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Abstract

In modern asset price models, stochastic volatility plays a crucial role in order to explain several stylized facts of

returns. Recently, [3] introduced a class of stochastic volatility models (so called BNS SV model) based on superpo-

sition of Ornstein-Uhlenbeck processes driven by subordinators. The BNS SV model forms a flexible class, where one

can easily explain heavy-tails and skewness in returns and the typical time-dependency structures seen in asset return

data. In this thesis the effect of stochastic volatility on Asian options is studied. This is done by simulation studies of

comparable models, one with and one without stochastic volatility.

Introduction

Lévy processes are popular models for stock price behavior since they allow to take into account jump
risk and reproduce the implied volatility smile. Barndorff-Nielsen [3] introduces a class of stochastic
volatility models (BNS SV model) based on superposition of Ornstein-Uhlenbeck processes driven by
subordinators (Lévy processes with only positive jumps and no drift). The distribution of these subordi-
nators will be chosen such that the log-returns of asset prices will be distributed approximately normal
inverse Gaussian (NIG) in stationarity. This family of distributions has proven to fit the semi-heavy
tails observed in financial time series of various kinds extremely well (see Rydberg [17], or Eberlein and
Keller [9]).
In the comparison of the BNS SV model, we will use an alternative model NIG Lévy process model (LP
model) which has NIG distributed log-returns of asset prices, with the same parameters as in the BNS
SV case. Unlike the BNS SV model, this model doesn’t have stochastic volatility and time-dependency
of asset return data. Both models are described and provided with theoretical background. Moreover
difference in pricing Asian option with the two different models will be studied.

Unlike the Black-Scholes model, closed option pricing formulae are not available in exponential Lévy
models and one must use either deterministic numerical methods (see Carr [8] for the LP model and
Benth [7] for the BNS SV model) or Monte Carlo methods. In this thesis we will restrict ourselves to
Monte Carlo methods.
As described in Benth [6] the best way of simulating a NIG Lévy process is by a quasi-Monte Carlo
method. We will use a simpler Monte-Carlo method, which needs bigger samplesize to reduce the er-
ror. Simulating from the BNS SV model involves simulating of an Inverse Gaussian Ornstein-Uhlenbeck
(IG-OU) process. The oldest algorithm of simulating a IG-OU process is described in Barndorff [3].
This is a quiet bothersome algorithm, since it includes a numerical inversion of the Lévy measure of the
Background driving Lévy process (BDLP). Therefore it has a large processing time, hence we will not
deal with this algorithm.
The most popular algorithm is a series representation by Rosinski [16] . The special case of the IG-
OU process is described in Barndorff [5]. Recently Zhang & Zhang [21] introduced an exact simulation
method of an IG-OU process, using the rejection method. We will compare these last two algorithms.
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Chapter 1

Theory:

In this chapter the necessary theory for understanding the Barndorff-Nielsen Shephard stochastic volatil-
ity model will be given. First some basic notations and definitions are introduced and then some theory
about Levy processes and Ornstein-Uhlenbeck processes is outlined.

1.1 Basic notations and definitions

We assume as given a filtered complete probability space (Ω,F ,F,P), where (Ft)0≤t≤∞ is a filtration.
By a filtration we mean a family of σ-algebras (Ft)0≤t≤∞ that is increasing, i.e. Fs ⊂ Ft, if s ≤ t. For
convenience we will write F for the filtration (Ft)0≤t≤∞.

Definition 1 (Usual condition) A filtered complete probability space (Ω,F ,F,P) is said to satisfy the
usual conditions if,

(i) F0 contains all the P -null sets of Fi

(ii) Ft =
⋂

u≤t Fu, all t, 0 ≤ t <∞; i.e. the filtration is right continuous.

A random variable X is a mapping from a sample space Ω into R.
Two random variables X and Y are equal in distribution if they have the same distribution functions:

P(X ≤ x) = P(Y ≤ x) for all x.

This property is notated as X D= Y .

A stochastic process X on (Ω,F ,F,P) is a collection of R-valued or Rd-valued random variables {X(t)}t≥0.
The process X is said to be adapted if X(t) ∈ Ft (i.e. X(t) is Ft measurable) for each t.

A process X is said to be of finite variation on the interval [a, b] if,

sup
P∈P

np−1∑
i=0

|X(ti+1)−X(ti)| <∞

where the supremum runs over the set P =
{
P = {t0, . . . , tnp

}|P is a partition of [a, b]
}

of all partitions
of the given interval.

The function t → X(t, ω) mapping [0,∞) into R are called sample paths of the stochastic process
X. A stochastic process X is said to be càdlàg if it a.s. has sample paths which are right continuous,
with left limits and a stochastic process X is said to be càglàd if it a.s. has sample paths which are left
continuous, with right limits.

With φX we will denote the characteristic function of the random variable X.

φX(ζ) = E
[
eiζx

]
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The cumulant generating function will be denoted by κX ,

κX(θ) = E
[
eθx
]

κ̄X = E
[
e−θx

]
Definition 2 (Martingale) A real-valued, adapted process X is called a martingale with respect to the
filtration F if,

(i) X(t) ∈ L1(dP ); i.e. E[|X(t)|] <∞.

(ii) for s ≤ t, E[X(t)|Fs] = X(s) a.s.

1.2 Lévy processes

In literature Lévy processes were introduced as processes with independent increments. In the 20th cen-
tury the name ’Lévy process’ became popular in honor of the french mathematician Paul Lévy, who did
extensive research on these processes.

Suppose we have a probability space (Ω,F ,F,P) satisfying the usual conditions then,

Definition 3 (Lévy process) An adapted process X = {X(t)}t≥0 with X(0) = 0 a.s. is a Lévy process
if

(i) X has increments independent of the past; that is, X(t)−X(s) is independent of Fs, 0 ≤ s < t <∞.

(ii) X has stationary increments; that is, X(t)−X(s) has the same distribution as X(t− s). 0 ≤ s <
t <∞.

(iii) Xt is continuous in probability; that is limt→sX(t) = X(s), where the limit is taken in probability.

The most common known examples of Lévy processes are the Poisson process and Brownian motion
(also named Wiener process).
An advantage of Lévy processes is that they are infinitely divisible, which makes them flexible for mod-
eling and simulating. Infinitely divisible means that for each positive integer n, φ(ζ) is also the n-th
power of a characteristic function. An other way of expressing this; for an infinitely divisible random
variable X and every positive integer n, there exist n independent identically distributed random vari-
ables X1, . . . , Xn whose sum is equal in distribution to X.

Theorem 1 Suppose X = {X(t)}t≥0 is a Lévy process then it holds that,

log
{
φX(t)(ζ)

}
= t log

{
φX(1)(ζ)

}
(1.1)

Proof:

log
{
φX(t)(ζ)

}
= log

{
E
[
eiζx(t)

]}
= log

{
E
[
eiζ

Pt
i=1(x(i)−x(i−1))

]}
indep
= log

{
t∏

i=1

E
[
eiζ(x(i)−x(i−1))

]}

=
t∑

i=1

log
{

E
[
eiζ(x(i)−x(i−1))

]}
stat=

t∑
i=1

log
{

E
[
eiζx(1)

]}
= t log

{
φX(1)

}
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The following theorem is a special case of the well known ’Lévy-Kintchine representation’. It is stated
here without proof.

Theorem 2 (Lévy-Kintchine representation) Let X be a infinitely divisible random variable, then

ψ(ζ) := log {φX(ζ)} = −η
2
ζ2 + iξζ +

∫
(eiζx − 1− iζτ(x))U(dx), (1.2)

where η ∈ R+; ξ ∈ R; τ is a bounded Borel function which ”behaves like x” near the origin and U is a
measure with no atom at 0 satisfying ∫

R
min{1, x2}U(dx) <∞ (1.3)

Moreover the representation of ψ(ζ) by ξ, η and U is unique. So conversely, if ξ ∈ R, η ∈ R+ and U
a measure satisfying (1.3) then there exists an infinitely divisible random variable with characteristic
function given by (1.2).

Proof: See Sato [18] �
Note: If Y is a Lévy process that the above theorem also holds for Y (1).
The function τ makes sure that the integrand of the integral on the right hand side is integrable with
respect to U . Standard is choosing τ equal to 1|x|≤1. However there are many other ways of getting an
integrable integrand. For instance bounded measurable functions τ satisfying,{

τ(x) = 1 + o(|x|) as |x| → 0
τ(x) = O(1/|x|) as |x| → ∞.

lead to an integrand that is integrable. We will choose

τ(x) =

{
x for |x| ≤ 1
x
|x| for |x| > 1.

(ξ, η, U) is referred to as the characteristic triplet of the Lévy process.

Theorem 3 Suppose X = {X(t)}t≥0 is a Lévy process with characteristic triplet (ξ, η, U), then there
exists a decomposition such that,

X(t) D= ξt+
√
ηw(t) +X0(t)

Where w(t) and X0(t) are independent Lévy processes, w(t) a brownian motion and X0(t) is such that
log
{
φX0(1)(ζ)

}
=
∫

(eiζx − 1− iζτ(x))U(dx).

proof: By checking the conditions it is not hard to see that ξt+
√
ηw(t) +X0(t) is a Lévy process. Now

by theorem 1,

log
{
φξt+

√
ηw(t)+X0(t)

}
= t log

{
φξ+

√
ηw(1)+X0(1)

}
indep.

= t log
{
φξ · φ√ηw(1) · φX0(1)

}
= t
(
log(φξ) + log(φ√ηw(1)) + log(φX0(1))

)
.

Since w(t) is a brownian motion, w(1) has a standard normal distribution, hence

φ√ηw(1)(ζ) = e−
η
2 ζ2

.

