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Introduction

In the paper The complex geometry of the spherical pendulum [1] the phase
space of the complexified spherical pendulum is described as a C∗-bundle
over a two-parameter family of elliptic curves. The original aim of the work
that led to this paper, was to find some kind of C∗-bundle over the toric
family of curves given by equation (1), perhaps allowing a comparison to the
bundle of elliptic curves from the aforementioned paper [1]. To this end we
look at the family of curves defined by the equation

a1s
−1t−1 + a2t

−1 + a3s
−1 + a4 + a5st = 0 (1)

for (s, t) ∈ C∗ × C∗. The coefficients a1, . . . , a5 are what we want to get a
clearer picture about.

Our first try has been to realize these curves as a two-parameter family
in P1 × P1. Even after repeated blow-ups of P1 × P1 we do not get a clear
one-to-one relation to the parameters, so we don’t pursue this further.

The equation above is related to a toric variety: the solution set is given
by the intersection of a compactification of C∗×C∗ in P4 with a hyperplane
in P4. As an alternative perspective on the problem, we have subsequently
tried to understand more about this toric variety. This has turned out to
become the main subject of the paper.

There are different ways to construct a toric variety, but they generally
rely on a lattice, which in our case is Z2, and a fan or polytope. To introduce
the notation, we have given a short introduction on affine toric varieties, for
the most part following [2]. When we treat P1×P1 as an example, we show
that the series of blow-ups we conducted in the first section corresponds to
modifying the fan of P1 × P1 by refining some of its cones.

We then consider the fan in R2 which comes from the polygon pictured
on the front page. The exponents of the Laurent monomials in equation (1)
correspond to the points of the lattice Z2 that are also contained in this
polygon; they define the action of C∗×C∗ on P4 which leads to the compact-
ification of the torus. We show that the toric variety constructed from the
fan has quotient singularities, and that the resolution of these singularities
is the same toric variety we arrived at by blowing up P1 × P1.

Another way to construct the same toric variety is as a quotient of (most
of) C4 by an action of C∗ ×C∗. This leads to the definition of monomials in
(z1, z2, z3, z4) ∈ C4 that again correspond to the lattice points of the polygon
on the front page, and can be used as homogeneous coordinates on P4. In
these homogeneous coordinates, the toric variety we are interested in is given
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by the two equations

w1w4 = w2w3

w1w5 = w2
4

In the last two sections we return to the family of curves from the begin-
ning. We find a 3-dimensional variety in P4 as a model for this family, but
unfortunately we haven’t been able to find any evidence of a relation to the
bundle of elliptic curves encountered in the paper [1] at the beginning of this
introduction.

4



1 Blow-ups of P1 × P1

Consider the following equation for s, t ∈ C∗:

a1s
−1t−1 + a2t

−1 + a3s
−1 + a4 + a5st = 0, (2)

and substitute s = u1

u2
, and t = v1

v2
. This leads to a family of elliptic curves in

P1 × P1 parametrized by a1, a2, . . . , a5 ∈ C∗ given by the equation

a1u2
2v2

2 + a2u1u2v2
2 + a3u2

2v1v2 + a4u1u2v1v2 + a5u1
2v1

2 = 0

where ([u1 : u2], [v1 : v2]) are homogeneous coordinates on P1 × P1.

First we observe that the number of coëfficients may be reduced by rescal-
ing the coordinates:

([u1 : u2], [v1 : v2]) 7→ ([µu1 : u2], [νv1 : v2]) µ, ν ∈ C∗

and multiplying the equation with λ ∈ C∗. This leads to:

λa1u2
2v2

2 +λµa2u1u2v2
2 +λνa3u2

2v1v2 +λµνa4u1u2v1v2 +λµ2ν2a5u1
2v1

2 = 0

set λ = a1
−1, µ = a1a2

−1, ν = a1a3
−1, and this reduces to

u2
2v2

2 + u1u2v2
2 + u2

2v1v2 + b1u1u2v1v2 + b2u1
2v1

2 = 0 (3)

with b1 = a1a2
−1a3

−1a4, b2 = a1
3a2

−2a3
−2a5.

The aim of this section is to try and find a smooth parametrization of the
family of curves defined by equation (3).

Clearly, all curves Kb1,b2 given by (3) pass through the points p = ([0 : 1], [1 : 0])
and q = ([1 : 0], [0 : 1]). We want to lift this degeneracy by blowing up these
two points. First we construct the blow-up at p; define

Blp = {([u1 : u2], [v1 : v2], [w1 : w2]) ∈ P1 × P1 × P1|u1w1 = v2w2}

With the projection
Blp

π

��
P1 × P1

onto the first two factors. Clearly at p, where u1, v2 = 0, the total inverse of
this projection is π−1(p) = {p}×P1, which is called the exceptional curve over
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p. Over any other point ([u1 : u2], [v1 : v2]) ∈ P1 × P1 the value of [w1 : w2]
is fixed by the equation u1w1 = v2w2, making the projection restricted to
a suitable neighborhood of that point an isomorphism. In effect, we have
replaced the point p with a copy of P1 leaving the rest of P1 ×P1 the same.

Next we also blow up the point q. Define

Blp,q = {([u1 : u2], [v1 : v2], [w1 : w2], [x1 : x2]) ∈P1 × . . .× P1|
u1w1 = v2w2, u2x2 = v1x1}

with again the projection onto the first two factors

Blp,q

π

��
P1 × P1

There are now two exceptional curves Ep = π−1([0 : 1], [1 : 0]) and Eq =
π−1([1 : 0], [0 : 1]) over the points p and q respectively.

We now want to investigate what happens to the family Kb1,b2 after blow-
ing up the points p and q. This amounts to looking at the closure of the
inverse image of Kb1,b2 under π: K̃b1,b2 := π−1(Kb1,b2 − {p} − {q}), which is
called the strict transform of Kb1,b2 .

We pass to affine coordinates (u, v) = (u1

u2
, v2

v1
) in the neighborhood of the

point p, and set u2 = v1 = 1. Equation (3) takes the form:

v2 + uv2 + v + b1uv + b2u
2 = 0 (4)

The equations

u1w1 = v2w2

u2x2 = v1x1

defining the set Blp,q reduce to

uw1 = vw2

x1 = x2

So Blp,q reduces to X = {(u, v, [w1 : w2]) ∈ C2×P1|uw1 = vw2, } And finally

the projection Blp,q
π // P1 × P1 becomes

X

��
C2
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This is C2 with the origin blown up, and the strict transform of the
family Kp

b1,b2 given by (4) is the closure of the inverse image of Kp
b1,b2 −{0}

under the projection (which is an isomorphism away from the origin.) Now
suppose that w2 6= 0 so we can take w2 equal to 1 and use w = w1 as an
affine coordinate for the exceptional curve. Then v = uw; substituting this
into (4) gives

u(uw2 + u2w2 + w + b1uw + b2u) = 0.

So we have on the one hand u = 0, v = 0 with w arbitrary, which gives
the exceptional curve, while the equation

uw2 + u2w2 + w + b1uw + b2u = 0 (5)

together with v = uw defines the strict transform K̃p

b1,b2 ⊂ X of Kp
b1,b2 .

Setting u = 0 implies w = 0 by equation (5), so for any b1, b2 the curve K̃p

b1,b2

meets the exceptional curve in [w1 : w2] = [0 : 1]. This means that all curves

in the family K̃b1,b2 pass through the point ([0 : 1], [1 : 0], [0 : 1], [1 : 1]) in
Blp,q. Note that the strict transform of the u-axis given by v = 0 is given
by uw = 0, so the u-axis intersects the exceptional curve in the same point
([0 : 1], [1 : 0], [0 : 1], [1 : 1]).

The same can be done at the point q: passing to affine coordinates (u, v) =
(u2, v1) reduces equation (3) to

u2 + u + u2v + b1uv + b2v
2 = 0 (6)

which defines the family Kq
b1,b2 ⊂ C2. Again we consider the strict transform

of Kq
b1,b2 under the blow-up of C2 in the origin given by

U

��

= {(u, v, [x1 : x2]) ∈ C2 × P1|ux2 = vx1}

C2

.

