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Abstract 

    

For many high vision purposes, detecting low-level 

objects in an image is of great importance. These 

objects, which can be 2D or 3D, are called blobs. 

Blobs appear in different ways depending on their 

scale and can be detected using local operations in 

a multi-scale representation of the image. This 

paper describes several blob detection methods 

and applications and tries to make a fair 

comparison without performing experiments. It 

shows that blobs can be defined and localized in 

different ways and that each method has its own 

strength and shortcomings.     

 

1 Introduction 
 
Automatic detection of blobs from image datasets 

is an important step in analysis of a large-scale of 

scientific data. These blobs may represent 

organization of nuclei in a cultured colony, 

homogeneous regions in geophysical data, tumor 

locations in MRI or CT data, etc. This paper 

presents several approaches for blob detection and 

applications.  
Before going into detail on blob detection, first 

some definitions of a blob are given. Lindeberg [10] 

defines a blob as being a region associated with at 

least one local extremum, either a maximum or a 

minimum for resp. a bright or a dark blob. 

Regarding the image intensity function, the spatial 

extent of a blob is limited by a saddle point, a point 

where the intensity stops decreasing and starts 

increasing for bright blobs and vice versa for dark 

blobs. A blob is represented as a pair consisting of 

one saddle point and one extremum point.  

Hinz [8] just describes a blob as a rectangle with a 

homogeneous area, i.e. a constant contrast, which 

becomes a local extremum under sufficient 

amount of scaling.     

Rosenfeld et al. [13] defines a blob as a crossing of 

lines perpendicular to edge tangent directions, 

surrounded by 6 or more directions, like in the 

following picture: 

 

 
 

Fig. 1. A blob surrounded by 8 different directions taken from 

www.wikipedia.org 

 

A third definition of a blob is given by Damerval [4], 

describing blobs as the largest modulus maxima of 

the continuous wavelet transform (CWT, see 

Appendix) along some maxima of interest. The 

CWT is able to construct a time-frequency 

representation, offering a good localization of 

frequencies and time (scale). The exact meaning of 

modulus maxima and maxima of interest is 

explained later in the section of the concerning 

method. 

To this point only 2D blob definitions are 

mentioned. Yang and Parvin [17] give a definition 

of a 3D blob as being elliptic features in scale-space 

portioned by a convex hull (boundary of the 

minimal convex set containing a set of voxels 

belonging to a blob).  

 

Blobs occur in many shapes and places. For 

instance, blobs can be found in an image of 

sunflowers, zebra fish neurons or in an image of a 

hand. Below, a number of example images are 

shown.   

   

 
 
Fig. 2. A Sunflower field (taken from [10]) 



 

  
 
Fig. 3. A microscopic zebra fish image overlaid by green dots 

corresponding to blobs (taken from [9]) 

 

 
 
Fig. 4. A hand overlaid by a multiple of blobs and ridges (taken 

from 15]) 

 

Hand and finger blobs are defined in a different 

way than sunflower blobs. For different kinds of 

blobs, different detection methods are needed. 

These methods must fulfill a number of 

requirements: 

 

- reliability / noise insensitiveness: a low-

level vision method must be robust to 

noise, 

- accuracy: in vision metrology highly 

accurate results are needed, 

- scalability: blobs of different sizes should 

be detected, 

- speed: it should be near to real-time 

processing, 

- few and semantically meaningful 

parameters: it should be easy to 

understand for adjustment, 

- capability of extracting geometric and 

radiometric attributes; this is needed for 

blob classification  

 

The organization of the paper is as follows: In the 

next section, a number of distinctive blob 

detection methods will be presented and in the 

following section applications of blob detection 

methods will be described. After that, the methods 

and applications will be evaluated using (some of) 

the requirements mentioned above. The discussion 

section concludes the paper.   

 

 

 

2 Methods 
 

 

2.1 Prerequisites 

 

A majority of the blob detection methods are 

based on the scale-space representation. The main 

purpose of the scale-space representation is to 

understand image structure at all levels of 

resolution simultaneously and link images at 

successive scales. Scale-space is derived by 

applying a smoothing kernel -like the Gaussian – 

(see Appendix)on the image with a scale 

parameter depending on  the amount of 

smoothing of finer image structures. A blob with 

linked extrema over scale is called a scale-space 

blob. The difference in scale where a blob shows 

up and disappears is called the scale-space lifetime 

of a blob. The scale at which a maximum over 

scales is attained will be assumed to give 

information about how large a blob is.  

