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Introduction

History

In 1983, Simon Donaldson in his seminal work on invariants of four dimensional
manifolds [Don83], proved that there the solutions of certain partial differential
equations on these spaces are not invariant under general homeomorphisms, but
are invariant under diffeomorphisms. These invariants were computed via the
moduli space of SU(2) connections satisfying the anti-self-dual equations, called
instantons. The moduli spaces of instantons have some undesirable properties,
for example, they are not compact, and the invariants were in general very hard
to compute.

In 1988, Edward Witten in [Wit88] observed that these invariants could also
be computed using a certain kind of quantum field theory, N = 2 supersym-
metric Yang-Mills theory, which he called topological quantum field theory. To-
gether with Nathan Seiberg, he argued in [SW94] this topological quantum field
theory could also be understood by using the dual theory to the Yang-Mills
quantum field theory, which is a much simpler theory of abelian monopoles.
Their proof of the equivalence used certain aspects of quantum field theory
which still have no sound mathematical basis, making the equivalence a conjec-
ture. However the new U(1) invariants were mathematically sound, and much
simpler to compute than the Donaldson invariants, leading to a wealth of new
information on four-manifolds, and establishing many conjectures within weeks
of the publication of the Seiberg-Witten theory.

Following the work of Seiberg and Witten, many aspects of the new theory
were investigated, leading to a relation between Seiberg-Witten theory and cer-
tain integrable systems. A programme [FL98][FL01] was set up to lay a direct,
rigorous link between the Seiberg-Witten invariants and Donaldson invariants
by investigating so called “non-abelian monopoles” in a PU(2) theory, which in
various limits lead to monopoles and instantons. This programme made some
progress, but the technical difficulties were even harder than those of Donaldson
theory, and a definitive proof is still lacking.

However in 2003, Nekrasov in [Nek03] proposed another way to directly cal-
culate the defining function of the SU(2) quantum field theory on R4 without
using the conjectural duality. His proposal was to modify the original theory
by imposing an extra symmetry, which lead to equivariant instantons, calculat-
ing the equivariant volume using generalizations of the Duistermaat-Heckman
formula in equivariant cohomology, and then in the end taking the limit to the
non-equivariant limit. This programme was taken up and completed in 2003 and
2004 by three different groups in different ways, by Nekrasov-Okounkov [NO06],
Nakajima-Yoshioka [NY05a][NY05b], and Braverman-Etingof [Bra04][BE06].

Outline of thesis

In this thesis we will first introduce some concepts of differential geometry,
symplectic geometry and equivariant cohomology. Especially important in the
rest of this thesis are connections and curvature on principal fiber bundles, the
symplectic cut, and the Berline-Vergne formula and its generalizations. After
this, we will describe the Seiberg-Witten invariants and derive some of their
properties.
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Finally, we state the famous ADHM construction of instantons, which is vital
for the Nekrasov programme, and follow the approach taken by Nekrasov and
Okounkov, elaborated by Martens, to compute the full prepotential governing
the SU(2) quantum field theory. This gives a proof of the equivalence of the
Seiberg-Witten and Donaldson invariants, at least on R4.
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Chapter 1

Preliminaries

In this chapter we will develop some of the mathematical background needed
for the results in chapters 2 and 3. First some background on Lie groups and
Lie algebras is given. Then the tools of symplectic and Kähler geometry are
introduced. The theory of connections is built upon the basis of Lie groups, and
finally we develop equivariant cohomology, which binds these subjects together.

In this thesis, we will use the notation Ωk(M) for a differential k-form on a
manifold M , d : Ωk(M) → Ωk+1(M) for the exterior differentiation on forms,
ιX : Ωk(M) → Ωk−1(M) for the interior product with a vector field X. Mani-
folds will be finite dimensional, except when stated otherwise, vector spaces will
be either over R or C. The identity of a group will be denoted by e, or in the
case of linear actions on a vector space, by I.

1



CHAPTER 1. PRELIMINARIES 2

1.1 Lie groups and algebras

In this section we will clarify our notation on Lie groups and Lie algebras, and
define some more general concepts, such as super Lie groups and super Lie
algebras. We will give (almost) no proofs or motivations. See any standard text
on Lie groups for these.

1.1.1 Lie groups

A Lie group is a smooth manifold G which acts by multiplication as a group on
itself: G×G→ G. We can also consider conjugation, that is for h ∈ G the map
Ch : G→ G given by g 7→ hgh−1 Some examples are:

• Rn acting on itself by translation, this is abelian.

