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Preface

This master thesis is centered around the the mathematical framework of quantum
probability and quantum statistics. Quantum statistics is the axiomatization of the
physical theory of quantum mechanics pioneered by von Neumann in the 1930s.
In contrast to many other physical theories which are described by deterministic
models quantum mechanics is a stochastic theory. In fact, quantum probability
can be viewed as an extension to Kolomogorov’s “classical” probability theory.

Especially in the last decade, due to first physical realizations of quantum
computational systems and the rise of quantum information theory, the subject of
quantum statistics became more and more important and many applications for
mathematical statisticians and probabilists opened up.

In this thesis we will be concerned with the optimization of so-called nonlo-
cality proofs which are methods to show the “non-classicality” of certain prob-
ability distributions within the framework of quantum statistics. In particular,
one is interested in measuring the statistical strength of such nonlocality proofs,
sometimes called Bell tests. One of the main results of this thesis is the analy-
sis of certain Bell tests where the corresponding measure space is described by
an infinite dimensional separable Hilbert space, corresponding to infinitely many
possible outcomes. In particular, this gives numerical evidence for a new quan-
tum Bell inequality describing the boundary of the space of quantum probability
distributions for the considered setting. These results have been published in the
following letter, S. Zohren and R. D. Gill, “Maximal violation of the Collins-
Gisin-Linden-Massar-Popescu inequality for infinite dimensional states” submit-
ted to Phys. Rev. Lett..
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Chapter 1

Introduction

This thesis deals with the mathematical framework of quantum statistics. Before
going into further details let us first clarify what we exactly mean by quantum
statistics, namely, statistical interference for stochastic models for observational
data obtained from quantum mechanical systems. Quantum mechanics is one of
the best tested scientific theories describing a wide range of physical phenom-
ena mostly at very short scales, such as sub-atomic scales. The mathematical
framework underlying this theory has been developed by von Neumann [1]] in the
1930s and is sometimes referred to as quantum probability theory, in contrast to
the axiomatization of modern probability theory developed by Kolmogorov [2]
shortly after to which we simply refer as classical probability theory. Whereas
the framework of quantum statistics is well understood and its predictions match
the experimental data perfectly, there are still many open questions regarding the
interpretation and meaning of quantum mechanics. Especially the “nonclassical”
aspects of quantum statistics are very counterintuitive and are still under debate.
A famous example is Einstein, Podolsky and Rosen’s (EPR) [3] notion of “ele-
ments of reality” questioning the completeness of quantum mechanics, as it could
not be accounted for by any theory which defines its physical objects using local
states. It was first shown by Bell [4] that statistical results predicted by quantum
mechanics for measurements of spacelike separated perties cannot be reproduced
by local realistic theories. The intuitive idea of local realistic theories is the con-
dition that spacelike separated regions cannot influence each other. To make the
above a bit clearer let us discuss it in the context considered by EPR and Bell. The
scenario is shown in Figure[I.1] A source produces two particles which are send
to two observers which in the literature are usually called Alice and Bob, or sim-
ply 7 and . Now Alice can perform a measurement X on its particle obtaining
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Input Input
X Y
_ ﬁ
Outcome Outcome
a b

Figure 1.1: Typical Bell setting for two parties, called Alice and Bob: A source
sends two particles to Alice and Bob. Alice can perform a measurement X on its
particle obtaining an outcome a and Bob can independently perform a measure-
ment Y on its particle obtaining an outcome b.

an outcome a and Bob can independently perform a measurement Y on its parti-
cle obtaining an outcome b. The result of this experiment is characterized by the
joint probability distribution p|xy, i.e. Alice measuring a and Bob b conditioned
on Alice has chosen measurement X and Bob Y. In general both measurement
outcomes are not independent. i.e.

Pab|XY 7 Pa|xPbly (1.1)

This is due to the common past both particles have. If we would describe the com-
mon past by a variable A then however our notion of local realism requires that
both measurements are independent conditioned on there common past described
by A, i.e.

P(a,b|X,Y,A)=P(a|X,A)P(b|Y,A). (1.2)

The parameter A is called a hidden variable, since it describes some hidden prop-
erties of the particle. Therefore, if we introduce a probability distribution g(A ) for
A we get the average

Par = [ dAg()P(alX 2)P(BIY. ) (13)

which holds for any local realistic model, i.e. a model in which spacelike separated
regions cannot influence each other.



In what sense quantum mechanics conflicts with the notion of local realism
we want to discuss in the following. It was Bell who showed first that joint prob-
ability distributions arise from quantum mechanics that violate inequalities, now
called Bell inequalities, which must hold for any local realistic model. In the fol-
lowing we want to demonstrate this using a certain Bell inequality introduced in
[S], the so-called CHSH inequality. Therefore we consider the most simple case
where Alice and Bob can choose between two measurements, Xy, X; and Y, Y],
all having two possible outcomes a,b = 0,1. As will be proven in Section [3.3.2]
any local realistic joint probability distribution for this setting obeys the following
inequality,

PI'(X():Y())—l—Pr(X():Yl)—i—Pr(Xl:Y0>—PI’(X1:Y1)—
—PI‘(X()#Y())—PI'(X()#YI)—PI‘(XI%YQ)—I—PI‘(Xl7£Y1) < 2, (1.4

where Pr (X; = Y}) = poojx,y, + P11jx;y; and Pr (X # Y;) = po1|x,v, + Projxy;-

On the other hand we can consider the two particles to be spin-half particles
send to Alice and Bob which are prepared in a so-called singlet state with spin
alignment axis perpendicular to the direction of sending. Let Alice’s measure-
ments being spin measurements at angles 0 and /2 form the spin alignment axis
and Bob’s measurements being spin measurements at 7 /4 and —7 /4, then by us-
ing the machinery of quantum probability the joint probabilities can be derived to
be

1 2(m
Pab|XyYy = Pab|xoy; = Pab|X, Yy {%Sinz (%) ifa#b, (-
and
1o 2(my
_ Jasin®(§)  ifa=0b, 1.6
Pab|X 1, {%COSZ (%) ifa;éb. o

Hence, if we insert this probabilities into (1.4) we see that the left-hand-side
equates to 2+/2 which violates the CHSH inequality. This shows that quantum
mechanics violates local realism! We call this a nonlocality proof. The violation
of Bell inequalities by certain quantum correlations can be seen as a nonclassi-
cal property of those correlations. This “quantum nonclassicality” has its roots
in so-called quantum entanglement which is an important concept of quantum
information theory [6]].

The fact that quantum mechanics as a theory of nature does not respect the
very fundamental notion of local realism is very controversial and might suggest
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that quantum mechanics is not correct. However, inequalities like the CHSH in-
equality allows one in principle to experimentally test quantum mechanics versus
local realism. And indeed, experiments [7, 8, 9, [10] have shown the violation
of such Bell inequalities, ruling out (modulo certain loopholes) the possibility of
finding a local realistic model alternative to quantum mechanics.

The remainder of this thesis is structured as follows: In Chapter[2] we introduce
the reader to the mathematical framework of quantum statistics. All essential
concepts will be defined and at the end of the chapter clarified by applying them
to a simple example.

The following chapter (Chapter [3)) discusses in more detail the aspect of quan-
tum nonlocality in quantum statistics. In the first part of this chapter the basic
properties of local realistic joint probability distributions will be given. Later cer-
tain Bell inequalities will be derived from this, thereunder the already discussed
CHSH inequality and the CGLMP inequality, a generalization of the CHSH in-
equality for arbitrary many outcomes. In the second part of this chapter properties
of the joint probability distributions arising from quantum probability theory will
be given and a nonlocality proof will be defined. Further, an inequality for the
quantum joint probability distributions for the case of the CHSH setting, the so-
called Tsirelson inequality, will be derived.

Chapter [] contains the main new results of this thesis. It discusses the op-
timization of nonlocality proofs in particular of the CGLMP setting; first with
respect to statistical strength defined in terms of Kullback-Leibler divergence and
second in terms of total variation distance, i.e. maximal violation of Bell inequal-
ities. It is shown that whereas the optimal measurements are the same in both
cases, the optimal states are not. In particular, numerical analysis suggests that the
optimal states in both cases are not the maximally entangled state. On evidence
of numerical data, an inequality for the quantum joint probability distributions
for the case of the CGLMP setting with infinitely many outcomes is conjectured.
At the end of this chapter a comparison of Kullback-Leibler divergence and total
variation distance is given.

Finally, Chapter [5| gives a conclusion and summary of the results. Additional
information on entropy measures in classical and in quantum information theory
is provided in the Appendix.



Chapter 2

An invitation to quantum statistics

In this chapter we give a short introduction into quantum statistics. We will intro-
duce the reader to the preliminaries and basic concepts which will be needed in
the upcoming sections. The outline of this chapter is as follows: In Section [2.1
we will briefly introduce the basic notion of classical probability theory. After
a short motivation in Section we will define the concepts of quantum proba-
bility theory in terms of Hilbert spaces (Section [2.3)) and measurements on them
(Section [2.4). In Section [2.5| we will generalize the setup for tensor products of
several Hilbert spaces. In Section [2.6) we will then show how this mathematical
framework of quantum probability theory is used to model the physical theory of
quantum mechanics. Finally, in the last section we will clarify those concepts by
applying them to a simple example.

2.1 Classical probability theory

With classical probability theory we refer to the modern axiomatization of proba-
bility theory developed by Kolmogorov in the 1930s [2]. The central object in his
formulation is the notion of a probability space. Before defining what we mean
by a probability space we first have to introduce the elementary concepts of a
o-algebra and a measure space.

Let Q be a set. Then we define

Definition 2.1.1 (Algebra on Q). A collection F( of subsets of Q is called an
algebra on Q if
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(i) Qe %
(ii) A€ Py — A° ZZQ\AGyo.
(iii) A,B€ %y — AUB € %.

In particular, it is easy to see that this definition also implies that @ = Q€ € %
and A,B € %y = ANB € %.

Definition 2.1.2 (c-algebra on Q). A collection F of subsets of Q is called a
o-algebra on Q if ¥ is an algebra on Q stable under countable set operations,

UFeZ, VvF e€F nel
n

Definition 2.1.3 (Measure space). Let Q be a set equipped with a 6-algebra F =
0 (Q), then we call the tuple (Q,.F) a measure space.

Further, we define a o-finite measure on (Q,.%) as follows:

Definition 2.1.4 ((0-finite) measure). Let (Q,.7) be a measure space. A function
W : % — Ris called measure on %, if it has the following properties:

(i) 1(0)=0.
(ii)) u(A)>O0forallAc 7.
(iii) For disjoint A; € F, W(U;—14n) =Y | U(An). (0-additivity)
If there exist A, € F withJ,,_1Ap = Q and 1(A,) < oo for all n, then W is called
O -finite.

Now we can define a probability space as follows:

Definition 2.1.5 (Probability space). Let (Q,.%,IP) be a measure space, i.e. a
basis set Q, a 6-algebra F = c(Q) and a (o-finite) measure P, and let P(Q) = 1,
then P is called a probability measure and (Q,.% ,P) is called probability space.

Since P(Q) = 1, we have 0 <P(A) <1 for all A € .# which agrees with the
intuitive notion of a probability measure.

The space (Q,.#,P) can be seen as a model for an experiment which one
is able to repeat many times. The basis set € is in this context the space of all
possible outcomes @ of the experiment. An outcome @ € A C Q is measured
by the experimentalist with probability P(A) according to the probability measure
P:.# — [0,1], where the collections of outcomes A € .# refers to a particular
event.

In the following lemma we summarize some basic calculation rules for prob-
ability spaces. This rules will be needed to prove various Bell type inequalities.
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Lemma 2.1.6. Let (Q,.7,P) be a probability space and A,B,A, € F, n € N.
Then the following is true:

(i) P(A°)=1-P(A).
(ii) For A C B, we have P(A) < P(B).
(iii) P (Up=1An) < Eomi P(An).

Proof.

For A C B, AU(B\A) = B is a disjoint union and from the o-additivity and
non-negativity of P (Definition it follows that P(B) = P(A) + P(B\A) >
IP(A) which proves (ii) and for B = Q and using that P(Q) = 1 it proves (i). Further
we have U, 1A, = U,—; (An\UZ;%Ak), where on the right hand side the union
is disjoint. It then follows using (ii) that P (U, A,) = Yoo P (A, \UjZ | Ax) <
Y. P(A,) which proves (iii).

Let us clarify some of the terminology used in the above lemma: Here the
complementary A€ of the event A means the non-realization of the event A. If
A C B we also say that the realization of the event A implies the realization of the
event B. Disjoint events A and B are also called non-compatible, i.e. AB = 0.

Important quantities in the theory of probability are random variables. Let us
give the following definition:

Definition 2.1.7 (Random variable, probability distribution). Letr (Q,.%,IP) be a
probability space, then we call the .% -R-measurable map

X:Q—R
a real random variable. Further, we call the measure image
Py : 6(R) — [0,1] : x = Px (x) :=P(X ! (x))
a probability distribution of X.

Using this definition we can also define the expectation value of a real random
variable:

Definition 2.1.8 (Expectation value). Let X : Q — R be a quasi-integrable random
variable, then

E(X) := / XdP = / xdPx (x) @.1)

is called the expectation value of X.



8 CHAPTER 2. AN INVITATION TO QUANTUM STATISTICS

Note that for the image of X being a finite subset 7 of R this definition agrees
with the intuitive definition of the expectation value,
E(X) =) xP(X =x), (2.2)
xeT

where by P(X = x) we mean P({w € Q|X(w) = x}). Random variables play an
important role in the theory of probability and are essential for later developments.

2.2 From classical probability to quantum probabil-
ity

In the previous section we gave a brief overview of the concepts of Kolmogorov’s
probability theory which we referred to as classical probability. However, one
year before the publication of Kolmogrov’s work, von Neumann formulated an
axiomatization of quantum mechanics which is sometimes referred to as quan-
tum probability [1]. In quantum probability the scheme of classical probability
is loosen somewhat in the sense that one misses the probability space Q with its
elements, the outcomes @. However, as we will see in next sections, one can de-
fine a analogous quantity to the probability space (L2,.#,P) by a measurable space
(Z°,47). In quantum probability (2", <) is organized around the principle math-
ematical object, a separable Hilbert space. Events for example are represented by
projections onto closed subspaces of the Hilbert space. The details of von Neu-
mann’s axiomatization are described in the following sections for the special case
of finite dimensional separable Hilbert spaces.

For further references on the topic of quantum probability the reader is referred
to [6, 11, 12]. A nice exposition of how quantum probability forms an extension
to classical probability theory and in what sense this relation is sometimes misun-
derstood see [[13]].

2.3 Hilbert spaces, subspaces, states and operators

Gentlemen: There’s lots of room left in Hilbert space.
- S. MacLane

As already mentioned on the previous section, the basic object in von Neu-
mann’s formulation of quantum probability is a separable Hilbert space. Let us
give the following definition:
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Definition 2.3.1 (Hilbert space). A Hilbert space is a complex linear space with
a function

HxH—C: (Y, %) — (¥, X)

called the inner product, with the following properties for all W, x,¢ € 7 and
AeC

(i) (y,w)>0and (y,y)=0ifand only if y =0
M)<%x+m (v, 2) +(v,9)

(iii) (y,Ax) =AW, x)

(v) (v, x)=xwv)"

(v) S is complete under the norm y — ||y|| := \/(y, y)

There are certain equivalence classes between Hilbert spaces which are iso-
morphic to each other:

Definition 2.3.2 (Isomorphism). Two Hilbert spaces 7 and 5% are said to
be isomorphic, if there exists a linear operator % : 74 — ¢ such that
(U, U X) 0 = W, X) .. Such an operator is called unitary.

Let us now give some examples of Hilbert spaces:

Example 2.3.1. (i) Let C¢ denote the set of d-dimensional complex vectors.
The inner product of two vectors ¥ = (y1,..,yy) and ¥ = (X1,...,Xq) is de-
fined as (y,x) = Zl L Wixi. (i) Let [, denote the set of sequences of com-
plex numbers y = {y;}7, which satisfy };° |w;|> < oo with the inner product

(W, x) =X vixi

In particular the usual definitions for vector spaces directly translate to the
case of Hilbert spaces. For example we define:

Definition 2.3.3. Two elements of W,y € H are called orthogonal if (y,x) =
Further, an element y € J is called normalized if || y|| = 1.

Let us state two useful theorems without proof; the proofs can be found in
every standard text book on functional analysis (see for instance [14]).

Theorem 2.3.4. Every Hilbert space ¢ has an orthonormal basis, a set of or-
thogonal and normalized elements of € that span ¢ .
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Theorem 2.3.5. Let S = {@;}ica be a orthonormal basis of a Hilbert space €,
then for each y € F,

v o= Y (0,v)0i
icA

i = Y o)
i€A

Having introduced the notion of Hilbert spaces we further have to specify what
we mean by a separable Hilbert space. Using the common notion for metric spaces
we define:

Definition 2.3.6. A Hilbert space is called separable if it contains a dense count-
able subset.