Temporarily assuming x2 6= 0, and setting x2 = 1, x1 = x we derive

u = vx

v(vx2 + x + v2x2 + b1vx + b2v
2) = 0

Then if vx2 + x + v2x2 + b1vx + b2v
2 = 0, v = 0 implies x = 0 so Kq

b1,b2

intersects the exceptional curve in [x1 : x2] = [0 : 1] for all (b1, b2). Go-

ing back to homogeneous coordinates we see that all curves in K̃b1,b2 pass
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through ([1 : 0], [0 : 1], [1 : 1], [0 : 1]) in Blp,q. This is also the point where
the exceptional curve meets the v-axis given by u = 0.

So now we have the family of curves K̃b1,b2 in Blp,q with each curve going
through the points p′ = ([0 : 1], [1 : 0], [0 : 1], [1 : 1]) and q′ = ([1 : 0], [0 :
1], [1 : 1], [0 : 1]). This is somewhat disappointing since we are looking for
some restriction on the parameters (b1, b2). On the other hand it isn’t very
surprising either: not only does every curve given by (3) pass through p and
q, they also all have the same tangent direction in these points. Since blowing
up a point is essentially replacing that point with all tangent directions at
that point, where each tangent direction is given by a point on the exceptional
curve, it is to be expected that all curves in Kb1,b2 intersect the exceptional
curves over p and q in the same point. We will try again by blowing up p′

and q′ once more and calculate the intersection of the family Kb1,b2 with the
exceptional curves over p′ and q′

To this end, define

Blp′,q′ = {([u1 : u2], [v1 : v2],[w1 : w2], [x1 : x2], [y1 : y2], [z1 : z2]) ∈ P1 × . . .× P1|
u1w1 = v2w2, u2x2 = v1x1, u1y1 = w1y2, v1z1 = x1z2}

With the projection
Blp′,q′

π′

��
Blp,q

induced by projection onto the first four factors of P1×P1×P1×P1×P1×P1.
We will first consider the point p′. Choose affine coordinates (u, v, w) =

(u1, v2, w1) around p′ so that we get:

Y

��

= {(u, v, w, [y1 : y2]) ∈ C3 × P1|uy1 = wy2, v = uw}

X ′

��

= {(u, v, w) ∈ C3|v = uw}

C2 = {u, w ∈ C2}

The family Kb1,b2 is given by

uw2 + u2w2 + w + b1uw + b2u = 0 (7)
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in X ′. To find the equations defining the strict transform in Y , we look at
the affine part of Y where y2 6= 0, with coordinate y = y1, and obtain

w = uy

u(u2y2 + u3y2 + y + b1uy + b2) = 0

If u2y2 + u3y2 + y + b1uy + b2, then u = 0, gives y = −b2. Going back to
Blp′,q′ , this means that Kb1,b2 intersects the exceptional curve over p′ in the
point

([u1 : u2], [v1 : v2],[w1 : w2], [x1 : x2], [y1 : y2], [z1 : z2]) =

([0 : 1], [1 : 0], [0 : 1], [1 : 1], [−b2 : 1], [1 : 1])

Now for the point q′. Using affine coordinates (u, v, x) = (u2, v1, x1) we
get

V

��

= {(u, v, x, [z1 : z2]) ∈ C3 × P1|vz1 = xz2, u = vx}

U ′

��

= {(u, v, x) ∈ C3|u = vx}

C2 = {(v, x) ∈ C2}

with vx2 + x + v2x2 + b1vx + b2v
2 = 0 defining the affine family of curves

corresponding to Kb1,b2 in U ′. Assuming z2 6= 0 for the moment, setting
z = z1 and substituting x = vz, we find the strict transform given by v2z2 +
z + v3z2 + b1zv + b2 = 0, which clearly intersects the exceptional curve in
(0, 0, [−b2 : 1]) ∈ V .

This means that all members of Kb1,b2 pass through ([1 : 0], [0 : 1], [1 :
1], [1 : 0], [1 : 1], [−b2 : 1]) in Blp′,q′ .

The conclusion is that if we fix b1, we get a unique elliptic curve through
the points ([1 : 0], [0 : 1], [1 : 1], [1 : 0], [1 : 1], [−b2 : 1]) and ([0 : 1], [1 : 0], [0 :
1], [1 : 1], [−b2 : 1], [1 : 1]) for every b2.

The aim was to obtain a smooth bundle of elliptic curves parametrized by
(b1, b2) ∈ C∗2. Trying to resolve the degeneracy in b1 and b2 rather directly
by (repeatedly) blowing up the points p and q only works for the parameter b2.

The point of departure at the beginning of this section was the equation
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a1s
−1t−1 + a2t

−1 + a3s
−1 + a4 + a5st = 0

for s, t ∈ C∗ × C∗. By passing to P1 × P1 we have actually compactified
C∗ × C∗ in P1 × P1 by adding the four lines corresponding u1 = 0, u2 =
0, v1 = 0, v2 = 0 to it. By blowing up the points p, q, p′, q′ we have added
an additional four projective lines to P1 × P1, so without being too precise
about it we can say we have added 8 lines to C∗×C∗ resulting in the octagon
in Figure 1 (where for example ”Ep”denotes the appropriate affine part of
the exceptional curve)

v2 = 0 v1 = 0

p p′

q

q′

Ep

u2 = 0

u1 = 0 Eq

Ep′

Eq′

Figure 1: 8 lines added to C∗ × C∗

Coordinates
For later reference, we list the various equations giving the strict transform
of equation (3) in affine coordinates after the appropriate substitutions.
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coordinates equation Kb1,b2 = 0
(u, v) = (u1, v2) v2 + uv2 + v + b1uv + b2u

2 = 0
(u, w) = (u1, w1) uw2 + u2w2 + w + b1uw + b2u = 0
(u, y) = (u1, y1) u2y2 + u3y2 + y + b1uy + b2 = 0
(u, v) = (u2, v1) u2 + u + u2v + b1uv + b2v

2 = 0
(v, x) = (v1, x1) vx2 + x + v2x2 + b1vx + b2v

2 = 0
(v, z) = (v1, z1) v2z2 + z + v3z2 + b1zv + b2 = 0

Table 1: affine coordinates for Blp′,q′
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2 Toric varieties

2.1 Affine toric varieties

In this section we will show how to construct the toric variety corresponding
to a fan in Rn. To clarify the notation we will first sketch the general case.
More details can be found in Chapter 1 of [2].

Let an action C∗n×X → X of the algebraic torus C∗on a (normal) variety
X be given. Then X is called a toric variety if it contains the torus C∗n as
an open dense orbit (in the Zariski topology) such that the natural action of
C∗n on itself is extended to the given action of C∗n on X.

A important example is projective space Pn: the action C∗n on Pn is
defined by

((λ1, ..., λn), [x0 : ... : xn]) −→ [x0 : λ1x1 : ... : λnxn],

so Pn contains C∗n as the orbit through [1 : ... : 1]. To see that the closure
of this orbit is Pn, note that it is the complement of the Zariski closed set
defined by x0x1 · · ·xn = 0 in Pn.

A useful and characteristic feature of (normal) toric varieties is that they
can be constructed from combinatorial data encoded in so-called fans. But
we start with the definition of the affine toric variety corresponding to a
strongly convex rational polyhedral cone in Rn, because a fan is a collection
of such cones.

Definition 2.1. A polyhedral cone in Rn is a set

σ = {a1v1 + · · ·+ anvn ∈ Rn|ai ≥ 0}

generated by a finite number of vi ∈ Rn. Such a cone is rational if its
generators are vectors in Zn. In addition, it is simplicial if the generators
form a basis for Rn, and smooth if they form a Z-basis for Zn. Finally it is
strongly convex if it contains no line through the origin.