• The circle U(1) acting on itself by rotations. This is also abelian.

• The torus group Tn, consisting of n copies of the circle. This is an abelian
group.

• The group of orientation preserving rotations in Rn, SO(n). This not
abelian for n > 2.

• The group of n × n unitary matrices, U(n), acting on itself by matrix
multiplication. If n > 1, this group is not abelian.

A torus in a Lie group G is an abelian subgroup of G. A maximal torus of
G, TG, is a subgroup which is maximal with respect to dimension among such
groups. A Lie group need not have a torus, but if it has, all maximal tori are
conjugate to each other. The rank of a Lie group is defined to be the dimension
of TG. Because all TG are conjugate, this is well-defined. Some examples:

• A maximal torus of SO(2n) is given by the set of all simultaneous rotations
in n orthogonal 2-planes. Thus the rank is n.

• A maximal torus of SO(2n+ 1) is the same, so it also has rank n.

• For SU(n) the maximal torus is given by the intersection of n copies of
U(1) with SU(n), so the rank is n− 1.

Given a maximal torus TG, we define

Definition 1.1.1. Let N(TG) be the normalizer of TG in G, that is the following
subgroup of G : {x ∈ G|xTG = TGx}. Then the Weyl group W (TG) of TG in
G is N(TG)/TG.

It can be proven that the Weyl group of a compact Lie group is finite.

1.1.2 Lie algebras

A Lie algebra is a vector space g over a field k, in this thesis R or C, with a
binary operation [, ] : g× g → g on it, which has the following properties:

• Anti-commuting: [a, b] = −[b, a]
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• Bilinear: [a+ b, c] = [a, c] + [b, c]

• Jacobi identity: [a, [b, c]] + [c, [a, b]] + [b, [a, c]] = 0

for all a, b, c ∈ g. The operation [, ] is called a Lie bracket.
Any Lie group G defines a corresponding Lie algebra g. The Lie algebra is

identified with the tangent space at the identity in the Lie group. There is a
map from g to G, the exponential map, or exp given by

expX = γ(1)

with γ : R → G the one-parameter subgroup of G given by the condition
that γ′(0) = X. This is a bijection between a neighborhood of 0 in g and a
neighborhood of e in G. The conjugation map Ch fixes the origin, so we can
define Ad : G→ Gl(TeG) by Adx = TeCx. This called the adjoint representation
of G. It can be shown that Ad is a Lie group homomorphism. We can also view
Adx as an automorphism of g via the identification of g with TeG. The map
Ad maps e to the identity I in Gl(TeG) and TI(Gl(TeG)) = End(TeG) and we
define the linear map ad : TeG→ End(TeG) as ad = d(Ad)e.

A Lie algebra with a zero Lie bracket is called abelian. In every Lie algebra
one can construct an abelian subalgebra h, called the Cartan algebra with the
following defining properties:

1. h is a nilpotent Lie algebra, that is [h, h] = 0

2. h is equal to its own normalizer.

The second property implies that h is a maximal abelian subalgebra. We can
then define for any α ∈ h∗:

gα = {x ∈ g|[h, x] = α(h)x, h ∈ h}

This linear subspace of g has the following properties

1. Let α, β ∈ h∗. Then [gα, gβ ] ⊂ gα+β

2. The Cartan subalgebra h is g0

If α 6= 0 and gα 6= {0}, we call α a root of g with respect to h, and α is called
the weight of gα

Lemma 1.1.2. Denote by R the set of all roots of g with respect to h. Then

g = h⊕
⊕
α∈R

gα

It is easy to see that if α ∈ R, then −α ∈ R. We define R+, the set of
positive roots to be the subset of R such that for every root α ∈ R, exactly one
of the root α,−α is contained in R+ and for all α, β ∈ R+ such that α + β is
a root, α + β ∈ R+. An element of R+ is called simple if it cannot be written
as the sum of two elements of R+. For each choice of positive roots R+, there
exists a unique set of simple roots, such that R+ is precisely the set of roots
which can be written as positive combinations of the set of simple roots.
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1.2 Symplectic and Kähler geometry

1.2.1 Symplectic geometry

In this section we will very briefly recall symplectic geometry and related con-
cepts.