From this definition one can make the following useful statement:

Theorem 2.3.7. A Hilbert space F is separable if and only if it has a countable
orthonormal basis S. If the number of elements in S is d < oo, then F¢ is isomor-
phic to CY. If there are countable many elements in S, then S is isomorphic to
[.

Proof.

Consider first the case d < o. Using the Gram-Schmidt procedure we can
find a complete orthonormal basis {q)i}f:l of the separable Hilbert space .77. We
define the map % : # — C: y — {{¢;, ) }%,. According to Theorem m
this map is onto, further, it is unitary which proves that .5¢ is isomorphic to C*.
The proof for .7# being isomorphic to /; is similar.

In this introduction we will only consider the case where the separable Hilbert
space is finite dimensional. In this case, it follows from Theorem that 7
is simply C¢, where d = dim.s#. The elements ¥ € J# are then d-dimensional
column vectors of complex numbers and linear operators - linear maps from 7
to itself - are complex d x d matrices. Historically, the use of finite dimensional
vector spaces in the formulation of quantum mechanics was first developed in
the Heisenberg-Born-Jordan “Matrizenmechanik™ (matrix mechanics) which was
thought to be distinct to Schrodinger’s “Wellenmechanik” (wavefunction mechan-
ics). Later both formulations were unified in the framework of Hilbert spaces (for
an exposition of this relation the reader is referred to [[1]).

In the following we give some basic definitions of elements of .77°, subspaces
of ¢ and self-adjoint operators.
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Definition 2.3.8 (Pure states). Consider an element y € H# = C?, ie. a d-
dimensional complex valued column vector. The inner product is defined as
(y,2) = Zfl: | Vi Xi» where ; and ); are the vector components of Y and . Two
elements are orthogonal, if their inner product is zero. The norm of a element
reads || y||* = Ye, \wil>. If |w| = 1 it is said to be normalized. Normalized ele-
ments of a Hilbert space are called pure states. The span of a element Yy € F is

denoted by [y] = {Ay|A € C}.

As already mentioned earlier events will be described by closed subsystems
A C 57, where 0 < dimA < d. Since .77 is finite dimensional, all subsystems are
closed. Further, we say that two subsystems A1,A, are orthogonal if and only if
(y,x)=0forall y € Aj and x € Ay.

Definition 2.3.9 (Decomposition). If subspaces Ay, ...,A, C F are orthogonal
and span 7€ we say they form a decomposition of €, written as

I =A1D...PA,.

The decomposition is called proper if none of the subspaces is the zero subspace.
Two subspaces A,B are called compatible if there exist orthogonal subspaces
A1,A>,A3 such that

A = AI@A27
B = A &A;j.

It is clear from Theorem [2.3.4] and [2.3.3] that for every Hilbert space % one
can generate a proper decomposition by a partition of its orthonormal basis § =
{0i}iea-

Essential quantities in von Neumann’s formulation of quantum mechanics are
self-adjoint operators. Let us in the following given some basic definitions and
properties:

Definition 2.3.10 (Operators). By an operator on 7¢ we mean a linear map X :
I — H .y — Xy, represented by an d X d complex matrix. Let us define
the adjoint of an operator, denoted by X", by the unique solution of (XTy,y) =
(W, Xx) for all y,x € S, that is the complex conjugate and transpose of the
matrix X. An operator which satisfies X = X' is called self-adjoint. Two operators
X,Y are said to be commuting if XY = YX. Further, we define the norm of an
operator X as

X[ := sup {[[Xwl |y € 2, [y =1}
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As an important example of a self-adjoint operator we define the orthogonal
projector:

Definition 2.3.11 (Projectors). A projector is a operator Il on 7 with the follow-
ing property, III1 = I1. The projector is called orthogonal if TT = T1'.

Suppose we have a subspace A spanned by (¢;);_,, r < d then the orthogonal
projector on this subspace is ITy =Y/, q),-(])iT (here again, (])l-T means the complex
conjugate and transpose vector of ¢;). Hence, it acts on states within A as the
identity and on states of the orthogonal complement A+ as the zero operator. In
other words this means that I14 has two eigenvalues 1 and 0, where the corre-
sponding eigenstates are A and A*. One sees that the orthogonal projector Iy
defines a proper decomposition /# = A @A~ In the following we show that there
is a general one-to-one correspondence between self-adjoint operators and proper
decompositions of 7.

Let us first state some properties of the spectrum of self-adjoint operators. Let
x denote an eigenvalue of an operator X and [X = x| the corresponding eigenspace
defined by [X =x] = {¢|X¢ =x¢}. If x is not eigenvalue of X then [X = x|
denotes the zero subspace. Further we define the spectrum of X, denoted by
spec (X), as the set of all eigenvalues of X.

Theorem 2.3.12. Let X be a self-adjoint operator on €. Then the following is
true:

(i) All eigenvalues x are real.
(ii) The corresponding eigenspaces [X = x| are necessarily orthogonal.

Proof.

From the eigenvalue equation we get (¢, X¢) = x(¢@, ¢). Subtracting from this
equation its adjoint and using that X = X7 yields 0 = (x — x*)(¢, ¢) and hence
x = x* which proves (i). (ii) is a consequence of the following powerful theorem.

Theorem 2.3.13 (Spectral decomposition). Any self-adjoint operator X on F€ is
diagonal with respect to some orthonormal basis of .

Proof.
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Let us prove the statement by induction. For d = 1 it is trivially proven. Let x
denote an eigenvalue of X, IT = IIjx_,j the projector onto the eigenspace (X = x]

and [T+ = 1 —TIT the projector onto its orthogonal complement. We write X = (TT+
14X (T +I1+) = XTI+ [T XTI+ + XTI+ TIXTIL. Now ITHXTI = 0, since
X takes [X = x] into itself. Further, since X is self-adjoint, also TIXTT+ = 0. Now
we have X = IIXTI +ITXIT+. By induction IT-XTI* is already diagonal with
respect to some orthonormal basis of the subspace [X = )c]L and since ILXTI = xI1,
the operator IIXII is also diagonal with respect to some orthonormal basis of
[X = x] which proves that X is diagonal with respect to the union of those bases.

Corollary 2.3.14. From the spectral decomposition it follows that we can write a
self-adjoint operator X on ¢ as

X = ZXH[X:x}a 1= ZH[X:x]7

where the sum is taken over all x € spec(X). Hence, there is an one-to-one
correspondence between a self-adjoint operator X and a proper decomposition

H = @B, [X = x].

As we will discuss in more detail in the following sections what is actually
measured in a quantum experiment are eigenvalues of self-adjoint operators. Be-
cause of this a self-adjoint operator is also called an observable. In that sense an
self-adjoint operator is somewhat similar to a random variable in classical prob-
ability theory. The eigenvalues of a self-adjoint operator X are the outcomes x
which define the sample space 2. In the next section we will show that (2", &)
indeed defines a measurable space and we will see how to assign probabilities to
those events. Before we can proceed with the definition of measurements and the
assignment of probabilities, we first have to define some further quantities.

In analogy to Corollary we can also define functions of observables.
Suppose f is a real function and X a self-adjoint operator, then we define a new
self-adjoint operator

FX) =Y F)Mx_y. (2.3)

Note that X and f(X) have the same eigenspaces, only the eigenvalues x are re-

placed by f(x).
In the formulation of product systems we often have to deal with several com-

muting observables. The following theorem is of essential importance:
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Theorem 2.3.15 (Simultaneous diagonalization). Let X,Y denote two self-adjoint
operators on €. Then both operator commute, XY =YX, if and only if there ex-
ists an orthonormal basis of 7 such that both X and Y are diagonal in this basis.
We say that commuting self-adjoint operators are simultaneously diagonalizable.

Proof.

If X and Y are both diagonal in the same orthonormal basis it follows trivially
that they both commute. Let us now show the converse: For all ¢, € [X = x| we
have

XY =YX =xY

and hence Y ¢, € [X = x]. Let us now define the operator ¥y := Ijy_g¥TIjx_y.
Clearly, Y; is self-adjoint on [X = x|, and therefore there exist, according to Theo-
rem[2.3.13] an orthonormal basis of [X = x] in which Y; is diagonal. Let us denote
the subspace of [X = x| for which Y, has eigenvalue y by [X = x,Y = y|. Since for
all ¢, € [X =x,Y =y] we have Y ¢, , € [X = x], it follows that

Y(Px,y - H[X:x]Y(Px,y = H[X:x}YH[X:x] ¢x.,y = y(Px,ya

and hence [X =x,Y =] is also eigenspace of ¥ with eigenvalue y which com-
pletes the proof.

Using Theorem [2.3.15] we can also define functions of two commuting self-
adjoint operators by

f(X7Y) = Zf(x7y)H[X:x,Y:y]v (2.4)

X,y

where again we sum over x € spec (X) and y € spec(Y).

Theorem 2.3.16 (Trace). Let S = {q)i}fl:l be an orthonormal basis of 7 and
X,Y positive operators on J, i.e. operators which satisfy (y,Xy) > 0 for all
v € H. We define the trace, trX =YL (¢:,X ;). The trace is independent of the
choice of orthonormal basis of 7. Further it has the following properties:

(i) tr(X+Y)=tX+tY.
(ii)) tr(AX)=AuX, for AL € Cwith A > 0.
(iii) tr(XY) = tr(YX).
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Proof.
Let us first show that the trace is independent of the choice of orthonormal

basis. Let S = {(Z),} _ be an orthonormal basis of .7 and §' = {ly,-}fl: , be another
orthonormal basis. Then

trX

0= £ o]

(6
d d
(Z]%x”%l>=2<zjvﬂwm
j=1 \i=l

™= I M&

i

)

which proofs the independence of the choice of basis. Properties (i) and (ii) follow
immediately from Definition @;1'] and (iii) is proven easily by a change of basis
from S = {¢;}¢, to 8 = {Yo;}"_,.

I
HM:_

L x| = L wxw,

Definition 2.3.17 (Density matrices, mixed states). A non-negative self-adjoint
operator, i.e. a self-adjoint operator p which satisfies (y,py) > 0, with trp = 1
is called a density matrix or mixed state.

According to Theorem [2.3.13| we can chose an orthonormal basis {1//,}?:1 of
¢ in which

d
ngmmm, 25)

where all p; > 0 and Zle pi = 1. If p; = 0; j the density matrix, p = H[%] =

vy, is called pure, which agrees with the above definition. Clearly, a mixture of
density matrices according to some probability distribution ¢g; is again a density
matrix. Specifically, any density matrix can be written as a mixture of pure states,
hence the name mixed state.

As we will see in the upcoming section, the last two concepts, the trace op-
eration and density matrices, are essential to define a probability measure on
(Z°,47). In fact, as we will see, there exits a theorem stating that any probability
measure on (27, .o7) is defined via those quantities.
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2.4 Measurements

After this short introduction into Hilbert spaces we want to introduce the concepts
of measurements or in statistical language we want to define the measure space
(2,47 and its probability measure Pr.

As mentioned earlier, measurements are mathematically described by a mea-
surable space which in the context of quantum probability we denoted by (2", 7).
Here 2" is the set of possible outcomes x, equipped with a o-algebra .o = 6(2")
of subsets A C 2.

We now define a measurement in the following way:

Definition 2.4.1 (Measurement). A measurement M on ¢ is specified by
the following operator-valued probability measure (oprm), that is a map
M:of — L(H):A— M(A), where L () is the set of self-adjoint operators
on 7€ and M has the following properties:

(i) M(2)=1
(i) 0<M(A) <1, forallAc .
(iii) For disjoint A, € o/, M (Up—14n) = X, M(A,).

Such measurements are also sometimes called generalized measurements,
in contrast to a special case, called simple measurements, which we will de-
fine later. Another common name for generalized measurements are POVMs
(positive operator valued measures). It is interesting to see that properties (i)-
(1i1) are basically equivalent to the properties of classical probability measures,
as stated in Definition [2.1.4H2.1.5] apart from the fact that M takes values in
{M(A) € L()|0 < M(A) <1} instead of in [0,1]. Another big difference is
that 2" does not have to be the real numbers or a subset of it, with the Borel o-
algebra, but can be anything else. Basically, the events A € .o/ are subspaces in
the Hilbert space 7.

Suppose we measure a system characterized by a density matrix p using some
measurement M. In terms of our statistical framework we would like to know
what the probability distribution of a random outcome x € 2" is. This is done by
the following:

Definition 2.4.2 (Born rule, trace rule). Let p be a mixed state measured by M,
then the probability distribution of an outcome x € A C 2" is given by

Pr: o/ —[0,1]:A— Pr(A) =Pr(x € A) =tr(pM(A)).
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It is easy to see that Pr defines a probability measure on (2",.</). First, since
M(Z ) =1and trp = 1 it follows that Pr(.2") = 1. Further, since trp = 1 and 0 <
M(A) <1, itis easy to see that 0 < Pr(A) < 1 for all A € &/. From Definition[2.4.1]
(iii) and the linearity of the trace (Theorem [2.3.16) it follows that for disjoint
Ap € A, Pr(Up-1An) =Y, Pr(An).

Let us now define a special kind of measurement which in most application is
sufficient:

Definition 2.4.3 (Simple measurement). A simple measurement is a map Il : of —

L(A) : A — Ty, where Iy is the orthogonal projector onto the subspace A C
I

It is easy to see that IT indeed fulfills the above requirements of a measure-
ment. Since dim.7Z = d, the simple measurement can take at most d different
outcomes, each associated to an element A;, i < d, of a proper decomposition of
€. According to Corollary [2.3.14] we can find a self-adjoint operator X which has
each subspace A; € 2 as an eigenspace and hence we can label the outcomes by
the eigenvalues x;, i < d. In this sense we can call X =} ; x;II;y_, an observable,
since as in the case of a random variable in classical probability theory X defines
amap X : Z — R from its eigenspaces to the real eigenvalues.

One sees that the Born rule (Definition for the case of a simple mea-
surement defines a probability measure on the lattice of subspaces of a separable
Hilbert space. Furthermore, it has been shown that Pr is defined in a unique way
in the following sense:

Theorem 2.4.4 (Gleason’s theorem). Any probability measure Pr on the lattice of
subspaces of a separable Hilbert space 7€ = @, A; has to be of the form Pr(A;) =
tr(pIly,) for some density matrix p on €.

Gleason’s theorem was already conjectured by von Neumann. The first proofs
(see [15]) of this theorem were not entirely rigorous and the original proof due
to Gleason [[16]] was very long. For an elementary proof the reader is referred to
[L7].

In the previous sections we gave an introduction to quantum probability. We
defined the measurable space (2",.%7) and its measure Pr which were centered
around the principle object of a separable Hilbert space. In finite dimensions this
Hilbert space was simply .s# = C¢. In some cases it is however useful to to view
the Hilbert space as a composition of several smaller dimensional Hilbert spaces.
In the following section we want to make the latter more precise.
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2.5 Tensor products and entanglement

An important aspect in the theory of quantum probability is the case where the
Hilbert space is a tensor product of several smaller Hilbert spaces. Let us define
the tensor product as follows:

Definition 2.5.1 (Tensor product). Let 5¢,, and 7¢3 denote Hilbert spaces. For
Vs Xt € Koy W, X € g and A € C, we define the conjugate bilinear form
V. @ Yg with the following properties:

(i) A(Vo @Yz)=(AVy) @Yz =Yy @ (AYz).

(i) (Vs + X)) QY = Yoy @Yp+ Aoy @ Y.

(iii) Yo @ (Vp+X2) = Vo Vg + Vo @ Xz.
On the set of finite linear combinations of such conjugate bilinear forms
we define the following inner product

(Vs @Yz, Xt @ Xz) = War's Xt ) o7 Vi X 8) %

where (.,.) .y and (.,.) g are the inner products on 7, and Hz respectively.
The completion of the set of finite linear combinations under this inner product is
called the tensor product ¢,y Q 7.

There is an important theorem telling us how to construct a basis for J7,; ®
iy

Theorem 2.5.2. Let {¢;} and {y;} be orthonormal basis for 7, and #y re-
spectively, then {(]), ® l,l/j} is a orthonormal basis for 7 .; @ H 5.

The proof is very easy, but not very instructive and is therefore omitted. In
particular this theorem tells us that if {¢;} and { l//j} are orthonormal basis for 777,
and .77 respectively, then every element y € J¢ = 7, ® 7z can be written in
the following form

y=Y cijoi @y, (2.6)
i,j

This is the most general form for a element in .77. As a special case we define:

Definition 2.5.3 (Entanglement, pure states). A element y € ;@ 5 is called
separable if it can be written as a product

Y =VYyRVYgz, (2.7)
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where Y, € 7,y and Yy € F 5. A pure state which is not separable, i.e. which
is of the form of Equation (2.6) but cannot be written as Equation (2.7), is called
entangled.

