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Preface

When I was in secondary school, one of the vice-principals was responsible
for timetabling. Most of the time, his office was crowded with little cards
and huge tables representing lessons and timetables, respectively. His job
was to combine the two, producing timetables that were acceptable to both
students and teachers. Although I was never completely satisfied with my
own timetable, I then realized his job must have been very difficult. At that
time, I was already intrigued by this timetabling problem and it came as a
pleasant surprise when my supervisor Han Hoogeveen proposed to conduct
my graduation research into this subject.

When 1 told my tutor Erik Balder that I wanted to do my research in
the area of scheduling, he advised me to contact Han. Following this advise
certainly was a good decision: Han proved to be a supervisor that always
patiently awaited my progress. At times, he gave me excellent tips that
helped me to move on, when some problems arose. Most of all, I appreciated
that Han always granted me the freedom of taking my own initiative and to
work in my own pace: this is freedom I need!

Another person that I owe big thanks is Victoire Camps, timetabler of
a secondary school in Amersfoort. She was the only one (among the many
timetablers I contacted) that made time for letting me interview her. These
interviews helped me a lot: not only did she provide me with all information
I needed to understand the things that are important for timetabling, she
also gave me data that I could use as input for my own algorithms.

Apart from Han and Victoire, there are three other persons I have to
thank. First of all, I would like to thank my girlfriend Mirjam. Not only
because she designed the front cover, but also because she endured my mood-
iness when I was working on this thesis. I also want to thank Guido Diepen
who helped me setting up and using the optimization software CPLEX. Fi-
nally, my tutor Erik Balder deserves my acknowledgment for reviewing this
thesis.
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Chapter 1

Introduction

Like I already mentioned in the preface, this thesis is about secondary school
timetabling. To be more precise, I emphasize that with ‘timetabling’, T do
not mean handling the daily changes in the schedules due to ill teachers
etcetera, but I investigated how to make the schedules for all teachers and
classes that serve as a starting point for the rest of the year (or couple of
months).

To find out what kind of things we have to take into account and how
timetabling is currently done, I interviewed timetabler Victoire Camps from
Meridiaan College 't Hooghe Landt (HLC) in Amersfoort a couple of times. I
learned that nowadays, virtually every school uses extensive (and expensive)
software packages for this task. It is not uncommon for a modern school
to employ full-time timetablers to operate these programs. Because this
software allows them to input more and more information and constraints,
timetables (hopefully) get better and expectations get higher. Victoire also
provided me with data files from her timetabling program, which I could
use to test my own algorithms.

1.1 Topics and Goals

Today’s software uses local search algorithms, which are fast and easy to
implement. A known disadvantage of local search is that it finds local op-
tima. (Integer) Linear Programming, or (I)LP, is a method that does not
have this disadvantage. In this thesis we investigate whether it is possible to
solve this problem using (I)LP. We will see that this is indeed possible uti-
lizing Column Generation (CG) techniques. It is my intention approximate
real-life timetabling as good as possible, and to be able to meet as much
real-life constraints as possible. Moreover, my algorithm has to produce a
solution within a reasonable amount of time.

From my interviews at the HLC, I learned that before timetabling (which
is basically assigning lessons to time slots) can start, another optimization
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10 CHAPTER 1. INTRODUCTION

problem has to be solved: clustering. This problem is about assigning stu-
dents to groups of their optional subjects (this applies to students in upper
school) and combining these groups that can be given simultaneously. While
not initially my plan, I have decided to extend my research to this problem
as well. This is because the solution to the clustering problem highly affects
the quality of solutions to the timetabling problem. We will see that again
linear programming can be used to solve this problem.

Summarizing, the main goal of my research can be formulated as follows:

Design a (integer) linear programming model for both the
timetabling- and the clustering problem that is able to meet as
much real-life constraints as possible and produces a solution
within a reasonable amount of time.

1.2 Outline of the Thesis

This thesis consists of four parts. In part I, the timetabling problem is
treated. Although clustering must actually be done before timetabling, I
still decided to treat the clustering problem after the timetabling problem,
in part II. This is because I think one can only understand the clustering
problem completely, if he knows what the timetabling problem holds. The
outline of parts I and II is exactly the same: they begin with a problem
description, followed by a chapter describing how I modeled the problem.
Then I treat the column generation part and I conclude with a chapter
describing some implementation matters.

In part III, the two problems come together. In its first Chapter 10,
I propose some adaptations to both problems in order to make them ‘co-
operate’ better. This part also contains the computational results and the
conclusion. There are three appendices that together make up part IV. In
Appendix A, I show what my JAVA programs look like, and Appendix B
treats the several optimization techniques that I used in this chapter to serve
those who are unfamiliar with this theory. Finally, Appendix C shortly de-
scribes all important concepts, variables and constraints that were used in
this thesis, and can serve as a reference while reading this thesis.
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Timetabling
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Chapter 2

Problem Description

Introduction As I mentioned in the introduction, the timetabling prob-
lem is basically assigning lessons to time slots. When I started working on
this project, my idea of this problem was much simpler than it turned out to
be. After my first interview at the HLC I returned home quite disillusioned
by the number of things that have to be taken into account, and that I had
never been thinking of. My idea of timetabling was probably biased by the
fact that at my own school all was done by hand. Moreover, the HLC was
not exactly the simplest of schools I could have chosen. In this chapter we
will see which concepts play a crucial role in this problem and how these con-
cepts relate to each other. I also mention which of the real-life constraints
I have disregarded and explain why. In Section 2.2, I treat the objective.
Finally, I will define the problem with its constraints and objective.

2.1 Modeling Concepts

2.1.1 Classes

At the HLC, there are 59 classes in total. It is a multilateral school, which
means that it teaches at different levels: VWO (6 years), HAVO (5 years)
and VMBO-T (4 years). The upper school for HAVO and VWO students
starts in year 4, for VMBO-T students in year 3. This subdivision between
lower- and upper school is relevant, because in lower school each student
has exactly the same timetable as his classmates, whereas in upper school
students choose optional subjects resulting in individual timetables. Each
class can have its own preferences regarding the layout of timetables (see
Section 2.2.1), such as: first-year classes are not allowed to have intermediate
hours, VMBO upper school classes are preferred to have the first hour off
each day etc.

13



14 CHAPTER 2. PROBLEM DESCRIPTION

2.1.2 Teachers

Of the nearly 150 teachers at the HLC, only about 20% has a full-time
appointment, and are therefore available to teach at all time slots. The
other teachers may block parts of the week that they wish to be off. A part-
time teacher may decide to block fewer hours than he (or she, I use the male
pronouns when I refer to teachers and students from now on) is entitled to,
but has to keep in mind that all non-blocked time slots are available to the
timetabler. Teachers who live far away from school usually prefer to have
the first hour off. Most teachers do not like intermediate hours, but some
do (but not too many, this typically applies to teachers with other tasks,
besides teaching). Normally, the situation that a teacher has to go to school
for just one hour teaching is being avoided. All these cases can be regarded
as timetable layout preferences (see Section 2.2.1). In that sense, they are
similar to classes.

In the current timetabling system, all teachers also have a classroom in
which they prefer to teach. I will treat this issue in Section 2.1.5 covering
classrooms.

2.1.3 Lessons

This timetabling problem is about scheduling lessons. The key properties of
a lesson are the class that has the lesson, the teacher who gives the lesson
and the number of hours the lesson must be given in a week (let us call this
the multiplicity of the lesson). Almost all lessons in lower school are of this
form. To be able to deal with all the different kinds of objects that must be
scheduled, we need a more general description of the concept ’lesson’. For
instance, at the HLC also the staff meetings are being scheduled. A meeting
can be seen as a lesson with several teachers, but no classes. Therefore I
allow a lesson to be defined by a set of teachers and a set of classes, together
with its multiplicity. Note that I allow one of the sets to be empty (as is
the case with meetings). The teachers sets, classes sets and multiplicity of
lessons are all predetermined, that is, not part of the problem. This means
that I do not need to decide which teacher teaches which class.

Cluster Patterns

A cluster pattern is a special case of a lesson, which I will treat in more detail
in Chapter 6. This kind of lesson appears in upper school where students
have optional subjects. Apart from the whole-class lessons that everyone has
(like English), there are times when students go their own way to have class
in their optional subjects. This results in lessons in which students from
different classes are mixed. Ideally, several of those lessons can be given
simultaneously. These lessons together are called a cluster pattern and can
be seen as one big lesson that involves several classes and teachers.
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Double Hours

Sometimes it is desirable to have a lesson for two hours in a row. This applies
for instance to Physical Education (PE), in order to minimize the loss of
time due to changing clothes. Such a lesson is called a double hour. It may
even happen that a lesson must be scheduled for more than two consecutive
hours, e.g. long meetings. I will call this an n-double hour (where n is the
number of consecutive hours). The number of required double hours (and
of which type) can thus be an additional property for a lesson. A meeting of
multiplicity 5, for instance, can have the property that it must be scheduled
as a b-double hour, but also as two double hours and a single hour.

Fixed Lessons

Sometimes the timetabler (or maybe some other high-placed staff member)
predetermines at what time a lesson must be scheduled. In other words, this
lesson is being fixed to a time slot. This sometimes occurs to staff meetings.
Although I do not have to schedule such a lesson, it is still important to
include it in the model, since a fixed lesson can cause intermediate hours.

KWT Lessons

At the HLC, there is a system that allows upper school students to fill their
intermediate hours by taking coaching lessons in subjects that they choose
themselves. These so-called keuze-werktijd-lessen (KWT lessons) also give
students the opportunity to reach the legal minimum number of lesson hours
he must have in a year. Before it can be determined which KWT lessons
can be chosen at which time slots, the regular lessons have to be scheduled
before. This is because information about intermediate hours of students
and free hours of teachers is required. Therefore, the scheduling of KW'T
lessons happens after the ‘regular’ timetabling, and is not a part of the
timetabling problem.

2.1.4 Time

The timetabler schedules lessons at time slots. Usually, a secondary school
teaches five days a week, and on each day a number of slots are available
for teaching. The number of time slots per day varies from school to school
and depends, among other things, on the duration of a slot. At the HLC,
there are 9 time slots per day. There are breaks after the third and fifth
slot. Breaks are relevant for two reasons. Firstly, double hours sometimes
may not ‘cross’ a break. Secondly, breaks can be used to travel from one
location to the other (see Section 2.1.6 about locations).
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Periods

Besides the subdivision of a week into time slots, the year can also be divided.
The HLC partitions a year into 5 periods. Each period, a different set of
lessons may be taught. Consequently, the timetable differs each period. This
format allows a bit more flexibility regarding multiplicities of lessons. For
example, a school may want to give a class 2.6 math hours per week, on
average (over the whole year). To achieve this, they can decide to give 3
hours a week in periods 1,2 and 5, and 2 hours a week in periods 3 and 4. It
can (and will) also occur that a class has certain subjects not all year, but
only in a subset of the periods. Which lesson must be taught in which period
is not part of the problem, but predetermined. Therefore, timetabling can
be done for each period separately, and I do not have to deal with this
concept. However, for the clustering problem it is relevant (see Chapter 6).

Spreading Lessons

It is undesirable to have the same lesson (subject) multiple times on one
day (except for double hours of course). This is because teachers prefer
giving many little chunks of homework to one big task for the entire week.
Generally, I want to spread the different hours of one lesson as evenly as
possible over the days in the week. What evenly means depends on the
multiplicity of the lesson. Normally this multiplicity is less then 5, so I can
say that I want every time slot that a lesson is scheduled to be on a different
day. There can be additional preferences like: if the multiplicity is 2, I do
not want the lesson to be scheduled on consecutive days. However, these
kind of additional preferences are not regarded as important at the HLC.

2.1.5 Classrooms

Almost all classrooms are meant for a certain type of lessons. The most
obvious example is the gymnasium, but also there are classrooms furnished
for Mathematics, languages, Physics/Chemistry etc. The HLC thinks it is
important that each lesson is being given in an appropriate classroom. For
this reason, the software package they use assigns the lessons not only to time
slots, but also to classrooms at the same time. As I mentioned before, all
teachers have a preferred classroom. However, there are many more teachers
than classrooms, so usually a classroom has more than one teacher preferring
it. To handle the scenario that two (or more) teachers give a lesson at the
same time and preferring the same room, each classroom has a diversion
room of the same type. The diversion scheme of rooms of the same type are
in such a way that they form a cycle. Figure 2.1 shows the upper school
math teachers and rooms and their relations. The three ovals represent
rooms, and the three-letter-abbreviations are the teachers. There is an arrow
from each teacher to his preferred classroom, and from each room to its
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diversion room. Using the scheme from Figure 2.1, the timetabling software
behaves undesirably: if more than one teacher has the same preferred room,
the teacher who comes first alphabetically takes precedence. To avoid this
strange behaviour, they use fictitious rooms. These rooms do not represent
real space, and a lesson that is scheduled in such a room, is automatically
diverted to a real room. This trick seems to solve the problem. Figure 2.2
shows the actual scheme that is being used.

As we have seen in the figures, there are three (upper school) Math
rooms. This obviously means that at most three Math lessons may be
scheduled at the same time. This is a constraint that I respect in my model.
I do not assign lessons to classrooms while scheduling, but only guarantee
feasibility with these kind of constraints. This approach simplifies the prob-
lem. Moreover, the actual assignment of lessons to classrooms can be done
as post-processing (trying to maximize the number of lessons that teachers
give in their preferred room), and therefore this does not really need to be
in my model.

2.1.6 Locations

In Section 2.1.5, we have seen that only upper school Math rooms are in a
classroom cycle (there is a cycle for lower school Math rooms as well). Why
can’t they be in one big cycle? This is because the HLC has two locations:
one for lower school, and one for upper school. Students always have their
lessons in their own building. There are, however, teachers that teach in both
lower and upper school. Because the two locations are some distance apart,
a teacher can not have two consecutive lessons in two different locations:
This teacher needs time to travel (about 10 minutes). Ideally, all of his
lessons scheduled on one day are in the same building, but this is not always
possible. If such a trip is necessary, it has to be during a break or an
intermediate hour. I also want to avoid the situation that a teacher travels
back and forth multiple times a day. Generally, it is desirable to schedule
in such a way that every teacher has at most one trip a day. I will consider
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Docenten | Docenten || Klassen | Wakken | Hoofdvakken | Lokalen | Urenverdeling | Tidwensen | Analyze

Onbelangrik.  Extreem belangrijk

j ‘Wak mawimaal &én maal per dag
j Fouten met dubbeluren vermijden
j 2-uurs-vakken niet op opeenvolgende dagen
j 3-uurs-vakken niet op opeenvolgende dagen

Wakuren niet op hetzelfde tidstip
Wakuren wel op hetzelfde tijdstip

j Grate blokken op rand dagdeel

Figure 2.3: Sliders
this as a timetable layout preference (see Section 2.2.1).

2.1.7 Other Issues

I think the concepts described above give a reasonably accurate description
of the important issues of this problem. However, given the extensiveness
of the software currently used and the fact that every interview I discovered
new concepts, I am certain that there are still some things that I haven’t
addressed, but that do play a role. Nevertheless, I expect these issues to
be minor, and of little influence on the scheduling process (apart from some
fine-tuning). My goal is to approximate real-life timetabling as good as
possible, and I am confident that I am pretty close.

2.2 Objective

Of course the timetabler wants to meet as many constraints as possible. In
the software package currently used, the importance of certain constraints
can be controlled by numerous sliders (see Figure 2.3). Sliding all the way
to the right makes it a hard constraint (that is, the constraint has to be
met), and sliding all the way to the left discards the constraint. Usually the
sliders are somewhere in the middle. I expect that these sliders control the
number of penalty points for a non-met constraint, but the exact relation
between the sliders and the outcome is quite vague.

As we will see in the problem definition (Section 2.3), almost all con-
straints have to be met. There are only two types of constraints that may be
violated (and thus induce penalty points): Firstly, spreading lessons evenly
over a week is not always possible, and therefore considered as a soft con-
straint. Secondly, there are the so-called timetable layout preferences of
teachers and classes.
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2.2.1 Timetable Layout Preferences

Ideally, the timetabler produces a schedule that makes students and teachers
as happy as possible. What exactly ‘as happy as possible’ means of course
differs from person to person, and is mainly expressed in the timetable lay-
out preferences of the classes and teachers, which is part of the input. These
preferences usually consist of how they value (not) having a lesson at a par-
ticular time slot and to which extent they accept having intermediate hours.
I call it timetable layout preferences because I do not allow preferences re-
garding specific lessons. A teacher, for instance, can not demand having
class hba on Friday, but can prefer to have at least 4 lessons on Friday. In
my model, a teacher or class (the preferences of a class are of course not
determined by the students themselves, but by the staff) is allowed to have
the following types of preferences:

I prefer to be off on time slot x

I prefer to have a lesson on time slot =

I prefer to have at least/most n lessons in location b on day x

I prefer to have at least/most n intermediate hours on day d/per week

I prefer to have at most n consecutive intermediate hours on day d

I prefer to have at most n trips between locations on day d/per week

I think I am quite flexible if I allow these types, and they allow me to handle
almost all real-life preferences. Like I mentioned in Section 2.1.2, part-time
teachers are allowed to block parts of the week. This is rather a demand
than a preference, and therefore treated as a hard constraint.

2.3 Problem Definition

Having treated all concepts that are relevant to this timetabling problem,
I can summarize the input I need, the objective and constraints, and the
output I get, in a problem definition:
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Input

o A set of classes

e A set of teachers with their blocked time slots (if any)

o A set of lessons with for each lesson its classes set, teachers set, mul-
tiplicity
For each class and teacher, its timetable layout preferences
For each lesson, properties like: double hours, fixation to time slots,
location and the classroom type in which it has to be

e For each classroom type, the number of rooms

Objective
e Assign lessons to time slots minimizing penalty points

Soft constraints (violating induce penalty points)

e The timetable layout preferences of teachers and classes have to be
respected as much as possible

e Lessons have to be distributed as evenly as possible over a week

Hard constraints (must be met)

Blocked time slots of teachers must be respected

The multiplicity of lessons must be respected

Double hours must be scheduled as such

Double hours may not cross a break (optional)

Fixed lessons must be scheduled at their fixed time slot

All lessons scheduled at a particular time slot must fit in appropriate
classrooms

e Teachers must have time to travel between locations

Output
e Assignment of lessons to time slots (that is, a complete timetable)




Chapter 3

Modeling

Introduction To model the timetabling problem described in Chapter 2, I
use Integer Linear Programming (ILP). To be able to deal with the timetable
layout preferences (see Section 2.2.1), I additionally need the technique of
Column Generation (CG). For those who are unfamiliar with these tech-
niques, I refer to Appendix B. This chapter describes how to model the
timetabling problem as an Integer Linear Program: which variables and
constraints are needed and how to model the objective. The issue of how to
generate columns is treated in Chapter 4.

I start this chapter with a basic model, which has only the absolutely
essential constraints. After that, I describe how to extend this basic model
to cover all constraints that are in the problem description from Section
2.3. Finally, I state the complete model. I use consistent numbering and
naming throughout this chapter. Numbered constraints correspond to those
in the final model (Section 3.3). Indices are named as follows: 7 denotes a
time slot, [ a lesson, j is a teacher or class (abusing notation a bit) and ¢
stands for a column (the concept ‘column’ is explained in Section 3.1.1). I
will denote sets by capital letters. Combining them with indices (hopefully)
gives an intuitive idea of their meaning: For example, C'; denotes the set of
columns for teacher/class j.

3.1 Basic Model

In this section, I construct a basic model for the timetabling problem, in
order to get the basic idea. I think this model should allow me to schedule
lessons, respecting their multiplicity and minimize the deviation from the
timetable layout preferences. All additional constraints like double hours,
spreading, classrooms etc. are treated in Section 3.2.

21



22 CHAPTER 3. MODELING

3.1.1 Variables

Timetabling is about assigning lessons to time slots. Please remember from
Section 2.1.3 that for each lesson, its teachers and classes set are known. It
is natural to introduce a 0-1 variable for each pair of a lesson [ and a time
slot 4:

1 if [ is scheduled at time slot ¢

i = :
vi 0 otherwise

Since the y;; are variables, the = sign must be read as ‘takes value’. Using

these variables, I can measure how well the lessons are spread over a week.

This spreading issue is not part of the basic model, and is treated in Section

3.2.

However, the quality of the solution also depends on to what extent
the timetable layout preferences are respected. Of course, the values of
the variables y;; exactly determine the timetable for each class and each
teacher, but the quality of such a timetable depends on preferences regarding
intermediate hours, trips between locations etc. (see Section 2.2.1) of this
teacher or class. It is impossible to include all these preferences in the
ILP-model, and be able to measure deviations from these preferences using
only variables y;;. Therefore, I additionally introduce ‘columns’ or vectors
representing timetable layouts. A timetable layout for a teacher or class can
be seen as a 0-1 vector ¢ with an element for each time slot i:

C; =

1 if this teacher/class has a lesson at time slot i
0 otherwise

Such a vector is thus not lesson specific, it only determines when there is a
lesson and when this teacher/class is free. From Section 2.2.1 we know that
I should be able to distinguish lessons in different locations in a timetable
layout. With this description, I am not, but this issue will be addressed in
Section 3.2.5. Note that these vectors are constants in the model.

There are many feasible columns for each teacher and class. In fact,
there are so many that I can not fit all possible columns in the model. This
is why I need column generation. Because the preferences for every class
and teacher are known, I can introduce a cost function f; for teacher/class
J that takes a column as input, and gives the corresponding cost as output.
This cost will be high if the column deviates from its preferences, and low (or
zero) if this class/teacher likes this timetable layout. The cost of a column
for teacher/class j can thus be written as f;j(c) and because this cost is
computed by the column generation algorithm, it is a constant in the ILP
model. Which columns to include in the model, and how to calculate costs
is treated in Chapter 4. Given some set of columns in the model, I need
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0-1-variables that control which columns are chosen:

{1 if column ¢ is chosen
c p—

0 otherwise

3.1.2 Objective

Since spreading lessons is not included in this basic model, the only ob-
jective is to respect the timetable layout preferences as much as possible.
With the cost functions f; and variables z. it is easy to calculate the total
deviation from these preferences in the resulting timetable. Of course, I try
to minimize this deviation, resulting in the following objective:

minz Z fi(c)z. (obj)

i CECj

Here, C; denotes the set of columns for teacher/class j.

3.1.3 Constraints

First of all, I have to make sure that for each teacher and class, exactly one
layout pattern (column) is chosen. This means that for each j, exactly one
z. with ¢ € C; must take value 1 (and all other variables must take value
0). I simply add the following constraint to achieve this:

d we=1 forallj (2)

CGCj

Choosing a column ¢ for teacher or class j (that is: x. = 1 for some
c € C}) affects the possibilities for scheduling lessons (and vice versa). For
instance, if ¢; = 0 for this column, there may not be a lesson of teacher/class
j scheduled at time slot 4. On the other hand, if ¢; = 1, there must be exactly
one lesson of teacher/class j scheduled at time slot i. It is easy to see that
these constraints connect variables x. and y;; as follows:

CECj,xc:1,Ci:0:> Zylizo
leL,

celj,ze=1,¢,=1= Zylizl
leL;

Here L; denotes the set of lessons for teacher or class j (that is, the set of
lessons that have j in its teachers/classes set).

If we combine these two propositions with the fact that exactly one
column is chosen for each teacher/class j, we can conclude that the value
of Zle L; Vi must equal Zcecj xzcc;! This means that I can easily add the
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following constraint to the ILP model, fixing the correspondence between
the variables z. and y;;:

Z TeCi — Z y; =0 forall j,i (1)

CGCJ‘ ZEL]'

Besides the bounds on the variables z. (constraints (2)), there is also a
bound on the sum of variables y;; of lesson I: its multiplicity (which is part
of the input). The following constraint takes care of this:

> y=my foralll (3)

7

Finally, I have to make sure all variables can only take values 0 or 1:

zc. € 40,1} for all ¢ (9a)
yi; € {0,1} for all [, 1 (9b)

3.1.4 ILP-formulation

min}>; > e, fi(c)ze (obj) Objective

Subject to:

Zcecj TeCi — ZleLj yii =0 for all 5,4 (1) Variable correspondence
cec; Te =1 for all 5 (2) Choose one column
DY =My for all I (3) Multiplicity of lessons

z. € {0,1} for all ¢ (9a)

yie € {0,1} for all 1,7 (9b) Variable bounds and integrality

Surprisingly, with only 3 types of constraints, I have a basic ILP-model
for the timetabling problem covering the most important issues. All other
constraints from the problem definition are described in Section 3.2.

3.2 Adding More Constraints

3.2.1 Fixed Lessons and Blocked Time Slots

Fixing lessons to time slots can be implemented easily into the model. For
each lesson [ that is fixed to time slot 4, I simply add the constraint:

yi =1 (4)
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For a teacher j who has blocked a time slot ¢, I could add similar constraints
yii = 0 for all [ € L;. My approach, however, is to only allow to add columns
c for this teacher that have ¢; = 0. This has the same effect, and at the same
time reduces the number of columns that can be added to the model. The
column generation algorithm (see Chapter 4) thus takes care of this issue.

3.2.2 Double Hours

For some lessons, it is required to have a double hour, or even an n-double
hour. How many double hours of what type is required for lesson [, can be
expressed in an hour group vector h! (one for each lesson). Each component
of this vector represents a group of lessons (an hour group) that must be
scheduled consecutively, and the value of such a component is the number
of required consecutive lessons. A lesson [ of multiplicity 3, for instance,
can have h! = (1,1,1) (no double hours), A’ = (2,1) (one double hour,
equivalent to k! = (1,2)) or h! = (3) (one long 3-double hour). The number
of hour groups required for lesson [ (that is, the number of components of
h!) is denoted by nyi. Moreover, we have the obvious relation ), hf,C =m,.