Blob detectors can be based on image gradients 

(contrast), eigenvalues or templates. Gradient 

magnitudes are used to detect blob outlines, 

eigenvalues to specify the length, width and 

orientation of blobs and templates to match a blob 

to a predefined shape. More details will follow in 

the method sections. 

 

 

2.2 Template Matching 

 
A fast and robust method for detecting blobs is 

template matching [16]. A template of a blob is 

moved over the search image and blobs are 

detected where the template matches a part of the 

image. The following steps are performed: 

 

1. Overlay the template on the initial image 

position (0,0). 

2. Calculate the sum of squared differences 

(SSD) or the sum of absolute differences 

(SAD) for the overlaid area and store it in 

a correlation matrix. 

3. Move on to the next image position and 

repeat step 2 until the final image position 

is reached. 

 

Bright spots in the correlation image correspond to 

probable blob locations. By defining a threshold, 



an exact number of blobs and exact locations can 

be used as result.     

When the template covers pixels outside the 

image, those values could be calculated by 

mirroring or extrapolation (see Appendix). 

Otherwise, the template positions could be 

restricted to positions with template coverage 

within the image.  

Small templates can be used to detect primitive 

blobs while large templates can detect specifically 

shaped blobs. To get a more flexible blob 

detection, multiple templates could be designed. 

 

 

2.3 Watershed Detection 

 
The watershed method [19] assumes an image to 

be grey value mountains and simulates the process 

of rain falling onto the mountains, running down 

the mountain range and accumulating in basins. 

This process is repeated until all basins are filled 

and only the watersheds between different basins 

remain. These watersheds correspond to bright 

blobs, whereas dark blobs can also be obtained by 

taking the gradient amplitude image. This flooding 

process is performed on the gradient image, i.e. 

the basins should emerge along the edges. 

Normally, this algorithm will lead to an 

oversegmentation of the image, especially for 

noisy image material, e.g. medical CT data. Either 

the image must be pre-processed or the regions 

must be merged on the basis of a similarity 

criterion afterwards.    

 

 

2.4 Spoke Filter 

 
An early (single scale) blob detector which detects 

blobs of various sizes is the spoke filter, also called 

Adaptive Spatial Erosion Filter, proposed by Minor 

and Sklansky [18]. It is applied as follows: 

 

1. Apply edge filters to extract local edge 

elements of all (8) orientations. 

2. Mark pixels as “interior”, which lie within 

a certain distance of an edge element on a 

line perpendicular to the edge tangent 

direction. 

3. Mark spoke crossings as being interior 

pixels marked by edge elements of 

different orientations. 

4. Mark blobs as being crossings marked by 

6, 7 or all 8 directions. 

 

By varying the distance, blobs of various sizes can 

be detected.  

 

This method is extended to multi-scale by 

Rosenfeld et al. [13]. He defines an intensity 

pyramid as a set of fine to coarse resolution 

images. At each level, the spoke filter is applied to 

detect blobs. Alternatively, for each image in the 

intensity pyramid, the edge elements can be 

calculated and summed for all images. For the 

summed gradient image, step 2 to 4 of the spoke 

filter algorithm can be followed to detect blobs at 

multiple scales.         

 

 

2.5 Automatic scale selection 

 
Most blob detection applications are based on 

Lindeberg’s method for automatic scale selection 

[11]. The principle for automatic scale selection is: 

in the absence of other evidence, assume that a 

scale level, at which some combination of 

normalized derivatives assumes a local maximum 

over scales, reflects the size of the corresponding 

blob. Scale levels are obtained by Gaussian 

smoothing. The Gaussian function meets the 

requirement that no details are generated when 

resolution decreases and it provides simpler 

pictures at coarse scales [5].  

Lindeberg presents two combinations as basic blob 

detectors to be used in Gaussian scale-space: the 

Laplacian and the Monge-Ampère operator.  

The Laplacian operator is defined as the trace of 

the Hessian matrix, which is the square matrix of 

second-order partial derivatives of the image 

function (see Appendix). By multiplying the trace 

with a scale parameter, the Laplacian operator can 

be used to detect scale-space maxima. 

The Monge-Ampère operator is defined as the 

scale-normalized determinant of the Hessian 

matrix. The scale parameter is multiplied twice to 

obtain scale invariance. 