The name entanglement goes back to the German word “Verschrinkung”
which was introduces by Schrodinger [18]. Entangled states play an important
role in the theory of quantum statistics and they appear again at various places
within this thesis. A reasonable question one might ask at this point is: Is there an
easy way to see whether a pure state is entangled or not or is there a measure of
entanglement? We will come back to this question towards the end of this section.

We have seen that an arbitrary element y € J7, ® 7 is of the form of Equa-
tion (2.6). However there is a powerful theorem telling us that there is a particular
basis in which this form simplifies significantly:

Theorem 2.5.4 (Schmidt decomposition). Let ¢, and ¢z be Hilbert spaces of
dimension d and d' respectively, with d < d'. For any pure state y € H,; @ A,
there exits a basis {e,-}fl:1 for #,; and {fj}?zl for 7 such that

d
v=Y Lie®f, 2.8)
i=0

where the A; are non-negative and are called the Schmidt coefficients. Since  is
normalized we also have Y ; 7Ll~2 =1

Proof.

According to Equation (2.6) the general form of v is

d d
v=) Y a0y,

i=0 j=0

where {¢;} and {l//j} are orthonormal basis for /7, and 7 respectively and
C= {ci j} is a real d x d’ matrix. There is a theorem in linear algebra, called the
singular value decomposition, stating that any d x d’ matrix C can be written as

c=U"(D,0)V,
where U and V are a unitary d X d and d’ x d’ matrix and D is a positive semi-
definite diagonal matrix. Hence we can write

d

V=Y uaduvij9i® Y,
i, k=0
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Due to the unitarity of U and V, the defined ex =} uy ¢ and fy =} ;vi;y; are
again orthonormal sets.

Let us now consider the case of measurements and operators on ¢,y ® 7.
For any measurement M, and M4 defined on .77, and .7¢; respectively there
is a nature extension to J¢,; ® 7 via M,y @1 and 1 ® M. In particular the
identity operator on J¢,; ® 7 is 1 ® 1. Similar extensions can also be made for
simple measurements or observables defined on the single Hilbert space. These
kind of product measurements and observables will be the only ones we are inter-
ested in even though there are not the most general ones, since we can also have
non-separable operators. One example for which we will often encounter such
non-seperability will be in the case of density operators. Clearly, since density
operators or mixed states are mixtures of pure states the notion of entanglement
as defined in Definition [2.5.3|for pure states directly translates to mixed states:

Definition 2.5.5 (Entanglement, mixed states). A mixed state or density operator
p on .y ® 7y is called separable if it can be written as

p= Zpi P i RPB, (2.9

where p; ; and pg ; are density operators on ., and 2 respectively. A non-
seperable mixed state is called entangled.

Let us consider for a moment a separable state p,; ® pg on I,y Q H 5. If
we apply a measurement M, ® 1 on this product state, the probability of an
event A can be completely determined using only the state p./, i.e. Pr(A) =
tr (psM./(A)). What happens if we consider an entangled state p on 77, ® 3?
One would expect that some part of p is not effected by the measurement M, ® 1,
exactly as pg does in the previous example. Hence, we expect that there is some
kind of marginal state on which the measurement M, produces the same result as
M @1 on the whole state p. Let us define this marginal state as follows:

Definition 2.5.6 (Marginal state, partial trace). Let p be mixed state on Fy ®
A, where 7, and 7y are Hlbert spaces with orthonormal bases {¢;} and
{l//j} respectively. Then we define the marginal state on ¢, as

Py =trz(p),
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where

try(p) =Y (1o vy, play;)

J
is called the partial trace and respectively for 7.

One can easily check that for the marginal state p,, one indeed gets indeed
Pr(A) =tr(pyMy(A)) =tr(pMy(A)®1). (2.10)

Further, it can be shown that the marginal state as defined in Definition [2.5.6] is
the unique function of p which fulfills this property.

The marginal state has several applications, where one of the most useful is
that they can be used to define a measure of entanglement [[19]:

Definition 2.5.7 (Entropy of entanglement). Let p be a mixed state on H,;y &
g and let py and py be the marginal stated on .y and ¢z respectively,
where 7,y and 7€z have the same dimension. Then we define the entropy of
entanglement of p as

E(p)=S8(ps)=S(pz),

where S is the usual von Neumann entropy,
S(per) = —tr(poy logpey) -
Here, log(-) refers to the logarithm to the basis 2.

From the properties of the von Neumann entropy (see Appendix A) it follows
that 0 < E(p)/log(d) < 1, where d is the dimension of .7, and 7. One can
easily see that for a separable state E(p) = 0. From this we make the following
plausible definition:

Definition 2.5.8 (Maximally entangled state). A state p for which E(p)/log(d) =
1 is called maximally entangled.

One can easily see that the maximally entangled state on . = C¢ ® C¢ can
be written as p = 1/d and in particular for a pure state p = Wy one gets using
the Schmidt decomposition (Theorem [2.5.4) the maximally entangled state

1 d
=Y et 2.11
w \/gl‘:()e ®f ( )



22 CHAPTER 2. AN INVITATION TO QUANTUM STATISTICS

For the case of a pure state p = yy' also the entanglement entropy can be
simplified. First, note that using the Schmidt decomposition one obtains

P =trm(yy’) =Y Aleie], (2.12)

and similarly for p. The entanglement entropy of a pure state reads

E(y)=-Y AllogA?, (2.13)

where the A; are again the Schmidt coefficients.

The notion of entanglement entropy will be used at several points in the later
chapters and is the only measure of entanglement which will be used within this
thesis. For other sufficient and necessary conditions for entanglement the reader
is referred to [20].

In this section we introduced the tensor product of Hilbert spaces and we dis-
cussed various concepts like states, operators and measurements on the tensor
products of two Hilbert spaces. However, the above notions can easily be gener-
alized to the case of tensor products of more than two Hilbert spaces.

2.6 The postulates of quantum mechanics

quantum phenomena do not occur in a Hilbert space, they
occur in a laboratory.

- A. Peres

In the previous sections we have formulated quantum probability theory as
a purely mathematical framework. Clearly, when von Neumann developed his
axiomatic formulation of quantum probability theory he wanted to formulate a
theory of quantum mechanics which should model the results of actual physical
experiments. In this section we will state the underlying postulates of quantum
mechanics relating the mathematical concepts with physical objects in quantum
experiments.

Postulate 1. Associated to any closed physical system is a separable Hilbert space
J, also known as the state space of the system. The physical properties of the
system are completely described by a density matrix p on . A composite sys-
tem is modeled by a tensor product of Hilbert spaces associated to each subsystem
with a joint state p on the tensor product of Hilbert spaces describing the proper-
ties of the composite system.
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Having given the kinematical setting of a quantum system in terms of its state,
it is important to now how the system evolves in time, i.e. how is the dynamics of
the system.

Postulate 2. The evolution of a closed quantum system is described by a unitary
transformation. That is, that state p (1) at time #; is related to the state p(r;) at
time #, by

p(t2) = U(11,0)p (1)U (11,12),
where U is a unitary operator on .77, i.e. an operator whose inverse is equal to its
adjoint, UTU = 1.

In the case of a pure state p(¢) = y(¢)y'(t) we can write

V() =U(t,n)y(t). (2.14)

Note that any unitary operator can be written as U = exp(iA), where A is a self-
adjoint operator. The precise form is given by

U(t),1n) = exp (—%H(tz — tl)) , (2.15)

where 7 is a physical constant called the Planck constant and i = v/—1 is the
imaginary number, the self-adjoint operator H is called the Hamitonian of the
closed system. In particular we can view Equation (2.14) as the solution of the
differential equation

. d _
lhalll(t) =Hy(r) (2.16)

which is known as the Schrodinger equation. The Schrodinger equation tells us
how a closed system evolves under time when isolated from any environment. The
real nonnegative eigenvalues of the Hamiltonian describe the energy of the closed
system.

Postulate 3. A measurement on a closed system is described by a generalized
measurement M(A), where the probability of obtaining an outcome x € A C 2" is
given by the Born rule

Pr(x € A) =tr(pM(A)).

This completes the set of postulates of quantum mechanics. We see that we
have developed a sophisticated framework of quantum statistics, which we can
use to model quantum mechanical experiments. As we can use classical statistics
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4 la Kolmogorov to model outcomes of “classical experiments”, say the tossing of
coins, we can use the machinery of quantum statistics to model quantum mechan-
ical experiments, like for example the measurement of the spin of an electron.

In the following we want to illustrate the application of quantum statistics in
a simple example, so that the reader gets familiar with the concepts introduced in
this chapter.

2.7 An example: The qubit

In this section we want to make the above rather abstract concepts more concrete
in a specific simple example. Before going into the details of the example let us
first introduce some useful notation:

Dirac notation. We indicate an element y of a Hilbert space by |y), sometimes
called a ket. The adjoint ' is denoted by a so-called bra (y|. The inner product
of two elements , y € # is then simply written (| x). For (y,Xx) = (wX', ),
where X is an operator, we use the notation (y|X|x).

This notation is sometimes also called the “braket” notation. It can be in
particular very useful to abbreviate certain notations with several labels and
indices. For example for a orthonormal basis we simple write {|i)}. For a basis
vector of 77, ® 7 we then write |i) ., ® | j)  or if the context is clear even |ij).

The most simple case to look at is that of 77 = C2, where the dimension of
the Hilbert space is d = 2. This setting is used in physics to model a spin-half
particle like an electron (see standard quantum mechanics textbooks, e.g. [21]).
In particular the number of possible outcomes is (maximally) two, referring to
measuring the particle being spin down or spin up. In quantum information this
case is referred to as the qubit (e.g. see [6]). As a classical bit which can have
values 0 and 1 a qubit can be in states “spin down” or “spin up”, sometimes also
labeled as |0) and |1).

In the following we will see that a state in .# = C? can be represented by a
vector @ € R? with |@| < 1 and a measurement corresponds to a unit vector if € R3.

Let us first make the following definition:

Definition 2.7.1 (Pauli spin matrices). The following matrices are called Pauli
spin matrices

(01 (0 —i (10
*=\10) 9=\i o) %=\o -1 )
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It is easy to check the following properties of the Pauli spin matrices:

Theorem 2.7.2 (Properties of the Pauli spin matrices). The Pauli spin matrices

satisfy:
0,0y = —0y,0;y = i0y,
0,0, = —0,0, = i0y,
0,0, = —0,0; = ioy,
o;=0,=0. = Ll
Further, we have o;t = o;, tro; = 0 and deto; = —1, Vi € {x,y,z}. In particular

this means that all three Pauli spin matrices have eigenvalues +1.

Now it is easy to see that any self-adjoint operator X in .7 = C? can be written
as
X =wl+X-0, (2.17)

where we defined & = (03, 0y,0;)” and ¥ € R3. In particular, any density matrix
p can be written in the form Equation (2.17)), where the condition trp = 1 requires
that w = 1/2 and the non-negativity requires that |¥| < 1/2. Hence we can write,

p(a’):%(l—i—ﬁ-&), 2.18)

with a € R3 and |d@| < 1. For the case that |d@| = 1, p has eigenvalues 0 and 1 and
is thus a projection operator which refers to a pure state, namely the eigenvector
corresponding to the eigenvalue 1. A state with |@| < 1 can be written as

p(@) = ap (i) + Bp(—i), (2.19)

where we defined a = |d|, B = 1 — a and i = d/ |d|. Hence, a state with |d| < 1
refers to a mixed state, namely a mixture of two pure states, p (i) and p(—ii).

Now it is easy to see that a simple measurement M is determined by two
projectors, generally written as IT; = p(V) and I1_3 = p(—V), where V is a unit
vector in R3. If we name the two possible outcomes —1 and +1, then M can take
values in 2" = {—1,+1}.

Thus for a simple measurement M(+1) = I of a system being in a mixed
state p(d) the probability of a outcomes x € 2 is given by

Pr(x=+1) =tr(p(@)) = %(1+a~\7). (2.20)

In particular, if we choose a measurements which is orthogonal to the direction

of the state, i.e. d-v = 0, then the outcome is completely random, Pr(x = £1) =
1/2.
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Chapter 3

Hidden variables and nonlocality
proofs

... what is proved by impossibility proofs is lack of imagination.

- J. Bell

After having given a short introduction into the subject of quantum statistics
in the previous chapter we now want to discuss the aspect of non-classicality in
quantum statistics. In the introduction we have already seen one example of such
non-local joint probabilities in the setting of a specific Bell inequality. In this
chapter we want to examine this structure in more detail and under more gen-
eral conditions. First, in Section [3.1| we introduce the general framework of Bell
scenarios and how to describe joint probability distributions, so-called behaviors,
on those. Further, we will derive several geometrical properties of the set of all
such behaviors. In Section [3.2] we will characterize under which conditions such
behaviors are said to be local or locally deterministic. We will see in Section
that there are Bell type inequalities which specify whether a behavior is local or
not. The CHSH and CGLMP inequality are derived as explicit examples. In Sec-
tion [3.4) we specify the set of joint probabilities which arises from the theory of
quantum probability. We will see that in general such quantum behaviors are non-
local and can be used to define a nonlocality proof. In Section a inequality
for quantum behaviors of the CHSH setting is given and interesting relations to
Grothendieck’s inequality and Grothendieck’s constant are presented.

For further discussions and references on the topics of this chapter the reader
is referred to [22, 23] 24].

27
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3.1 Bell scenarios, behaviors and some discrete ge-
ometry

In the introduction we have already seen an explicit example of a Bell experiment.
In the following we want to put this kind of experiments in a general framework
which will be the starting point for our further investigations.

A general Bell scenario is first characterized by a number of observers in-
volved in the experiment. For the purpose of this thesis we will restrict ourself to
the case of two observers called Alice and Bob or &7 and % for shortE] Secondly,
each observer has the choice to perform a certain measurement. Let us label the
set of Alice possible measurements by X € {0,...,m,, — 1} and respectively for
Bob, Y € {0,...,my — 1}. The possible outcomes of each experiment are labeled
bya€Ax ={0,...,nx — 1} and b € By ={0,...,ny — 1}, here the a and b refer to
outcomes of Alice’s and Bob’s experiments respectively. Essential for the analy-
sis of the experiment is the joint probability p|xy, that is the probability of &/
obtaining the outcome a after measuring X and at the same time % obtaining b
after measuring Y.

Let us now state some properties of joint probabilities associated to Bell sce-
narios. Clearly, since p,;xy € R is a probability it is positive and normalized:

pab|XY Z 07 va7b7XvY (31)
Y by = 1, VXY (3.2)
ab

Further, in a Bell experiment we require the measurements X and Y of &/
and # to be made instantaneous meaning that ./, when making her choice of
measurement has no knowledge of which measurement % has chosen and vice
versa. Mathematically, this means that the marginal probabilities p,x and py|y are
independent of Y and X respectively, that is

Pajx = Y_Pabjxy = 3 Pabixy’ Va,X,Y,Y’, (3.3)
b b
Poly = Y Paplxy = Y Parlxy Y@, X,XY. (3.4)
a a
This condition is sometimes also called no-signaling condition, due to the fact

that .o/ and Z are not able to signal their choice of measurement to the other party
before those do their measurement.

'The framework presented in the following can be easily extended to a general number of
observers. For an explicit discussion see [24].
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Using the previous requirements on the joint probability let us give the follow-
ing definition:

Definition 3.1.1 (Behavior). A joint probability distribution py|xy satisfying
the conditions (3.1)-(3.4) is called a behavior over the given behavior scheme
(A1, s Am, 3By -o; By ). A behavior is called deterministic if all p,pxy € [0,1].

We see that a Bell scenario defines a certain behavior scheme, i.e. the num-
ber of observers, their sets of measurements and the possible outcomes. Any
resulting joint probability distribution is then given by a behavior on this behavior
scheme. Let us in the following denote the set of all behaviors on a given scheme
(A1,...,An,;B1,...,Bn,) by 33 Later in the text we will also define the set of
all local behaviors .Z and the set of all quantum behaviors 2. Studying certain
relations of these sets is a major aspect of this thesis. In particular we will see that
in general ¥ C 2 C Z.

For the further discussion it is useful to look at & from a geometrical point of
view. Let us therefore identify a behavior p,xy with a point p = (..., papxy,---)
in R’ with dimension r = Yo, ' Y02 nxny.

Clearly the elements of %7 are subject to the constraints (3.1)-(3.4) and hence
only define a subspace & C R’. To classify the geometric properties of &2 we
have to introduce some concepts of the theory of discrete geometry.

Definition 3.1.2 (Linear combinations). A point x € R" is called a linear com-
bination of xi,...,xy € R" if there exists a A = (Ar,...,.A)T € R* such that
X = Z{-‘leixl. ForA>0o0rYAi=1o0rA>0andY;A =1 we call the lin-
ear combination conic or affine or convex.

Definition 3.1.3 (Hull). For a given subset S C R" we call the set of all point

which can be written as a conic, affine, convex combination of finitely many point
of S the conic, affine, convex hull of S, denoted by cone(S), aff(S), conv(S).