Now that we have a formal notation, I can construct constraints that
make sure these hour groups are scheduled as such. If a lesson [ does not need
any double hours (that is, h; is an all-one vector), I do not need the extra
constraints and variables. Denote the set of lessons that have at least one
double hour by LPH. The basic idea is to introduce for each hour group k of
a lesson | € LPH a sublesson ¥, which must have all its hours consecutively.
For each such a sublesson, I introduce 0-1-variables yj;., defined as follows:

if the nth consecutive hour of sublesson ¥
yﬁi — is scheduled at time slot 4

0 otherwise

The fact that there are variables for each consecutive hour n, enables me to
add the following constraints that make sure the hours are indeed scheduled
consecutively:

Yiks — Yptly =0 forallle P i 1 <k <my, 1<n<hl (5a)

Note that for a group of size hfk. = 1, there are no such constraints. Of
course, an hour group may not cross a day boundary, while time slot ¢ + 1
may be the first time slot of the next day. Because the length of this hour
group is known, I can determine exactly at what time slots this hour group
may and may not start. I can also do this, if this hour group may not cross
a break. Fixing yll,%. = 0 for all time slots i, where this hour group may not
start, solves the problem:

yje; =0 for all I € LPH, infeasible i, 1 <k <ny  (5b)
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Finally, the original variables y;; must correspond to the new variables:

l
L hy,

Y = Z Zyﬁ% for all 1 € LPH i (5¢)
k=1n=1

Note that this last constraint, also implies that the different hour groups
may not overlap, because y; < 1. It may seem that I have to add a lot
of extra variables and constraints to the model to include double hours.
However, most lessons are not in LPH: In that case, I do not need all these
extra variables and constraints. These constraints do not force every hour
groups to be on a different day; the spreading constraints (see Section 3.2.3)
are responsible for this desirable behaviour.

3.2.3 Spreading Lessons

In general, I want all the hours that a lesson is given to be on a different
day. Of course, double hours are an exception to this rule. More precisely,
I prefer to have all hour groups of a lesson on a different day. This is
not always possible: the most obvious case is that there are more hour
groups than days in a week. Because I model the spreading issue as a soft
constraint, preferring to have a good spreading can do no harm. To be able
to distinguish between time slots on different days, I need another piece of
notation: by I;, I denote the set of time slots that are on day d. I also need
new (nonnegative) variables that measure deviation from the ideal one hour
group per day:

n if n + 1 hour groups of lesson [ are scheduled on day d
z =
i 0 otherwise

I could add a hard upper bound on zy4 if I want to limit this deviation.
Adding the following constraints for each [ € LPH actually measures the

deviation:
Tth

S i —za<1 forallle LPY d  (6a)
i€ly k=1

By only considering the first lesson of each hour group (by using yllkz), each
group is counted only once. If [ does not have any double hours, I do not have
variables yll,%.. In that case, I simply use the following constraints instead:

S yi—za<1 foralll¢ IPH.d (D)

i€ly

The last thing I have to do is to actually penalize positive values of zj4,
by including them in the objective. The importance of spreading lessons,
compared to the importance of respecting timetable layouts, is expressed by
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a weighing constant c,. This means that every positive z;4 is penalized by
c.z1g- Now I am ready to state the new objective:

min Z Z fi(Q)ze+ . Z Z 24 (obj)
q

J CECj l

3.2.4 Classrooms

At the HLC, every lesson has to be scheduled in an appropriate classroom.
The classrooms can be partitioned in certain classroom types, for instance
upper school Physics/Chemistry rooms, lower school languages rooms, PE
rooms etc. Which lesson must be scheduled in which room type is known,
just like the number of rooms per type. The set of lessons that must be
scheduled in classroom group r is denoted by L", and the number of rooms
of type 7 by n”. To make sure all lessons fit in appropriate rooms at each
time slot, I add the following constraints:

Z yi <n" foreachr,i (7)
leLr

3.2.5 Locations

The only constraint from the problem definition in Section 2.3 that I have not
addressed yet, is that teachers must have time to travel between locations.
This, however, is not a constraint that I will add to the ILP model, but is
more easily implemented in the column generation phase. For each lesson [,
it is known in which location it must be. To be able to distinguish between
lessons in different locations (I will use the letter b (building) for locations),
I have to redefine the vectors representing columns:

1 if this teacher/class has a lesson in location b at time slot 4
Cib = .
' 0 otherwise

Note that the column has become two-dimensional, making it a matrix
rather than a vector. There are two locations at the HLC, so b can take
values 1 and 2. Since classes have all their lessons in the same building, c;
equals 0 for at least one of the bs. Since teachers (and classes) can only have
one lesson at a time ), ¢ < 1 must hold for all i. It is the responsibility of
the column generation algorithm to only generate columns that have either
a break or an intermediate hour between lessons that are in different loca-
tions. The timetable layout preferences of teacher j regarding the maximum
number of trips is included in the cost function f;.

To make things more clear, consider the representation of a column for
one of the teachers in Table 3.1. For each of the 45 time slots (5 days, 9
time slots per day) 7, the elements of the column are displayed as ¢;1; ¢io.
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1 2 3 4 5 6 7 8 9
Mon || 0;1 0;1 0;1 00 0;1|1;,0 0,0 1;0 050
Tue || 0;0 0;0 0,000 0,000 00 0;0 050
Wed | 1,0 0,0 1;0 | 0;1 0;1|0;1 0,0 0;1 050
Thu |00 0,0 0,000 1;0]1;0 0,0 0;1 0;1

Fri || 0;0 0;1 0;1|0;1 0;0)0;1 0;0 0;0 050

Table 3.1: Example column

The vertical lines after time slots 3 and 5 represent breaks. We can count
that per week, this teacher has 6 lessons on location 1 (lower school), and
14 on location 2 (upper school). The fact that this column has no lessons
on Tuesday, is not a coincidence: this teacher works 4 days a week, and
has blocked Tuesday. On Friday, this teacher can stay in location 2, having
1 intermediate hour. On Thursday, this teacher also has an intermediate
hour, but this one is necessary to travel from location 1 to location 2. On
Monday and Wednesday this teacher has trips too, but he travels during a
break in this case.

We can see that this column (a slight adaptation from an actually used
column for teacher Ase) meets the hard trip constraints. However, I can
imagine that this teacher would not be very happy with this column, since
he has trips on 3 of his working days. Also, this teacher has 5 interme-
diate hours, which seems quite a lot (assuming this teacher prefers as few
intermediate hours as possible), but is regarded as acceptable.

Since I now have a new definition for columns, I also need to adapt the
constraints that guarantee correspondence between the variables x. and ;.
For instance, if a lesson [ that must be given in location b is scheduled at
time slot 7 (that is, y;; = 1), then all teachers/classes that give/have this
lesson must have z.c;;, = 1. Defining Lj, as the set of lessons of teacher /class
7 that must be given in location b, this results in the following constraints:

Z TeCip — Z y; =0 forall 5,i,b (1)

CECj leij

3.2.6 Day Columns

Until now, I assumed that a column represents the timetable layout for a
complete week. In Section 5.2.4, we will see that this approach has some
downsides compared to using day columns, representing timetable layouts
for a single day. Of course, the column generation algorithm still has to
be able to respect the timetable layout preferences, and calculate the cost
of such a day column. Under the assumption that the cost of a timetable
layout of a week is simply the sum of the costs of the day layouts, this is
no problem. However, if we look at the types of preferences that we allow
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in Section 2.2.1, we see that there are two types of preferences that are
concerned with the layout of the entire week:

e I prefer to have at least/most n intermediate hours per week
e [ prefer to have at most n trips between locations per week

If T use day columns, the costs associated with deviating from these two
types of preferences can no longer be measured by the column generation
algorithm: I have to include constraints in the ILP model to measure devi-
ation from these preferences.

However, I first have to adapt some of the other constraints to be able
to handle day columns instead of week columns. If I write Cjq for the
set of columns of teacher/class j for day d, the constraints guaranteeing
correspondence between the x. and y;; variables now becomes:

Z TeCip — Z y; =0 forall j,d,ielyb (1)
ceCjq leLjp

Also, I now have to choose one column for all teachers and classes per day
(instead of one in total):

Zxczl for all j,d (2)

CEde

Now I am ready to add the constraints measuring deviation from the
week timetable layout preferences. Let us write the number of intermediate
hours in day column ¢ as int(c), and the number of trips as trips(c) (these
are constants in the model). Other constants I need are the preferred upper

bound 722" and lower bound 7" on the number of intermediate hours per

week plus the preferred upper bound on the number of trips per week ﬁ;rips

for teacher/class j. Just like with spreading lessons, the deviations from
these preferences are measured with nonnegative variables 2}“‘3, é;nt and

~trips

z:, respectively. This leads to the following constraints:
Z xcint(c) — 2ji~nt < ﬁijnt for all j (8a)
CGCj
> wint(c) + £ > for all j (8h)
CGCj
Z ztrips(c) — é;rips < ﬁ;rips for all j (8¢)
CECj

I could also add hard upper bounds on the variables, to limit eventual de-
viation. Finally, I need to add the new variables to the objective with
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corresponding weighing constants ¢, & and éPS, Also, the cost func-

tion now depends on the day d, and is denoted by f;4. The new objective
becomes:

mind Y > fule)we+ ey >
7 d CGde l d
+ Z(éintéént + éinté}nt + étrips’%rips) (ObJ)

J

3.3 Full Model

Having treated all necessary constraints, I am ready to formulate the full
ILP model:
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Chapter 4

Generating Columns

Introduction In Chapter 3, I have described the full ILP model for the
timetabling problem. This model needs columns representing timetable lay-
outs for teachers and classes as input. Because there are more feasible
columns than fit in memory, I use column generation. Which columns I
regard as useful, how to generate useful columns and how to calculate the
corresponding constants (like its cost fjq(c)) that are needed in the ILP
model, is the subject of this chapter. Those who are unfamiliar with the
column generation (CG) technique are advised to read Appendix B first.

This chapter begins with a section that explains the main ideas I use to
generate good columns: We will see that we have to solve a shortest path
problem in a directed graph. Section 4.2 describes how this is done for a
simplified model. To be able to handle all important concepts, I need to add
functionality to this basic model; this is described in Section 4.3. After this,
I am ready to give a complete description of the graph that is used, and I
conclude with a summary of the CG algorithm.

4.1 General Idea

4.1.1 Penalties

Each teacher and class can have its own preferences regarding the layout of
its timetable. The kind of preferences I allow is formulated in Section 2.2.1.
As we have seen in Section 3.2.6, the preferences concerning an entire week
are handled in the ILP model; I only need to care about preferences for the
layout of a single day.

Violating a preference induces penalty points. How many penalty points
are induced for teacher/class j on day d are stored in a number of vectors,
which are displayed in Table 4.1. A component may be 0 if the corresponding
situation is preferred, I have a positive value x for undesirable situations
(inducing a penalty of ), which can be even equal to oo if I want to exclude
a situation (this has the same effect as a hard constraint). The infinity

33
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Vector Components Description:

penalty for having. ..

p;fd (p;fd)i ...a lesson at time slot i € Iy

P (pTdL)‘ ...no lesson at time slot i € Iy

pﬁiL (pjd In ...n lessons

pﬁlIH (p #IH)n ...n intermediate hours

pﬁlCIH (pﬁCIH)n ...n consecutive intermediate hours
pﬁlTR (PﬁlTR)n ...n trips

Table 4.1: Penalty vectors for teacher/class j and day d

sign stands for a number that is so large that such a situation will never
be generated. Using these vectors, all timetable layout preferences from
Section 2.2.1 can be stored. For example, if a teacher j prefers to have 3
to 5 lessons on day d, but definitely no more than 6, he could have penalty
vector pﬁL = (4,2,1,0,0,0,2,00,00,...). Also, the concept of blocked time
slots for part-time teachers can be included: suppose teacher j has blocked
the first 3 time slots of day d, and really prefers to start teaching at time
slot 5, his penalty vector p?d would look like: p?d = (00, 00,00,4,0,0,...).

4.1.2 Costs

These penalty vectors together determine the cost functions f;q for every
teacher and class j and day d: As we will see in this chapter, the column
generation algorithm uses these vectors to compute the cost fjq(c) of a
generated column ¢, and passes it as a constant to the ILP model. The
objective of the CG algorithm could be to find a column minimizing this
cost. This is useful, for instance, if I want to generate for each teacher and
class j a number of columns with low cost. Note that, besides the cost
fja(c), it is also easy to determine the other constants needed by the ILP
model: int(c) and trips(c).

From the theory of CG (see for instance [1], Chapter 6), the CG algo-
rithm must also be able to generate new columns that could improve the
quality of the solution of the LP relaxation of the ILP model (for the cur-
rent set of columns), given an optimal solution of this LP relaxation. To
this end, I need the concept of reduced cost: adding a column ¢ can improve
the quality of the solution (of the LP relaxation) only if the reduced cost of
the corresponding variable x. has negative reduced cost. In this case, the
reduced cost of a variable z. for column ¢ for teacher/class j and day d is
defined by:

fred( = fja(c) Z Z Wlllfdczb ]d — int(c)()\?a + )\?b) - trips(c)A?C

b €ly
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In this definition, 719¢ is the matrix of dual multipliers of constraints (1) for

this 7 and d, )\?d is the corresponding dual multiplier of constraint (2),

and A?a,)\ﬁb and A?C are the dual multipliers for constraints (8) of this
teacher/class j. These dual multipliers are part of the input of the CG
algorithm and follow from the solution of the LP relaxation (with the cur-
rent set of columns).

4.1.3 Objective and Directed Graph

We know that a column corresponds to a set of values ¢;;, for a teacher/class
j and a day d. Note that this pair (j,d) is fixed, and that I run the column
generation algorithm for every such pair. The reduced cost of such a column
¢, given the penalty vectors of the fixed pair (j,d) and the dual multipliers,
depends on how lesson hours and free hours succeed each other (for lesson
hours it is also important in which building they take place). This means
that I have to decide, for each time slot ¢, whether one of the values c
becomes equal to 1 (a lesson in location b), or if they are all zero (a free
time slot 7).

A natural way of doing this is by constructing a graph, with for every
time slot ¢ a number of nodes that I can choose from (lesson nodes, inter-
mediate hour nodes etc.). These nodes together form layer i in the graph.
I add arcs from a node w in layer 7 to a node v in the next layer (time slot)
i + 1 if this node v can be the successor of u. Finally if I add a source r
before the first layer (with arcs from r to all nodes in layer 1) and a sink s
after the last layer (and arcs to s from all nodes in the last layer), I have
that each path from r to s automatically corresponds to an assignment of
values to the c;.

The objective is to choose a path (column) with minimal reduced cost.
The advantage of above graph construction is that if I correctly assign costs
to the arcs and/or the nodes, the length of each path from r to s equals
the reduced cost of the corresponding column. This means that I have
transformed the problem of finding a column with minimal reduced cost to
a simple shortest path problem (see Section B.3). I have chosen to only
assign costs to the nodes, although I realize that assigning them to arcs
could be useful if the costs explicitly depend on the order of the chosen
nodes. However, we will see that I do not really need to do this.

When I have found a shortest path, I have to decide whether the cor-
responding column is good enough. If I am minimizing reduced cost, it is
required to be negative, as only adding a column with negative reduced cost
to the current LP relaxation could improve the solution. If the reduced cost
is nonnegative, I do not add it to the model, and if this is the case for all
pairs (j,d), I know that I have an optimal solution of the LP relaxation. If
I simply want columns with low cost fjq(c) (for instance, to construct a set
of columns for each teacher and class to start solving of the LP relaxation
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with), T can fix all dual multipliers to zero, and still minimize reduced cost
(so I do not need to adapt my algorithm). In this case the cost does not
need to be negative, of course.

State Vector

The cost of a node not only depends on its type (lesson, intermediate hour
etc.), but also on what happened before reaching this node. For example, a
lesson node in layer 7 induces a penalty (p]L-d)i, but may also induce a penalty
(pﬁL)n if it is the nth lesson. This means that somehow, I have to count the
number of lessons so far. To this end, I introduce a state vector describing
the current state (one component v! of this vector thus counts the number
of lessons so far). In this case, this means that I must have several copies
of this lesson node in layer i, each with a different state vector: one with
vl =1, one with v = 2 etc.

The arcs in the graph have to make sure that this state vector always
correctly represents the current state. For instance a lesson node in layer ¢
with state v' = 2 may have an arc to a lesson node in layer i+ 1 with v! = 3,
but there is of course no arc to a lesson node with v' = 4. To be able to
deal with all the different kinds of penalties from Table 4.1, I must not only
count the number of lessons ol but also the number of intermediate hours
v and the number of trips v P, This means that there can be a lot of
different state vectors and therefore a lot of nodes in the graph: assuming 9
layers, this number of nodes could easily exceed 1000.

4.2 Basic Model

Now that we have a general idea about how to solve this problem, I can
describe the directed graph that I need in more detail. In this section, I will
describe a simplified version that illustrates how such a graph is constructed,
but that is not too comprehensive to get distracted from the main idea. In
this basic model, I assume that penalty vectors pﬁ and p#TR are all zero.
Moreover, there will be no trips; all lessons are in locat1on 1. Since I do
not need to count the total number of intermediate hours (since pﬁIH is

all zero) and trips (because pﬁTR is all zero), under these assumptions, the

state vector of each node has to have only one component: the number of
lessons (in location 1). I also assume that the dual multipliers )\83 )\Sb nd
)\?C equal 0, so now the the reduced that I wish to minimize becomes.

15d
fia(e) = fjale) = Y mif “en —

i€ly
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4.2.1 Types of Nodes

There are 6 types of nodes that I have to consider in the basic model:
1. A source r
2. Lesson nodes L? for a lesson in location b

3. Intermediate hour nodes IH™ for the mth consecutive intermediate
hour

4. Heading (before the first lesson of the day) free hour nodes HF
5. Tailing (after the last lesson of the day) free hour nodes TF
6. A sink s

For each node, I will explain its cost and which successors (nodes in the
next layer this node has an arc pointing to) it has. To this end, I use little
diagrams (see for example 4.2.2). The thick circle represents the node that
is being described: the upper half contains its type, the lower half its state
vector. Since only component v! (the number of lessons) is of interest in the
basic case, I only display the value of this component in the lower half of
each node. The cost is displayed underneath the described node. There are
arcs to its successors, which are displayed without cost. I will assume in the
description of the different node types that layer ¢ is not the last layer.

4.2.2 Source layer 1

There are only two nodes in layer 1: the succes- ﬁ

sors of the source. There can be either a lesson, n
or a heading free hour. The cost of the source is

the term —/\?d that must always be part of the v
cost of any path. Since the source is in any path, — )\? g
it seems like a good place to put this cost.

4.2.3 Heading Free Hour layer i

A heading free hour can be followed by either an-

other heading free hour, or the first lesson of the
day. The only costs associated with a heading v
free hour are those for having no lesson at time (p;\g“)i
slot i: (p?rdL)i.
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4.2.4 Lesson

The cost of this lesson node looks quite compli-
cated. Because ¢;; will be equal to one if this
node is in the final column, I have to add the
term —7ri11]d to the cost. Moreover I have the
penalty (pifd)i for having a lesson at this time
slot 7. I also have to include the penalty for hav-
ing n lessons: (pﬁlL)n. However, a path to this
node must have visited n — 1 lesson nodes be-
fore. To avoid cumulating these costs, I have to
subtract the penalty (prL)n_l from the previous
(the (n — 1)th) lesson. Note that I only have to
do this for n > 1. A lesson can be followed by
either another lesson (updating the value of v!
to n + 1), an intermediate hour (the first one in
row) or a tailing free hour.

4.2.5 Intermediate Hour

An intermediate hour has only two successors: it
is either followed by another intermediate hour,
or by a lesson. There are two types of costs: a

hours. Just like with lessons, I avoid cumulating

costs by subtracting (pﬁlCIH)m,l (if m > 1).

4.2.6 Tailing Free Hour

A tailing free hour can only be followed by an-
other tailing free hour. Just like a heading free
hour the only penalty induced is (p?dL)i.

jd
—m i+ (k)i +
L L
W )n— 02 nt
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layer ¢ node mn lessons cost Cil
r 0 —\%,
1 HF 0 (P3a 0
2 L =m0l + 01 1
3 I L (o) + @ 0
w2 el P 1
5 L! 3 —m5lt + (Ph)s + (P )s — ()2 1
6 1 3 ) + () 0
7o 8 N M- e 0
8 L! 4 —mal’ + (Pi)s + 0l ) — (0 )s 1
9 TF 4 (Pja)o 0
s
Table 4.2: Example path
4.2.7 Sink

last layer
Of course, a sink does not have successors, but
only predecessors. The sink can be preceded by
a tailing free hour or a lesson (both with several
possible state vectors, only one possibility (n) is
drawn in the diagram). It can even be preceded
by a heading free hour to allow a path without
any lessons. Since there is only one sink, inde-
pendent of the state, the sink has no state vec-
tor. Moreover, there is no cost associated with
the sink.

(R

4.2.8 Example Graph and Path

In Figure 4.1, we see a graph with all nine layers. I included this figure to
illustrate how such a graph looks like. For typographical reasons, I limited
the scope of the graph to cover at most 5 lessons (all nodes with a state
vector of n > 5 are not displayed) and at most 2 consecutive intermediate
hours (nodes IH™ with m > 2 are excluded). Every path from r to s in
this graph corresponds to a column, and the length of such a path equals
the reduced cost of the corresponding column. To illustrate this concept,
consider the path we get by following the thickened arcs (let us assume this
is the minimum length path). The corresponding column and cost are in
Table 4.2.

We see that this path corresponds to a column with 4 lessons and 3
intermediate hours (one single intermediate hour at time slot 3 plus two
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Figure 4.1: Example graph with at most 5 lessons and at most 2 consecutive intermediate hours
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consecutive ones at slots 6,7). If we add all individual costs, we get:

id C C
N {Cil((P]L-d)i — 7 ) 4+ (1= ) M) |+t @ T+l )2
i€ly

A quick check tells us that this is indeed the correct reduced cost ;fld(c)
of this column. Without the terms involving dual multipliers, the above
expression gives the cost fjq(c) of this column. This cost is needed if I
add the columns to the LP relaxations (and of course for the ultimate ILP
model): it serves as coefficient of the variable z. in the objective. Moreover,
the model needs constants int(c) = 3 and trips(c) = 0 and the values ¢,
which can be determined easily.

4.3 Adding Functionality

4.3.1 Fixed Lessons

If this teacher or class has a lesson [ in location b that is fixed to time slot
i, I must only generate columns that have ¢; = 1 (all other columns are
useless). To force this, I simply remove all except the L? nodes from layer i.
This way, all paths from source to sink are forced to go through a node L°
in layer 7, and all resulting columns have ¢;;, = 1.

4.3.2 Blocked Time Slots

If a teacher has blocked some time slots, the corresponding (p?d)i are set to
00, to avoid generating columns with lessons at these time slots. Most of
the time, the blocked hours are the first- or the last few hours of a day. In
that case the shortest path algorithm gives a path that visits nodes HF or
TF, respectively. There are some teachers that have blocked time slots in the
middle of a day. It then would be possible to have lessons before- and after
these blocked time slots, and the shortest path algorithm would be forced
to visit intermediate hour nodes IH at these blocked slots, inducing a lot of
cost.

To avoid counting these blocked time slots as costly intermediate hours,
I simply remove all nodes in the corresponding layers from the graph. Of
course, to repair connectedness in the graph, we have to add arcs from the
last layer before the arisen gap to the first layer after the gap in the obvious
way (just pretend the corresponding time slots do not exist). Since the new
graph has less layers than there are time slots, we have to be careful in
translating the shortest path back to values ¢;: of course, we set ¢;; = 0 for
every blocked time slot .
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4.3.3 Trips

It is impossible to have two consecutive lessons in different buildings, except
when there is a break between them. In the basic model from Section 4.2,
this was not an issue, since all lessons were in the same location. When
there are lessons in both locations, I have to be careful in the construction
of the graph, to avoid a node L' to be immediately followed by L? (or vice
versa), if there is no break between them. To this end, I introduce an extra
component vl (‘i” for feasible location) in the state vector controlling which
type of lesson nodes may follow the current node:

if this node may not be followed by any lesson node
if this node may only be followed by a lesson node L'

if this node may only be followed by a lesson node L?

W N = O

if this node may be followed by lesson nodes L' and L2

The value v = 0 applies only to nodes TF, and o
the source r and nodes HF. Lesson nodes L? have v = b and intermediate
hour nodes have the same v, as their predecessor(s). There is only an arc
to lesson node L? if its predecessor has vfl = b or vf! = 3.

= 3 is only the case for
fl
).

To be able to count trips, and calculate the cost induced by them, I
have to introduce another kind of node: trip nodes TR®. Here b denotes
the location where the trip goes to. I also need these nodes to make trips
possible: in the above setup, the first lesson node fixes vf, and all paths
from this node to the sink have this same vf (or 0 in case of TF nodes).
A trip node TR® changes the v of its predecessor into b, forcing a trip to
this location b. The trip nodes must always directly follow a lesson node.
However, they are not in the next layer, but between layers. This is because
a trip may be during a break between time slots. Moreover, if a trip must
be made during an intermediate hour, I still want to be able to count the
intermediate hour in the next layer.