Remark 2.1. Since we will only be dealing with strongly convex rational
polyhedral cones, from now on, when we write cone, we mean strongly convex
rational polyhedral cone.

If V is any vector space, and V ∨ the dual vector space, we will denote
u(v) = 〈u, v〉 for any two elements u ∈ V ∨, v ∈ V .

If σ is a cone in Rn then its dual cone σ∨ ⊂ Rn∨ is the set

σ∨ = {u ∈ Rn∨| 〈u, v〉 ≥ 0 ∀v ∈ σ}
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If σ is a convex rational polyhedral cone, then σ∨ is as well, see [2] Section
1.2.

Now we can associate to σ a commutative semigroup Sσ:

Sσ = σ∨ ∩ Zn∨ = {u ∈ Zn∨| 〈u, v〉 ≥ 0 ∀v ∈ σ}

Lemma 2.1 (Gordan’s lemma). Let σ ⊂ Rn be a convex rational polyhedral
cone, and σ∨ its dual cone. Then Sσ as defined above is finitely generated.

Proof. Let u1, . . . , uk ∈ σ∨ ∩ Zn∨ be generators for σ∨ as a cone in Rn∨.
Define K = {

∑
tiui|0 ≤ ti ≤ 1}, then K ∩ Zn is finite since K is compact.

It suffices to show that K generates Sσ. Let u ∈ Sσ and write u =
∑

riui

with ri ≥ 0, then ri = mi + ti with 0 ≤ ti ≤ 1 and mi a nonnegative integer.
So u =

∑
miui +

∑
tiui with

∑
tiui ∈ K ∩Zn∨ and each ui ∈ K ∩Zn∨.

The semigroup algebra C[Sσ] is the complex vector space generated by
elements χu, u ∈ Sσ with multiplication given by

χu · χv = χu+v

The toric variety Xσ associated with the cone σ is the maximal spectrum
of this algebra

Xσ = Spec(C[Sσ])

Example 2.1. Let {e1, . . . , en} be a basis for Rn, and {e1
∗, . . . , en

∗} the dual
basis. Let σ ⊂ Rn be the cone generated by e1, . . . , ek, k ≤ n. Then u ∈ σ∨

if and only if 〈u, v〉 ≥ 0 ∀v ∈ σ, which is equivalent to u(ei) ≥ 0 for all
0 ≤ i ≤ k. This means that the semigroup Sσ = σ∨ ∩ Zn∨ is

Sσ = {u ∈ Zn∨|u = a1e1
∗ + . . .+ anen

∗, a1, . . . , ak ∈ Z≥0, ak+1, . . . , an ∈ Z},

so Sσ is generated by e1
∗, . . . , ek

∗,±ek+1
∗, . . . ,±en

∗. If we denote Xi := χei
∗
,

then the complex algebra C[Sσ] is given by

C[Sσ] = C[X1, . . . , Xk, Xk+1, X
−1
k+1, . . . , Xn, X

−1
n ]

and the toric variety associated to σ is

Xσ = C× . . .× C︸ ︷︷ ︸
k

×C∗ × . . .× C∗︸ ︷︷ ︸
n−k

(8)

In general, if a cone is generated by vectors which can be completed to
a basis for Zn, the associated toric variety will be of the form (8), and in
particular, it will be non-singular.
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2.2 Toric varieties

General toric varieties are obtained by ’gluing together’ affine toric varieties
Xσ. We will need the definition of a fan, but first we need to specify what
we mean by the face of a cone:

Definition 2.2. Let σ ∈ Rn be a cone. A face τ of σ is given by

τ = σ ∩ u⊥ = {v ∈ σ| 〈u, v〉 = 0}

for some u ∈ σ∨, where

u⊥ = {v ∈ Rn| 〈u, v〉 = 0}

is a supporting hyperplane for τ if u ∈ σ∨. A cone is regarded as a face of
itself.

Definition 2.3. A fan Σ is a set of cones (in the sense of Remark 2.1 above)
which satisfy the following conditions:

(i) Any face of a cone in Σ is also a cone in Σ.

(ii) The intersection σ ∩ σ′ of two cones σ, σ′ ∈ Σ is a face of σ as well as
σ′.

If σ is a cone, and τ is a face of σ, then Xτ is a Zariski open subset of
Xσ. (See [2] Section 1.3.) If τ is a common face of two cones σ and σ′, then
we glue the two affine varieties Xσ and Xσ′ together by identifying them on
the open subset Xτ .

If Σ is a fan, the toric variety XΣ is obtained as the disjoint union of all
affine varieties Xσ corresponding to cones σ in Σ, which are glued together
according to the rule sketched above.

Note that if σ ⊂ Rn is any cone, the origin is always a face of σ. It follows
that the affine toric variety Xσ always contains X{0} as a Zariski open subset.
Considering {0} as a cone in Rn, the corresponding semigroup S{0} equals all
of Zn, so C[S{0}] = C[X1, X

−1
1 , . . . , Xn, X

−1
n ] which means that X{0} = C∗n.

This shows how any toric variety XΣ corresponding to a fan Σ contains C∗n

as an open dense orbit, in accordance with the general definition af a toric
variety which was mentioned at the beginning of this section.
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2.3 Gluing maps

From this point we will only be concerned with toric surfaces, i.e. toric
varieties arising from fans in R2 and the lattice Z2.

Suppose that σ, σ′ are two-dimensional cones in R2, we want to describe
the gluing map Xσ → Xσ′ more explicitly. Let {x, y} ∈ Z2 and {z, y} ∈ Z2

be the minimal vectors (i.e. not an integer multiple of any other vector)
generating the edges of σ and σ′ respectively, see Figure 2.

The vectors

{u =

(
x2

−x1

)
, v =

(
−y2

y1

)
}

{s =

(
−z2

z1

)
, t = −v}

are the minimal vectors generating the edges of σ∨ and σ′∨.

y =

„
y1

y2

«

z =

„
z1

z2

«

s =

„
−z2

z1

«
v =

„
−y2

y1

«

u =

„
x2

−x1

«

x =

„
x1

x2

«

y

x

z

σ

σ′
∨

σ′

σ∨

00

t =

„
y2

−y1

«

Figure 2: The cones σ, σ′ and their dual cones

If the cones σ and σ′ are smooth, then by definition the pairs of vectors
(u, v) and (s, t) are both a Z-basis for Z2, so they generate the semigroups
Sσ = σ∨ ∩ Z2 and Sσ′ = σ′∨ ∩ Z2. In that case C[Sσ] = C[χu, χv] = C[U, V ],
and Xσ = SpecC[U, V ] = C2. In the same way Xσ′ = C2.

The common face of σ and σ′ is the halfline generated by y. The associ-
ated complex algebra is C[χy, χv, χ−v], and to glue Xσ and Xσ′ together we
identify them on the common open subset Spec(C[χy, χv, χ−v]) ∼= C×C∗. To
find the gluing map, we represent (u, v) ∈ Sσ on the basis (s, t) ∈ Sσ′ :
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s = pu + qv

t = −v

with p, q ∈ Z. Using 2 × 2 matrices and the notation (u v) =

(
u1 v1

u2 v2

)
these equations become

(s t) = (u v)

(
p 0
q −1

)
, (9)

and (u, v) in terms of (s, t) is given by

(u v) = (s t)

(1
p

0
q
p
−1

)
Note that (s, t) is a Z-basis if and only if

det

(
p 0
q −1

)
= ±1

so p = ±1. The sign of p depends on the orientation of (u, v) and (s, t),
which in this case is opposite, so p = 1.

Denote (U, V ) = (χu, χv) and (S, T ) = (χs, χt), then (S, T ) = (χs, χt) =
(χu+qv, χ−v) = (UV q, V −1), and (U, V ) = (χu, χv) = (χs±qt, χ−t) = (ST−q, T−1).
For (x, y) ∈ C× C∗ we get the gluing isomorphism

(x, y) 7−→ (xyq, y−1) (10)

Now suppose that (s, t) is not a Z-basis, then p 6= 1 and the above map
becomes

(x, y) 7−→ ( p
√

xyq, y−1)

which is not an isomorphism at x = 0.