So we may conclude that,

log
{
φξt+

√
ηw(t)+X0(t)(ζ)

}
= t

(
iξζ − η

2
ζ2 +

∫
(eiζx − 1− iζτ(x))U(dx)

)
= t log φX(1)(ζ)

(1.1)
= log φX(t)(ζ).
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Now the result follows by the uniqueness of the characteristic function. �

Due to this decomposition we can divide a Lévy process into three different contributions; a drift part
ξt, an infinite variation part

√
ηw(t) and a jump part X0(t). The term ξt gives a linear line which the

random variable should follow. Since w(t) has infinite variation η corresponds to an infinite variation
part. However η = 0 does not imply that the process is of finite variation, since the measure U can still
cause infinite activity. But if η = 0 and

∫ 1

−1
|x|U(dx) < ∞ then it follows from standard Lévy process

theory that the process is of finite variation. In this case the triplets ξ and U are invariant of the choice
of τ . Moreover we don’t have problems with integrability of the integrand on the right hand side of (1.2)
hence we can choose τ equal to the zero function. This implies we can get a representation of the form,

ψ(ζ) := log {φX(ζ)} = iξζ +
∫

(eiζx − 1)U(dx) (1.4)

The Lévy measure U(dx) dictates how the jumps occur. Jumps in the set A occur according to a Poisson
process with intensity

∫
A
U(dx).

Suppose X is a Lévy process with characteristic triplet (ξ, η, U), then if η = 0, X is a Lévy jump process,
if also ξ = 0, X is a Lévy pure jump process and if X only has positive increments and no drift then it
is a subordinator.

1.3 Economical terminology

In this section we will explain some standard terminology used in economics.

1.3.1 Complete market

Whenever the number of different ways to obtain payoffs equals the number of probabilistic states, we
can attain any payoff. In such a circumstance, financial economists say there is a complete market. Ac-
cording to the second fundamental theorem of financial economics, risk-neutral probabilities are unique
if and only if the market is complete.

In practice the market is rarely complete. For instance brokers like to work with round numbers, while
the probability distribution is continuous.

1.3.2 Arbitrage

The essence of arbitrage is that with no initial capital it should not be possible to make a profit without
exposure to risk. Were it possible to do so, arbitrageurs would do so, in unlimited quantity. They would
use the market as money-pump to extract arbitrarily large quantities of riskless profit. This would make
it impossible for the market to be in equilibrium.

1.3.3 Volatility

An important feature which is missing in the Black-Sholes model and in the LP model is volatility mod-
eling, or more generally, the environment is changing stochastically over time.

It has been observed that the estimated parameters of uncertainty (volatilities) change stochastically
over time. One can see this by looking at historical volatility. This is a measure which reflects how
volatile the asset has been in the recent past.

Out of practice there is evidence for volatility clusters. There seems to be a succession of periods with
high return variance and with low variance. In practice this means that large price variations are more
likely to be followed by large price variations. This observation motivate the introduction of a model
where the volatility itself is stochastic.

7



Figure 1.1: Historical volatility of the S&P 500 index

1.4 Ornstein-Uhlenbeck processes

An Ornstein-Uhlenbeck (OU) processes x(t) is defined as the solution of a stochastic differential equation
of the form

dx(t) = −λx(t)dt+ dz(t)

where z(t) is a Lévy process. The rate λ is arbitrary. As z is used to drive the OU process, we shall call
z(t) a background driving Lévy process (BDLP). If the BDLP is a subordinator, then the process x(t) is
positive if its initial value is positive i.e. x(0) > 0 and x(t) is bounded from below by the deterministic
function x(0)e−λt.
We will use an unusual timing in z(λt) such that for an arbitrary λ > 0 the marginal distribution will be
unchanged. This makes it possible to parameterize the volatility and the dynamic structure separately.
So we consider OU processes of the form,

dσ2(t) = −λσ2(t)dt+ dz(λt), λ > 0 (1.5)

where z(λt) is a Lévy process and λ > 0 arbitrary.

Note: We will only consider Lévy processes such that the stochastic intregal

f • z :=
∫

R+

f(t)dz(t)

is an ordinary stochastic integral.

1.4.1 Solution and existence

In this section we will describe a general form of solutions to a stochastic differential equation of the
form (1.5).

Definition 4 (self-decomposable) A probability measure P on R is self-decomposable or belongs to
Lévy’s class L, if for each t ≥ 0, there exists a probability measure Qt on R such that,

φ(ζ) = φ(e−tζ)φt(ζ),

where φ and φt denote the characteristic functions of P and Qt, respectively. A random variable x with
law in L is also called self-decomposable.
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From this definition it can be seen that every self-decomposable random variable is also infinitely divisible.
A further important characterization of the class L as a subclass of the set of all infinitely divisible
distributions in terms of the Lévy measure is the following equivalence.

(1) P is self-decomposable.

(2) The functions on R+ given by U((−∞,−es]) and U([es,∞)) are both convex.

(3) U(dx) is of the form U(dx) = u(x)dx with |x|u(x) increasing on (−∞, 0) and decreasing on (0,∞).

If u is differentiable, then (2) may be re-expressed as

u(x) + xu′(x) ≤ 0 for x 6= 0 (1.6)

The equivalence of (1), (2) and (3) is due to Lévy. A proof may be found in Sato [18].
We can write self-decomposability in terms of random variables. Suppose σ2 is self-decomposable then
there exists an Y (t) independent of σ2 such that,

σ2 D= e−tσ2 + Y (t) (1.7)

Or similarly for each λ > 0

σ2 D= e−λtσ2 + Y (λt) (1.8)

Lemma 1 If z is a stochastic process with càdlàg sample paths then

Y (t) =
∫ t

0

e−sdz(s) (1.9)

is also a stochastic process with càdlàg sample paths. Moreover, if z has independent increments then so
has Y .

Proof: Clearly the sample paths of Y are càdlàg. Out of ordinary integration theory we have that∫ t

0

de−sz(s),

can be approximated arbitrarily close by Riemann-Stieltjes sums of the form,
n∑

j=1

(
e−sj − e−sj−1

)
z(sj−1)

where 0 = s0 < . . . < sn = t is a partition. Now by stochastic integration by parts we have that,∫ t

0

e−sdz(s) = e−tz(t)− e0z(0)−
∫ t

0

de−sdz(s) (1.10)

≈
n∑

j=1

(
e−sj − e−sj−1

)
z(sj−1)

=
n∑

j=1

e−sj (z(sj)− z(sj−1))

Hence Y (t) is measurable for all t ≥ 0 and therefore it is a stochastic process. Moreover the last equation
also shows that Y has independent increments whenever z has. �

Lemma 1 can be extended to account for negative axis of the process z(s) by taking an independent
copy of z but modified such that it is càglàd. Call this process z̄. Take for all s > 0, z(−s) = z̄(s). Then
with a similar proof on [−t, 0) we can conclude that,

Y (s) =
∫ 0

−t

e−sdz(s)

9



is a stochastic process. Moreover, if z has independent increments then so has Y .
In Jurek and Mason [11] has even been proved that the integral representation (1.9) converges in

distribution as t→∞ if and only if E[max{0, log(|z(1)|)}] <∞. More precise,∫ ∞

0

e−sdz(s) (1.11)

exists if and only if

E[max{0, log(|z(1)|)}] <∞. (1.12)

From now on we assume that this condition is satisfied.

Theorem 4 σ2 is a self-decomposable random variable if and only if there exists a càdlàg random vari-
able z such that z has stationary independent increments, z(0) = 0 a.s., and∫ ∞

0

e−sdz(s) D= σ2,

in which case the random variable Y (t) in (1.7) satisfies,

Y (t) D=
∫ t

0

e−(t−s)dz(s) for each t > 0 (1.13)

Proof: Let σ2 D=
∫∞
0
e−sdz(s), this is just (1.9) rewritten into a different form. For each t > 0 it holds

σ2 D=
∫ ∞

t

e−sdz(s) +
∫ t

0

e−sdz(s)

D= e−t

∫ ∞

0

e−sdz((s+ t)) +
∫ t

0

e−sdz(s).

The last two terms are independent since increments of z are independent. Moreover from stationarity
and independence we have that∫ ∞

0

e−sdz((s+ t)) D=
∫ ∞

0

e−sdz(s) D= σ2

and ∫ t

0

e−sdz(s) =
∫ t

0

e−(t−s)dz((t− s)) D=
∫ t

0

e−(t−s)dz(s).