Figure 4.2 shows how the trip nodes fit in the graph. Only the value of
vl is displayed in the bottom half of each node and only trips from location
1 to location 2 are displayed. Of course, the L' nodes have other successors
besides TR? (these are in layer i + 1, see Section 4.2.4). If there is no break
between time slots ¢ and ¢ + 1, an intermediate hour node must follow the
trip node. However, this node IH! has v = 2, so the first to come lesson
will be in location 2. If there is a break, the trip node may be followed
immediately by a lesson in location 2. The cost of the trip nodes will be
discussed in Section 4.4.
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layer ¢ + 1

layer ¢ break layer ¢ no break layer ¢+ 1

Figure 4.2: TR nodes

4.4 Complete Graph Description

Now that I have covered all different kinds of nodes, I can give a complete
description of the state vector and the cost for each node type. All com-
ponents of the state vector that I need are listed in Table 4.3. Note that I
also keep track of the number of lessons per location vlb, although the cost
only depends on the total number of lessons v'. Why I do this is explained
in Section 5.2.2. The different types of nodes with their costs are in Table
4.4.

Finally, all nodes with their successors are listed in Table 4.5. There are
some remarks to be made. Between braces are the components of the state
vector that must change in the successor. The source has an all-zero state
vector, except for component vfl = 3. Successor TRY of LY has b/ # b. Finally,
nodes HF, L” and TF in the last layer have the sink s as only successor.
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Component Description

e number of lessons in location b so far
! number of lessons so far (3, o)

pint number of intermediate hours so far
ptrip number of trips so far

vl see Section 4.3.3

Table 4.3: Components of state vector v

Node Cost
r —)\2-d
HF (pjdL)z‘
L’ _771‘1bjd + (Pha)i + (P?;L)vl — (Pl )i
I — (A% 4+ A%+ (pN]); + (pfddm)m — 0l e -

TR TR
TRb _A‘?C + (pf:d )Utrip - (pjz )Utrip_l

TF (pydL)i
S 0

Table 4.4: Node types with costs

Node Successors

r HE LY (0 =10 =1, 01 =)

HF  HF,Lb (W' =1,0' =1, v =)

Lt LY (0" 41,0 4 1), TH (0™ 4 1), TRY (v"P + 1, o = ¥'), TF (v = 0)
H™ L (41, o' + 1), THMHD (vint 4 1)

TR®  IH! (v + 1), if TR® in break: Lb (vlb +1, 0 4+ 1)

TF TF

Table 4.5: Node types with successors
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4.5 Algorithm Summary

As a summary, I list what the column generation algorithm does, together
with its input and output.

Input

e The penalty vectors of teacher j for day d

e The dual multipliers from the optimal solution of the LP relaxation
of the ILP model

Objective
e Find a column with minimal reduced cost f;gd(c)
Method

e Construct a directed graph

e Assign costs to nodes of this graph using the penalty vectors and dual
multipliers
Find the shortest path in this graph

e Translate this shortest path to a column, and determine all needed
constants

Output

e The column: values c;

e The cost fjq(c)

e Constants int(c) and trips(c)
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Chapter 5

Implementation Matters

Chapter 3 and 4 describe the theoretical model and algorithms for the
timetabling problem. When I tried to implement these models in my own
timetabling program, I observed that there were several things that could
be improved. These improvements apply to both the running time and the
quality of the solution. This chapter treats these matters: Section 5.1 is
about improving the solving of the ILP timetabling model and Section 5.2
treats several ways to improve the column generation. How well these im-
provements work is treated in Chapter 11, presenting the computational
results (running times, solution qualities etc.).

5.1 ILP Timetabling

5.1.1 Solving in Stages

To test my timetabling program, I tried to schedule lessons from a small
subset of the classes of the HLC, for instance only the first-year classes.
Using this approach, the program produced solutions very quickly, so I did
not have to wait very long to check whether my program worked properly.
When I confirmed that everything went well, I tried to schedule the complete
school, with all its lessons from all classes. Unfortunately, this was too much
to ask: after running it for a week, my program did not even find a feasible
solution, let alone a good solution. I made sure that there was at least one
feasible solution by adding all columns corresponding to the schedule that
is currently being used at the HLC, however, my program did not find this
solution within a reasonable amount of time.

Maybe the model became too big with all classes, teachers, lessons and
columns, causing the solver to become too slow. Adding fewer columns is
generally not a good idea, as it reduces the chance of finding a combination
of columns that allow a feasible solution. Therefore, I decided to reduce the
problem size by decomposing the problem by partitioning the set of lesson.
The current timetablers also use this approach: I choose a subset of the
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classes for which I schedule all lessons, and while fixing the lessons from this
partial schedule, try to schedule the next subset of classes. I repeat this
process until all classes have been scheduled.

Of course, such a decomposition generally reduces the quality of the fi-
nal solution, because fixing lessons from partial solutions is basically adding
constraints to the model. Deciding how to decompose the classes is impor-
tant, as well as the order in which I solve the partial problems. First of
all, I can not have too many stages since more stages means more quality
loss. Also, having too few stages may result in too little improvement of
the running time. This is a trade-off I have to make. The order in which I
solve the stages is also important for the quality of the final solution, and
sometimes even crucial: it may happen that some partial problem becomes
infeasible, because of the fixed lessons of a previously solved stage.

To illustrate this infeasibility issue, consider a one hour teacher meeting
with all Math teachers. Because of the blocked time slots of some of the
teachers, this meeting can only take place on Friday, hour 5,6,7 or 8 (these
are the only time slots that all Math teachers are available). If this meeting is
not in the first stage, it may happen that teacher A, for example is scheduled
to teach a class on Friday, hour 6 and 7, and teacher B on Friday, hour 5 and
8. Now if I fix these lessons, it becomes impossible to schedule the meeting
in subsequent stage. Therefore it is wise to start with ‘difficult’ lessons in
early stages. Difficult lessons are lessons with large teachers or classes sets,
such as big cluster patterns or meetings. If I still discover a lesson that is
impossible to schedule in some stage (that is, its multiplicity is larger than
the number of time slots it can be scheduled to), I can unfix the lessons that
cause this blockade. Checking for infeasible lessons and unfixing eventual
blocking lessons can be done before the start of each stage.

Finally, it may be beneficial, for solving an early stage, to adapt the cost
functions of teachers who have a lot of lessons that will be scheduled in some
subsequent stage: for example, an intermediate hour in this early stage is
probably not so bad because it can be filled in a subsequent stage.

5.1.2 Empty Cluster Patterns

In upper school, the majority of lessons are cluster patterns. Some cluster
patterns are well filled (most students are assigned to one of the groups in
this cluster pattern, let us call these lessons ‘full’), and some are not (the so-
called empty lessons). In the timetabling algorithm, no distinction between
full and empty lessons is made, while this could be important: it is desirable
to have empty lessons at the beginning or end of the day, as they would
cause an intermediate hour for a lot of students if they would be scheduled
in the middle of a day. Such an intermediate hour is not recognized nor
penalized in the algorithm: a lesson is a lesson, whether empty or full.

To make the algorithm preferring to schedule empty lessons at the be-
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ginning or end of a day, I can use a simple trick. For each upper school
class j, I add a fictitious extra class j to the model. I add this class to the
classes set of all whole-class lessons of class j, and to the classes set of all
full lessons. In a solution of the timetabling problem, such a class j thus
has the exact same schedule as class j, except for the empty lessons: they
do not appear in the schedule of j. This means that scheduling such an
empty lesson in the middle of a day, produces an intermediate hour for class
7. If T penalize intermediate hours for this class, such a schedule becomes
undesirable, and the algorithm automatically tries to avoid this situation.

I could extend this approach by making a finer partition of the lessons
(e.g. dividing into three classes: empty-, half-empty- and full lessons). This
of course would require more fictitious classes, but potentially increases the
quality of the solution. I suggest scaling the penalties of the fictitious classes
according to the number of students involved. The timetabling program at
the HLC uses the finest partition one can think of: it makes schedules
for each individual student. Although this is theoretically possible in the
model (add a fictitious class j for each student having only the lessons the
corresponding student is assigned to), this approach would make the model
far too big and way too slow.

Another option is to include this distinction between full and empty
lessons in the columns. I then would have entries ¢,y = 1 if a full lesson is
to be scheduled at time slot ¢ and c¢;. = 1 for an empty lesson. Just like with
the different locations, I then would have to add extra constraints (1) to the
ILP model in order to make the variables ¥;; correspond to the columns.
The column generation algorithm would have to be adapted to penalize
situations where an empty lesson is neither the first, nor the last lesson of
the day. Since the above approach works well, I have not implemented this
idea; let us regard it as further research (see Section 12.3).

5.2 Column Generation

5.2.1 Using Additional Information

As we have seen in Section 4.1.1, I can force the column generation algorithm
to only generate columns that do or do not have a lesson time slot ¢ by
removing infeasible nodes from layer i. This is useful in case of blocked time
slots or fixed lessons. Sometimes, I can use some other information that
also limits the columns that may be generated. For example, if a teacher
only teaches VMBO classes, which must always have the 9th hour off, it is
useless to generate columns for this teacher, that have a lesson at time slot
9.

To make use of this kind of information, some data that could be useful
for the column generation phase must be stored, before the actual solving
starts:



50 CHAPTER 5. IMPLEMENTATION MATTERS

e First of all, I determine for each lesson [, at which time slot it could
be scheduled. Lesson [ could be scheduled at time slot ¢ only if all
teachers and classes of this lesson are available at this time slot: They
may not have blocked this time slot or have an other lesson that is
fixed at time slot i.

e If the number of time slots that lesson [ can be scheduled to equals
the multiplicity of I, I can fix [ to these time slots. This means that
I remove all except L nodes (assuming lesson [ is given in location
b) from the layers corresponding to these fixed time slots. Of course,
if the number of feasible time slots is less than the multiplicity, the
model is infeasible.

e Now for each class and teacher j, for each time slot ¢ and for each
location b, I determine whether there is at least one of its lessons
in location b that can be scheduled at time slot 4, using the stored
information of the lessons. If there is no such lesson, I can remove the
useless nodes L? from layer i.

Using the extra information, prevents me from generating useless columns.

5.2.2 Constrained State Vector

If I want to generate a column for day d for teacher or class j, I do not
know in advance how many lessons there must be in this column (only the
total number of lessons per week is known). This number of lessons of
the resulting column with minimal reduced cost depends on the penalty
vectors (in particular p}iL) and the dual multipliers. To introduce some
more flexibility for the ILP solver to choose columns, making it easier to
form combinations of day columns that have the required number of lessons
per week, I decided to generate not only the best day column, but also good
columns with a different number of lessons.

For example, if class j must have 5 to 7 lessons on day d, I generate the
best column with 5 lessons, the best column with 6 lessons and the best
column with 7 lessons. This results in adding 3 columns instead of one,
if all three have negative reduced cost. For teachers, I can also introduce
diversity in lessons in different locations: I could, for example, generate the
best column that has 3 lessons in location 1 and 4 in location 2, plus the
best column that has 4 lessons in location 1 and 3 in location 2 etcetera:
For all possible partitions of the lessons over the two locations, I generate a
column.

How can I constrain the number of lessons (of a certain type)? This can
be done by constraining the arcs from nodes in the last layer to the sink:
I only allow arcs from nodes in the last layer that have a state vector that
corresponds to the constraint (all other arcs to sink s are removed from the
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graph). For example, if I want a column with 3 lessons in location 1 and 4
in location 2, I remove all arcs from nodes in the last layer that have ol #+3
or v!’ # 4, to the sink.

This trick is especially useful if I generate for each teacher and class a
set of columns to start with (before actually start solving). At that point
I do not have dual multipliers yet, so I try to minimize f;4(c) (that does
not have to be negative, of course). This produces column sets with a lot of
diversity, and provides a good starting point for the solver.

5.2.3 Neighbor Columns

The fact that columns have low reduced cost, means that they are useful in
the LP relaxation, but does not necessarily mean that they are useful in the
final ILP model. For instance, in the LP relaxation it could be the case that
a lot of columns were generated for some teacher j that have a lesson on
some time slot ¢: apparently this lesson at time slot ¢ was useful in the LP
relaxation. In the ILP model, however, the constraints could force (because
they require integer variables) that there can not be a lesson for this teacher
at time slot ¢. This means that a lot of generated columns become useless,
and may even cause an infeasible ILP model.

Therefore, using an idea I got from Guido Diepen [2], every time a column
c is generated, I also generate a set of neighbors of this column c¢. These
neighbors are also columns that are generated based on column ¢, but that
differ from c in at least one time slot. These columns are not added to the
LP relaxation (they also do not need to have negative reduced cost), but
stored in a column pool. The unique columns from this pool are ultimately
added to the ILP model.

These neighbor columns of column c are generated as follows: for every
component ¢, if it equals 1, I temporarily take out the lesson nodes L?
from layer i, generating a neighbor column with ¢;; = 0. If ¢; = 0, I do
the opposite: I remove all nodes from layer i except the lesson nodes LY,
generating a neighbor column with ¢ = 1. This way, I again introduce
more diversity, and thus more flexibility in the ILP model.

5.2.4 Day Columns versus Week Columns

As I mentioned in Section 3.2.6, I use day columns instead of week columns.
Initially, T used week columns, but then encountered some problems con-
nected with this choice: I observed that the optimal solutions of the LP re-
laxation were highly degenerate. Consequently, there were a lot of columns
that had negative cost (and thus were generated), but did not improve the
quality of the solution. Therefore, in the LP phase, the solver kept adding
columns, and it took many iterations (too many, for large problem instances)
before there were no columns with negative reduced cost to add.
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I considered using the technique of stabilized column generation (see [3])
to overcome this degeneracy. However, there is an even better way to avoid
needing many iterations: use day columns. This approach reduces the total
number of potentially useful columns drastically. For instance, if a class has
35 lessons in a week, there can be (at most) 45!/(35! - 10!) = over 3 billion
different week columns. However, there can be only 22 day columns for day
d, so the total number of day columns is at most 5-2° = 2560. Having much
fewer columns that could be generated obviously reduces degeneracy.

There are some more advantages to using day columns. First of all,
because I can combine the day columns from different days, only a few
columns per day could combine into a large number of week columns (if,
for example I have 3 day columns with 4 lessons for each day (so only 15
columns in total), I could combine them in 3% = 243 ways producing week
columns with 20 lessons). This means, that using day columns introduces
more flexibility. Moreover, the graph in the column generation phase gets a
lot smaller, making the shortest path algorithm faster.

On the other hand, there are also some downsides: I had to include
constraints (8a)-(8c) in the ILP model, increasing the size of this model.
Moreover, these constraints only allow me to penalize the deviation pro-
portionally to the amount of deviation, in contrast to using penalty vectors
allowing me to say: having 2 extra intermediate hours is four times as bad
as having 1 extra intermediate hour. Moreover, if using week columns, I
would not have to generate columns with different numbers of lessons (see
Section 5.2.2), because the total number of lesson hours per week is known
(and thus fixed). However, the advantages of using day columns outweigh
the downsides, in my opinion.
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Chapter 6

Problem Description

Introduction When students make the transition from lower to upper
school, they have to make some choices. Hopefully, they have some idea
about which direction they wish to go after secondary school at that time,
so they can choose subjects that suit their future plans. On the other hand,
they are allowed to drop certain subjects that are less interesting (or that
they are bad at). Of course, the students are not entirely free in choosing
subjects (especially in the first year of upper school), but their choices are
bound by a number of rules, imposed by the government and the school
itself. In particular, students choose one from predetermined sets of subjects
(also called profiles or sectors). For instance, a nature-and-science profile
includes subjects like Physics, Chemistry, Mathematics etc. Generally, there
are three types of subjects in upper school:

1. whole-class subjects that every student has with his ‘own’ class; let us
call this stem class. Which student is in which stem class is known
beforehand (usually the same as in lower school). English and PE
(Physical Education) are examples of whole-class subjects.

2. subject-set subjects that students follow in groups of students who
have chosen the same subject-set (together with students who have
this subject as a free-choice subject, see the next item). This means
that students of different stem classes (that are in the same year and
level) are mixed.

3. free-choice subjects that are not in a students chosen subject-set, but
that he has chosen to reach the obligatory minimum number of lessons
or just because it appeals to him. Subjects like Latin and Music fall
into this category. Often, a student is also allowed to choose subjects
that are in a different subject-set than his own. Of course, these
subjects are also followed by groups of mixed students as well.

Although the whole-class subjects could be included (see the section on
page 64), we will see that the clustering problem is mainly about subject-set
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subjects and free-choice subjects (that is, the subjects in which students
from different stem classes are mixed).

Just like in Chapter 2, we will see in this chapter which concepts play
a crucial role in this problem and how these concepts relate to each other.
I also mention which of the real-life constraints I have disregarded, which
constraints I have added and explain why. In Section 6.3, I treat the objec-
tive and to what extent it differs from the currently used objective. Finally,
I will summarize in Section 6.4: the problem definition. However, I begin
with explaining the basic idea of the clustering problem.

6.1 Basic Idea

There are two kinds of decisions that have to be made solving the clustering
problem. First of all, for subjects with much interest, the subscribers must
be partitioned into groups (for subjects with only few participants, there
is only one group). Secondly, I have to make sets, the so-called cluster
patterns, of groups that can be scheduled simultaneously at a time slot
(deciding at which time slot to schedule such a cluster pattern is part of the
timetabling problem). Because forming cluster patterns limits the choice of
assigning students to groups (since students can not have more than one
lesson simultaneously) and vice versa, these two decisions are jointly made
while clustering. Note that different groups of the same subject do not need
to be in the same cluster pattern (in fact, this is sometimes impossible if one
teacher teaches more than one of these groups). The formation of cluster
patterns in turn affects the timetabling problem. That is why I decided to
include this problem in my research project.

For example, suppose there are two subjects A and B, both with 50
participants that have to be partitioned into 2 groups per subject, denoted
by Al, A2, Bl and B2. It is part of the clustering problem to decide which
student is assigned to which group. Secondly, it has to combine groups
into cluster patterns, for example A1-B2 and A2-B1 (apparently, there is no
student assigned to both Al and B2 or to both A2 and B1). If subject A
has to be taught 2 times a week, and subject B 3 times (these multiplicities
are known), so have to be all their groups. In this case, we would could
have the following solution (set of cluster patterns): A1-B2, A1-B2, A2-B1,
A2-B1 and B1-B2. Of course, there can be no students assigned to both
B1 and B2 since they are groups of the same subject, so the pattern B1-B2
is only feasible if they are not taught by the same teacher (which is known
beforehand).
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6.2 Modeling Concepts

6.2.1 Subjects

As said in the introduction, clustering is about upper school students choos-
ing optional subjects. The number of optional subjects a student can choose
from is usually much higher than the number of whole-class subjects: e.g.
in 4HAVO (an extreme example), there are 7 whole-class subjects and no
less than 18 optional subjects.

Choice Rules

On average, the 4AHAVO students choose only 6 optional subjects. This
number is a consequence of the choice rules that each student must obey. He
must have a minimum number of lessons in order to reach the legal minimum
number of teaching hours that every student must have each year. There is
also a maximum number of subjects a student may choose, because an over-
active student may make timetabling impossible. Moreover, there are rules
concerning the subject-set the student has chosen. Of course, each student
must subscribe to all subjects in his subject-set, but there may also be rules
like: If you choose subject set X, you have to choose at least 2 of the subjects
A, B and C. Finally, mostly applying to free-choice subjects, there can be
rules of the form: It is not allowed to choose both Music and Handicraft.
Such a rule makes clustering a bit easier (in this example, I know that I
can (probably) schedule Music and Handicraft groups simultaneously, since
there can be no student who is subscribed to both). However, although some
of these rules provide useful information for the clustering problem, I do not
have to include them in the model (they are not used in the currently used
clustering software either). This is because the consequences of the rules are
apparent in the choices of the students (which are part of the input).

6.2.2 Groups

After the students have chosen their optional subjects, I know the number of
subscribers for each subject. If all students fit in one classroom (a classroom
has a capacity of about 30 students), usually all subscribed students are
incorporated into one group, and the teacher of this group is being decided.
If there are more students, say 85, there has to be more than one group. In
this case, 4 groups of around 21 students can be made, or 3 larger groups of
about 28 students. Whether to make 3 or 4 groups is being decided by the
school and depends on budget and staff resources. Again, a teacher must
be assigned to each of the 3 or 4 groups. It may happen that one teacher
is assigned to more than one group of the same subject (or even to multiple
groups of different subjects). All these decisions are made before the actual
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clustering begins. Note that deciding which student is being assigned to
which group (in case of a multi-group subject) is part of the problem.

Group Sizes

When a subject with 85 subscribers is being divided into 4 groups, I normally
want the group sizes to be around 85/4 ~ 21 students each. This will be
included as a soft constraint, so I am allowed to deviate from this ideal size
(in order to be able to make better cluster patterns), but doing so induces
penalty points (see Section 6.3). There can also be hard bounds on the
group sizes, guaranteeing a more or less balanced result. In this example, I
could add the hard constraints that the groups must have at least 18 and
at most 24 students. An obvious (hard) upper bound for group sizes is the
maximum number of students that fit in a room (about 30 at the HLC).
In rare situations, I do not want the group sizes to be evenly balanced.
This can happen when an inexperienced teacher is assigned to one of the
groups. The timetabler may want this teacher to have fewer students than
the experienced teachers who teach the other groups. Therefore ideal group
size and hard bounds may differ from group to group.

6.2.3 Students

I hope it is clear at this point that students play an important role in the
clustering problem: students choose subjects, and when a subject has mul-
tiple groups, this student must be assigned to one of them. This assignment
is part of the clustering problem. I ultimately want to combine groups that
can be scheduled simultaneously into cluster patterns, and how I can com-
bine depends on the group assignments: a set of groups can form a cluster
pattern if there is no student who is assigned to more than one group in this
set.

Stem Classes

In lower school, each student has all his lessons with his ‘own’ class. In
upper school, this generally only happens in whole-class subjects. Optional
subjects are being followed in mixed classes. To avoid confusion, I call the
first type stem classes. Stem classes sometimes remain the same from the
first to the last year, but it can also occur that classes are being regrouped
at some point in time. In particular, regrouping can be beneficial before
the first year of upper school based on the subject choices of students. An
other reason to regroup may be that classes get too small due to students
that repeat a class or drop out: Regrouping could then reduce the number
of classes.

So optional subjects are followed in groups of students of different stem
classes. Of course all students must be in the same year and of the same
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Students

name
102308
102363
102384
102412
102470
102519
108652
108664
108699
108766
108777
108786
108989
109040
109052
109285
108410
108429
108578
110201
114085
117663
125736
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Figure 6.1: Subject choices hda

level. Let us say that that all students are of the same type. Clustering
can be done for each type separately, since group assignments and making
cluster patterns only concern students and subjects within a type. At the
HLC, there are 7 types that have to be clustered: 3,4VMBO; 4,5HAVO and
4,5,6VWO.

Group Assignment Restrictions

Sometimes I am not entirely free to assign students to groups. Figure 6.1
(a screen shot from my own clustering program) shows the subjects chosen
by students in 4HAVO stem class h4a.

As we can see, subject R (representing chemistry) is chosen by all 23
students in this class. This is probably not a coincidence: I presume after
lower school, new stem classes are formed based on their subject choices.
In the other five 4HAVO stem classes (h4b, h4c, h4d, hde and h4f), there
are 43 subscribers to this subject, making a total of 66. This subject is
therefore divided into 3 groups (R1, R2 and R3) consisting of 22 students
each, on average. However, it is desirable to keep the 23 students of h4a
together, and to make them form one of the three groups, say group R1. To
achieve this I can add the constraint that each student in h4a may only be
assigned to group R1 (let us call these students are fized to R1). The other
43 students that are subscribed to subject R are only allowed to be assigned
to one of the groups R2 and R3. In general: I can restrict the assignment of
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Subjects
A BCDEVFGHTIJKTLMNOZPAQR
period1|{3 0 0 3 3 3 0 4 2 0 0 3 3 0 4 3 3 3
2/3 0 3 3 33 3 402 3 40 4 3 3 30
310 30 3 3 03 4 2003 0 4 0 3 3 3
413 0 3 0 3 3 3 4 22 3 4 3 3 3 3 3 0
5/3 33 3 03 3 4 22 3 3 2 3 3 3 3 4

Table 6.1: 4HAVO lessons table for optional subjects

students to a subset of the groups of a subject. I call this type of constraints
group assignment restrictions.

If I add whole-class subjects to the problem (why I would do that is
explained in the section on page 64), I must also use these type of constraints:
each student must be fixed to the group corresponding to his stem class.
Finally, if a subject has only one group, each student subscribed to this
course is automatically fixed to this one group, of course.

6.2.4 Periods

In the timetabling problem, I do not need to care about periods, because
I can solve the timetabling problem for each period separately. I can not
do this with clustering, since the group assignments must remain the same
throughout the whole year. However, the number of hours each subject is
taught differs from period to period. Most subjects are only taught in a
subset of the periods. In 4HAVO, for example, only 12 of the 18 optional
subjects are taught in period 1. How many hours a subject is given each
period is predetermined, and thus part of the input. This data is usually
provided in a lessons table (see Table 6.1).

I could choose to cluster the periods one by one. When the clustering of
period 1 is finished, I then would have to fix the resulting group assignments
in the clustering of the remaining periods (since these group assignments
have to maintain the same throughout the year). This is not a good idea
since the optimal group assignment of period 1 could be a bad assignment
for period 2. This is because in period 2, a different set of subjects is taught,
possibly requiring other combinations of groups (cluster patterns). At this
point, however, I am not flexible in combining groups anymore, since group
assignments are fixed. Therefore I cluster for the entire year at once.