Definition 1.2.1. A symplectic form ω is a two-form which is:

1. closed, dω = 0

2. non-degenerate, if ω(X,Y ) = 0 for all Y then X = 0

A symplectic manifold is a manifold equipped with a symplectic form. As
a consequence of the second property of the symplectic form, it follows that a
symplectic manifold must be oriented and even-dimensional.

A simple example of a symplectic manifold is the cotangent bundle of a
manifold M , which has a natural symplectic form via the tautological one-form.
Set π : T ∗M → M to be the projection operator, Tx,απ : T (T ∗M) → TxM to
be the induced map of tangent spaces. Then, since αx ∈ T ∗xM is a linear map
TxM → R, we can compose with αx again, and get the map:

τα = αx ◦ Tα,xπ

a map from Tα(T ∗xM) → R. This map varies smoothly with αx and x, so this
defines a global one-form, τ . The exterior derivative σ = dτ of this one-form is
certainly closed, and it is also non-degenerate which can be shown using local
coordinates, hence σ is a symplectic form.

Much of this thesis is concerned with the way in which Lie groups act on
manifolds, and the interplay of that action with the symplectic structure.

Definition 1.2.2. Let v be a vector field on M . The Lie derivative Lv is

LXα =
d

dt
exp(−tX)

∣∣∣∣
t=0

α

for α ∈ Ωk(M).

The Lie derivative can also be computed by the Cartan homotopy formula:
Lv = d(ιv) + ιvd. If ω is a symplectic form dω = 0, so Lv = d(ιvω). Now if a
Lie group G acts on the manifold M , we can look at when this action preserves
the symplectic form.

Definition 1.2.3. An action of a Lie group G on a symplectic manifold (M,ω)
is called a Hamiltonian action if there exists a map

µ : M → g∗

called the moment map, such that the following holds: For each X ∈ g define

• the function µX : M → R, µX(p) = 〈µ(p), X〉

• the vector field X# on M generated by the one-parameter subgroup {etX |t ∈

R}, that is (X#f)(x) =
d

dt
f(e−tXx)|t=0
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Then dµX = ιX#ω, and so dιX#ω = 0

Because Lv = d(ιvω), we see then that LX#ω = 0
The moment map defined above is key to many interesting results, one of

which is the symplectic quotient , also know as Marsden-Weinstein or symplectic
reduction.

Definition 1.2.4. Let (M,ω) be a symplectic manifold of dimension 2n, and
G a Lie group. A symplectic reduction of M at a point p ∈ g∗ with respect to a
Hamiltonian action G, denoted by Mp = M//pG is

µ−1(p)/G

If p is a regular value of µ, the set µ−1(p) is a manifold (possibly with some
mild singularities), and if G acts freely on µ−1(p) the symplectic reduction is a
smooth manifold.

Theorem 1.2.5 (Marsden-Weinstein). There exists a unique symplectic
form νp on Mp such that

π∗pνp = i∗pω

where pip : µ−1(p) → Mp is the projection map with µ−1(p) considered as a
T -fiber bundle over Mp and ip : µ−1(p) ↪→M the inclusion map.

The proof of this theorem simplifies when using equivariant cohomology, so
we will postpone the proof to section 1.4.

1.2.2 Kähler geometry

A Riemannian metric on a complex manifold M is called Hermitian if it is
invariant under the complex structure, that is

〈Ix, Iy〉 = 〈x, y〉 ∀x, y ∈ TpM

This defines a two-form on M by

ω(x, y) = 〈Ix, y〉

Definition 1.2.6. A Kähler manifold is a complex manifold where the two-form
ω is closed.

Since the metric is non-degenerate, we see that ω is non-degenerate, hence
the Kähler form is a symplectic form.

For this thesis the notion of hyperkähler structure is also important.

Definition 1.2.7. A hyperkähler structure consists of 3 compatible complex
structures I, J,K such that I2 = J2 = K2 = IJK = −1 and three corresponding
closed non-degenerate two forms ωI(x, y) = 〈Ix, y〉, ωJ(x, y) = 〈Jx, y〉 and
ωK(x, y) = 〈Kx, y〉.

Examples of 4-dimensional hyperkähler manifolds are the 4-dimensional torus,
flat Euclidean space R4, K3 surfaces and the non-compact moduli spaces of in-
stantons. These will be defined later.

