elements from ∆ is empty, then the intersection of all
elements in ∆ is nonempty.
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3. Every net in X has an accumulation point.

4. Every universal net in X is convergent.

5. Every net in X has a convergent subnet.

Proof. (1)⇒(2). Suppose that as F ranges over ∆, we have that ∩F = ∅.
In that case the system {X/F |F ∈ ∆} is an open covering of X. By the
compactness of (1) there is a finite subcovering {X/Fj |1 ≤ j ≤ n}. This in
turn implies that ∩nj=1Fj = ∅. This is a contradiction.

(2)⇒(3). Let (xλ)λ∈Λ be a net in X. Take Fλ = {xµ|λ ≤ µ}−, where the
bar at the end indicates that the closure should be taken. Given λ1, ..., λn in
Λ there is a common majorant λ. From this we can conclude that Fλ ⊂ Fλk
holds for every k ∈ {1, ..., n}. In particular ∩nk=1Fλk 6= ∅. By (2) there
exists an x ∈ ∩λ∈ΛFλ. By the previous lemma this implies that for every
neighborhood A of x and every λ ∈ Λ there are elements xµ in A with
µ ≥ λ. The net is frequently in each neighborhood of x, implying that x is
a accumulation point for the net.

(3)⇒(4), (4)⇒(5) and (5)⇒(3) are easy so we complete the proof by
showing that (3)⇒(1). Take U to be an open covering of X. Ordered by
inclusion the finite subsets λ of U are a directed set. If no λ covers X there
is, if we assume the axiom of choice, a net (xλ)λ∈Λ such that for every λ

xλ ∈ X/
⋃
A∈λ

A =
⋂
A∈λ

X/A.

By (3) this net has an accumulation point x ∈ X. For any given A in U and
B a neighborhood of x there is therefore a λ such that {A} ≤ λ and xλ ∈ B.
In particular (X/A) ∩ B 6= ∅. Since X/A is closed and B is arbitrary, we
conclude that x ∈ X/A. As this holds for every A ∈ U and U is a covering
we have a contradiction.

We can now state and prove Alaoglu’s theorem. This theorem completes
the proof of part (2) of Theorem 3.6.3.

Theorem 3.6.13. (Alaoglu’s Theorem) For each normed space X, the unit
ball B(X) of X∗ is w* compact

Proof. Pick a universal net (φλ)λ∈Λ in B(X). By the previous theorem it
suffices to show that this net is convergent. For every x ∈ X we know that
|φλ(x)| ≤ ‖x‖. The image net (φλ(x))λ∈Λ is therefore contained in a compact
subset of C. The image net is also universal, as the reader can check. By
the previous theorem, it converges to a number φ(x). Using straightforward
computations with limits we have, for all x, y ∈ X and α ∈ C

|φ(x)| ≤ ‖x‖ , φ(x+ αy) = φ(x) + αφ(y).

In this way we constructed a φ ∈ B(X) such that φλ → φ in the w* topology.
As the universal net was arbitrary, this completes the proof.
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Proving the third claim in Theorem 3.6.3 requires us to explore the
Gelfand transform. Let in the discussion that follows GL(A) denote the
invertible elements of the unital Banach algebra A.

Lemma 3.6.14. Let A be a unital C*-algebra. If A is a division ring, then
A = C.

Proof. If A is a division ring, then GL(A) = A/{0}. Pick a ∈ A. By
Proposition 3.6.5 the spectrum σ(a) is nonempty, so there is a λ ∈ σ(a).
Hence λ−a /∈ GL(A). This can only be the case if λ−a = 0, or equivalently
a = λ.

Lemma 3.6.15. Let A denote a unital Banach algebra and a ∈ A such that
‖a‖ ≤ 1. Then 1− a ∈ GL(A) and

(1− a)−1 =
∞∑
n=0

an.

Proof. By the submultiplicative property of the norm ‖an‖ ≤ ‖a‖n holds and
the series

∑
n a

n converges in A to an element b. As we have ab = ba = b−1
it is easy to check that b = (1− a)−1.

Proposition 3.6.16. Let A be a commutative unital Banach algebra. Then
there is a bijective correspondence given by φ↔ kerφ between the set X(A)
of characters on A and the set M(A) of maximal ideals in A. Every φ ∈
X(A) is continuous and every J ∈ M(A) is closed. Finally, we have for
each a ∈ A that

σ(a) = {〈a, φ〉 |φ ∈ X(A)}.

Proof. Take a proper ideal J ⊂ A. The ideal can only be proper if J ∩
GL(A) = ∅. By Lemma 3.6.15 this can only be the case if ‖1− a‖ > 1 for
every a ∈ J . As a consequence the norm closure of J is still not equal to
A. As the closure of an ideal is also an ideal, we can conclude that each
maximal ideal is closed.

Pick any a ∈ A/GL(A). Because a /∈ GL(A), we have that 1 /∈ Aa so a
is contained in some proper ideal J(a). The set of ideals that contain a but
not 1 is inductively ordered by inclusion. Applying Zorn’s lemma we find
that for each a ∈ A/GL(A) there is a maximal ideal such that a is contained
in it.

Let J ∈ M(A) and consider the quotient algebra A/J . This algebra
has no proper ideals. As such it is a division ring and can, by Lemma
3.6.14, be identified with C. The quotient map φ : A → A/J is an element
of X(A) and is continuous. Conversely, take φ ∈ X(A) and consider the
ideal ker(φ). This ideal has co-dimension 1 and is therefore maximal. We
already established that a maximal ideal is closed, so ker(φ) is closed and φ
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continuous. Thus, we establish the bijective correspondence between X(A)
and M(A).

Let a ∈ A and λ ∈ σ(a). By definition of the spectrum λ− a /∈ GL(A).
From the established bijection we can conclude that there is a φ ∈ X(A)
such that 〈λ− a, φ〉 = 0, i.e. λ = 〈a, φ〉. Conversely, let 〈a, φ〉 = λ for some
φ ∈ X(A). This is equivalent to λ− a ∈ ker(φ), from which it follows that
λ− a /∈ GL(A) and λ ∈ σ(a).

Theorem 3.6.17. (Gelfand Transform) Let A be a commutative unital Ba-
nach algebra. The set of characters X(A) has a compact Hausdorff topology
such that the map Γ, where we write Γ(a) = â, defined by

Γ(a)(φ) = â(φ) = 〈a, φ〉 , a ∈ A, φ ∈ X(A)

is a norm decreasing homomorphism of A onto a subalgebra of C(X(A))
that separates points of X(A). For every a ∈ A we have

â(X(A)) = σ(a), ‖â‖sup = r(a).

Proof. Not much in this theorem is new except for the definition of the
Gelfand transform Γ : A → C(X(A)). The rest of the claims follow from
Theorem 3.6.3(2), Proposition 3.6.16 or are easy to check.

Lemma 3.6.18. Let A be a unital C*-algebra and a ∈ A a normal element.
This means that a∗a = aa∗ holds. Then r(a) = ‖a‖.

Proof. The proof works in the same way as in Corollary 3.6.6. As a ∈ A is
normal we have (a∗a)m = a∗mam. Using th C*-property of the norm

‖a‖2
n

= ‖a∗a‖2
n−1

=
∥∥a∗2na2n

∥∥1/2
=
∥∥a2n∗a2n

∥∥1/2
=
∥∥a2n

∥∥ .
Applying this calculation to Proposition 3.6.5 completes the proof.

After this preparation we can prove the third claim of Theorem 3.6.3 in
the shape of the next theorem.

Theorem 3.6.19. Every commutative unital C*-algebra A is isometrically
∗-isomorphic to C(X(A)), where X(A) is the compact Hausdorff space of
characters of A.

Proof. The C*-algebra is commutative, in particular each element is nor-
mal. Combining Lemma 3.6.18 with Theorem 3.6.17 shows that the Gelfand
transform is an isometry. We need to show that the Gelfand transform is
∗-preserving and and bijective. Let a ∈ A be self adjoint, i.e. a∗ = a. Then
σ(a) ⊂ R (readers that want to see this proven are directed to Section 4.3
of Pedersen [32]). By Proposition 3.6.16, for any φ ∈ X(A) it follows that
â(φ) ∈ R. â is self adjoint in C(X(A)). Every element in a ∈ A can be
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written as a = b + ic with b and c self adjoint. Take b = 1/2(a + a∗) and
c = 1/2 · i(a∗ − a). It follows that

Γ(a∗) = Γ(b− ic) = Γ(b)− iΓ(c) = Γ(b) + iΓ(c) = Γ(b+ ic) = Γ(a).

The Gelfand transform is ∗-preserving. By Theorem 3.6.17 the image of
the Gelfand transform separates points of X(A). Applying the Stone-
Weierstrass Theorem proves surjectivity. Injectivity is left to the reader.

The following terminology is useful in proving claim (4) of Theorem 3.6.3.

Definition 3.6.20. A face of a convex subset C of a vector space X is a
nonempty, convex subset J of C with the property that λx + (1 − λ)y ∈ J
with λ ∈ (0, 1) and x, y ∈ C implies that x, y ∈ J . An extreme point in C is
a one-point face of C. The extremal boundary ∂C of C is the set of extreme
points of C.

The proof of the fourth claim of Theorem 3.6.3 rests on two theorems.
Both will be stated without proof as this would take up too much space.
The first of these theorems is the Krein-Millman theorem. Proofs of this
theorem can be found in Pederson [32] Section 2.5 and Conway [8] Section
V.7.

Theorem 3.6.21. (Krein-Millman) Let X be a vector space, equipped with
a topology induced by a separating space of functionals X∗ on X. Then for
every convex compact subset C of X the convex hull of the extremal boundary
∂C of C is dense in C.

Using the notation of Theorem 3.6.3, the second theorem that we use
shows that the characters X(A) are the extremal points of P (A). Applying
the Krein-Millman theorem to the convex set P (A) then directly proves
that the finite convex combinations of characters are w* dense in P (A).
The second theorem is

Theorem 3.6.22. Let X be a compact Hausdorff space and equip the Ba-
nach space C(X), consisting of the continuous complex valued functions on
X, with the supremum norm. Denote the dual space of C(X) by M(X) and
define P (X) = {µ ∈ M(X)|µ(1) = 1, ‖µ‖ ≤ 1} Then P (X) is a convex w*
compact set, whose extremal points are the Dirac measures δx, x ∈ X, given
by δx(f) = f(x) for every f ∈ C(X).

Let us look at how this will help prove Theorem 3.6.3(4). By part (3)
of 3.6.3 we can identify A with C(X(A)). Part (2) of the theorem tells us
that X(A) is a compact Hausdorff space. Under this identification M(X)
corresponds with A∗ and P (X) with P (A). Let φ ∈ X(A) and a ∈ A, then
the Dirac measures δφ, correspond to the characters δφ(a) = φ(a). This
concludes the proof of Theorem 3.6.3. A proof of Theorem 3.6.22 can be
found in Section 2.5 of Pedersen [32].
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3.7 Tannaka-Krein Duality Completed

At the beginning of Section 3.5 we set out to prove Proposition 3.4.4. We will
shortly finish that proof. More precisely, right after the next proposition,
the proof of 3.4.4 will be completed. The next proposition can be found in
Müger et.al. [29]

Proposition 3.7.1. Let D be a semisimple ∗-category (for instance a TC*
category), K a ∗-category and F : D → K a ∗-preserving functor. Let I
denote a set of pairwise nonisomorphic irreducible elements of D such that
each object of D is isomorphic to a finite direct sum of elements Xi with
i ∈ I. Then there exists an isomorphism

ψF : Nat(F )→
∏
i∈I

End(F (Xi))

of ∗-algebras.

Proof. Define a map ψF : Nat(F )→
∏
i∈I End(F (Xi)) by ψF (b) =

∏
i∈I bXi .

for all b ∈ Nat(F ). It is clear that ψF is a unital ∗-algebra homomorphism.
We start by showing that it is injective. Suppose that ψF (b) = 0. Then
bXi = 0 for each Xi. Take X ∈ D arbitrary. We must show that bX = 0.
First note that for any i ∈ I, Hom(Xi, X) is a Hilbert space with the inner
product defined as

〈s, t〉 idXi = t∗ ◦ s.

Also note that every s : Xi → X is a scalar multiple of a isometry. Let
siα : Xi → X, i ∈ I, α ∈ {1, ..., dim(Hom(Xi, X))} be an orthonormal basis
with respect to this inner product satisfying

∑
iα
siα ◦ s∗iα = idX . Hence

bX = bX ◦ F (idX) =
∑
iα

bX ◦ F (siα ◦ s∗iα) =
∑
iα

F (siα) ◦ bXi ◦ F (s∗iα) = 0.

Next we prove surjectivity of ψF . Given (bi ∈ EndF (Xi), i ∈ I) we need to
construct a b ∈ Nat(F ) such that ψF (b) =

∏
i∈I bi. Let X ∈ D be arbitrary.

As before pick a orthonormal basis siα : Xi → X such that
∑

iα
siα ◦ s∗iα =

idX . Define bX =
∑

iα F (siα) ◦ bXi ◦ F (s∗iα). We need to show that this
construction of b yields a natural transformation. We need to show that for
every u : X → Y , we have F (u) ◦ bX = bY ◦ F (u). To this purpose pick
orthogonal isometries tjβ : Xj → Y such that

∑
jβ tjβ ◦ t∗jβ = idY . Define

bY as bY =
∑

jβ F (tjβ ) ◦ bj ◦ F (t∗jβ ). Then

F (u) ◦ bX =
∑
iα

F (u ◦ siα) ◦ bi ◦ F (s∗iα)

=
∑
iα,jβ

F (tjβ ◦ t
∗
jβ
◦ u ◦ siα) ◦ bi ◦ F (s∗iα)
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The maps t∗jβ ◦ u ◦ siα : Xi → Xj are 0 unless i = j and if i = j the maps
are a scalar multiple of the identity map idXi . We use this is the next steps
of the calculation.

F (u) ◦ bX =
∑
iα,β

F (tiβ ◦ (t∗iβ ◦ u ◦ siα)) ◦ bi ◦ F (s∗iα)

=
∑
iα,jβ

F (tjβ ) ◦ bj ◦ F (t∗jβ ◦ u ◦ siα ◦ s
∗
iα) = bY ◦ F (u)

This shows that b is natural and proves surjectivity.

Finally we can prove Proposition 3.4.4 completing the proof of Tannaka-
Krein duality for compact groups.

Proof. Let C be a STC* category and E : C → Hf be a ∗-preserving symmet-
ric fiber functor. The category C is semisimple and assumed to be essentially
small so we have a set I and a family of pairwise nonisomorphic irreducible
objects {Xi|i ∈ I} such that each object of C is isomorphic to a finite direct
sum of elements of this family. Take Nat(E) to be the space of natural
transformations of E to itself. By the previous proposition we can asso-
ciate to each α ∈ Nat(E) an element (αi|i ∈ I) ∈

∏
i∈I End(E(Xi)) where

αi = αXi . In this way we obtain an isomorphism of vector spaces

γ : Nat(E)→
∏
i∈I

End(E(Xi)) α 7→ (αi)i∈I .

Consider the following linear map

δ :
⊕
i∈I

End(E(Xi))→ A(E) (ai)i∈I 7→
∑
i∈I

[Xi, ai].

We know that every element of A(E) can be written in the form [X, s]
and every [X, s] can be expressed as a finite sum over [Xi, si] with Xi irre-
ducible. This implies that the map δ is surjective. When viewed as a map
to A0(E) = A0(E,E), δ is also injective. If i 6= j then Hom(Xi, Xj) = {0}.
Consequently, the image in A0(E) of δ has a trivial intersection with the
ideal I(E,E). The map δ is therefore also injective and an isomorphism of
vector spaces. Next, pull the C*-norm on A(E) back via δ to obtain the
norm

‖(ai)i∈I‖ = sup
i∈I
‖ai‖End(E(Xi))

on
⊕

i∈I End(E(Xi)). In this way we obtain a isomorphism of the norm
closures.

δ :
⊕

i∈I
End(E(Xi))‖·‖ → A(E).
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Recall from Proposition 3.5.6 that we have a pairing 〈·, ·〉 : Nat(E)×A(E)→
C. Using the isomorphisms γ and δ we find the following pairing

〈., .〉′ :
∏
i∈I

End(E(Xi))×
⊕
i∈I

End(E(Xi))→ C,

((αi)i∈I , (ai)i∈I) 7→
∑
i∈I

TrE(Xi)(αi ◦ ai).

This is the bilinear form such that 〈·, δ(·)〉 = 〈γ(·), ·〉′ holds as mapsNat(E)×⊕
i∈I End(E(Xi))→ C.
Take α ∈ Nat(E) such that γ(α) ∈

∏
i∈I End(E(Xi)) has only finitely

many non zero components. In this case φ = 〈α, ·〉 surely extends to an
element of A(E)∗. By Theorem 3.6.3(4) every φ ∈ A(E)∗ is in the w*
limit of a net (φλ)λ∈Λ in the C-span of the ∗-characters X(A(E)) of A(E).
Therefore every element (αi) ∈

⊕
i∈I E(Xi) can be w* approximated by a

such a net (φλ)λ∈Λ

limw∗φλ =
〈
γ−1((αi)i∈I), ·

〉
∈ A(E)∗.

Restrict each φλ to A(E) to obtain a net in Nat(E) that converges to
γ−1((αi)). We know from Proposition 3.5.6 and Proposition 3.5.7 that the
characters X(A(E)) correspond with unitary monoidal transformations of
E. The elements of X(A(E)) correspond to elements of GE as defined in
Section 3.4. The reader may verify that this correspondence X(A(E))↔ GE
is a homeomorphism. The easiest way to do this is to compare the notions of
convergence in both spaces. X(A(E)) is equipped with the w* topology and
convergence of nets is pointwise. By the definition of the product topology
on GE a net (gλ)λ∈Λ converges if and only if the net (gλ,X)λ∈Λ converges for
each X ∈ C. These two notions of convergence coincide when looking at the
correspondence φ↔ g as defined in Proposition 3.5.6.

Restrict the discussion to a finite set S ⊂ I. Pick any α ∈
⊕

s∈S E(Xs)
and follow the previous discussion in order to conclude that α is in the
closure of

spanC{πs1(g)⊕ ...⊕ πs|S|(g)|g ∈ GE}}.

Having proved Tannaka-Krein duality for compact groups there are a
number of directions in one can proceed. We take the following direction
in the next chapter. For what STC* categories is it possible to construct a
∗-preserving symmetric fiber functors? We could also ask the following ques-
tion. Can we pull of a Tannaka-Krein kind of construction using categories
with less structure than STC* categories? Looking at the DHR analysis for
lower dimensional spacetime, we could well use a duality theorem for BTC*
categories.
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The reader that wants to go beyond Tannaka-Krein duality for compact
groups may find the refereces Joyal and Street [21] and Müger, Roberts and
Tuset [29] very useful. These articles are about Tannaka duality for quantum
groups rather than compact groups. A different related topic worth mention-
ing is Tannaka-Krein duality for affine group schemes. This algebraic version
of Tannaka duality shows many similarities with Tannaka-Krein duality for
compact groups. A lot of the techniques in this thesis are adaptations (and
simplifications) of this algebraic Tannaka duality. The interested reader
is refered to Deligne and Milne [10], Deligne [9], Bichon [4] and Saavedra
Rivano [36] for material on the subject.
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Chapter 4

Deligne’s Embedding
Theorem

In the previous chapter it was shown that for any STC* category with an
embedding in the category Hf in the form of a symmetric ∗-preserving
fiber functor E : C → Hf , there exists a compact group G, unique up
to isomorphism, such that C is equivalent to Repf (G,C) as a symmetric
tensor ∗-category. This chapter is concerned with the construction of such
an embedding for a given STC* category. This investigation will lead to the
proof of Deligne’s Embedding theorem which shows to what extent we can
realize a suitable embedding for any STC* category. The proof presented
here is based on the proof given in Müger [30] appendices B6 through B11.
The original proof of this theorem for STC* categories can be found in
Doplicher and Roberts [11] [12]. In the article by Müger the embedding
theorem is stated in the same generality as in the original work by Doplicher
and Roberts. The proofs however, differ. Especially the more algebraic part
starting in Section 4.5 differs from the approach of Doplicher and Roberts.
Recall that at the end of the previous chapter it was pointed out that there is
also an algebraic version of Tannaka-Krein duality. There is also an algebraic
counterpart of the embedding theorem fior STC* categories. The approach
in Müger [30] is greatly motivated by this algebraic version as he points out in
Appendix B8 in [30]. Even the name Deligne’s embedding theorem is taken
from the algebraic version. Another, more superfacial, difference between
Müger’s approach and that of Doplicher and Roberts is the terminology
which is used. First of all names like supergroups, as defined in Section
4.1, are not used. Secondly the categories under considerations are certain
C*-categories. C*-categories are defined as follows.