The above illustrates how the combinatorial data from the fan and lat-
tice are related to properties of the associated variety. In particular, if all
the cones in the fan Σ ⊂ R2 are smooth, they are glued together with iso-
morphisms (10), and the result will be a smooth complex surface.

We will come back to this when we discuss the main example of a toric
variety in this paper related to the family of curves from Section 1.

But first we want to show a familiar example of a toric variety, and show
how the construction of blowing up points we used in section 1 arises in the
context of fans and lattices.
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2.4 Example: P1 × P1

Let Σ be the fan pictured in Figure 3, leaving out the dashed line for now.
The complex algebras corresponding to the cones σi are C[Sσ1 ] = C[X, Y ],
C[Sσ2 ] = C[X, Y −1], C[Sσ3 ] = C[X−1, Y −1], C[Sσ4 ] = C[X−1, Y ], where we
used the notation X := χe∗1 , Y := χe∗2 . Clearly, Each Xσi

is a copy of C2.
The common faces of the adjacent σi are the rays from the origin generated
by the standard basisvectors of R2.

σ1

0

σ2

σ4

σ1
′

σ3

Figure 3: Fan corresponding to the blow-up of P1 × P1 in a point

Denote the affine variety corresponding to ±ei by X±ei
, then by exam-

ple 2.1 Xe1 = C×C∗, Xe2 = C∗×C, X−e1 = C×C∗, X−e2 = C∗×C. Gluing
together the four copies of C2 along common open subsets X±ei

results in
the toric variety P1 × P1. Take for example Xσ1 and Xσ2 , then

Xσ1 C× C∗? _oo � � // Xσ2

with the gluing isomorphism (x, y) 7→ (x, 1
y
). Set X = u1

u2
, Y = v1

v2
,

then the Xσi
are the four affine charts of P1 × P1, with ([u1 : u2], [v1 : v2])

homogeneous co-ordinates:

Xσ1 = {(u1

u2
, v1

v2
) ∈ C2|u2 6= 0, v2 6= 0} oo

(x, 1
y
)

//___ Xσ2 = {(u1

u2
, v2

v1
) ∈ C2|u2 6= 0, v1 6= 0}

OO

( 1
x

,y)
���
�
�

Xσ4 = {(u2

u1
, v1

v2
) ∈ C2|u1 6= 0, v2 6= 0}

��
( 1

x
,y)

OO�
�
�

Xσ3 = {(u2

u1
, v2

v1
) ∈ C2|u1 6= 0, v1 6= 0}//

(x, 1
y
)

oo_ _ _

Now we take the dashed line in Figure 3 into account. This leaves al
cones with the exception of σ1 unaffected. The cone σ1 is divided into σ1 and
σ1

′ which results in two semigroups Sσ1 generated by e∗1 and e∗2− e∗1, and Sσ1
′

17



generated by e∗1 − e∗2 and e∗2.The corresponding complex algebras C[Sσ1 ] and
C[Sσ1

′ ] are then given by

C[Sσ1 ] = C[X, X−1Y ], C[Sσ1
′ ] = C[Y,XY −1],

so Xσ1 and Xσ1
′ are both isomorphic to C2, and glued together along Xe∗1+e∗2

=
C× C∗ via the map (u, v) 7→ (uv, v−1).

The blow-up of C2 at the origin can be realized as the set B = {(x, y, [w1 :
w2]) ∈ C2×P1|xw1 = yw2} with projection onto C2. The set B has an open
cover by the two sets U1 = {(x, y, [w1 : w2])|w2 6= 0} and U2 = {(x, y, [w1 :
w2])|w1 6= 0}, with co-ordinates (x, w1

w2
) on U1, (y, w2

w1
) on U2, and gluing given

by (u, v) 7→ (uv, v−1). Since w1

w2
= x−1y, and w2

w1
= xy−1, we have Xσ1 = U1

and Xσ1
′ = U2 with the same gluing.

The result is {([u1 : u2], [v1 : v2], [w1 : w2]) ∈ P1×P1×P1|u1w1 = v1w2},
which is P1 × P1 blown up in the point ([0 : 1], [0 : 1]).

What we have done is to refine the fan defining P1 × P1 by subdividing
one of its cones. In general, Σ′ is a refinement of the fan Σ, if any cone of
Σ is a union of cones in Σ′. In that case one gets a birational, proper map
XΣ′ → XΣ between the associated toric varieties, which in the case of this
example is the projection

{([u1 : u2], [v1 : v2], [w1 : w2]) ∈ P1 × P1 × P1|u1w1 = v1w2}

��
P1 × P1

In the case of a cone σ ⊂ R2 which is not smooth, which is to say that the
vectors generating the edges of the cone do not form a basis of the lattice,
refining the cone provides a way to resolve the singularity due to the non-
smoothness of σ. This will be discussed further in the next section.
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Recall that in Section 1, we constructed the blow-up of P1 × P1 in the
four points p, q, p′, q′. Following the above example, we can now perform the
same construction in terms of subdividing the fan of P1 × P1: blowing up
the points p, q, and then p′, q′ amounts to adding the edges:

0 0

Blow up p, q Blow up p′, q′

σ′

σ

τ ′ τ

Figure 4: Blowing up P1 × P1 by refining the fan

To show that the toric variety associated to the refined fan is indeed
the same as Blp′,q′ defined in Section 1, consider the cones σ, σ′ and τ, τ ′ in
Figure 4. We use the same homogeneous coordinates for P1 × P1 as above.
Clearly, by the calculations above, the subdivision σ, σ′ corresponds to the
blow-up of p = ([0 : 1], [1 : 0]). In Section 1 the next step was to blow up
the point p′ which is the point where the exceptional divisor intersects the
(strict transform of the) u1-axis given by v2 = 0.

Above we had the blow-up of C2 in the origin given by B = {(x, y, [w1 :
w2]) ∈ C2 × P1|xw1 = yw2}. The strict transform of the x-axis is given
by xw1 = 0, and intersects the exceptional curve in w1 = 0. Define B′ =
{(x, w1

w2
, [z1 : z2]) ∈ C2 × P1|xz1 = wz2, w2 6= 0}, then B′ is covered by

the two open sets U ′
1 = {(x, w1

w2
, [z1 : z2])|z2 6= 0} with coordinates (x, z1

z2
) =

(x, w1

w2
x−1) = (x, x−2y) and U ′

2 = {(x, w1

w2
, [z1 : z2])|z1 6= 0} with coordinates

(w1

w2
, z2

z1
) = (x−1y, xw2

w1
) = (x−1y, x2y−1), and gluing (u, v) 7→ (uv, v−1).1

1Remark: in the example above we considered Xσ1 with coordinates (X, Y ), while we
are now considering Xσ2 with coordinates (X, Y −1), so to get the formula’s right substitute
y−1 for y in the foregoing
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The coordinate algebras of τ and τ ′ are given by C[X−1Y −1, X2Y ] and
C[X, X−2Y −1] respectively, so Xτ and Xτ ′ are both isomorphic to C2, with
gluing map (u, v) 7→ (uv, v−1). With the substitution (X, Y ) = (u1

u2
, v1

v2
) we

conclude that the fan

0

corresponds to {([u1 : u2], [v1 : v2], [w1 : w2], [z1 : z2]) ∈ P1 × P1 ×
P1|u1w1 = v2w2, u1z1 = w1z2}. Similarly the other subdivisions in Figure 4
correspond to the blowing up of q and q′, and the final conclusion is that the
set Blp′,q′ , defined in Section 1 in an attempt to obtain a clear description of
the family of curves Kb1,b2 , is actually the toric variety corresponding to the
fan:

0 0

Note that this is the (inward) normal fan to a polygon carrying a striking
but not at all coincidental resemblance to the one in Figure 1.
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3 Toric surface

0

σ3

σ1

τ4

τ1

τ2

τ3

σ4

σ2

Figure 5: The fan Σ ⊂ R2 with the lattice Z2

We want to examine the toric variety XΣ corresponding to the fan Σ
pictured in Figure 5. Σ consists of four 2-dimensional cones σ1, . . . , σ4, four
1-dimensional cones τ1, . . . , τ4, and one zero-dimensional cone which is the
origin. It is clear from the outset that XΣ will have singularities, since the
cones σ2, σ3 and σ4 are simplicial (their generating vectors span R2) but not
smooth (their generating vectors do not span Z2.)