Lindeberg claims, that maxima over scales have a 

nice behavior under rescalings of the intensity 

pattern: if an image is rescaled with a constant 

factor, than the scale at which the maximum is 

assumed, will be multiplied with the same factor. 

This guarantees that image operations transform 

with size variations. 

In practice, blobs may be detected at coarse scales, 

and the localization properties may not be the 

best. Therefore a coarse-to-fine approach is 

needed to compute more accurate localization 

estimates.  

 

 

 

 

 



2.6 Sub-pixel precise blob detection 
 

Hinz [8] presents such an approach for accurate 

localization, build upon Gaussian scale-space. The 

blob is defined as a rectangle with constant 

contrast, which becomes a local extremum under 

sufficient Gaussian smoothing. Because this 

approach is applied to images containing equally 

aligned objects, like windows or cars, a rectangle is 

used as basic model of the blob. The basic idea of 

the algorithm is as follows: 

 

1. Initialize the expected rectangle 

orientations of the shorter and larger side. 

2. Calculate the Hessian matrix, the 

eigenvector and the direction of the 

rectangle’s shorter side using Gaussian 

smoothing with an 1D kernel in the 

expected orientation of the shorter side of 

the rectangle. 

3.  

a. Compute the curvature 

maximum along the direction of 

the rectangle’s shorter side using 

the profile along the direction of 

the larger side. 

b. Analyze the gradients of the used 

profile to determine bias and 

remove it. 

4.   

a. Compute the curvature 

maximum along the direction of 

the rectangle’s larger side using 

the profile along the direction of 

the shorter side. 

b. Analyze the gradients of the used 

profile to determine bias and 

remove it. 

5. Reconstruct the rectangle’s center point 

from both profiles. 

 

In addition, this method provides a way to 

construct the boundary of the blob and 

approximate the boundary by an ellipse. For blob 

classification, it can extract attributes like the 

blob’s boundary length, area, geometric moments 

and the parameters of the fitted ellipse. 

 

 

2.7 Effective maxima line detection 

 
Damerval [4] presents a method where connected 

curves of modulus maxima at different scales - 

called maxima lines - are effectively selected, to 

divide blobs from noise. The selection of maxima 

lines is performed by the following steps. 

 

 

1. Compute the 2D Gaussian scale-space. 

2. Compute modulus maxima at every scale. 

3. Connect modulus maxima in adjacent 

scales that are close to each other and 

have the same sign (plus or minus) to 

obtain maxima lines. 

4. Remove maxima lines that consist of 

coefficients that increase on average 

when scale decreases; they associate to 

noise. 

5. Remove maxima lines that do not cross at 

least 5 integer scales; they associate to 

white noise. 

6. Compute the global maximum for each 

maxima line and remove maxima lines 

which deviate at scales larger than the 

global maximum scale; they associate to 

blob structures outside the blob 

boundary. 

7. Join maxima lines that cross in scale-

space; the blob location is given by the 

cross point and its characteristic scale by 

the median of the global maximum scales 

of all joined maxima lines. 

 

 

2.8 Confidence Measurement 

 
Forssén and Granlund [6] present a rather complex 

multi-scale method to extract blobs from an image. 

It is not based on linear Gaussian smoothing, as the 

previous methods. The full algorithm is complex 

and can be summarized as follows:  

 

1. The image is first converted into channel 

images using a set of windowed cosine 

kernel functions. 

2. For each of the images, a low-pass 

pyramid is generated  

3. Because the filter sums up to 1, a 

threshold of 0.5 is used to obtain binary 

confidence values, resulting in a clustering 

pyramid. 

4. The image is pruned by deleting similar 

clusters that lie on top of each other. 

5. The pixels left in the pyramid are used as 

seeds for region growing resulting in a 

region image. 

6. For all regions, the raw moments of order 

0 to 2 are computed to approximate blobs 

by ellipses.      

 

 
This results in an image of ellipses with different 

sizes and orientations, overlapping each other.