6.2.5 Teachers

As we have seen in Section 6.2.2, it is predetermined which teacher teaches
which group. Sometimes, a teacher teaches more than one group of a subject.
It may even happen that a teacher teaches groups of different subjects. As
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said before, when combining groups into cluster patterns, I have to make
sure that no student is assigned to more than one group in this pattern,
because a student can not split itself. The same holds for a teacher: I
can not allow two or more groups given by the same teacher to be in a
pattern. This is why this information about teachers is also important for
the clustering problem.

Availability

There is another reason why it is important to know which teacher teaches
which group. This has to do with part-time teachers, who have blocked part
of the week. Suppose teacher Abc blocked Monday, Tuesday and Wednesday
and teacher Def blocked Thursday and Friday. It is useless to combine
two groups taught by those teachers in a cluster pattern, since it will be
impossible to schedule at a time slot in the timetabling phase. To avoid
this, I can add the constraint that all teachers that are being combined in
a pattern must have at least one overlapping available time slot. Usually, I
want to be a bit more flexible during the timetabling phase, so demanding
more than one available time slot is desirable. The availability of teachers
must be part of the input, to be able to include these constraints.

6.2.6 Other Issues

There are no issues that are included in the current clustering approach
that I have not mentioned in the preceding sections. We have seen in the
section about teacher availability (page 61), that the problem description
includes even more constraints. This is necessary to avoid problems during
the timetabling phase. The clustering software that the HLC uses does
not need these constraints because the formation of cluster patterns is done
in the the timetabling phase at the HLC (see Section 6.3.2). Therefore,
their cluster patterns automatically meet teacher availability constraints.
Classroom constraints, which are explained in the next section, are also in
this category.

Classroom Constraints

We have seen in the timetabling problem (see Section 2.1.5) that, although I
do not assign lessons to classrooms explicitly, classrooms do play a role. At
first glance, I do not have to care about classrooms in the clustering problem.
However, it can happen that in the timetabling phase, a generated cluster
pattern can not be scheduled due to the classroom constraints. Consider
three biology groups B1, B2 and B3, and suppose these groups are being
taught by three different teachers, who have many overlapping available
time slots. The clustering could result in a pattern with B1, B2 and B3:
obviously, there can not be a student who is assigned to more than one
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of these groups (since they are groups of the same subject), and from the
assumption that each group is taught by a different teacher, a teachers
conflict is also impossible. However, there are only two biology classrooms,
so this cluster pattern can never be scheduled. Therefore, I have to avoid
these kind of situations in the clustering phase already. This can be achieved
by introducing constraints limiting the number of groups from some set (in
this case, the set of biology groups) that can be in a pattern. This means
classroom constraints are of the following form:

From groups set GG, there may be only n in a cluster pattern

In this case, I suggest allowing only n = 1 biology group (G is the set
of biology groups) in a cluster pattern, in order to be more flexible in the
timetabling phase. Allowing patterns with two biology groups would require
(in the timetabling phase) a time slot at which both biology rooms are free,
but there may not be such a time slot anymore if part of the schedule is
already fixed (see Section 5.1.1).

6.3 Objective

6.3.1 My Approach

My timetabling model needs ready-to-use lessons as input. Therefore, I
want the clustering algorithm to produce these lessons in the form of cluster
patterns. A cluster pattern can be seen as one big lesson involving multiple
classes and teachers (see the section on page 14). It is desirable for such a
lesson to consist of many groups, because then a large number of students
have class, and only few are free (possibly having an intermediate hour,
depending on the time slot at which this pattern will be scheduled in the
timetabling phase). The total number of groups is fixed, since the number
of groups per subject is predetermined and the number of hours per week is
known for each subject. Therefore grouping many groups in parallel means
having few cluster patterns in total. This is why my primary objective is to
minimize the total number of patterns. Since I cluster for the whole year,
and resulting patterns can be different each period, I minimize the sum of
the number of patterns per period. There is also a secondary objective,
which is balancing the number of students among the groups of a subject
(see the paragraph on page 58).

To illustrate this objective, and to compare it with the objective that
is currently used, let us consider a small example: clustering for 3VMBO
(having 101 students). In Table 6.2, I combined the lessons table with the
group sizes of the resulting clustering of my algorithm. Note that, although
subject E only has 28 subscribers, the school still decided to form two groups.
Also note that these groups are perfectly balanced in my result. Table 6.3
shows per period, which patterns were formed. Since the lessons table for
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Subjects

A B C D E F G

period1|{ 0 3 3 3 3 3 0
23 3 0 3 0 3 3

3/3 0 3 0 3 0 3

410 3 3 3 3 3 O

5(2 3 3 3 3 3 2
#students | 35 71 73 96 28 35 66
H#groups | 2 3 3 4 2 2 3
group 1|16 26 27 22 14 20 22
2119 24 24 26 14 15 20
3 21 22 25 24

4 23

Table 6.2: 3VMBO lessons table and resulting group sizes

period 1 and 4 period 2 period 3 period 5
B2 C3 D3 E1 F2{100 A2 B1 D4 G2(88 A2 C1 E2 G3[84 Al B3 D1 F1 G1|101
B2 C3 D3 E1 F2|100 A2 B1 D4 G2|88 A2 C1 E2 G3|84 Al B3 D1 F1 G1|101
B2 C3 D3 E1 F2|100 A2 B1 D4 G2|88 A2 C1 E2 G3|84 B2 C3 D3 E1 F2 100
B1 C2 D2 76 B3 D1 F1 G185 Al C3 E1 G1|74 B2 C3 D3 El1 F2 100
B1 C2 D2 76 B3 D1 F1 G185 Al C3 G160 A2 B1 D4 G2| 88
B1 C2 D2 76 B3 D1 F1 G185 Al C3 G160 B3 D4 E2 G3| 82
C1 D1 F1| 69 Al D2 G3|66 C2 E1 G2|58 B2 C1 D2 7
C1 D1 F1| 69 Al D2 G3|66 C2 E1 G2|58 B1 C2 D2 76
C1 D1 F1| 69 Al D2 G3|66 C2 G2|44 B1 C2 D2 76
B3 D4 E2 58 B2 D3 F2 64 C2 El1 F2 G2| 73
B3 D4 E2 58 B2 D3 F2 64 A2 C1 G3| 70
B3 D4 E2 58 B2 D3 F2 64 C1 D1 F1 69
C3 D4 E2 59
D3 E2 39

Table 6.3: 3VMBO patterns with number of students

periods 1 and 4 are identical, it is no surprise that the resulting clustering
has the same patterns in these two periods.

Table 6.2 shows that my algorithm balances group sizes reasonably well.
The primary objective, however was to minimize the number of patterns
needed. In Table 6.3, we can see that in my result periods 1,2 and 4 have
12 patterns, period 3 has only 9 and period 5 (which has the most subjects)
has 14, making a total of 59 patterns. It is possible to reduce the number
of patterns in period 5 to 12, by shifting some students to other groups
(the group assignments are not displayed here). However, with this new
group assignment I might need more than 9 patterns in period 3. Since
I am minimizing the sum of the number of patterns, this shifting is not
necessarily a good thing. I could, however, include upper bounds on the
number of patterns per period as extra constraints.

Note that an optimal solution of the clustering problem not necessarily
allows an optimal solution of the timetabling problem. However, minimizing
the number of patterns is an objective that allows good solutions in the
timetabling phase, in my opinion.
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Including Whole-Class Subjects

It is possible to include whole-class subjects in the clustering model. The
HLC timetablers do not do this, but it can be beneficial. First of all, I have
to make sure that each student gets fixed to the group corresponding to his
own stem class by group assignment restrictions (see the section on page 59).
Consequently, the clustering program does not need to care about assigning
students to groups, but only to fit the whole-class groups in the cluster
patterns. From my 3VMBO clustering (without whole-class subjects) in
Table 6.3, consider pattern C2-G2 from period 3. There are only 2 students
from stem class t3b in this pattern (they are both in G2). It may be possible
to move these two students to G1 or G3, in order to have no t3b students
in this pattern at all. In that case it would be possible to add a whole-class
group for t3b to this cluster pattern, saving some space (that is, reducing
the number of patterns needed). Thus by adding whole-class subjects to the
model, the algorithm is forced to make group assignments (for the optional
subjects) allowing to fit whole-class groups in the patterns.

It is not always the case that adding whole-class subjects saves space.
Sometimes, you end up with cluster patterns that all have either only groups
of optional subjects, or only groups of whole-class subjects. Only mixing the
two types could save space. Including whole-class subjects increases the size
of the model, so it takes longer to solve. Another downside is that by fixing
these groups to patterns, you lose some flexibility in the timetabling phase.
In Chapter 10, however, the issue of flexibility will be solved.

6.3.2 Current Approach

Until one of the last interviews at the HLC, I thought that their clustering
program worked more or less the same way as mine. But when I wanted to
compare one of my clusterings with one of theirs I found out that they use
a different objective. Table 6.4 shows the complete result of their clustering
program (except the exact assignment of students to groups). Surprisingly,
the number of students per subject is different from those in Table 6.2. This
is because the data I used is older than in their result: Now there are only
99 students in 3VMBO (apparently 2 dropped out). We see that the quality
of their group balancing is comparable to mine.

Even more surprising is the bottom half of the table. Their clustering
program does not make patterns, but so-called lines. A line is similar to a
pattern in that it also is a set of groups that could be scheduled in parallel.
However it does not seem to use any information of the lessons table: these
lines are not period-dependent and each group only appears once. The
formation of lines can be seen as clustering like in my approach for one
period, in which each subject is given only once a week. The main objective
is to have as few lines as possible.
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4 groups|Al C1 E2 G3
Subjects Al C1 E2
A B CDEVF G Al C1 G1 (line 1)
period 10 3 3 3 3 3 0 Al C1 G3
213 3 0 3 0 3 3 Al E2 G3
33 0 3 0 3 0 3 A2 El G1
410 3 3 3 3 3 0 A2 El G2
52 3 3 3 3 3 2 A2 E2 G3 (line 4)
#students|33 70 71 95 28 33 66 3 groups Cl C2 El
#groups| 2 3 3 4 2 2 3 C1 C2 E2
group 1|16 26 25 23 14 16 19 Cl1 C3 E1
2|17 24 25 25 14 17 23 Cl C3 E2
3 19 21 22 24 C1 El G1
4 25 C1 E2 G3
line 1|A1 Cl D1 F1 G1 C2 E1 G2
2 B1 C2 D2 G2 C3 E1 G2
3 B2 C3 D3 E1 F2 <3 erotDs Al G2
4/A2 B3 D4 E2 G3 group plus all subpatterns

Table 6.4: 3VMBO HLC clustering Table 6.5: Possible patterns

This approach is only possible since, in their approach, it is the respon-
sibility of the timetabling software to combine groups into cluster patterns.
The main responsibility of their clustering program is to make group assign-
ments in such a way that the timetabling program can nicely combine the
groups. What ‘nicely’ means is not exactly clear, but it has something to
do with having not too many patterns—my objective of clustering—as well
as some flexibility in combining groups into patterns. Having as few lines as
possible takes care of that. This approach has the advantage of being more
flexible in the timetabling phase. As a consequence, teacher availability and
classroom constraints do not have to be included. The downsides are that
you need a more powerful timetabling program, and that its result is not
period dependent.

To illustrate the downside of not being period dependent, let us consider
period 3. My approach was able to fit all groups into only 9 patterns (see
Table 6.3), using the information from the lessons table explicitly. Table
6.5 shows all patterns that could be formed in the timetabling phase using
the group assignments from the HLC clustering program. These are the
patterns that their timetabling program could use (it is not committed to
the lines in any way, only to the student assignments to the groups). All but
one pattern with less than 3 groups are omitted, since they are simply the
subpatterns of the larger ones. You can try it yourself, but it is impossible
to cover all multiplicities using only 9 of these patterns. In Chapter 10, I
will propose a new method that has both flexibility and is period dependent.
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Subjects
B N
period 1| 3 0
210 3
312 0
410 3
5/ 0 2
line 8 | Bl N2

Table 6.6: Alternating Subjects

Alternating Subjects

I said before that the current approach does not seem to use the lessons
table. This is not exactly true: it is probably used to value the resulting
lines. There is a special case where it is obvious that the lessons table is
used. Consider a part of the lessons table of 5VWO, with one of the resulting
lines in Table 6.6. There are some students who have been assigned to both
groups B1 and N2. Still, these groups are in one line. This is possible since
there is no period in which both subjects are being given (let us call B and
N alternating subjects), so there can be no harm in placing the two groups
in the same line. My approach automatically takes care of this issue, since
it has different patterns each period.

6.4 Problem Definition

Having treated all concepts that are relevant to this clustering problem,
I can summarize the input I need, the objective and constraints, and the
output I get, in a problem definition:
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Input

A set of stem classes of the same type, with their students

A set of subjects that must be clustered (possibly including whole-
class subjects)

For each period, the number of hours per week each subject must be
taught (that is, a lessons table)

e The groups per subject, with their teachers

e Hard bounds on group sizes

e Ideal group sizes

e The subscriptions of the students

e The group assignment restrictions (if any) for each student

e Teacher availability

e (Classroom information

e Upper bounds on the number of cluster patterns per period (optional)
Objective

Form as few cluster patterns as possible

Soft constraints (violating induce penalty points)

Group sizes have to be as close as possible to their ideal sizes

Hard constraints (must be met)

The number of hours per week for each subject and for each period
must be respected

Each student must be assigned to exactly one group per subject that
he is subscribed to

Group assignment restrictions must be respected

The size of each group must be within its hard bounds

A student may not be assigned to more than one group in each cluster
pattern

A teacher may not teach more than one group in each cluster pattern
The teachers in each cluster pattern must have sufficient overlapping
availability

The classrooms constraints have to be respected

The upper bound on the number of cluster patterns per period may
not be exceeded

Output

Assignments of students to groups
For each period, a set of cluster patterns
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Chapter 7

Modeling

Introduction Just like the timetabling problem, the clustering problem
can be modeled as an integer linear program. Also, I use the concept of
columns in the ILP model. In this case, a column corresponds to a feasible
cluster pattern. How these columns are generated is treated in Chapter 8.
First, using the problem definition from Section 6.4 as a starting point, I
describe which types of variables I need, which constraints I must add and
what the objective is. Finally, I state the full model.

Just like in Chapter 3, I use consistent numbering and naming through-
out this chapter. Numbered constraints correspond to those in the full model
(Section 7.4). Indices are named as follows: i denotes a student, s a subject,
g is a group, p a period and ¢ stands for a column.

7.1 Variables

There are two decisions to be made while solving the clustering problem:
which cluster patterns to use and how to assign students to groups. Like I
said in the introduction, cluster patterns are modeled as columns in the ILP
model. A column ¢ can be seen as a 0-1 vector, with a component for each
group g:
~ )1 if group g is in this cluster pattern
= 0 otherwise

Note that the components of this vector are constants in the ILP model.
Since in each period, different subjects may be taught, there is a set of
columns CP for each period p. Just like in the timetabling problem, I need
variables z. to be able to decide which columns to choose. However, in this

case, a cluster pattern (column) may be chosen more than once in general,
so the z. are not 0-1 variables in the clustering problem:

{n if column ¢ is chosen n times
c p—

0 otherwise

69
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Of course, there is an upper bound on n, because each group must appear in
a fixed number of cluster patterns (the number of hours the corresponding
subject must be given in a week). This upper bound is guaranteed by the
constraints (1), see Section 7.2.1.

Besides variables x., I need variables to be able to assign students to
groups. Every student ¢ has a set of subjects S; he is subscribed to. Each
subject has one or more groups. The set of all groups (from all subjects
in S;) this student ¢ may be assigned to (possibly restricted by the group
assignment restrictions, see the section on page 59) is denoted by G;. For
each student ¢ and each group g € G;, I introduce 0-1 variables:

1 if student 7 is assigned to group g
Yig = .
0 otherwise

7.2 Constraints

7.2.1 Number of Hours per Week

Of course, the lessons table must be respected. For each subject and period,
the lessons table tells us how many hours per week all groups of this subject,
must be given: this table determines the values mj, denoting this number
for group g and period p. This means that each group g must appear m}
times in the chosen columns for period p. I can force this by the following
constraint:

Z zecg =my forallg,p (1)

ceCP
If a column c has ¢; = 1, we can see from this constraint that z. can
never exceed value mf. These constraints thus imply upper bounds on the
variables x..

7.2.2 One Group per Subject

Of course, every student must be assigned to exactly one group of each
subject he is subscribed to. Of course, I must respect the group assignment
restrictions (see Section 6.2.3). Let us denote the set of groups of subject
s € S; that student ¢ may be assigned to by G s (which is obviously a subset
of G;). This leads to the following constraints:

Z yig=1 foralli,se€S; (2)
gEGi,s

7.2.3 Number of Cluster Patterns per Period

Optionally, I can include constraints that bound the number of cluster pat-
terns I can use per period (this is usually done to balance the number of
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patterns over the periods). Denoting the maximum number of patterns for
period p by nP, the following constraints take care of this:

Z x. <nP forallp (3)
ceCP

7.2.4 Group Sizes

I can have hard constraints on the number of students in a group (for in-
stance, to make sure all students fit in a classroom), as well as soft constraints
that measure deviation from ideal group sizes. Let us denote the hard upper-
and lower bound on the size of group g by 7, and 74 respectively. If we let
I, denote the set of students that can be assigned to group ¢ (this means
g € G; & i € 1), the following constraints guarantee that the group sizes
remain within these bounds:

> yig < g for all g (4a)
i€l
D yig > g for all g (4b)
icl,
To be able to measure deviation from the ideal group size nfqdeal of group

g, I need additional variables z;r and z, measuring the number of students
over and under the ideal size respectively (so at least one of them is 0 in
an optimal solution). These variables are penalized in the objective (see
Section 7.3). The following constraints measure deviation:

Z Yig — z;r +z, = nigdeal for all g (4c)
i€l

Since the ideal group size may be non-integer (for instance if I want to evenly

balance 55 students over 2 groups: nigdeal = 22.5), variables z; and z;, may

also be non integer. In fact, if I have a non-integer n'“°*, I will always

deviate from this ideal group size (since ), 1, Yig S integer), inducing some

ideal
g
penalty points (this is not a problem).

7.2.5 No Overlapping Students

‘A student may mot be assigned to more than one group in each cluster
pattern’ is one of the hard constraints from the problem definition in Section
6.4. To include this constraint, I need information about the assignment
of students to groups (variables y;4) and about which patterns are chosen
(variables x.). This constraint thus combines the two types of variables, and
makes it a harder problem to solve.

It is not difficult to see that I can rewrite the constraint as: 'If a student
is assigned to both groups g1 and g2, there may not be a pattern (in any
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period) containing both these groups’. This shows that I need constraints
for each student and all possible pairs of groups he can be assigned to. I
need a way to formalize the condition of student ¢ being assigned to both
groups g1 and g2 to be able to include it in the model. This condition means
that yig, = 1 A ¥Yig, = 1 & Yig, + Yig, = 2. Denoting the set of columns that
have ¢, = 1 (regardless of the period the column belongs to) by Cy, I can
write the condition that there may not be a pattern which has both groups
g1 and go as Zcecglmc*” x. = 0. Therefore, the constraint can be written
as:

Yigr T Yiga =2 = Z z.=0 foralli, gi,92 € Gi, g1 # 92
ceCy,NCYy,

If the value of > c€Cy; NCy, Le would have 1 as upper bound, I could simply
add constraint yig, + Yig, + Ececglmcgz ze < 2. However, if yig, + yig, < 1,
there is no additional bound on the x. and ZcecglngQ x. can be bigger than
one. Of course, I can calculate an upper bound on this quantity (by using
the values my, and mj, for each period, for instance). Denote this upper
bound by M, 4,)- Then the following constraints make sure each student
has at most one group per chosen cluster pattern:

M(91,g2)(yi91 + yig2) + Z Te < 2M(917g2)
ceCy,NCy,

for all 4, g1,92 € Gi,g1 # g2 (5)

Note that if g3 and go are groups of the same subject, this constraint is
automatically met, because then at most one of the variables y;4, and y;g,
equals 1 (by constraint (2)).

7.2.6 Variable Bounds and Integrality

Variables y;4 are 0-1-variables. The x. must be nonnegative integers (an
upper bound does not need to be forced, constraints (1) take care of this).
Finally, variables z; and z, are also nonnegative, but do not need to be
integer. Summarizing, I have the following bounds:

Te € Li>0 for all ¢ (6a)
yig € {0,1} for all i,g9 € G; (6b)
z;r, zg 20 for all g (6¢)

7.2.7 Other Constraints

There are still three (hard) constraints from the problem definition that I
have not treated yet:
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e A teacher may not teach more than one group in each cluster pattern

e The teachers in each cluster pattern must have sufficient overlapping
availability

e The classrooms constraints have to be respected

These constraints are not included in the ILP model, because they only
tell us something about which cluster patterns are allowed and which are
not. Therefore, these constraints will be included in the column generation
algorithm (see Chapter 8).

7.3 Objective

The main objective is to minimize the total number of cluster patterns used.
This can be expressed easily in the following objective:

min Z x. (obj)

There is also a secondary objective: keeping the group sizes as close to their
ideal size as possible. The deviation is measured by the variables z; and z,
so I must include them in the objective as well. However, I can not sacrifice
an extra cluster pattern for better group balancing; group sizes have a lower
priority. Therefore I include a small weighing constant c, that forces this

priority. The final objective becomes:

min Z Te+ s Z(z;' +2z,) (obj)
c g

7.4 Full Model

Now I am ready to formulate the full ILP model with all its constraints:
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min ) . +c; MQANN +z,) (obj)

Objective

Subject to:

Y ceow TeCg = My for all g,p (1) Lessons table
> geG; . Yig = 1 for all i,s €. S; (2) One group per subject
Y ecor Te < NP for all p (3) Number of cluster patterns per period
> icr, Yig < Mg for all g (4a)
M@.m\w Yig = Ng for all g (4b) Group sizes
M@.m? Yig — Nm. tzy = :%mm_ for all g (4c)
Mg, ,92)(Wig: + Yigs) + MuomQEDQS Te < 2Mg, g,y for alli, g1,92 € Gi,1 # g2 (5) No overlapping students
Te € Lo for all ¢ (6a)
vig € {0,1} for all i,g € G; (6b) . . :
Nmﬂ z; >0 for all g (6c) Variable bounds and integrality




Chapter 8

Generating Columns

Introduction Although the title of this chapter might suggest that for
the clustering problem I also have to use column generation techniques as
we know it from LP theory (and of course from the timetabling problem,
see Chapter 4), I do not. This is because in the clustering problem all
columns fit in memory, so I do not need to only generate columns with low
reduced cost, for instance. Instead, I generate all feasible columns before I
start solving the ILP model. What ‘feasible’ in this case means, and how to
generate such columns, is the subject of this chapter.

I begin with describing which constraints a cluster pattern has to meet
to be regarded as feasible. In Section 8.2, I explain how I construct such
feasible patterns without wasting time on too many feasibility checks. I
conclude with the full column generation algorithm that is used.

8.1 Feasibility Constraints

We know that a column is simply a set of groups that could ultimately be
scheduled simultaneously. Of course each group can appear only once in a
column. Moreover, I have some other feasibility constraints like:

1. A teacher may not teach more than one group in each cluster pattern

2. The teachers in each cluster pattern must have sufficient overlapping
availability

3. The classrooms constraints have to be respected

If T only check the columns for above three constraints, I observed that
the column generation algorithm (CG) produced a lot of columns that were
still useless in the ILP model. The word useless means, that the correspond-
ing variable x. can never become positive in the ILP model. In the following
two sections we will see some examples of useless patterns. Although I could
add useless columns to the model, it is desirable to filter them out before
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adding the set of patterns: I have to tighten the feasible set, by adding more
constraints to the feasibility check. This has several advantages. First of
all, it saves memory space. Moreover, the ILP solver runs faster without
useless columns. Finally, in some cases it improves the running time of the
column generation algorithm, as I can prune more branches of the search
tree, because of the more strict feasibility check. In most cases, however,
this effect is nullified by the extra time I have to spend on these checks,
caused by the extra constraints filtering out useless patterns.

8.1.1 Number of Students

With only the three constraints mentioned so far, a large amount of big
patterns (with a lot of groups) are generated. Since the total number of
students that have to be assigned is fixed, the number of students per group
in such a pattern can get too low. ‘Too low’ in this case means: lower than
the minimum number of students that the ILP model allows to assign to
such a group.

I can calculate a lower bound m(g) on the number of students that the
ILP model allows to group g. Of course, we have the relation m(g) >
fg (where ng is the hard lower bound on the group size of g, see Section
7.2.4). The number of students that are fixed to this group (because of
group assignment restrictions, or because g is the only group of the subject,
see Section 6.2.3) also is a lower bound on m(g). Finally, if g is a group
of subject s, and GY denotes the set of the other groups (besides g) of the
same subject s, we know that at most de(-;g fg students can be assigned
to the other groups of this subject. If we let ns; denote the total number
of subscribers to subject s, we know that at least ng — de@g fg students
must be assigned to group g. This is a third lower bound on m(g). I can
thus define m(g) as the maximum of these three lower bounds:

m(g) = max{ng, #students fixed to g, ns — Z ng}
geG9
These values m(g) can be calculated before I start generating patterns. If
have these values m(g) at my disposal, I can use them to calculate a lower
bound on the number of students in a pattern P: 3 - pm(g). If the total
number of students is less than this lower bound, the pattern is infeasible,
of course. This leads to a new constraint:

4. A pattern P is feasible, only if the total number of students is at least
ZQEP m(g)
8.1.2 ILP Feasibility Check

There are still columns that pass the above feasibility checks, but are still
useless in the model. Which constraints are responsible for that differs from
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case to case. Ome obvious example is when a student 7 is fixed to both
groups g1 and go. This means that (by constraint (5) of the ILP model)
all columns ¢ with both these groups must have x. = 0: these columns are
infeasible since a student cannot follow two lessons at the same time.