Thus, σ2 D= e−tσ2 + Y (t) with σ2 and Y (t) independent and Y (t) as in (1.13). Hence σ2 is self-
decomposable and Y (t) satisfies (1.13).
Conversely, assume σ2 is self-decomposable then we claim that there exists a stochastic process {X(t)}t≥0

with independent increments such that X0 = 0 a.s. and, for t, u ≥ 0

X(t+ u)−X(t) D= e−tσ2, (1.14)

so that in particular,

X(t) D= Y (t) (1.15)

To proof this it is suffices to show that if (1.14) and (1.15) hold for two particular values, say t and u in
R+ and X(t) is independent of X(t+ u)−X(t), then (1.15) holds for t+ u.
From (1.7) it follows that,

e−(t+u)σ2 + Y (t+ u) D= σ2 D= e−t(e−uσ2 + Y (u)) + Y (t)

= e−t+uσ2 + e−tY (u) + Y (t)

10



with each Y (t+ u), Y (u) and Y (t) independent of σ2. Now we have that,

Y (t+ u) D= e−tY (u) + Y (t)

and hence,

X(t+ u) = (X(t+ u)−X(t)) +X(t) D= e−tY (u) + Y (t) D= Y (t+ u)

Hence our claim is proved now. Let X be a càdlàg version of the process {X(t)}t≥0 with independent
increments. Now, set

z(t) :=
∫ t

0

esdX(s) for t > 0

From Lemma 1 we know that z is a stochastic process with càdlàg sample paths and independent
increments. Moreover z has stationary increments. To see this, note that,

X(t+ ·)−X(t) D= e−tX(·)

since both sides have independent increments and the same marginal distribution. Consequently, for
fixed t, u ≥ 0 we get

z(t+ u)− z(t) =
∫ t+u

t

esdX(s) =
∫ u

0

esetdX(s+ t)

D=
∫ u

0

esdX(s) = z(u)

Finally by partial integration and the definition of z,∫ t

0

e−sdz(s) =
∫ t

0

e−sesdX(s) = X(t)

Now by (1.15) and (1.7)∫ t

0

e−(t−s)dz(s) D=
∫ t

0

e−sdz(s) D= Y (t) D→ σ2 as t→∞

�

Theorem 5 If σ2 is self-decomposable, then there exists a stationary stochastic process {σ2(t)}t≥0 and

a Lévy process {z(t)}t≥0 such that σ2(t) D= σ2 and

σ2(t) = e−λtσ2(0) +
∫ t

0

e−λ(t−s)dz(λs)

for all λ > 0 and
∫ t

0
e−λ(t−s)dz(λs) is independent of σ2(0). Moreover σ2(t) is a solution to SDE (1.5)

Proof: Since σ2 is self-decomposable there exists a Lévy process {z(t)}t≥0 as in Theorem 4 such that,

σ2 D=
∫ ∞

0

e−sdz(s)

We can extend this Lévy process to the negative half line by taking an independent copy of the process z
but modified such that it is càglàd. Call this process z̄. Now take for all t > 0, z(−t) = z̄(t). Moreover we
have that E[max{0, log(|z(1)|)}] <∞ by assumption (we will come back on this in the next paragraph).
Now define,

σ2(t) := e−λt

∫ t

−∞
eλsdz(λs)

11



As described near (1.11) we know that σ2(t) exists. Furthermore σ2(t) is a stationary process, since for
each t ∈ R,

σ2(t) = e−λt

∫ t

−∞
eλsdz(λs) = eλt

∫ λt

−∞
esdz(s)

=
∫ 0

−∞
esdz(s+ λt) D=

∫ 0

−∞
esdz(s)

D=
∫ ∞

0

e−λsdz(λs) D= σ2

From the above we may also conclude that σ2(t) has the same law as σ2. Moreover σ2(t) can be
represented as,

σ2(t) = e−λt

∫ 0

−∞
eλsdz(λs) + e−λt

∫ t

0

eλsdz(λs)

= e−λtσ2(0) +
∫ t

0

e−λ(t−s)dz(λs) (1.16)

and is therefore a solution to the stochastic differential equation,

dσ2(t) = −λσ2(t)dt+ dz(λt)

Also by the independent increments of z we have that
∫ t

0
e−λ(t−s)dz(λs) is independent of σ2(0). �

The integral of the right hand side of (1.16) is the most difficult to compute in a simulation. We will
focus on this in chapter 5.

1.4.2 Relation characteristics

In this section we will derive relationships between the characteristic triplet of the OU-process with the
characteristic triplet of the BDLP process.

Theorem 6 (key formula) Suppose X is a Lévy process, then it holds that,

log {φf•z(ζ)} =
∫

R+

log
{
φz(1)(f(τ)ζ)

}
dτ (1.17)

Proof:

φf•z(ζ) = E

[
exp

(
iζ

∫
R+

fdz

)]
= E

 ∏
τ∈R+

eiζf(τ)dz(τ)


=
∏

τ∈R+

E
[
eiζf(τ)dz(τ)

]
=
∏

τ∈R+

elog{φdz(τ)(f(τ)ζ)}

=
∏

τ∈R+

elog{φz(1)(f(τ)ζ)}dτ = exp

(∫
R+

log
{
φz(1)(f(τ)ζ)

}
dτ

)

�

σ2(t) is equal in distribution to σ2. Hence it is sufficient to get a relation between the characteristic
triplet of σ2 with the characteristic triplet of z(1). Suppose that σ2 has characteristic triplet (ξ, η, U),
and suppose that z(1)’s characteristic triplet is given by (ξb, ηb,W ). Recall that σ2 has an integral
representation of the form

∫∞
0
e−tdz(t). Now by the key formula and the Lévy-Kintchin representation

12



we can conclude that both characteristic triplets are related according to,

η =
∫

R+

ηb

(
e−t
)2
dt (1.18)

U(dx) =
∫

R+

W (etdx)dt (1.19)

ξ =
∫

R+

e−t(ξb + bW (t))dt (1.20)

where bW (t) is given by,

bW (t) =
∫
x

x2 − e−2t

(1 + x2)(1 + e−2tx2)
W (dx)

This integral exists since z is a Lévy process and hence equation (1.3) holds for Lévy measure W .

If the Levy measures U and W are differentiable and u, w are their corresponding densities, then we can
derive from equation (1.19),

u(x) =
∫ ∞

1

w(τx)dτ

Now since σ2 is infinitely divisible distributed we have that his corresponding Lévy measure satisfies
(1.3) and hence,

∞ >

∫ ∞

0+

min{1, x2}u(x)dx =
∫ ∞

1

∫ ∞

0+

min{1, x2}w(τx)dxdτ

=
∫ ∞

1

∫ ∞

0+

min{1, τ−2y2}τ−1w(y)dydτ

=
∫ 1

0+

y2w(y)dy
∫ ∞

1

τ−3dτ +
∫ ∞

1

w(y)
(∫ y

1

τ−1dτ + y2

∫ ∞

y

τ−3dτ

)
dy

=
1
2

∫ 1

0+

y2w(dy) +
∫ ∞

1

log(y)w(y)dy +
1
2

∫ ∞

1

w(y)dy

Since in this final expression the first and third integrals are finite we can conclude

E[max{0, log(|z(1)|)}] =
∫ ∞

1

log(y)w(y)dy <∞.

So assumption (1.12) was justified as long as σ2 is infinitely divisible distributed. Moreover this gives us
a way to define an OU-process on a infinitely divisible distribution. Suppose σ2 is an infinitely divisible
distributed random variable with characteristic triplet (ξ, η, U) then there exists a stationary OU-process
σ2(t) with corresponding SDE (1.5) where z is a Lévy process with characteristic triplet (ξb, ηb,W ) cho-
sen according to equations (1.20), (1.18) and (1.19).

We can be more specific about the relationship between the characteristic function of the OU-process
and his BDLP. With the key formula we can deduce a relationship between the characteristic functions
of σ2 and z(1).

log
{
φσ2(t)(ζ)

}
= log {φσ2(ζ)} = log {φf•z(ζ)} .

=
∫

R+

log
{
φz(1)(f(t)ζ)

}
dt

=
∫ ∞

0

log
{
φz(1)(e−tζ)

}
dt

=
∫ ζ

0

log
{
φz(1)(ξ)

}
ξ−1dξ

13



and hence,

log
{
φz(1)(ζ)

}
= ζ

∂ log {φσ2(ζ)}
∂ζ

The relationship between their measures can be totally spelled out. Let U be the Lévy measure of
σ2 and W the Lévy measure of z(1). Take the following tail mass function,

U(x) := U([x,∞))

and similarly W . Now for self-decomposable law U , it holds by equation (1.19),

U(x) =
∫ ∞

0

W (et[x,∞))dt =
∫ ∞

1

s−1W ([sx,∞))ds

=
∫ ∞

x

s−1W (s)ds

The following important relation can be derived.

u(x) = x−1W (x)

Hence if moreover the Levy measures U and W are differentiable and u, w are their corresponding
densities, it holds that

w(x) = −u(x)− xu′(x). (1.21)

We can rewrite this as,

W (x) =
∫ ∞

x

w(y)dy =
∫ x

−∞
−w(y)dy (1.22)

=
∫ x

−∞
u(y) + yu′(y)dy

= xu(x)

14



Chapter 2

Examples of processes

2.1 Inverse Gaussian Lévy process

The inverse gaussian (IG) distributions belong to the family of generalized inverse gaussian (GIG) dis-
tributions. The name ’inverse gaussian’ was first applied to a certain class of distributions by Tweedie in
1947. He noted an inverse relationship between the cumulant generating functions of these distributions
and those of Gaussian distributions.

The inverse Gaussian distribution IG(δ, γ) is the distribution on R+ given in terms of its density,

fIG(x; δ, γ) =
δ√
2π
exp(δγ)x−

3
2 exp

{
−1

2
(δ2x−1 + γ2x)

}
, x > 0

where the parameters δ and γ satisfy δ > 0 and γ ≥ 0.
It has characteristic function given by,

φIG(u; δ, γ) = exp(−δ(
√
−2iu+ γ2 − γ)).

From this we can see that φIG(u; δ, γ) = (φIG(u; δ/n, γ))n, thus the IG distribution is infinitely divisible.
We define the IG process XIG =

{
XIG(t)

}
t≥0

, with parameters δ, γ > 0, as the process which starts at
zero and has independent and stationary increments such that,

E
[
eiuXIG(t)

]
= φIG(u; δ, γ) = eat(

√
−2iu+γ2−γ)

Hence by definition the IG-process is a Lévy process.
Since the inverse Gaussian distribution is infinitely divisible, we can specify its Lévy triplet. The Lévy
measure of the IG(δ, γ) law is given by,

UIG(dx) =
δ√
2π
x−3/2e−1/2γ2x1{x>0}dx

The IG process doesn’t have an infinite variation part hence η = 0. Moreover the drift parameter is
given by,

ξ =
δ

γ
(2Φ(γ)− 1)

where Φ is the cumulative distribution function of the standard normal distribution.