σ∨3

σ∨4
σ∨1

σ∨2

Figure 6: Dual cones of the σi

The dual cones σi
∨ are pictured in Figure 6. The commutative semigroups
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Si = σi
∨ ∩ Z2 are

S1 = Z≥0(e
∗
1) + Z≥0(e

∗
2)

S2 = Z≥0(2e
∗
1 + e∗2) + Z≥0(e

∗
1) + Z≥0(−e∗2)

S3 = Z≥0(−e∗1 − 2e∗2) + Z≥0(−e∗1 − e∗2) + Z≥0(−2e∗1 − e∗2)

S4 = Z≥0(−e∗1) + Z≥0(e
∗
2) + Z≥0(e

∗
1 + 2e∗2)

So the affine toric varieties Xi = SpecC[Si] are given by

X1 = SpecC[X, Y ] ∼= C2,

X2 = SpecC[X2Y, X, Y −1] ∼= {(u, v, w) ∈ C3|v2 = uw},
X3 = SpecC[X−2Y −1, X−1Y −1, X−1Y −2] ∼= {(u, v, w) ∈ C3|v3 = uw},
X4 = SpecC[X−1, Y, XY 2] ∼= {(u, v, w) ∈ C3|v2 = uw},

which shows that X2, X3, X4 are singular at the origin in C3.

If we try to glue the affine varieties Xi together along the sets Xτ1
∼=

C∗ × C, Xτ2
∼= C× C∗, Xτ3

∼= C∗ × C, Xτ4
∼= C× C∗ in the same way as in

the non-singular case, we do not get isomorphisms, as was also indicated in
paragraph 2.3.

Denote by

σ1
∨

v1 =
(

0
1

)

u1 =
(

1
0

)

v2 =
(

0
−1

)
σ2

∨

u2 =
(

2
1

)

σ3
∨

v3 =
(
−1
−2

)

u3 =
(
−2
−1

)
σ4

∨

v4 =
(

1
2

)

u4 =
(
−1
0

)

the vectors generating the edges of the cones.
Write

s = au + bv

t = cu + dv

as

(s t) = (u v)

(
a c
b d

)
,
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then (
a c
b d

)
= (u v)−1(s t)

is the matrix with columns corresponding to the coordinates of the vectors

(s t) with respect to the basis (u v). Each

(
a b
c d

)
then gives the coordinate

change
C[χu, χv]→ C[χs, χt]

by
(χs, χt) = (χau+bv, χcu+dv) = ((χu)a(χv)b, (χu)c(χv)d). (11)

We calculate these matrices for the (ui vi) corresponding to adjacent cones

(u1 v1)
−1(u2 v2) =

(
1 0
0 1

)−1 (
2 0
1 −1

)
=

(
2 0
1 −1

)
(u2 v2)

−1(u3 v3) =

(
2 0
1 −1

)−1 (
−2 −1
−1 −2

)
=

(
−1 −1

2

0 3
2

)
(u3 v3)

−1(u4 v4) =

(
−2 −1
−1 −2

)−1 (
−1 1
0 2

)
=

(
2
3

0
−1

3
−1

)
(u4 v4)

−1(u1 v1) =

(
−1 1
0 2

)−1 (
1 0
0 1

)
=

(
−1 1

2

0 1
2

)
Denote (Ui, Vi) := (χui , χvi), then using equation (11) we have:

(U2, V2) = (U2
1 V1, V

−1
1 )

(U3, V3) = (U−1
2 , U

− 1
2

2 V
3
2

2 )

(U4, V4) = (U
2
3
3 V

− 1
3

3 , V −1
3 )

(U1, V1) = (U−1
4 , U

1
2
4 V

1
2

4 )

The inverse coordinate changes are found by taking the inverses of the
matrices (ui vi)

−1(ui+1 vi+1). The diagrams below show the maps between
the common subsets C× C∗ or C∗ × C of the Xi:

X1
(x2y,y−1)

y 6=0
//______ X2

(x−1,

q
y3

x
)x 6=0

���
�
�
�
�
�

X4

x 6=0(x−1,
√

xy)

OO�
�
�
�
�
�

X3
y 6=0

( 3
q

x2

y
,y−1)

oo_ _ _ _ _ _

X1

(x−1,xy2) x 6=0

���
�
�
�
�
� X2

(
√

xy,y−1)

y 6=0
oo_ _ _ _ _ _

X4
y 6=0

(
q

x3

y
,y−1)

//______ X3

x 6=0 (x−1,
3
q

y2

x
)

OO�
�
�
�
�
�
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3.1 Singularities

To take a closer look at the singularities of the affine parts X2, X3, X4 of XΣ,
first consider X3 which corresponds to the cone σ3 with edges generated by
(−2, 1) and (1,−2). We choose a basis for the lattice Z2 so that σ3 (and σ3

∨)
take a more convenient form.

Let this basis be given by b1 = (0,−1), b2 = (1,−2), then the vectors
generating the edges of σ3 with respect to (b1, b2) are (0, 1) and (3,−2). The

σ3
∨σ3

semigroup S3 = σ3
∨ ∩ Z2 is given by

S3 = Z≥0(b
∗
1) + Z≥0(b

∗
1 + b∗2) + Z≥0(2b

∗
1 + 3b∗2),

and, denoting (X, Y ) = (χb∗1 , χb∗2), C[S3] = C[X, XY, X2Y 3], so that

X3 = Spec(C[X,XY, X2Y 3]) ∼= {(u, v, w) ∈ C3|uw = v3}.

Loosely speaking, the reason X3 has a singularity is that the vectors gen-
erating the edges of σ3 do not generate the whole lattice Z2. To clarify this,
suppose that L = Z(0, 1)⊕Z(3,−2) is the lattice that these vectors do gen-
erate, and leave σ3 ⊂ L ⊗ R = R2 the same. The lattice L is generated by
3b1 and b2, so the dual lattice L∨ has generators 1

3
b∗1 and b∗2.

The semigroup S ′
3 = σ3

∨ ∩L∨ is given by S ′
3 = Z≥0(

1
3
b∗1)⊕Z≥0(

2
3
b∗1 + b∗2),

and C[S ′
3] = C[U, V ] with U3 = X and V = U2Y , so X ′

3 = Spec(C[S3]) = C2.
The inclusions L ⊂ Z2 ⇒ Z2 ⊂ L∨ ⇒ C[S3] ⊂ C[S ′

3], induce a map
X ′

3 = C2 → X3.

Proposition 3.1. The map X ′
3 = C2 → X3 is the quotient map of the action

of the group of roots of unity G = {1, e2πi/3, e4πi/3} on C2 given by

η(x, y) = (ηx, η2y),

so that X3 = X ′
3/G, and X3 has a cyclic quotient singularity.
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σ3
∨

Figure 7: The lattices Z2 (black squares), L (red triangles), L∨ (blue circles).
(When lattice points overlap, the coarsest lattice is shown.)

Proof. Via the canonical duality pairing

L∨/Z2 × Z2/L→ Q/Z ↪→ C∗

given by 〈 , 〉 and q 7→ e2πiq respectively, Z2/L acts on C[S ′
i]:

v · χu = e2πi〈u,v〉χu

for u ∈ S ′
3 ⊂ L∨ and v ∈ Z2. This action is completely determined by

b1 · χu = b1 · χp 1
3
b∗1χqb∗2 = (e2πi/3)pχu

where u = p1
3
b∗1 + qb∗2 for some p, q ∈ Z≥0. So G = {1, e2πi/3, e4πi/3} =

{1, η, η2} acts on C[S ′
3] = C[χ

1
3
b∗1 , χ

2
3
b∗1+b∗2 ] = C[U, V ] by U 7→ ηU , V 7→ η2V .