I could decide to add a constraint to the feasibility check, testing whether
there is a student who is fixed to more than one group in the examined pat-
tern. But still, there would be columns generated that are (less obviously)
useless. Therefore, I decided to test for each column that meets all above
constraints, whether the constraints in the ILP model would force the cor-
responding variable to 0. For this purpose, I use the following reduced ILP
model:

> geG; . Yig = 1 for alli,s € S; (2)
Diel, Yig < Mg for all g (4a)
iel, Yig = Mg for all g (4b)

Yigr + Yig, < 1 for all i, g1,92 € GiN P, g1 # g2 (5)

vig € {0,1} for all i,g € G; (6b)

This model can be seen as a simplified version of the full model from Chapter
7. In this reduced model I have only one column: the pattern P (a set of
groups) that has to be checked for feasibility, and I force this column to
be used (that is, I fix ., = 1; this is no longer a variable, but becomes a
constant). Since we are checking feasibility for one single pattern, constraint
(1) (lessons table) and constraint (3) (the number of patterns per period)
do not apply here. I am only checking for feasibility, so I do not need an
objective or measure group size deviation (constraint (4c)). Since I fixed
z. = 1, I can reduce constraint (5) to a simpler one (5’). I can restrict
myself in this constraint to groups g; and go that are both in pattern P
(since otherwise there is no danger of overlapping students).

I am left with a simple model that only has variables y;,, and checks
whether there exists a group assignment for all groups that meets the hard
group size constraints, and has no overlapping students in this pattern. If
the solver finds out this model is infeasible, then the pattern is also useless
in the full ILP model. If there is a student assignment that allows this
pattern, I regard P as feasible. The solver takes a fraction of a second to
solve this reduced ILP model. This is the final step in the feasibility check,
and corresponds to constraint:

5. The reduced ILP model for each pattern must be feasible

8.1.3 Pseudocode Feasibility Check

Now that I have formulated all constraints that have to be met before I call
a pattern feasible, I can display the pseudocode of ISFEASIBLE, which does
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not need further explanation.

ISFEASIBLE(P)

Input: a pattern P
Output: true if P is feasible, false otherwise

if P contains two groups taught by the same teacher then
return false

if the teachers in P have insufficient overlapping availability then
return false

if the classroom constraints are violated for the groups in P then
return false

if the total number of students is less than . pm(g) then
return false

if the reduced ILP model for P is infeasible then
return false

return true

—_ =
PSS ©w-ao o bk wh -

8.2 Feasible Column Construction

By examining above five feasibility constraints, we can see that the following
property for cluster patterns always holds:

If a cluster pattern is feasible, so are all its subpatterns.

Naturally, P’ is a subpattern of P if its set of groups is a subset of the set of
groups of P. We will see that if I use this property and construct patterns
in a smart way, I can save a lot of feasibility checks (compared to simply
enumerating all possible patterns and checking them all for feasibility).

The column construction algorithm that I will use, recursively composes
patterns by adding groups one by one, until the pattern becomes infeasible.
By the above property, it is useless to add more groups to an infeasible
pattern: it will remain infeasible. I use the function GENERATEPATTERNS
for the construction of the set of all feasible patterns. In pseudocode, this
function looks like this:
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GENERATEPATTERNS(P, G)

Input: a (sub)pattern P and a stack G of groups
that we could try adding to P
Output: a set S of all feasible patterns
having P as a proper subpattern

S=10
if G =0 then
return S
g = first group from G
G'=G\{g}
P'=PU{g}
if ISFEASIBLE(P') then
S = SU{P'} UGENERATEPATTERNS(P', G’) (use g)
S = S U GENERATEPATTERNS(P, G') (do not use g)
return S

© 00 O Ui W N

—_
o

We see that pattern P is treated as a set of groups (which makes sense). I
generate a set of patterns CP for each period p separately. I call this function
with the following parameters

P=90
G = the set of all groups that must be taught in period p

Now the function must return a set S consisting of all feasible patterns
having the empty set as a proper subpattern. It uses groups from G to add
to the empty P, so the set S contains all feasible patterns for period p, as
needed.

The algorithm works in such a way that each pattern is checked at most
once for feasibility (calling the function ISFEASIBLE), and it does not extend
infeasible patterns. As we can see, GENERATEPATTERNS recursively calls
itself, unless the set G is empty (in that case, of course no additional patterns
can be generated, and an empty S is returned).

In words, the algorithm works as follows. After initializing the (local)
set S as empty set (line 1), and checking whether G is empty (if it is, return
an empty S; line 2,3) we take the first group ¢ from G (line 4). We remove
this group from G, producing G’ (a subset of G), and add it to pattern
P, producing P’ (lines 5,6). Now P’ is a pattern having P as a proper
subpattern, but we still have to check it for feasibility (line 7). If it is, add
it to S and try to extend it even further using groups from G’ by recursively
calling GENERATEPATTERNS(P’, G') adding its return set to S too (line 8).
This return set of GENERATEPATTERNS(P’, G’) thus contains all feasible
patterns having P’ as proper subpattern, in other words: having P as a
proper subpattern and containing the group g.
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If P’ is infeasible, it is useless to try to extend it, because of the property
from the beginning of this section: apparently there are no patterns that
contain g and have P as a proper subpattern. We also want S to contain
patterns having P as proper subset not containing g. Therefore, I also add
the return set of the recursive call GENERATEPATTERNS(P, G') to S (line 9).
Note that the recursive calls both use the smaller set G’ as parameter, and
therefore the algorithm is guaranteed to terminate. Finally, the complete
set S is returned (line 10).

8.2.1 An Example

In Figure 8.1 we can see how this algorithm runs on a simplified example.
In this example, there are only 4 groups: A,B,C and D. Every pattern is
feasible, except patterns containing both groups B and C (they are given by
the same teacher).

The rectangles in the figure represent functions GENERATEPATTERNS
with the two displayed sets as parameters. The arcs are the function calls,
and the number stands for the corresponding line in the pseudocode. If
we look at the pseudocode, only when there is a function call in line 8, a
new pattern is added to the total set of feasible patterns: they are in the
last column of the figure. The rectangles are drawn in such a way that the
top-to-bottom order corresponds to the order in which these functions are
called.

The figure shows that indeed all 11 feasible patterns are generated, and
that they are generated only once (no redundant work is done). We can
also see that there are only two failed feasibility checks, while there are
4 infeasible patterns (BC, ABC, BCD and ABCD). For a more realistic
instance (with many more groups, and constraints), the effect of saving
feasibility checks (and thus saving time) is even much bigger.

8.3 Algorithm Summary

As a summary, I list what the column generation algorithm does, together
with its input and output.
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recursion recursion recursion recursion recursion pattern con-

level 1 level 2 level 3 level 4 level 5 tribution
D{ABCD} - {A}
S AR{BCD | {A.B}
83 {A.B}:{C.D}
7| o ABRDI {ABD}
9\ (Am.C) mntensible K{A,B,D};(Z)
{A,B};0
{AR{CD} -+ --- e ommeeooee {AC)
’ S{ACHDY | --o oo {A.c.n}
&{A,C,D};V)
"Niac
(A}{D}} oo - {AD)
X{A,D};@
{A}:0
P{B,CD} - {B}
${{BR{C.D)

7J} {B};{D}C; ——————————— {B,D}
{B,C} infeasible E{B’D};@
{B};0

0{CD} bmmmmmmm e {C}
8§ H{CH{D} - {C,D}
) R{C,D};Q
{C};0
0D} e {D}

Figure 8.1: Function calls of GENERATEPATTERNS
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Input

The period p for which we want to generate patterns

A set of stem classes of the same type, with their students

A set of groups that must be clustered in period p, with their teachers
Hard bounds on group sizes

The subscriptions of the students

The group assignment restrictions (if any) for each student

Teacher availability

Classroom information

Objective
e Generate all feasible cluster patterns for period p

Method

e Calculate for each group g the minimum number of students m(g)
e Generate patterns using algorithm GENERATEPATTERNS

e Perform feasibility checks using algorithm ISFEASIBLE

Output
e A set of all feasible cluster patterns for period p




Chapter 9

Implementation Matters

Chapters 7 and 8 describe the theoretical model and algorithms for the
clustering problem. When I tried to implement these models in my own
clustering program, I observed that for big models, the solver took a large
amount of time to find a good solution. In this chapter, two techniques for
improving the running time are discussed. How well these techniques work is
treated in Chapter 11, presenting the computational results (running times,
solution qualities etc.).

9.1 Column Generation After All

Because all columns fit in memory, I do not need column generation. Still, I
can speed up the solving process by starting solving with a restricted set of
columns, and adding more columns when needed. The column generation
scheme that I will use is different from that of the standard column gener-
ation as described in Appendix B: I generate columns based on solutions
of the ILP model, rather than based on reduced costs for LP relaxation
solutions.

As a starting point, I generate all feasible columns that contain groups
from at most 2 different subjects, and solve the ILP model with this re-
stricted set of columns to optimality. Using this restricted set has two ad-
vantages. First of all, this partial ILP model can be solved very quickly
(within seconds). Secondly, the solution gives me some information about
from which subjects the groups could be combined. The constraint that is
restricting the choice of cluster patterns the most, is constraint (5), avoid-
ing overlapping students. Using only patterns with groups from at most 2
different subjects, I keep the matter of overlapping students simple: since
students can not be assigned to groups of the same subject, overlapping can
only occur in patterns with groups from two subjects, and no complicated
overlapping structures involving many groups have to be considered. This
is probably the reason why I can solve this ILP model this quickly.
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I use this information to generate more columns: I add all columns that
have at least one pair of groups (from different subjects) in common with
one of the cluster patterns from the solution of the partial ILP model. The
reason for this is that a combination of groups that is also in the solution of
the partial ILP model is apparently useful. Since I require only one pair of
groups to overlap with one of the patterns from the solution, now patterns
with groups from more than two subjects are also generated. Then I start
the solver again, trying to find a better solution.

As soon as a better solution is found (this does not have to be the optimal
solution), I again generate new columns that have an overlapping pair of
groups with this new solution. I repeat this procedure of generating extra
columns and finding better solutions until I can not find a better solution
anymore. If this happens, I add all remaining feasible columns, and solve the
full model to optimality. Using this approach, I improve feasible solutions
more quickly (since I solve partial models with a smaller set of columns),
and in some cases solve the clustering problem faster (see Section 11.1.2 for
computational results).

9.2 Decomposition

Another way to reduce the running time of the solver is to decompose the
problem. However, this usually reduces the quality of the final solution. We
already have seen an example of decomposition in the timetabling problem:
solving in stages (see Section 5.1.1). T do not want to wait too long for an
optimal (or good) solution, so decomposition may be worthwhile.

First of all, T could partition the subjects into two or more sets. I then
run the clustering algorithm for each of these subject sets using only pat-
terns with groups from within such a set. Finally, I can collect the partial
solutions into one final set of cluster patterns. Consequently, all patterns
only contain groups from subjects that are from one of the subject sets.
This usually is too much of a restriction, and the resulting solutions are
not very good. The only way this approach could be useful is by having
all whole-class subjects in one set, and all optional subjects in the other
subject set. Since combining groups from whole-class subjects with groups
from optional subjects is impossible most of the time, this decomposition
produces solutions that are close to optimal.

A decomposition that is more useful is splitting into periods. In Sec-
tion 6.2.4, I already explained how I could do this (and why this probably
produces lower quality solutions): Start clustering for one, or maybe more
than one, period, and while fixing the resulting solution, cluster the next
period (or maybe all remaining periods). Again, fixing a partial solution is
adding more constraints and reduces the quality of the solution. However, if
I do this fixing ‘carefully’ (using some experience), it is possible to improve
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running time a lot with little (no guarantees!) quality loss.
There are two things that could be fixed: cluster patterns or the group
assignments (or both). The next two sections describe how this can be done.

9.2.1 Fixing Cluster Patterns

If I have a solution for some period, there are probably some patterns in this
solution that I like (probably the patterns with a lot of groups). In order to
speed up solving the remaining periods, I could fix these patterns. Fixing a
pattern does not mean forcing this pattern to appear in the solution of the
other periods; this would not be a good idea, since maybe not all groups in
this pattern must be taught in an other period. A better way of fixing a
pattern is forcing this pattern to be feasible in the final solution: that is, the
final solution must have a group assignment that allows this pattern. I can
implement this condition by adding the following constraints to the model,
for each fixed pattern P7:

Yigr + Yigy <1 for alli, g1, € GiN P/ g1 # g2 (57)

This constraint makes sure that there may not be a group assignment that
would have overlapping students in the fixed pattern if this pattern would
be chosen. I also add these constraints to the ILP feasibility check (see
Section 8.1.2), to restrict the set of generated columns. Fixing patterns
thus speeds up the solving process in two ways: I restrict the possibilities of
group assignments, and I have fewer patterns in the model.

I could also decide to only add the constraints (5/) to the ILP feasibility
check and not to the final model. This still improves running time, since I
have fewer columns in the model, but I am more flexible when making group
assignments.

9.2.2 Fixing Group Assignments

I could also fix the assignments of students to groups. This can be done by
fixing the variables y;, = 1. Of course, this also restricts the set of feasible
columns, as I add these constraints to the ILP feasibility check too. I could
completely fix the group assignments from the solution of one period, but
this approach may be too limiting for clustering the other periods: the only
thing left to decide by the clustering algorithm is which patterns to use.
The approach that I use builds in some flexibility by allowing to deviate
from fixed group assignments. However, I must limit this deviation (other-
wise, the fixation would be useless). I have chosen to allow a fixed number
nZWitCh of students who are fixed to group g to switch to an other group (of
the same subject). I need to add the following constraints to the model (of
course they are also added to the ILP feasibility check in order to reduce
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the number of generated columns):

Z (1 —yig) < nf]WitCh forall g (7)

i fixed to g

If student i is fixed to g, and is still assigned to another group of the same
subject as g, then y;; = 0 and thus (1 — y;4) becomes 1. This means that

D i fixed 10 o (1 — Uig) equals the number of students who have swi}tlched from
switc]

5 .

I can be strict by setting the constants nzWitCh to low values (setting them
to 0 yields a hard fixation which is generally not a good idea), or lenient
by setting them to high values (too high values yields complete freedom in
assignments). It is also possible to set different values n;WitCh for each group
g. I have to play around a bit with these values in order to get good and

quick results.

group g to another group, and this number is bounded by n

9.2.3 Experimenting

There is no clear guideline which fixation method to use, and with which
parameters (for instance, which period to solve first). I could even fix both
cluster patterns and group assignments. Also, I could keep on solving and
fixing periods iteratively, until I am satisfied with the solution. The decisions
of what to fix and which period to start solving determines the quality of
the final solution, as well as the speed-up factor. Playing around with these
choices may seem a bit arbitrary, but if I make these decisions in a smart
way, these techniques give good results. Note that I only have to use these
techniques for larger instances: for small instances I find good solutions
quickly enough, so I do not need to sacrifice solution quality for a lower
running time.
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The Big Picture
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Chapter 10

A New Distribution of Work

Introduction In this chapter I will treat a new approach to the the
timetabling and the clustering problem. More precisely, I will make a dif-
ferent distribution of work between the two problems: the timetabling al-
gorithm takes over some of the responsibility from the clustering algorithm.
I think this new approach ultimately results in better timetables and may
even resolve infeasibility problems. This chapter begins with explaining the
general idea. In Section 10.2 and 10.3 I explain how I have to adapt the
clustering and timetabling models, respectively.

10.1 General Idea

In the approach described in Chapter 2 and 6, it is the responsibility of
the clustering algorithm to assign students to groups and to make feasible
ready-to-use cluster patterns, which are input to the timetabling algorithm.
Initially, this worked well but when I added more and more constraints to the
timetabling problem (classrooms, double hours, spreading) some problems
arose.

10.1.1 The Problem

Suppose for example that subjects A and B must be given twice a week, and
the clustering algorithm produces two cluster patterns A-B. Suppose subject
A must be given as a double hour: this means that the two patterns A-B
must be scheduled consecutively, while it is probably desirable to spread the
lessons of subject B over the days in the week. The double hour constraint
for subject A thus conflicts with the preference to spread lessons of subject
B, because the clustering algorithm grouped the corresponding groups into
cluster patterns.

In this example, I am forced to accept some penalty points for not spread-
ing lessons of subject B. Although this is of course an undesirable situation,
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it is not a very big problem. However, more complicated situations could
arise involving several conflicting constraints causing many penalty points or
even infeasibility. In particular, this can happen when the cluster patterns
consist of many groups (for instance, the patterns for 4AHAVO may consist of
up to 7 groups). Also, when a partial schedule is fixed (because I schedule in
stages, see Section 5.1.1), there is a higher risk of such conflicting situations.

10.1.2 The Solution

The main cause of these issues is that the clustering algorithm fizes com-
binations of groups into cluster patterns. The timetabling algorithm must
use these patterns, unable to recombine groups if a conflict occurs: the
timetabling algorithm lacks some flexibility. As we have seen in Section
6.3.2, the currently used software does not have this problem, as it com-
bines groups in the timetabling phase, and not in the clustering phase. By
using the so-called lines in the clustering phase, they make sure that good
combinations of groups exist.

Inspired by this approach, I decided to try something comparable. The
responsibility of the clustering algorithm is to assign students to groups
in such a way that good combinations of groups could be made in the
timetabling phase. This means that I have to adapt the clustering model,
since it now has a new objective. Moreover, I also have to extend the pos-
sibilities of the timetabling algorithm: it now has to be able to choose how
to combine the groups into cluster patterns. How to adjust the two models
is described in Section 10.2 and 10.3.

10.2 Adjustments to the Clustering Model

The primary objective of the clustering problem in the old approach, was
to minimize the total number of cluster patterns, covering all multiplicities
in the lessons table. In the new approach, I do not need a set of patterns
covering the lessons table, but a large set of all cluster patterns that are
feasible given the group assignments: the timetabling algorithm now has
the responsibility to choose patterns from this set such that each group is
given the correct number of times in a week. The clustering objective now
is to make group assignments in such a way that I have a good set of feasible
patterns.

When do I regard this big set of feasible cluster patterns ‘good’? First
of all, it has to contain a large number of patterns, because this increases
the flexibility in the timetabling phase. Secondly, it is desirable to have
patterns that have a large number of groups: using such large patterns
reduces the number of time slots needed to cover all multiplicities from
the lessons table. Usually, I have to balance these two properties, since
optimizing one property restricts the possibilities for the other one.
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I could still use the old objective of minimizing the total number of
patterns covering the lessons table: I then disregard the set of patterns of
the solution, but use the group assignment of the solution to generate the big
set of feasible cluster patterns and feed it to the timetabling problem. This
big set probably contains some large patterns, since the old objective tries
to fit a fixed amount of groups in a minimum number of patterns. However,
the number of feasible patterns is not necessarily large. Also, constraint (1)
(respecting the lessons table) is not needed in the clustering phase anymore,
since the timetabling algorithm now gets the responsibility to respect the
multiplicities of the subjects: this constraint is unnecessarily restricting.
Therefore 1

remove constraint (1): > cop Tecg = my  for all g, p.

Without this constraint, the old objective becomes useless (minimizing
the number of patterns would then result in no patterns at all). In the next
sections I describe some possibilities for objectives I could use to obtain
good pattern sets. These sections have titles taken from graph theory. I can
translate the problem to a set of graphs (one for each period) as follows:
for each group that must be given in the corresponding period, introduce a
node in the graph. Two nodes are connected by an edge if they could be
given at the same time (that is, if they could be part of the same cluster
pattern). This of course depends on the group assignments, so the edges
of this graph are not predetermined. However, this translation gives some
insight in what I try to achieve.

10.2.1 Minimum Clique Cover

This objective is inspired by the currently used approach of minimizing the
number of ‘lines’ (see Section 6.3.2). I try to form, for each period, a set
of cluster patterns (lines) that cover all groups once, and the objective is to
minimize the number of such patterns needed. In the corresponding graph,
this means that I am minimizing the number of cliques (cliques correspond
to feasible patterns) that entirely cover the graphs. More precisely, I want
the group assignments (determining the edges of the graphs) to be in such a
way, that the graphs allow a minimum clique cover (MCC). This approach
differs from the currently used approach in that it is period dependent: each
period may have different patterns. Therefore, I do not need to care about
alternating subjects (see Section 6.3.2). This approach meets at least one of
the desired properties: I produce (at least a few) large cluster patterns. A
large number of feasible patterns (cliques) is however not guaranteed.

To implement this approach to the model, I only have to add a constraint
that makes sure each group has to be covered once:

Z xzecg =1 forall g,p (17)
ceCP
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Figure 10.1: Example solution of the MCC objective

I can still use constraints (3) to balance the number of lines over the periods:

Z z. <nP forallp (3)
ceCp

The objective is to minimize the total number of cluster patterns (lines)
needed. I can still try to keep the group sizes as close to their ideal size as
possible as a secondary objective. This yields the exact same objective as I
used in the old approach:

minz Te+c, Z(z; +2z,) (obj)
c g

Figure 10.1 gives an optimal solution for this objective of a simple ex-
ample with 3 subjects (only one period is shown). Subject A has two groups
(Al and A2), subject B has three (B1, B2 and B3) and subject C has only
one (C1). The optimal group assignment allows this graph to be covered by
only two cliques: A1-B2-C1 and A2-B1-B3.

10.2.2 Maximum Number of Edges

The previous objective focused on the size of the patterns, this objective
concentrates on the number of feasible patterns. One easy and natural way
to allow a large number of patterns, is to make the graph as large as possible,
that is, to have as many edges as possible. Of course, this is the same as
maximizing the number of feasible patterns consisting of two groups, but it
hopefully also creates larger cliques (larger cluster patterns) in the graph.

This objective is very easy to implement. First of all, I only need to
consider patterns consisting of two groups. Therefore I have to

adapt the column generation algorithm to only generate cluster
patterns with two groups.

Secondly, it is useless to impose upper bounds on the number of patterns
per period, since I am mazimizing the number of patterns. Therefore, 1

remove constraints (3).
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Figure 10.2: Example solution of the MNE objective

I could however impose lower bounds on the number of feasible edges in
order to balance this number over the periods:

Z z.>nP forallp (3)
ceCP

Finally, I have a new objective. The main goal is to maximize the number of
feasible cluster patterns, and I still have the secondary objective to keep the
group sizes as close to their ideal size as possible. Since I am now maximizing
instead of minimizing, I have to subtract the term ¢, 3 (27 + z;):

max Z Te — Cy Z(z; +2z,) (obj’)

¢ with 2 groups g

Because I restrict the column set to columns with two groups, the model
becomes relatively small. This results in low running times, which is a big
advantage.

Figure 10.2 shows an optimal solution of the same example as in Figure
10.1, now using the maximum number of edges (MNE) objective. As we can
see, I have 8 edges in this solution instead of 7 in the solution of the MCC
objective. Just like in the MCC solution, there are two feasible patterns
consisting of three groups (A2-B1-B3 and B1-B3-C1). However, we now
need three cliques to cover the graph, instead of two in the MCC objective.

10.2.3 Other Remarks

The previous two objectives mainly focus on one of the two desired proper-
ties for the resulting set of feasible patterns. There are lots of possibilities
that try to balance the two. For instance, I could maximize the number
of 3-cliques, 4-cliques or maybe n-cliques (instead of the number of edges:
2-cliques). Another option is to maximize the total number of feasible pat-
terns, possibly weighing them with the number of groups per pattern. Which
approach works best depends on the situation, and on what exactly I am
trying to achieve. Let us regard this as further research.
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pattern |#parents
A2-B1-B3 3
Al1-A2
A1-B2
e ) parent|children
S Al [A1 A1-A2 A1-B2 A1-C1
o A2 |A2 A1-A2 A2-B1 A2-B3 A2-B1-B3
N B1 |B1 A2-B1 B1-B3 B1-C1 A2-B1-B3
51 1 B2 |B2 A1-B2
B3 B3 |B3 A2-B3 B1-B3 B3-C1 A2-B1-B3
C1 |C1 A1-C1 B1-C1 B3-C1

Table 10.1: Feasible pat-
terns: children Table 10.2: The parents with their children

Also note that I could try different strategies (objectives) iteratively, and
use decomposition techniques (see Section 9.2) in order to improve solution
quality and running time.

10.3 Adjustments to the Timetabling Model

The timetabling model has to be adapted to be able to handle a large set
of feasible cluster patterns, instead of a set of patterns that serve as ready-
to-use lessons. Therefore, I introduce the concept of parents and children.
A parent corresponds to a single group of a subject, for which I know its
teacher, classes (from the group assignments), and multiplicity (from the
lessons table), plus properties like double hours, location and classroom
type. The children correspond to feasible patterns. A parent usually has
several children (all patterns in which this group appears), and a child has
one or more parents (one for each group in this pattern).

Consider the example from Figure 10.2. Table 10.1 shows all feasible
patterns (the children, this is input from the clustering phase), and Table
10.2 shows all 6 parents with their children.