2.9 Summary 
 

Method Blob 

Definition  

Blob/Noise

Threshold

Template 

matching 

An exact shape 

on a template 

A threshold 

on the SSD or 

SAD 

Watershed 

detection 

A watershed 

between 

different 

basins  

An image 

intensity 

threshold 

Spoke filter A crossing of 

lines 

perpendicular 

to edges 

A minimum 

of 6 crossings 

Automatic 

scale 

selection 

A local 

maximum of a 

normalized 

derivative over 

scales 

A threshold 

on the scale

space lifetime 

and operator 

response 

Sub-pixel 

precise 

blob 

detection 

A small, 

compact 

image 

primitive, 

defined as a 

rectangle with 

constant 

contrast 

A blob has to 

turn in a local 

extremum 

under 

sufficient 

amount of

smoothing 

Effective 

maxima 

line 

detection 

Modulus 

maxima 

connected in 

scale-space 

A Maxima 

line selection 

step 

Confidence 

measure-

ment 

A homo-

geneous 

region with a 

clear boundary 

The 

confidence 

and a 

threshold on 

area size 

Table 1. Summary of Blob Detection Methods

 

 

/Noise 

Threshold 

Multi-

scale 

Automatic Speed Accuracy Image

A threshold 

on the SSD or 

No Semi-

automatic: 

the template 

must be 

designed, 

but the 

matching 

step is 

automatic 

Very 

fast 

High 

Detection of specific case,

taken from Mathworks.com

An image 

threshold  

No Yes Fast High 

Detected  elements in a space 

image, t

A minimum 

of 6 crossings  

No, but 

can be 

exten-

ded to 

multi-

scale  

Yes Fast High 

A spoke crossing, t

A threshold 

on the scale-

space lifetime 

operator 

 

Yes Mostly, only 

the number 

of blobs 

must be set 

manually 

Quite 

slow 

(multi-

scale) 

Reasonable 

Levels in scale

A blob has to 

turn in a local 

extremum 

sufficient 

amount of 

smoothing  

Yes Mostly, only 

the 

detection 

scale must 

be set 

manually 

Quite 

 Slow 

Very high 

Detected rectangle center point 

A Maxima 

line selection 

Yes Yes Quite 

 Slow 

Reasonable 

Wavelet maxima lines [4]

confidence 

threshold on 

 

Yes Mostly, only 

the 

minimum 

area size 

must be set 

manually 

Quite 

Fast 

Reasonable 

Part of 

Table 1. Summary of Blob Detection Methods

Image 

  
Detection of specific case, 

aken from Mathworks.com 

 
Detected  elements in a space 

image, taken from aanda.org 

 
A spoke crossing, taken from 

research.esd.ornl.gov 

 
Levels in scale-space [10] 

 
Detected rectangle center point 

and  orientation [8] 

 
Wavelet maxima lines [4] 

 
Part of a clustering pyramid [4] 



3 Applications 
 

 
3.1 Nodule detection 

 
A medical application for nodule detection is 

presented in Multi-scale Nodule Detection in Chest 

Radiographs by Schilham et al. [14], where 

pulmonary nodules are detected in thorax x-ray 

images using a Computer Aided Diagnosis (CAD) 

scheme. 

The multi-scale blob detection is performed on a 

lung image, using the Laplacian and gamma-

normalized derivatives. Detected blobs are 

represented using spatial and geometrical features 

which are used to train a classifier. 
 

 

3.2 Lesion detection 

 
In Detection and Characterization of Unsharp Blobs 

by Curve Evolution by Gerig et al. [7], an 

application, based on geometric heat flow (see 

Appendix) is represented for detecting lesions in 

MR images of Multiple Sclerosis patients. These 

lesions are visible in MR images as unsharp blobby 

structures. Analysis of level curves of the image 

intensity function makes it possible to identify and 

characterize these structures. In this way, lesions 

are identified as collections of concentric, simple 

closed curves. A so-called onion-skin model is 

performed, where segmentation is formulated as 

search for concentric curves organized as layers of 

the onion-skin. The detected lesions are stored 

using two parameters: their center and their radial 

intensity function. 

 

 

3.2.1 2D Nuclei detection 

 
An application for 2D nuclei detection is presented 

in Detection of Blob Objects in Microscopic 

Zebrafish Images Based on Gradient Vector 

Diffusion by Li et al. [9], where nuclei, cells and 

neurons need to be detected in microscopic 

zebrafish images. 

The method consists of three key steps: diffusion 

of gradient vector field with elastic deformable 

model, computing the flux image and finally post-

procesing, using a threshold and non-maximum 

suppression. 

In the first step, the direction of image gradients 

provides important information for blob detection. 

In the second step, the flux of the diffused gradient 

field is computed, where blobs are detected as 

points where the divergence is negative and 

diffused gradient flow is directed to, comparable 

with the spoke filter (but much more complicated). 