Definition 4.0.2. A C*-category is a C-linear category with a positive ∗-
operation such that each HomC(X,Y ) is a Banach space, and

‖t ◦ s‖Hom(X,Z) ≤ ‖s‖Hom(X,Y ) ‖t‖Hom(Y,Z) , ∀s : X → Y, t : Y → Z,
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‖s∗ ◦ s‖End(X) = ‖s‖2Hom(X,Y ) , ∀s : X → Y.

A C*-tensor category is a C*-category that is a tensor category for which
‖s⊗ t‖ ≤ ‖s‖ ‖t‖ holds.

Thus each vector space End(X) of a C*-category is a C*-algebra. The
next proposition tells us that every TC* category can be viewed as a C*-
tensor category.

Proposition 4.0.3. Let C be a C*-tensor category with direct sums and an
irreducible tensor unit. If X and Y are objects of C that have conjugates,
then HomC(X,Y ) is finite dimensional. Consequently a C*-tensor category
with direct sums, conjugates, subobjects and a irreducible tensor unit is a
TC*. Conversely, given a TC* category D, there are unique norms on the
spaces HomD(X,Y ) rendering D a C*-tensor category.

This proposition, as well as the proof that a C*-tensor category with
direct sums, conjugates, subobjects and a irreducible tensor unit is a TC*
category can be found in Müger [30]. The other half of the proof, going from
a TC* category to a C*-tensor category, can be found in Müger [28]. This
concludes our discussion of the differences between the paper by Müger and
the original by Doplicher and Roberts.

We start in Section 4.1 with the definition of the twist on a BTC* cat-
egory. We show that this twist provides an obstruction for the existence
of an embedding E : C → Hf and how this obstruction can be overcome
by making use of supergroups. Having taken care of the twist, the other
sections only have to deal with even STC* categories. These are STC* cate-
gories that have a trivial twist. In Section 4.2 it is shown how to construct a
symmetric ∗-preserving fiber functor from a symmetric fiber functor. At the
end of this section we have reduced the search for a symmetric ∗-preserving
fiber functor on a STC* category to the search for a symmetric fiber functor
on an even STC*.

Before we can simplify this search any further, some more categorical
preparations are in order. The last sections make use of the theory of
abelian categories and commutative algebra in abelian tensor categories.
Section 4.3 gives some background on abelian categories and Section 4.4
covers the basics on the used commutative categorical algebra. In Section
4.5, two important steps are taken. In the first step colimits are used to
reduce the embedding problem to finding an embedding for finitely gener-
ated even STC* categories. Categories of this kind can be investigated using
algebraic methods. The second step is reducing the problem to finding an
abelian category Ĉ that has the finitely generated even STC* C as a full
subcategory and an absorbing monoid (Q,m, η) in Ĉ. Section 4.6 is a study
of the permutation symmetry of finitely generated even STC* categories.
The results of that section will help in Section 4.7 where we construct the
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desired absorbing monoid thereby completing the proof of Deligne’s embed-
ding theorem.

4.1 Let’s Do The Twist

The material in this section is based on sections 3 and 4 of Longo and Roberts
[26], appendices A4 and B2 of Müger [30] and another paper by Müger [28].
Let C be any STC* category. The aim of this chapter is to construct an
embedding of C into the category Hf of finite dimensional Hilbert spaces.
This embedding should be in the form of a symmetric ∗-preserving fiber
functor such that C is, as a tensor ∗-category, equivalent to the category
Repf (G,C) of a compact group by Tannaka-Krein duality. It will turn out
that this is not possible for arbitrary STC* categories. Only the socalled
even STC* categories admit a symmetric ∗-preserving fiber functor into Hf .
The obstruction for the general case is in the form of the twist which we
now define.

Definition 4.1.1. Let C be a braided strict tensor category with conjugates.
A twist for C is a natural transformation Θ of the identity functor to itself
such that the following holds.

Θ(X ⊗ Y ) = Θ(X)⊗Θ(Y ) ◦ cY,X ◦ cX,Y , X, Y ∈ ObjC.

The following diagram is commutative.

1

r

��

r // X ⊗X
id⊗Θ
��

X ⊗X
Θ⊗id

// X ⊗X

Here (X, r, r) denotes a standard conjugate for X. If C is a tensor ∗-category
the maps Θ(X) are required to be unitary.

The fact that Θ is a natural transformation of the identity functor is
equivalent to the statement that for each arrow s : X → Y the identity
s ◦Θ(X) = Θ(Y ) ◦ s holds.

In the proof of the following proposition it will be convenient to make
use of the following mappings which are called standard left inverses1 in
Longo en Roberts [26]. Let X, Y and Z be objects of a BTC* category C,
and (X, r, r) a standard conjugate for X. Define the standard left inverse
by

φXY,Z(s) = r∗ ⊗ idZ ◦ idX ⊗ s ◦ r ⊗ idY , s : X ⊗ Y → X ⊗ Z.
1The name has nothing to do with the definition of conjugates as an adjuntion.
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Notice that for s ∈ End(X) we have Tr(s) = φX1,1(s). Suppose that X and
Y have left inverses φX and φY . If we pick for X⊗Y the standard conjugate
from Lemma 3.3.11, then the left inverses are related by

φX⊗YX′,Y ′(s) = φYX′,Y ′(φ
X
Y⊗X′,Y⊗Y ′(s)), s : X ⊗ Y ⊗X ′ → X ⊗ Y ⊗ Y ′.

Using the diagrams introduced in Section 3.5 this is a straightforward check.

Proposition 4.1.2. Let C be a BTC* category. Fix for each X in C a
standard conjugate (X, r, r) Define the arrows Θ(X) ∈ End(X) by

Θ(X) = r∗ ⊗ idX ◦ idX ⊗ cX,X ◦ r ⊗ idX .

Then this map does not depend on the choice of standard conjugates and
defines a twist for C. This twist will be called the canonical twist.

Proof. Let’s start by showing that the maps Θ(X) are well-defined, i.e. do
not depend on the particular choice of standard conjugates. Let (X ′, r′, r′)
be another choice of standard conjugates for X. Then there exists a unitary
arrow u : X → X

′ such that r′ = u⊗ idX ◦ r. We have

Θ′(X) = r∗ ⊗ idX ◦ u∗ ⊗ idX⊗X ◦ idX′ ⊗ cX,X ◦ u⊗ idX⊗X ◦ r ⊗ idX
= r∗ ⊗ idX ◦ (u∗u)⊗ idX⊗X ◦ idX ⊗ cX,X ◦ r ⊗ idX
= r∗ ⊗ idX ◦ idX ⊗ cX,X ◦ r ⊗ idX = Θ(X).

Take any arrow s : X → Y . We need to show that Θ(Y ) ◦ s = s ◦Θ(X). By
definition of a standard conjugate there are irreducibles Xi, Xi, isometries
wi : Xi → X, wi : Xi → X with the properties w∗i ◦ wj = δijidXi and
w∗i ◦wj = δijidXi

, and there are standard conjugates ri : 1→ Xi ⊗Xi such
that r =

∑
iwi ⊗ wi ◦ ri. Using these identities we can write Θ(X) as∑

i

r∗i ⊗ idX ◦ idXi
⊗ w∗i ⊗ idX ◦ idXi

⊗ cX,X ◦ idXi
⊗ wi ⊗ idX ◦ ri ⊗ idX .

From naturality of the braiding it follows that w∗i ◦Θ(X) = Θ(Xi) ◦w∗i and
Θ(X) ◦ wi = wi ◦ Θ(Xi). The reader may find the diagrammatical method
of the previous chapter helpful in showing this. Now consider s : X → Y .
For Y we can also find suitable isometries vk : Yk → Y where the Yk are
irreducible. We can write

s ◦Θ(X) =
∑
i,k

vk ◦ (v∗k ◦ s ◦ wi) ◦ w∗i ◦Θ(X).

The map v∗k◦s◦wi is always zero ifXi and Yk are nonisomorphic. IfXi and Yk
are isomorphic we can consider them equal and the arrow is a scalar multiple
of idXi . Consequently it commutes with Θ(Xi). Pulling Θ(X) all the way
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through the above expression shows that Θ is a natural transformation from
the identity functor to itself.

We still need to show that the expressions in Definition 4.1.1 hold and
that each Θ(X) is unitary. The previously defined standard left inverse will
help us with the computations. The twist can be expressed in terms of the
standard left inverse, Θ(X) = φX,X(cX,X), where cX,X denotes the braiding
of C, cX,Y : X ⊗ Y → Y ⊗ X. In the following computations we use the
following shorthand notation c = cX1⊗X2,X1⊗X2 and cij = cXi,Xj . We also
drop the subscripts for the left inverses. First note the following equation
that can be obtained from the braid equations.

c = idX1 ⊗ c12 ⊗ idX2 ◦ c11 ⊗ idX2⊗X2 ◦ idX1⊗X1 ⊗ c22 ◦ idX1 ⊗ c21 ⊗ idX2 .

From this we find

φ1(c) = c12 ⊗ idX2 ◦ φ1(c11)⊗ idX2⊗X2 ◦ idX1 ⊗ c22 ◦ c21 ⊗ idX2

= idX2 ⊗ φ1(c11)⊗ idX2 ◦ c12 ⊗ idX2 ◦ idX1 ⊗ c22 ◦ c12 ⊗ idX2

= idX2 ⊗ φ1(c11)⊗ idX2 ◦ cX1⊗X2,X2 ◦ c21 ⊗ idX2

= idX2 ⊗ φ1(c11)⊗ idX2 ◦ idX2 ⊗ c21 ◦ cX2⊗X1,X2

= idX2 ⊗ φ1(c11)⊗ idX2 ◦ idX2 ⊗ c21 ◦ c22 ⊗ idX1 ◦ idX2 ⊗ c12

If we apply φ2 = φX2 to both sides of this equation we obtain

φ2φ1(c) = φ1(c11)⊗ φ2(c22) ◦ c12 ◦ c12.

Which is just Θ(X1 ⊗X2) = Θ(X1)⊗Θ(X2) ◦ cX2,X1 ◦ cX1,X2 . We move to
unitarity of the twist. Recall that the braiding morphisms cX,Y are assumed
to be unitary. Let (X, r, r) again be a standard conjugate for X. Then
cX,X ◦ r defines a conjugate for X. It is easy to check this claim when X is
irreducible. If X is not irreducible then we can write r =

∑
iwi ⊗ wi ◦ ri,

where each i corresponds to an irreducible summand Xi of X. By naturality
of the braiding we have

cX,X ◦ r =
∑
i

wi ⊗ wi ◦ cXi,Xi
◦ ri,

from which it follows that cX,X ◦r is a conjugate for X. In the next computa-
tion we show that if c is unitary and r is standard, then cX,X ◦ r is standard
by using the characterization of standardness given in Lemma 3.3.8. Let
s ∈ End(X), then

r∗ ◦ c∗
X,X
◦ idX ⊗ s ◦ cX,X ◦ r = r∗ ◦ c∗

X,X
◦ cX,X ◦ s⊗ idX ◦ r

= r∗ ◦ s⊗ idX ◦ r = r∗ ◦ idX ⊗ s ◦ r
= r∗ ◦ c∗

X,X
◦ cX,X ◦ idX ⊗ s ◦ r

= r∗ ◦ c∗
X,X
◦ s⊗ idX ◦ cX,X ◦ r
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If (X, r, r) is a standard conjugate for X then (X, r, r) is a standard conju-
gate for X. Therefore there exists a unique unitary arrow t : X → X such
that cX,X ◦r = t∗⊗ idX ◦r. The following computation shows that t is equal
to Θ(X) from which we can conclude that Θ is unitary.

t = (r∗ ◦ t⊗ idX)⊗ idX ◦ idX ⊗ r
= (r∗ ◦ c∗

X,X
)⊗ idX ◦ idX ⊗ r

= r∗ ⊗ idX ◦ idX ⊗ cX,X ◦ c
∗
X⊗X,X ◦ idX ⊗ r

= r∗ ⊗ idX ◦ idX ⊗ cX,X ◦ r ⊗ idX = Θ(X)

In the first equality we used the conjugate equations and in the third equality
the braid equations. The last identity we need to check is Θ(X)⊗ idX ◦ r =
idX⊗Θ(X)◦r. This is left to the reader as we will not use this identity.

From this point onward, if we talk about a twist on a BTC* category,
then this is the canonical twist as defined in Proposition 4.1.2. If the BTC*
category is a STC* category, this twist takes on a simpler form. The follow-
ing lemma can easily be proven from the definition of the canonical twist
given in Proposition 4.1.2. It can also be shown to hold for an arbitrary
twist on a STC* category.

Corollary 4.1.3. Let C be a STC* category with a twist Θ. Then for all
objects X and Y in C we have Θ(X)2 = idX and Θ(X⊗Y ) = Θ(X)⊗Θ(Y ).
If X is irreducible then Θ(X) = ω(X)idX where ω(X) ∈ {−1, 1}. If Z is
an irreducible summand of X ⊗ Y with X and Y irreducible, then ω(Z) =
ω(X)ω(Y ).

Definition 4.1.4. Let C be a STC* category and Θ the twist on C. Then C
is called even if for each object X in C we have Θ(X) = idX .

Both categories Hf and Repf (G,C) are examples of even STC* cat-
egories. This can be checked easily using the standard conjugates given
straight after Definition 3.2.9. The next proposition helps to show that a
STC* category must be even in order to admit a symmetric ∗-preserving
fiber functor.

Proposition 4.1.5. Let C and D be BTC* categories and E : C → D a ∗-
preserving braided tensor functor. This functor comes with unitary arrows
dEX,Y : E(X) ⊗ E(Y ) → E(X ⊗ Y ) and eE : 1D → E(1C). If (X, r, r) is a
standard conjugate for X, then

(E(X), (dE
X,X

)−1 ◦ E(r) ◦ eE , (dE
X,X

)−1 ◦ E(r) ◦ eE),

is a standard conjugate for E(X). In particular

d(E(X)) = d(X), Θ(E(X)) = E(Θ(X)), ∀X ∈ Obj(C),

where d(X) is the dimension of X.
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Proof. First we take on the case that X is irreducible and E is a strict
tensor functor. Pick a standard conjugate (X, r, r). Using the conjugate
equations it is easy to check that (E(X), E(r), E(r)) defines a conjugate for
E(X). If the functor E is full then this conjugate is immediately standard,
but as we did not presuppose this standardness requires more work. Using
the notation Θ(X) = ωXidX , the proof of Proposition 4.1.2 shows us that
cX,X ◦ r = ωXr. Take s ∈ End(E(X)) arbitrary and compute

E(r∗) ◦ idE(X) ⊗ s ◦ E(r)

= E(r∗) ◦ c∗
E(X),E(X)

◦ cE(X),E(X) ◦ idE(X) ⊗ s ◦ E(r)

= (cE(X),E(X) ◦ E(r))∗ ◦ cE(X),E(X) ◦ idE(X) ⊗ s ◦ E(r)

= (cE(X),E(X) ◦ E(r))∗ ◦ s⊗ idE(X) ◦ cE(X),E(X) ◦ E(r)

= E(cX,X ◦ r)
∗ ◦ s⊗ idE(X) ◦ E(cX,X ◦ r)

= E(ωXr)
∗ ◦ s⊗ idE(X) ◦ E(ωXr)

= E(r)∗ ◦ s⊗ idE(X) ◦ E(r)

This proves that (E(X), E(r), E(r)) defines a standard conjugate for E(X)
in the case that X is irreducible. Now let X be reducible. If (X, r, r) is
a standard conjugate for X then there are isometries vi : Xi → X and
wi : Xi → X such that all the Xi and Xi are irreducible and

ri = w∗i ⊗ v∗i ◦ r, ri = v∗i ⊗ w∗i ◦ r

hold where (Xi, ri, ri) define standard conjugates for Xi. We have al-
ready proven that each (E(Xi), E(ri), E(ri)) defines a standard conjugate
for E(Xi). By noting that

E(r) = E(
∑
i

wi ⊗ vi ◦ ri) =
∑
i

E(wi)⊗ E(vi) ◦ E(ri)

and a similar expression for E(r) we can see that (E(X), E(r), E(r)) is a
standard conjugate for E(X).

The proof works the same way for non-strict tensor functors, the main
difference being that we have to insert the maps dEX,Y and eE at various
places. The identities d(E(X)) = d(X) and Θ(E(X)) = E(Θ(X)) follow
directly as the twist and dimension are expressed in terms of conjugates.

Proposition 4.1.6. Let C be an STC* category and E : C → Hf a sym-
metric ∗-preserving fiber functor. Then C is even.

Proof. By Proposition 4.1.5 we know that E(Θ(X)) = Θ(E(X)). This im-
plies that E(Θ(X)) = idE(X) because Hf is even. As we assumed that E is
faithful, it follows that Θ(X) = idX .
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Being even is a necessary condition for admitting a symmetric ∗-preserving
fiber functor, but is it a sufficient condition? The bulk of this chapter is used
to prove the following theorem that claims that it is.

Theorem 4.1.7. (Deligne’s embedding theorem) Let C be an even STC*
category. Then there exists a symmetric ∗-preserving fiber functor E : C →
Hf .

If we combine this theorem with the Tannaka-Krein duality of the pre-
vious chapter we find

Theorem 4.1.8. Let C be an even STC* category. Then there exists a com-
pact group G, unique up to isomorphism, such that there is an equivalence
F : C → Repf (G,C) of STC* categories.

The main motivation for studying the embedding theorem for STC* cat-
egories comes from algebraic quantum field theory. Looking at the discussion
given in the Epilogue it is not desirable to restrict our attention to STC*
categories that are even. If in AQFT, the Doplicher-Roberts reconstruction
theorem is applied to an even STC* category (of ’physical’ representations
of the quasilocal algebra) one obtains a Hilbert space representation that
only has bosonic superselection sectors. In order to get sufficient generality
we also need to consider fermionic superselection sectors and therefore ar-
bitrary STC* categories. For the remainder of this section we will develop
terminology in order to formulate a version of the embedding theorem for
arbitrary STC* categories. Assuming Theorem 4.1.7 we will subsequently
prove this theorem.

Definition 4.1.9. A (compact) supergroup is a pair (G, k), where G is a
(compact) Hausdorff group and k ∈ G is a central element of order two.
An isomorphism of supergroups α : (G, k) → (G′, k′) is an isomorphism of
topological groups α : G→ G′ such that α(k) = k′.

Note that this definition does not coincide with the usual definition of a
supergroup as a group object in the category of supermanifolds.

Definition 4.1.10. A (finite dimensional, unitary, continuous) representa-
tion of a compact supergroup (G, k) is just a (finite dimensional, unitary,
continuous) representation (H,π) of G. Intertwiners, tensor product and di-
rect sums of representations are defined as for topological groups. The cate-
gory Repf ((G, k),C) is thus equivalent as a ∗-tensor category to Repf (G,C).

Next we define a symmetry on Repf ((G, k),C) that differs from that on
Repf (G,C). Let (H,π) be an irreducible representation of the supergroup
(G, k). Because k is central Schur’s lemma gives us that π(k) = λidH ,
where λ ∈ C. Because k2 = e, λ ∈ {−1, 1}. Thus k induces a Z2 grading
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on every irreducible representation of (G, k). Given an irreducible repre-
sentation (H,π) we can decompose the representation space H as a direct
sum H+ ⊕ H− where for each v ∈ H± we have π(k)v = ±v. The direct
sum is orthogonal with respect to the invariant inner product. The vectors
in H+ and H− are called homogenous. If we take the direct sum of two
irreducible representations H and H ′ there is again a Z2-grading. The ho-
mogenous spaces are given by H+⊕H ′+ and H−⊕H ′−. By semisimplicity of
the category, every representation is Z2-graded. The intertwiners preserve
this grading.