Properties: It holds that,

u(x) + xu′(x) =
δ√
2π
x−3/2e−1/2γ2x1x>0 −

3
2

δ√
2π
x−3/2e−1/2γ2x1x>0

= −1
2

δ√
2π
x−3/2e−1/2γ2x1x>0 ≤ 0
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Hence by (1.6) the IG distribution is self-decomposable.
Since η = 0 and, ∫ 1

−1

|x|U(dx) =
∫ 1

0

δ√
2π
x−1/2e−1/2γ2xdx =

δ

γ
(2Φ(γ)− 1) <∞

the IG distribution is of finite variation.
All positive and negative moments exist. If X ∼ IG(δ, γ), then

E[Xa] =
(γ
δ

)2a+1

E[Xa+1], a ∈ R

Hence we have that,

IG(δ, γ)
mean δ

γ

variance δ
γ3

skewness 3√
δγ

kurtosis 3(1 + 5
δγ )

2.2 Normal inverse Gaussian Lévy process

The normal inverse gaussian (NIG) distribution is a member of the family of generalized hyperbolic (GH)
distributions. The generalized hyperbolic distributions were introduced by Barndorff-Nielsen in 1977 to
model the log size distribution of aeolian sand deposits. Later, it was found that the distribution had
applications in turbulence and in financial mathematics. In finance the NIG distribution is often used as
a good approximation of the heavy tailed distribution of log-returns (see Barndorff-Nielsen [2], Eberlein
and Keller [9]).

The NIG distribution has values on R, it is defined by its density function,

fNIG(x;α, β, δ, µ) =
α

π
exp

(
δ
√
α2 − β2 − βµ

) K1

(
δα

√
1 +

(
x−µ

δ

)2)
√

1 +
(

x−µ
δ

)2 eβx

where K1 is the modified Bessel function of the third kind and index 1. Moreover the parameters are
such that µ ∈ R, δ ∈ R+ and 0 ≤ β < |α|. By calculation one can conclude that the characteristic
function is given by

φNIG(u;α, β, δ, µ) = exp
(
δ
(√

α2 − β2 −
√
α2 − (β + iu)2

)
+ µiu

)
Again, we can clearly see that this is an infinitely divisible characteristic function. Hence we can define
the NIG process XNIG =

{
XNIG(t)

}
t≥0

with XNIG(0) = 0 and stationary independent NIG distributed
increments. i.e. XNIG(t) has a NIG(α, β, tδ, µ) law.
The Lévy triplet of the normal inverse Gaussian distribution is (ξ, 0, U). Where Lévy measure U is given
by,

UNIG(dx) =
δα

π

K1(α|x|)eβx

|x|
dx

and

ξ = µ+
2δα
π

∫ 1

0

sinh(βx)K1(αx)dx

Out of the characteristic function one can extract the cumulant generating function,

κ(u;α, β, δ, µ) = exp
(
δ
(√

α2 − β2 −
√
α2 − (β + u)2

)
+ µu

)
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(a) effect α (b) effect β

(c) effect δ (d) effect µ

Figure 2.1: typical shapes of the NIG density function

Properties: In particular, it holds that, if x1, . . . , xm are independent NIG random variables with
common parameter α and β but having individual location-scale parameter µi and δi for i = 1, . . . ,m,
then x+ = x1 + . . .+ xm is again distributed according to a NIG law with parameters (α, β, µ+, δ+).
If X ∼ NIG(α, β, δ, µ) then −X is distributed according to a NIG(α,−β, δ, µ) distribution. If β = 0 the
distribution is symmetric. This can be seen from its cumulants, all odd moments are zero in this case.

NIG(α, β, δ, µ)

mean µ+ δβ√
α2−β2

variance α2δ
(α2−β2)3/2

skewness 3β

α
√

δ(α2−β2)1/4

kurtosis 3
(

1 + α2+4β2

δα2
√

α2−β2

)

The NIG distribution has semi-heavy tails, in particular,

fNIG(x;α, β, δ, µ) ∼ |x|−3/2eα|x|+βx as x→∞

up to a multiplicative constant.
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The NIG distribution can be written as a variance-mean mixture of a normal distribution with an
IG(δ,

√
α2 − β2) distribution (see Barndorff-Nielsen [1]). More specifically, if we take σ2 ∼ IG(δ,

√
α2 − β2)

independently distributed of ε ∼ N(0, 1), then x = µ+ βσ2 + σε is distributed NIG(α, β, δ, µ).

2.3 Inverse Gaussian Ornstein-Uhlenbeck process

Recall that IG distribution is self-decomposable and infinitely divisible. Hence out of Theorem 5 we can
conclude that there exists a stationary stochastic process {σ2(t)}t≥0 with marginal law IG and a Lévy
process {z(t)}t≥0 such that,

σ2(t) = e−λtσ2(0) +
∫ t

0

e−λ(t−s)dz(λs)

for all λ > 0. Moreover σ2(t) satisfies differential equation (1.5) and is therefore an inverse Gaussian
Ornstein-Uhlenbeck (IG-OU) process.

With the theory of Section 1.4.2 we can charecterize the Lévy triplet (ξb, ηb,W ) of the background
driven Lévy process z.
Recall that the Lévy measure UIG of the IG distribution is given by,

UIG(dx) =
δ√
2π
x−3/2e−1/2γ2x1x>0dx

Then the density w of z(1) is as in equation (1.19). From (1.21) it can be derived that

w(x) =
δ√
2π

1
2
(x−1 + γ2)x−1/2e−1/2γ2x1x>0. (2.1)

The second parameter ηb can be calculated from (1.18),

0 = η =
∫ ∞

0

ηbe
−2tdt ⇒ ηb = 0. (2.2)

Recall that the IG distribution is of finite variation hence by (1.4) it has a representation of the form,

log {φIG(ζ)} = iξζ +
∫

(eiζx − 1)U(dx)

We can recalculate equation (1.20) for this special case. Recall that the IG distribution has a represen-
tation of the form

∫∞
0
e−tdz(t). Now by the key formula,

log {φIG(ζ)} = iξζ +
∫

(eiζx − 1)U(dx) =
∫ {

iξbζe
−t +

∫
(eiζe−tx − 1− iζe−tτ(x))W (dx)

}
dt

=
∫
iξbζe

−tdt+
∫ ∫

(eiζe−tx − 1)W (dx)dt−
∫ ∞

0

∫
iζe−tτ(x)W (dx)dt

=
∫
iξbζe

−tdt+
∫ ∫

(eiζy − 1)W (etdy)dt−
∫
iζ

∫ ∞

0

e−tdt τ(x)W (dx)

=
∫
iξbζe

−tdt+
∫

(eiζy − 1)U(dy)−
∫
iζτ(x)W (dx)

hence,

ξ =
∫
ξbe

−tdt−
∫
τ(x)W (dx)

=
∫
ξbe

−tdt+
δ

γ
(2Φ(γ)− 1)

=
∫
ξbe

−tdt+ ξ
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So ξb = 0. Thus from (2.1) and (2.2) we can conclude that z(1) has characteristics (0, 0,W ), which
implies it is a subordinator. Therefore it is a process which only consists of positive jumps. σ2(t) moves
up entirely by jumps and then tails off exponentially with rate λ.

Figure 2.2: Sample path of an IG-OU process.

Since we have all the characteristics of the BDLP z, we can calculate its characteristic function,

log {φz(u)} = −iu δ
γ

(
1√

1 + 2iuγ−2

)

There holds that,

log {φz(u)} =
δγ

2

(
1− (2iuγ−2 + 1)√

1 + 2iuγ−2

)

=
δγ

2

(
1√

1 + 2iuγ−2
−
√

2iuγ−2 + 1

)

=
δγ

2

(
1√

1 + 2iuγ−2
− 1

)
− δ

2

(√
2iu+ γ2 − γ

)
:= log φz(1)(u) + log φz(2)(u).

φz(2)(u) corresponds to the characteristic function of an IG Lévy process with parameters δ/2 and
γ for z(2)(1). And φz(1)(u) corresponds to the characteristic function of a compound Poisson process of
the form,

z(1)(t) = γ−2
Nt∑
i=1

v2
i

where Nt is a Poisson process with intensity δγ
2 and vi are independent standard normal variables

independent of Nt.
Hence if we have an IG(δ, γ)-OU process then the BDLP is a sum of two independent Lévy processes
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z(t) = z(1)(t) + z(2)(t), where z(1) is an inverse gaussian Lévy process with parameters δ/2 and γ for
z(2)(1), while z(1)(t) is compound Poisson process of the form,

z(1)(t) = γ−2
Nt∑
i=1

v2
i

where Nt is a Poisson process with intensity δγ
2 and vi’s are independent standard normal variables

independent of Nt.
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Chapter 3

The model:

To price derivative securities, it is crucial to have a good model of the probability distribution of the
underlying product. The most famous continuous-time model is the celebrated Black-Scholes model,
which uses the Normal distribution to fit the log-returns of the underlying asset. However the log-returns
of most financial assets do not follow a Normal law. They are skewed and have actual kurtosis higher
than that of the Normal distribution. Hence other more flexible distributions are needed. Moreover to
model the behavior through time we need more flexible stochastic processes. Lévy processes have proven
to be good candidates, since they preserve the property of having stationary and independent increments
and they are able to represent skewness and excess kurtosis.
In this chapter we will describe the Lévy process models we use. We also give a method how to fit the
model on historical data.

3.1 Lévy process model

As model without stochastic volatility we will use a fitted NIG distribution to the log-returns. i.e.

d logS(t) = dX(t),

where S is an arbitrary stock-price and X is an NIG Lévy process. This model is flexible to model with,
but a drawback is that the returns are assumed independently.
In literature this model has also been referred to as exponential Lévy process model, since the solution
is of the form,

S(t) = S(0)eX(t)

3.2 BNS SV model:

The Barndorf-Nielsen and Shephard stochastic volatility (BNS SV) model is an extension of the Black-
Scholes Samuelson model. In contradiction to the Lévy process (LP) model and the Black-Sholes model
the BNS SV models volatility (see Section 1.3.3). The volatility follows an OU process driven by a
subordinator.