Finally the flux image is reversed, because blobs 

correspond to local minima, and non-maximum 

suppression and a threshold is used to detect 

candidate blobs.  

 

Another 2D nuclei detection method for counting 

cell nuclei in tissue sections is presented in 

Automated Tool for the Detection of Cell Nuclei in 

Digital Microscopic Images: Application to Retinal 

Images by Byun et al. [2]. It is based on scale-space 

blob detection, for it uses a Laplacian of Gaussian 

(LoG) filter. Its purpose is to count death cells in 

the inner nuclear layer of retina images. 

The method mainly consists of two steps: 

 

1. Blob detector design. The LoG filter is 

designed such that the diameter of the 

filter is proportional to the average 

diameter of nuclei in the image. After 

filtering the given retinal image, local 

maxima will correspond to blob centers. 

2. Searching for local maxima. The minimum 

distance between blob centers is used as 

the search radius for the local maxima.  

 

This method consists of two parameters which 

have to be manually set: the cell size and the 

minimal distance between cells. 

 

 

3.2.2 3D Nuclei detection 
 

In CHEF: Convex Hull of Elliptic Features for 3D Blob 

Detection by Yang and Parvin [17], an application 

for detecting 3D nuclei is given, based on Gaussian 

smoothing. Blobs are classified as elliptic features 

in scale-space and then grouped into 3D connected 

components, divided by their convex hulls. This 

method called CHEF (Convex Hull of Elliptic 

Features) is applied to a database of multi-cellular 

systems for detailed quantitative analysis.  

CHEF is applied as follows (see next page): 

 

 

 

 

 

 

 

 

 

 

 

 



1. The scale and the number of planes of the 

convex hull (N) are selected.  

2. The original image is convolved with the 

Gaussian kernel at the selected scale.  

3. The bright elliptic features are computed 

using a Hessian matrix to detect and 

classify each point in the image. A 

negative (positive) Hessian classifies a 

bright (dark) elliptic feature.  

4. The bright elliptic features are 

decomposed into disjoint connected 

components.  

5. For each component, the convex hull is 

computed. 

6. Components are merged if they overlap. If 

no merging appears, then stop; otherwise 

go to step 4. 

 
For construction of the convex hull, the size of the 

known objects of interest is the key parameter; it is 

determined empirically. 

 

 

3.3 Human body part detection 

 
An application for body part detection is presented 

in Blob Analysis of the Head and Hands: A Method 

for Deception Detection by Lu et al. [12]. It is 

applied on 2D video images and it tries to capture 

the location and movements of head and hands to 

identify behavioral states. 

The position, size and angle of head and hands are 

tracked using color analysis, eigenspace-based 

shape segmentation and Kalman filters. Hand and 

face regions are detected as blobs using a 3D Look-

Up-Table (LUT) of skin color samples. Regions that 

are incorrectly identified because their color 

matches to the skin color, are disregarded through 

fine segmentation and comparing the subspaces of 

the face and hand candidates.  

 
Another application for body part detection is 

given in Real-Time Markerless Human Body 

Tracking Using Colored Voxels and 3-D Blobs by 

Caillette and Howard [3]. The system first 

reconstructs a 3D voxel-based representation of a 

person from images of multiple cameras, and then 

matches a kinematic model in 3D space. Voxels are 

classified from pixel-samples taken inside the 2D 

projections onto the surface planes. To attain real-

time performance, a measure of the distance to 

the background model is computed for each 2D 

sample. Voxels are then classified from statistics on 

these distances across the available views, as 

discarded, subdivided or retained as belonging to 

the foreground.  

 

 

  



3.4 Summary 

 
Application Basic 

Method  

Extension Image 

Nodule 

detection 

Laplacian of 

Gaussian  

Pre-processing: contrast 

enhancement with a local 

normalization filter 

Post-processing: blob boundary 

extraction by multi-scale edge 

focusing 

 
Detected nodules, taken from 

isi.uu.nl/Research/Gallery/noduledetection 

Lesion detection Geometric 

heat flow 

Pre-processing: selecting samples 

and discretizing spatial and scale 

parameters. 