Define the projector P π± = 1
2(idH ± π(k)) on the homogenous subspaces

of H. Define the symmetry on Σk by

Σk((H,π), (H ′, π′)) = Σ(H,H ′)(1− 2P π− ⊗ P π
′
− )

where Σ denotes the flip symmetry of Repf (G,C). If v ∈ H, w ∈ H ′ are
homogenous, then Σk(v⊗w) = −w⊗ v if v ∈ H− and w ∈ H ′−. In all other
(homogenous) cases we have Σk(v ⊗ w) = w ⊗ v.

Definition 4.1.11. Consider the supergroup with two elements ({e, k}, k).
For this supergroup the category SHf = Repf (({e, k}, k),C) is called the
category of super Hilbert spaces.

The category of super Hilbert spaces is the category if finite-dimensional
Hilbert spaces (the inner products are given by the invariant inner products
on the representations) that have a Z2-grading that is respected by the
linear maps that make up the arrows. This category is equipped with the
symmetry Σk defined above. The symmetry on SHf is defined in the same
way as for the categories Repf ((G,K),C). Using this observation we can
define a forgetful symmetric tensor functor Repf ((G, k),C)→ SHf .

Lemma 4.1.12. Let Σk by defined on the category Repf ((G, k),C) as above.
Then Σk defines a symmetry and Repf ((G, k),C) is a STC* category. For
every object (H,π) ∈ Repf ((G, k),C) the twist Θ((H,π)) is given by π(k).

The proof of this lemma is straighforward. In order to check that
Θ((H,π)) = π(k) pick a homogenous basis for H = H+ ⊕ H− and look
how Θ((H,π)) acts on each basis element.

The following proposition follows from Tannaka-Krein duality and is the
last result that we need in order to formulate the main theorem of this
chapter.

Proposition 4.1.13. Let G be a compact group and Repf (G,C) the category
of finite dimensional representations. Then the unitary monoidal natural
isomorphisms of the identity functor on Repf (G,C) to itself form an abelian
group that is isomorphic to the center Z(G) of G.
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Proof. Pick a k ∈ Z(G) and let (H,π) ∈ Repf (G,C) be irreducible and
unitary. Then by Schur’s lemma π(k) = ω(H,π)idH for some complex num-
ber ω(H,π). Define for each irreducible representation (H,π) the arrow
Θ((H,π)) = ω(H,π)idH . The collection of arrows {Θ((H,π))} can be ex-
tended uniquely to reducible objects in such a way that this gives a unitary
monoidal natural isomorphism of the identity functor on Repf (G,C). Con-
versely, take α to be a unitary monoidal natural isomorphism of the identity
functor on Repf (G,C). Let ω : Repf (G,C) → Hf be the forgetful functor.
Then β(H,π) = ω(α((H,π))) defines a unitary monoidal natural isomorphism
of the forgetful functor to itself. By Tannaka-Krein duality there is a g ∈ G
such that π(g) = β(H,π) holds for every (H,π) ∈ Repf (G,C). We know that
for every irreducible representation π(g) is a scalar multiple of the identity
arrow. This implies that g ∈ Z(G).

Now we are in the position to state and prove the main theorem for STC*
categories (assuming Theorem 4.1.7 which is non-trivial to prove). The rest
of this chapter will be concerned with the construction of a symmetric ∗-
preserving fiber functor on even STC* categories.

Theorem 4.1.14. Let C be an STC* category. Then there exists a compact
supergroup (G, k) which is unique up to an isomorphism of supergroups, and
an equivalence F : C → Repf ((G, k),C) of symmetric tensor ∗-categories.

In particular, if ω : Repf ((G, k),C)→ SHf is the forgetful functor, then
the composition E = ω ◦ F : C → SHf is a faithful symmetric ∗-preserving
tensor functor into the STC* category of super Hilbert spaces.

Proof. We start by constructing an even STC* category C̃ from C, called
the bosonization of C. As a tensor ∗-category the category C̃ is the same as
C. The difference is the symmetry on C̃ which is defined as

c̃X,Y = (−1)
1
4

(1−Θ(X))(1−Θ(Y ))cX,Y

when X and Y in C are irreducible. For general (reducible) objects X and
Y the symmetry c̃X,Y can be obtained by naturality of c̃ from the symmetry
on the irreducible summands of X and Y . The category C̃ is an even STC*
category, so by Theorem 4.1.8 there is a compact group, unique up to iso-
morphism, and an equivalence F : C̃ → Repf (G,C) of STC* categories. The
twist Θ on C defines a unitary monoidal natural isomorphism of the iden-
tity functor on C̃. Using the equivalence C̃ ∼= Repf (G,C) the twist defines
a unitary monoidal natural isomorphism on Repf (G,C). By Proposition
4.1.13, this isomorphism corresponds to a unique central element k ∈ G.
Furthermore, because Θ2 is just the identity this element k ∈ G is of order
two, making (G, k) into a supergroup. The correspondence from 4.1.13 is
given by Θ((H,π)) = π(k) up to the identificaion C̃ ∼= Repf (G,C). We want
to show that C ∼= Repf ((G, k),C) as STC* categories. If we forget about
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the symmetries on both categories for the moment, this quivalence follows
straight from C̃ ∼= Repf (G,C). If we look at the symmetries a straightfor-
ward check shows that the correspondence Θ((H,π)) = π(k) ensures that
the symmetries of C and Repf ((G, k),C) coincide. This proves the desired
equivalence.

Note that G is unique up to isomorphism and that for each G the
element k is unique. Suppose that we pick another G′ such that that
C ∼= Repf ((G′, k′),C). There is an isomorphism α : G → G′ and we
want to show that α(k) = k′. If this is the case, then α defines an iso-
morphism of supergroups. The isomorphism α defines an isomorphism
Repf (G,C) → Repf (G′,C) by (H,π) 7→ (H,π ◦ α−1). Applying the above
construction shows that for each representation in Repf (G,C) we have
π(k) = π(α−1(k′)). This can only hold for each representation if k′ = α(k),
proving uniqueness.

The super Tannaka group G of C thus consists of unitary monoidal nat-
ural transformations of E to itself, where E is the fiber functor belonging
to the bosonization of C.

4.2 Making Symmetric Fiber Functors ∗-Preserving

In this section we follow the approach of appendix B6 of Müger [30]. The
aim of this and the following sections is to prove that for each even STC* C
category there exists a symmetric ∗-preserving fiber functor C → Hf . The
aim of this section is to prove the following theorem. This theorem states
that it is sufficient to find a symmetric fiber functor as it can be made
∗-preserving.

Theorem 4.2.1. Let C be an even STC* category and E : C → V ectC a
symmetric fiber functor. Then there exists a symmetric ∗-preserving fiber
functor C → Hf .

Lemma 4.2.2. Let C be a STC* category and E : C → V ectC a symmetric
fiber functor. Pick for each object X in C an inner product 〈·, ·〉0X on the
finite dimensional vector space E(X). Define the maps X 7→ E(X) and
s 7→ E(s∗)† for any X ∈ Obj(C) and any s ∈ HomC(X,Y ). Here the adjoint
† is taken relative to the previously defined inner products 〈·, ·〉0X . These
maps define a faithful functor Ẽ : C → Hf . Defining dẼX,Y = ((dEX,Y )†)−1

and eẼ = ((eE)†)−1, this functor is a symmetric fiber functor.

Proof. Proving that Ẽ defines a faithful functor is easy. First observe that
Ẽ(idX) = idE(X) = idẼ(X) and that Ẽ respects composition of arrows as
shown by

Ẽ(s ◦ t) = E(t∗ ◦ s∗)† = (E(t∗)E(s∗))† = E(s∗)†E(t∗)† = Ẽ(s)Ẽ(t).
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This shows that Ẽ defines a functor. It is faithful because E is faithful and
both ∗ and † define involutions. Proving that Ẽ defines symmetric fiber
functor is only a bit more work. First note that Ẽ is C-linear. That it is
symmetric follows from

Ẽ(cX,Y ) ◦ dẼX,Y = E(c∗X,Y )† ◦ (dE †X,Y )−1 = ((dEX,Y )−1 ◦ E(cY,X))†

= (ΣE(Y ),E(X) ◦ (dEX,Y )−1)† = dẼX,Y ◦ ΣE(X),E(Y ).

We still need to show that Ẽ is a tensor functor. This amounts to showing
that the diagrams in Definition 3.1.3 of a tensor functor are satisfied and
that the arrows dẼX,Y constitute a natural transformation. Due to the fact
that E is a tensor functor we know that

dEX⊗Y,Z ◦ (dEX,Y ⊗ idE(Z)) = dEX,Y⊗Z ◦ (idE(X) ⊗ dEY,Z).

Taking the Hermitian adjoints of both sides yields

(dEX,Y )† ⊗ idE(Z) ◦ (dEX⊗Y,Z)† = idE(X) ⊗ (dEY,Z)† ◦ (dEX,Y⊗Z)†.

Taking the inverse of both sides gives the first diagram for functor Ẽ, namely

dẼX⊗Y,Z ◦ (dẼX,Y ⊗ idẼ(Z)) = dẼX,Y⊗Z ◦ (idẼ(X) ⊗ d
Ẽ
Y,Z).

The other two diagrams are obtained in the same way. Take the appropriate
equality for E, take the adjoints and then the inverse. As E is a tensor
functor we know that

E(s⊗ t) ◦ dEX,Y = dEX′,Y ′ ◦ E(s)⊗ E(t), ∀s : X → X ′, t : Y → Y ′.

This is equivalent to

E(s⊗ t)† ◦ ((dEX′,Y ′)
−1)† = ((dEX,Y )−1)† ◦ (E(s)⊗ η(t))†

from which naturality of Ẽ readily follows.

Just like in Section 3.5 we can construct a unital associative C-algebra
A(E, Ẽ) from the symmetric fiber functors of the previous lemma. We
can use Proposition 3.6.1 to show that A(E, Ẽ) is a commutative unital
C-algebra. However, we cannot use all the results from Section 3.5 because
the fiber functors are not ∗-preserving. The algebra A(E, Ẽ) does not have
the positive ∗-operation in the way of Proposition 3.5.2. The proof of that
proposition relied on the fiber functors being ∗-preserving. Note that the
fiber functors E and Ẽ are not arbitrary fiber functors C → Hf but are
related by E(X) = Ẽ(X) and E(s) = Ẽ(s∗)†. These relations provide the
means to turn A(E, Ẽ) into a ∗-algebra. The ∗-operation that we will define
should not be confused with the operation as it is defined in the proof of
Proposition 3.5.2.
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Proposition 4.2.3. Let C be an STC* category, E : C → V ectC a symmet-
ric fiber functor and Ẽ be defined as in Lemma 4.2.2. Then [X, s]∗ = [X, s†],
where † denotes the adjoint of s ∈ End(E(X)) with respect to the inner prod-
uct 〈·, ·〉0X , is well defined and defines a positive ∗-operation on A(E, Ẽ).
With respect to this operation, the norm from Proposition 3.5.3 is a C*-
norm on A(E, Ẽ).

Proof. We start by defining the ∗-operation on A0(E, Ẽ) so we don’t have
to worry that it is well defined. Define as in the lemma [X, s]∗ = [X, s†].
This operation is clearly antilinear and involutive. The ∗-operation can only
descend to a well-defined operation on A(E, Ẽ) if it maps the elements of
the ideal I(E, Ẽ) to elements in this ideal. Take arrows s : X → Y and
a : Ẽ(Y )→ E(X), then

([X, a ◦ Ẽ(s)]− [Y,E(s) ◦ a])∗ = [X, a ◦ E(s∗)†]∗ − [Y,E(s) ◦ a]∗

= [X,E(s∗) ◦ a†]− [Y, a† ◦ E(s)†]

= [X,E(s∗) ◦ a†]− [Y, a† ◦ Ẽ(s∗)]

This is again an element of I(E, Ẽ), proving that the map is well-defined.
Next we show that the operation is antimultiplicative (or multiplicative
which is the same for a commutative algebra).

([X, s] · [Y, t])∗ = [X ⊗ Y, dẼX,Y ◦ s⊗ t ◦ (dEX,Y )−1]∗

= [X ⊗ Y, ((dEX,Y )†)−1 ◦ s⊗ t ◦ (dEX,Y )−1]∗

= [X ⊗ Y, ((dEX,Y )†)−1 ◦ s∗ ⊗ t∗ ◦ (dEX,Y )−1] = [X, s]∗ · [Y, t]∗

We move onto positivity

[X, s] · [X, s]∗ = [X ⊗X, ((dEX,X)†)−1 ◦ s⊗ s∗ ◦ (dEX,X)−1] = 0.

This can only be the case if s ⊗ s∗ = 0. This implies that s∗s ⊗ s∗s = 0
which in turn implies that s∗s = 0. By positivity of the ∗-operation on C
we find that s = 0, proving the desired positivity.

Recall that in Section 3.7 we defined an isomorphism δ that in this setting
gives us an isomorphism

δ :
⊕
i∈I

End(E(Xi))→ A(E, Ẽ)

such that ‖δ((ai)i∈I)‖A(E,Ẽ) = supi∈I ‖ai‖End(E(Xi))
. Note that δ((ai))∗ =

δ((a†i )). This immediately gives us the desired C* property of the norm on
A(E, Ẽ); ‖a∗a‖A(E,Ẽ) = ‖a‖2

A(E,Ẽ)
.

The following conjecture can be found in Müger [30]. Alas, no complete
proof is given there and the author of this thesis was unable to provide one
thusfar.
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Conjecture 4.2.4. Let C be a STC* category, E : C → V ectC a symmetric
fiber functor and Ẽ be as defined in Lemma 4.2.2. Then there exists a natural
monoidal isomorphism α : E → Ẽ whose components αX are positive in
sense that for each s ∈ End(X), s 6= 0, we have 〈s, αXs〉0X > 0.

By the discussion in Section 3.6 it is clear that we have monoidal natural
isomorphisms at our disposal. What needs to be proven is that at least 1
of these transformations can give rise to a positive map. Assuming the
existence of a natural isomorphism α as in the previous conjecture allows
us te define new inner products such that E is ∗-preserving with respect to
these inner products. The following theorem proves this claim and completes
the proof of Theorem 4.2.1.

Theorem 4.2.5. Let C be an even STC* category and E : C → V ectC
a symmetric fiber functor. Then there are inner products 〈·, ·〉X on each
vector space E(X) such that E′ : C → Hf , E′(X) = (E(X), 〈·, ·〉X) defines
a symmetric ∗-preserving fiber functor.

Proof. As before, pick for each X ∈ C an inner product 〈·, ·〉0X on E(X). For
the 1 dimensional vector space E(1) which is spanned by eE(1) the inner
product is of the form〈

aeE(1), beE(1)
〉0

1
= ab

〈
eE(1), eE(1)

〉0

1
.

We choose
〈
eE(1), eE(1)

〉0

1
= 1. Define the symmetric fiber functor Ẽ as

in Lemma 4.2.2 and the monoidal natural isomorphism α as in Conjecture
4.2.4. We define the new inner products on the spaces E(X) by

〈u, v〉X = 〈u, αXv〉0X , u, v ∈ E(X).

It is because of the naturality of α combined with the choice of Ẽ that
ensures us that the ∗-operation is preserved. Take s : X → Y , then

〈u,E(s)v〉Y = 〈u, αYE(s)v〉0Y

=
〈
u,E(s∗)†αXv

〉0

Y
= 〈E(s∗)u, αXv〉0X = 〈E(s∗)u, v〉X .

When we have verified that each 〈·, ·〉X defines an inner product the above
calculation immediately implies that E(s∗) = E(s)∗, where ∗ denotes con-
jugation with respect to the inner products 〈·, ·〉X . Positivity and non-
degeneracy for 〈·, ·〉X follow from Conjecture 4.2.4 combined with the fact
that each αX is invertible. The only nontrivial claim to check is symme-
try. Let φ : A(E, Ẽ) → C be the ∗-character corresponding with α. If
a ∈ A(E, Ẽ) then φ(a∗a) > 0 if a 6= 0. Pulling φ back to A0(E, Ẽ) we have
for each b ∈ A0(E, Ẽ) we have φ(b∗b) ≥ 0. Pick a basis for E(X) and let αij
denote the (i, j)-th element of αX with respect to this basis. If b = [X, δij ],
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where δij is the matrix that has 1 as the (i, j)-th element while all other
elements are 0. Writing out φ(b∗b) ≥ 0 for this b shows that αijαji ≥ 0
holds for each i and j. Let z ∈ C be any complex number with nonzero
imaginary part and take b = δij + zδkl. The identity φ(b∗b) ≥ 0 implies in
particular that the imaginary part of φ(b∗b) is equal to zero corresponding
to αijαlk = αjiαkl. Taking i = j this implies that each αkl = αlk unless
every αii = 0 (the latter case can be avoided by taking a suitable basis for
the invertible αX). Combining these observations the matrix elements of
αX are real numbers (the square is either positive or 0) and the matrix is
symmetric. This implies that each αX is hermitian which is exactly what
is needed to get the symmetry property 〈u, v〉X = 〈v, u〉X . This completes
the proof that each (E(X), 〈·, ·〉X) is a finite dimensional Hilbert space. The
only thing left to show is that the maps dEX,Y and eE are unitary. Combin-

ing the monoidality of α with the definition of the maps dẼX,Y gives us the
following identity

αX ⊗ αY = (dEX,Y )† ◦ αX⊗Y ◦ dEX,Y .

Unitarity of the maps dEX,Y now follows from the calculation〈
dEX⊗Y (u⊗ v), dEX,Y (w ⊗ z)

〉
X⊗Y =

〈
dEX,Y (u⊗ v), αX⊗Y ◦ dEX,Y (w ⊗ z)

〉0

X⊗Y

= 〈u⊗ v, αX ⊗ αY ◦ w ⊗ z〉0X⊗Y
= 〈u,w〉X 〈v, z〉Y = 〈u⊗ v, w ⊗ z〉X⊗Y .

There is still one special case left to check; is dE1,1 unitary? Using the relation
dE1,1 ◦ eE(1)⊗ eE(1) = eE(1) this follows in a straightforward fashion.

By irreducibility α1 = λidE(1). If we insert this into α1⊗α1 = (dE1,1)† ◦
α1 ◦ dE1,1 we find that λ2 = λ. Because of the fact that α is a natural iso-
morphism we find that λ = 1. Consequently 〈·, ·〉1 = 〈·, ·〉01. The calculation〈

eE1, eE1
〉
1

=
〈
eE1, eE1

〉0

1
= 〈1, 1〉C .

proves the unitarity of eE : 1→ E(1).

4.3 Intermission: Abelian Categories

The next steps in the proof of Deligne’s embedding theorem require more
knowledge of category theory. Sections 4.3, 4.4 and part of 4.5 give a minimal
overview of the required theory. This section is concerned with the basics
on abelian categories. The discussion here is based on Freyd [16], Chapter
VIII of Mac Lane [27] and Appendix A5 of Müger [30]. Readers that have
experience with abelian categories are adviced to skip this section.

In order to define what an abelian category is, we first need to define
what monomorphism, epimorphism, kernels and cokernels are for arbitrary
additive categories.
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Definition 4.3.1. Let C be an additive category. An arrow s : X → Y
is called monic, or a monomorphism, if for each two arrows ti : Zi → X,
i ∈ {1, 2} for which s ◦ t1 = s ◦ t2 holds we have that t1 = t2. An arrow
s : X → Y is called epi, or an epimorphism, if for each two arrows ti : Y →
Zi, i ∈ {1, 2} for which t1 ◦ s = t2 ◦ s holds we have that t1 = t2.

In the category V ectC a linear map is monic in the above sense exactly
when it is injective. Epi corresponds to surjectivity in this category. Note
that in V ectC any morphism is both monic and epi if and only if it is a
isomorphism. This will turn out to hold for all abelian categories. The fact
that any isomorphism is a monomorphism and a epimorphism holds more
generally as we will now show. From the definition one can prove that if
the composition A→ B → C is a monomorphism then the arrow A→ B is
a monomorphism. If the composition A → B → C is epi, then B → C is
epi. Let s : A→ B be an isomorphism, then there is an arrow (the inverse)
t1 : B → A such that t1 ◦ s is epi and an arrow t2 : B → A such that s ◦ t2 is
monic. Thus we conclude that every isomorphism is both an epimorphism
and a monomorphism.