In the Black-Scholes Samuelson model the asset price process {S(t)}t≥0 is given as a solution to the
SDE,

d logS(t) =
{
µ+ βσ2

}
dt+ σdw(t) (3.1)

where w(t) is a standard Brownian motion. We want to take into account stochastic volatility. We
do this by taking the parameter σ2 stochastically. So we will look for a stochastic process {σ2(t)}t≥0

describing the nervousness of the market through time.
As described in Barndorf-Nielsen [3] an OU process or a superposition of OU processes is a good choice
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for σ2(t). i.e.

σ2(t) =
n∑

j=1

ajσ
2
j (t)

with the weights aj all positive, summing up to one and the processes {σj(t)}t≥0 are OU processes
satisfying,

dσ2
j (t) = −λjσ

2
j (t)dt+ dzj(λjt)

where the processes zj are independent subordinators i.e. Lévy processes with positive increments and
no drift. Since the process zj is a subordinator the process σj will jump up according to zj and decay
exponentially afterwards with a positive rate λj . We can rewrite equation (3.1) into,

d logS(t) =
{
µ+ βσ2(t)

}
dt+ σ(t)dw(t) (3.2)

we can reformulate this into,

logS(t) = µt+ βσ2∗(t) +
∫ √

σ2(s)dw(s)

where σ2∗(t) is the integrated process, i.e.

σ2∗(t) =
∫ t

0

σ2(u)du

Barndorff-Nielsen [4] showed that the tail behavior (or superposition) of an integrated IG process is
approximately Inverse Gaussian. Moreover an integrated superposition of IG processes will show similar
behavior as just one integrated IG process with the same mean. Hence by taking the σ2(t) an IG process
one gets the same tail behavior as taking σ2(t) a superposition of IG processes. Moreover the log returns
will be approximately NIG distributed, since the NIG is a mean-variance mixture (see Section 2.2).

3.3 Parameter estimation:

The stationary distribution σj is independent of λj (see Theorem 5). Hence its stationary distribution
is determined by zj . Therefore the distribution of the returns is independent of the λj ’s. This allows us
to calibrate the log return distribution to the data separately of the λj ’s.

3.3.1 Maximum likelihood estimation

In order to get comparable models we will assume that both models have NIG distributed returns with
the same parameters. The parameters will be estimated with a maximum likelihood estimation.
The maximum-likelihood estimator (α̂, β̂, δ̂, µ̂) is the parameter set that maximizes the likelihood function

L(α, β, δ, µ) =
n∏

i=1

fNIG(xi;α, β, δ, µ)

where xi are points of our data-set. Since the NIG distribution is a mean-variance mixture(see section
2.2) we can choose the parameters of the IG resp. IG-OU process such that returns will be NIG resp.
approximately NIG distributed.

3.3.2 Least square estimation

In Barndorff-Nielsen [3] the analytic auto-covariance function of the squared log returns is calculated
and is found to be given by,

cov(y2
n, y

2
n+s) = ω2

∑
aiλ

−2
i (1− e−λi∆t)2e−λi∆t(s−1) (3.3)
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(a) with superposition (b) without superposition

Figure 3.1: Least square fitting to the auto-covariance function

where ω2 is equal to the variance of σ2(t) and ai’s are the weights of the different OU processes. Looking
at the empirical auto-covariance function of the squared log-returns of financial data it seems that this
function fits the data really well (see Figure 3.1).

One could see that the empirical auto-covariance function of real financial data looks like a sum
of exponentially decaying functions. We estimated the empirical auto-covariance function γ(s) for a
data-set x1, . . . , xn by,

γ(s) =
1

n− s

n−s∑
i=1

x2
i+s −

1
n− s

n∑
j=s

x2
i

x2
i −

1
n− s

n−s∑
j=1

x2
i


For the calibration we will use a non-linear least square comparison of the empirical auto-covariance
function with the analytic auto-covariance function (3.3). Hence we will minimize,∑

s

{
γ(s)− cov(y2

n, y
2
n+s)

}2

For a non-linear least square comparison several algorithms are available. We used a standard function
of Matlab which is based on the Gauss-Newton method.
Note that the least square comparison is only done on the λi’s and ai’s since ω is already given from the
maximum likelihood estimation.
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Chapter 4

Pricing:

4.1 Equivalent martingale measures

Suppose we are on a filtered probability space (Ω,Ft, P ) with P denoting the ’physical’ probability
measure. Moreover we have a derivative product written on an asset with price process S(t). To valuate
the arbitrage-free price of the derivative product we need to know an equivalent martingale measure
(EMM) or risk neutral measure Q, i.e. a probability measure equivalent to P under which the discounted
price process S(t)e−rt evolves as a martingale.
Unfortunately, as in most realistic models, there is no unique equivalent martingale measure; the proposed
Lévy models are incomplete. This means there exist an infinite number of EMM’s for both models.
Hence for each model we have to choose one EMM without restricting the possible price of our derivative
product. Finally we give a method to price Asian options.

4.1.1 Lévy process model

For ease we are interested in equivalent martingale measures Q which preserve the structure of our model.
In the case of an NIG distributed increments, the Esscher transform is a good candidate since it preserves
the structure and is not restrictive on the range of viable prices.

Let ft(x) be the density of log price logS(t) under P . For some number θ ∈ {θ ∈ R|
∫∞
−∞ exp(θy)ft(y)dy <

∞} we can define a new density,

f
(θ)
t (x) =

exp(θx)ft(x)∫∞
∞ exp(θy)ft(y)dy

Now we choose θ such that the discounted price process {e−rtSt}t≥0 is a martingale, i.e.

S0 = e−rtE(θ)[St]

where the expectation is taken with respect to the law with density f
(θ)
t . We can rewrite this into a

characteristic function representation. Hence in order to let the discounted price process be a martingale,
we need to have,

er =
φ(−i(θ + 1))
φ(−iθ)

In case of a NIG process this leads to,

er = eµ−δ(
√

α2−(β+θ+1)2−
√

α2−(β+θ)2)

= eµ−δ(
√

α2−(β+θ)2−2(β+θ)−1−
√

α2−(β+θ)2)

From which we can conclude that,

µ− r

δ
=
√
α2 − (β + θ)2 − 2(β + θ)− 1−

√
α2 − (β + θ)2 (4.1)
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and hence,

β̂ = β + θ = −1
2

+ sgn(β)

√
(µ− r)2

δ2 + (µ− r)2
α2 − (µ− r)2

4δ2

Moreover the Esscher transform is structure preserving in case of an NIG distribution.

Lemma 2 The Esscher transform of a NIG distributed random variable is again NIG distributed. In
particular,

f (θ)(x;α, β, δ, µ) = f(x;α, β + θ, δ, µ)

Proof: From

f (θ)(x;α, β, δ, µ) =
eθxf(x;α, β, δ, µ)

φ(−iθ)

=
eθx

φ(−iθ)
· α
π
exp

(
δ
√
α2 − β2 − βµ

) K1

(
δα

√
1 +

(
x−µ

δ

)2)
√

1 +
(

x−µ
δ

)2 exp(βx)

=
α

π

exp
(
θµ+ δ

√
α2 − β2 − δ

√
α2 − (β + θ)2

)
φ(−iθ)

exp
(
δ
√
α2 − (β + θ)2 − (β + θ)(x− µ)

)

·
K1

(
δα

√
1 +

(
x−µ

δ

)2)
√

1 +
(

x−µ
δ

)2
it follows that we have to prove

∫ ∞

−∞

α

π
· exp

(
θx+ δ

√
α2 − β2 + β(x− µ)

) K1

(
δα

√
1 +

(
x−µ

δ

)2)
√

1 +
(

x−µ
δ

)2 dx

= exp
(
θµ+ δ

√
α2 − β2 − δ

√
α2 − (β + θ)2

)
wich is equivalent to

∫ ∞

−∞

α

π
· exp

(
δ
√
α2 − (β + θ)2 + (β + θ)(x− µ)

) K1

(
δα

√
1 +

(
x−µ

δ

)2)
√

1 +
(

x−µ
δ

)2 dx = 1

The integral on the left hand side integrates a NIG(α, β + θ, δ, µ) density over its domain. Hence the
above equation holds for |β+θ| < α. The last condition is satisfied since θ is chosen according to equation
(4.1). �

From the above lemma we may conclude that under an Esscher change of measure the distribution
of the log price stays in the class NIG only with a different parameter for β. i.e. under EMM Q the
distribution of logS(t) is NIG(α, β̂, δ, µ).

4.1.2 BNS SV model

The structure of a general equivalent martingale measure for the BNS SV case and some relevant subsets
are studied in Nicolato and Vernardos [14]. Of special interest is the structure preserving subset of
martingale measures under which the log returns are again described by a BNS SV model, although
possibly with different parameters and different stationary laws. Nicolato and Vernardos argue that it
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suffices to consider only equivalent martingale measures of this subset. Moreover they show that the
dynamics of the log price under such an equivalent martingale measure Q are given by,

d logS(t) = {r − 1
2
σ2(t)}dt+ σ(t)dw(t)

dσ(t) = −λσ2(t)dt+ dz(λt)

where {w(t)}t≥0 is a Brownian motion under Q independent of the BDLP. We will take the stationary
distribution of σ2 unchanged, i.e. σ2 ∼ IG(δ, γ) . However it is possible to change γ to any value without
the structure of the distribution being altered and such that the price process is a martingale.
Economically our choice of martingale measure corresponds to the (questionable) idea that the jumps
represent only non-systematic risk that is not reflected in derivatives prices [13]. However changing the
variance process without any restrictions would be questionable as well.