Parents and children can both be seen as schedulable objects, that are
similar (but not exactly) to lessons. I can schedule at most one (from the
set of all feasible patterns) child at some time slot i: then automatically all
its patterns are also scheduled at time slot i. In the ILP timetabling model,
there are only variables y;; for scheduling lessons:

1 if [ is scheduled at time slot ¢
Yii = .
0 otherwise

To extend functionality to also be able to handle children and parents, I need
additional variables y;; for children and yfl. for parents (abusing notation a
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bit, [ now can represent a ‘normal lesson’, a child and a parent):

{1 if child [ is scheduled at time slot ¢

C

Y = 0 otherwise

» 1 if parent [ is scheduled at time slot ¢
Y= .
0 otherwise

These variables together replace the old variables y;; for the ready-to-use
cluster patterns [, which could simply be treated as normal lessons. The
following additional constraint links the two types of variables.

Y = Z y;, for all parents ,i (10)
I child of 1

These constraints make sure that if some child [ is scheduled at time slot 1,
so must be all its parents. Conversely, if a parent [ is scheduled at time slot
1, so must be exactly one if its children.

But how to install these variables in the existing timetabling model (see
Section 3.3)7 The concepts multiplicity (constraints (3)), fixing (constraints
(4)), double hours (constraints (5abc)), spreading (constraints (6ab)) and
classroom constraints (constraints (7)) apply to single groups, that is, to the
parents. Therefore, I

add constraints (3), (4), (5abc), (6ab) and (7) for variables y.

On the other hand, I can not include parent variables yﬁ. to constraints (1)
(recall from chapter 3 that these constraints link variables z. and y;;):

Z TeCip — Z y; =0 forall j,d,ielyb (1)
CEde leij

This is because more than one parent may be scheduled at the same time
if they are grouped in a pattern/child. This is no problem for the teachers
(since all groups in a pattern must be given by different teachers), but it
is for classes: the classes sets of the groups/parents in a pattern usually
overlap and subtracting more than one positive yﬁ in the left-hand side of
this constraint would make it infeasible. This is why I split these variables
in parents and children in the first place. Since only one child/pattern may
take value 1 per time slot, I

include variables yj; in the corresponding constraints (1).

The term ‘corresponding constraints’ means the constraints for all teachers
and classes involved in this pattern (that is, the union of the teachers and
classes sets of all its parents). By installing the parent and child variables
into the correct constraints, and linking them by the new constraints (10), I
have achieved that the timetabling algorithm is able to choose how to com-
bine the single groups into cluster patterns. Of course, this makes the model
bigger, since there are a lot more variables, but also increases flexibility.
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Chapter 11

Results

Introduction The models described so far look good in theory, but how
do they perform in practice? Of course, I have done a lot of experiments
to find out how good the produced solutions are and how long it takes to
achieve such a solution (that is, the running times). By means of a number of
tables and figures with accompanying texts, the results of these experiments
are presented in this chapter. I only give factual information in this chapter,
conclusions are drawn in Chapter 12.

All experiments were done on a system with an Intel Core2Duo E6850
(2x3 GHz) processor and 2 GB of memory. Although my modeling programs
were programmed in JAVA (see Appendix A), the actual computations were
performed by ILOG CPLEX 11 (see [4]), a high performance mathematical
programming optimizer written in C.

11.1 Clustering

11.1.1 Input

As T explained in Chapter 6, clustering is done for each set of classes of the
same type. At the HLC, there are 7 types. To give an idea of the sizes of the
instances, Table 11.1 gives for each type the number of students and stem
classes. Moreover, I specify per period (there are 5 periods in a year at the
HLC) the total number of groups (of all subjects) and feasible patterns.
As we can see, the number of feasible patterns of course depends on
the number of groups, but even more on the number of students. This
is because a larger number of students allows patterns containing a larger
number of groups, and more combinations can be made with this larger
number of groups. The biggest data set is 4HAVO with 6 stem classes. For
periods 2,4 and 5, the patterns generation algorithm failed to produce all
patterns within a reasonable amount of time (one hour) for this instance and
eventually crashed, so these numbers are unknown but surely exceed 100000.
The number of groups and feasible patterns for 4VMBO is the same for each

97
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#groups #feasible patterns

type |#classes|#students|pl p2 p3 p4 p5| pl p2 p3 p4  pb |total
3VMBO 4 101 14 14 10 14 19| 263 826 215 263 2331|3898
4VMBO 4 95 18 18 18 18 18| 1470 1470 1470 1470 1470| 7350
4HAVO 6 147 28 29 22 32 35|86291 7 26200 7 ? ?
5HAVO 5 132 26 25 25 27 23|10342 8778 8740 13333 9285|50478
4VWO 2 56 12 13 1510 11| 125 157 266 42 89 | 679
5VWO 2 54 18 17 20 20 16| 53 409 297 521 2331513
6VWO 3 7 20 22 21 24 21| 281 1080 558 1318 1070|4307

Table 11.1: Instances

period. This is because in each period, all subjects must be given (that is,
the lessons table does not contain any zeros). Although the multiplicities
for period 5 are a bit different to those of periods 1 through 4, this does not
affect the number of feasible patterns, of course.

Almost all input information from the problem definition in Section 6.4
was provided by the HLC. However, there were still a few things that I had
to guess:

e The ideal group sizes: I tried to balance all groups evenly.

e The hard bounds on the group sizes: I chose to allow a deviation from
the ideal group sizes of a few students (about 4, this differs per subject
depending on the total number of subscribed students to this subject).

e Amount of overlapping teacher availability: I decided that the teachers
in a cluster pattern must have at least 1 overlapping time slot at which
they are all available.

e Classroom constraints: I decided that at most two groups of the same
subject may appear in one cluster pattern.

e Cluster patterns per period: I did not use any bounds on the number
of patterns.

11.1.2 Minimum Number of Patterns

The primary objective described in Chapter 7 is to minimize the total num-
ber of patterns covering all multiplicities of the groups. There is also a
secondary objective: to minimize the deviation from the ideal group sizes.
In order to make this a secondary objective, I multiplied each unit of group
size deviation (GSD) by ¢, = 0.01 (assuming their sum does never exceed
100, which is always the case): the decimal part of the objective value now
represents the group size deviation. Table 11.2 shows for each type the best
solution that I could find using this objective.
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type | objective LB #patterns GSD
3VMBO 57.21 55.13 |12 12 9 12 12| 21
4VMBO 79.39| =79.39 |15 15 15 15 19| 39

4HAVO 121.14 7124 24 19 26 28| 14
5HAVO 114.09| 101.09 |23 23 24 27 23| 9
4VWO 97.06 | =97.06 (19 19 21 19 19| 6
5VWO 133.01 | =133.01 |28 27 29 29 30| 1
6VWO 120.04 | 116.04 |21 25 25 26 23| 4

Table 11.2: Best Solutions

running time (seconds)
type | period | objective | building patt. gen. solution opt. proof
3VMBO 1 12.12 0.100 0.874 <1 <1
4VMBO 1 15.39 0.064 9.162 811 1483
4HAVO 3 19.14 0.736 504.246 4765 n/a
5HAVO 1 23.09 0.172 78.015 75909 75909
4VWO 1 18.04 0.542 0.611 6 35
5VWO 1 28.00 0.148 0.049 <1 <1
6VWO 1 21.02 0.080 0.456 <1 <1

Table 11.3: Running times, solving 1 period

I obtained these solutions by using several iterative runs with different
objectives, fixations etc. Therefore, it is impossible to have useful running
times that can be used in comparisons. I can roughly say that they lie
between 1 hour (for 4VWO) and 1 day (for 4HAVO), although obtaining
reliable lower bounds could take longer. The lower bounds in the third
column of the table are simply obtained from the CPLEX log. We can see
that three of the problem sets are solved to optimality, 3VMBO and 6VWO
are at least close to optimality and the solution of 5GHAVO is still some
distance away from its lower bound. For 4HAVO, I do not have a lower
bound since it so happened that not all patterns could be generated. The
solution with objective 121.14 thus had to be found using a restricted set of
columns, and decomposition techniques.

One Period

The first timed experiments were to solve only one period of each type. I
chose to solve period 1, except for the large instance 4HAVO: period 3 has
much fewer feasible patterns (see Table 11.1) and therefore runs faster. It
is also the only one I did not solve to optimality: after about 20 hours the
search tree of CPLEX became too big, and the solving process stopped.
Long before then (after 4765 seconds) it found the solution with objective
value 19.14.

Table 11.3 shows several running times. First of all, we see that building
the models (initializing variables and constraints), can be done very quickly:
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running time (seconds)

type | period | objective | normal CG
3VMBO 1 12.12 <1 1
4VMBO 1 15.39 811 360
4HAVO 3 19.14 4765 6308
4HAVO 3 17.14 n/a 18719
5HAVO 1 25.09 3812 1177
5HAVO 1 23.09 75909 73275
4VWO 1 20.04 5 <1
4VWO 1 18.04 6 20
5VWO 1 28.00 <1 <1
6VWO 1 21.02 <1 <1

Table 11.4: Running times, solving 1 period

within a second. The generation of all feasible patterns can take longer for
the bigger models: it took more than 8 minutes to generate all 26200 feasible
patterns of period 3 of 4HAVO. The time CPLEX needed to find the solution
varies a lot: from under a second to over 21 hours (for 5HAVO). Sometimes,
the optimizer needed extra time to proof optimality of the solution, as is the
case with 4VMBO and 4VWO.

Comparing these objectives with the number of patterns in the solutions
for the complete models (see Table 11.2), we see that only the optimal 18
patterns of 4VWO, when I only solve period 1, is too optimistic if I want to
solve the complete model: in the optimal solution of the complete 4VWO
instance, I need 19. Also, the group size deviations do not deviate that
much.

Column Generation

In Section 9.1, I described a column generation scheme intended to find good
solutions more quickly. Table 11.4 compares the running times from Table
11.3 with the running times using this column generation (CG) scheme.
We can see that for the smaller models, the CG is probably not a good
idea: sometimes the normal optimization process finds an optimal solution
even quicker (e.g. 4 VWO). This is because in the CG scheme, every time
a new solution is found new patterns have to be generated. This relatively
takes a lot of time for the smaller models. A solution for this issue could be to
generate all feasible columns once in the beginning, put them in a column
pool, and add columns from this pool (which is in the memory) to the
model when needed. We can see that for the bigger models (e.g. 4VMBO,
5HAVO), the CG scheme does pay off: it finds the optimal solution quicker.
This effect is even bigger for nearly optimal solutions: see objective 25.09
for 5HAVO and objective 20.04 for 4VWO. In the biggest model 4HAVO,
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Figure 11.1: 4VMBO objective value against running time

something interesting happened: using the CG scheme I did find the optimal
solution with objective value 17.14, while the normal solving process ran out
of memory.

Figure 11.1 shows how the objective value of the 4VMBO instance im-
proved in the course of time. Timings for both the ‘normal’- and the column
generation strategy are displayed. I included this plot to show how the solv-
ing process works, and of course to compare the two methods. Obviously,
the first feasible solution is found very quickly (in fact, within a second), but
the quality of the first solution of the CG approach is much better. However,
in the normal approach the solution improves much more quickly than the
CG approach and soon (after about 17 seconds) takes the lead. Later on,
the CG approach catches up and ultimately finds the optimal solution much
quicker than the normal approach.

Fixing Student Assignments

I can use the solution for one period to cluster all periods. I have tried
to do this by fixing the student group assignments, see Section 9.2.2 (still
using the same objective). In this experiment, I did not allow any switching
(ns¥iteh = 0 for all g), except for AVWO: I used the 4VWO instance to show
the effect of allowing to switch on solution quality and running time. Table
11.5 shows the results. All objectives in this table are proven to be optimal
solutions.

The performance of this method is quite good and quick for most of the
instances: it even finds the optimal solution for 4VMBO and 5VWO. For
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fype | newiteh objective #feasible . running
g [best known| | patterns [total] | time (seconds)

3VMBO| 0 59.13 [57.21] 1577 [3898] 310
AVMBO| 0 79.39 [79.39] 565 [7350] <1
4HAVO 0 - - -

SHAVO | 0 | 114.15 [114.09] | 1344 [50478] 8

AVWO | 0 | 103.06 [97.06] 236 [679] 1

AVWO | 1 | 10106 [97.06] 238 [679] 64
4VWO 2 100.10 [97.06] 282 [679] 47
AVWO | 3 | 100.06 [97.06] 315 [679] 34
5VWO | 0 | 133.01 [133.01] | 1513 [1513] 25
6VWO | 0 | 126.04 [120.04] | 1876 [4307] 101

Table 11.5: Fixing group assignments of one period, solving all

4VMBO, this can be explained by the fact that in each period all subjects
are given, so a good solution of one period is also good for the other periods.
The performance of 5VWO has another reason: in this case there are only
few courses with more than one group, so fixing assignments does not do
that much. This is also reflected in the fact that all 1513 patterns are
generated. For all other instances, the number of patterns generated is less
than without the fixed assignments. This is because the student fixations
constraints are also added to the ILP feasibility check (see Section 8.1.2).

Unfortunately, I could not solve 4HAVO this way: there were too many
subjects that are not given in the fixed third period, so the group assignment
for these subjects still had to be determined. This resulted in a set of feasible
patterns that was still too large to handle.

Allowing more flexibility by increasing n;WitCh clearly shows its effect for
4VWO: the solution quality increases together with the number of feasible
patterns. Of course, completely fixing all student assignments results in a
far lower running time than allowing the solver to ‘play around’ with the
variables ;4. Compared to n;‘”itCh = 1 however, we can see that increasing
flexibility to n;WitCh = 2,3 has the effect that I found better solutions in less
time.

Fixing Patterns

Besides fixing group assignments, I could also fix patterns. I tried to use this
approach to again cluster all periods, fixing some patterns from the solution
of the first period. Recall from Section 9.2.1, that by adding these fixed
patterns to the ILP feasibility check of the CG algorithm, I make sure that
these patterns remain feasible. I chose to fix patterns in which at least 85%
of the students have class. Using this approach, solving to optimality took
too long for some of the instances, so I decided to abort the optimization
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objective #feasible running
type | ##patterns fixed [best known| | patterns [total] | time (seconds)
3VMBO 2 59.15 [57.21] 2949 [3898] 493
AVMBO 4 79.39 [79.39] 600 [7350] <1
4HAVO - - - -
5HAVO - - - -
AVWO 2 101.10 [97.06] 532 [679] 204
5VWO 2 133.01 [133.01] | 1513 [1513] 25
6VWO 2 125.04 [120.04] 4307 [4307] 190

Table 11.6: Fixing patterns of one period, solving all

type | objective LB | #patterns
3VMBO 2021 18.13|4 4 4 3 5
4VMBO 20.39[=20.39| 4 4 4 4 4
4HAVO 39.14 717 86 99
5HAVO 36.09| 30.09(8 7 7 77
4VWO 31.06| 28.06| 6 6 7 6 6
5VWO 43.05|=43.05[10 8 9 9 7
6VWO 40.04| 39.04| 8 8 8 9 7

Table 11.7: Minimum clique cover objective

process after 10 minutes. Unfortunately the 4HAVO and 5HAVO instances
appeared to be too big to produce a reasonable solution within this time.

The results in Table 11.6 are comparable to those fixing group assign-
ments. The solving process takes a bit longer, but produces slightly better
solutions for 4VWO and 6VWO. Generally, the number of feasible patterns
is a bit higher, especially for 6VWO: fixing the 2 patterns with the highest
load factor, all 4307 patterns are still feasible. Apparently, fixing these two
patterns did not reduce flexibility at all in this case.

11.1.3 Minimum Clique Cover

In Chapter 10, I described a new approach and proposed some new objectives
that I could use. One of them was to minimize the number of cliques covering
the graphs that I could construct from the instances (see Section 10.2.1).
Solving the complete models (all periods) with this objective takes a lot of
time, especially for the big models. Therefore, I again used several iterative
runs with different objectives, fixations etc. to obtain these solutions, and
I do not have useful running times. I also do not have a lower bound for
4HAVO, since it was impossible to add all patterns to the model. Table 11.7
shows the results.

Except for 4HAVO and 5HAVO, we can see that I can get optimal—
or at least near-optimal—solutions for this objective. The solutions of the
currently used clustering software have 7 lines for 4HAVO and 6 for 5 HAVO
(not period dependent!), implying that a solution with at most 35 and 30
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running time (seconds)

type | objective | #patterns [total] | solution optimality proof
3VMBO 281.73 464 [3898] 19 136
4VMBO 364.65 690 [7350] 342 1919
AHAVO | 1090.64 2018 [7] 3600 n/a
SHAVO | 639.75 | 1330 [50478] | 3600 n/a
4VWO 118.74 327 [679] 225 2686
5VWO 192.87 483 [1513] 97 200
6VWO 383.86 747 [4307] 9 74

Table 11.8: Maximum number of edges objective

patterns respectively must exist for the MCC objective.

11.1.4 Maximum Number of Edges

An other proposed objective was to maximize the number of feasible patterns
with two groups (or, equivalently, the number of edges in the graph). Unlike
for the MCC objective, I was able to solve most instances to optimality
within a reasonable amount of time. The reason for this is that only patterns
with two groups are included in the model. Table 11.8 shows the results.

The 4HAVO and 5HAVO solving processes were aborted after one hour,
and the displayed solutions may not be optimal: they are within 33% and
20% of the optimal solution, respectively. From the table, we can read that
generally the optimal solution is found quite quickly, but the optimality
proof takes much longer. Extrapolating this observation to the 4HAVO and
5HAVO instances, I am confident that the displayed solutions are optimal
or close to optimal.

11.1.5 Objective Comparison

We have seen the results for the different objectives, but which solution do
I use as input for the timetabling model? In Section 10.2, I argued that
a solution is good if the corresponding group assignment allows a feasible
set of cluster patterns that is big and contains large patterns. Figure 11.2
shows the number of feasible patterns for the three objectives (MNP stands
for 'minimal number of patterns’, corresponding to the solutions from Table
11.2). Figure 11.3 shows the number of large feasible patterns for the three
objectives. When to call a pattern ‘large’ is a bit arbitrary and of course
depends on the instance. How many groups a pattern must consist of to be
regarded as a large pattern is also displayed in the figure: e.g. a 3VMBO
pattern is large if it has at least 4 groups.

Like I could expect, the MNE objective produces the largest number
of feasible patterns in all instances, whereas the MCC objective allows the
lowest number of feasible patterns. Also, if we look at big patterns, MNE
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number of patterns | group size deviation
type | HLC MNE HLC MNE
3VMBO | 20 20 27 21
4VMBO | 20 20 38 39
4HAVO | 35 39 34 14
5HAVO | 30 36 9 9
4VWO | 40 31 11 6
S5VWO | 45 43 14 5
6VWO | 40 40 5 4

Table 11.9: Quality comparison

is the winner in 5 of the 7 instances. For 5VWO, it is not that bad, but
for 4VMBO it is. Since there are not too many time slots available (in the
timetabling problem) for scheduling lessons for VMBO classes (for instance,
they are unavailable the 8th and 9th time slot each day), I really need large
patterns. Therefore, I have chosen to use the set of feasible patterns from
the MNP objective in the 4VMBO instance. In all other instances, I think
it is best to use the pattern set from the MNE objective. One could expect
that the MCC objective would produce large patterns, but the figure shows
otherwise. The reason for this is that for the MCC objective, I only need a
few large patterns (cliques) that cover all the groups.

11.1.6 Solution Quality

It is difficult to compare my solutions with the solutions from the clustering
program of the HLC for several reasons. One of them is of course that they
use a different objective (minimizing ‘lines’). Another reason is that their
solution sometimes is based on other input data than mine: they are from
different moments in time, apparently. For instance, my 5VWO instance
included the subject ‘Greek’, whereas this subject did not appear in the so-
lution from the the HLC’s clustering program. Also the number of students
often differed.

To give an idea of how well my clustering software performs, I still com-
pared the HLC solutions with my solutions. I used the outcomes of the
MCC objective for this purpose, because this objective comes closest to the
objective of the HLC. To make a fair comparison between the number of
‘lines’ and the number of patterns, I multiplied the number of lines by 5.

As we can see, the solutions of the smaller models are comparable as far
as the number of patterns is concerned. My 4VWO solution is significantly
better. Unfortunately, there is much room for improvement for the HAVO
instances. For the group size deviation, my solutions are at least as good as
the HLC’s.
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no. description #classes #teachers #lessons #lesson hours #children
1 PE, difficult lessons| 59 141 97 237

2 4HAVO 6 34 58 158 807

3 5HAVO 5 24 41 112 352

4 34VMBO 8 29 75 209 241

5 456VWO 7 33 68 188 240

6 1st classes 12 54 132 402

7 2nd classes 13 24 145 377

8 3HAVO/VWO 8 21 95 234

complete model 59 145 711 1917

Table 11.10: Stages with characteristics

11.2 Timetabling

11.2.1 Input

Because it is (yet) impossible to solve the complete HLC instance with all
its lessons at once, I had to decompose the model into stages (see Section
5.1.1). When a stage is being solved, all lessons scheduled in previous stages
are fixed, so I end up with a complete schedule in the end. It is wise to
schedule difficult lessons in an early stage, to avoid infeasibility problems.
Deciding which lessons to regard as ‘difficult’, requires some experience. In
general, lessons that have a large classes or teachers set fall into this category.
Therefore, it is a good idea to schedule upper school classes (that have a lot
of cluster patterns) before lower school classes.

The first stage consists of all the meetings (large teachers set) and some
(rare) lower school cluster patterns that involve a large number of lower
school classes. I also included the PE lessons in this first stage, since there
are so many of them, that the PE classrooms almost never have an empty
time slot. This can also cause infeasibility problems later on. In total, I
partitioned the model into 8 stages. It may be possible to use less than 8
stages, but this of course increases the size of the instances and therefore the
running time. After experimenting with different partitionings, I ultimately
found that these eight stages were large, but still manageable. Table 11.10
shows these stages with some characteristics indicating the problem sizes.

The complete model thus has 59 classes, 145 teachers and 711 lessons
(I do not count children (feasible cluster patterns) as lessons) that must be
given about 2.7 hours per week on average (yielding a total of 1917 lesson
hours). The presence of children shows that I used the new approach from
Chapter 10. In fact, I used the pattern sets from my own clustering, using
the MNP objective for 4VMBO and the MNE objective for the other upper
school classes (see Section 11.1.5).

All input information from the problem definition in Section 6.4 was
provided by the HLC, except the timetable layout preferences of all teachers
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and classes. This is because they use a less exact method of penalizing unde-
sirable timetable properties (using sliders, see Figure 2.3). Therefore, I had
to devise the penalty vectors myself, making use of some known information
(for instance that upper school VMBO classes are preferred to have the first
hour off) and my own instinct. I kept the cost model simple (by having a
lot of all-zero penalty vectors), but it is easy to extend the cost model when
needed. The following costs are incurred:

e for having n consecutive intermediate hours, incur 2" penalty points.

e for having class the ninth (last) time slot of the day, incur 2 penalty
points.

e for having class the eighth time slot of the day, incur 1 penalty point.

e for VMBO upper school classes having class the first time slot of the
day, incur 1 penalty point.

e for a positive variable 24 (bad spreading, becomes positive if more
than one hour group of lesson [ is scheduled on day d), incur 2 x zj4
penalty points (thus ¢, = 2).

It is straightforward to translate this cost model to the penalty vectors from
Table 4.1: only pgfd and pﬁlCIH have positive components. I do not use week
layout preferences, so constraints (8) are not in my model. I also do not
include fictitious classes (see Section 5.1.2) to deal with empty lessons (this
will be tested in Section 11.2.4).

11.2.2 Timetabling the Complete Model

This section describes the results and running times of scheduling the com-
plete school in stages. Before I do that, I have to specify how exactly the
columns are generated. It is important to start the ILP phase with a set of
columns that is big enough to allow a good solution, and small enough to
fit in memory and to allow the solver to run at an acceptable speed. From
experience, I learned that having about 20000 columns is ideal (although
this number of course depends on the instance I want to solve). My column
generation scheme is as follows:

e Generate the 10 columns for each teacher/class and each day with
lowest cost and use this column set as input for the LP phase.

e Generate during the LP phase columns with lowest (and negative)
reduced cost (every iteration, for each teacher/class and day). For
every generated column, store neighbor columns in a column pool (see
Section 5.2.3).
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running time

#£columns (seconds) solution
stage|#it.| init. LP CP ILP|LP solution ILP LP ILP LB
1 20903 21336 23372 34256(130 56 56| 553.00 582 582

14879 14910 15718 22770115 51773 72000| 640.90 725 664
12698 12841 13522 18964| 81 673 1800| 851.09 950 891
13680 13700 14266 19849| 76 28570 28570(1042.10 1141 1061
14215 14267 14683 21069 52 1871 1871{1170.24 1265 1204
18563 18574 19594 29295| 80 35512 66689|1191.00 1293 1193
13693 13709 14220 19769 71 13950 80804|1429.88 1535 1450

9177 9191 9454 12554/ 38 291 496|1619.04 1672 1641

0~ O DU W N
BN R T 00 W O

Table 11.11: Results of timetabling the complete HLC model

e After finding an optimal solution to the LP relaxation, add the unique
columns from the column pool that are not yet in the model.

e Generate the 20 columns for each teacher/class and each day with
lowest cost that are not yet in the model. Use the complete column
set as input for the ILP phase.