Definition 4.3.2. Let C be an additive category and let f : X → Y be a
morphism. A morphism k : Z → X is called a kernel for f if f ◦k = 0 and it
satisfies the following universal property. Given any morphism k′ : Z ′ → X
such that f ◦ k′ = 0 then there is a unique morphism l : Z ′ → Z such that
k′ = k ◦ l.

A morphism c : Y → Z is called a cokernel for f if c ◦ f = 0 and the
following universal property is satisfied. Given any morphism c′ : Y → Z ′

such that c◦f = 0 there is a unique morphism d : Z → Z ′ such that c′ = d◦c.

The definition of kernels and cokernels is summarized in the following
commutative diagrams. Here k and c are the kernel and cokernel of f re-
spectively. By the way, there is no a priori reason that a morphism in an
additive category has a kernel or a cokernel.

· � � k // · f // · ·

·
l

^^

k′

OO

0

@@������� ·

0
@@�������

f
// ·
c′

OO

c
// // ·

d
^^

Notice the use of different arrows in the diagrams. We used · ↪→ · to denote a
monomorphism (every kernel is monic as one can show from the definitions),
·� · to denote an epimorphism (every cokernel is epi) and dotted arrows to
denote the arrows that exist by virtue of the universal properties of kernels
and cokernels.

Consider as an example the category V ectC and a linear map f : V →W .
If we take for Z = {v ∈ V |f(v) = 0} the vector space that is the kernel of
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f as defined in basic linear algebra, then the inclusion k : Z ↪→ V defines a
kernel in the sense of Definition 4.3.2. If we take Z = W/Im(f), then the
natural map c : W → Z defines a cokernel in the sense of Definition 4.2.2.
We can now define abelian categories.

Definition 4.3.3. Let C be an additive category. Then C is called an abelian
category if the following conditions are satisfied

1. Every morphism has a kernel and a cokernel.

2. Every monomorphism is the kernel of some morphism.

3. Every epimorphism is the cokernel of some morphism.

This is a good place to introduce the notion of duality in category theory.
Loosely put; for a given a category C the opposite category C0 defined in
Section 3.3 can function as a dual category. If f is a monomorphism in
C then its image in C0 is an epimorphism. In the same way kernels and
cokernels are dual notions. Some notions are selfdual, for example being
an isomorphism. The main point here is that duality can sometimes save
us a lot of work. First note that C is abelian if and only if C0 is abelian.
For example; the dual statement of every monomorphism is the kernel of
its cokernel is the statement that every epimorphism is the cokernel of its
kernel. If we have proven a proposition for every abelian category, then we
have also proven the dual proposition for every abelian opposite category.
As (C0)0 = C we have then proven both claims for every abelian category. A
proper introduction to this notion can be found in Chapter II of Mac Lane
[27].

Lemma 4.3.4. Let C be an abelian category. Every monomorphism is the
kernel of its cokernel and every epimorphism is the cokernel of its kernel.

Proof. Looking at the above discussion it is sufficient to only prove the
claim that every monomorphism is the kernel of its cokernel. Suppose that
m : A′ → A is a monomorphism. Because C is abelian, m is the kernel of
some morphism s : A → B. Let c : A → F be the cokernel of m. Let
k : K → A be the kernel of c. We will repeatedly use the universal property
of kernels and cokernels. First note that because s ◦m = 0 there is a unique
d : F → B such that k = d ◦ c. The last few remarks are summarized in the
following commutative diagram.

A′

m

  @@@@@@@ F

d

��

A

c
??��������

s
��@@@@@@@

K

k

>>}}}}}}}
B

124



We have c ◦ m = 0, so by the universal property of k there is a unique
k′ : A′ → K such that m = k ◦ k′. Noting that s ◦ k = 0 and using the
universal property of m we find a unique morphism d′ : K → A′ such that
m = k ◦ d′. Using the morphisms k′ and d′ we can see that m : A′ → A acts
as a kernel for c = Coker(m), i.e. has the universal property.

Lemma 4.3.5. Let C be an abelian category. A morphism is an isomorphism
if and only if it is a monomorphism and a epimorphism.

Proof. The only if part is trivial. Suppose that s : A → B is both a
monomorphism and a epimorphism. Because s is monic, the morphism
B → 0 defines a cokernel, where 0 denotes the zero object. The morphism
idB : B → B defines a kernel for this cokernel. By the previous lemma
s : A→ B also defines a kernel for Coker(s). The universal property we can
conclude that there is a morphism t1 : B → A such that idB = s ◦ t1. Note
that 0→ A is a kernel for s : A→ B. Both idA : A→ A and s : A→ B de-
fine cokernels for 0→ A. This provides us with a map t2 : B → A such that
idA = t2 ◦ s. We can conclude that s : A→ B defines an isomorphism.

In the proof of the following proposition we will use equalizers. Let
r, s : A→ B be two arrows. An equalizer for these arrows (called a difference
kernel in Freyd) is a morphism e : K → A such that re = se and the
following universal property is satisfied. Let t : X → A be a morphism such
that rt = st, then there is a unique morphism d : X → K such that t = ed.
For our abelian categories, which are additive, equalizers always exist and
the equalizer of f and g is just the kernel of f − g. The dual notion of an
equalizer, the coequalizer will not be used in this text.

Proposition 4.3.6. Let C be an abelian category and f : X → Y be any
morphism. Then there exists a factorization f = m ◦ e where e : X → Z is
epi and m : Z → Y is monic. Given another factorization f = m′ ◦ e′ with
e′ : X → Z ′ epi and m′ : Z ′ → Y there exists an isomorphism u : Z → Z ′

such that e′ = u ◦ e and m = m′ ◦ u.

Proof. Define m = ker(coker(f)), then it is clear that m is monic and that
there is a morphism q such that f = m ◦ q. Suppose that we have another
factorization f = m′q′ where m′ is a monomorphism. By Lemma 4.3.4 we
can write m′ = ker(p′) where p′ = coker(m′). Likewise take p = coker(m) =
coker(f). By definition of p′ we have p′m′ = 0 from which it follows that
p′f = p′m′q′ = 0. Because p = coker(f) there exists a unique arrow w such
that p′ = wp. The reasoning thusfar is given in the following commutative
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diagram
·

q′

��

f

��=======
q // ·

m

��
·

m′
// ·
p

��

p′ // ·

·
w

@@�������

The factorization p′ = wp shows us that p′m = wpm = 0. Therefore m
factors through m′ = ker(p′) as m = m′u. Consequently m′q′ = mq = m′uq,
so using the fact that m′ is monic we find that q′ = uq. Assume for a
moment that q and q′ are epimorphisms (which we still need to show). We
know that u is monic because m′u is monic and u is epic because uq is epic.
By Lemma 4.3.5, u is an isomorphism. At this stage we need to show that
q in the canonical factorization f = mq is an epimorphism.

Take any two parallel arrows (both arrows have the same source and
target) r and s such that rq = sq. In order to show that q is epi we need
to show that r = s. Let e be the equalizer of r and s. By the definition of
e the morphism q factors as q = eq′ for a unique arrow q′. Now f = mq =
meq′ = m′q′ where m′ = me is a monomorphism. As C is abelian, m′ must
be the kernel of some morphism. This implies that there is a unique arrow
t such that m = m′t = met. The morphism m is monic so we find id = et.
The equalizer e has a right inverse. Now we can conclude from re = se that
r = s, proving that q is an epimorphism.

Definition 4.3.7. Let C be an abelian category and f : X → Y a morphism.
The image of f is the monomorphism m : Z → Y in the factorization
f = me of the previous proposition. Note that the image is defined up to an
isomorphism.

Definition 4.3.8. Let C be an abelian category. An object P of C is called
projective2 if, for any given epimorhism p : A → B and any morphism
b : P → B there is a morphism a : P → A such that b = p ◦ a.

If an abelian category C also has a tensor structure we call C an abelian
tensor category if the structures are compatible. In order to make this more
precise, we first need some definitions.

Definition 4.3.9. Let C be an abelian category, and Xi be objects of C.
Then a sequence ... → X1 → X2 → X3 → ... is called exact if for each
index i the image of Xi−1 → Xi is the kernel of Xi → Xi+1. A right-exact
sequence is an exact sequence of the form X1 → X2 → X3 → 0. A left-exact
sequence is an exact sequence of the form 0→ X1 → X2 → X3.

2We could have defined a projective object as an object X such that the hom functor
Hom(X, ·) : C → Ab is exact, where Ab denotes the category of abelian groups. We will
not make use of this definition.
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As an example consider the following short sequences. 0 → X → Y is
exact if and only if X → Y is a monomorphism. 0→ X → Y → Z is exact
if and only if X → Y is the kernel of Y → Z. X → Y → Z → 0 is exact if
and only if Y → Z is the cokernel of X → Y .

Definition 4.3.10. Let C and D be abelian categories. A functor F : C → D
is called exact if it carries exact sequences to exact sequences. That is, if
... → X1 → X2 → X3 → ... is exact, then ... → F (X1) → F (X2) →
F (X3)→ ... is also exact. A functor is called right-exact if it carries right-
exact sequences into right-exact sequences. A functor is called left-exact if
it carries left-exact sequences into left-exact sequences.

Looking at the previous examples we can see that a right-exact functor
preserves cokernels and a left-exact functor preserves kernels.

Definition 4.3.11. Let C be an abelian category that is also a tensor cat-
egory. Then we call C an abelian tensor category if ⊗ is biadditive on the
hom-sets and the functors 〈X ⊗−〉 : C → C, 〈− ⊗X〉 : C → C that tensor
to the left and to the right with X respectively are both right-exact for any
object X of C.

Consequently, if p : Y → Z is a cokernel for s : X → Y , then idW ⊗ p :
W⊗Y →W⊗Z defines a cokernel for idW⊗s : W⊗X →W⊗Y , and p⊗idW
defines a cokernel for s ⊗ idW . The tensor functors preserve cokernels but
not necessarily kernels. Left-exactness however, is not necessary for what
follows. As further motivation for the definition, consider R − Mod the
concrete category of R-modules over a ring R. The tensor functor in this
category is right-exact but generally not left-exact. See for example Lang
[25] Chapter XVI for a discussion.

Any TC* category that has a zero object is an abelian tensor category.
It is clear that such a category is additive. The fact that the category is
abelian follows from semisimplicity of the category. But TC* categories are
not the only abelian categories that are important for the proof of Deligne’s
embedding theorem as we will see in Section 4.5.

4.4 Intermission: Monoids and Modules

This section is mainly based on Appendix A.6 of Müger [30]. In this sec-
tion we will only scratch the surface of the theory of commutative algebra
in abelian symmetric tensor categories, giving only those results that we
actually need. Towards the end of this section some results are left for the
reader to work out. This is mainly because we want to get back to proving
the embedding theorem as soon as possible. The aim is to give enough back-
ground material in this section such that the interested reader can work out
the omitted details with some confidence.
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A monoid is a set M with the following structure. There is a multiplica-
tion map m : M ×M →M , m(x, y) = xy, which is associative in the sense
that (xy)z = x(yz) holds for all x, y, z ∈M . There is a unit element 1 ∈M
such that 1x = x1 = x for each x ∈ M . If we let η : {1} → M denote the
inclusion map, we can state the monoid axioms in terms of the functions m
and η.

M ×M ×M m×id //

id×m
��

M ×M
m

��

{1} ×M η×id //

λ
&&MMMMMMMMMMM M ×M

m

��

M × {1}

ρ
xxqqqqqqqqqqq

id×ηoo

M ×M m
//M M

Here we used the maps λ : {1}×M →M , λ(1, x) = x and ρ : M×{1} →M ,
ρ(x, 1) = x. This definition of a monoid in terms of arrows serves as a
motivation for the following definition.

Definition 4.4.1. Let (C,⊗,1, λ, ρ, α) be a tensor category. A monoid in
C is a triple (Q,m, η), where Q is an object of C, m : Q ⊗ Q → Q and
η : 1→ Q are morphisms satisfying

Q⊗ (Q⊗Q)

id⊗m
��

α // (Q⊗Q)⊗Q m⊗id // Q⊗Q

m

��
Q⊗Q m // Q

1⊗Q

λ
((QQQQQQQQQQQQQQQ

η⊗id // Q⊗Q

m

��

Q⊗ 1

ρ
wwppppppppppppp

id⊗ηoo

Q

For strict tensor categories the diagrams simplify to

m ◦ (m⊗ idQ) = m ◦ (idQ ⊗m), m ◦ η ⊗ idQ = idQ = m ◦ idQ ⊗ η.

If the strict tensor category is braided then the monoid is called commutative
if m ◦ cQ,Q = m.

Lemma 4.4.2. Let C be a symmetric strict tensor category with symmetry
c and let (Q1,m1, η1), (Q2,m2, η2) be commutative monoids in C. Then
(Q1 ⊗Q2,mQ1⊗Q2 , ηQ1⊗Q2), where

mQ1⊗Q2 = m1 ⊗m2 ◦ idQ1 ⊗ cQ2,Q1 ⊗ idQ2 , ηQ1⊗Q2 = η1 ⊗ η2,

defines a commutative monoid in C. This monoid is called the direct product
monoid
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The proof of this lemma, which amounts to checking that all the axioms
of a monoid are satisfied, is left to the reader. The properties follow from the
corresponding properties of (Q1,m1, η1) and (Q2,m2, η2) and naturality of
the symmetry c. As the direct product is strictly associative, we can define
multiple products inductively. If, for two concrete monoids M1 and M2 we
let cM1,M2 : M1 ×M2 → M2 ×M1 be the flip map cM1,M2(x, y) = (y, x)
then the above definition for the direct product monoid coincides with the
standard defintion of a direct product monoid in the concrete case.

Definition 4.4.3. Let C be a strict tensor category and (Q,m, η) a monoid
in C. A Q-Module in C is a pair (M,µ) where M is an object in C and µ : Q⊗
M →M is a morphism such that the following diagrams are commutative

Q⊗Q⊗M m⊗id //

id⊗µ
��

Q⊗M
µ

��

M

id ##GGGGGGGGG
η⊗id// Q⊗M

µ

��
Q⊗M µ

//M M

A morphism s : (M,µ)→ (R, ρ) of Q-modules is a morphism s ∈ HomC(M,R)
which is equivariant in the sense that s ◦ µ = ρ ◦ idQ ⊗ s.

It is easily checked that the Q-modules in C together with their mor-
phisms form a category, which we denote by Q −ModC . It is also easy to
verify that if C is k-linear, then Q−ModC is k-linear. Following the notation
from Müger [30] we will denote the hom-sets in the category Q−ModC by
HomQ(·, ·).

If (Q,m, η) is monoid in a strict tensor category C, then it follows straight
from the definitions that (Q,m) is a Q-module. Another simple construction
of Q-modules is the following. Let (M,µ) be a Q-module. Then for any
object X in C the pair (M ⊗ X,µ ⊗ idX) defines a Q-module. Combining
these two statements we find the free Q-module (Q⊗X,m⊗ idX) for every
object X of C.

Suppose that C is a strict tensor category that has direct sums. If
(M1, µ1) and (M2, µ2) are two Q-modules and R ∼= M1 ⊕M2, then we can
construct a Q-module (R, ρ). Suppose that wi : Mi → R are the isometries
corresponding to the direct sum decomposition of R into the Mi. We define

ρ = w1 ◦ µ1 ◦ idQ ⊗ w∗1 + w2 ◦ µ2 ◦ idQ ⊗ w∗2.
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ρ ◦ idQ ⊗ ρ =
∑
i,j

wi ◦ µi ◦ idQ ⊗ w∗i ◦ idQ ⊗ wj ◦ idQ ⊗ µj ◦ idQ⊗Q ⊗ w∗j

=
∑
i

wi ◦ µi ◦ idQ ⊗ µi ◦ idQ⊗Q ⊗ w∗i

=
∑
i

wi ◦ µi ◦m⊗ idMi ◦ idQ⊗Q ◦ w∗i

=
∑
i,j

wi ◦ µi ◦ idQ ⊗ w∗i ◦ idQ ⊗ wj ◦m⊗ idMi ◦ idQ⊗Q ⊗ w∗j

= ρ ◦m⊗ idR

ρ ◦ η ⊗ idR =
∑
i,j

wi ◦ µi ◦ idQ ⊗ w∗i ◦ idQ ⊗ wj ◦ η ⊗ idMj ◦ w∗j

=
∑
i

wi ◦ µi ◦ η ⊗ idMi ◦ w∗i =
∑
i

wi ◦ w∗i = idR

This shows that (R, ρ) is a Q-module. If we inductively apply this construc-
tion to Q-module (Q,m), we can construct the n-fold direct sum n · (Q,m)
of (Q,m) as a Q-module for any natural number n.

The next definition shows that with each abstract monoid (Q,m, η) in
a (braided) strict tensor category C we can associate a concrete monoid ΓQ
in the category of (small) sets.

Definition 4.4.4. Let C be a (braided) strict tensor category and 1 be a
tensor unit. Suppose that (Q,m, η) is a (commutative) monoid in C. Con-
sider the set ΓQ = HomC(1, Q). Defining multiplication by s�t = m ◦ t⊗ s
and taking η : 1→ Q as a unit, ΓQ becomes a (commutative) monoid.

The claim that ΓQ is a monoid follows directly from the fact that (Q,m, η)
is a monoid. In the case that C is braided and (Q,m, η) commutative, com-
mutativity of (ΓQ,�, η) follows from

s�t = m ◦ t⊗ s = m ◦ cQ,Q ◦ t⊗ s = m ◦ s⊗ t = t�s.

Let again (Q,m, η) be a monoid in a strict tensor category C. Then set
EndQ((Q,m)) of Q-module endomorphisms is a concrete monoid where mul-
tiplication is given by composition and the identity map plays the role of
identity element. The following lemma shows that this monoid is isomorphic
to the previously defined ΓQ.

Lemma 4.4.5. Let C be a strict tensor category and (Q,m, η) a monoid in
C. Then the following maps define an isomorphism of monoids.

γ : EndQ((Q,m))→ (ΓQ,�, η), u 7→ u ◦ η,

γ−1 : (ΓQ,�, η)→ EndQ((Q,m)), s 7→ m ◦ idQ ◦ s.

130



Proof. We start by showing that γ and γ−1 are indeed 2-sided inverses of
each other.

γ(γ−1(s)) = m ◦ idQ ⊗ s ◦ η = m ◦ η ⊗ idQ ◦ s = s.

In the third equality we used one of the defining properties of a monoid.

γ−1(γ(u)) = m ◦ idQ ⊗ u ◦ idQ ⊗ η = u ◦m ◦ idQ ⊗ η = u.

In the second equality we used equivariance of u ∈ EndQ((Q,m)) and in
the third equality we used one of the defining properties of a monoid. We
have thus shown that γ defines a bijection. Note that γ(idQ) = η so we only
need to show that γ preserves multiplication.

γ−1(s) ◦ γ−1(t) = m ◦ (idQ ⊗ s) ◦m ◦ (idQ ⊗ t) = m ◦m⊗ idQ ◦ idQ ⊗ t⊗ s
= m ◦ idQ ⊗m ◦ idQ ⊗ t⊗ s = m ◦ idQ ⊗ (m ◦ t⊗ s)
= γ−1(s�t)

If the second equality isn’t clear, draw a diagram. The third equality is
again a defining property of a monoid. This completes the proof that γ
defines an ismorphism of monoids.

Note that if C in the previous lemma is k-linear, then the isomorphism
of monoids turns into an isomorphism of k-algebras. Also note that if C is
braided and the monoid (Q,m, η) is commutative, then EndQ((Q,m)) is a
commutative monoid. From this point onwards we restrict our attention to
abelian strict tensor categories.

Proposition 4.4.6. Let C be an abelian strict tensor category and (Q,m, η)
be a monoid in C. Then the category Q−ModC is an abelian category.