An other possibility is to use Esscher transform in which the distribution of the variance process is
changing as well. Hubalek and Sgarra [13] proved that these Esscher transform coincide the minimal
martingale measure. Hence it is a good candidate. Unfortunately the Esscher transform is not in the set
of structure preserving equivalent martingale measures. But, one can define the Esscher transform for
every increment. If we work with a regular time partition t1 < t2 < · · · < tN = T with mesh ∆, we will
get a set of θi’s satisfying,

er∆ =
κti((θi + 1))
κti(θi)

(4.2)

where κti is the conditional cumulant generating function given Fti , i.e. κti

X(u) = E[e−uX(ti+1)|Fti ]. As
shown in Nicolato and Vernardos [14], the cumulant function of the log returns is given by,

κti

log S(u) = exp

(
u(logS(ti) + µ∆) + (u2 + 2βu)

ε(ti, ti+1)
2

σ2(ti) +
∫ ti+1

ti

λκz(f(s, u))ds
)

(4.3)

With ε(s, T ) = λ−1(1− e−λ(T−s)) and f(s, u) = 1
2 (u2 + 2βu)ε(s, T ).

Putting this in equation 4.2 leads to,

r∆ = logS(ti) + µ∆ +
ε(ti, ti+1)

2
σ2(ti)(θ + 2β + 1) +

∫ ti+1

ti

λκz(f(s, θ + 1))ds−
∫ ti+1

ti

λκz(f(s, θ))ds

There are closed form formulas available for the integrals on the right hand side. Hence it is possible to
calculate a θi for every time increment. However in most of the times the ’new’ measure will not be of
the same structure. In our case of dealing with an IG-OU process for the variance process, an Esscher
transform would give a BDLP with non-stationary increments. Hence the BDLP would lose the property
of being a Lévy process. This is too bothersome to work with. It would lead to a structure which is hard
to simulate. Hence we stick to our EMM from Nicolato and Vernardos.

4.2 Asian option

Asian option is an option where the payoff is not determined by the underlying price at maturity but by
the average underlying price over some pre-set period of time. Asian options were originated in Asian
markets to prevent option traders from attempting to manipulate the price of the underlying on the
exercise date. We will use Asian option because it is a path dependent option. Therefore it might be
possible to see a difference in pricing between our two models.

Let (Ω,F ,P) be a probability space equipped with a filtration {Ft}t∈[0,T ] satisfying the usual condi-
tions, with T < ∞ being the time horizon. Let X(t) be a Lévy process with càdlàg sample paths, and
consider the following exponential model for the asset price dynamics,

S(t) = S(0)eX(t) (4.4)
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Now the aim is to price arithmetic Asian call options written on S(t) . Consider such an option with
exercise at time T and strike price K on the average over the time span up to T . The risk-neutral price
is,

A(0) = e−rT EQ

[
max

{
1
T

∫ T

0

S(t)dt−K, 0

}]

Where r is the risk-free interest rate. As described above we work with equivalent martingale measures
for which the structure of the distribution of the log price is preserved. Hence under Q, X(t) is still
following the model. Only with different parameters, i.e. X(t) is an NIG(α, β̂, δ, µ) Lévy process in the
case of Lévy process model and X(t) has parameters µ = r and β = − 1

2 in the BNS SV case. Moreover
one can approximate the integral with a Riemann sum,

A(0) ≈ e−rT E

[
max

{
S(0)
N

N∑
i=1

eX(ti)∆−K, 0

}]
(4.5)

For simplicity we will work with regular time partitions t1 < t2 · · · < tN with mesh ∆.
In the next chapter we will describe several methods do valuate the expectation in equation (4.5).
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Chapter 5

Simulation:

There are two trends to simulate Inverse Gaussian random variates and processes. One is using exact
simulation by using general rejection method and the other is a series expansion based on path rejection
proposed by J.Rosinski. Earlier Rosinski had a technique using the inverse of the Lévy measure of the
BDLP process. In the IG case this measure is not analytically invertible, hence this can only be done
numerically. This is time-consuming calculation and is therefore bothersome to work with.
In the algorithms it is assumed that one can simulate from standard distributions. Moreover for simplicity
we will work with a regular time partition t1 < t2 < · · · < tN = T with mesh ∆.

5.1 Inverse Gaussian Lévy process

5.1.1 Exact simulation

To simulate from an IG random number we can use the IG random number generator proposed by
Michael, Schucany and Haas [12].

Algorithm 1 (Generate of the IG(δ, γ) random variate; exact)
• Generate a random variate Y with density χ2

1.
• Set y1 = δ

γ + Y
2γ2 − 1

2γ2

√
4δγY + Y 2.

• Generate a uniform [0, 1] random variate U and if U ≤ δ
δ+γy1

, set σ2 = y1.
If U > δ

δ+γy1
, set σ2 = δ2

γ2y1
.

Then σ2 is the desired random variate, namely σ2 ∼ IG(δ, γ).
This simulation method is based on the fact that if Y ∼ IG(δ, γ) then A = (γY−δ)2

Y is distributed χ2
1 (see

[12]). A has two roots.

y1 =
δ

γ
+

Y

2γ2
− 1

2γ2

√
4δγY + Y 2

and

y2 =
δ2

γ2y1

y1 should be chosen with probability p1 = δ
δ+γy1

and y2 should be chosen with probability 1− p1.

Next is to simulate a sample path of an IG Lévy process {σ2(t)}t≥0, where σ2(t) follows an IG(δt, γ) law.
Take as start value σ2(0) = 0. Then for every time increment ∆, first generate independent IG(δ∆, γ)
random number i, then set,

σ2(t+ ∆) = σ2(t) + i,
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5.1.2 Series representation

Alternatively Rosinski’s series representation (see [16]) can be used instead of the exact simulation. We
can use the following algorithm to approximate a path of an IG(δ, γ) process

{
σ2(t)

}
(0≤t≤T )

.

Algorithm 2 (Generate of the IG(δ, γ) Lévy process; series representation)
• Take n = large (to approximate an infinite sum).
• Sample n arrival times a1 < a2 < · · · < an from a Poisson process with intensity 1.
• Sample n independent random variates {ei}n

i=1 according to an exponential distribution with mean
2/γ2.

• Sample {ũi}n
i=1, {ui}n

i=1 as i.i.d uniform [0, 1] random variates.

• Set σ2(t) =
∑n

i=1 min
{

2
π

(
δT
ai

)2

, eiũ
2
i

}
1(uiT<t).

Then σ2 is the desired random process. This algorithm is based on the fact that IG(δ, γ) Lévy process
can be approximated by,

σ2(t) =
∞∑

i=1

min

{
2
π

(
δT

ai

)2

, eiũ
2
i

}
1(uiT<t) (5.1)

where {ei} is a sequence of independent exponential random numbers with mean 2
γ2 , {ũi} and {ui} are

sequences of independent uniforms and a1 < a2 < · · · < ai < · · · are arrival times of a Poisson process
with intensity parameter 1. The series is converging uniformly from below. How large n should be
depends on the parameters δ and γ. The summation should generally run over 100 to 10000 terms.

Figure 5.1: Graph of 100 simulations of the log of the individual terms min
{

2
π

(
δT
ai

)2

, eiũ
2
i

}
of the

infinite series (5.1) for an IG(0.5, 1) problem.

An example of how the infinite sum behaves is given in Figure 5.1 which depicts the logarithm of the
individual terms, against the value of the index i. One can see that the series is dominated by the first
few terms. In contradiction to the previous method the whole path is simulated directly. Moreover from
the definition of a Lévy process we may conclude that if we take T = 1 then σ2(1) is an IG(δ, γ) random
variable.
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5.2 IG OU process

From Theorem 5 we know that a solution to a SDE of the Ornstein-Uhlenbeck type,

dσ2(t) = −λσ2(t)dt+ dz(λt)

is given by,

σ2(t) = e−λtσ2(0) +
∫ t

0

e−λ(t−s)dz(λs) (5.2)

Moreover, up to indistinguishability, this solution is unique (Sato [18]). Recall that for an IG(δ, γ, δ)-OU
process, σ2(t) has stationary marginal law IG(δ, γ). So σ2(0) is IG(δ, γ) distributed. In the above section
we already described a way to simulate IG(δ, γ) random variates. So the most difficult term to simulate
in (5.2) is the integral

∫ t

0
e−λ(t−s)dz(λs).

5.2.1 Exact simulation

Take,

σ2(∆) =
∫ ∆

0

e−λ(∆−s)dz(λs) (5.3)

As shown in Zhang & Zhang [21], for fixed ∆ > 0 the random variable σ2(∆) can be represented
to be the sum of an inverse Gaussian random variable and a compound Poisson random variable in
distribution, i.e.,

σ2(∆) D= W∆
0 +

N∆∑
i=1

W∆
i (5.4)

where W∆
0 ∼ IG(δ(1− e−

1
2 λ∆), γ), random variable N∆ has a Poisson distribution of intensity

δ(1 − e−
1
2 λ∆)γ and W∆

1 ,W
∆
2 , . . . are independent random variables having a common specified density

function,

fW∆(w) =

{
γ−1
√

2pi
w−3/2(e

1
2 λ∆ − 1)−1

(
e−

1
2 γ2w − e−

1
2 γ2weλ∆

)
for w > 0,

0 otherwise

Moreover for any w > 0 the density function fW∆(w) satisfies,

fW∆(w) ≤ 1
2

(
1 + e

1
2 λ∆

) ( 1
2γ

2)1/2

Γ( 1
2 )

w−
1
2 e−

1
2 γ2w

Hence we can use the rejection method on a Γ( 1
2 ,

1
2γ

2) distribution to simulate random variables with
density function fW∆(w).