Using this definitions we can make a further definition of some intuitive geo-
metrical objects:

Definition 3.1.4 (Half space, polyhedron, polytope). Let b € R, a € R"\ {0},
A e R and c € R™: We call H= {x € R"|Y;aix; > b} C R" a half space.
An intersection P = ﬂ;”zl {x e R"|Y;Aijxi > cj} C R" is called a polyhedron.
A polyhedron P is called a polytope if there exist a B € R, B > 0 such that
P C {x e R"|||x|| < B}.

2For simplicity we will not write & (Al,...,Am& J;Bl,...,Bmﬂ), since usually the behavior
scheme will be clear from the context.
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T\ vertex

(zero dim. face)

edge

(one dim. face) \

facet

Figure 3.1: A three-dimensional illustration of a polytope, explaining also the
concepts of vertices, edges and facets of the polytope.

Clearly, half spaces, the empty set and the whole space R”" are polyhedrons.
From the Definition [3.1.4] it is also easy to see that every polyhedron is a finite
intersection of half spaces. Polyhedrons are also of special interest in the theory
of linear optimization (see for instance []). In particular we will be interested in
bounded polyhedrons, i.e. polytopes. Figure [3.1] shows a typical polytope. From
the figure one can already identify some intuitive subspaces, like edges, vertices
etc. Let us strengthen this intuitive notion by some mathematical definition:

Definition 3.1.5 (Faces, facets and vertices). Let F C P be a subset of a polyhe-
dron P C R". We call F a face of P if there exists a inequality Y ;aix; > b with
x,a € R" and b € R such that F = PN {x € R"|Y;aix; = b}. The face is called
non-trivial if 0 # F # P. A non-trivial face of P is called a facet if it is not in-
cluded in one of the other faces of P. A zero dimensional face F = {x} is called a
vertex of P.

One dimensional faces are then what is intuitively called a edge. Before com-
ing back to our original motivation, a geometric understanding of the set &7, let us
first state two important theorems which will be useful in the following sections.

Theorem 3.1.6 (Minkowski). Every polytope can be written as a convex hull of a
finite set.

Theorem 3.1.7 (Krein-Milman). Let P C R" be a polyhedron and let V C P denote
the set of all vertices of P. Then the following is true, P is a polytope if and only
if it can be written as the convex hull of its vertices, i.e. P = conv (V).
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We will omit the proof of this theorems, since it is not instructive for our
further proceeding. The proof can be found for instance in [235].

Let us now come back to our initial aim, finding a geometric understanding of
the constraints defining the set & of all behaviors on a given behavior scheme.

I =

Theorem 3.1.8. The set & is a polytope of dimension dimP =t =
;"}i’o‘l(nx—mﬂ] [ ’;jfo_l(ny—l)—{—l}—l.

Proof.

The dimension of & is set by Equations (3.2)-(3.4). Let us first show that &/
is full-dimensional in R” with ¢’ defined above. Consider the vector p’ € R’ :

Pa|x
P=1 pox with a#nx—1, b#ny—1. (3.5)
Pab|xy

It is easy to see that by use of Equations (3.2)-(3.4) one can recover the full behav-
ior p from p/, therefore dim & < t'. Further, Equations (3.2)-(3.4) are trivially ac-
counted in p’. Hence, dim &2 >t and therefore dim & = t'. Now, Equation
implies that 0 < p} < 1 and therefore & is a intersection of half spaces which is
clearly bounded. Hence, & is a polytope.

3.2 Local and local deterministic behaviors

After having represented the joint probabilities of a given Bell scenario as behav-
iors on a behavior scheme in the last section, we want to come back to the question
motivated in the introduction, namely: Are those behaviors compatible with the
description by a local model?

In the introduction we motivated that locality implies another constraint on the
probability distributions:

pajcr = [ d2q()PalX. M)P(BIY.), (36)
where g(A), P(a|X,A) and P(b|Y, L) were well-defined, i.e. positive and normal-

ized, distributions. The parameter A was called the hidden variable. Using this
locality constraint we define:
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Definition 3.2.1 (Local behavior). A behavior p,,xy which in addition to con-
ditions (3.1)-(3.4) also satisfies the locality constraint Equation (3.6)) is called a
local behavior. The set of local behaviors on a given scheme is denoted by £ .

From this definition it is clear that in general . C &?. Before going to study
the geometrical properties of .Z let us first define another type of behavior which
will be useful for the study of .Z:

Definition 3.2.2 (Local deterministic behavior). A local behavior for which the
probability distributions P(a|X,A) and P(b|Y,A) in Equation (3.6)) can only take
values 0 and 1 is called a local deterministic behavior or hidden deterministic
behavior.

In the following we want to give a theorem, due to Fine [26], stating that the
assumption of determinism in local behaviors is no more restrictive than that of
arbitrary local behaviors.

Theorem 3.2.3. The set of all local deterministic behaviors is equal to the set of
all local behaviors £ .

Proof.

Every local deterministic behavior is by definition also a local behavior. Let us
now start off with an arbitrary local behavior. By introducing two new parameters
i,V € [0, 1] we can define a new hidden variable A’ = (4, 1, v) with

XA = {1 if Fla—1X,2) < p < F(alX, ),
0 otherwise,

where we defined F(a|X,A) := Y 4<,P(a|X,A) is a new local probability for
o/. We define a similar one for % using the parameter v. If we uniformly
randomize over i and v and define the new hidden variable distributions as
qd(A)=4q (A,u,v) =q(L) we recover the predictions of the original local behav-
ior we started from. However, the new defined behavior is locally deterministic
which shows the equivalence.

This is a big achievement, since the set of all local deterministic behaviors,
where the P(a|X,A) and P(b|Y,A) only take values O and 1 is much easier to deal
with than with the full expression without restrictions. In particular we can use it
to prove the following theorem:
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Theorem 3.2.4. Let Ay be an assignment of the outcome of </ measurement to
the choice of measurement, i.e. Ao (X) = ax and accordingly for B, Ay (Y) = by.
Let d* € & be the corresponding deterministic probability distributions

ab|XY
1 ifAy(X)=aand A5(Y) =b,
Py = [} TR (¥) 4
0 otherwise.
Then the behavior p|xy is local if and only if it can be written as
Pab|xy = Z‘M alxy> 4 =0, ZCM =1 (3.8)
Proof.
Let us set d* bXY = P(a|X,A)P(b|Y,A). Clearly there are only finitely many
da blXY and hence Equation |j defines a local deterministic behavior. According

to Theorem every local deterministic behavior is equivalently represented by
a local behavior. The converse step is similar.

From this we can make a statement about the geometrical properties of the set
Z of local behaviors.

Corollary 3.2.5. The set £ of local behaviors on a given behavior scheme defines
a polytope

% = conv ((dlyxy| Aer (X) € Ax, An(Y) € By ), (3.9)

where d%, ... are the vertices of Z.

ab|XY
Proof.

This is a direct consequence of Theorem [3.2.4} [3.1.6|and [3.1.7]

Let us now show that the polytope .Z is full-dimensional in R, where 1 =
dim 2 = [¥7 N (ny — 1) + 1] [z’”%‘ (ny — 1)+ 1} 1.

Theorem 3.2.6. dim ¥ =dim &Z =¢' = [Zm” l(nx—l)%—l} [Z?f&l(ny—l)—i—l]—
1.



34 CHAPTER 3. HIDDEN VARIABLES AND NONLOCALITY PROOFS

Proof.

To prove the claim we have to show that . has ¢’ + 1 affinely independent

. . A o )LM/ )ng .
vertices. Let us write dab‘XY = da|X ®db|y with

1 ifAy(X)= , 1 ifAg(Y)=0b
dew =3 oK) =8 P #(Y)=b,
al 0 otherwise. | 0 otherwise.

Clearly, dij“;/( consists of Yy, ! (nx — 1)+ 1 linear independent vertices and d;}@
consists of Z';f’f& ! (ny — 1)+ 1 linear independent vertices. Hence, dc/}b|XY has ¢’ +

1 linear independent and thus also affinely independent vertices which completes
the proof.

3.3 Bell inequalities

3.3.1 Generalities

In the last two sections we have derived several properties of the set & of all
behaviors and the set £’ of all local behaviors. In the following we want to use
this knowledge to determine a procedure which enables us to distinguish local
from non local behaviors.

We have seen that both & and . are polytopes of the same dimension. Fur-
ther, we know that in general . C <. Figure shows a lower dimensional
sketch of these quantities which gives us a good understanding of the relations

between &2 and ¥ . The vertices of . are the deterministic behaviors dc’}b| yy and

£ = conv (djmxy‘)w(X) € Ay, Az (Y) EBY). (3.10)

However, form Definition we know that the polytope .Z can equivalently be
written as an intersection of finitely many half spaces

gzﬂ{xER’/

j=1

ZA,,-x,-zcj} (3.11)
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this facet corresponds
to a Bell type inequality this vertex is a non-
deterministic behavior

this vertex is a /

deterministic behavior

Figure 3.2: Left: A three-dimenional illustration of the space of local behaviors
£ C & which is a polytope. Right: A illustration of the convex body of quantum
behaviors 2 C Z.

If this description is minimal the inequalities };A;;x; > c; define the facets of .Z,
those inequalities are called extremal. Further, they provide us with a way of de-
termine whether a given behavior is local or not: Every behavior x € & that obeys
the extremal inequalities ) ;A;;x; > c¢; is local and every behavior that violates one
of them is nonlocal. This inequalities are the so-called Bell inequalities which we
already motivated in the introduction.

In the following we want to derive several type of Bell inequalities for several
types of Bell scenarios.

For the derivation of the Bell inequalities it is useful to notice that according
to Theoremevery element p,, xy € £ may be view as a (classical) probabil-
ity distribution for the setting . = (Xo, ..., X 1:Y0,--,Ym,,_,) over the outcome
space Q = Ay, X ... X Ade_l X Ay, X ... X Aym%_]. The different X; and Y; are
then random variables on the different A; and B; respectively. We will see in the
following how we can use this property to derive several Bell inequalities.

3.3.2 Explicit examples of Bell inequalities

In this section we want to derive several Bell type inequalities for different Bell
scenarios. In all considered cases the number of possible measurements will be



36 CHAPTER 3. HIDDEN VARIABLES AND NONLOCALITY PROOFS

equal for the two parties <7 and 4, hence we set m = m, = my. Further, we

simplify the scenario by requiring all measurements to have the same number of

possible outcomes n = ny, = nx;. Hence we characterize a Bell scenario by the

following tuple (2,m,n), meaning that two parties, </ and %, each have a choice

of m measurements for which each measurement can have n possible outcomes.
Let us first consider the scenario from the introduction.

The CHSH inequality (2,2,2)

Let us consider the Bell scenario (2,2,2), of two parties </ and % which can
both perform two different measurements, Xo,X; and Yp,Y;. Each of those four
measurements can have two different outcomes which we label 0 and 1. As
discussed earlier every local behavior can be viewed as a probability distri-
bution for (Xo,X1,Y,Y1) over the outcome space Q = {0,1}*. We will now
proof that this implies the following inequality of each probability distribution
Pab|xy € 3(2’272):

Theorem 3.3.1 (CHSH inequality). Every local behavior pyyxy € £(2,2,2)
obeys the following inequality:

Pr(X; #Y) <Pr(Xo#Yy)+Pr(Xo#Y1)+Pr(X; #Y), (3.12)

where Pr (X,- # Yj) = Po1|x,y; T P1ojx.y;-
Proof.

As described above every local behavior py xy € £(2,2,2) is a probability

distribution for (Xy,X,Yy,Y1) over the outcome space Q = {0,1}*. Let us con-
sider events on this outcome space of the following type, (X; = Y;). The comple-
mentary to this event would be (X; # Y;). Let us start with is following implication

(Xo=Yo)NXo=Y1)N(X;=Yy)] C (X1 =")

Taking the complementary of this equation gives (X; #Y)) C [(Xo # Yo) U (Xp #
Y1) U (X] # Yp)]. According to our basic calculation rules (Lemma [2.1.6) this
implies Equation (3.12)) which completes the proof.
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This inequality was first derived in [3] in a slightly modified version. Clearly,
this inequality stands for a whole class of inequalities which can be generated form
this one by permutation of the outcomes. Form our geometrical point of view
it is interesting to note that .Z’(2,2,2) defines the simplest non-trivial polytope.
Further, it had been shown that this inequality and permutations of it uniquely
define the facet inequalities of this polytope [26].

This inequality provides us with a test of seeing whether an underlying prob-
ability distribution of an experiment (actual or only gedankenexperiment) arises
from a local model or not. As we have already seen in the introduction certain
probability distributions of quantum statistics actually violate this inequality.

Before continuing with the next example of a Bell type inequality let us first
show that there is a different form of writing the CHSH inequality which will be
useful for later considerations. In this version the outcomes of the measurements
are considered to be {—1,1}. In the form of the inequality Equation the
actual value or label of the outcomes does not matter. However, we are now going
to rewrite it in terms of expectation values of the random variables (Xp, X1, Y, Y1).
Recall that the expectation value of a random variable is given by

E(X) = Z xPr(X =x).

xeQ

Let us now rewrite Equation (3.12)) using that Pr(X; # Y;) = 1 —Pr(X; =Y)),
yielding

PI‘(XO = YQ) —|—PI‘(X0 = Yl) —l—PI‘(Xl = Yl) —Pl‘(Xl = Yl) <2.
Subtracting from this equation Equation (3.12) gives

Pr(Xo:Y0)+Pr(X0:Y1)+Pr(X1:YO)—Pr(Xlel)—
—Pr(Xo#Yy) —Pr(Xo#Y))—Pr(X; #Yy))+Pr(X;#Y) < 2 (3.13)

Since the random variables (Xo,X;,Yp,Y;) only take values of Q@ = {—1,1}* we
can write for the expectation value

]E(X,‘Yj) = PI'(X,' = Yj) — PI‘(X,' 7é Yj). (314)
Hence, Equation (3.28) reads

E(XOY0)+E(XOY1)+E(X1YO)—E(lel) <2. (3.15)
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The CGLMP inequality (2,2,d)

Let us now consider the case where there are d possible outcomes for each mea-
surement. We will label these outcomes by (0,...,d — 1). Hence, (Xo,X1,Y0,Y1)
can be seen as random variables over the outcome space Q = {0, ...,d — 1}4. We
will now show that in this Bell scenario the requirement of locality implies the
following Bell type inequality:

Theorem 3.3.2 (CGLMP inequality). Every local behavior pyyxy € £(2,2,d)
obeys the following inequality:

E([X1 —Y]+ V1 —Xol +[Xo—Yo] +[Yo— X1 — 1]) = d — 1, (3.16)
where [X| denotes the X modulo d.
Proof.

Let us start with the following trivial statement
[Xl -+ —Xo+Xo—Yo+Yo— X1 — 1] = [—1] =d-—1.
Clearly we have [X + Y] <[X] 4+ [Y] which completes the proof.
|

This inequality was first derived in [27] in a more complicated form. The compact
form presented here is due to [28]]. This is the inequality we will be most interested
in in the remainder of this thesis. As we will show in the following there exists a
equivalent form of this inequality in terms of probabilities. Let us first derive this

different formulation independently and then show the equality to Theorem [3.3.2]

Theorem 3.3.3 (CGLMP inequality (equivalent formulation)). Every local be-
havior pyy|xy € £ (2,2,d) obeys the following inequality:

PI‘(Xl < Y1)+PI(Y1 <Xo)—|—PI‘(X0 < Yo)—l—PI‘(YO le) >1, (3.17)

where Pr (Xi < Yj) =Yuch Pab|X;y;-

Proof.



3.3. BELL INEQUALITIES 39

Let us start with the following statement
(X1 >Y)N(M > Xo)N(Xo > Yo) C (X1 > )

Taking the complementary we get (X} < Yp) C (X; < Y1) U (Y] < Xo)U (Xo < Yp).
This implies for the probabilities that

PI'(X1 < Y()) = 1 —PI‘(XI > Yo)
< Pr(X, < Y1) +Pr(¥; < Xo) +Pr(Xo < Yo)

which completes the proof.

Let us now show the equality of this Equation (3.16) and Equation (3.17).
Starting form Equation (3.16) we note that

X]=X—d EJ 7

where we defined the Gauss bracket |X | = max{Y € Z|Y < X}. Then we can
write

X1 =Y+ —Xo]+[Xo—Yo| +Yo— X1 — 1] =
-l P 22 )

Since the X; and B; only take possible values in {0,1,...,d — 1}, we get using
Equation (3.16)

Pr(X; <Y1)+Pr(Y; < Xo)+Pr(Xo < Yo)+Pr(Yo <X, +1) > 1,

which is equivalent to Equation for outcomes in {0, 1,...,d — 1}.