  

 
An MRI and the corresponding level curve image [7] 

2D Nuclei 

detection 

Laplacian of 

Gaussian  

Method: construction of a flux image 

Post-processing: reversing flux image, 

non-maximum suppression and a 

threshold step  

 
A zebrafish image and its flux image [9] 

3D Nuclei 

detection 

Laplacian of 

Gaussian 

Pre-processing: selecting scale and 

number of planes of the convex hull 

Method: computing Hessian matrix 

and convex hulls 

Post-processing: splitting and 

merging of convex hulls 

  
One view of a 3D nuclei image and the result of 

segmentation [17] 

Human Body 

part detection 

Skin color 

sampling 

2D [12] 

Method: eigenspace-based shape 

segmentation and Kalman filters 

 

3D [3] 

Post-processing: splitting and 

merging of blobs  

 
A person and its fitted model  [3] 

Table 2. Summary of Blob Detection Application

 

4 Evaluation 
 

 
4.1 Sensitivity and specificity 

 
The quality of Blob detectors are measured and 

compared using sensitivity and specificity. 

Sensitivity is measured by dividing the number of 

true positive blob candidates by the sum of true 

positive and false negative blob candidates. A 

sensitivity of 100% means that the detector 

recognizes all blobs that are actually there in the 

image. 

Specificity is measured by dividing the number of 

true negative blob candidates by the sum of true 

negative and false positive blob candidates. 100% 

specificity means that all detected blob candidates 

are in fact blobs. 



By plotting the sensitivity vs. 1 – the specificity, a 

ROC curve is created, for which an optimal 

combination of sensitivity and specificity can be 

chosen.  

To be able to measure the sensitivity and 

specificity, a golden standard is needed. Only in the 

multi-scale nodule detection method, a golden 

standard was available. So the blob detectors need 

to be evaluated in another way. 

 

 

4.2 Experiments    
 

Another way of comparing the quality of blob 

detectors is by performing all detectors on the 

same set of images. This is however not feasible 

for two reasons. 

First, there are different blob definitions, as 

mentioned in the introduction. Therefore one 

detector looks for other kind of blobs, for example 

spots, while another detector looks for specific 

template blobs. Comparing these results would 

lead to nothing. 

Second, performing experiments are not part of 

the literature study. Hence, comparison can only 

be done based on existing experiments and what 

the authors claim.  

For the 7 blob detector, the pros and cons, which 

are claimed by the authors, in the following table: 

 

 

Method Pros  Cons 

Template 

matching 

• Exact blob matching possible 

• Very fast 

• Easy to implement 

 

• Restricted blob definition 

• Manual template design 

• Single-scale 

• Translation, rotation and scaling  only possible by 

designing extra templates   

Watershed 

detection 

• Works good for blobs with 

homogenous contrast and a clear edge 

• Near real-time performance 

• Automatic 

• Can extract bright and dark blobs 

• Very sensitive to noise, which leads to 

oversegmented results 

• Single-scale 

• No shape and size information available 

Spoke filter • Works good for blobs of different sizes 

with clear consistently oriented edges 

• Extension to multi-scale possible 

• Extension works well for blobs with 

non-homogeneous background  

• Fast 

• Automatic 

• Single-scale is easy to implement 

• Very dependent on blob boundary orientation; 

works only for perfect boundaries with edge 

directions crossing in the middle of the blob 

• Only perfect circular blobs are detected   

Automatic scale 

selection 

• Works well for blobs of all sizes 

• Invariant under scaling, translation and 

rotation 

• Insensitive to noise because of 

significance measurement and scale-

space lifetime threshold 

• Size measurement possible 

• Automatic 

 

• Works not well for blobs with unsharp boundaries 

• No accurate extraction of the blob position and 

size 

• Rather slow because multiple scales are analyzed 

• Only circular blobs are detected   

Sub-pixel precise 

blob detection 

• Works well for circular and elliptic 

blobs 

• Sub-pixel precise detection 

• Extraction of several useful blob 

attributes possible 

• Blob classification possible   

• Scale-space parameter needs to be manually 

adjusted for detecting blobs of different sizes 

• Works not well on blobs with lots of different 

sizes   

• Difficult to implement 

• Slow when blobs with lots of sizes needs to be 

detected  

Effective maxima 

line detection 

• Works well for blobs of all sizes 

• Invariant under scaling, translation and 

rotation 

• Exact blob size computation possible 

• Robust to noise 

• Same as for automatic scale selection 

Confidence 

measurement 

• Works well for homogenous blobs of 

all sizes 

• Overlapping blobs and blobs within 

blobs can also be detected 

• Proven noise insensitiveness for salt 

and pepper noise, white rectangular 

noise and 1/f noise 

• Works not well for inhomogeneous blobs 

• Not fully evaluated 

• Hard to implement 

• Detects a lot of small blobs within bigger blobs 

Table 3. Pros and cons of Blob Detection Method



For different kind of blob images, different 

methods would be preferable. To get a proper 

qualification (and comparison) of the methods, 

without doing actual experiments, the best 

detector for a set of different images is selected, 

based on the qualifications that are given by 

their authors.  In the next table, the ‘test’ images 

are given, together with their best and worst 

blob detector. The images are all taken from 

en.wikipedia.org. 