Algorithm 3 (Generation of the random variate from the density fw∆(w))
• Generate a Γ( 1

2 ,
1
2γ

2) random variate Y .
• Generate a uniform [0, 1] random variate U .

• If U ≤ fw∆ (w)

1
2

“
1+e

1
2 λ∆

”
g(Y )

, set w∆
i = Y , where g(Y ) = ( 1

2 γ2)1/2

Γ( 1
2 )

Y −
1
2 e−

1
2 γ2Y .

Otherwise return to the first step.

Since σ2 is a stationary process we can conclude with equation 5.2, 5.3 and 5.4 that for all t > 0 we have
the following equality in distribution,

σ2(t+ ∆) D= e−λ∆σ2(t) + w∆
0 +

N∆∑
i=1

w∆
i

which can be translated in the following algorithm,
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Algorithm 4 (Generation of the random variate σ2(t0 + ∆) given the value σ2(t0).)
• Generate a IG(δ(1− e−

1
2 λ∆), γ) random variate W∆

0 .
• Generate a random variate N∆ from the Poisson distribution with intensity δ(1− e−

1
2 λδ)γ.

• Generate W∆
1 ,W

∆
2 , . . . ,W

∆
N∆ from the density fW∆(w) as independent identically distributed

random variate.
• Set σ2(t0 + ∆) = e−λ∆σ2(t0) +

∑N∆

i=0W
∆
i .

Moreover σ2 is a stationary process hence the initial value σ2(0) can be generated from the density
IG(δ, γ). We are simulating using an exact method so we will use Algorithm 1 to simulate σ2(0) from
an IG(δ, γ) distribution.

5.2.2 Series representation

For simulating according to a series representation we make use of the fact that the BDLP can be decom-
posed into an IG Lévy process and a compound Poisson process as notated in Section 2.3. Using the series
representation described in Section 5.1.2 we can conclude that

∫ t

0
e−λ(t−s)dz(λs) can be approximated

by,

e−λt
Nλt∑
i=1

v2
i

γ2
edi + e−λt

∞∑
i=1

eλtūi min

{
1
2π

(
δλT

ai

)2

, eiũ
2
i

}
1(uiT<t)

where {ei} is a sequence of independent exponential random numbers with mean 2
γ2 , a1 < a2 < · · · <

ai < · · · are arrival times of a Poisson process with intensity parameter 1 ,{Nt}t≥0 is a Poisson process
with intensity parameter δγ

2 and interarrival times d1 < d2 < · · · , vi independent standard normal
random variables and {ūi}, {ũi}, {ui} are sequences of independent uniform random numbers. By using
equation (5.2) we can conclude that an IG-OU(δ, γ, λ) process σ2(t) can be approximated by,

σ2(t) = e−λtσ2(0) + e−λt
Nλt∑
i=1

v2
i

γ2
edi + e−λt

∞∑
i=1

eλtūi min

{
1
2π

(
δλT

ai

)2

, eiũ
2
i

}
1(uiT<t)

As in the exact simulation case σ2 is a stationary process, hence the initial value σ2(0) can be generated
from the density IG(δ, γ). Since we are working with series representations we will use Algorithm 2 with
T = 1 and t = 1 to simulate σ2(0) from an IG(δ, γ) distribution. As in the IG Lévy process case, this
series is dominated by the first few terms and generally converges quickly.

5.3 Model

In this section we will describe a method to simulate a sample path from the logarithmic price process
logS(t) for the models described in Chapter 3. For notational simplicity we will denote the process
logS(t) by X.

5.3.1 Lévy process model

In the Lévy process model X(t) is simply a NIG Lévy process. Hence we will describe a method to
simulate a NIG Lévy process.

The most convenient way to simulate a NIG Lévy process is by a quasi-Monte Carlo Algorithm. We will
use a Monte-Carlo algorithm based on exact simulation. The NIG distribution is a mean-variance mix-
ture, i.e. if we take σ2 ∼ IG(δ,

√
α2 − β2) independently distributed of ε ∼ N(0, 1), then x = µ+βσ2+σε

is distributed NIG(α, β, δ, µ).

Hence we can simulate a NIG random variate by,

Algorithm 5 (Generate of the NIG(α, β, δ, µ) random variate.)

• Sample σ2 from IG(δ,
√
α2 − β2).

• Sample Z from N(0, 1).
• X = µ+ βσ2 + σZ.
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where σ2 is taken according to Algorithm 1. Next is to simulate a sample path from a NIG Lévy process.
This can be done by simply summing the increments.

Algorithm 6 (Generate a sample path of a NIG(α, β, δ, µ) Lévy process)
• Take X(0) = 0.
• For each increment ∆ sample x ∼ NIG(α, β, δ∆, µ) set,

X(t+ ∆) = X(t) + x.

5.3.2 BNS SV model

By discretising time we may conclude that equation (3.2) can be rewritten into,

C(t) := logS(t+ ∆)− logS(t) = µ ·∆ + βσ2(t) ·∆ +
√
σ2(t)∆ · ε

where ε is a standard normal distributed random variable. This is based on the fact that for a brownian
motion w, w(t+∆)−w(t) is equal in distribution to the random variate ε

√
∆. We can use the following

Algorithm to generate log-returns on discrete points.

Algorithm 7 (Generate a sample path according to the BNS SV model.)

• Generate a sample path σ2(ti) from IG-OU(δ,
√
α2 − β2, λ) process, for i = 0, . . . , n.

• Sample {εi}n
i=0 as a sequence i.i.d standard normal variables.

• Set X(ti) = µ ·∆ + βσ2(ti) ·∆ + σ(ti) · εi
√

∆, for i = 0, . . . , n.

As described in Section 5.2 there are two methods to sample the IG-OU random variate. We will
consider both. Note that in the case σ2 is generated by an exact simulation method the steps of the
algorithm can be performed simultaneously.

Superposition

In case of superposition in which σ2(t) is given by,
∑m

j=1 ajσ
2
j (t). one can replace the first step of Algo-

rithm 7 by,

• Generate sample paths σ2
j (ti) from IG-OU(δ,

√
α2 − β2, λj) process, for i = 0, . . . , n and

j = 1, . . . ,m.
• Set σ2(ti) =

∑m
j=1 ajσ

2
j (ti) for i = 0, . . . , n.
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Chapter 6

Comparison simulation methods

6.1 Processes

In Figure 6.1 we made quantile-quantile plots of the increments of the BNS SV model versus NIG random
variates. One can see that exact simulation method and the series representation produce series from the
same distribution. Moreover the increments of the BNS SV model are approximately NIG distributed.
However this is not always the case. The parameters have a large influence how the returns look in

Figure 6.1: Quantile-quantile plot of 10000 simulated points with parameters given by, α = 64.0317, β =
4.3861, δ = 0.0157, λ1 = 0.0299, λ2 = 0.3252, a1 = 0.9122 and a2 = 0.0878.

comparison to NIG random variates, especially in the case of series representation. In the case of series
representation the size of δ has a large influence on the distribution of the returns. The sampling with
series representation is based on the fact that an IG Lévy process can be approximated with, (see (5.1))

σ2(t) =
∞∑

i=1

min

{
2
π

(
δT

ai

)2

, eiũ
2
i

}
1(uiT<t).

From the definition of a Lévy process we know that the increments should be distributed Inverse Gaussian.
But if we plot the empirical cumulative distribution function of the increments from a sample of 1000
points, and compare it with the theoretic cumulative distribution function of the IG distribution, then
there is a large difference. This difference increases with the value of δ.
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(a) with δ = 0.05 and γ = 70. (b) with δ = 3 and γ = 5.

Figure 6.2: Empirical cumulative distribution function of a 1000 points sample generated with series
representation compared with the theoretic cumulative IG-distribution function.

In case of financial assets the value of δ is normally between 0.01 and 0.03. In this case the empirical
distribution function and the theoretic distribution function coincide. However this still doesn’t make
the simulation method reliable.

The above analyses is done with n = 10000 to approximate the infinite sum in the series representa-
tion. As mentioned before it is hard to decide how large n should be. It depends on the parameter values
of δ and γ. However the size of n makes a huge difference in processing time using series representation.

Sample size n Series representation Exact simulation
100 100 0.0140 0.0107
100 1000 0.0539 0.0117
100 10000 0.8800 0.0112
1000 100 0.1305 0.0906
1000 1000 0.6065 0.1090
1000 10000 8.4996 0.0918
10000 100 10.2784 3.0246
10000 1000 15.7861 2.7024
10000 10000 70.7537 2.7129

All times are in seconds measured on a not too new 1.3 Ghz i-book G4. The values are taken as
the mean of 100 times simulating an IG-OU process. One can see that in all cases the exact simulation
is faster.

6.2 Pricing Asian options

We consider the problem of pricing Asian options written on an asset dynamics given by an exponential
NIG-Lévyprocess resp. BNS SV model. We will handle a representative case of pricing with calibrated
parameters on log-returns of the AEX-index. In the Appendix a similar case of a pricing with calibrated
parameters on log-returns of ING, a major dutch bank, is handled. For ease we assume that the stock
price today is S(0) = 100 and that the risk-free interest rate is r = 3.75% yearly.

After calibration on a set of daily return data of the AEX-index the parameters are given by,

α = 94.1797 β = −16.0141 δ = 0.0086 µ = 0.0017 γ =
√
α2 − β2 = 92.8082

So under the risk neutral measure Q we have,

α = 94.1797 β = −17.3709 δ = 0.0086 µ = 0.0017
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Figure 6.3: Least square fitting with 1 superposition of AEX daily return data.

in the exponential Lévy process case and,

β = −1
2

δ = 0.0086 µ = r = log(1.03751/365) γ = 92.8082

in the BNS SV case. Moreover by least square fitting with 1 superposition λ is given by, (see Figure 6.3),

λ = 0.0397

With the above parameters we priced Asian options with a common strike K = 100 and exercise horizons
of four, eight, or twelve weeks.