Proof. As there are a lot of things to check, this proof won’t be short. The
proof may help readers that have no experience with abelian categories to
get some feeling for the subject. We start with showing that Q −ModC is
an additive category. Let 0 denote the zero object of C. We need to give
this object the structure of a Q-module such that it acts as a zero object in
Q−ModC . There should exist a morphism µ : Q⊗ 0→ 0. By definition of
0 there is exactly one such morphism. We know that (0, µ) is a Q-module
if it satisfies µ ◦ idQ ⊗ µ = µ ◦m ⊗ id0 and µ ◦ η ⊗ id0 = id0. Again this
holds by definition of the zero object. The zero object of C thus provides a
suitable zero object for Q−ModC .

Next we check that Q−ModC is pre-additive. This follows trivially from
the fact that C is pre-additive. The last step in making Q−ModC additive is
checking that it has biproducts. Suppose that (X,µX) and (Y, µY ) are two
Q-modules. We would like to construct a biproduct Q-module (Z, µZ). As C
is additive we can construct a biproduct object Z ∼= Z⊕Y . Let i1 : X → Z,
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i2 : Y → Z, p1 : Z → X and p2 : Z → Y be the morphisms effecting the
direct sum decomposition. Define µZ : Q⊗ Z → Z by

µZ = idQ ⊗ p1 ◦ µX ◦ i1 + idQ ⊗ p2 ◦ µY ◦ i2.

We need to show that µZ ◦ idQ⊗µZ = µZ ◦m⊗ idZ and µZ ◦ η⊗ idZ = idZ
are satisfied, proving that (Z, µZ) is a Q-module. This is easy to check if we
use p1i1 = idX , p2i2 = idY and the identity

m⊗ idZ = idQ⊗ i1 ◦m⊗ idX ◦ idQ⊗Q⊗ p1 + idQ⊗ i2 ◦m⊗ idY ◦ idQ⊗Q⊗ p2.

After checking this, we are not finished with additivity. The morphism ik,
pk that provide the decomposition should be morphisms in Q−ModC , not
just morphisms in C. For i1 and p1 this amount to the following demands

i1 ◦ µX = µZ ◦ idQ ⊗ i1, p1 ◦ µZ = µX ◦ idQ ⊗ p1.

Filling in the given expression for µZ and armed with the fact that p1i2 =
0 = p2i1 we find that these equations are indeed satisfied. The approach for
proving equivariance of i2 and p2 is the same. Thus we have proven that
Q−ModC is an additive category if C is additive. Consider a morphism of
Q-modules f : (X,µX) → (Y, µY ). We need to show that this morphism
has both a kernel and a cokernel in Q −ModC . Let Z → X be the kernel
of f : X → Y in C. Such a map exists as C is abelian. We need to make Z
into a Q-module. Define k′ : Q⊗Z → X by k′ = µX ◦ idQ⊗ k. Then, using
equivariance of f , we find

f ◦ k′ = f ◦ µX ◦ idQ ⊗ k = µY ◦ idQ ⊗ f ◦ idQ ◦ k = 0

because f ◦ k = 0. By the universal propery of k there is a unique map
µZ : Q ⊗ Z → Z such that k ◦ µZ = k′ = µX ◦ idQ ⊗ k. Consider the
calculation

k ◦ µZ ◦ idQ ⊗ µZ = µX ◦ idQ ⊗ k ◦ idQ ⊗ µZ = µX ◦ idQ ⊗ µX ◦ idQ⊗Q ⊗ k
= µX ◦m⊗ idX ◦ idQ⊗Q ⊗ k = µX ◦ idQ ⊗ k ◦m⊗ idZ
= k ◦ µZ ◦m⊗ idZ .

In the third equality we used that (X,µX) is a Q-module. Because k is monic
it follows that µZ ◦ idQ⊗µZ = µZ ◦m⊗ idZ . The identity µZ ◦η⊗ idZ = idZ
follows from

k ◦ µZ ◦ η ⊗ idZ = µX ◦ idQ ⊗ k ◦ η ⊗ idZ
= µX ◦ η ⊗ idX ◦ k = idX ◦ k = k.

This proves that the source of the kernel Z is, in a natural way, a Q-module.
Next notice that the equality k ◦ µZ = µX ◦ idQ ⊗ k is exactly what we
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need to conclude that k : (Z, µZ) → (X,µX) is a Q-module morphism.
We have proven that every morphism in Q −ModC has a kernel. Next we
show that every morphism has a cokernel. Unfortunately we cannot simply
apply to duality and prove it from the existence of kernels. Again consider
a morphism f : (X,µX)→ (Y, µY ) in Q−ModC . As this is also a morphism
in C, which is an abelian category, there exists a cokernel c : Y → W in C.
Just like before we want to make W into a Q-module in a natural way, such
that c becomes equivariant. Tensor product preserve cokernels thus we know
that idQ ⊗ c is a cokernel for idQ ⊗ f . Consider the following commutative
diagram, where we made use of the equivariance of f

Q⊗X
idQ⊗f //

0

""DDDDDDDDDDDDDDDDDDDD Q⊗ Y
µY

��

idQ⊗c // // Q⊗W

µW

||

Y

c

��
W

The universal property of idQ⊗c provides us with a morphism µW : Q⊗W →
W which satisfies c ◦ µY = µW ◦ idQ ⊗ c. This equality shows that if
(W,µW ) is a Q-module, then c : (Y, µY ) → (W,µW ) is a morphism in
Q−ModC . We will check µW ◦idQ⊗µW = µW ◦m⊗idW , leaving the simpler
identity µW ◦ η ⊗ idW = idW to the reader. If we note that idQ⊗Q ⊗ c is an
epimorphism, then the desired identity follows from the next calculation.

µW ◦ idQ ⊗ (µW ◦ idQ ⊗ c) = µW ◦ idQ ⊗ c ◦ idQ ⊗ µY = c ◦ µY ◦ idQ ⊗ µY
= c ◦ µY ◦m⊗ idY = µW ◦ idQ ⊗ c ◦m⊗ idY
= µW ◦m⊗ idW ◦ idQ⊗Q ⊗ c

This proves that every morphism in Q−ModC has a cokernel in this category.
We still need to check 2 properties. Every monomorphism should be the
kernel of some morphism and every epimorphism should be the cokernel
of some morphism. To a large extent the reasoning is the same as above
so the last 2 properties are left for the reader. A few hints are in order.
One can prove that a monomorphism/epimorphism in Q −ModC is also a
monomorphism/epimorphism in C. Secondly, Lemma 4.3.4 can provide a lot
of help in finding Q-module structures for the relevant objects.

Definition 4.4.7. Let C be a abelian strict tensor category and (Q,m, η)
a commutative monoid in C. An ideal in this monoid is a monomorphism
j : (J, µJ) ↪→ (Q,m) in Q −ModC. The ideal is called proper if it is not
an isomorphism. Let j′ : (J ′, µJ ′) ↪→ (Q,m) be another ideal, then we
say that j is contained in j′, denoted j ≺ j′, if there is a monomorphism
i : (J, µJ) ↪→ (J ′, µJ ′) in Q−ModC such that j = j′ ◦ i. A proper ideal j is
called maximal if every proper ideal j′ which contains j is isomorphic to j.
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It doesn’t take a lot of imagination to guess what inspired these defi-
nitions. Using these definitions we can mimic constructions from abstract
algebra. We will proceed with discussing only those constructions, which we
will actually need. Recall that an essentially small category is a category
that is equivalent to a small category. The isomorphism classes of objects
thus form a set.

Lemma 4.4.8. Let C be an essentially small abelian strict symmetric tensor
category and (Q,m, η) be a commutative monoid in C. Then every proper
ideal j : (J, µJ) ↪→ (Q,m) is contained in some maximal ideal j̃ : (J̃ , µJ̃) ↪→
(Q,m).

Proof. We call two ideals j : (J, µJ) ↪→ (Q,m) and j′ : (J ′, µJ ′) ↪→ (Q,m)
isomorphic if there is an isomorphism (J, µJ)→ (J ′, µJ ′). The category C is
essentially small, so if we consider isomorphism classes of ideals, these classes
will form a set. The relation ≺ defines a partial order on the isomorphism
classes. We will only check if the relation is symmetric as reflexivity and
transitivity are straightforward. Suppose that j ≺ j′ and j′ ≺ j. Then there
exist monomorphisms k and l such that j′ ◦k = j and j ◦ l = j′. This implies
that j′ ◦ k ◦ l = j′ and j ◦ l ◦ k = j. Both j and j′ are monic so this implies
that k has l as a 2-sided inverse. j and j′ are isomorphic and thus belong to
the same class. Maximal ideals correspond to the maximal elements in this
set of isomorphism classes. The lemma follows from applying Zorn’s lemma
to this partially ordered set where every chain of ideal classes clearly has an
upper bound.

Proposition 4.4.9. Let C be an abelian symmetric strict tensor category,
(Q,m, η) a commutative monoid in C and j : (J, µJ) ↪→ (Q,m) an ideal in
(Q,m, η). Let p : (Q,m) � (B,µB) be the cokernel of j. Then there exist
unique morphisms mB : B ⊗B → B and ηB : 1→ B such that

1. (B,mB, ηB) is a commutative monoid in C,

2. p ◦m = mB ◦ p⊗ p,

3. p ◦ η = ηB.

The monoid (B,mB, ηB) is called the quotient of (Q,m, η) by the ideal j. It
is nontrivial (B is not a zero object) if and only if the ideal is proper.

Proof. We need to construct the morphisms mB and ηB that make B into a
commutative monoid. The morphism ηB is easy. It is defined by property 3,
so we just take ηB = p ◦ η : 1→ Q→ B. For mB we consider the following

134



commutative diagram.

J ⊗ J //

��

J ⊗Q

��

// // J ⊗B

��

// 0

Q⊗ J

����

// Q⊗Q

����

// // Q⊗B

����

// 0

B ⊗ J

��

// B ⊗Q

��

// // B ⊗B

##��

// 0

0 0 0 B

The labels of the morphisms were left out of the diagram. Each arrow is the
obvious one. The dotted arrow shows the arrow mB that we wish to find.
We will prove the existence of such a morphism by the technique known
in category theory as diagram chasing. Finding an arrow B ⊗ B → B in
the above diagram is equivalent to finding an arrow B ⊗Q → B such that
B ⊗ J → B ⊗ Q → B is equal to the 0 morphism. This follows from the
universal property of B⊗Q � B⊗B. Next note that B⊗J → B⊗Q→ B is
equal to 0 if and only if Q⊗J � B⊗J → B⊗Q→ B is equal to 0. We need
migrate one step further into the diagram. Finding an arrow B ⊗Q→ B is
equivalent to finding an arrow Q⊗Q→ B such that J ⊗Q→ Q⊗Q→ B
is equal to 0. If we take all this together we need to find a morphism
Q⊗Q→ B such that Q⊗ J → Q⊗Q→ B is 0 and J ⊗Q→ Q⊗Q→ B
is 0. The obvious candidate is p ◦m : Q⊗Q → Q → B. The demand that
Q⊗J → Q⊗Q→ B is 0 means that p◦m◦ idQ⊗ j is equal to 0. This holds
as p ◦m = µB ◦ idQ⊗ p and p ◦ j = 0. Recall that (Q,m, η) is commutative.
This implies that p ◦m = p ◦m ◦ cQ,Q. From this we can conclude that also
J⊗Q→ Q⊗Q→ B is 0. As both properties are satisfied p◦m : Q⊗Q→ B
is indeed as suitable map. The diagram chasing method also automatically
gives us the relation p ◦m = mB ◦ p⊗ p.

The only thing left to check is that (B,mB, ηB) as defined above is indeed
a commutative monoid. The relation mB◦mB⊗idB = mB◦idB⊗mB follows
from

mB ◦mB ⊗ idB ◦ p⊗ p⊗ p = mB ◦ idB ⊗ p ◦mB ⊗ idQ ◦ p⊗ p⊗ idQ
= mB ◦ idB ⊗ p ◦ p⊗ idB ◦m⊗ idQ
= p ◦m ◦m⊗ idQ
= p ◦m ◦ idQ ⊗m = mB ◦ p⊗ p ◦ idQ ⊗m
= mB ◦ idB ⊗mB ◦ p⊗ p⊗ p.

The morphism p⊗ p⊗ p is an epimorphism as it is the composition of only
epimorphisms. Thus we have proven the first identity. The other identities
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can be proven in the same way. Straightforward checks reveal that

mB ◦ ηB ⊗ idB ◦ p = p = mB ◦ idB ⊗ ηB ◦ p,

mB ◦ cB,B ◦ p⊗ p = mB ◦ p⊗ p.

We have thus proven that (B,mB, ηB) is a commutative monoid in C.
Recall that p : (Q,m)→ (B,µB) was defined as the cokernel of j. From

this it follows that B is not equal to the zero object if and only if j is not an
epimorphism. We know that j is a monomorphism so this is the case if and
only if j is not an isomorphism. In other words, if and only if j is a proper
ideal.

Lemma 4.4.10. Let C be an abelian symmetric strict tensor category, let
(Q,m, η) be a commutative monoid in C and j : (J, µJ) ↪→ (Q,m) an ideal
in (Q,m, η). Let (B,mB, ηB) be the the quotient of (Q,m, η) by the ideal j.
Then the map pΓ : ΓQ → ΓB defined by s 7→ p ◦ s is a homomorphism of
commutative algebras. The map is surjective if the tensor unit 1 ∈ C is a
projective object.

Proof. Checking that the map is a homomorphism of commutative algebras
is straightforward when using the previously proven relations p ◦m = mB ◦
p⊗ p and p ◦ η = ηB. Now suppose that 1 is a projective object. Then for
each morphism t : 1→ B there is a morphism s : 1→ Q such that s = p◦ t.
This shows that pΓ is surjective.

Proposition 4.4.11. Let C be an essentially small abelian symmetric strict
tensor category, (Q,m, η) a commutative monoid in C and j : (J, µJ) ↪→
(Q,m) an ideal in (Q,m, η). Let (B,mB, ηB) be the the quotient of (Q,m, η)
by the ideal j. Then there is a bijective correspondence between the equiv-
alence classes of ideals in (B,mB, ηB) and equivalence classes of ideals in
(Q,m, η) that contain j. In particular, if j is a maximal ideal then all ideals
in (B,mB, ηB) are either 0 or isomorphic to (B,mB).

The proof of this proposition is left to the reader as a exercise. The
construction is basically the same as in abstract algebra, at least when it
is formulated in terms of functions instead of elements of sets. The next
lemma will only be used at the very end of this chapter.

Lemma 4.4.12. Let k be a field, C be an abelian k-linear symmetric strict
tensor category and (Q,m, η) a commutative monoid in C. If every ideal in
(Q,m, η) is either 0 or isomorphic to (Q,m), then the commutative unital
k-algebra EndQ((Q,m)) is a field.

Proof. Suppose that s ∈ EndQ((Q,m)) and s 6= 0. We will show that s is an
isomorphism. Recall that the image of s was defined as the monomorphism
in the epic/monic factorization of Proposition 4.3.6. The image of s, im(s)
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is an ideal in (Q,m, η). The demand that s 6= 0 gives im(s) 6= 0, therefore
im(s) must be an isomorphism. As im(s) is an epimorphism, so is s. Next
consider ker(s), the kernel of s. Again this is an ideal in (Q,m, η). The
kernel cannot be isomorphic to (Q,m) since s 6= 0. The kernel must be
equal to 0, proving that s is a monomorphism. The morphism s is both
monic and epic. In the abelian category Q−ModC this implies that s is an
isomorphism. Every nonzero morphism is invertible making EndQ((Q,m))
into a field. This field has k as a subfield.

Lemma 4.4.13. Let C be an abelian symmetric strict tensor category and
(Q,m, η) be a commutative monoid in C. Then every epimorphism of Q-
modules in EndQ((Q,m)) is an isomorphism.

Proof. The category Q−ModC can be given, in a natural way the structure
of a tensor category. The construction mimics that of abstract algebra.
Suppose that (X,µX) and (Y, µY ) are Q-modules. With a slight abuse of
notation (identifying a cokernel with the target of this morphism) we define
the tensor product Q-module by

X ⊗Q Y = coker(idX ⊗ µY − µX ⊗ idY ◦ cX,Q ⊗ idY ).

Using this definition Q−ModC becomes a tensor category where the tensor
unit is given by (Q,m). Working out the details of this construction is left
as an exercise for the reader.

Let g ∈ EndQ((Q,m)) be an epimorphism and j : (J, µJ) ↪→ (Q,m) an
ideal in (Q,m, η). Using the fact that Q −ModC is a tensor category with
tensor unit (Q,m) there exists an isomorphism of Q-modules s : (J, µJ) →
(Q⊗Q J, µQ⊗QJ). Define h ∈ EndQ((J, µJ)) to be the composition

(J, µJ) s→ (Q⊗Q J, µQ⊗QJ)
g⊗idJ→ (Q⊗Q J, µQ⊗QJ) s

−1

→ (J, µJ).

The tensor product of Q-modules, ⊗Q is right-exact, thus g ⊗ idJ is an epi-
morphism. Recognizing s = λJ as a component of a natural transformation,
we can use naturality of s to show that j ◦h = g◦j. If we take for j the ideal
ker(g), then this becomes j ◦ h = 0. The morphism h is an epimorphism
thus ker(g) = j = 0. The epimorphism g turns out to be a monomorphism,
proving that g is an isomorphism.

4.5 Reduction to Finitely Generated Categories

In this section we take 3 important steps towards proving Deligne’s embed-
ding theorem. We start off with the last categorical preparations, which
are centered around the use of colimits. Subsequently we reduce the proof
of Deligne’s embedding theorem to the simpler setting of finitely generated
STC* categories. In the last step we show that the proof of the embedding
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theorem is equivalent to finding an absorbing monoid in a suitable enlarged
category. This will be explained shortly, but before doing so, we start with
some more category theory.

Suppose that C and J are categories. We define the functor category CJ
as follows. The objects of this category are functors J → C and the arrows
are natural transformations between those functors. The reader can check
that this defines a category. Next define the diagonal functor

∆ : C → CJ

that sends each object c ∈ C to the constant functor ∆c. This functor maps
each object of J to c in C and maps each arrow of J to idc. If f : c→ c′ is
an arrow in C, then ∆f is the natural transformation ∆f : ∆c → ∆c′ that
has the same value f for each object of J . The category J acts as a index
category and is considered to be small from this point onwards.

Definition 4.5.1. Let F : J → C be a functor. A colimit or inductive limit
for F is a universal arrow 〈r, u〉 from F to the diagonal functor ∆. This
means the following. First of all there exists an object r ∈ C, sometimes
denoted r = lim→ F and a natural transformation u : F → ∆r. Let Fi
denote F (i) for each object i ∈ J . Then we have arrows ui : Fi → r
satisfying the property that if s : i→ j is an arrow in J , then uj ◦F (s) = ui.
The pair 〈r, u〉 satisfies the following universal property. Suppose that c is
an object of C and that τ : F → ∆c is a natural transformation. Then there
exists a unique arrow ι : r → c such that for each i ∈ J we have τi = ι ◦ ui.
This implies that the following diagram, where s : i → j is an arrow in J ,
commutes

Fi
Fs //

ui

��????????

τi

��0
0000000000000

Fj
uj

��~~~~~~~

τj

����������������

r

ι

��
c

Notice that we did not guarantee the existence of a colimit for a given
functor. We can only say that if it exists, then it is unique up to an isomor-
phism. The dual notion (obtained by reversing all arrows) of the inductive
limit is the projective limit, or limit.

Definition 4.5.2. Let I be a non-empty category. Then I is called a filtered
category if the following 2 demands are satisfied. For any 2 objects X,Y ∈ I
there is an object Z ∈ I and arrows i : X → Z, j : Y → Z. For any 2 arrows
u, v : X → Y in I there is an arrow w : Y → Z such that w ◦ u = w ◦ v. In
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terms of diagrams this becomes

•

��
• • ((

66 • // •

•

??

Next we define the Ind-category of a category. This category, which has
C as a full subcategory, is very helpful as it contains all (small) inductive
limits coming from functors I → C where I is a small filtered category.

Definition 4.5.3. Let C be a category. The ind-category of C Ind(C) is
the functor category whose objects are all functors F : I → C, with I small
filtered categories. For two objects F : I → C, G : J → C the hom-set is
defined as

HomInd(C)(F,G) = lim
←
i∈I

lim
→
j∈J

HomC(Fi, Gj).