The symplectic quotient construction has generalizations to the Kähler and
hyperkähler case.
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Definition 1.2.8. Let (M,ω) be a Kähler manifold of dimension 2n, and G a
Lie group, which acts Hamiltonian with respect to ω with moment map µ. The
Kähler quotient of M at a point p ∈ g∗, denoted by Mp = M//pG is

µ−1(p)/G

If (M,ω1, ω2, ω3) is a hyperkähler manifold of dimension 2n, and G a Lie group
which acts Hamiltonian with respect to ω1, ω2 and ω3 with moment maps µ1,
µ2 and µ3. The hyperkähler quotient of M at a point p ∈ g∗, denoted by
Mp = M///pG is (

µ−1
1 (p) ∩ µ−1

2 (p) ∩ µ−1
3 (p)

)
/G

It can be proven that a manifold constructed by a Kähler or a hyperkähler
quotient are themselves Kähler or hyperkähler respectively.

Given a symplectic form on a manifold, one can construct something slightly
weaker than a complex manifold. An almost complex structure is a complex
structure Jx on each fiber of the tangent bundle TxM that varies smoothly with
x ∈M . This structure is integrable if for each x0 ∈M there is a neighborhood
U ⊂ M of x0 such that x 7→ Jx is constant for all x ∈ U . Every symplectic
form induces an almost complex structure on the manifold. It is integrable if
and only if the manifold is Kähler, with Kähler form the symplectic form.

On a complex manifold M , we have an almost complex structure J on the
tangent space TM . This is a vector bundle endomorphism TM → TM such
that J2 = −1. We can thus decompose TM into the eigenspaces of J , TM (1,0)

with eigenvalue +i and TM (0,1) with eigenvalue −i. The map J induces a map
J∗ on T ∗M via the metric, and we can define T ∗M (1,0) and T ∗M (0,1) similarly.
We can make forms of arbitrary (p, q) by the wedge product:

T ∗M (p,q) =
p∧
T ∗M (1,0) ⊗

q∧
T ∗M (0,1)

A basis for T ∗M (1,0) is denoted by dzi and a basis for T ∗M (0,1) by dz̄i. The
space of complex k-forms decomposes into forms of type (p, q):

Ωk(M)⊗ C =
∑

p+q=k

Ωp,q(M)

The de Rham operator acting on this decomposition decomposes then into two
components:

d = ∂ + ∂̄, ∂ : Ωp,q(M) → Ωp+1,q(M), ∂̄ : Ωp,q(M) → Ωp,q+1(M)

With this one can define the Dolbeault complex, a generalization of the de Rham
complex for complex manifolds:

Hp,q =
Ker(∂̄ : Ωp,q(M) → Ωp,q+1)
Im(∂̄ : Ωp,q−1(M) → Ωp,q)

for q > 0

The Kähler form ω is a form of type (1, 1). Using the Hermitian inner product
we define formal adjoints of these operators, ∂∗, ∂̄∗. We have the following
duality:
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Theorem 1.2.9 (Serre duality). Let M be a compact manifold of complex
dimension n. Then there is a linear isomorphism

σ : Hp,q(M) → Hn−p,n−q(M)

For every Kähler manifold there exists local coordinates in which the metric
can be written as the second derivative of a function K, g = ∂∂̄K. The function
K is called the Kähler potential .

In the case of Seiberg-Witten theory, a slightly more special class of manifolds
is important.

Definition 1.2.10. Let M be a Kähler manifold with Kähler form ω and com-
plex structure I. A special Kähler structure on M is a real flat torsionfree
connection ∇ which satisfies

d∇ω = 0d∇I = 0

This definition is equivalent to saying that there is a prepotential, a holomor-
phic function F which determines the Kähler potential in special coordinates zi

by

K =
1
2
Im
(
∂F

∂zi
z̄i

)
(1.2.1)

A reference for all kinds of properties for these special Kähler manifolds is
[Fre99].
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1.2.3 Hodge theory

If we have an orientable compact Riemannian manifold M with metric g and di-
mension n, we can, by choosing an orientation, define an operator on differential
forms on that manifold, the Hodge star ?.

The inner product gp on TpM induces an inner product on
∧k

T ∗pM , so
we can define an inner product on Ωk by integrating the pointwise inner prod-
uct. We have that for any β ∈

∧k the non-degenerate linear operation α 7→
|g(α, β)|µM , with µM the oriented volume element in

∧n(M) and α ∈
∧k, is

given by the following operation

α ∧ ?β

with ?β ∈
∧n−k(M) uniquely determined. Thus ? is a linear isomorphism

between
∧k and

∧n−k. In this notation, we can thus write

(α, β) =
∫

M

g(α, β)µM =
∫

M

α ∧ ?β

Lemma 1.2.11. The square of the Hodge star ?2 on a k-form and n-dimensional
manifold M is given by (−1)k(n−k).