The algebra C[S3] is given by C[S3] = C[X, XY, X2Y 3] = C[U3, UV, V 3]
for U3 = X, V = U2Y . This is exactly the invariant subalgebra C[U, V ]G ⊂
C[U, V ] under the action of G.

The inclusion
C[S3] = C[S ′

3]
G ⊂ C[S ′

3]

induces
C2/G = X3

In the same way it can be shown that X2 and X4 are equal to the quotient
C2/µ2 of C2 by the action (x, y) 7→ (eπix, eπiy) of the finite group µ2 =
{1, eπi}.
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3.2 Resolution of the singularities

In the previous section, the singularities due to the lack of smoothness of
some cones of XΣ were analysed by making a change to the lattice, while
leaving the cone the same. In this section we do the opposite: the lattice Z2

remains fixed, while we will subdivide the non-smooth cones in such a way,
that the vectors generating the edges of the new cones form a Z-basis for Z2,
i.e. such that all cones of the fan Σ are smooth.

Let Σ ⊂ R2 be a complete fan, which means that the union of all its
cones is R2. Suppose that Σ′ is a refinement of Σ, then for each cone σ′ ∈ Σ′,
there is a σ ∈ Σ such that σ′ ⊂ σ. This implies that for the correspond-
ing semigroups Sσ ⊂ Sσ′ , so C[Sσ] ⊂ C[Sσ′ ]. This determines a morphism
Xσ′ −→ Xσ ⊂ XΣ. The morphisms Xσ′ −→ XΣ patch together to a mor-
phism XΣ′ −→ XΣ, which is birational and proper under our assumptions.
(For details see [2])

In the picture below, the cones which are not smooth are divided along
the dashed lines, resulting in the refined fan Σ′ which has only smooth cones,
as is readily seen from the fact that the determinants of the matrices (ui vi)
with ui, vi the vectors generating the edge of some twodimensional cone in
Σ′ are all equal to ±1.

This is exactly the same fan we showed to correspond to the (repeated)
blow-up of P1 × P1 in Section 2.4, so what we constructed in Section 1 was
actually a resolution of the singularities of XΣ.
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4 Toric surface embedded in P
4

4.1 Toric variety X∆ from the polytope ∆

In Section 2.1 a toric variety was defined as a variety which contains C∗n as
an open dense orbit. This gives an easy way to generate examples of toric
varieties: for any finite set of points A = {a1, . . . , ak ∈ Zn} of the lattice Zn,
there is a corresponding toric variety XA ⊂ Pk−1.

There is a bijective correspondence between elements of the lattice Zn

and Laurent monomials, which are group homomorphisms C∗n −→ C∗. For
k = (k1, . . . kn) ∈ Zn and φ = (φ1, . . . , φn) ∈ C∗n this correspondence is given
by

k ←→ (φ 7−→ φk = φk1
1 φk2

2 · · ·φkn
n ∈ C∗)

Let φai
: C∗n → C∗ be the Laurent monomials corresponding to the

elements of A, with φai
= φ

ai
1

1 φ
ai
2

2 · · ·φ
ai

n
n . Then C∗n acts on Pk−1 by

(φ, [x1 : . . . : xk]) 7→ [φa1

x1 : . . . : φak

xk]

and the toric variety XA is defined as the closure of the orbit of this action
through [1 : 1 : . . . : 1].

m5

m4

m2m1

m3

Figure 8: The polygon ∆

Figure 8 shows a polygon ∆ ∈ R2 and the lattice Z2. The lattice points
∆ ∩ Z2 of ∆ are m1 = (−1,−1), m2 = (0,−1), m3 = (−1, 0), m4 =
(0, 0), m5 = (1, 1). These lattice points of ∆ determine the toric variety
X∆ ⊂ P4 as the closure of the orbit through [1 : 1 : 1 : 1 : 1] of the C∗ × C∗-
action

((λ, µ), [x1 : x2 : x3 : x4 : x5]) 7→ [λ−1µ−1x1 : µ−1x2 : λ−1x3, x4, λµx5] (12)
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Figure 9: The polygon ∆ and its normal fan Σ

4.2 Normal fan

By taking the outer normal vectors to ∆, we retrieve the fan used to define
XΣ in section 3, see Figure 9.

In section 2.1 each two-dimensional cone σ in the fan was used to obtain
an affine variety Xσ, which was subsequently glued to the affine varieties
corresponding to neighboring cones along their common edges.

In this section we use the same fan to construct the toric variety XΣ in
an alternative way. First we will obtain a quotient of (an open subset of) C4

by an action of C∗ × C∗ via the quotient of Z4 by a sublattice of rank two
associated to the fan. Via the lattice points mi of the polytope ∆ we will
obtain monomials xm

i which all transform in the same way under this action,
i.e. they are all multiplied by the same factor. This gives an embedding into
P4.

Taking normal vectors of minimal length in Z2, we get four unique vectors
in Z2, which we will denote by

n1 =

(
1
0

)
, n2 =

(
0
1

)
, n3 =

(
−2
1

)
, n4 =

(
1
−2

)
.

Note that in terms of the ni, ∆ is given by the inequalities:

〈x, ni〉 ≥ −1, i = 1, . . . , 4 (13)

Define the map α : Z4 7→ Z2 as follows:

α : ei 7−→ ni, i = 1, . . . , 4
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with {e1, e2, e3, e4} the standard basis of Z4. Since α is surjective, we have
the exact sequence

0 // L
β // Z4 α // Z2 // 0

Where L := Z(1, 1, 1, 1)⊕Z(0, 3, 1, 2). Identifying L with Z2, and choos-
ing standard bases for Z2 and Z4, α and β can be represented as

α =

(
1 0 −2 1
0 1 1 −2

)
β =


1 0
1 3
1 1
1 2


By taking duals we also get the exact sequence

0 // Z2∨ αT
// Z4∨

βT
// Z2∨ // 0 (14)

where for k ∈ Z2∨,

αT (k) = k ◦ α : Z4 → Z,

and for l ∈ Z4∨,

βT (l) = l ◦ β : Z2 → Z.

The exact sequence (14) induces the following exact sequence of complex
groups:

1 // Hom(Z2∨,C∗)
β̂T

// Hom(Z4∨,C∗) α̂T // Hom(Z2∨,C∗) // 1 (15)

which we write as

1 // G
β̂T

// C∗4
α̂T // H // 1 (16)

where α̂T and β̂T are just the appropriate compositions with αT and βT .
We use the identifications Zn∨ ∼= Zn, and

Hom(Zn,C∗) ∼= C∗n (17)

given by: φ ∈ Hom(Zn,C∗) ∼ (φ1, . . . , φn) where φi is equal to φ(ei) ∈ C∗,
with ei ∈ Zn the nth standard basis vector. Then for φ ∈ Hom(Zn,C∗),
(a1, . . . , an) ∈ Zn, φ(a1, . . . , an) = φ1

a1φ2
a2 . . . φn

an .
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We will verify the exactness of (16) explicitly, the calculation will be

useful later. Let ξ ∈ G ∼= C∗ × C∗, then β̂T (ξ) = ξ ◦ βT : Z4∨ → C∗. βT is
given by (

1 1 1 1
0 3 1 2

)
so for (l1, l2, l3, l4) : Z4 → Z

ξ ◦ βT (l1, l2, l3, l4) = ξl1+l2+l3+l4
1 ξ3l2+l3+2l4

2 ∈ C∗

and the four components (β̂T (ξ))i = ξ ◦ βT (ei) are

ξ ◦ βT (1, 0, 0, 0) = ξ1

ξ ◦ βT (0, 1, 0, 0) = ξ1ξ2
3 (18)

ξ ◦ βT (0, 0, 1, 0) = ξ1ξ2

ξ ◦ βT (0, 0, 0, 1) = ξ1ξ2
2

Similarly, for any λ : Z4∨ → C∗,

α̂T (λ) = λ ◦ αT : Z2∨ → C∗

So that if k = (k1, k2) : Z2 → Z,

λ ◦ αT (k) = λk1
1 λk2

2 λk2−2k1
3 λk1−2k2

4 (19)

so in components

α̂T (λ1, λ2, λ3, λ4) = (λ1λ
−2
3 λ4, λ2λ3λ

−2
4 )

Applying this formula to β̂T (ξ1, ξ2) = (ξ1, ξ1ξ2
3, ξ1ξ2, ξ1ξ2

2) gives

α̂T β̂T (ξ) = (ξ1(ξ1ξ2)
−2ξ1ξ2

2, (ξ1ξ2
3)(ξ1ξ2)(ξ1ξ2

2)
−2

) = (1, 1)

We now have all the ingredients to define the toric variety associated to
the normal fan of ∆ via the action of G.