One sees that for the outcomes being in {0, 1,...,d — 1} Equation and
Equation are equivalent. However, whereas Equation (3.16)) is only true for
those outcomes, Equation hold for arbitrary values of the outcomes. Only
the relative ordering of the outcomes on the real line matters.

In Theorem [3.3.2] we have seen an explicit Bell type inequality for the
Z(2,2,d) Bell scenario. Further, it has been shown in [29] that this inequal-
ity, in its original formulation of [27], is indeed facet defining for the polytope

£(2,2,d).
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Other cases

Several other Bell type inequality for different Bell scenarios have been dis-
cussed within the literature. However, in this thesis we are only considered with
the CHSH inequality and especially its generalization for general outputs, the
CGLMP inequality. Another well known example is the three party scenario
(3,2,2) from which arises the GHZ paradox [30,31]] and Mermin’s corresponding
Bell type inequality [32]. However, we will not go into the details of these dif-
ferent Bell scenarios. One big advantage of the CHSH and the CGLMP over the
other setting is that they are much easier realizable in actual physical experiments.

3.4 Quantum behaviors and nonlocality proofs

In this section we want to introduce the definition of quantum behaviors and its ba-
sic properties. In the previous sections we have studied the set of all local behavior
Z C . Besides the various geometric properties of the polytope . which gave
a greater understanding of it we also noticed that elements of .Z can be viewed as
classical probability distributions for certain random variables. We will see in the
following that quantum behaviors play a similar role in the framework of quantum
probability, where now the random variables are replaced by observables.

As in the previous sections we only consider Bell scenarios of two parties .o
and #A. Let us now give a minimalists, meaning most general, definition of a
quantum behavior:

Definition 3.4.1 (Quantum behavior I). A quantum behavior is a joint probability
distribution pyp|xy with the following properties:

Papxy = tr (PEx aFy ) (3.18)

where p is a density matrix and Ex 4, Fyj, are operators on a Hilbert space 2,
satisfying

EX,aZO, FY,bZOa \V/Cl7b,X,Y7 (319)
Y Exa=1, Y Fp=1 VXY, (3.20)
acAx beBy

EX,aFY,b:FY,bEX,m va7b7X7Y' (321)

The set of all quantum behaviors is called 2.
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Let us comment on this definition: As discussed earlier in Section Glea-
son’s theorem shows that an equation of type Equation (3.18)) is the only possi-
bility of defining a measure on (2",.2/) and hence defining a “quantum proba-

bility” pss|xy. According to Definition [2.4.1] Equations [3.19 and define op-
erator valued probability measures, namely the measurements Ex = {Ex 4}, Ay

X €0,...,mg — 1 for o7 and the measurements Fy = {FY:b}beBy’ Y€0,...mg—1
for #. Equation stays for the fact that the measurements on .o7’s side do
not interact with those on %’s side and vice versa. Under this considerations Def-
inition [3.4.1| is a natural definition for a joint probability arising from quantum
statistics. Also note that in general different Ex,, Ex; do not commute and similar
for measurements on A’s side.

Having given the minimal definition of a quantum behavior let us now give
another, maximal definition of a quantum behavior:

Definition 3.4.2 (Quantum behavior II). A quantum behavior is a joint probability
distribution pyp|xy with the following properties:

Parixy = (W|x @Iy ,|w)
= w(ply, ®Ilyp), with p=[y)(yl, (3.22)

where Y is an entangled pure state on the product system,

VeHy M, (Yy) =1, (3.23)

and the 1lx , and Ily, are orthogonal projectors, i.e. simple measurements, on
Iy and Fp respectively,

Myo: My — Hy, y,=Hx. Hi,=Tx. VYaX, (324)
My, : Ay — Ay, T, =Ty, T, =Ty, VbY, (325
Y Mx.=1, Y Ty,=1, VX,V (3.26)

acAy beBy

This definition is much more restrictive then Definition 3.4.1] in several as-
pects. First, in Definition the state could have been mixed, whereas in the
later definition it is pure. Secondly, the measurements in Definition were
generalized measurements while now they are simple. Further, the algebra in Def-
inition [3.4.1 was not necessarily a tensor product while in the later definition it is.
Although, Definition [3.4.2] is much more restrictive we still have the following
theorem (cf. [23]]):
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Theorem 3.4.3. The set of all quantum behaviors generated form Definition
is equal to that of Definition[3.4.2]

For the proof of this theorem the reader is referred to [23]] and references
therein. The proof involves the theory of C*-algebras. In the following we will use
Definition[3.4.2]as a definition for a quantum behavior, since it is much simpler. It
also gives us a much more natural interpretation of quantum behaviors. According
to the considerations in Section [2.3] we can associate to every projector Iy , an
observable X which has Iy , = ITjy_, as an eigenspace and respectively for Ily .
Hence, we can write

X=Y dly_,, Y=Y bllyy. (3.27)

acAy beBy

Thus we see that elements pyxy € £ form a (quantum) probability dis-
tribution for the observables (Xo,...,Xm__,,Y0,...,Ym, ,) over the outcome
space Q = Ayx, X ... X AX,W?1 X Ay, X ... X Aymg_1 exactly as elements
Pab|xy € £ formed (classical) probability distribution for the random variables
(X0, -, Xm,, ,Y0,---,Ym, ). We see that investigating nonlocality proofs also
brings us to the heart of analyzing the differences between classical and quantum
probability theory. In this sense, the fact that . C 2, as will be proven in the fol-
lowing, also emphasizes that quantum probability theory is a (non-commutative)
extension to classical probability theory which includes the latter as a special case.

Let us now deduce some properties of the set of all quantum behaviors 2.

Theorem 3.4.4. The set of all quantum behaviors is a subset of or equal to the set
of all behaviors, 2 C .

Proof.

Clearly, due to the properties of the trace rule (Definition [2.4.2)) and the prop-
erties of the measurements Iy — {Hxﬂ}ae Ay and Iy = {HYJ,} pepy EVETY ele-
ment of 2 is positive and normalized. Further, due to the tensor product structure
and the properties of the trace (Theorem it follows easily that elements
of 2 also fulfill the non-signaling condition. Hence, by Definition [3.1.1] we have
2C .

Note that in general we have 2 C &2, as will also be clear from the next section.
Further, we have the following relation with the set of local behaviors:



3.4. QUANTUM BEHAVIORS AND NONLOCALITY PROOFS 43

Theorem 3.4.5. The set of all local behaviors is a subset of or equal to the set of
all guantum behaviors, £ C 2.

Proof.

This is most easily seen using Definition Let us only consider the case
of finitely many hidden variables. The infinite dimensional case is similar. Let d
denote the number of hidden variables, then we choose 7% = C¢. Let the index be
denoted by A =0,..,d — 1. If we choose all measurements as diagonal operators
with Ex , = diag(P(a|X,0),...,P(a|X,A),...) and similarly for Fy, and further
choose p = diag(¢(0),...,¢q(1),...), we recover, according to Definition all
elements of .Z from 2 for this special choice. Hence, we have . C 2.

In general we also have .2 C 2. Let us now investigate the geometry of the
set 2. Using the above two theorems we can already make a statement about the
dimension of 2.

Corollary 3.4.6. dim 2 =¢ = [Z?Z(;l(nx —1)+ 1} [Z;”f(;l(ny -1+ 1] — 1.
Proof.

We have already shown in Theorem that dim & = dim.% = ¢’ with ¢/
given above. From the last two theorems it follows that . C 2 C & and hence
dim.Z < dim 2 < dim £ from which follows dim.¥ = dim 2 = dim & =t'.

What else can we learn about the geometrical properties of the set 2? Clearly,
the geometry of 2 depends crucially on the properties of measurements, i.e.
oprms on (2 ,4/). Let us give the following theorem which we have omitted
in Section 2.4k

Theorem 3.4.7. The set of all oprms on (2, <) is convex, i.e. if M,M are
oprms on (2 ,.4) sois M3 =AM+ (1 —A)M, for 0 < A < 1.

Proof.

Recall from Definition that condition (iii), i.e. for disjoint A, € <7,
M3 (Un—1An) = X, M3(A,), hold if M3 is any linear combination of M; and
M,. However, conditions (i) and (ii), i.e. M3(:2") =1 and 0 < M3 < 1, only hold
if M3 is a convex combination of M|, M;.
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]
From this theorem we can make the following conclusion for the set 2:
Corollary 3.4.8. The set 2 of quantum behaviors is convex.
Proof.

We want to show that if p!,p?> € 2, ie. p}lbm, = tr(pIH;l(ﬂ ®H)1,7b) and
pgbm, = tr(pzngm ®H%,7b), then also p®> = Ap' + (1 -A)p> € 2for0< A <1,
where the [y ® 1, 1 ® 1y and p’s are all operators on the same Hilbert space
H = H,y® A Since p! and p? are both density matrices we can write
p! = UTp?U, where U is a unitary operator, i.e. U'U = 1. Using the proper-
ties of the trace we can then write

P3b|xy = )Lpalzb|XY +(1- Mpgbpd
= uw(Ap' Ty, @My, +(1-1)p°Ty , @117 ,)
— <pl [An}(ﬂ @I, + (1—1)UTT},, ®H§,,,U*]) .
= w(p' (A a+ (1= UG UL ) @
® (AT, + (1= M)U»IE,UL) ).

where U = U,y ® Ug is the decomposition of U on ¢, ® 7. U, and Uy are
again unitary operators on .77, and .7¢z respectively. It is readily checked that if
M is an oprm so is UMU", where U is unitary. Hence, the quantity in the bracket
is a convex combinations of oprms which according to Theorem [3.4.7| again is a
oprm. This completes the proof.

Let us summarize what we have gained so far. We have seen that in general
L C 2 C &, where all sets have the same dimension (cf. Figure . Further,
we showed that 2 is a convex set. However, in contrary to . and &, the set
2 is not a ploytope. Hence, 2 cannot be written as a convex hull of finitely
many vertices or as an intersection of finitely many half spaces, specified by linear
inequalities. However, since 2 is convex it can still be fully characterized in
terms of its boundary, this might be through infinitely extreme points or through
a collection of non-linear inequality specifying the boundary. For the specific
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case of the (2,2,2) Bell scenario a complete description of the boundary of 2 has
been given in terms of non-linear inequalities [33} 34, |29] which will be partly
discussed in the following section. However, for other Bell scenarios like the
(2,2,d) scenario very little is known.

Let us now come back to the importance of Bell inequalities. We have seen
that in general . C . This means that there are certain elements of 2 which
do not arise from a local model. Form a physical point of view this is a very
interesting observation as already discussed in the introduction. Since quantum
mechanics as a theory of nature like presented in Section [2.6] can produce such
joint probabilities for certain settings, this means that quantum mechanics is a
non-local theory. Bell inequalities are in this sense important, since they can be
used to prove that quantum mechanics is non-local. As being facet defining for
Z the Bell inequalities define the boundary between the set .Z" and 2. Hence, an
element ¢ € 2 which is not element of . would violate a given Bell inequality,
whereas an element of . would not. Let us make the above discussion precise:

Definition 3.4.9 (Nonlocality proof). We call an element of g € 2 for a given
Bell-scenario a nonlocality proof. Further, the nonlocality proof is called proper
if q is not element of £, i.e. if it violates a given Bell type inequality.

In the introduction we have already seen an explicit example of a nonlocality
proof, namely a state p together with a set of measurements of spin in certain
directions producing a joint probability ¢ € 2 which violated the CHSH inequal-
ity. The question one might ask at this point is: How big or how strong is this
violation? Knowing the answer to this questions might have several implications.
Firstly, from a physical point of view an experimentalist who would like to show
in an experiment that quantum mechanics is nonlocal would prefer an nonlocality
proof which produces the maximal violation such that he can clearly distinguish
whether the measured probability distribution arose from a local theory or not.
Secondly, since 2 is convex we know that a linear function like the one defining
a Bell inequality reaches its maximum on the boundary of 2. Hence, knowing
the maximum violation of a Bell inequality will give us further insides in the form
of the boundary of 2. Conversely, for the (2,2,2) we stated earlier that a com-
plete description of the boundary of 2 is known and we will see in the following
section how this enables us to give an optimal nonlocality proof for the CHSH in-
equality. Optimizing nonlocality proofs for the case of the (2,2,d) Bell scenario
of the CGLMP inequality is mayor aspect of this thesis in will be investigated in
Chapter [4]
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3.5 A quantum Bell inequality and Grothendieck’s
inequality

In this section we will further investigate the (2,2,2) Bell scenario for the CHSH
inequality. As already mentioned in the previous section the set 2(2,2,2) can be
full described by a set of non-linear functions in this specific case, and due to the
convexity one should be able to find a maximal violation of the CHSH inequality
for elements of 2.

Recall from Section that the CHSH inequality can be written as follows:

E(XQYo)-I-E(X()Yl)—l-E(XlYO)—]E(lel) <2, (3.28)

where the random variables Xy, X1, Yy, Y] can take values in {—1,1}. Clearly, there
exists an element of & for which the LHS of Equation becomes 4 and
which therefore violates this inequality. But what is the maximal violation for
elements of 2 C &?? In the introduction we have already seen that there exists
an element of 2 for which the LHS of Equation becomes 2v/2. In the
following we want to show that this is actually the maximal violation.

According to Definition every element of 2 can be written as

Papixy = (W[Ix o @ Ty 5| W), (3.29)

where |y) is a entangled state on ¢ = J¢,; ® 7 and the Ilx,I1x, are orthogo-
nal projectors onto the eigenspaces of the observables Xy, X; on .7, and accord-
ingly for Y. For the scenario (2,2,2) we require in addition that the spectrum of
the observables is spec(X;),spec(Y;) € [—1,1] for i, j = 0, 1. In other words this
means that

XP=1, Y}=1, Vi,j. (3.30)

Using this simple property we can give the following theorem due to []:

Theorem 3.5.1 (Tsirelson’s inequality). All pyyxy € 2(2,2,2) satisfy the follow-
ing inequality

E (XoYy) + E (Xo¥1) + E (X1 Yo) — E(X17) < 22, (3.31)
where
E(XY)= Y  abpuxy, (3.32)
a,be{—1,1} '

Proof.
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Let us simplify the following term involving the operators operators
Xo,X1,Y0, 71,

2

Xo¥o + Xo¥; + X1 Yo — X ¥} = \% (X0 +XT +Yg+77) -
_ ﬂs_l ((ﬁ—1)(XO—YO)+X1—Y1)2—
_ ﬁg_l((ﬁ—l)(xo—yl )2
_ \/58—1((@_1)(;(1 Yo) +X0+Y1>2
1) -

- 2l (v -

< xg+X12+Y02+Y1) <2V2 -1, (3.33)

5
V2
where in the last step we used that Xi2 =1 and Y? = 1. Taking the expectation
value on both sides and using that E (X)+E (Y) <E (X +7Y) gives what has to be
proven.

From a mathematical point of view it is very interesting to see that this theorem
also connects to the problem of determine Grothendieck’s constant [35] which is
known from Banach space theory. The connection was first seen in [33]] and relies
on the following definition and the two following theorems [36, 33]:

Definition 3.5.2 (Quantum correlation matrix). For any quantum behavior
Papjxy € 2(2,m,2), i.e. where we have X? =1 and sz =1, we call ¢ = {cjj}
with
C,‘jZE(Xin) = Z abpab|X,~Yj7 i,j:O,...,m—l,
a,be{—-1,1}

a quantum correlation matrix. The set of all quantum correlation matrices is
called M 4.

The following theorem is of special importance:

Theorem 3.5.3. A matrix c = {ci j} is a quantum correlations matrix, i.e. c € Mg
if and only if it admits a representation

cij=XiYj, 1,j=0,.,m—1,
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where X; and y; are unit vectors in Euclidean space of dimension 2m.

For the proof the reader is referred to [33]. From the properties of 2 one
can see that My is a bounded convex body in the R”*", exactly as 2 was in
R". Further, M 9 1s not a polytope. Nevertheless, it admits a representation as a
convex hull over a (infinite) set of extremal points, My = conv(exMy). These
extremal points are of special interest, as we will see in the following. Let now
state a theorem without proof [33]:

Theorem 3.5.4. An extremal quantum correlations matrix ¢ € exM 9 admits a
representation

C,'j =x,--yj, i,j=0,...,m— 1,

where X; and y; are unit vectors in Euclidean space of dimension r. Here r is
called the rank of c an it satisfies the following inequalities,

1 /1
< d < —= —+4m.
r<m an r< 2—|— 4—|—m

Having introduced the concept of quantum correlation matrices we can also
define local determinist correlation matrices:

Definition 3.5.5 (Local deterministic correlation matrix). A correlation matrix c
is called local deterministic of all components are —1 or +1.