 

 
Image Best  Worst 

 

Automatic scale selection and effective maxima 

line selection. 

They work well on circular blobs of different sizes. 

Watershed detection and spoke filter. 

They cannot cope with different blob 

sizes. 

The watershed detector would have 

difficulties with the inhomogeneous 

center of the sunflowers. 

The spoke filter can only handle perfectly 

circular blobs, which is not the case in this 

real world example.  

 

Confidence measurement. It works well on 

homogenous blobs of all sizes even if they 

overlap.  

Sub-pixel precise blob detection. The 

stars differ a lot in size while the scale 

parameter cannot be infinitely changed.     

 

Sub-pixel precise blob detection. It works well on 

blobs that are equally sized and rectangular 

shaped, because in the method a scale parameter 

is set and a rectangle serves as basic primitive. 

The spoke filter. A spoke crossing has to 

consist of at least 6 edge directions, while 

a rectangle only has 4 edges.  

 

 

Template matching. The bricks are easily detected 

using templates. Also confidence measurement 

can work reasonable after merging. 

 

Automatic scale selection an effective 

maxima line selection. The 

inhomogeneous contrast would lead to 

detection of lots of blobs on the brick.  

  

 

Watershed detection. It works well for detection 

of homogeneous blobs of all shapes and sizes. 

 The spoke filter. It works badly on non-

circular shaped blobs.  

Template matching. All shapes are 

different and need a separate template.  

Table 4. Blob images and their most and less preferable detector

 

   

With this knowledge, the following qualifications 

can be made: 

 

• In most cases, the spoke filter and 

template matching are not preferable. 

They are both too restricted. The spoke 

filter is made to detect perfectly circular 

blobs, which cannot be found in real 

world data. Template matching detects 

only specific blobs, while most images 

contain a variety of blob shapes. Even 

windows on a building are difficult to 

detect because they are slightly different 

in scale and rotation. 

• Watershed detection is more flexible, 

because it can detect blobs of all sizes, 

but it is very sensitive to noise. Only 

inhomogeneous blobs without noise 

(local maxima) are perfectly detected. 

 

 



• Sub-pixel precise blob detection is very 

accurate in detecting blobs and its sizes 

and positions. It is robust to noise, since it 

smoothes the image using a Gaussian 

function. However, it is not flexible in 

detecting blobs of all sizes, since it has a 

scale parameter which has to be changed 

for each blob size. 

• Automatic scale selection and effective 

maxima line selection work both well for 

circular blobs of different sizes. They are 

robust, because noise is filtered out 

based on their short scale-space lifetime. 

Their bottleneck is the circularity 

restriction. 

• Most flexible is confidence measurement. 

It works well on homogenous blobs of all 

sizes even if they overlap.  

         

 

5 Discussion 
 
In this paper, a number of blob detection methods 

and applications described. The blob detection 

methods have been compared and qualified, 

without experiments. The blob detection 

applications mostly contain specific methods for 

their purpose. No qualification of those methods is 

made because only globally designed blob 

detection methods are relevant in this paper. 

 

Strictly spoken, the Laplacian and Monge-Ampère 

operator, used in automatic scale selection and 

effective maxima line selection, are the basic blob 

detectors. Automatic scale selection and effective 

maxima line selection are algorithms that use 

those operators. However, an algorithm that 

detects blobs is in definition a blob detector. 

 

Because of lack of experiments, no hard 

qualification of the blob detectors could be made 

in terms of sensitivity and specificity. Using the 

authors claim and the results of their experiments, 

a comparison was performed. There is not a 

detector that is best for all cases. Every case needs 

a consideration of which detector would be most 

suitable. The most flexible detector seems the 

confidence measurement; however it needs to be 

evaluated.  