The numbers 10 and 20 are determined by experience, and produce good
column sets. The only purpose of generating columns before the LP phase
is to allow a feasible solution (otherwise, the column generation algorithm
can not start). In most cases, I could probably lower this value of 10, and
still allow a feasible solution: while solving, I observed that the first feasible
solution of the LP phase was already very close to the optimal solution, and
only few columns had to be generated to obtain this optimal LP solution.

Table 11.11 shows a lot of data. From the second column, we can read
that in all instances I needed less than 10 iterations to obtain an optimal
solution to the LP relaxation. Columns 3-6 show the number of columns
in the different phases of the solving process. They show that during the
column generation phase only a few columns had to be generated before it
found an optimal LP solution. Also, the column pool contained only a few
hundred columns. Adding the 20 best columns for each teacher/class and
day determines the final size of the column set: typically about the ideal
20000. Only stages 1 and 6 have significantly more (this can be explained
by the number of classes and teachers involved, see Table 11.10), and stage
8 has only 12554.

If we look at the running times (columns 7-9), we see that the LP phase
only takes a couple of minutes; this includes generating the columns. Col-
umn 8 shows the running time of the ILP solver before I found the solution I
ultimately accepted, and column 9 shows the elapsed time before I aborted
the ILP solver (except for stage 1, which was solved to optimality in only 56
seconds). These running times look quite erratic. This is because for some
stages I decided to abort after a short period of time because I thought the
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solution the solver found was good enough (e.g. stage 3), and sometimes I
let it run all night (e.g. stages 2 and 7). In any case, it was impossible to
solve stages 2-8 to optimality, since this would probably take weeks and the
size of the search tree probably exceeds the size of the memory long before
then (actually, this happened already after 80804 seconds (over 22 hours)
while solving stage 7).

Columns 10, 11 and 12 show the objective value of the (optimal) LP
solution, the best ILP solution I found and the lower bound on the ILP
solution, respectively. In all cases, the solution found is within 10% of its
lower bound. There is probably still some room for improvement, especially
for the stages I aborted early (e.g. stages 3, 5), but I did not have the
patience to wait for slightly better solutions.

Relaxations

Unfortunately, there were two situations where I had to ‘cheat’ in order to
maintain feasibility. This is nothing to be ashamed of: the currently used
timetabling software is often also unable to schedule all lessons, and the
timetabler has to relax some constraints to restore feasibility.

The first feasibility problem that I encountered had something to do
with lower school classroom constraints. There were three classroom groups
in which so many lessons had to be given that they simply could not fit
in their rooms. The most obvious example is classroom group NT with 2
classrooms, in which 24 lower school lessons have to be given, totaling 86
lesson hours. Since lower school classes are unavailable the ninth (last) time
slot each day, there are only 40 available time slots per week. This means
that even when both NT classrooms are occupied all 40 time slots, at most
80 lesson hours can be scheduled in these rooms, showing it is impossible to
meet this constraint. In fact, at some time slots, only one of the NT teachers
is available, making things even worse.

The solution I used is to allow one extra room to be used for N'T lessons.
Every time slot this extra room is needed, a penalty is incurred. Recall
constraint (7) from the timetabling model:

Z yi <n” for each r,i (7)
leLr

Here, r is a classroom group and n” its number of rooms. I adapt this
constraint, by introducing a 0-1-variable ¢,; for such classroom group r and
time slot ¢:

Z yii — qri < n" for infeasible group r for all i (7)
leL™

Adding bounds ¢,; € {0,1} and adding the term ¢, ) .. >, gr; to the objective
completes the adaptation. This approach is basically the same as constraints
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1 2 3 4 5 6 7 8 9

Mon || unav. unav. unav. | unav. unav. | unav. unav. unav. unav.
Tue 1 1 1 1 0 1 1 1 1
Wed 2 2 2 1 1 2 2 0 0
Thu 2 0 1 1 0 1 1 1 0
Fri 2 2 0 1 1 1 1 0 0

Table 11.12: Tight schedule of teacher Bal

(6), where I allowed deviation of the ideal spreading incurring a penalty c,.
I had to do this for three lower school classroom groups, and I used ¢, = 2
as unit penalty. When assigning lessons to physical rooms, I would then
sometimes have to assign some lessons to inappropriate rooms. There are
always enough rooms in the building to fit all classes, so this should not be
a big problem.

The other feasibility problem was that after stage 7, there were three
teachers whose schedule was so tight that some of the remaining lessons of
stage 8 could not be fitted in. I had to remove 4 lessons from my model to
restore feasibility. One of them is given by teacher Bal, and the Table 11.12
shows its schedule after the last stage 8 (without the infeasible lesson).

The zeros in the table represent the free hours, the ones and twos stand
for scheduled lessons in building 1 and 2, respectively. This teacher is un-
available on Monday. The unscheduled lesson has a multiplicity of 2, is a
double hour and must take place in location 1. Since it is a double hour,
I need two consecutive free slots. Time slots 8 and 9 on Wednesday is not
an option, since the teacher than would have to travel from building 2 to 1
between time slots 7 and 8, but there is no break between these time slots.
The only possibility left is Friday, time slot 8 and 9. Unfortunately, it is
school policy that no class has a lesson on Friday the ninth time slot. This
way, we can see that this lesson can not be scheduled, fixing the lessons from
the solutions of previous stages.

The same thing happened to three other lessons. Apparently, the sched-
ule so far for these busy teachers was not good enough, but can not be
changed anymore (since all its lessons are fixed at this stage). However, by
moving and switching some lessons manually, these four lessons could still
be fitted in, resulting in a complete schedule that only violated some of the
classroom constraints (but this was unavoidable).

Penalty Partitioning

The costs from the 11th column of Table 11.11 can be partitioned in four
parts: the timetable layout costs for the classes, the timetable layout costs
for the teachers, the spreading deviation penalties and the classroom devi-
ation penalties. Figure 11.4 shows how these are partitioned for each stage.

The timetable layout penalties for the teachers obviously is the largest
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Figure 11.4: Penalty partitioning

part of the total cost. One interesting thing to note is that this cost in stage
5 (878) is higher than in stage 6 (854). This can happen, because a number
of intermediate hours of teachers get filled up by the newly scheduled lessons
in stage 6. Apparently, this effect was bigger than the newly created teacher
costs in this stage. All other costs are constantly increasing. I had to relax
classroom constraints only in stages 7 and 8.

Solution Quality

Again, it is difficult to compare my results with the results from the HLC.
First of all, the HLC uses a different cost model. Moreover, their schedule
includes kwt-hours (see Section 2.1.3), mine does not. Finally, it appeared
to be almost impossible to extract information from their schedule about
how well the lessons were spread, and when a lesson was scheduled in an
inappropriate room. In order to make some kind of fair comparison, I fed
all timetable layouts from their schedule to my own program, and extracted
their cost, the number of trips and the number of intermediate hours from
it. The results are in Table 11.13.

As we can see, my program has much fewer intermediate hours and
a much better timetable cost. We must however keep in mind that this
comparison is done for the cost model that I invented myself. The number
of trips is lower in the HLC solution. This is no surprise since I do not
penalize trips at all, nor do I bound the number of them. Also, if I only
consider the classes, my program produces a solution with more intermediate
hours and a higher timetable cost. The reason for this is probably because
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HLC program | my program
timetable cost 1850 1314
Total F#trips 87 106
#intermediate hours 501 325
timetable cost 249 291
Classes  #trips 2 2
#intermediate hours 9 40
timetable cost 1601 1023
Teachers  #trips 85 104
#intermediate hours 492 285
Table 11.13: Quality comparison
old approach costs new approach costs
layout  spreading total | layout spreading total
3VMBO 5 6 11 [10] 5 0 5
4VMBO 0 16 16 0 0 0
4VWO 0 4 4 0 2 2
5VWO 0 16 16 3 4 7
6VWO 18 12 30 [28] 0 4 42]

Table 11.14: Approach comparison

I penalize classes the same as teachers, whereas at the HLC, intermediate
hours of classes are penalized much heavier.

A quick manual check of the HLC schedules for spreading and classroom
violations indicate that they are comparable to the violations in my solution.
However, I can not show this with hard numbers.

11.2.3 Performance of the New Approach

The complete school was scheduled using the new approach from Chapter
10, where it is the responsibility of the timetabling solver to combine the
cluster groups into feasible cluster patterns. I claimed that this improves
flexibility and therefore could avoid spreading penalties (or even classroom
group penalties). The old approach produced ready-to-use cluster patterns.
This section compares the two approaches. To show that the new approach is
indeed an improvement, I tried both methods on small data sets (the lessons
for sAVWO, 5VWO, 6VWO, 3VMBO and 4VMBO). I used the patterns from
the MNP (minimal number of patterns) objective for the old approach. For
the new approach, I used the same large pattern sets as used for scheduling
the complete HLC.

Table 11.14 compared the costs for these 5 instances.
instances are small, there is of course no effect on classroom constraint
violations. Almost all instances are solved to optimality. If not, the lower
bound is displayed between brackets. The solving process was aborted after

Because these
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no fict. classes 50% {33%,67%}

cost #SIH | cost #SIH cost #SIH
3VMBO 5 248 9 77| 12 [10] 96
4VMBO 0 171 0 61 0 46
4VWO 2 308 2 180 2 178
5VWO 7 466 8 243 6 215
6VWO | 4[2] 560 | 81[2] 334 | 62 240

Table 11.15: Fictitious classes

half an hours (unless of course the optimal solution was found before then).
In all cases, the new approach produces better solutions. This is mainly due
to the reduced spreading costs. In the 6VWO instance, also the timetable
layout costs are reduced! For 5VWO, the timetable layout costs increased
a bit in the new approach, allowing a solution with much less spreading
violation.

11.2.4 Fictitious Classes

Section 5.1.2 described a way to deal with ‘empty’ lessons (cluster patterns
with only few students; note that even in the new approach form chapter
10, this is still an issue). I proposed to introduce fictitious classes that only
have the ‘full’ lessons. I did not use this method yet for timetabling the full
HLC, but I did some experiments on the same instances as used in Section
11.2.3.

I tried two different partitionings of the lessons. The first partitioning
has one fictitious class for each stem class, that is added to the classes set of
only the lessons in which at least 50% of the students of the corresponding
stem class participate. The second partitioning is finer and has two ficticious
classes per stem class: one has all lessons with at least 33% participation,
the other one only has lessons with 67% participation. Table 11.15 compares
the costs and the number of student intermediate hours (SIH): the sum of
the number of intermediate hours of each individual student. Again, when
the solution is not (proven) optimal, the lower bound on the cost (consisting
of spreading penalties and timetable layout costs for teachers and classes,
including the fictitious classes(!)) is displayed between brackets. The solving
process was aborted after 12 hours (unless of course the optimal solution was
found before then).

The effect is obvious: using fictitious classes reduces the number of inter-
mediate hours for students. The finer partitioning performs slightly better
than the 50% partitioning (with the exception of 3VMBO). Sometimes, the
cost increases a bit if I use fictitious classes; this is due to the fact that there
are of course more classes, all contributing to the total cost.
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Conclusion

Introduction In the introductory Chapter 1, I stated what I tried to
achieve with my research. Now that I have covered all theory and pre-
sented the computational results, I am ready to draw some conclusions: to
what extent did I reach the goals that I set myself? This question will be
answered in this chapter, firstly for the clustering problem, and secondly
for the timetabling problem. The final Section 12.3 describes some further
research that could be done in this area.

12.1 Clustering Problem

We have seen that my clustering algorithm works, and is able to handle all
constraints that occur in real-life situations. In fact, classroom and teacher
availability constraints are taken into account: this is not the case in the
current HLC model. I clustered using three different objectives, differenti-
ating between the ‘old’ approach, where the objective was to minimize the
number of cluster patterns covering the lessons table (MNP objective), and
the ‘new’ approach from Chapter 10, for which I proposed two possible ob-
jectives: maximizing the number of edges (MNE) and finding a minimum
clique cove (MCC).

Clustering using the MNP objective can be done quickly (within a few
hours) for the smaller models. The bigger models (4HAVO and 5HAVO)
caused some problems: very large column sets, long running times and so-
lutions that may not be very close to optimality. I had to use several tricks
to obtain solutions for these larges instances. One of these tricks was a
(non-standard) column generation technique described in Section 9.1. We
have seen that this technique could be useful for these larger instances (and
is useless for smaller instances). Other tricks I could use are decomposition
techniques, where I fix (part) of the student assignment to groups and/or
cluster patterns that I like. In particular, (partially) fixing the student as-
signments proved to be useful, and I used this technique repeatedly to find

115
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good solutions for 4HAVO and 5HAVO.

The MCC objective comes closest to the objective of the HLC minimiz-
ing the number of ‘lines’. Therefore, I used this objective to compare my
solutions to the solutions of the HLC. The group balancing (the secondary
objective) was at least as good in my solution as in theirs. The number of
patterns was comparable for the smaller models. For the bigger models I
experienced the same problems as with the MNP objective; my 4HAVO and
5HAVO solutions were significantly worse.

Fortunately, there is a third objective: maximizing the number of edges
(MNE), which is the best of the three objectives, in my opinion: it produces
the largest feasible pattern set and also produces enough large patterns, in
most instances. Also, since it only has to consider patterns with two groups,
its running time is quite short: within an hour, it finds an optimal—or
near-optimal—solution. However, this running time is no competition for
the local search algorithm used at the HLC, which runs in minutes, or even
seconds. I still think, one hour is an acceptable running time, given the fact
that clustering only has to be done once a year.

Summarizing, I propose to use the MNE objective (or an improved ver-
sion, see Section 12.3.1) for clustering: it produces good solutions within
a reasonable amount of time. Moreover, I think using this objective gives
better feasible cluster pattern sets than the objective currently used at the
HLC. However, this objective can only be used in the ‘new’ approach from
Chapter 10. For the old approach, I am committed to the MNP objective,
which performs well for small instances. For large instances, I need tricks like
column generation and group assignment fixation to obtain good solutions.

12.2 Timetabling Problem

The timetabling model covers all important constraints that arise in real-
life timetabling. In particular, I think my cost model is versatile enough to
include all preferences that a teacher of class could have. However, given
the extensiveness of the timetabling software that is currently used, there
are probably some fine-tuning issues that are not included in my model, but
do play a (minor) role in the HLC’s timetabling.

Again, I need to differentiate between the old- and new approach. Some
experiments on small instances clearly show that using the new approach
improves the quality of the solution dramatically: in particular, costs caused
by bad spreading of lessons can be avoided by using this new approach.

I tried to schedule the complete HLC using this new approach. Un-
fortunately, it is impossible to schedule all 711 lessons at once: I had to
decompose the model into stages (I used eight), each stage fixing the result
of all previous phases. I have chosen a simple cost model that was easy to
work with, but in the end appeared to be simplified too much (for example,
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I did not penalize trips and did not penalize intermediate hours for classes
heavier than for teachers).

Still, after a total running time of about 70 hours, I managed to pro-
duce a complete schedule for the HLC of good quality, in my opinion. The
words ‘good quality’ can be justified by the fact that my schedule contained
considerably fewer intermediate hours, and my timetable layout costs are
significantly lower. On the other hand, my schedule contained more trips,
and if I consider the classes alone, my solution is slightly worse. However, I
am confident that these issues can be improved by using a better cost model.

There were a few infeasibility issues along the way. The timetabler at
the HLC, Victoire Camps, assured me that this always happens, and some
constraints always have to be relaxed. In this case, the classroom constraints
proved to be too tight, and I had to allow an extra room for three class-
room groups. Also, four lessons could not be fitted in the fixed schedules of
the corresponding teachers, but this issue was easily resolved by manually
moving some lessons around.

For the complete HLC model, I did not use the technique of adding
fictitious classes in order to reduce the number of student intermediate hours
(in other words: moving emptier cluster patterns to the beginning or end of
the day). I did experiment with this technique on smaller instances, and the
results are very promising. Adding fictitious classes decreased the number of
student intermediate hours by up to 70%! We must however keep in mind,
that adding these classes increases the size of the model, so I can not add
too many of them.

Summarizing, it is possible to solve high school scheduling problems
using ILP and column generation. Using the new approach is a good idea,
just like thinking of a good cost model. The 70 hours it took me maybe seems
like a long time at first sight, but is in my opinion still acceptable, keeping
in mind that computers get faster and faster. Moreover, the HLC instance
is quite big. Although not yet tested on large instances, adding fictitious
classes is a good way to avoid having too many student intermediate hours.

12.3 Further Research

12.3.1 Clustering

Let us start with the clustering model: what could be improved? Although
the MNE objective works well, I think there must be better objectives that
find a better balance between the size of the feasible pattern set and the
amount of large cluster patterns in this set: we have seen that in one instance
(4VMBO) the optimal solution using the MNE objective produced too few
large patterns (see Figure 11.3).

Another thing that could be investigated is how to remove some symme-
try from the clustering model that is still present. Suppose for instance that
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there is a subject A with two groups Al and A2, and in some solution a set
of students S1 is assigned to Al and a set of students S2 is assigned to A2.
Then there is probably (if there are no group assignment restrictions) also
a solution with the same objective value in which student set S2 is assigned
to group Al and S1 to A2, and in every pattern group Al is replaced by A2
and vice versa. How to lose this kind of symmetry?

12.3.2 Timetabling

One thing I encountered during the timetabling in stages, is that in early
stages the schedules for teachers contain a lot of intermediate hours, and
they are of course penalized as such. When it is known that in later stages
a lot of lessons will be added to this schedule, these intermediate hours are
no big problem because they will probably be filled. Maybe we could do
something with this information, and use different cost functions for the
same teacher in the different stages?

Another thing that could be investigated is whether it is possible to put
more information in the columns than only in which building a lesson must
take place. Maybe we could include information about whether a double
hour has to be scheduled at the corresponding slots (then there must be
two such column entries consecutively). Another possibility is to include
the concept of full and empty lessons in the columns (see Section 5.1.2). We
could be even more specific like including which class to teach. The more
specific we are, the more feasible columns we have: this is something to be
careful about.

Finally, I am curious about the HLC’s method of avoiding too many trips.
If a teacher teaches in both buildings, part of his schedule (say Monday and
Tuesday) is reserved for lower school lessons, and the remainder is reserved
for upper school lessons. We have to be careful with these reservations,
because we do not want the situation where too many teachers have reserved
time slots on Monday and Tuesday for lower school lessons; then there could
be too few teachers to teach lower school classes the rest of the week. I think
that this approach is too limiting for the ILP approach (but maybe I am
wrong), and only works at the HLC because the local search approach allows
them to quickly move some lessons around if such infeasibility issues occur.
This is not possible (or at least difficult) in an ILP approach.

12.3.3 Pre- and Post-processing

Before the clustering phase actually starts, some pre-processing has been
done: determining the lessons table, which is basically answering the ques-
tion ‘which subjects are taught in which period and for how many hours per
week?’. There are several things to consider. Firstly, the total number of
lesson hours per class must be balanced evenly over the periods. To a lesser
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extent, the same holds for the teachers. Of course, the legal total number of
lesson hours per subject must be satisfied. Also, things like classroom types
play a role: we can not have too many lessons of the same type in a period,
because they have to fit in appropriate classrooms. Solving this problem
is currently done by hand, but I think it would be interesting to develop a
model that allows us to solve this problem more efficiently.

Another pre-processing matter is the formation of stem classes. For
first year classes, this is done based on the preferences of the students (of
course, they want to have some friends from primary school in their own
stem class). Later on (in particular, before the first year in upper school),
new stem classes could be formed, based on the subject set choices of the
students: Doing this in a smart way could make clustering a bit easier. I
think it would be interesting to investigate how the formation of stem classes
is currently done, and how to improve this process.

After solving the timetabling problem, there is one thing left to decide:
which lessons must be given in which rooms? The classroom constraints
made sure that every (or almost every) lesson can be given in an appropriate
classroom, but within a classroom type there may be differences between
individual rooms. It is not uncommon that a teacher has his ‘own room’,
in which this teacher gives almost all its lessons. Now that we have a large
number of teachers, it may happen that several teachers regard a classroom
as their own, an this may lead to conflicting interests. As further research,
one could develop a model that assigns the lessons to individual classrooms
keeping the teachers as happy as possible (we thus again need cost functions).
Note that at the HLC this assignment is done during the timetabling phase
instead of afterwards.



120 CHAPTER 12. CONCLUSION



Part 1V

Appendices

121






Appendix A

Screen Shots from my JAVA
Programs

Introduction In order to enter the data in a user-friendly way, and to
be able inspect results without having to read long and ill-digested text
files, I made a graphical shell for the two JAVA-programs that I wrote. I
decided to include some screen shots with comments of both the timetabling-
and the clustering program in this appendix, because this gives us some
insight in the extensiveness of such programs. We still have to keep in mind
that (naturally) my programs are not even nearly as extensive as todays
commercial software packages.
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A.1 My Timetabling Program
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Figure A.1: Teachers tab showing the lessons of (English) teacher
Mie. This teacher also has a meeting ("Vergadering’), which is a
double hour (according to its hour groups entry ‘2’). The bottom
part shows that he is unavailable on Wednesday afternoon and on
Friday.
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Figure A.2: Classes tab showing the lessons of class b2e. We can see
that, although this is a lower school class, it still has some cluster
lessons (three to be precise). It also has several double hours.
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Figure A.3: Classroom Groups tab showing the lower school Eco-
nomics/Mathematics classrooms: there are 5 of them. Using the
lower part (‘lesson selector’) I can choose the lessons that must be
scheduled in one of the rooms from this group.
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Figure A.4: Clusters tab showing the cluster lessons of the 4 SVMBO
classes t3a, t3b, t3c and t3d. Here the new approach from Chapter
10 is implemented: the currently selected cluster lesson fa_4 is one
of the parents.
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Figure A.5: It is possible to provide an existing schedule to the pro-
gram that can act as a starting point for the optimization algorithm.
Using this tab, the timetable that is currently being used at the HLC
has been entered.
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file special
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Figure A.6: The Optimize tab can be used to set some of the options
for the optimization algorithm. The large text field at the bottom
shows the progress after hitting the ‘Optimize’ button. If something

goes wrong, I can also abort the optimization.
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Figure A.7: When the solver has finished, the results can be viewed
in the Output tab. In this case, we see the resulting timetable for

PE teacher Scg, without any intermediate hours.
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A.2 My Clustering Program

file special
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Figure A.8: Subjects tab showing all teachers, subjects and groups
(inconsistently called ‘lessons’ in my program) that have to be clus-
tered for this set of classes (the 3VMBO classes, in this case). The
right most section is used to enter the Group Assignment Restric-
tions. As we can see, not all students who have subscribed to this
subject ‘du’ may be assigned to group ‘du_2’.
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Figure A.9: Lessons Table tab showing the lessons table for the
3VMBO classes.
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Figure A.10: Students tab
their subscriptions.

showing the students of class t3c with
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[we specst ]
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Figure A.11: The Classrooms tab is used to enter the classroom
restrictions. In this case only two out of three groups of the subject
‘du’ may be in a pattern.
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Figure A.12: This Optimize tab is similar to the Optimize tab of the
Timetabling program: it is used to set options and to view informa-
tion of the solving process.
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Figure A.13: The Output tab shows the results of the optimization
process. In this case, the five groups (again inconsistently called
‘lessons’ in my program) of a cluster pattern in period 2 are shown
in the second column. The students who have been assigned to one

of these lessons, ec_4, are displayed in the third column.
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Appendix B

Optimization Techniques

Introduction The main technique that I use to solve the timetabling-
and clustering problem is Linear Programming (LP). To be able to deal
with the large number of variables in the timetabling problem I also use
the Column Generation (CG) technique. Finally, the column generation
algorithm uses simple shortest path algorithms to find good columns. For
those who are unfamiliar with these algorithms, this chapter explains the
basic ideas behind them.

B.1 Linear Programming

Linear Programming is a technique that enables us to optimize a linear ob-
jective function subject to a set of linear constraints. This is best explained
by a simple example: the diet problem. Suppose we have m different foods
each containing a certain mixture of n different nutrients. Each unit of food
J has a certain cost ¢;, and a nutritional content of a;; for nutrient 7. The
diet prescribes that we must eat a fixed amount b; of nutrient ¢. Of course,
we want to spend as little money as possible on buying the food items, while
meeting the diet prescriptions. Table B.1 contains all the data we need for
a general diet problem.

The decision we have to make is how many units we have to buy, for each

food type. Therefore we introduce so-called decision variables x1, ..., Ty,
food 1 food2 --- food m | diet
cost c1 (6 Cm
nutrient 1 all ais e aim b1
nutrient 2 ao1 a2 S a2m by
nutrient n an1 an2 e Anin bn,

Table B.1: Diet Problem Data
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where z; represents the number of units of food j we buy (and eat). Since
we are trying to minimize the total cost, the objective becomes:

mincixry + cara + ... + CTm

Note that the objective function is indeed linear in the variables ;. The
constraints in this case are that we have to meet the diet: we must eat a
fixed amount of each nutrient. This can be modeled by the following set of
constraints:

a;1x1 + aprs + ...+ aymr,m =b; foreachi=1,...,n

Finally, we must of course have the constraint that the variables must all be
non-negative:
xj >0 foreachj=1,...,m

If we store the constants a;; in a n x m matrix A, constants ¢; in a vector
¢, constants b; in a vector b and variables x; in a vector z, we can write the
complete problem as:

min ¢z
subject to Az = b
x>0

This is a linear program in standard form: all variables must be nonnegative
and all constraints are equality constraints. A general linear program may
also contain inequality constraints (replace the =-sign by < or >) or free
(unbounded) variables (they are allowed to become negative). It may also
have the objective to mazimize instead of minimize the objective function.
However, it is always possible to eliminate inequality constraints and free
variables by a series of transformations (see [1], Chapter 1). Also, maxi-
mizing ¢’z is essentially the same as minimizing —c’x. Therefore, a general
linear program can always be transformed to the standard form.