Let us now apply these concepts to the CHSH inequality. For the behavior
scheme (2,2,2) we see that the rank of the correlation matrices is 2. Hence we can
rewrite the CHSH inequality as

Y Mijci; <1, for cje{-1,1} (3.34)
i,j=0,1

where
11 1
w=3(1 ) (339)

Further we can rewrite Tsirelson’s inequality

Y Mijei; <2, for cij €My (3.36)
i,j=0,1
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for the same matrix M. The quantum correlation matrices exceeding this bound
are elements of the set of extremal quantum correlation matrices. Using Theo-
rem we can therefore further write

Y MyE-y < V2, (3.37)
i,j=0,1

where the X; and y; are unit vectors in R2.
Let us now establish the connection to Grothendieck’s constant which can be
defined as follows using Grothendieck’s inequality [37]]:

Definition 3.5.6 (Grothendieck’s inequality, Grothendieck’s constant of order n).
Let n be an integer n > 2 and let M be any matrix M € R™™ which satisfies

m—1
Y Mijxiy;
i,j=0

<1 (3.38)

Jor xo, ., Xm—1,Y05 -, Ym—1 € [—1,1]. Then Grothendieck’s constant of order n,
denoted by Kg(n), is defined as the smallest number satisfying the following in-
equality known as Grothendieck’s inequality:

m—1

Y Mi%;-5;
=0

< Kg(n), (3.39)

for all unit vectors Xy, ..., Xm—1,Y0, -, ¥m—1 € R™.

Definition 3.5.7 (Grothendieck’s constant). Grothendieck’s constant is defined as

Kg = ,}Er.}o Kg(n). (3.40)

To determine Grothendieck’s constant is still a puzzling problem in mathe-

matics. The only exact value known is Kg(2) = v/2 [38]]. Bounds are known for

K;(3), V2 < Kg(3) < 1.5163 and for Grothendieck’s constant, 1.677 < Kg <

n/(2log(1++/2)) = 1.7822 [38, [39]]. It is therefore very interesting to see that
Grothendieck’s inequality of second order,

m—1

Y Mij%i-yj
i,j=0

<Ko(2)=V2, (3.41)
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/1 1
MZE(I _1) (3.42)

and X; and y; being unit vectors in R? is basically equivalent to Tsirelson’s in-
equality as is clear from the considerations above. Investigations of different in-
equalities with correlation matrices of higher rank might therefore also lead to
progress in the determination of Grothendieck’s constant. For a recent contribu-
tion along this line the reader is referred to [40]. We might come back to this point
in a future work.

for



Chapter 4

Optimizing nonlocality proofs

As we have seen in the introduction, certain nonlocality proofs (cf. Section |3.4)
can be implemented as an experimental proof showing that the physical reality is
incompatible with local realism. In this sense it is particularly interesting to know
the strength of such experimental nonlocality proofs, i.e. how sure one becomes
that local realistic theories are false, after observing a certain disagreement for
those theories in a certain number of experiments. An optimal nonlocality proof
would then be the one which gives the most confidence that local realism is false
with the least number of experiments.

In Section we introduce a measure for the statistical strength of nonlo-
cality proofs in terms of relative entropy. In particular, we use this measure to
investigate the statistical strength of nonlocality proofs for the (2,2,d) Bell sce-
nario for different values of d. In Section we analyze, in comparison to the
previous section, the maximal violation of the Bell inequalities associated to the
(2,2,d) Bell scenario which gives us the total variation distance of the classical
and quantum probability distributions. Afterwards, we give a comparison of the
both measures and point out some disadvantages of the latter one with respect to
measure statistical strength (Section 4.3).

4.1 From naive Bayesian analysis to statistical
strength

In this section we analyze the statistical strength of nonlocality proofs in terms of a
two-player game. Let QM be a pro-quantum-mechanics experimentalist and LR a
pro-local-realistic theoretician. QM is equipped with a specific proper nonlocality

51
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proof, meaning a Bell-type inequality together with a choice of state and measure-
ments that determine a quantum behavior which violates this inequality. QM will
perform various experiments and observe a certain amount of experimental data.
The goal of QM is then to test the hypothesis 2, “the observed data is governed
by a quantum behavior (cf. Definition [3.4.2))”, against the composite hypothesis
Z, “the observed data can be described by a local behavior (cf. Definition ”
[41].

4.1.1 Naive Bayesian analysis

In this subsection we do a Bayesian analysis of the statistics arising from the above
described game between QM and LR for a fixed setting [42]. This can bee seen
as a post-experimental analysis, meaning that given the results of a number of ex-
periments QM has performed, we derive a value for the confidence of QM against
LR. However, this statistical analysis cannot be used to give a pre-eperimental ad-
vise to QM about which experimental setup might be the best to arrive at a certain
confidence with the least number of experiments. An analysis of this kind will be
subject of the forthcoming subsection.

In the following we want to introduce the basic concepts of Bayesian inference
which we need for our discussing. In Section[2.1| we gave a basic introduction to
probability measures and probability spaces. Another important quantity which
have not discussed in this section is the so-called conditional probability:

Definition 4.1.1 (Conditional probability). Let (Q,.7,P) be a probability space
and Pr(B) > 0 fora B € .7, then

Pr(ANB)

Pr(1B): # — 01, A Pr(AlB):="—

is called the conditional probability under B.

Let us now introduce the concept of Bayesian inference. Bayesian inference
is a method to assign a numerical estimate of the degree of belief in a hypothesis
after certain evidence has been provided, in our case in form of an experiment,
based on a numerical estimate prior to the given evidence.

Definition 4.1.2. Let a Hy denote a hypothesis, often also called null hypothe-
sis. We call Pr(Hy) the prior probability of the null hypothesis Hy. For a given
evidence E we call Pr(Hy|E) the posterior probability.
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The prior and posterior probabilities are related by Bayes’ theorem:
Theorem 4.1.3 (Bayes’ theorem).

Pr (E|Hy) Pr (Ho)
Pr(E)

Pr (Ho|E) =

Proof.

Bayes’ theorem can be easily proven by inserting Definition @.1.1] for
Pr(Hp|E) and Pr(E|Hy).

Here Pr(E|Hp) is the probability of E given Hy is true and Pr(Hp) =
Y., Pr(E|H;)Pr(H,;) is the probability of E under all mutually exclusive hypothe-
ses.

In the following we want to use Bayesian analysis to test the hypothesis 2,
the observed evidence is generated by quantum mechanics, against the composite
hypothesis .Z, the evidence can be modeled by a local realistic theory. Suppose
QM sets up an experiment which gathers some evidence in form of a sample of
events 2 = {z1,...,2,}. Using Bayes’ theorem we can now relate the prior and
posterior probabilities for both hypotheses [42]

Pr(2|%) Pr(Z|2)Pr(2)

Pr(Z| %) Pr(Z|Z)Pr( L) @1

The confidence in this decision is given by the posterior odds Post(2,.%) of
2 against .Z, defined, for a given evidence 2, as

Pr(Z|2)

POSt(Q,D%) = W,

4.2)

where large Post(2,.Z’) means larger confidence.

Let us now apply this Bayesian analysis to the specific example. Imag-
ing QM and LR are setting up an experiment to test their hypotheses 2 and
Z. Due to the simple setting they choose the experiment discussed in the in-
troduction. LR was so convinced by Einstein, Podolsky and Rosen’s [3] no-
tion of ‘“elements of reality” that prior to the experiment he bets 100 Euros
against 1 Euro that .Z is correct, yielding the following ratio of prior probabilities
Pr(2)/Pr(£) = 0.01. However, QM as a true believer in quantum mechanics
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and is willing to run as many experiments as necessary to convince his friend by
Pr(2|%) /Pr(Z|Z) = 100. Thus, due to relation (4.1I)), he needs to provide a
confidence of Post(2,.Z) = 10000. We can now use the Bayesian analysis de-
scribed above to determine how many experimental runs QM has to perform until
he arrives at the desired confidence.

Recall the details of the experiment, QM prepares a singlet state of two spin-
half particles and sends on particle to Alice and one to Bob. Alice can perform
two spin measurements at an angle of 0 and 7 /2 and Bob at an angle of /4 and
—m /4. The corresponding CHSH inequality was derived in Theorem [3.3.1]

Pr(X1 #Yl) < PI‘(XO #* Y0)+Pr(X0 #Yl)—{—Pl‘(Xl #YQ). 4.3)

In the introduction we had shown that 2 predicts all probabilities of the right-
hand-side Equation (4.3) to be equal to ¢ and the probability on the left hand
side to be equal to 1 — g, where g = sin?(/8) ~ 0.146. From the rotational
symmetry of the measuring devices one can see that an alternative description of
the probabilities in Equation from a local realistic model also yields that the
probabilities on the right-hand-side are equal, let us call this common value p,
and that the left-hand side is then 1 — p. For a local realistic model which mimics
quantum mechanics as close as possible we have equality in (4.3)), and hence we
find p=1/4.

We now assume that the probabilities for the experimentally found results,
in terms of m correct predictions in n experiments are given by the a binomial
distribution ,

n!

Pr(Z12) = mqm(l—Q)n_m
PUZLE) = (=

If we assume that 2 is experimentally correct, i.e. m ~ gn, we arrive at the
following expression for that posterior odds

a/1_o\"1\"
Post(2, %) = (2) (_q)
p) \1=p
Thus, to achieve the desired confidence of Post(2,.Z) = 10000 we would need
n = 288 experimental runs.

In this subsection we investigated the statistical strength of a certain nonlo-
cality proof for the CHSH Bell setting. As we have seen the above calculation
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depended strongly on the symmetries of the setting (which we used for example
to determine the value of p). More generally one would like to formulate a no-
tion of statistical strength which is not constraint to a particular setting nor does
require any special symmetries. In the following subsection we want to introduce
the relative entropy as such a measure for statistical strength.

4.1.2 Statistical strength and the Kullback-Leibler divergence

After the short discussion of a Bayesian analysis of nonlocality proofs as done
in the previous subsection we now want to give a more sophisticated notion of
statistical strength of nonlocality proofs. This is done in terms of the Kullback-
Leibler divergence or relative entropy.

Definition 4.1.4 (Kullback-Leibler divergence). Let 2 be a finite set and {z} be
an event in Z. For two probability distributions, Q(z) and L(z), over 2 we define
the Kullback-Leibler divergence from Q to L as

H(QIIL) = ¥ 0(z)log 22

€% ( )

where log(-) refers to the logarithm to the basis 2, as through out this text, and we
adopted the convention 0log(0 = 0.

The Kullback-Leibler divergence is also known as relative entropy or cross-
entropy and was first introduced in [43]]. A detailed discussion of its properties is
given in Appendix In particular, it is shown that H (Q||L) > 0 with equality
at Q = L. This is typical for the notion of a distance, however, in general we have
H (Q||L) # H (L||Q), and hence H (Q||L) is formally not a distance. A further
discussion of this asymmetry is presented in Section

The Kullback-Leibler divergence was first used in [41] to quantify the statisti-
cal strength of nonlocality proofs.

In terms of simple hypothesis testing one can get an intuition of the relation
between Kullback-Leibler divergence and statistical strength. Let Z;,Z,,... be
a sequence of random variables independently generated by either Q or L, with
Q # L. Given some observed data z1,z7,... we can find out whether this data is
generated by Q or L by comparing the likelihood of the data according to the two
distributions. This is done by looking at the ratio

0(z1,22,-) _ 17 2)
L(z1,22,-) 1 L(zi)

(4.4)
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We now want to look at the behavior of the logarithm of this ratio assuming that
Q is true. From the Law of Large Numbers we know that if the Z; only take values
in the finite set 2 and Q(z),L(z) > 0 for all z € 2 then

1 n
ZZP,-—AEQ(P) as n — oo, 4.5)
i=1

Here P, :=1og(Q(Z;)/L(Z;)), and

Eo(P) = Eo(P)=...=Eo(F)
Q) 0(z)
o(loef) = L owe T =niel. o
Hence, ( )
1 0z, 7,
Zlogm — H(Q|IL). 4.7)

This means that that the average log-likelihood ratio between L and Q, which can
be seen as the amount of evidence for Q against L, is asymptotically given by the
Kullback-Leibler divergence.

It is also interesting to see that the Kullback-Leibler divergence has also a
natural interpretation in terms of confidence, measured by the posterior odds of Q
against L. In Ref. [41] it was shown that

Post(Q, L) = 2"H(CliL)+0ogn) = 4y oo, (4.8)

Thus the Bayesian confidence is measured by the Kullback-Leibler divergence up
to first order in the exponent.

In this sense, in the previous subsection, we indirectly calculated an ap-
proximation for the Kullback-Leibler divergence for two probability distributions
0=1(¢,9,9,1—¢q) and L= (p,p,p,1 — p). But who tells us that the distribution
L was the probability distribution in .’ which, in terms of Kullback-Leibler di-
vergence, was the “closest” to any given Q € 2 or that the distribution Q was the
most far from this distribution L? The answer is simple nobody, it was just a good
guess. We assumed that the element L € . which yielded equality in the consid-
ered Bell inequality was the one closes to 2 and that the element Q which lead to
the maximal violation of this inequality was the one most distant to L. However,
as we will see in the following sections, this is simply not true in general. The
nonlocality proof with the highest statistical strength (yielding to a bigger confi-
dence after a fixed number of experimental runs) is not the one which leads to a
maximal violation of the corresponding Bell inequality.
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Now we see that to calculate the statistical strength of a given nonlocality proof
(a fixed experimental setting) against the composite hypothesis . we should de-
termine

min H(Q||L), 4.9)

or, if we leave the setting arbitrary,

max min H (QlIL). (4.10)

The solution Q° € 2 which maximizes min; ¢ » H (Q||L) then determines the
optimal experimental setting for the given Bell setting 2.

In [41] such optimizations of the above type were performed to numerically
determine the statistical strength of several nonlocality proofs. Like this totally
different Bell settings like CHSH and GHZ for example could be compared in
terms of statistical strength. In the following we do not want to discuss all this
results, but rather concentrate on the specific example of the CGLMP inequality
and discuss the statistical strength for the different numbers of outcomes.

4.1.3 An application to the CGLMP inequality

Recall, that in the case of the (2,2, d) Bell setting [27] we consider two parties, <7
and %, each having a choice of two measurements for which each measurement
can have d possible outcomes.

We now want to discuss the statistical strength of such nonlocality proofs for
different values of the number of outcomes [28]. In general the problem of de-
termine the optimal setting for a given number of measurement outcomes, i.e.
the optimal measurements and the optimal state, is numerically very difficult. To
make the numerics more feasible we further want to fix the measurements to the
following projective measurements Ily , and Iy, with eigenvectors [44, 27],

e = = % e (k) ) @i

s = 73 e (P76 s @12

where the phases read ap =0, o) = 1/2, Bp = 1/4 and B; = —1/4. These are the
conjectured measurements which maximally violate the CGLMP inequality,

Pr(X, <Y;)+Pr(Y; < Xo)+Pr(Xo < Yo)+Pr(X; >Yy) > 1, (4.13)
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for the case of the maximally entangled state

\/_Zy i)y ®1i) (4.14)

as we will discuss in more detail in the following section. In [28]] it was indeed
shown that at least in the (numerical feasible) case of d = 2,3,4 these measure-
ments also corresponded to the optimal measurements maximizing the Kullback-
Leibler divergence. Conjecturing that this also holds for higher values of the num-
ber of outcomes the problem of finding the solution

=H (Q'||L") =1Q11€a§gé{§H(Q||L)- (4.15)

becomes very similar to a standard Bell type inequality. In particular, if we con-
sider small variations from this solution we find

H(Q +8Q|IL) < H (4.16)
H(Q||L°+8L) > H’. 4.17)

This implies that values (Q,L) close to (Q°,L*) must obey

Zlog< ) 0 < H' (4.18)

Zlog—’L < 1, (4.19)

where the index i runs over the 4d> components of the corresponding probability
vector. Further, by convexity arguments one can see that the above requirement
must be fulfilled by all probability distributions Q and L.

Note that the left-hand-side of inequality (4.18)) can be seen as the mean of
a certain Bell operator and the left-hand-side of inequality (4.19) as a Bell type
inequality. In particular, in [28] is was numerically checked that at least in the
case of d = 2,3,4 inequality is equivalent to the corresponding CGLMP
inequality (4.13). To simplify the numerics this is further assumed also to hold for
d>4.

Now the numerical problem of finding the optimal state which maximizes the
Kullback-Leibler divergence has hugely simplified and can be carried out for very
large vales of d. The results from [28] are summarized in Figure Shown is



4.1. FROM NAIVE BAYESIAN ANALYSIS TO STATISTICAL STRENGTH 59

0.2 i
0.18f ° 1
:‘E 0.161 ° 1
2
o 0.14+ 10 |
(]
o
g 0.12r o g/ o 1
= 0.1F S 09 o |
(@) ) ° ~ )
3 w
X 0.08f o ° 1
08 °© o
0.06f 2 5 10 15 20 A
o Dimension
004 10 15 20
Dimension

Figure 4.1: Plot of the maximized Kullback-Leibler divergence for Bell tests using
the CGLMP setting with the described “best measurements™ as a function of the
dimension d. Inside: entanglement entropy E /logd of the corresponding optimal
state as a function of d.

the numerically maximized Kullback-Leibler divergence H(d) as a function of
the number of measurement outcomes as well as the entanglement entropy of the
corresponding optimal state.