First consider the natural action of C∗4 on C4 given by

λ · x = (λ1x1, λ2x2, λ3x3, λ4x4), λ ∈ C∗4, x ∈ C4

This restricts to the action

G× C4 → C4,
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which from (18) is given by

(ξ1, ξ2) · (x1, x2, x3, x4) = (ξ1x1, ξ1ξ2
3x2, ξ1ξ2x3, ξ1ξ2

2x4) (20)

To ensure this action has no singular orbits, we let G act on the comple-
ment of a closed subset of C4: define

Z = {(x1, x2, x3, x4) ∈ C4|x1x2 = 0, x2x3 = 0, x3x4 = 0, x1x4 = 0}

Then the complement C4\Z has at least one of the monomials xixj 6= 0
for 1 ≤ i < j ≤ 4.

The toric variety associated to the normal fan Σ is defined as the quotient

XΣ = (C4\Z)/G

It follows from (16) that XΣ contains the torus H ∼= C∗2 via the inclusion
C∗4 ⊂ C4\Z:

H ∼= C∗4/G ⊂ (C4\Z)/G = XΣ

In the next section we describe an embedding of this quotient into P4.

4.3 Embedding in P
4

We turn back to the polygon ∆ in Figure 8. The lattice points mi ∈ ∆ ∩Z2

are given by

m1 = (−1,−1) m4 = (0, 0)

m2 = (0,−1) m5 = (1, 1)

m3 = (−1, 0)

and the minimal vectors normal to the faces of ∆ by

n1 = (1, 0) n3 = (−2, 1)

n2 = (0, 1) n4 = (1,−2)

Recall that ∆ is given by the inequalities (13): 〈x, ni〉 ≥ −1, i = 1, . . . , 4,
for any mj ∈ ∆ ∩ Z2:

〈mj, ni〉+ 1 ≥ 0.
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We use this fact to define the following monomials in z1, . . . , z4 ∈ C:

zmj =
4∏

i=1

z
〈mj ,ni〉+1
i (21)

These monomials have the property that they are all multiplied by the
same factor by the action of G defined in the previous section:

Proof. first observe that for (λ1, . . . , λ4) ∈ C∗4

λ · zmj =
4∏

i=1

(λizi)
〈mj ,ni〉+1 = λ1λ2λ3λ4z

mj

4∏
i=1

λ
〈mj ,ni〉
i (22)

Now interpret (λ1, . . . , λ4) as λ : Z4 → C∗ via the correspondence (17),
then from (19) we see that

4∏
i=1

λ
〈mj ,ni〉
i = α̂T λ(mj) = λ ◦ αT (mj)

where mj := 〈mj, 〉 ∈ Z2∨.2

To restrict the action to G, substitute λ = β̂T (ξ) for some ξ ∈ G. Then
(16) gives

4∏
i=1

λ
〈mj ,ni〉
i = α̂T λ(mj) = (α̂T β̂T ξ)(mj) = 1

So (ξ1, ξ2) · zmj = ξ1ξ1ξ
3
2ξ1ξ2ξ1ξ

2
2z

mj = ξ4
1ξ

6
2z

mj for any 1 ≤ j ≤ 5.

Define wj := zmj , so that

w1 = z2
3z

2
4

w2 = z1z
3
4

w3 = z2z
3
3

w4 = z1z2z3z4

w5 = z2
1z

2
2 (23)

and define a map

2Actually, the polygon ∆ naturally sits in ’dual space’, as can be seen if one views the
defining inequalities of ∆ as x ∈ ∆ ⊂ R2∨ ⇔ x(ni) = 〈x, ni〉 ≥ −1 for all outer normal
vectors ni.
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C4\Z −→ P4

by

(z1, z2, z3, z4) 7−→ [w1 : w2 : w3 : w4 : w5]

where

Z = {(z1, z2, z3, z4) ∈ C4|z1z2 = 0, z2z3 = 0, z3z4 = 0, z1z4 = 0}

Since (ξ1, ξ2) · wj = ξ4
1ξ

6
2wj for any (ξ1, ξ2) ∈ G, 1 ≤ j ≤ 5, this map

factors over XΣ, and we get

ρ : (C4\Z)/G = XΣ −→ P4

Via the C∗4-action on the monomials wj, G there is an action of H =
C∗4/G on P4. The action of C∗4 on the monomials wj = zmj is given by (22):

λ · wj = λ1λ2λ3λ4

4∏
i=1

λ
〈mj ,ni〉
i wj

= λ1λ2λ3λ4α̂T λ(mj)wj

= α̂T λ(mj)wj (wj homogeneous).

Define η := α̂T λ ∈ H ∼= C∗ × C∗, then

η = (η1, η2) = (λ1λ
−2
3 λ4, λ2λ3λ

−2
4 ) (24)

and the action of H on wj is given by η · wj = ηmjwj, so

η · [w1 : w2 : w3 : w4 : w5] = [η−1
1 η−1

2 w1 : η−1
2 w2 : η−1

1 w3 : w4 : η1η2w5] (25)

This is the action (12) of the Laurent monomials corresponding to the
lattice points of ∆ on P4 we defined at the beginning of this section, so we
recover the description of XΣ as the closure of the orbit of this action through
[1 : 1 : 1 : 1 : 1] in P4.
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4.4 Lines

We take another look at the polygon ∆ in Figure 8. There are the following
affine relations among the lattice points mj ∈ ∆ ∩ Z2:

m1 + m4 = m2 + m3

m1 + m5 = 2m4

m2 + m3 + m5 = 3m4

where the last one is redundant because it follows from the first two relations.
For the wj it follows that

w1w4 = w2w3

w1w5 = w2
4 (26)

since w1w4 = zm1zm4 = zm1+m4 = zm2+m3 = zm2zm3 = w2w3, and similarly
for the second equation.

These equations are invariant under the action of H, which follows from
the definition of this action as: η · wj = ηmjwj.

So the image of ρ in P4 is given by the equations (26), and we obtain yet
another description of XΣ as the projective variety in P4 defined by these
homogeneous equations.

From these equations we derive the following: If w4 = 0, then w1w5 = 0
and w2w3 = 0. It follows that the four projective lines

L1 = [p : 0 : q : 0 : 0]

L2 = [p : q : 0 : 0 : 0]

L3 = [0 : p : 0 : 0 : q]

L4 = [0 : 0 : p : 0 : q]

are in XΣ ⊂ P4. If we draw a line through the mj that corresponds to
the wj which are not equal to zero in the definition of Li above, it is a line
through the face of the polygon ∆, see Figure 10. The defining equations of
w1, . . . , w5 (23) show that the set {(z1, z2, z3, z4) ∈ C4\Z|zi = 0} is mapped
onto the line Li.