 

The concept of automatic scale selection is widely 

used in applications and as base for other blob 

detectors. It has a great advantage that blobs of all 

sizes are detected at their own scale, which can be 

used to calculate their sizes. The difficult algorithm 

and the lack of evaluation of confidence 

measurement could be a reason it is not so 

popular. 

 

In future, experiments could be done on test 

images, like the one in the table, to make a proper 

comparison between the methods. For now, this 

paper could serve as guide to make a choice of the 

right blob detector for the right application.   
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Appendix 

 

 
A1.  Wordlist 
 

 

A1.1 Continuous wavelet transform

A continuous wavelet transform is used to divide a 

continuous-time function into wavelets. Unlike 

Fourier transform, the continuous wavelet 

transform possesses the ability to construct a 

frequency representation of a signal that offers 

very good time and frequency localization. In 

mathematics, the continuous wavelet transform of 

a continuous, square-integrable function x(t) at a 

scale a > 0 and translational value 

expressed by the following integral 

Taken from en.wikipedia.org 

where ψ(t) is a continuous function in both the 

time domain and the frequency domain called the 

mother wavelet and represents operation of 

complex conjugate. The main purpose of the 

mother wavelet is to provide a source function to 

generate the daughter wavelets which are

the translated and scaled versions of the mother 

wavelet. To recover the original signal x(t), inverse 

continuous wavelet transform can be exploited.

 

A1.2 Extrapolation 

 

To estimate (a function that is known over a range 

of values of its independent variable) values 

outside the known range. For example, when 

add up with some number towards 

values outside the border are estimated using 

same addition. 

 

 

A1.3 Flux 

 

The flux is computed as: 
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, where �� is a 8-neighbor of �, and 

outward normal at �� on the unit circle centered at 

�.  

Continuous wavelet transform 

sform is used to divide a 

time function into wavelets. Unlike 

, the continuous wavelet 

transform possesses the ability to construct a time-

of a signal that offers 

very good time and frequency localization. In 

mathematics, the continuous wavelet transform of 

integrable function x(t) at a 

 is 
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where ψ(t) is a continuous function in both the 

time domain and the frequency domain called the 

represents operation of 

. The main purpose of the 

mother wavelet is to provide a source function to 

generate the daughter wavelets which are simply 

the translated and scaled versions of the mother 

wavelet. To recover the original signal x(t), inverse 

continuous wavelet transform can be exploited. 

o estimate (a function that is known over a range 

nt variable) values 

For example, when pixels 

 the border, 

values outside the border are estimated using the 

����   (2) 

��  is the 

on the unit circle centered at 

A1.4 Gaussian 

 

The Gaussian Smoothing Operator performs a 

weighted average of surrounding pixels based on 

the Gaussian distribution. It is used to remove 

Gaussian noise and is a realistic model of 

defocused lens. The scale parameter (s

defines the amount of blurring. Large values for 

sigma will only give large blurring for larger 

sizes.  

The operator generates a kernel

then applied to groups of pixels in the image. 

These template values are defined by 2D Gaussian 

Equation: 

 

(3)

 

Fig. 5. The 2D Gaussian function, taken from 
en.wikipedia.org 

 

 

A1.5 Hessian matrix 

 

The Hessian matrix is the square matrix

order partial derivatives of a 

describes the local curvature of a function of many 

variables.  

Given the real-valued function

 

 

if all second partial derivatives of f exist, then the 

Hessian matrix of f is the matrix

where x = (x1, x2, ..., xn) and Di is the differentiation 

operator with respect to the i

Hessian becomes: 

he Gaussian Smoothing Operator performs a 

ounding pixels based on 

the Gaussian distribution. It is used to remove 

Gaussian noise and is a realistic model of 

The scale parameter (sigma) 

defines the amount of blurring. Large values for 

sigma will only give large blurring for larger kernel 

kernel of values that are 

then applied to groups of pixels in the image. 

These template values are defined by 2D Gaussian 

(3) 

 
The 2D Gaussian function, taken from 

square matrix of second-

of a function; that is, it 

describes the local curvature of a function of many 

valued function 

 

if all second partial derivatives of f exist, then the 

Hessian matrix of f is the matrix 

 

) and Di is the differentiation 

operator with respect to the ith argument and the 



 

The Hessian is defined as the determinant of the 

above matrix. 

 

A1.6 Mirroring 

Copying values inside the image to their mirrored 

position outside the image. For example: 3, 2, 1 

towards the image border would be continued 

with 1, 2, 3.  