It is interesting to see that only the optimal state for d = 2 is maximally entan-
gled and all others for d > 2 are not. In particular, it was shown that for large val-
ues of d the entanglement entropy behaves like limy ... E(y) = Ind ~ 0.691ogd.
We will see in the forthcoming section that qualitatively this is also true for the
optimal state maximally violating the CGLMP inequality. However, interestingly
the optimal state in terms of the statistical strength of the corresponding Bell ex-
periment is not the same as the one maximally violating the corresponding Bell
type inequality, as was long believed.

The fact that the optimal state both in the sense of Kullback-Leibler divergence
as in the sense of maximal violation of Bell type inequalities is not maximally
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entangled for the CGLMP setting with d > 2 was already observed in [28] and
[45]. Nevertheless, this fact is still puzzling, since violation of Bell inequalities
and entanglement are both seen as measures of “quantum nonclassicality”. In the
forthcoming section we will further investigate this differences.

4.2 On the maximal violation of the CGLMP in-
equality

In the previous section we introduced the Kullback-Leibler divergence as a statis-
tical strength of non-locality proofs. In this section we also want to concentrate on
nonlocality proofs that use the CGLMP inequality. Whereas in the previous sec-
tion we determined the optimal setting via maximizing the Kullback-Leibler di-
vergence, in this section want to determine the optimal setting by maximizing the
violation of the CGLMP inequality over the set of quantum behaviors 2(2,2,d).
This is equivalent to maximize the so-called total variation distance [46]

Definition 4.2.1 (Total variation distance). Let 2 be a finite set and {z} be an
event in %. For two probability distributions, Q(z) and L(z), over & we define
the total variation distance between Q and L as

D(Q|IL) = Y [0(z) —L(z)|.

€Y

It is easy to see that D(P||Q) defines a proper measure of distance (in contrast
to the Kullback-Leibler divergence for which in general H (Q||P) # H (P||Q)).

As said above in this section we want to determine the optimal setting which
maximizes the violation of the CGLMP inequality, i.e. find the solutions

S S S :

D' =D(Q||L") = 0T o 1e ir;l(lzr}zvd)D(Ql IL). (4.20)
As already discussed in previous chapter, since 2(2,2,d) is a convex and
since the CGLMP inequality is linear, it reaches its maximum on the boundary.
Hence, knowing the maximal violation would give us also further inside in the

geometrical properties of the set 2(2,2,d).
For the case of the CHSH inequality we have derived a bound over the set
of quantum behaviors in terms of Tsirelson’s inequality. Thereby we proved that
its maximal violation corresponds to the value 2\/5. In the introduction we have
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shown a specific choice of measurements that for the maximally entangled state
exhibited this maximal value.

At this point one might ask several questions regarding the more general case
of the (2,2,d) Bell setting. First, what is the maximal violation of the CGLMP
inequality and can one prove the existence of an exact bound? Second, what are
the best measurements and the best state that produce the maximal violation? Is
the best state maximally entangled?

In the following we want to investigate this problem and provide answers to
the above questions [47].

4.2.1 The maximally entangled state

Before considering the case of arbitrary quantum behaviors let us first concentrate
on the maximal violation of the CGLMP inequality,

PI‘(Xl < Yl)-I-PI‘(Yl <X0>-|—PI‘<X0 < Y0)+Pr(X1 > Yo) > 1, 4.21)

for the case of the maximally entangled state.
For the maximally entangled state,

f Z i) o ® i) (4.22)
it has long been conjectured that the measurements which maximally violate the
CGLMP inequality are described by the projective measurements Ilx , and Ily,
with the following eigenvectors [44, 27],

d—1

ke = izep(iz—”kawﬂ)) K., (4.23)
d = d
d—1 o7

e = g7 Eew (P76 s @29

where the phases read 0y =0, a; = 1/2, fp =1/4 and B; = —1/4.

We evaluate the left-hand-side of inequality (4.21) for the joint probabilities
arising from a quantum behavior in the case of the maximally entangled state and
the just described measurements. From Definition [3.4.2] we get,

Pr(X, <Y¥,)=Y Tr (HXa®H b|<I>><<I>|) (4.25)

i<j
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where the H§(7 + = |i)x.a(i|x « are the projectors on the corresponding eigenspaces

defined in (4.23))—(4.24) and similarly for H{, ,- For later purposes we will leave
the Schmidt coefficients unspecified throughout this calculation and only equate
them to 1/+/d at the end. Hence considering the state

d—1
) =Y Ali)o ®|)) 2, (4.26)
i=0

one obtains for the joint probability for the measurement outcome being X, = k
and Y, =1

2
PXa=kYy=1) = [(ylk)xa®l)ys|
1| 2 :
= 3| <i7i(k—l+aa+ﬁb)) ,  (4.27)
i=0
where we used that (j|j') = §; y. Using the values for the phases we get
%(l]/) = PI‘(Xl < Yl) +PI‘(Y1 < X()) -I—PI‘(XO < Yo) —|-PI‘<X1 > Yo)
d—1d—1
= L ) Mydid, (4.28)
i=0 j=0
where the d x d-matrix M can be simplified to
| B i—Jj)m
Mij = 261] — ECOS ! (—( 2d]) ) . (429)
Putting A, = 1/ \/E 1.e., looking at the maximally entangled state, we obtain
ford =2,
3—v2
2 (D) = 2\/_ ~ 0.79289 (4.30)

which corresponds to the maximal violation of the CHSH inequality know from
Csirelson’s inequality [36].

It is also interesting to look at the conjectured (it is not known that these are
the best measurements) maximal violation of Equation (4.21) with the infinite
dimensional maximally entangled state. We get

. 1 Ll m
lim o7;(®) = 2_E/o /Ocos (Z(x—y))dxdy

d—)oo
16Car?

- 2 —

~0.515 (4.31)
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where Cat is Catalan’s constant, reproducing the result obtained in [27] for the
original version of the CGLMP inequality.

In this section we described what are believed to be the best measurements
for the CGLMP inequality with the maximally entangled state. Though it is of-
ten thought that the maximally entangled state |®) represents the most nonlocal
quantum state, evidence has been given in [43] and [28] that the states which
maximally violate inequality are not maximally entangled. In the follow-
ing section we provide further evidence for this and investigate several properties
of the optimal state especially in the case of large values of d.

4.2.2 Optimizing over states and measurements

In the previous section we described the measurements which in the case of the
maximally entangled state appear to give the maximal violation of inequality
@.21). However, as mentioned above, it has already been seen that in the case
of d > 3 the state which causes the maximum violation of the inequality is actu-
ally not the maximally entangled state [45] 28]].

Natural questions which arise at this point are: How can the optimal state be
described for larger d and are the corresponding best measurements the same as in
the case of the maximally entangled state? Further, what is the maximal violation
of inequality (4.21) as d tends to infinity?

To address the above questions we want to optimize the left-hand-side of
inequality over all possible measurements and states. For this purpose
we assume that the state of Alice’s and Bob’s composite system is a pure state
ly) € C¢ ®C? and that the measurements Iy , and Ily, describing Alice’s and
Bob’s measurement are projective and nondegenerate as also considered above.
In this case the problem of finding the minimal value of the left-hand-side of in-
equality becomes a nonlinear (4d” 4 d)-dimensional optimization problem
with respect to certain constraints.

For small values of d we can numerically perform the optimization. The re-
sults for the first values are summarized in Table 4.1l Shown are the minimal val-
ues of the left-hand-side of inequality (4.21]), denoted by min.aZ; (y,I1x 4,11y ),
and the Schmidt coefficients of the optimal state for which o7;(y,Ilx 4,ITy)
reaches its minimum.

One observes that for d > 3 the optimal state is not maximally entangled.
More precisely, as we will see later the entanglement entropy decreases as d be-
comes bigger. The optimal states arising from the numerical optimization over
(y,Ix 4,I1y;,) agree with results obtained in [45]], but differ from the results
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discussed in the in Section (see also [28]]). That is because in [28]] the quantity
to be optimized was not the CGLMP inequality, but the Kullback-Leibler diver-
gence (relative entropy) which quantifies the average amount of support in favour
of QM against LR per trial.

Closer analysis of the optimal measurements Ilx , and Ily; shows that even
though the optimal state is not the maximally entangled state the best measure-
ments seem to be the best measurements and of the previous case.
Further numerical optimizations for higher values of d give strong evidence that
this true in general.

4.2.3 On a quantum Bell inequality for infinite dimensional
states

If we assume that (4.23]) and (4.24)) are the best measurements for all values of
d we can further simplify the optimization. We have already derived in Equation
(4.28) that in the case of the measurements (4.23)) and (4.24)) we can write

dy(y) = Pr(X; <Yp)+Pr(Y; <Xo)+Pr(Xo <Yy)+Pr(X; >Y)
d—1d—1

= Y Y M;nn;, (4.32)

i=0 j=0

where |y) = Y9 4]i) oy © |i) 5 and the d x d-matrix M was given by

.y
M =28 y—d 'cos! (%) . (4.33)

Hence under this assumption, finding the maximal violation of (4.21) reduces
to finding the smallest eigenvalue of the matrix M. The corresponding eigenvector
{?Li}?:_ol gives us the optimal state.

Before going on with the search for the smallest eigenvalue of M let us first
proof some general properties of all eigenvalues.

Note that the matrix has the following form

mo m my -0 Mgy
mi mo mp e Mg
M = my my my - mg_3 (4.34)
Mmg—1 Mg—p Mg_3 - Mo

withmg>0>my >my > --->my_q.
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Table 4.1: Optimization over all observables and states. Only the minimal value of the left-hand-side of inequality

(4.21) and the Schmidt coefficients are shown.

[d [ minAg(yv,OxoTyp) [ 2o A %) A3 Aq As As A7
2 0.792893 0.707107 | 0.707107 - - - - - -
3 0.695048 0.616895 | 0.488753 | 0.616895 - - - - -
4 0.635238 0.568573 | 0.420394 | 0.420381 | 0.568572 - - - -
5 0.593716 0.536835 | 0.385935 | 0.385908 | 0.385908 | 0.536842 - - -
6 0.562626 0.513699 | 0.364399 | 0.321401 | 0.321417 | 0.364453 | 0.513706 - -
7 0.538159 0.495734 | 0.349317 | 0.301086 | 0.288313 | 0.301076 | 0.349346 | 0.495742 -
8 0.518208 0.481196 | 0.337879 | 0.286858 | 0.268132 | 0.267839 | 0.287501 | 0.337887 | 0.481191
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Theorem 4.2.2. The eigenvectors AT = (A0, A1,y A1) of the matrix M with
positive components A; > 0, Vi € {0,....d — 1} have the following symmetry for
d>3:A=A_1-i

Proof.

Let use only prove the Theorem for even d. The proof for odd values of d is
similar. For even d we can write the matrix M in terms of four d /2 x d /2 matrices,

_( M M
M= ( T o ) (4.35)
where we have I; j = 8; 4/2_1_;, i,j =0,...,d /2 — 1. I and M have the following

poperties I” = T and MT = M. If we write A7 = {17, A7}, where both A, and 4,
have d /2 components, the eigenvalue problem reads

M111+M212 = 7(«11
(iTMzi)}L’l—{—Ml_iz = l_iz (4.36)

Using the conditions stated above one gets
A Moy = AT (T MDA (4.37)

and hence 12 = :I:INL. But since all components of A are positive we get 12 = Iﬁl
which completes the proof.

For small values of d we can determine the eigenvectors of M analytically and
hence also obtain min 7; = 7LTM_A), where 1 is the eigenvector with the smallest
eigenvalue. In particular, for d = 2,3 we obtain min.% = (3 —v/2)/2, with A=
(1,1)7/v/2, and min. = (12 —/33)/9, with = (1,7,1)7 /(v/2+ ¥2), where
y = (v/11 —+/3) /2, agreeing with results presented in [45]).

More interesting becomes the search for eigenvectors with minimal eigenvalue
for a large number of possible measurement outcomes. Numerical search for those
eigensystems is feasible for very large values of d by use of Arnoldi iteration.

The results of the numerical optimizations are summarized in Figure §.2]
Shown is the minimal target value, .<7;(y), as a function of the dimension d for
a range from 2 to 10° both for the case of the maximally entangled state and the
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Figure 4.2: Minimal value of the left-hand-side of inequality (4.21)) as a function
of the dimension d: (i) for the maximally entangled state and (ii) for the optimal
state. Inside: Entanglement entropy E/logd of the optimal state as a function of
the dimension d.

optimal state. In the case of the maximally entangled state, .o7;(®) approaches
very quickly the asymptotic value .27 (P) ~ 0.515 derived above.

In the case of the optimal state it is interesting that the maximal violation of
does not approach an asymptote very quickly. In fact, for very large d
it falls off slower than logarithmically with the dimension. The numerical data
shown in Figure 4.2|do suggest that the minimal value of .o7;(y) approaches zero
as d tends to infinity. This is very interesting since zero is the absolute minimum
of «7;(y) on the boundary of the polytope of all probability vectors. If one could
show analytically that there exists a optimal state which actually causes .27;(y) to
approach zero as d tends to infinity, one would have proven a new tight quantum
Bell inequality for the (2,2,0) scenario (see conjecture at the end of this section).

Let us now investigate further properties of the optimal states causing the max-
imal violation of inequality (4.21). Figure d.3]shows the typical shape of a optimal
state for d > 3, namely in the case of d = 10000. Plotted are the Schmidt coeffi-
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cients A; as a function of the index i. The reflection symmetry around (d —1)/2
is the one proven in Theorem as a general property of all eigenvectors of
M. As d increases the Schmidt coefficient get more and more peaked at i = 0 and
i=d—1.

It is also interesting to look at the entanglement entropy of the optimal state.
Whereas for the maximally entangled state E(®)/logd = 1 for all values of d,
in the case of the optimal state the entanglement entropy decreases with the di-
mension. As in the case of the minimal value of .o;(y) the entanglement entropy
decreases slower than logarithmically, but we are not able to give an asymptotic
bound for it. This is contrary to work of [28]] presented in the previous sec-
tion, where the entanglement entropy seemed to approach the asymptotic value
limy .. E(y) =1Ind ~ 0.69logd. Again, the disagreement is due to the fact that
in the latter the quantity to be optimized was not the CGLMP inequality, but rather
the Kullback-Leibler divergence.

From the insights gained in this section we state the following conjecture:

Conjecture 1 (Quantum Bell inequality). For d — oo the minimal value of
Pr(X; <Y1)+Pr(Y) < Xp)+Pr(Xo < Yy)+Pr(X; > Yy) converges to zero, where
the best measurements for each d are the ones presented above, (4.23)) and (4.24),
and the optimal states are of the form shown in Fig. Hence,

Pr(X; <Y;)+Pr(Y; <Xo)+Pr(Xo <Yy)+Pr(X; >Yy) >0, (4.38)
is a tight quantum Bell inequality for the (2,2,0) Bell setting.

A proof of this conjecture is work in progress and will be hopefully reported
soon.

4.2.4 Approximating the optimal state

Under the assumption that the conjectured best measurements are optimal the
problem of proving the above conjecture reduces to find a analytical expression
for the optimal state for which .o7;(y) should become zero as d tends to infinity.
In this section we try to model the optimal state by various approximations and
looks at the value of .o7;(y) for this approximate states.
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Figure 4.3: The typical shape of a optimal state for d > 3. Shown are the Schmidt
coefficients A; of the optimal state for d = 10000 as a function of the index i.

The NOPA state

To model the infinite dimensional maximally entangled state the following, so-
called NOPA state has been proposed in the literature [48]

Y)vora = V1=2A2 Y Xi)or @ i) 5, (4.39)
i=0
for A € (0,1). In particular, for A — 1 the NOPA state becomes maximally entan-
gled. The NOPA state is also very interesting, since there are ways of experimen-
tally realizing this state for certain values of A [49].

Since the optimal state we want to approximate has symmetrical Schmidt co-
efficients, we try to model it with a superposition of two NOPA states of which
one has reflected Schmidt coefficients, i.e.

d—1

()~ Y (A +2971). (4.40)

j=0

which for small values of A qualitatively looks like the conjectured optimal state.
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In particular, it is possible to perform the limit d — oo and turn the summations
into integrals yielding

B log A
Su(¥1(4)) = 2_2110g/1+)»2—1/ / cos |5 (= y))
;o ox (AT Ay e 1+2,2 Mdxdy (4.41)

The result can be numerically integrated and further minimized over all
vales of A. One obtains that A = 3.65107% corresponds to the minimal value
oo (W1 (A™)) = 0.352. 1t is also easy to check that for A = 1 one recovers the
result of the maximally entangled state <7 (y1(1)) ~ 0.515. Clearly, y; is not a
very good approximation for the optimal state, however, it is still much better than
the maximally entangled state and due to the possibility of modeling the NOPA
state in the laboratory the above described approximation might still be a good
candidate to perform actual Bell experiments.