An element of HomInd(C)(F,G) thus consists of a family of arrows fi,j :
Fi → Gj in C such that for each s : j → j′ in J and each t : i→ i′ in I

G(s) ◦ fi,j = fi,j′ , fi′,j ◦ F (t) = fi,j

holds. For each i ∈ I there is some arrow fi,j of C. There need not be a
morphism fi,j for every j ∈ J . Composition of arrows in Ind(C) is defined
using the composition of arrows in C. The reader should check that this
leads to a well-defined morphism in Ind(C). Let 1 denote the category with
just 1 object and the identity arrow being the only arrow. Define a functor
FX : 1 → C, mapping the object to an object X and the identity arrow of
1 to idX . The correspondence X → FX provides an embedding of C into
Ind(C).

The standard references on the subject of Ind-categories are SGA 4 [1]
and Artin and Mazur [2]. Another text on the subject is the book by Kashi-
wara and Schapira [24]. In order to bridge the gap to these references we
take a different view on C and Ind(C). Both these categories can be viewed
as subcategories of the category Ĉ. The category Ĉ is the functor category
that has functors C0 → Set, from the opposite category of C to the category
of small sets Set, as objects. The arrows are just the natural transformations
between the functors. A functor C0 → Set is also called a presheaf3.

3The reader that has encountered algebraic geometry will most likely have seen a
different definition of a presheaf. Our definition may be seen as a generalization of this
definition
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An inductive limit for F : I → C can be seen as an element of Ĉ defined
as

lim
→
i

Fi : C → Set, X → lim
→
i

HomC(X,Fi) = lim
→
i

(hC(Fi)(X))

where hC(Fi) denotes the contravariant hom-functor defined in Section 3.3.
The Ind-objects in this context are those elements of Ĉ that are isomorphic
to an inductive limit lim→F for some F : I → C, where I is a small filtrant
category. The Ind-category is the full subcategory of Ĉ that has all the Ind-
objects as its objects. The contravariant hom-functor defines a fully faithful
functor4 that embeds C into Ĉ

hC : C → Ĉ, X 7→ HomC(·, X).

Using this embedding it follows once more that C is a full subcategory of
Ind(C).

We can check from the definitions that if C is pre-additive or C-linear,
then so is Ind(C). If C is a strict symmetric tensor category then so is
Ind(C). In order to see this we need to define the tensor product of 2
inductive systems F : I → C and G : J → C. Take the product category
I × J , which is again filtered, and define

F ⊗G : I × J → C, (i, j) 7→ Fi ⊗Gj .

Checking the rest of the claims is straightforward. The following theorem
requires more work than the previous claims. For a proof the reader is
referred to SGA 4 Expose I-8 [1].

Theorem 4.5.4. Let C be a category and Ind(C) be the corresponding ind-
category of C. Then Ind(C) contains colimits for every small filtrant category
I. If C is an abelian category, then so is Ind(C).

The following conjecture comes from [30]. It is stated there as a lemma.
The proof of this lemma makes use of the assumption that for an epimor-
phism in Ind(C) the arrows fi,j are epimorphisms in C provided that i ∈ I is
’large’ enough. The author of this paper has thusfar not proven this claim.
A weaker version of this result is needed in the proof of Deligne’s embedding
theorem. This weaker claim is that the tensor unit of a TC* category C is
projective as an object of Ind(C). We will only need this claim at the very
end.

Conjecture 4.5.5. Let C be a TC* category and X an object of C. Then
X regarded as an object of Ind(C) is projective.

4The fact that this functor is full and faithful follows from Yoneda’s lemma. See Mac
Lane[27] for a treatment of this lemma
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The direct sum of two projective objects in an abelian category is projec-
tive [16]. As any TC* category is semisimple this implies that it sufficies to
show that every irreducible object of C is projective as an object of Ind(C).
To make this more explicit, assume that we have shown every irreducible
object to be projective as an element of Ind(C). Let X be a reducible object
of C. As such X is the direct sum of a finite number of irreducible objects
Xi with a decomposition given by isometries wi : Xi → X. Let p : A → B
be an epimorphism and b : X → B a morphism. Define bi = b◦wi : Xi → B.
By assumption we find morphisms b̂i : Xi → A such that p◦ b̂i = bi

5. Define
b̂ =

∑
i b̂i ◦ w∗i : X → A. Then

p ◦ b̂ =
∑
i

p ◦ b̂i ◦ w∗i =
∑
i

bi ◦ w∗i =
∑
i,j

b ◦ wj ◦ w∗i = b

which proves projectivity of X.
Armed with enough category theory we proceed with the proof of Deligne’s

embedding theorem. The next step is to reduce the proof to the case of
finitely generated STC* categories as these can be attacked using algebraic
methods. The following discussion closely follows Müger Appendix B7 [30].

Definition 4.5.6. Let C be an additive tensor category. Then C is called
finitely generated if there exists an object Z in C such that every object X
is a direct summand of some tensor power of Z, X ≺ Z⊗n = Z ⊗ ... ⊗ Z,
where n ∈ N0.

We define for any object X⊗0 = 1 where 1 is the tensor unit. This
helps to ensure that any finitely generated tensor category contains a tensor
unit. The above definition may seem a bit strange. For example, there is
only 1 generator where one would expect multiple, albeit a finite number
of generators. Suppose that we would take generators Z1, ..., Zk. Defining
Z = Z1 ⊕ ... ⊕ Zk shows that the additive tensor category generated by Z
contains objects of the kind Zn1

1 ⊗ ... ⊗ Z
nk
k , where n1, ..., nk ∈ N0. The

category generated by Z is the same as the category generated by Z1, ..., Zk.

Lemma 4.5.7. Let C be an essentially small STC* category. The finitely
generated tensor subcategories of C that are STC* categories form an directed
system. The category C is the inductive limit of this system.

Proof. Let Ci be a finitely generated tensor subcategory of C, then Ci inherits
a lot of structure of C. In order to let Ci be an STC* category we need to
check that it carries a conjugate object for every object in this category.
Conjugates can be included by choosing suitable generators. Let Z be the
generator of Ci and (Z, r, r) a conjugate for Z in C. Then the full tensor
category generated by Z ⊕ Z is an STC* that contains Ci. We will only

5The definition of a projective object was given in 4.3.8.
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consider finitely generated subcategories that have generators that admit
conjugates to ensure that every subcategory under consideration is an STC*
category.

As C is essentially small, the equivalence classes of full tensor subcate-
gories form a set. This set is partially ordered by inclusion. Now suppose
that we have two finitely generated tensor subcategories that are gener-
ated by objects Z1 and Z2. Then the full tensor subcategory generated
by Z1 ⊕ Z2 contains both, proving that the equivalence classes of finitely
generated full tensor subcategories form a directed set. This provides us
with a fully faithful tensor functor from the inductive limit of this system
lim→Ci → C. This functor defines an equivalence of tensor categories if it is
shown to be essentially surjective. This is clearly the case as each object is
in a finitely generated tensor subcategory, namely the one generated by it
(and its conjugate).

Suppose that we have proven Deligne’s embedding theorem in the case
of finitely generated even STC* categories. Then the previous lemma will
help to prove the embedding theorem for general (essentially small even)
STC* categories. More precisely, we will now prove Deligne’s embedding
theorem assuming the following theorem.

Theorem 4.5.8. A finitely generated even STC* category C admits a sym-
metric fiber functor E : C → V ectC.

Proof. (of Deligne’s Embedding Theorem 4.1.7) By Lemma 4.5.7 we know
that C is the inductive limit of finitely generated STC* categories Ci. By
Theorem 4.5.8. each such STC* category admits a symmetric fiber functor
Ei : Ci → V ectC. By using Theorem 4.2.5 we can turn these fiber functors
into symmetric ∗-preserving fiber functors Ei : Ci → Hf . Tannaka-Krein
duality then gives compact groupsGi and representations πi,X on the Hilbert
spaces Ei(X). We have equivalences of tensor ∗-categories

Fi : Ci → Repf (Gi,C), X 7→ (Ei(X), πi,X).

Suppose that i ≤ j holds, which implies that Ci is a subcategory of Cj .
Restricting Ej to Ci gives a symmetric ∗-preserving fiber functor Ej � Ci :
Ci → Hf . By the uniqueness of fiber functors, Theorem 3.6.2, there exists a
unitary monoidal natural isomorphism αi,j : Ei → Ej � Ci. Take an element
g ∈ Gj . Then this is a unitary monoidal natural transformation Ej → Ej .
Let X be an object of Ci and define hX = (αi,jX )∗ ◦ gX ◦ αi,j . This defines a
unitary monoidal natural transformation h : Ei → Ei, hence it is an element
of Gi. This construction provides us with a map βi,j : Gj → Gi, which can
be checked to be a continuous group homomorphism. Note that for each
irreducible object X the morphism αi,jX is unique up to a phase. Looking at
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the definition of hX we see that the map βi,j is independent of the choice of
α. Take the inverse limit

G = lim
←
i∈I

= {(gi ∈ Gi)i∈I |βi,j(gj) = gi, i ≤ j},

which provides us with an compact group G and surjective group homomor-
phisms γi : G→ Gi for all the i ∈ I. Using this group we can define a functor
F : C → Repf (G,C) as follows. Let X be an object C. Pick an i ∈ I such
that X is an object of Ci. Define F (X) = (Ei(X), πi,X ◦ γi). This definition
depends of the choice of i, but thanks to the natural isomorphisms αi,j , the
isomorphism class in Repf (G,C) is independent of this choice. The functor
F is full and faithful as it restricts to equivalences Ci → Repf (Gi,C). Every
finite dimensional representation of G factors through to a finite dimensional
representation of some Gi, which implies that the functor is also essentially
surjective, hence defines an equivalence of categories. As the functor pre-
serves all the structure this is also an equivalence of tensor ∗-categories.

As an aside, consider the special case that C = Repf (G,C) for some
compact group G. Then the above reasoning shows that this category is the
inverse limit of categories Repf (Gi,C), that are finitely generated. It can
be shown that for a compact group H, the category Repf (H,C) is finitely
generated if and only if H is a compact Lie group6. Using this observation
we see that for any compact group G, Repf (G,C) is the inverse limit of
representation categories of compact Lie groups.

We have reduced the proof of Deligne’s embedding theorem to giving
a proof of Theorem 4.5.8. In the last step of this section we reduce the
problem of proving Theorem 4.5.8 to finding a suitable monoid in a suitable
category that contains C. We follow Müger[30] Appendix B8 closely as he
gives a detailed exposition of the construction.

Proposition 4.5.9. Let C be a TC* category and Ĉ be a C-linear strict
tensor category that has C as a full tensor subcategory. Let (Q,m, η) be a
monoid in Ĉ satisfying the following two properties.

1. HomĈ(1, Q) = Cη.

2. For every object X in C there is a number n(X) ∈ N0 that is positive
whenever X is not a zero object and an isomorphism of Q-modules
αX : (Q⊗X,m⊗ idX)→ n(X) · (Q,m).

Then the functor defined by

E : C → V ectC, X → HomĈ(1, Q⊗X),

6proving this claim requires a lot more representation theory than given in this thesis,
so we will not attempt to do so.
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E(s)φ = idQ ⊗ s ◦ φ, s : X → Y, φ ∈ HomĈ(1, Q⊗X)

is a faithful tensor functor. The functor satisfies dimCE(X) = n(X). If Ĉ
has a symmetry and (Q,m, η) is commutative with respect to this symmetry,
then E is a symmetric tensor functor.

Proof. The claim that dimCE(X) = n(X) is easy to verify

E(X) = HomĈ(1, Q⊗X) ∼= n(X)HomĈ(1, Q) ∼= Cn(X),

where we used both of the above properties of the monoid. Observe that
E(X) has a positive dimension whenever X is not a zero object. Looking
at the definition of E and using this observation it is clear that the functor
E is faithful. In order to make the functor into a tensor functor we need
to define isomorphisms e and dX,Y . Using 1V ectC = C and E(1) = Cη, we
take the obvious isomorphism e : C → Cη given by 1 7→ η. For the dX,Y
morphisms we take

dX,Y : E(X)⊗E(Y )→ E(X⊗Y ), φ⊗ψ → m⊗ idX⊗Y ◦ idQ⊗φ⊗ idY ◦ψ.

Checking that these maps define a tensor functor is straightforward to a
large extent if one keeps the properties of monoids given in Definition 4.4.1 in
mind. With the exception of showing that the dX,Y maps are isomorphisms
we leave proving that E is a tensor functor to the reader. In order to show
that the dX,Y arrows are isomorphisms we define the following bilinear map
where we write � for the tensor product in V ectC in order to distinguish it
from the tensor product ⊗ in Q−Mod.

γX,Y : HomQ(Q,Q⊗X) �HomQ(Q,Q⊗ Y )→ HomQ(Q,Q⊗X ⊗ Y ),

s� t 7→ s⊗ idY ◦ t

The γX,Y maps are related to the dX,Y maps through the isomorphisms

δX : HomQ(Q,Q⊗X)→ HomĈ(1, Q⊗X),

dX,Y = δX,Y ◦ γX,Y ◦ δ−1
X � δ−1

Y .

The arrows dX,Y are isomorphisms when the morphisms γX,Y are bijective
for each object X and Y of C. By property (2) of the proposition there
exist Q-module morphisms si : Q → Q ⊗ X and s′i : Q ⊗ X → Q where
i ∈ {1, ..., n(X)}, such that s′j ◦ si = δijidQ and

∑
i si ◦ s′i = idQ⊗X . For Y

there are similar maps ti, t′i. Define

γi,j = γX,Y (si � tj), γ′i,j = t′j ◦ s′i � idY .

The relations γ′i′,j′ ◦ γi,j = δi′iδj′jidQ show that the γi,j are all linearly inde-
pendent. As both domain and codomain of γX,Y have dimension n(X)n(Y )
it follows that γX,Y is bijective proving that dX,Y is an isomorphism.
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Assume that Ĉ has a symmetry and that (Q,m, η) is commutative with
respect to this symmetry. In order to show that E is symmetric we need to
prove that E(cX,Y )◦dX,Y = dY,X ◦ΣE(X),E(Y ). This is shown in the following
diagrams. The diagram at the left-hand side is (E(cX,Y ) ◦ dX,Y )(φ⊗ ψ).

ψ

φ

��
��@@

Q Y X

=

ψ φ
��@@

��Q Y X

=

φ

ψ

��
��@@

Q Y X

=

φ

ψ

��Q Y X

In the last step the commutativity of the monoid was used. The diagram
at the right is (dX,Y ◦ΣE(X),E(Y ))(φ⊗ ψ) proving that E is symmetric.

If the steps in the calculation with the diagrams are unclear, the reader
can verify the steps making use of naturality of the symmetry and the braid
equations

X ⊗ Y ⊗ Z

c
((PPPPPPPPPPPP

c⊗id // Y ⊗X ⊗ Z
id⊗c
��

X ⊗ Y ⊗ Z

c
((PPPPPPPPPPPP

id⊗c // X ⊗ Z ⊗ Y
c⊗id
��

Y ⊗ Z ⊗X Z ⊗X ⊗ Y

These equations are just the hexagon axioms from Section 3.1 in the case
of strict tensor categories. In the next two sections there will be more
calculations using diagrams where symmetries play an important role. If
a step is not immediately clear, it is not unlikely that it was obtained by
(repeated) use of the braid equations and naturality of the symmetry.

Looking at the proposition the existence of a commutative monoid with
the above properties in a suitable category Ĉ is a sufficient condition for
the construction of a symmetric fiber functor. But is it also a necessary
condition? In Müger et. al [29] it is argued that this is the case. Given a
tensor ∗-category that admits a ∗-preserving fiber functor E : C → Hf . The
category C is equivalent to the category of finite dimensional representations
of some discrete algebraic quantum group. The category Ĉ is taken to be the
category of representations of any dimension of that quantum group. The
left regular representation provides the desired monoid.

The previous proposition can be formulated in a more useful way for
proving Deligne’s embedding theorem for finitely generated even STC* cat-
egories.

Corollary 4.5.10. Let C be a TC* category that is generated by the object
Z and Ĉ be a C-linear strict tensor category that has C as a full tensor
subcategory. Suppose that (Q,m, η) is a monoid in Ĉ which satisfies
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1. HomĈ(1, Q) = Cη.

2. There is a d ∈ N and an isomorphism of Q-modules αZ : (Q⊗Z,m⊗
idZ)→ d · (Q,m).

Then the functor E : C → V ectC, given by X 7→ HomĈ(1, Q⊗X) is a fiber
functor.

Proof. If we can show that property (2) of Proposition 4.5.9 is satisfied,
then the claim follows immediately. Let X be an object of C. There is
a natural number n ∈ N such that X is a direct summand of Z⊗n. This
implies that there are morphisms v : X → Z⊗n and w : Z⊗n → X such
that w ◦ v = idX . This provides us with morphisms of Q-modules ṽ =
idQ ⊗ v : Q ⊗X → Q ⊗ Z⊗n, w̃ = idQ ⊗ w : Q ⊗ Z⊗n → Q ⊗X satisfying
w̃ ◦ ṽ = idQ⊗X . The Q-module (Q⊗X,m⊗ idX) is thus a direct summand
of the Q-module (Q⊗Z⊗n,m⊗ idQ). The latter is by (2) equivalent to the
Q-module dn · (Q,m).

Combining Definition 4.4.4, ΓQ = HomĈ(1, Q) and Lemma 4.4.5 tells
us that EndQ((Q,m)) ∼= HomĈ(1, Q) as monoids. By Property (1) we find
that EndQ((Q,m)) ∼= C, hence it is irreducible. Combining the findings
thusfar we have that (Q⊗X,m⊗idX) is a direct summand of dn copies of the
irreducible Q-module (Q,m). It immediately follows that (Q⊗X,m⊗idX) is
a direct sum of r copies of (Q,m), where r ≤ dn. This proves the claim.

In order to complete the construction of the embedding for a finitely
generated even STC* category C we thus need two things. First of all a
suitable C-linear strict tensor category that contains C as a full subcategory
and secondly a commutative monoid in this category that has some special
properties. The category Ĉ will turn out to be Ind(C). The commutative
monoid will be constructed in Section 4.7.

4.6 Determinants and the Symmetric Algebra

In this section we explore certain representations of the symmetric groups
in strict tensor categories. This will lead to the definitions of determinants
and the symmetric algebra which are both of crucial importance in the
construction of a monoid like in Corollary 4.5.10. The discussion here follows
appendices B9 and B10 of Müger [30]. The material in this section prior to
the construction of the symmetric algebra can also be found in Section 2 of
Doplicher and Roberts [11].

We start by recalling that the symmetric group on n labels, Pn is gen-
erated by elements σi, i ∈ {1, ..., n− 1} that are subject to the relations

|i− j| ≥ 2⇒ σiσj = σjσi, σ2
i = 1, σiσi+1σi = σi+1σiσi+1.
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Also recall the signature map, defined as a homomorphism of groups

sgn : Pn → {−1, 1}.

For a STC* category we can use the symmetry to define an action of the
symmetric group Pn on n-fold tensor powers X⊗n of objects X. In order to
show this we need the following result.

Lemma 4.6.1. (Yang-Baxter Equation) Let C be a symmetric strict tensor
category with a symmetry c. Then c satisfies the equation

idZ ⊗ cX,Y ◦ cX,Z ⊗ idY ◦ idX ⊗ cY⊗Z = cY,Z ⊗ idX ◦ idY ⊗ cX,Z ◦ cX,Y ⊗ idZ .

Proof. The claim follows straight from

idZ ⊗ cX,Y ◦ cX,Z ⊗ idY ◦ idX ⊗ cY⊗Z
= idZ ⊗ cX,Y ◦ cX⊗Y,Z = cY⊗X,Z ◦ cX,Y ⊗ idZ
= cY,Z ⊗ idX ◦ idY ⊗ cX,Z ◦ cX,Y ⊗ idZ .

where we used the braid equations and naturality of the symmetry.

Lemma 4.6.2. Let C be an STC* category, X an object of C and n ∈ N.
Then the map

ΠX
n : Pn → End(X⊗n), σi 7→ idX⊗i−1 ⊗ cX,X ⊗ idX⊗n−i−1

defines a homomorphism of groups.