Via the map ρ, these lines are added to the torus H ∼= C∗×C∗, compact-
ifying it in P4:

H ∼= C∗4/G ⊂ C4/G ↪→ P4
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m5

m4

z4 = 0

z3 = 0

z2 = 0
m2m1

m3

z1 = 0

L2

L3

L4
L1

Figure 10: The lines L1, . . . , L4

4.5 Comparison to the blow-up of P1 × P1

In section 1 we looked at the family of curves given by

a1s
−1t−1 + a2t

−1 + a3s
−1 + a4 + a5st = 0 (27)

The set of solutions to this equation, relative to some given a1, . . . , a5 ∈ C
not all equal to zero, can be realized as follows.

Take a general hyperplane in P4, given by

a1x1 + a2x2 + a3x3 + a4x4 + a5x5 = 0.

Intersecting this hyperplane with the image of the map

(s, t) −→ [s−1t−1 : t−1 : s−1 : 1 : st]

gives the set of solutions to (27) for a fixed [a1 : . . . : a5] ∈ P4.

Remark 4.1. Note that the Laurent monomials from the above equation are
exactly those defining the action (25) of H on P4, corresponding to the
lattice points of the polygon ∆. So the set of solutions to (27) is given by
the intersection of X∆ with a hyperplane in P4.

After the substitution s = u1

u2
, t = v1

v2
with ([u1 : u2], [v1 : v2]) ∈ P1 × P1,

the above map becomes

([u1 : u2], [v1 : v2]) −→ [r1 : r2 : r3 : r4 : r5]

35



with

r1 = u2
2v

2
2

r2 = u1u2v
2
2

r3 = u2
2v1v2 (28)

r4 = u1u2v1v2

r5 = u2
1v

2
1

This map is not defined in the points p = ([0 : 1], [1 : 0]), q = ([1 : 0], [0 :
1]). In section 1 we obtained the set

X = {([u1 : u2], [v1 : v2], [w1 : w2],[x1 : x2], [y1 : y2], [z1 : z2]) ∈ P1 × . . .× P1|
u1w1 = v2w2, u1y1 = w1y2, u2x2 = v1x1, v1z1 = x1z2}

by blowing up the points p and q and the points of intersection of the
exceptional curves over p and q and the lines u1 = 0 and v1 = 0 respectively.

We get a well-defined map by extending the above map to X via projec-
tion onto P1 × P1:

X

��

// P4

P1 × P1

::u
u

u
u

u

To get equation (3)

u2
2v2

2 + u1u2v2
2 + u2

2v1v2 + b1u1u2v1v2 + b2u1
2v1

2 = 0

from
a1r1 + a2r2 + . . . + a5r5 = 0

we have to set a1 = 1 and normalize the other coefficients ai under the action
of C∗ × C∗ on ri given by

([u1 : u2], [v1 : v2]) 7→ ([µu1 : u2], [νv1 : v2])

which we now recognize as the action of H on P4:

(µ, ν) · r1 = r1 (µ, ν) · r2 = µr1

(µ, ν) · r3 = νr3 (µ, ν) · r4 = µνr4 (29)

(µ, ν) · r5 = µ2ν2r5
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(Multiply everything with the factor µ−1ν−1 to get the same as in (25).)
Setting a1 = 1, µ = a−1

3 , ν = a−1
2 , b1 = a−1

2 a−1
3 a4, b2 = a−2

2 a−2
2 a5 in r1 +

νa2r2 + µa3r3 + µνa4r4 + µ2ν2a5r5 = 0 gives

r1 + r2 + r3 + b1r4 + b2r5 = 0

The ri satisfy the same equations as the wj of the previous section, since
they define the same toric variety X∆ (Remark 4.1.)

r1r4 = r2r3, r1r5 = r2
4,

so the lines L1, . . . , L4 ⊂ P4 are also contained in the image of X −→ P4.
From definition (28) it is easy to see that the projective line [0 : 1] × P1 is
mapped to L1 = [p : 0 : q : 0 : 0], P1 × [0 : 1] to L2 = [p : q : 0 : 0 : 0], and
[1 : 0]× P1, P1 × [1 : 0] both to the point [0 : 0 : 0 : 0 : 1].

Using the affine coordinates from Table 1, we calculate the image of the
exceptional curves in X by expressing the monomials r1, r2, r3, r4, r5 in these
coordinates, and then putting u, v = 0:

coordinates image exceptional curve
(u, w) [r1 : . . . : r5] = [uw2 : u2w2 : w : uw : u] [0 : 0 : 1 : 0 : 0]
(u, y) [r1 : . . . : r5] = [u2y2 : u3y2 : y : uy : 1] [0 : 0 : y : 0 : 1] = L4

(v, x) [r1 : . . . : r5] = [vx2 : x : v2x2 : vx : v2] [0 : 1 : 0 : 0 : 0]
(v, z) [r1 : . . . : r5] = [v2z2 : z : v3z2 : zv : 1] [0 : z : 0 : 0 : 1] = L3

v2 = 0

Ep
Eq′

v1 = 0
Ep′

u1 = 0
Eq

u2 = 0

{u1 = 0} → L1

Eq′ → L3

{v1 = 0} → L2

Ep′ → L4

p p′

q

q′
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5 Conclusions

We have now seen a lot of different descriptions of the same toric variety
X (we don’t write XΣ or X∆ anymore, since they are really the same) con-
structed from either the polytope ∆, or its normal fan Σ (Figure 9.) The
first one, treating each of the (maximal) cones seperately to construct from
it an affine variety, and subsequently gluing these together, turns out to be
useful to study the singularities arising from the non-smoothness of some
cones, and moreover the resolution of these singularities.

Another perspective is provided by using the lattice points of a polytope
to define an action of C∗2 via Laurent monomials on the projective space P4,
and then taking X to be the closure of the orbit through [1 : 1 : . . . : 1].

Yet another way to describe X is as the quotient of a suitable open
subset of C4 by an action of C∗ × C∗ determined by a sublattice of rank
two in Z4, which in turn is determined by the fan Σ. The monomials in
(z1, . . . , z4) ∈ C4 which transform equally under the action of C∗×C∗ can be
used as homogeneous coordinates for P4 to embed X into P4.

Finally, the last description of X is given as the projective variety in P4

given by the equations

w1w4 = w2w3

w1w5 = w2
4 [w1 : . . . : w5] ∈ P4

From the previous section we have that the intersection of X ⊂ P4 with
a fixed hyperplane in P4 gives a curve which intersects the lines L3 and L4.
To let the hyperplane defining the curve vary, we take the intersection of
X ⊂ P4 with the incedence relation on P4 × P4∨ given by I = {(p, V ) ∈
P4×P4∨|p ∈ V }. This set X ∩ I then consists of pairs ([w1 : . . . : w5], Va) of
a point [w1 : . . . : w5] ∈ P4 satisfying

w1w4 = w2w3

w1w5 = w2
4 (30)

a1w1 + a2w2 + a3w3 + a4w4 + a5w5 = 0

and the hyperplane Va = {[x1 : . . . : x5] ∈ P4|a1x1 + . . . + a5x5 = 0, [a1 :
. . . : a5 ∈ P4]} through that point. We denote this hyperplane Va with
[a1 : . . . : a5].

The group H ∼= C∗ ×C∗ acts on P4 ×P4∨ by the action (25) on P4, and
the same action with opposite signs on P4∨:

η·([w1 : . . . : w5], [a1 : . . . : a5])

= ([η−1
1 η−1

2 w1 : η−1
2 w2 : η−1

1 w3 : w4 : η1η2w5], [η1η2w1 : η2w2 : η1w3 : w4 : η−1
1 η−1

2 w5])
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Since the equations (30) are invariant under this action of H, X ∩ I is
left invariant by H. So we can restrict the projection (P4×P4∨)/H −→ P4∨

to X ∩ I:

X ∩ I
� � // P4 × P4∨/H

��

P4∨/H

This models the family of curves given by (30) as a threedimensional variety
in P4 × P4∨, with parameter space P4/H.
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