A slight modification of y;(A) is the state

o) ~ Y (A 24471 4 a), (4.42)

J=0

i.e. the superposition of yj(A) with a maximally entangled state. A similar anal-
ysis as in the above example shows that the A" = 5.48107!7 and ¢ = 0.672
minimize 2Z.(y,(A™,a™)) = 0.2306.

In the following we want to discuss one further more accurate approximation
to the optimal state.

A better approximation

In this subsection we want to discuss a different state as an approximation for
the optimal state maximally violating the CGLMP inequality (in the case of the
conjectured best measurements). Consider the following state which was first
given in [50] as a good approximation to the optimal state:

3 ) oy @ (4.43)
vs) ~ Z 0/ (141) i)z

Qualitatively, this state has the shape as shown in Figure {.3] for the optimal
state and therefore serves as a good candidate.
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Ideally, we would be interested in knowing the value of <;(y3) as d tends
to infinity. It is straightforward to turn the summations in this expression into
integral in the limit as d goes to infinity, however, due to the poles in the integrals
the normalization factor becomes zero and the integral becomes infinite. To deal
with the problem one has to introduce a regulator for the divergences which one
wants to take to zero again after performing the integration. One possible choice
of regulator would be

P S e e cos™! (¥ (x—y))dxdy
FelY3) =2 gli}}h/%o(*‘?)/()/() Vix+e)(l—x—g)(y+e)(1l—y—¢) (449
with 2
Jléo(s):log( =2 ) (4.45)

However, it turns out that in this case the integration becomes analytically and,
due to the problems with the regulator, also numerically non-feasable.

The only thing left we can do is numerically evaluate the sums in .<7;(y3) for
various values for d. The result is shown in Figure 4.4|in comparison to the numer-
ical values for the optimal state. In addition, Figure 4.5|displays the entanglement
entropy of both, the approximate and the optimal state.

One can see that whereas for small vales of d the minimal value of the left-
hand-side of inequality for both the approximate state and the optimal state
are very close, for bigger values of d the deviation becomes much bigger. For
approximately d = 500000 the minimal target value for the approximate state is
already more than 25% above the minimal target value for the optimal state. This
also suggest that even if we would be able to evaluate .o%.(y3) exactly it would
probably not tell us too much about the corresponding value for the optimal state.
In particular, where has the former might give a non-zero result the latter might
still be zero as conjectured above.

The difference between the approximate state y3 and the optimal state is nicely
observed in Figure in which the entanglement entropy E/logd as a function
of d is displayed for both the approximate as well as the optimal state. One sees
that for large values of d the approximate state is much more entangled than the
optimal state.

In this subsection we analyst different approximate states of the optimal state.
The NOPA state might be particularly interesting for actual experimental realiza-
tions of the CGLMP Bell experiment in the case of infinitely many dimensions.
The other approximation was very accurate for small values of d. However, none
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Figure 4.4: Minimal value of the left-hand-side of inequality (4.21) as a function
of the dimension d: (i) for the approximate state Equation (4.43)) and (ii) for the
optimal state.

of the considered approximations was very accurate for the case of large values of
d.

4.3 Kullback-Leibler divergence versus total varia-
tion distance

In this chapter we introduced two divergences for probability distributions,
namely the Kullback-Leibler divergence and the total variational distance.
Whereas the Kullback-Leibler divergence was shown to give a proper measure
for statistical strength in the context of nonlocality proofs, the total variational
distance was more useful to study certain geometrical properties of the convex
body of quantum behaviors, e.g. finding a generalized Tsirelson inequality.

In particular, this means that if one is performing some actual Bell experi-
ment and one is interested in showing most efficiently that the outcomes of the
experiment cannot be obtained by local realistic models the settings one should
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Figure 4.5: Entanglement entropy E/logd as a function of d: (i) for the approxi-
mate state Equation (4.43)) and (ii) for the optimal state.

use are the optimal settings derived from maximizing the Kullback-Leibler diver-
gence and not the optimal settings derived from maximizing the total variation
distance, i.e. from finding maximal violations of Bell inequalities. This fact is
sometimes stated wrong in the literature, where some authors equate statistical
strength with total variation distance. We therefore want to point out explicitly
that Kullback-Leibler divergence defines a proper measure of statistical strength,
but not the total variation distance. The latter is mainly interesting to study the
boundary of the convex body of quantum behaviors.

To make the misuse of total variation distance as statistical strength clearer let
us consider the following simple example.

Example 4.3.1. Consider a set of two possible outcomes, say the events spin up
and spin down, 2 = {1, | }. Image now we would have the following probability
distributions L(z) and Q(z):

L(1)=0.99, L(|)=001 and Q(1)=1, Q(])=0.

The total variation distance is just D(L||Q) = 0.02. Further it does not depend
on whether we would test L(z) against Q(z) or the other way around. Consider
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for example the case that the observed data would be generated from L(z), then
after a finite amount of experimental runs we would observe one event | and we
would be 100% sure that the data was sampled from L(z) and Q(z). This can
be seen from the Kullback-Leibler divergence. If we take “the data is generated
from L(z)” as our hypothesis we would naturally calculate H (L||Q) = oo which is
infinite in our example, reflecting the fact that after a certain amount of runs we
would have infinite confidence that the hypothesis was correct. If we one the other
hand would assume that the data is generated from Q(z) we would rather calculate
H (Q||L) = 0.015, meaning that if the data was really sampled by Q(z) we would
need many experimental runs to gain a certain amount of confidence.

In this section we commented on the differences between Kullback-Leibler
divergence and total variation distance. The main massage one should take from
this discussion is that, against common belief, the optimal setting one should use
to perform a Bell experiment most efficiently, i.e. gaining the highest confidence
that the data was generated from quantum mechanics rather than from a local
realistic model, is not the one which maximally violates the corresponding Bell
inequality, but rather the one which maximizes the Kullback-Leibler divergence.



Chapter 5

Conclusion

Despite many efforts there are still many mysteries surrounding the nonclassical
aspects of quantum probability distributions. The mayor task of this thesis was
to introduce the reader to this mysteries and to further investigate some of those.
This was done by analyzing the relations between several notions or measures of
nonclassicallity often used in the literature, namely entanglement (entropy), max-
imal violation of Bell inequalities (total variance distance) and statistical strength
of nonlocality proofs (Kullback-Leibler divergence).

In Chapter [2) we introduced the reader to the mathematical framework of quan-
tum statistics. We will briefly introduced the basic notion of classical probability
theory and defined the concepts of quantum probability theory in terms of Hilbert
spaces and measurements on them. Further, we will generalized the setup for ten-
sor products of several Hilbert spaces. Finally, we showed how this mathematical
framework of quantum probability theory is used to model the physical theory of
quantum mechanics and clarified the basic concepts by applying them to a simple
example.

In Chapter 3| we discussed the aspect of non-locality in quantum statistics. In
the first part of this chapter we introduced the general framework of Bell scenar-
ios and how to describe joint probability distributions on those. Further, we will
derived several geometrical properties of the set of all such joint probability dis-
tributions. We will characterized under which conditions such behaviors are said
to be local or locally deterministic. The notion of locality was used to derive the
CHSH and CGLMP inequality. In the second part we specified the set of joint
probabilities which arises from the theory of quantum probability. We showed
that in general such quantum behaviors are nonlocal and can be used to define
a nonlocality proof. At the end of the chapter an inequality for quantum behav-
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1ors of the CHSH setting was given and interesting relations to Grothendieck’s
inequality and Grothendieck’s constant were presented.

Chapter 4 was the main new part of this thesis. It discusses the optimization
of nonlocality proofs in particular of the CGLMP setting; first with respect to
statistical strength defined in terms of Kullback-Leibler divergence and second in
terms of total variation distance, i.e. maximal violation of Bell inequalities. It is
shown that whereas the optimal measurements are the same in both cases, namely
the (conjectured) best measurements in the case of the maximally entangled state
for violation of the CGLMP inequality, the optimal states are not. In particular,
the optimal states in both cases are not the maximally entangled state.

We investigated the maximal violation of the CGLMP inequality for very large
numbers of measurement outcomes. We analysed the specific form of the best
states and their entanglement entropy. It turned out that for increasing dimension
the entanglement entropy of the optimal state decreases, agreeing qualitatively
with the observations made by optimizing the Kullback-Leibler divergence. Inter-
estingly, the numerics indicated that the maximal violation of the inequality tends,
as the number of measurement outcomes tends to infinity, to the absolute bound
imposed by the polytope of probability vectors. We conjectured from this a tight
quantum Bell inequality for the (2,2,e0) Bell scenario. Analytical proof of the
tightness of this inequality is work in progress which will hopefully appear soon.
Several approximate state for the optimal state were analyst.

At the end of the chapter some major differences between Kullback-Leibler
divergence and total variation distance were discussed coming to the conclu-
sion that, against common belief, the optimal setting one should use to perform
a Bell experiment most efficiently is not the one which maximally violates the
corresponding Bell inequality, but rather the one which maximizes the Kullback-
Leibler divergence.



Appendix A

Entropy and Information

Entropy is an important quantity in classical and quantum information theory (e.g.
see [S1] and [6]). In this appendix we want to summarize some basic definitions
and properties of notions of entropy in classical and quantum probability theory.

A.1 The notion of entropy for classical probability
theory

A.1.1 Shannon entropy

Shannon entropy is an important concept in classical information theory. Consider

a finite set 2 and a random variable Z defined over this set. The Shannon entropy

quantifies how much information on average we gain when we learn Z.
Mathematically, the Shannon entropy is defined as follows:

Definition A.1.1 (Shannon entropy). Let & be a finite set and {z} be an event in
% . For the probability distribution p(z) we define the Shannon entropy as

H(p(z)) :=— %p(Z) log p(z). (A.1)

Here, as throughout the text, log(-) refers to the logarithm with basis 2 and we
adopted the convention 0log(0 = 0.

The Shannon entropy has many interesting properties. In this appendix we
will only state two basic properties which will be of interest for us. For further
discussion the reader is referred to the above literature.
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Theorem A.1.2 (Properties of Shannon entropy). Let % be a finite set, {z} be an
event in % and p(z) a probability distribution defined over this set. The Shannon
entropy H(p(z)) has the following properties:

(i) H(p(z)) >0, with equality for p(z) =0Vz € Z.
(ii) H(p(z)) <logn, where n is the number of outcomes.

Proof.

(i) is clear since 0 < p(z) < 1 and Olog0 = 0. (ii) In the next sec-
tion we show that the so-called relative entropy H (p(z)||¢(z)) := —H(p(x)) —
Y .c# p(z)logg(z) is always positive, H (p(z)||q(z)) > 0. Hence, if we set ¢(z) to
be the uniform distribution ¢(z) = 1/n, we get: 0 < H (p(2)||1/n) = —H(p(x)) —
Y .cxp(z)logl/n=1logn— H(p(x)) which completes the proof.

A.1.2 Relative entropy

Another important entropy measure is the so-called relative entropy or Kullback-
Leibler divergence. The relative entropy can be seen as a measure for the closeness
of two probability distributions, p(z) and g(z), over the same set Z.

Formally we define:

Definition A.1.3 (Relative entropy/Kullback-Leibler divergence). Let Z be a fi-
nite set and {z} be an event in %. For two probability distributions, p(z) and
q(z), over & we define the relative entropy or Kullback-Leibler divergence from

p(z) to q(z) as

H(p()lg(2) = Y p(z)log 52 P _ — Y plz)logq(z)

€Y (Z> eY

In Subsection [4.1.2) we use the Kullback-Leibler divergence as a measure of
statistical strength between two distributions Q(z) and L(z). An intuitive justifica-
tion for this usage is given in this subsection, as well as the relation to confidence
in terms of a Bayesian approach.

A first motivation for the use of the Kullback-Leibler divergence as a mea-
sure for the closeness of two probability distributions is given by the following
theorem:
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Theorem A.1.4 (Klein’s inequality for the Kullback-Leibler divergence). The
Kullback-Leibler divergence is non-negative, H (p(2)||q(z)) > 0, with equality iff

p(z) = q(z) Vz.
Proof.

The proof uses the following inequality from standard text book analysis,
logxIn2 = Inx < x — 1, Vx > 0 with equality iff x = 1. Using this inequality
we can write

Hp@leE) = Y pa)log 22

¥ (Z>

1 q(2)
= 2 BP9 )
- 52;@;;9@ () =0,

which proofs the inequality. Further, it is easily seen that equality occurs only
when ¢(z)/p(z) = 1 Vz, which completes the proof.

In this sense the Kullback-Leibler divergence has similar properties as the
notion of distance, however, in general we have H (p(z)||q(z)) # H (q(z)||p(2)),
for which H (p(z)||¢(z)) is formally not a distance. Some understanding of this
asymmetry is provided in Section

A.2 The notion of entropy for quantum probability
theory

A.2.1 Von Neumann entropy

In the previous section we introduced the Shannon entropy as a measure for the

information gained on average when learning a probability distribution within the

framework of classical probability theory. In context of quantum probability the-

ory we can define a analogues quantity in terms of the so-called von Neumann

entropy which generalizes the concept of Shannon entropy fro quantum states p.
Let us formally define:
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Definition A.2.1 (von Neumann entropy). Let p be a state on a Hilbert space 7.
We define the von Neumann entropy as

S(p) :=—tr(plogp). (A.2)

If p has eigenvalues U;, we can write
S(p) = — Y wilog ;. (A3)
i

In analogy to Theorem[A.T.2)we can prove the following properties of the von
Neumann entropy:

Theorem A.2.2 (Properties of von Neumann entropy). Let p be a state on a
Hilbert space 5. The von Neumann entropy S(p) has the following properties:

(i) S(p) > 0, with equality for the pure state.
(ii) For # = C4 S(p) <logd, with equality iff p =1/d.

Proof.

(i) is clear, since for the pure state p = diag(0,...,0,1,0,...,0) and hence
S(p) = —1log1 = 0. (ii) In the next section we show that the so-called quantum
relative entropy S(p||o) := —S(p) —tr(plogo) is always positive, S(p||o) >
0. Hence, if we set 6 to be 0 =1/d, we get: 0 < S(p||]I/d) = —S(p) —
tr(plogl/d) =1logd — S(p) which completes the proof.

The following theorem will be interesting for the discussion of entanglement
entropy:

Theorem A.2.3 (Von Neumann entropy of a composite system). Let p be a pure
state on a composite Hilbert space 7¢,; ® 7€z and let py = tr p and pyp = trp
denote the marginal states, then

S(per) =S(pz) = _Z)'izlog)'iza

where the A; are the Schmidt coefficients.

Proof.
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From the Schmidt decomposition it is clear that both p,, and py have the
same eigenvalues, namely the Schmidt coefficients squared, i.e. U; = /liz. The
results follows then from the definition of the von Neumann entropy.

The quantity E(p) = S(p.y) = S(p#) is what we called the entanglement en-
tropy of p. In particular we can see that the pure state with the maximal en-
tanglement entropy is the the one with equal Schmidt coefficients, the so-called
maximally entangled state.

A.2.2 Quantum relative entropy

As we defined the von Neumann entropy as a quantum analog of the Shannon
entropy we now also want to define the quantum relative entropy as a analog of
the Kullback-Leibler divergence:

Definition A.2.4 (Quantum relative entropy). Let p and © be a states on a Hilbert
space 7. We define the quantum relative entropy as

S(pllo) ==t (plogp) —tr(plogo). (A4)

As for the Kullback-Leibler divergence one can show that the quantum relative
entropy non-negative which is known as Klein’s inequality:

Theorem A.2.5 (Klein’s inequality for the quantum relative entropy). The quan-
tum relative entropy is non-negative, S(p||o) > 0, with equality iff p = ©.

Proof.

Let us first decompose p and o into orthonormal decompositions p =
Y.ipili)(i] and 6 =} ;q;|j)(j|. Hence, from the definition of the trace we have

1

S(pllo) = ¥, pilogpi— Y. ilplog o)

The term under the second sum becomes

{ilplogali) = piil (ZlogqﬂjﬂjI) i) = pi})_logq;Mij,
J J
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where we defined M;; = (i[j)(j|i). Clearly, M;; >0 and Y, M;; =Y ;M;; = 1.
Noting that log(-) is a concave function we have ¥ ;logg;M;; < logr;, where r; =
Y iM;jq; with equality iff there exist a value for j for which M;; = 1. Hence we
got
S(pllo) =Y pilogpi—)_ pilogri >0,
1 l

where the second inequality sign come from the fact that the middle term is just the
Kullback-Leibner divergence H (p;||g;) > 0. It is not difficult to see that equality
for the both relations above occurs exactly when p; = r; Vi, but this means nothing
but that p and o must have the same eigenvalues and hence are identical. Thus
we have shown that S (p||o) > 0 with equality iff p = &
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