Proof. We need to check the following equations

|i− j| ≥ 2⇒ ΠX
n (σi)ΠX

n (σj) = ΠX
n (σj)ΠX

n (σi), ΠX
n (σi)2 = idX⊗n ,

ΠX
n (σi) ◦ΠX

n (σi+1) ◦ΠX
n (σi) = ΠX

n (σi+1) ◦ΠX
n (σi) ◦ΠX

n (σi+1).

The first relations are trivial and the last one follows straight from the Yang-
Baxter equation.

For each object X in a STC* category C and each n ∈ N0 we can define
morphisms SXn : X⊗n → X⊗n and AXn : X⊗n → X⊗n as follows. For n = 0
we take SX0 = AX0 = id1. If n ∈ N, then

SXn =
1
n!

∑
σ∈Pn

ΠX
n (σ), AXn =

1
n!

∑
σ∈Pn

sgn(σ)ΠX
n (σ).

Lemma 4.6.3. Let C be an STC* category, X an object of C, and the maps
SXn and AXn be defined as above. Then for any n ∈ N and any σ ∈ Pn we
have

ΠX
n (σ) ◦ SXn = SXn ◦ΠX

n (σ) = SXn ,

ΠX
n (σ) ◦AXn = AXn ◦ΠX

n (σ) = sgn(σ)AXn .

Consequently, for every n ∈ N0 the morphisms SXn and AXn are orthogonal
projections in End(X⊗n).
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Proof.

ΠX
n (σ) ◦ SXn =

1
n!

∑
σ′∈Pn

ΠX
n (σσ′) =

1
n!

∑
σ′∈Pn

ΠX
n (σ′)

=
1
n!

∑
σ′∈Pn

ΠX
n (σ′σ) = SXn ◦ΠX

n (σ).

Each σ ∈ Pn can be expressed in terms of the generators σ = σi1 · · ·σir .
The inverse is given by σ−1 = σir · · ·σi1 . Note that sgn(σ) = sgn(σ−1).

ΠX
n (σ) ◦AXn =

1
n!

∑
σ′∈Pn

sgn(σ′)ΠX
n (σσ′) =

1
n!

∑
σ′∈Pn

sgn(σ−1σ′)ΠX
n (σ′)

= sgn(σ−1)AXn = sgn(σ)AXn .

By definition each STC* category has a subobject for each projection.

Definition 4.6.4. Let C, X, SXn and AXn be as in the previous lemma.
Denote the subobjects of X⊗n corresponding to the projections SXn and AXn
by Sn(X) and An(X) respectively.

The next proposition is important as it will help us show that for each
object X in an STC* category C the dimension d(X), as defined in Section
3.3, is a nonnegative integer.

Proposition 4.6.5. Let C be an even STC* category and X an object of C.
Then for any n ∈ N we have

TrX⊗nA
X
n =

1
n!
d(X)(d(X)− 1)(d(X)− 2) · · · (d(X)− n+ 1).

Proof. For σ ∈ Pn let #σ denote the number of disjoint cycles in which σ
can be decomposed. We can obtain the desired identity directly from the
following 2 equations.

TrX⊗nΠX
n (σ) = d(X)#σ, ∀X ∈ C, σ ∈ Pn.∑

σ∈Pn

z#σ = z(z − 1) · · · (z − n+ 1), ∀z ∈ C, n ∈ N.

The second equation can be obtained by induction over n so we will focus
on the first. First consider the simple cases σ = 1 and σ = σi.

TrX⊗nΠX
n (1) = TrX⊗nidX⊗n = d(X)n.

T rX⊗nΠX
n (σi) = d(X)n−2TrX⊗X(Θ(X)) = d(X)n−1.

Here we used the properties of the trace, the definition of the dimension and,
in the last step, the fact that C is even. Note that #1 = n and #σi = n− 1
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so we indeed obtain the desired identities. For the general case we need a
more systematic approach. Let (X, r, r) be a standard conjugate for X, then
following Doplicher and Roberts [11] we introduce for each n ∈ N the map

Φn : End(X⊗n)→ End(X⊗n−1), s 7→ r∗ ⊗ idX⊗n−1 ◦ idX ⊗ s ◦ r⊗ idX⊗n−1 .

Using Lemma 3.3.11, we see that

TrX⊗nΠX
n (σ) = Φ1(Φ2(...(Φn(ΠX

n (σ))))).

Let σ ∈ Pn be arbitrary. Then either ΠX
n (σ) does not permute the first two

legs of X⊗n or it can be written in the form ΠX
n (σ) = ΠX

n (σ′)ΠX
n (σ1)ΠX

n (σ′′)
where both ΠX

n (σ′) and ΠX
n (σ′′) do not permute the first two legs of X⊗n.

In the first case we find Φn(ΠX
n (σ)) = d(X)ΠX

n−1(σ̂), where σ̂ is σ but seen
as an element of Pn−1. For the second case we find

Φn(ΠX
n (σ)) = ΠX

n−1(σ̂′) ◦Θ(X)⊗ idX⊗n−1 ◦ΠX
n−1(σ̂′′) = ΠX

n−1(σ̂′σ̂′′)

where in the last step we used that C is even. Continuing this procedure
will yield the desired identity for TrX⊗nΠX

n (σ) proving the proposition.

In the proof of the previous proposition the fact that C is even turned out
to be very important. We shall use the previous proposition to show that
the dimension of any object in a STC* category is a non-negative integer.
This holds for any STC* category, not just the even ones.

Corollary 4.6.6. Let C be a STC* category and X be an non-zero object
of C. Then d(X) ∈ N.

Proof. First assume that C is an even STC* category. For the subobject
An(X) ≺ X⊗n there are morphisms s : An(X) → X⊗n and s∗ : X⊗n →
An(X) such that s ◦ s∗ = AXn and s∗ ◦ s = idAn(X). By the cyclic property
of the trace we find

TrX⊗nA
X
n = TrX⊗n(s ◦ s∗) = TrAn(X)(s

∗ ◦ s) = d(An(X)).

By positivity of the ∗-operation the right-hand side should be non-negative
for every n ∈ N. If we use the identity from the previous proposition for
TrX⊗nA

X
n , then this can only be realized for every n if d(X) ∈ N0. By

Proposition 3.3.13 d(X) ≥ 1 so d(X) = 0 is excluded. This proves the claim
for even STC* categories. Now let C be any STC* category. As in the
proof of Theorem 4.1.14, we can consider the bosonization of C by changing
the symmetry. This category is even so we have d(X) ∈ N for every X in
the bozonization of C. The dimension of an object is defined in terms of the
conjugates and the ∗-operation. It is independent of the chosen symmetry on
C. Therefore, for each object X, d(X) is the same in C and the bosonization
of C, proving the claim also in the non-even case.

149



If we set n = d(X) then Proposition 4.6.5 tells us that Ad(X)(X) is
irreducible because of Proposition 3.3.13 and

d(Ad(X)(X)) = TrX⊗d(X)AXd(X) =
d(X)!
d(X)!

= 1.

Definition 4.6.7. Let C be an STC* category and X a non-zero object of
C. Then the isomorphism class of Ad(X)(X) is called the determinant of X
and is denoted by det(X).

in Doplicher and Roberts [11] objects X that have a determinant iso-
morphic to 1 are called special. In the next section the object X will often
be the generator of a finitely generated even STC* category. As explained
in the previous section we are interested in generators of the kind Z ⊕ Z.
The next lemma proves that such an object is always special.

Lemma 4.6.8. Let C be an STC* category, X and Y be objects of C and
(X, r, r) be a standard conjugate for X. Then the determinant obeys

1. det(X) ∼= det(X),

2. det(X ⊕ Y ) ∼= det(X)⊗ det(Y ),

3. det(X ⊕X) ∼= 1.

Proof. Claim 3 follows from the first two claims and the fact that determi-
nants are irreducible objects, so we restrict to proving the first two claims
starting with 1. Using Lemma 3.3.11 we can construct a standard conjugate
(X⊗n, rn, rn) forX⊗n from the standard conjugate ofX. Take σ ∈ Pn, which
can be written as σ = σi1 · · ·σim . Using the notation σ′ = σn−im · · ·σn−i1
we can show that

ΠX
n (σ′) = r∗n ⊗ idX⊗n ◦ idX⊗n ⊗ΠX

n (σ)⊗ id
X
⊗n ◦ id

X
⊗n ⊗ rn.

This identity can be checked straightforwardly using diagrams. The follow-
ing identity, where the first step is based on the same arguments as in the
proof of Proposition 4.5.9, may be helpful

X X

��'$
��@@ 
	&%

X X

X X

��'$
��@@
	&%
X X

= ��@@

XX

XX

=

Using the identity for ΠX
n (σ) and the fact sgn(σ) = sgn(σ′) we find

AXn = r∗n ⊗ idX⊗n ◦ idX⊗n ⊗A
X
n ⊗ idX⊗n ◦ idX⊗n ⊗ rn.
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Now claim 1 follows straight from Lemma 3.3.10 and we move on to the
second claim. We use the shorthand notation dX = d(X) and AX = AXd(X).
Take Z ∼= X ⊕ Y and let v : X → Z and w : Y → Z be the isometries
corresponding to the direct sum decomposition. It follows that X⊗dX is
a subobject of Z⊗dX . Analogously Y ⊗dY is a subobject of Z⊗dY . The
object det(X)⊗det(Y ) is a subobject of X⊗dX ⊗Y ⊗dY corresponding to the
projection AX ⊗AY . It is isomorphic to a subobject of Z⊗(dX+dY ) = Z⊗dZ

corresponding to the projector

BZ = v⊗dX ⊗ w⊗dY ◦AX ⊗AY ◦ (v∗)⊗dX ⊗ (w∗)⊗dY : Z⊗dZ → Z⊗dZ .

The object det(X⊕Y ) is a subobject of Z⊗dZ corresponding to the projector
AZ . We will compare the projectors AZ and BZ . We can write BZ as

BX =
1

dX !dY !

∑
σ∈PdX

∑
σ′∈PdY

sgn(σ)sgn(σ′)v⊗dX ⊗ w⊗dY ◦ΠX
dX

(σ)⊗ΠY
dY

(σ′)

◦ (v∗)⊗dX ⊗ (w∗)⊗dY

=
1

dX !dY !

∑
σ∈PdX

∑
σ′∈PdY

sgn(σ)sgn(σ′)ΠZ
dX

(σ)⊗ΠZ
dY

(σ′)

◦ (pX)⊗dX ⊗ (pY )⊗dY

=
1

dX !dY !

∑
σ∈PdX

∑
σ′∈PdY

sgn(σ × σ′)ΠZ
dZ

(σ × σ′) ◦ (pX)⊗dX ⊗ (pY )⊗dY

where we used the naturality of the symmetry in the first equality. In
the second equality we merely introduced some notation. We denote the
juxtaposition of σ and σ′ by σ × σ′ ∈ PdZ . For AZ we have

AZ =
1
dZ !

∑
σ∈PdZ

sgn(σ)ΠZ
dZ

(σ)

=
1
dZ !

∑
σ∈PdZ

sgn(σ)ΠZ
dZ

(σ) ◦ (pX + pY )⊗(dX+dY ).

At first sight this does not look like BZ , but Proposition 4.6.5 comes to
the rescue. Of the 2dZ terms into which the product (pX + pY )⊗dZ can be
decomposed only those terms that have exactly dX factors pX and dY factors
pY give nonzero contributions. This is so because AXn = 0 whenever n > dX
and AYn = 0 whenever n > dY . There are dZ !/dX !dY ! terms that have dX
factors pX and dY factors pY . After working out the signs for each term it
becomes clear that AZ is the same as BZ . Consequently the corresponding
subobjects det(X)⊗ det(Y ) and det(X ⊕ Y ) are isomorphic, proving claim
2.
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For the moment we are done with the projectors AXn and determinants
and we move onto the construction of the symetric algebra. In linear algebra
the symmetric algebra over a vector space is constructed as a infinite direct
sum of certain vector spaces. By definition every STC* category C has finite
direct sums, but how do we deal with infinite direct sums? Here the category
Ind(C) introduced in the previous section will help us as we shall see shortly.
Before defining symmetric algebra we first need the next lemma.

Again we start out with an arbitrary STC* category C and an object
X of C. For every n ∈ N, take the subobject Sn(X) of X⊗n as defined in
Definition 4.6.4. Pick for each Sn(X) an isometry un : Sn(X)→ X⊗n such
that un ◦ u∗n = SXn . For S0(X) = 1, define u0 = id1 : S0(X) → X⊗0. Now
for each i, j ∈ N0 define the morphisms

mi,j : Si(X)⊗ Sj(X)→ Si+j(X), mi,j = u∗i+j ◦ ui ⊗ uj .

Lemma 4.6.9. Let, C, X, Sn(X) and mi,j be as above and let c be the
symmetry of C. Then for each i, j, k ∈ N0 we have

mi+j,k ◦mi,j ⊗ idSk(X) = mi,j+k ◦ idSi(X) ⊗mj,k,

mi,j = mj,i ◦ cSi(X),Sj(X), mi,0 = m0,i = idSi(X).

Proof. The identity mi,0 = m0,i = idSi(X) is trivial. We start with showing
that mi,j = mj,i ◦ cSi(X),Sj(X). Recall the identity SXn ◦ ΠX

n (σ) = SXn from
Lemma 4.6.3, and let σ ∈ Pi+j denote the permutation that exchanges the
first i labels and the last j labels.

mj,i ◦ cSi(X),Sj(X) = u∗i+j ◦ uj ⊗ ui ◦ cSi(X),Sj(X) = u∗i+j ◦ cX⊗i,Y ⊗j ◦ ui ⊗ uj
= u∗i+j ◦ΠX

i+j(σ) ◦ ui ⊗ uj
= u∗i+j ◦ SXi+j ◦ΠX

i+j(σ) ◦ ui ⊗ uj
= u∗i+j ◦ SXi+j ◦ ui ⊗ uj = u∗i,j ◦ ui ⊗ uj = mi,j .

In the second equality we used the naturality of the symmetry. In the fourth
equality and sixth equality we used

u∗i+j = idSi+j(X) ◦ u∗i+j = u∗i+j ◦ ui+j ◦ u∗i+j = u∗i+j ◦ SXi+j .

We move onto proving mi+j,k ◦mi,j ⊗ idSk(X) = mi,j+k ◦ idSi(X)⊗mj,k. The
identity SXn ◦ΠX

n (σ) = SXn will provide us with the following useful relations.

SXi+j+k ◦SXi+j ⊗ idX⊗k ◦SXi ⊗SXj ⊗ idX⊗k = SXi+j+k ◦SXi+j ⊗ idX⊗k = SXi+j+k,

SXi+j+k ◦ idX⊗i ⊗SXj+k ◦ idX⊗i ⊗SXj ⊗SXk = SXi+j+k ◦ idX⊗i ⊗SXj+k = SXi+j+k.

Next we take the composition of these identities with u∗i+j+k on the left and
ui ⊗ uj ⊗ uk on the right. We obtain the equality

u∗i+j+k ◦ SXi+j ⊗ idX⊗k ◦ ui ⊗ uj ⊗ uk = u∗i+j+k ◦ idX⊗k ⊗ SXj+k ◦ ui ⊗ uj ⊗ uk.
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If we write SXi+j = ui+j ◦ u∗i+j and SXj+k similarly, then this equation is just
the relation that we wanted to prove.

In the previous section we defined for every STC* category C, the Ind-
category of this category Ind(C). The category Ind(C) is a C-linear strict
tensor category that contains C as a full strict tensor subcategory and it
contains all small filtrant inductive limits of C. We define the symmetric
algebra over an object X in C as the object

S(X) = lim
n→∞

n⊕
i=0

Si(X)

of Ind(C). Here we look at N0 as a small directed category where we have
1 arrow i → j only when j ≥ i. Pick an i ∈ N0 and suppose that j ≥ i.
Then there is a monomorphism Si(X)→ ⊕jk=0Sk(X). This provides us with
monomorphisms vn : Sn(X)→ S(X) for each n ∈ N0.

Proposition 4.6.10. Let C be an STC* and X an object of C. Then there
exists a morphism mS(X) : S(X)⊗ S(X)→ S(X) such that

mS(X) ◦ vi ⊗ vj = vi+j ◦mi,j : Si(X)⊗ Sj(X)→ S(X)

holds and (S(X),mS(X), ηS(X)), with ηS(X) = v0 : 1 → S(X), is a commu-
tative monoid in Ind(C).

Proof. Recall from Definition 4.5.3 that mS(X) should be an element of

lim
←
m

lim
→
n

HomC

 m⊕
i,j=0

Si(X)⊗ Sj(X),
n⊕
k=0

Sk(X)

 .

We can construct such a family of morphisms using the mi,j morphisms. If
n ≥ 2l then, using direct sum decompositions and mi,j morphisms we get a
morphism

Ml,n :
l⊕

i,j=0

Si(X)⊗ Sj(X)→
n⊕
k=0

Sk(X).

In order to be a morphism in Ind(C) the family of morphismsMi,j should sat-
isfy the relations given right after Definition 4.5.3. These are easily checked
to be satisfied. We have thus defined a morphism mS(X) : S(X)⊗ S(X)→
S(X) in the strict tensor category Ind(C). The identity mS(X) ◦ vi ⊗
vj = vi+j ◦ mi,j is satisfied by the definition of mS(X). The fact that
(S(X),mS(X), ηS(X)) defines a commutative monoid follows from the re-
lations of Lemma 4.6.9. We leave working out the details to the reader.
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4.7 Construction of an Absorbing Monoid

The title of this section refers to the second property of the monoid from
Proposition 4.5.9, which is called the absorbing property. In this last section
we will construct a monoid as in Proposition 4.5.9 completing the proof of
Deligne’s embedding theorem. The discussion here follows Appendix B11
of Müger [30]. The construction is an adaptation of the work of Bichon [4].
The approach originally came from the work of Deligne [9].

Let C be a STC* category and X an object of C such that det(X) ∼= 1.
At the end of the previous section we saw that (S(X),mS(X), ηS(X)) defines
a commutative monoid in Ind(C), where S(X) is the symmetric algebra over
X. Let d = d(X) be the dimension of X. Using Lemma 4.4.2 we define a
commutative monoid (Q,mQ, ηQ) as the d-fold direct product monoid

(Q,mQ, ηQ) = (S(X),mS(X), ηS(X))
×d.

Here Q = X⊗d and mQ and ηQ are inductively defined by Lemma 4.4.2.
Because X has det(X) ∼= 1 there exist morphisms s : 1 → X⊗d and s∗ :
X⊗d → 1 such that s∗ ◦ s = id1 and s ◦ s∗ = AXd . We will also use the
monomorphisms v0 : 1 → S(X) and v1 : X → S(X) that come with S(X).
In the upcoming computations we will make use of the following morphisms

f : 1→ Q, f = v⊗d1 ◦ s,

ui : X → Q, ui = v
⊗(i−1)
0 ⊗ v1 ⊗ v⊗(d−i)

0 , i ∈ {1, ..., d},

ti : X⊗(d−1) → Q, ti = (−1)d−iv⊗(i−1)
1 ⊗ v0 ⊗ v⊗(d−i)

1 , i ∈ {1, ..., d}.

Lemma 4.7.1. Let mQ, tj , ui, s and f be as above. Then

mQ ◦ tj ⊗ ui ◦ s = δijf, ∀i, j ∈ {1, ..., d}.

Proof. We begin with the case when i = j. We can prove mQ ◦ ti⊗ui ◦s = f
if we have the following identity.

mQ ◦ ti ⊗ ui ◦ s = (−1)(d−i)idS(X)(i−1) ⊗ cS(X)⊗(d−i),S(X) ◦ v
⊗d
1 ◦ s.

The chore of proving this identity is left to the reader. It can be obtained
diagrammaticaly from the fact that v0 is the monoid unit ηS(X), the defini-
tion of mQ (Lemma 4.4.2), naturality of the symmetry c and some patience.
From this identity we now prove the claim

mQ ◦ ti ⊗ ui ◦ s = (−1)(d−i)idS(X)(i−1) ⊗ cS(X)⊗(d−i),S(X) ◦ v
⊗d
1 ◦ s

= (−1)(d−i)v⊗d1 ◦ idX⊗(i−1) ⊗ cX⊗(d−i),X ◦ s

= v⊗d1 ◦ s = f
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Here we used naturality of the symmetry in the second equality and for the
third equality we used the antisymmetry of s:

ΠX
d (σ) ◦ s = ΠX

d (σ) ◦AXd ◦ s = sgn(σ)AXd ◦ s = sgn(σ)s.