T Lévy Pr. Series repr. Exact
Mean Variance Mean Variance Mean Variance

20 1.0486 2.6390 0.9819 3.3204 0.9913 3.3100
20 1.0620 2.6348 0.9931 3.3584 0.9826 3.3368
20 1.0631 2.6981 0.9885 3.3814 0.9893 3.4301
40 1.5100 5.1793 1.4021 6.4351 1.3968 6.4039
40 1.5187 5.2249 1.3801 6.3452 1.4269 6.6618
40 1.4898 5.1594 1.3892 6.4103 1.4006 6.4840
60 1.8653 7.8627 1.7400 9.7761 1.7582 9.8833
60 1.8608 7.7685 1.7449 9.7804 1.7534 9.7123
60 1.8723 7.8704 1.7446 9.7466 1.7608 9.7476

The mean and variance of the option price are taken over 100,000 times simulating and the variance
is only taken over the non-zero values of the option price. Moreover to approximate the infinite sum in
the series representation, n is taken 1000.

Remarkable is that the variance of the option prices is higher in the BNS SV case then in the NIG
Lévy process case. In the Table is also visible that the NIG Lévy process model is overpricing in com-
parison to the BNS SV model. Moreover the two simulation methods of the BNS SV model behave
similarly. A quantile-quantile plot shows the last property clearly (see Figure 6.4). A Kolmogorov -
Smirnov test confirms that the simulated price processes from the two simulation methods come from
the same continuous distribution at a 5% significance level. The same test rejects the hypothesis that
the price process of the NIG Lévy process model and the price process of the BNS SV model come from
the same continuous distribution.

On the interval [0, 6] the NIG Lévy price is slightly higher then the BNS SV price. Moreover the
interval [0, 6] consists of approximately 95% of the simulated points, hence the difference in prices on
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Figure 6.4: QQ-plot of 100,000 points of AEX prices with exercise horizon 40 days and strike price
K = 100 .

this interval leads to a slight higher mean in the NIG Lévy process model. In the other 5% of the cases
the BNS SV model prices higher and sometimes even extensively higher.

When alternating with the strike price K, the relation between the option prices of the models is chang-
ing (see Figure 6.5, 6.6). The corresponding mean and variance of the option prices for 100000 times
simulating are given by,

K Lévy Pr. Series repr. Exact
Mean Variance Mean Variance Mean Variance

80 20.1196 12.6174 20.1255 12.5494 20.1329 12.8147
100 1.5090 5.1640 1.3912 6.3118 1.4088 6.3986
110 0.0077 1.7775 0.0302 8.4686 0.0285 7.7898

In case of a strike K = 80 the mean option prices are approximately the same, but the distribution
of the price processes from the different models seem totally not to coincide (see Figure 6.5). However
approximately 90% of the simulated prices lie in the vertical part between 15 and 26. Hence the difference
in pricing of the two models is caused by the outliers. The BNS SV model exaggerates the price of the
extremes in comparison to the NIG Lévy process model i.e. BNS SV model will price low priced outliers
even lower and high priced outliers higher compared to the NIG Lévy process model.

At least 95% of the of the simulated prices is zero in the case of a strike K = 110. So in the QQ-
plot (Figure 6.6) it is again visible that the BNS SV model exaggerates the extreme values of the pricing
process compared to the NIG Lévy process model.
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Figure 6.5: QQ-plot of 100,000 generated AEX prices with exercise horizon 40 days and strike price
K = 80 .

Figure 6.6: QQ-plot of 100,000 generated AEX prices with exercise horizon 40 days and strike price
K = 110 .
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Chapter 7

Conclusion:

The Barndorff-Nielsen and Shephard stochastic volatility model is a complex but tractable model. It
preserve nice properties as having skewed and heavy-tailed distribution of the log-returns. Moreover it
models stochastic volatility.

Under an Esscher change of measure the distribution of the log price in the NIG Lévy process model
stays in the class NIG only with a different parameter for β .
The structure preserving martingale measure of the BNS SV model coincide with the (questionable)
idea that the jumps represent only non-systematic risk that is not reflected in derivatives prices. Un-
fortunately simple martingale transforms as the Esscher transform lead to non-tractable structures from
which it is hard to simulate.

Although the Algorithm of an IG-OU process based on series representation of J.Rosinski is popu-
lar, it is questionable whether it is reliable. The algorithm is based on a method to simulate an inverse
Gaussian Lévy process from which the increments not always follow an IG law. The exact simulation of
Zhang & Zhang is not only faster but also more accurate.
The log-returns of the BNS SV model are approximately NIG distributed. How they approximate an
NIG distribution depends on the parameters.

The price processes of the two simulation methods behave similarly for small δ. In pricing the NIG
Lévy process model slightly overprices in comparison to the BNS SV model. The BNS SV price process
exaggerates the extremes. Meaning that the BNS SV model will price low priced outliers even lower and
high priced outliers higher compared to the NIG Lévy process model.
The variance of the BNS SV price process is higher then the variance of the NIG Lévy price process.

7.1 What I still can do...

Maybe something about Economical meaning????
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Chapter 8

Appendix:

In this Appendix a similar case as in Section 6.2 will be handled.

We consider the case of pricing Asian options with calibrated parameters on a set of daily returns
from ING, a major dutch bank.

Figure 8.1: Least square fitting with 2 superposition’s of ING daily return data.

The calibrated values on a set of daily return data of ING are given by,

α = 64.8133 β = −3.6096 δ = 0.0156 µ = 0.0014 γ =
√
α2 − β2 = 64.7127

Hence in the risk neutral world (under Q) we have,

α = 64.8133 β = −6.0049 δ = 0.0156 µ = 0.0014

in the exponential Lévy process case and,

β = −1
2

δ = 0.0156 µ = r = log(1.03751/365) γ = 64.7127

in the BNS SV case. Moreover by least square fitting with 2 superposition’s the other parameters are
(see Figure 8.1),

λ1 = 0.0174 λ2 = 0.0381 a1 = 0.5812 a2 = 0.4188

With the above parameters we priced Asian options with a common strike K = 100 and exercise horizons
of four, eight, or twelve weeks.
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T Lévy Pr. Series repr. Exact
Mean Variance Mean Variance Mean Variance

20 1.7076 7.4142 1.6424 8.3324 1.6568 8.2188
20 1.7070 7.4617 1.6453 8.2154 1.6314 8.1157
20 1.7092 7.3450 1.6491 8.1685 1.6431 8.2075
40 2.4234 14.5726 2.3185 16.2304 2.3377 16.4316
40 2.4101 14.5189 2.3076 16.3691 2.3264 16.4073
40 2.3929 14.7033 2.3506 16.7763 2.3455 16.3278
60 2.9872 22.3489 2.8567 24.7078 2.8731 25.1728
60 2.9942 22.3526 2.8332 24.4307 2.8826 24.6833
60 2.9362 21.5672 2.8672 24.9073 2.8438 24.5923

The mean and variance of the option price are taken over 100000 times simulating. Moreover the
variance is only taken over the non-zero values of the option price. The value n, to approximate the
infinite sum in the series representation, is taken 1000.

Figure 8.2: Plot of daily return data of ING from Apr.2005 - Apr.2008

In the Table is visible that the variance in the option price of the BNS SV model is higher then in
the Lévy process case.
As in the AEX-index case the NIG Lévy process model is overpricing in comparison to the BNS SV
model. Moreover the two simulation methods of the BNS SV model behave similarly. A QQ-plot (Figure
8.3) makes the last result visible.

The interval [0, 10] consists of more then 95% of the simulated outcomes. On this interval the NIG
Lévy price is slightly higher then the BNS SV price, hence the difference in prices on this interval leads
to a slight higher mean of the price process in the NIG Lévy process case. In the top 5% of the cases
the BNS SV model prices higher and sometimes even a extensively higher.

When alternating with the strike price K, the relation between the option prices of the models is chang-
ing (see Figure 8.4, 8.5). The corresponding mean and variance of the option prices for 100000 times
simulating are given by,

K Lévy Pr. Series repr. Exact
Mean Variance Mean Variance Mean Variance

80 20.1232 32.9166 20.1162 32.2809 20.1429 32.8836
100 2.3945 14.5559 2.3177 16.4932 2.3145 16.1470
110 0.1493 7.4167 0.2047 24.2876 0.1990 22.3488
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Figure 8.3: QQ-plot of 100000 generated prices.

In case of a strike K = 80 the mean of the price processes of the two models is approximately the
same. But the price processes of the different models do not coincide (see Figure 8.4). However they co-
incide in 90% of the cases since 90% of the generated points lie in the interval [11, 30] where the QQ-plot
is vertically. In the other 10% of the cases the BNS SV model exaggerates the price of the extremes in
comparison to the NIG Lévy process model i.e. BNS SV model will price low priced outliers even lower
and high priced outliers higher compared to the NIG Lévy process model.

At least 95% of the of the simulated prices is zero in the case of a strike K = 110. So in the QQ-
plot (Figure 8.5) it is again visible that the BNS SV model exaggerates the extreme values of the pricing
process compared to the NIG Lévy process model.

41



Figure 8.4: QQ-plot of 100,000 generated ING prices with exercise horizon 40 days and strike price
K = 80 .

Figure 8.5: QQ-plot of 100,000 generated ING prices with exercise horizon 40 days and strike price
K = 110 .
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[19] W.Schoutens (2003), Lévy processes in finance, pricing derivatives, Wiley series in probability and
statistics. West Sussex, England.

[20] D.Williams (2005), Probability with martingales, Cambridge university press, Cambridge.

[21] S. Zhang, and X. Zhang (2007), Exact simulation of IG-OU processes, Methodol Comput appl
probab, Springer Science + business media, LLC 2007.

44