There are several algorithms that solve linear programming problems.
The most popular algorithm is the simplex method. This method is fast in
most practical cases, but has been proven not to run in polynomial time in
a worst-case scenario. There are, however, some algorithms that do solve
linear programming problems in polynomial time, for instance the affine
scaling algorithm (see [1], Chapter 9).

B.1.1 Integer Linear Programming

The models of the timetabling and clustering problem (see Section 3.3 and
7.4) are obviously not in standard form: they contain a lot of inequality
constraints. As I mentioned before, this is not a problem: these constraints
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can be transformed into equality constraints. Nevertheless, the models do
contain so-called integrality constraints, like:

z. € {0,1}

This constraint does two things. Firstly, it bounds the variable x.: it may
only take a value that is at least 0 and at most 1 (this type of constraint is
still allowed in linear programming). Secondly, it only allows integer values
for this variable (together with the bounds, this results in only two feasible
values: 0 and 1). This is not allowed in linear programming, and makes the
model an Integer Linear Program.

In the diet problem it is quite natural to include such integrality con-
straints € Z™: it is usually impossible to buy half a banana although the
corresponding variable Zpapana could be 1/2 in the optimal solution. Re-
quiring integer values for x; may make the problem infeasible: we required
the diet prescriptions to be met exactly, and this may well be impossible for
integer x;. Therefore, we relax the diet constraints: we must buy the food
items such that we have at least the required amounts of nutrients. The
integral diet problem becomes:

min ¢’z
subject to Az > b
x>0
zxeZ™

Unlike linear programs, ILP models (like the timetabling or clustering
model) are generally not solvable efficiently (in polynomial time): integer
linear programming is an NP hard problem. There are some exact algo-
rithms that solve ILP models to optimality but take an exponential number
of iterations, for instance cutting plane methods or branch-and-bound.

B.2 Column Generation

Unfortunately, the models that I try to solve in this thesis, are ILP models.
Therefore, I am committed to inefficient algorithms and powerful solving
software (like CPLEX, the software package that I have used). In case of
the timetabling problem, there is another issue: the complete model does
not fit into memory. Column Generation (CG) is a technique that could
be used for this kind of large scale optimization. The term ‘column’ in this
case corresponds to a variable in the model. The main idea behind CG is
to delay adding a variable to the model until we know it is beneficial to do
so. If there is no variable that is worthwhile to add, we stop. Because not
all variables have to be added (usually, there are lots of useless variables),
we keep the model small enough to fit in memory.
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B.2.1 The Cutting Stock Problem

So how does this technique work? The classical example used to explain
CG is the cutting stock problem. It is about a paper cutting company that
cuts large paper rolls of width W into rolls of smaller width, meeting cus-
tomer demand. This demand can be expressed in two vectors b and w: the
customer wants b; rolls of width w; (¢ = 1,...,n). Of course, the paper
cutting company wants to minimize the number of large rolls used, satisfy-
ing the customer order. The company has to decide for each large roll, how
to cut it into smaller rolls; this is called a cutting pattern. Such a pattern
can be expressed by a vector A;, where its ith component a;; represents
the number of rolls of width w; that are cut from this large roll. Decision
variable x; represents how many large rolls are cut according to pattern j
(j=1,...,m).

This problem description leads to a simple integer linear program. The
objective is to minimize the total number of large rolls used, that is, we
minimize ) ;%5 Of course, the variables x; must be nonnegative and inte-
ger. Finally, we must satisfy the customer demand: the number of produced
paper rolls of width w;, that is > ; @ij T, must be at least the demand b;.
We now have the following ILP (storing the constants a;; in a big matrix
A):

min E xj
J

subject to Az > b
x>0
reZm

The number of feasible patterns m can be very large, implying a huge number
of variables and columns of the matrix A. However, the vast majority of
these patterns are probably useless for this problem (and the corresponding
variables z; will always remain 0). Therefore, even if the model does fit in
memory, using column generation may be a good idea in this case.

step 1 First of all, we have to transform this problem into a linear program,
because the CG algorithm needs information from the simplex algorithm
(which only solves LP problems, not ILP). This transformation is easy:
simply remove the integrality constraints x € Z™. The resulting problem
is called the LP relaxation of the cutting stock problem. Of course, we are
cheating with this relaxation, since this simplifies the problem: the optimal
solution of the LP relaxation may not be integer. However, this will be fixed
in step 4.
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step 2 The second step is to solve this LP relaxation (using the simplex
method) for a small set of columns (patterns, in this case). This set of
patterns may not be too small: we have to make sure that a feasible solution
exists. In this problem it is easy to construct a small set of columns that
allow a feasible solution: for each w; include a pattern that only consists of
one roll of this width. This results in an identity matrix A and an optimal
solution « = b with value ), b;.

step 3 From the theory of the simplex method (see Chapter 3 of [1]) we
know that including a variable could improve the quality of a feasible solu-
tion if its reduced cost is negative (assuming we are minimizing the objective
function). Conversely, if all reduced costs are nonnegative, we know that we
have an optimal solution. In this case, the reduced cost of a pattern j equals
cj —p'Aj, where p is the vector of so-called dual multipliers (also called sim-
plex multipliers) and c; is the coefficient of x; in the objective function (in
this case, ¢; = 1). How these dual multipliers can be computed is beyond
the scope of this chapter. For now, it is important that p is available, given
a solution. The third step is to try to find a pattern that we can add to
this model, the column generation phase. This can be done by minimizing
the reduced cost over all feasible patterns. If this minimum is nonnegative,
apparently there is no pattern that could improve the quality of the solution:
we have found an optimal solution of the LP relaxation. On the other hand,
if this minimum is negative, we can add the corresponding pattern to the
model, and solve it to optimality (we return to step 2), hopefully improving
the objective value. This new solution also gives a new vector p, and we can
try again (step 3) to find a pattern that could be added. We repeat step 2
and 3 until we have found an optimal solution of the LP relaxation.

I haven’t explained yet how to find among all feasible patterns the one
minimizing its reduced cost. This is the so-called pricing problem. In this
case, we have to find a feasible vector a such that 1 —p’a is minimal. We can
write this problem as an ILP, where the components a; are the variables.
Of course, since a representa a cutting pattern, all its components must be
nonnegative and integer. A pattern is feasible if its total width ), w;a; does
not exceed W. This leads to the following formulation:

minl — pa
subject to Zwiai <W
i

a>0
acZ"

This problem can be transformed to a relatively small integer knapsack prob-
lem that can be solved quickly using dynamic programming. If we have
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’ step 1: relax ILP problem to LP problem ‘

step 2: solve LP relaxation with restricted set of
columns using the simplex method

dual multipliers new column

step 3: solve the pricing problem
is optimal value negative? YES

NO | optimal solution of LP relaxation

step 4: transform fractional solution to an integer one

Figure B.1: The Column Generation Algorithm

solved this pricing problem, we must check whether it has a negative objec-
tive value. If it has, we add this column to the cutting stock LP relaxation,
if not, we know that we have an optimal solution of this LP relaxation and
we proceed to the final step 4.

step 4 The fourth step is to transform the optimal solution of the LP
relaxation to an integer solution: the original cutting stock problem requires
integer values x;. If we are lucky, the solution is already integer, and we
immediately have an optimal solution of the integer cutting stock problem.
If not, we have to use some other method, for instance by rounding up.
Another option is to solve the original ILP version of the cutting stock
problem (for instance using branch-and-bound methods) with the restricted
set of patterns that were generated. It is important to realize that an optimal
solution of the LP relaxation generally gives no guarantee for the quality of
the solution of the integer version. It may even happen that the integer
problem is infeasible for the restricted set of columns. Nevertheless, in most
practical situations the set of columns generated also allows a good integer
solution.

B.2.2 Application to the Timetabling Problem

Figure B.1 shows the general column generation algorithm schematically.
In the timetabling problem, columns correspond to timetable layouts for
teachers and classes. The restricted set of columns that we start with are the
n ‘best’ columns (with lowest cost) per teacher/class. If n is big enough this
results in a feasible LP relaxation and we can start the column generation
algorithm. The corresponding pricing problem can be modeled as a shortest
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path problem (see Section B.3). We solve this problem for each pair (7, d) of
teacher/class j and day d, and add the best column for every such pair (if it
has negative reduced cost). This way, we usually add more than one column
per iteration and make progress more quickly. Finally, the transformation
of a fractional optimal solution to the LP relaxation to an integer solution is
done by simply running an ILP solver on the integer programming problem,
using the restricted set of generated columns (plus some extra columns, see
Section 5.2.3).

B.3 Shortest Path

Solving the pricing problem in the timetabling phase reduces to finding a
shortest path from source r to sink s in a layered graph. In this case, a
shortest path is the path that minimizes the sum of the costs of the nodes
(rather than the arcs) that are in this path. Because such a graph is acyclic,
this is a very easy task that can be done in time O(m) (see [5], Theorem
8.16), where m is the number of arcs in the graph. Let ¢(v) denote the cost
of node v and d(v) the length of the shortest path from r to v. For each
node v in layer 1, the length of the shortest path from r to v, is simply
d(v) = ¢(r) + ¢(v). If we have determined the shortest paths from r to all
nodes in layer i, we can determine the d(v) for a node v in the next layer
i+ 1 as follows:

d(v) = ¢(v) + min{d(u)|u is a predecessor of v}

We say that u is a predecessor of v if there is an arc (u,v). Because the
graph is layered, it has the property that if v is in layer ¢+ 1, all predecessors
u must be in layer ¢. Using the relation above, we determine the shortest
path lengths d(v) layer by layer, and we ultimately compute d(s) (sink s is
the only node in the last layer). If we store for each node v, the predecessor
w with minimal d(u), we can ‘track back’ from sink to source to find the
path itself (not only its length d(s)).

Figure B.2 shows a simple example graph with 11 nodes. The bottom
part of each node represents its cost. Under each node v, the value of d(v)
is displayed, together with the predecessor of the shortest path to this node.
By tracking back from sink s to source r, we see that the shortest path is
r—B — FE — I — s with length 6.

B.3.1 k Shortest Paths

It is also possible to find the k shortest paths in these layered graphs. I use
this algorithm to find the k& best columns per teacher/class that together
form the initial set of columns for the LP relaxation. Similar to the sim-
ple shortest path algorithm, we determine for each node v, layer by layer,
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the length of the shortest path from r to v. We now store not only the
predecessors, but the complete paths (since one predecessor can be part of
more than one of the shortest paths). Define d;(v) as the length of the ith
shortest path from r to v. Of course, for each node v in layer 1, there is only
1 shortest path from r to v with length d;(v) = ¢(r) 4+ ¢(v). For each node
v in layer ¢ + 1 we inspect the stored shortest paths of its predecessors u
with their lengths d;(u) and choose the k paths with minimal d;(u). Simply
adding ¢(v) to the d;(u) and node v to the k paths then gives the k shortest
paths from 7 to v.

Figure B.3 shows the same example graph as Figure B.2, but now il-
lustrates the k shortest paths algorithm for £ = 3: below each node v, the
lengths dy(v), d2(v) and ds(v) of the 3 shortest paths from 7 to this node,
together with the paths itself, are displayed. Because the graph is quite
small, there are less than 3 feasible paths from r to all except nodes G and
s. We can immediately read that r —- B—E - I —s,r—A—-C -G —s
and r — B — E — (G — s are the three shortest paths from source to sink with
lengths 6,7 and 7, respectively.
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layer 0 layer 1 layer 2 layer 3 layer 4

Figure B.2: Example Shortest Path Algorithm

layer O layer 1 layer 2 layer 3 layer 4

Figure B.3: Example k& Shortest Paths Algorithm for k = 3
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Appendix C

Reference

Introduction This appendix can be used as a reference while reading
this thesis. It briefly describes the several modeling concepts (with some
examples), variables, constraints and objectives for both the timetabling
and the clustering problem described in part I and part II. The last section
C.3 contains the full ILP models of the two problems.

C.1 Timetabling

C.1.1 Modeling Concepts

Classes/Teachers Teachers and classes are very similar from a modeling
point of view: they both have timetable layout preferences. These pref-
erences concern the number of lessons, intermediate hours and trips per
day/week. Also, a teacher (or class) may have some blocked time slots (in
particular, this applies to part-time teachers): no lesson may be scheduled
at those time slots. All those preferences are known and determine the cost
functions.
Here are some examples of timetable layout preferences:

e All upper school VMBO classes are preferred to have the first our off,
each day.

e Teacher Abc is unavailable on Wednesday (that is, he has blocked all
time slots on Wednesday).

e Teacher Def wants less than 3 trips per week.

e Teacher Ghi wants at most 1 intermediate hour on Monday, and at
least 2 on Tuesday.

Lessons Another thing teachers and classes have in common, is that they
both have lessons. Which teachers and classes are involved in a lesson (that

143
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is, the teachers and classes set) is predetermined. Another known property
of a lesson is its multiplicity: the number of time slots per week the lesson
has to be scheduled. Additionally, we know for each lesson whether it has
to be scheduled as one or more n-double hours (determining the hour group
vector), in which location (building) it has to take place and in which kind
of classroom(s). A lesson can also be fized to a time slot.

Most lessons in lower school only have one teacher and one class, for
instance the following Mathematics lesson:

Example Lesson: alaMath

classes set ala

teachers set Abc

multiplicity 3

hour group vector | 2-1 (one 2-double hour, one single hour)
location lower school building

classroom type lower school Mathematics/Economics room
fix not applicable

For meetings, the classes set is empty, and the teachers set contains more
than one teacher:

Example Lesson: mathMeeting

classes set
teachers set Abc
Def
Ghi
multiplicity 4
hour group vector | 4 (four consecutive hours)
location upper school building
classroom type meeting room 1
fix Friday, time slots 6-9

Finally, in upper school we can have cluster patterns, that involve several
classes and teachers:

Example Lesson: v6ClusterPatternl

classes set vba
v6b
vbe
teachers set Abc (Mathematics)
JkI (Biology)
multiplicity 1
hour group vector | 1
location upper school building
classroom types upper school Mathematics/Economics room
upper school Biology room
fix not applicable
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Classrooms/Locations FEach lesson has to be given in an appropriate
classroom. 1 distinguish different classroom groups for different types of
lessons. For each classroom group, the number of rooms is known, as well
as the set of lessons that have to be scheduled in a classroom group. For
example, at the HLC there is a classroom group consisting of 3 upper school
Mathematics/Economics rooms, in which all upper school Mathematics and
Economics lessons must be given. Example lesson v6ClusterPatternl is thus
included in its lesson set.

At the HLC, there are two buildings: one for lower school lessons and
one for upper school lessons. This concept of locations is important because
teachers that teach both lower and upper school must have time to travel
from one building to the other (the so-called trips).

Time A year is divided into several periods. Timetabling is done for each
period separately, since each period a different set of lessons must be taught.
I make a schedule for one week: every week in some period, the same schedule
is used. At the HLC, a week has 5 days, and 9 time slots each day (at the
HLC) with breaks after the third and fifth time slot (this is important for
trips and double hours).
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C.1.2 Variables, Constraints and Objective

There are two kinds of basic variables that I use in the timetabling model:
z. and y;;. They are defined as follows:

1 if column c is chosen
c = .
0 otherwise

1 if lesson [ is scheduled at time slot ¢
Y = .
0 otherwise

A column, in this case represents a timetable layout for some teacher or class
for one single day. A column c¢ can be seen as a 0-1-vector with an element
for each time slot on the corresponding day and location b:

{1 if this teacher/class has a lesson in location b at time slot i
Cib =

0 otherwise

Constraints (1) make sure that the values of variables z. and y;; cor-
respond to each other. For instance, if lesson [ is scheduled at time slot ¢
and must be given in location b, the chosen columns of the teachers and
classes involved in this lesson must have c;; = 1. Here Cjq denotes the set
of columns for teacher/class j and day d, Lj, denotes the set of lessons for
teacher/class j that have to be in location b and I; is the set of time slots
on day d.

Z TeCip — Z yi =0 forall j,d,iel;b (1)
ceClg leLjp

Constraints (2) make sure that exactly one column is chosen per teacher or
class per day, and by constraint (3), I force that the multiplicity m; of the
lessons is respected. Finally, if a lesson [ is fixed to time slot ¢, constraint
(4) makes sure of this.

d ze=1 for all 7,d (2)

CEde
> i =my for all I (3)
Y =1 for all [ fixed to 4 (4)

If a lesson has double hours (meaning it has not an all-one hour group
vector, this set of lessons is denoted by LP™), T introduce variables Y, for
each sublesson ¥ of I (a sublesson corresponds to a component of the hour
group vector):

if the nth consecutive hour of sublesson ¥
yﬁ% = is scheduled at time slot ¢

0 otherwise
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Constraints (5a) make sure the lessons within an hour group are indeed
scheduled consecutively, constraints (5b) restrict the choices for the first
time slot of an hour group (avoiding an hour group to cross a break or a
day break) and constraints (5c) link the new variables to the y;;. Here ng,
denotes the number of components of the hour group vector h! for lesson .
Ypk; — yﬁ%ﬁrl) =0 forallle LPH i, 1 <k<nyu, 1<n< hf,g (5a)
Yy =0 for all I € LPY infeasible i, 1 <k <mny  (5b)
by
Z Zyﬁ% =y for all { € LPH i (5c¢)
k=1n=1

We want a lesson to be scheduled for at most one hour (group) per day.
This is a soft constraint; variables z;; measure deviation from this constraint.
If [ has double hours, constraints (6a) apply, if it has an all-one hour group
vector, constraints (6b) apply.

n if n+ 1 hour groups of lesson [ are scheduled on day d
z =
ld 0 otherwise

Ny
S sl e @
1€lq k=1

Z Yii — 21a < 1 for all I ¢ LPH, d (6b)

i€ly

To make sure the lessons fit in their appropriate rooms, I included con-
straints (7). Here L" denotes the set of lessons that must be scheduled in
classroom group r, and n” is its number of rooms.

Z yi <n" for each r,i (7)
leL”

Constraints (8a), (8b) and (8c) measure deviation from the week layout pref-
erences (preferred minimum and maximum number of intermediate hours
and preferred maximum number of trips). The values of the nonnegative
variables 2" zint and E;rlps represent these deviations:

R
Z xcint(c) — i}nt < ﬁijnt for all j (8a)
CECj
Z xcint(c) + V}nt > ﬁijnt for all j (8b)
CECj
Z x trips(c) — éjrips < ﬁ;rips for all j (8¢)
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Naturally int(c) and trips(c) denote the number of intermediate hours and
trips in column ¢, respectively; ﬁijnt, ﬁijnt and 7P the corresponding bounds.

The objective is to minimize the costs of the columns plus spreading and
week layout deviations:

min >, > fual@we+e:d )z
Jj d ceCjq I d
+ Z(éinté}m + éint é}nt + étripszgripS) (ObJ)
J

Here ¢, ¢, @™ and é"1PS are the weighing constants, and fja(c) is the cost
of column ¢ for teacher/class j and day d.
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C.2 Clustering

C.2.1 Modeling Concepts

Class Types/Students Clustering is done for upper school students be-
longing to the same class type (same year and level). For each student its
subscriptions to optional subjects are known.

At the HLC there are thee 6VWO classes (thus belonging to the same
class type): v6a, v6b and v6c. In total, they have 77 students. As an
example, the subscriptions of five of these students are shown:

student subscriptions

Mark Biology, Mathematics, Chemistry
Steven History, Mathematics

Charlotte | History, Mathematics, Physics
Kevin Biology, Physics

Suzan Economics, History, Mathematics

Subjects For each subject, we know its multiplicity. If there are many
subscriptions to the same subject, the set of subscribed students must be
partitioned into several groups. The number of groups per subject is known,
the partitioning of the students is not (this is part of the clustering problem).
Of course, the multiplicity of each of the groups is equal to the multiplicity
of the corresponding subject.

For the subjects from the example student subscriptions, these could be
the corresponding multiplicities for period 1 and groups:

subject multiplicity | #subscriptions | group(s)
Biology 2 50 B1, B2
Chemistry 3 10 C1

History 3 35 H1, H2
Mathematics 2 61 M1, M2, M3
Physics 3 22 P1

Groups For each group of some subject, I thus know its multiplicity, but
also the teacher that teaches this group. Additionally, I have known bounds
on the number of students that may be assigned to this group and an ideal
group size. Finally, I could have group assignment restrictions: sometimes
the set of students that may be assigned to a group is restricted (and there-
fore a subset of the set of subscribed students to the corresponding subject).

We have seen that in our example, Mathematics is very popular in
6VWO, and needs three groups: M1, M2 and M3. These could be their
size bounds, ideal sizes and sets of students (from above five students) that
could be assigned to the groups:
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group | teacher ‘ min. #students ‘ max. #students ‘ ideal #students

M1 Abc 12 18 15
M2 Def 20 26 23
M3 Def 20 26 23

group ‘ possible participants

M1 Mark, Charlotte, Suzan

M2 Mark, Steven, Charlotte, Suzan
M3 Mark, Steven, Charlotte, Suzan

As we can see, group M1 is preferred to be a bit smaller than M2 and M3:
this is because teacher Abc is inexperienced. We can also see that student
Steven may not be assigned to this group M1, since Steven is difficult to
handle (especially by an inexperienced teacher): this is an example of a
group assignment restriction.

Cluster Patterns A set of groups whose sets of assigned students do
not overlap and that all have a different teacher could be grouped in a
cluster pattern. It is the objective of the clustering problem to form as few
cluster patterns as possible, while each group appears the correct number of
times (according to the multiplicities of the groups). These cluster patterns
are input of the timetabling problem (patterns can be seen as big lessons
involving several classes and teachers). To avoid infeasibility issues in the
timetabling phase, teacher availabilities and classroom information (these
things are known) could also be included in the clustering phase.

The following set of 10 patterns could be a solution to the example (for
period 1) in this section. Note that all groups appear the correct number of
times (according to their multiplicities) in the chosen patterns:

M3-B1-B2 M3-B1-B2
M1-M2 M1-M2
C1-H1 C1-H1 C1-H1
P1-H2 P1-H2 P1-H2

Of course, the group assignments are also part of the solution, but they are
not displayed here.
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C.2.2 Variables, Constraints and Objective

There are two kinds of basic variables that I use in the clustering model: z.
and y;s. They are defined as follows:

n if column ¢ is chosen n times
T = ]
0 otherwise

1 if student ¢ is assigned to group g
Yig = .
0 otherwise

A column in this case represents a pattern (set of groups). A column ¢ can
be seen as a 0-1-vector with an element for each group g:

{1 if group ¢ is in this cluster pattern
cg =

0 otherwise

Constraints (1) make sure each group g appears the correct number of
times (according to its multiplicity m{ for period p) in the set of chosen
patterns for each period (CP denotes the set of columns for period p). Con-
straints (2) force a student 7 to be assigned to exactly one group per subject
it is subscribed to, and constraints (3) impose an upper bound n” on the
number of patterns we may use per period p. The set of subjects student
i is subscribed to is denoted by S;, and G; s denotes the set of groups of
subject s, student ¢ may be assigned to.

> wecg =m? for all g, p (1)
ceC?
Z Yig = 1 for all 7,5 € S; (2)
geGi,s
Z xe <P for all p (3)
ceCp

For each group g, we have a lower and upper bound (74 and 74, respec-
tively) on the number of students it may have. Constraints (4a) and (4b)
force these bounds to be respected. Constraints (4c) measure deviation from
the ideal size nfqdeal of each group g. The values of the nonnegative variables
z; and z, represent this deviation. Here I denotes the set of students that
could be assigned to group g.

Z Yig < g for all g (4a)
iel,
Z Yig > Mg for all g (4b)
icl,

Z Yig — z; +z, = n;deal for all g (4c)

i€ly
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We also have to make sure that for every chosen pattern, there is no
student that is assigned to more than one group in this pattern. This is
forced by constraint (5):

M(g1792)(yi91 + Yiga) + Z Te < 2Mg, g,)

for all i, g1,92 € Gi, g1 # g2 (5)

Here C; denotes the set of columns in which group g appears and Gj is the
set of groups (of all subjects) student ¢ may be assigned to. Finally, M
is a constant, that must be at least the maximum value )
take.

The objective is to minimize the total number of patterns chosen. There
is also a secondary objective (with lower priority, implying a low weighing
constant ¢,) to minimize the deviation of the ideal group sizes.

minz Te+c, Z(z; +z,) (obj)
c g

91,92)

c€Cy, NCy, Te CaN1

C.3 Full ILP Models
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Clustering ILP Model

min Y, xe+c. 3, (25 +25) (obj)

Objective

Subject to:

Y ceow TeCg = My for all g,p (1) Lessons table
Mmm@i Yig = 1 for all i,s €. S; (2) One group per subject
Yoccor Te < NP for all p (3) Number of cluster patterns per period
>icr, Yig < Mg for all g (4a)
M@.Qm Yig = Ny for all g (4b) Group sizes
> ict, Yig — zf 4z, = :%mm_ for all g (4c)

iﬁmrm&@@.ﬁ + Yig2) + MomQEDQS e < 2M g, 4,) for alli, g1,92 € Gi, g1 # g2 (5) No overlapping students
Te € Lxo for all ¢ (6a)
vig € {0,1} for all i,g € G; (6b) . . .
&f z; >0 for all g (6c) Variable bounds and integrality
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