It remains to show that for i 6= j we have mQ ◦ tj ⊗ ui ◦ s = 0. This can
done in a straightforward fashion, but requires a lot of calculations. To give
an idea of the proof we show the case that j = d− 1,i = d. This case is not
special as all other cases can be treated using the same arguments.

mQ ◦ td−1 ⊗ ud ◦ s

= idS(X)⊗(d−1) ⊗mS(X) ◦ v
⊗(d−2)
1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ s

= idS(X)⊗(d−1) ⊗ (mS(X) ◦ cS(X),S(X)) ◦ v
⊗(d−2)
1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ s

= idS(X)⊗(d−1) ⊗mS(X) ◦ v
⊗(d−2)
1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ idX⊗(d−2) ⊗ cX,X ◦ s

= (−1)idS(X)⊗(d−1) ⊗mS(X) ◦ v
⊗(d−2)
1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ s

= (−1)mQ ◦ td−1 ⊗ ud ◦ s.

In the second equality we used that mS(X) comes from a commutative
monoid. It follows directly that mQ ◦ td−1 ⊗ ud ◦ s = 0.

From the monoid (Q,mQ, ηQ) we can construct a monoid with the ab-
sorbing property by taking a suitable quotient. In order to prove this we
need the following technical lemma.

Lemma 4.7.2. Let C be an even STC* category and X an object of C with
det(X) ∼= 1. Let d = d(X) denote the dimension of X. Take s : 1 → X⊗d

an isometry such that s ◦ s∗ = AXd . Then

s∗ ⊗ idX ◦ idX ⊗ s =
(−1)d−1

d
idX .

Proof. By non-degeneracy of the trace it suffices to prove

TrX(a ◦ s∗ ⊗ idX ◦ idX ⊗ s) = (−1)d−1d−1TrX(a), ∀a ∈ EndC(X).

The following diagrams help us in proving this.

(−1)d−1


	r
s

ma
� �r∗

s∗
=


	r
s
��@@

ma
� �r∗

s∗ =

s

ma@
@��
	
r

r∗�� s∗

=

s

ma
s∗
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In the first equality we used the antisymmetry property of s, in the second
equality the braid equations and naturality of the symmetry and in the last
step the triviality of the twist. The diagrams tell us that

TrX(a ◦ s∗ ⊗ idX ◦ idX ⊗ s) = (−1)d−1s∗ ◦ a⊗ idX⊗(d−1) ◦ s
= (−1)d−1Tr1(s∗ ◦ a⊗ idX⊗(d−1) ◦ s)
= (−1)d−1TrX⊗d(a⊗ idX⊗(d−1) ◦AXd ).

In the last step we used the cyclic property of the trace. Proving the lemma
now amounts to proving

TrX⊗d(a⊗ idX⊗(d−1) ◦AXd ) = d−1TrX(a).

This identity can be derived using the techniques of the proof of Proposition
4.6.5. Using those methods one can derive

TrX⊗d(a⊗ idX⊗(d−1) ◦ΠX
d (σ)) = d#σ−1TrX(a)

from which the desired identity readily follows.

Consider the following morphism m0 : Q→ Q in Ind(C).

m0 = mQ ◦ idQ ⊗ (f − ηQ) = mQ ◦ idQ ⊗ f − idQ

where f : 1 → Q is the morphism defined at the beginning of this section.
This morphism is also a morphism of Q-modules m0 : (Q,mQ)→ (Q,mQ).
Recall that the image of a morphism was defined in Section 4.4 as the
monomorphism in the epic/monic factorization of a morphism. The im-
age of m0 thus defines an ideal j0 = im(m0) : (J, µ) → (Q,mQ) in the
monoid (Q,mQ, ηQ).

Proposition 4.7.3. Let C be an even STC* category and X an object of
C such that det(X) ∼= 1. Let the commutative monoid (Q,mQ, ηQ) be de-
fined as in the beginning of this section and the ideal j0 : (J, µ) → (Q,mQ)
be defined as above. Suppose that j′ : (J ′, µ′) → (Q,m) is a proper ideal
in (Q,mQ, ηQ) that contains j0. Take (B,mB, ηB) to be the quotient of
(Q,mQ, ηQ) by the ideal j′. Then there exists an isomorphism of B-modules

(B ⊗X,mB ⊗ idX) ∼= d(X) · (B,mB).

Proof. Take f, ui, ti, s and s∗ as in the beginning of this section. As in
Proposition 4.4.9 we have, for the quotient (B,mB, ηB) an epimorphism
cokerj′ = p : Q→ B that satisfies

p ◦mQ = mB ◦ p⊗ p, p ◦ f = p ◦ ηQ = ηB.

The identity p ◦ f = p ◦ ηQ or equivalently p ◦ (f − ηQ) = 0 follows from
the fact that j′ contains j0 and the definition of j0 as the image of m0. For
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each i ∈ {1, ..., d} we define the following morphisms that help us show that
B ⊗X ∼= d ·B as B-modules.

q̃i : 1→ B ⊗X, q̃i = p⊗ idX ◦ ti ⊗ idX ◦ s,

p̃i : X → B, p̃i = p ◦ ui.

These morphisms satisfy the relations

q̃j

p̃i

��BmB

=

s

muitj

pp

mB

m mm
� �B

=

s

mm uitj

� �mQ

mpB
= δijp ◦ f = δijηB.

In the third equality we used Lemma 4.7.1. Define the following mor-
phisms

qi : B → B ⊗X, qi = mB ⊗ idX ◦ idB ⊗ q̃i,

pi : B ⊗X → B, pi = mB ◦ idB ⊗ p̃i.

Note that these morphisms are morphisms of B-modules. Not only that,
the morphisms also provide the decomposition of B ⊗X into d copies of B.
In order to show this we calculate

pi ◦ qi = mB ◦ idB ⊗ p̃i ◦mB ⊗ idX ◦ idB ⊗ q̃j
= mB ◦mB ⊗ idB ◦ idB⊗B ⊗ p̃i ◦ idB ⊗ q̃j
= mB ◦ idB ⊗mB ◦ idB⊗B ⊗ p̃i ◦ idB ⊗ q̃j
= mB ◦ idB ⊗ (mB ◦ idB ⊗ p̃i ◦ q̃j)
= mB ◦ idB ⊗ δijηB = δijidB

In the third equality we used the associativity axiom for monoids and in the
fifth equality we used the result of the previous diagrammatic calculation.
The sixth equality is again an axiom of monoids. We also need to show that∑

i qi ◦pi = idB⊗X . The following calculation turns out to be helpful to that
end. The identities in the calculation are long and look complex so it may not
be clear what is going on. If this is the case, draw diagrams and every step
will become clear. In the second equality we use the associativity axiom of
monoids. In the third equality we express the q̃i and p̃i morphisms in terms of
the ui, ti, s and p morphisms. In the fifth equality we use p◦mQ = mB◦p⊗p.

157



d∑
i=1

qi ◦ pi =
d∑
i=1

mB ⊗ idX ◦ idB ⊗ q̃i ◦mB ◦ idB ⊗ p̃i

=
d∑
i=0

mB ⊗ idX ◦ idB ⊗mB ⊗ idX ◦ idB⊗B ⊗ q̃i ◦ idB ⊗ p̃i

=
d∑
i=0

(mB ◦ idB ⊗mB ◦ idB⊗B ⊗ (p ◦ ti))⊗ idX ◦ idB ⊗ (idB ⊗ s ◦ p ◦ ui)

=
d∑
i=0

(mB ◦ idB ⊗mB ◦ idB ⊗ p⊗ p ◦ idB ⊗ ui ⊗ ti)⊗ idX ◦ idB⊗X ⊗ s

=
d∑
i=0

(mB ◦ idB ⊗ p ◦ idB ⊗mQ ◦ idB ⊗ ui ⊗ ti)⊗ idX ◦ idB⊗X ⊗ s.

If we take the composition of the final identity with ηB⊗idX then it becomes
clear that

∑d
i=1 qi ◦ pi = idB⊗X holds if and only if

d∑
i=1

p⊗ idX ◦mQ ⊗ idX ◦ ui ⊗ ti ⊗ idX ◦ idX ⊗ s = ηB ⊗ idX .

Writing out the left-hand side we get

d∑
i=1

(−1)d−i(p ◦ cS(X),S(X)⊗(i−1) ⊗ idS(X)⊗(d−i) ◦ v⊗d1 )⊗ idX ◦ idX ⊗ s

(p ◦ v⊗d1 )⊗ idX ◦

(
d∑
i=1

(−1)d−icX,X⊗(i−1) ⊗ idX⊗(d−i) ⊗ idX ◦ idX ⊗ s

)
.

Define Ki = cX,X⊗(i−1) ⊗ idX⊗(d−i) ⊗ idX ◦ idX ⊗ s, i ∈ {1, ..., d}. Then for
every j ∈ {1, ..., d} we have

ΠX
d+1(σj) ◦Ki =


Ki−1 if j = i− 1
Ki+1 if j = i
−Ki otherwise

As a consequence
∑d

i=1(−1)d−iKi : X → X⊗(d+1) is completely antisym-
metric with respect to the first d legs. This implies that we can insert
AXd ⊗ idX straight after

∑d
i=1(−1)d−iKi without changing the identity. Us-

158



ing AXd = s ◦ s∗ we find

(p ◦ v⊗d1 )⊗ idX ◦ (s ◦ s∗)⊗ idX

◦

(
d∑
i=1

(−1)d−icX,X⊗(i−1) ⊗ idX⊗(d−i) ⊗ idX ◦ idX ⊗ s

)
= (p ◦ v⊗d1 ◦ s)⊗ idX

◦

(
d∑
i=1

(−1)d−is∗ ⊗ idX ◦ cX,X⊗(i−1) ⊗ idX⊗(d−i) ⊗ idX ◦ idX ⊗ s

)

= ηB ⊗ idX ◦

(
d∑
i=1

(−1)d−i(−1)i−1s∗ ⊗ idX ◦ idX ⊗ s

)
= ηB ⊗ idX ◦ d(−1)d−1s∗ ⊗ idX ◦ idX ⊗ s = ηB ⊗ idX ◦ idX

In the second equality we used p ◦ v⊗d ◦ s = p ◦ f = ηB and s∗ ◦ cX,X⊗(i−1) ⊗
idX⊗(d−i) = (−1)i−1s∗. The last step follows from Lemma 4.7.2. After
these messy calculations we have thus shown that

∑d
i=1 qi ◦ pi = idB⊗X ,

completing the proof.

As long as we can find proper ideals in (Q,mQ, ηQ) that contain j0 =
im(m0) we can construct commutative monoids in Ind(C) with the ab-
sorbing property. This raises the following question. Is there a proper
ideal containing j0, such that the constructed monoid has the property that
HomInd(C)(1, B) is equal to CηB? If this is the case, then Corollary 4.5.10
provides us with a symmetric fiber functor ξ : C → V ectC. The next two
lemmas help in answering this question.

Lemma 4.7.4. Let C be an STC* category, X an object of C that has
det(X) ∼= 1 and the commutative monoid (Q,mQ, ηQ) be defined as in the
beginning of this section. Then the dimension of the commutative C-algebra
ΓQ = Hom(1, Q) is at most countable and the algebra has a N0 grading.

Proof. Recall that the object Q is the d-fold tensor product of the symmetric
algebra over some object X of C. The symmetric algebra is the inductive
limit limn→∞⊕nk Sk(X) with Sk(X) certain subobjects of X. We thus have

ΓQ = HomInd(C)(1, S(X)⊗d)

= lim
n→∞

n⊕
i1,...,id=0

HomC(1, Si1(X)⊗ · · · ⊗ Sid(X))

=
⊕

i1,...,id≥0

HomC(1, Si1(X)⊗ · · · ⊗ Sid(X)).

By definition of a STC* category each term in the direct sum is a finite
dimensional C-vector space. The countable direct sum thus has at most a
countable dimension.
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As for the N0-grading, recall that for s, t ∈ ΓQ we have s�t = mQ ◦ t⊗s.
Here mQ is constructed from the maps mij : Si(X)⊗Sj(X)→ Si+j(X) with
i, j ≥ 0. The algebra ΓQ gets it’s N0-grading from these mij maps as the
reader can straightforwardly check.

Lemma 4.7.5. Let K be a field extension of C such that [K : C] = dimCK
is at most countable. Then K = C

Proof. Suppose that there exists an x ∈ K that is transcedental over C. We
will show that the elements of the set {(x + a)−1|a ∈ C} are all linearly
independent in K. If that is the case, then the fact that C is uncountable
contradicts the assumption that K is at most countable over C and there is
no such transcedental x ∈ K. This implies that K/C is algebraic. As C is
algebraically closed it follows that K = C and we are done.

In order to see that {(x + a)−1|a ∈ C} ⊂ K consists of only linearly
independent elements, suppose that

∑N
i=1 bi(x + ai)−1, where bi, ai ∈ C

and the ai are pairwise different. Multiply the equation with the product∏
i(x+ ai) to obtain

N∑
i=1

bi
∏
j 6=i

(x+ aj) =
N−1∑
i=0

cix
i = 0

where the coefficients ci can be expressed in terms of the numbers bj and
ak. By assumption x is transcedental thus for every i ∈ {0, ..., N − 1} we
have ci = 0. This in turn provides us with N linear equations

N∑
i=1

Mkibi = 0, Mki =
∑

s⊂{1,...,N}−{i},#S=k−1

∏
s∈S

as.

Using elementary row operations the matrix (Mki) can be transformed into
a Vandermonde matrix (Vki) where Vki = ak−1

i . The determinant of such a
matrix is nonzero by Vandermonde’s formula det(Vik) =

∏
i<j(aj − ai). It

follows that for all i ∈ {1, ..., N}, bi = 0, proving the claim.

Using the previous lemma’s and Proposition 4.7.3 we can finally finish
the construction of a monoid in Ind(C) that provides a symmetric fiber
functor.

Theorem 4.7.6. Let C be an even STC* category and X an object of C
such that det(X) ∼= 1. Then there exists a commutative monoid (B,mB, ηB)
in Ind(C) such that HomInd(C)(1, B) = CηB and there is an isomorphism
B ⊗X ∼= d(X)B of B-modules.

Proof. Take as before the commutative monoid (Q,mQ, ηQ) and the ideal
j0 = im(m0). If we want to make use of Proposition 4.7.3, we should first
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check that the ideal j0 is proper. Suppose that j0 is an isomorphism. Then
in particular it is an epimorphism and consequently m0 is an epimorphism.
By Lemma 4.4.13 m0 : (Q,mQ) → (Q,mQ) defines an isomorphism of Q-
modules. Consequently the map ΓQ → ΓQ given by s 7→ s�(f − ηQ) defines
an isomorphism. There should by some t : 1→ Q such that ηQ = t�(f−ηQ).
Noting that ΓQ is N0-graded and that f − ηQ is not in the degree 0 part of
ΓQ there can be no such t and we have a contradiction. The ideal j0 is not
an isomorphism and thus defines a proper ideal.

By Lemma 4.4.8 there is a maximal ideal j that contains j0. Take
(B,mB, ηB) to be the commutative monoid that is the quotient of (Q,mQ, ηQ)
by the maximal ideal j. Applying Proposition 4.7.3 gives us the isomor-
phism B ⊗ X ∼= d(X)B of B-modules. Proposition 4.4.11 tells that the
quotient monoid contains no proper non-zero ideals because j is maximal.
By Lemma 4.4.12 the commutative C-algebra EndB((B,mB)) is a field ex-
tension of C. Lemma 4.4.5 shows that EndB((B,mB)) is isomorphic as a
C-algebra to ΓB. Recall that every object of C is projective as an object of
Ind(C) (Conjecture 4.5.5). Applying this to 1, Lemma 4.4.10 tells us that
the morphism pΓ : ΓQ → ΓB of this lemma is surjective. We know from
Lemma 4.7.4 that ΓQ has at most a countable dimension. Surjectivity of
pΓ implies that ΓB has at most a countable dimension. As ΓB is a field
extension of C that has at most a countable dimension, Lemma 4.7.5 shows
that ΓB = HomInd(C)(1, B) = CηB.

Now suppose that C is an even STC* category that is finitely generated
by an object X = Z ⊕ Z. Then det(X) ∼= 1. Applying both Theorem 4.7.6
and Corollary 4.5.10 gives us a symmetric fiber functor E : C → V ectC.
This concludes the proof of Deligne’s embedding theorem.
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[7] T. Bröcker and T. tom Dieck; Representations of Compact Lie Groups;
Springer Verlag GTM; New York 1985.

[8] J.B. Conway; A Course in Functional Analysis; Springer Verlag GTM;
2nd edition 1994

[9] P. Deligne; Categories Tannakiennes; In the Grothendieck Festschrift,
Vol. II, volume 87 111-195; Birkhauser Boston; Boston; 1990

[10] P. Deligne and J.S. Milne; Tannakian Categories; Lecture notes in
mathematics, volume 900, pages 101-228. Springer Verlag 1982.

[11] S. Doplicher and J.E. Roberts; A New Duality Theory for Compact
Groups; Inventiones mathematicae; volume 98; 157-218; Springer In-
ternational; 1989.

[12] S. Doplicher and J.E. Roberts; Duals of Compact Lie Groups Realized
in the Cuntz Algebras and Their Actions on C*-Algebras; Journal of
Functional Analysis; volume 74; 96-120; Academic Press; 1987.

162



[13] S. Doplicher, R. Haag, and J.E. Roberts: ‘Local observables and parti-
cle statistics I’; Communications in Mathematical Physics, 23, pp.199-
230; 1971

[14] D. Fraser: ‘The fate of ‘particles’ in quantum field theories with inter-
actions’, Studies in History and Philosophy of Modern Physics; [forth-
coming]

[15] K. Fredenhagen: On the Existence of Antiparticles, Commun. Math.
Phys. 79, 141-151 (1981)

[16] P.J. Freyd; Abelian Categories; Harper and Row; 1964; Free online
versions of this great text exist.

[17] D.Guido, R. Longo, J.E. Roberts and R. Verch; Charged Sectors,
Spin and Statistics in Quantum Field Theory on Curved Spacetimes;
arXiv:math-ph/9906019v1 22 Jun 1999.

[18] R. Haag; Local Quantum Physics. Fields, Particles, Algebras; Second
Revised and Enlarged Edition.1996; Springer-Verlag.

[19] H. Halvorson; Algebraic Quantum Field Theory; Philosophy of Physics,
edited by Jeremy Butterfield and John Earman. Elsevier (2006), pp.
731922.

[20] H. Halvorson, and R. Clifton; ‘Are Rindler quanta real? Inequivalent
particle concepts in quantum field theory’, British Journal for the Phi-
losophy of Science, 52, pp. 417-470; 2001

[21] A. Joyal and R. Street: An introduction to Tannaka duality and Quan-
tum Groups; Part II of Category Theory, Proceedings, Como 1990 Lec-
ture Notes in Math. 1488 (Springer-Verlag Berlin, Heidelberg 1991)
411-492; MR93f:18015.

[22] R.V. Kadison and J.R. Ringrose; Fundamentals of the theory of op-
erator algebras. Vol.1; American Mathematical Society; Providence RI
1997

[23] R.V. Kadison and J.R. Ringrose; Fundamentals of the theory of op-
erator algebras. Vol.2; American Mathematical Society; Providence RI
1997

[24] M.Kashiwara and P.Schapira; Categories and Sheaves; A Series of Com-
prehensive Studies in Mathematics Volume 332; Springer-Verlag; 2006.

[25] S. Lang; Algebra; Revised Third Edition;Springer Verlag 2005.

[26] R. Longo and J.E. Roberts; A Theory of Dimension; arXiv:funct-
an/9604008v1; 1996.

163



[27] S. MacLane; Categories for the Working Mathematician; 2nd edition
1998; New York; Springer Verlag.
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