Proof. Let α be a k-form, which can be written as ei1 ∧ . . . ∧ eik
with I =

{im}k
m=1 ⊂ {1, . . . n}. By definition, β = ?α is a n− k form such that α ∧ β is

positively oriented. Thus β = ej1 ∧ . . .∧ ejn−k
with J = {jn} = {1, . . . n}\I. By

permuting, we get immediately that ?β = (−1)k(n−k)α.

With this star operator, we can define an adjoint to the differential operator,
along with an elliptic operator from Ωk(M) to Ωk(M).

Definition 1.2.12. The codifferential δ : ∧k → ∧k−1 is given by

δα = (−1)n(k+1)+1 ? d ? α

TheHodge Laplacian ∆ : ∧k → ∧k is the linear operator given by dδ + δd.

Proposition 1.2.13. The codifferential and the Hodge laplacian have the fol-
lowing properties:

a. The operator δ is the formal adjoint of d, that is 〈dα, β〉 = 〈α, δβ〉.

b. The Hodge Laplacian ∆ is formally self-adjoint.

c. ∆α = 0 ⇔ dα = 0 and δα = 0
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Proof. a. We have, for α a k − 1 form and β a k-form:∫
M

dα ∧ ?β =
∫

M

d (α ∧ ?β)− (−1)k−1

∫
M

α ∧ d(?β)

=(−1)k+(n−k+1)(n−(n−k+1))

∫
M

α ∧ ? ? d(?β)

=(−1)k+(n−k+1)(k−1)−(n(k+1)+1)

∫
M

α ∧ ?δβ

=(−1)k+nk−k2+k−n+k−1−nk−n−1

∫
M

α ∧ ?δβ

=(−1)3k−k2−2n

∫
M

α ∧ ?δβ

and since 3k − k2 − 2n is even in all cases, δ is the adjoint of d.

b. This follows directly from the fact that d is adjoint to δ and vice-versa.

c. We have that (∆α, α) = (dδ + δd)α, α) = (dδα, α) + (δdα, α) = (δα, δα) +
(dα, dα), both terms must be ≥ 0, hence it is only zero when δα = 0 and
dα = 0.

We define the harmonic k-forms to be

Hk(M) = {ω ∈ Ωk(M) : ∆ω = 0}

We see that due to proposition 1.2.13c there is a mapping from the harmonic k-
forms to the k-th de Rham cohomology class. In fact we even have the following
theorem, due to Hodge :

Theorem 1.2.14 (Hodge theorem). Every de Rham cohomology class on a
compact oriented Riemannian manifold M has a unique harmonic representa-
tive, and so

Hp(M ; R) ' Hp(M).

Also, Hp(M) is finite dimensional and Ωp(M) has the following decomposition
into orthogonal subspaces:

Ωp(M) = Hp(M)⊕ d
(
Ωp−1(M)

)
⊕ δ

(
Ωp+1(M)

)
For a proof see for example [HM89].
This follows partly from the fact that ∆ is an elliptic operator and elliptic

operators have finite dimensional kernels. We see from this theorem that the
de Rham cohomology groups are finite dimensional. For Kähler manifolds, the
Hodge theorem can be generalized as follows:

Theorem 1.2.15. Let M be a compact Kähler manifold. Define H(p,q)(M) =
{ω ∈ Ω(p,q)(M) : ∆ω = 0}. Then there is an isomorphism between H(p,q)(M)
and H(p,q)(M)

We define the Betti numbers bp as follows: bp = dim(Hp(M ; R). In the
case interesting for Seiberg-Witten theory, compact oriented 4 manifolds, we
have that b0 = 1 since we only consider connected manifolds. We now see
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that the only interesting Betti numbers are b1 and b2, since the others follow
by Poincaré duality. When we work in 4 dimensions, we can split b2 into two
different numbers, b2 = b+2 + b−2 , with b−2 the dimension of the eigenspace of ?
with eigenvalue −1 and b+2 the dimension of the eigenspace of ? with eigenvalue
+1, since ?2 = 1 on two-forms. We divide ∧2V up into the self-dual and anti-
self-dual forms:

∧2V = ∧2
+V ⊕ ∧2

−V,

where

∧2
+V = {ω ∈ ∧2V : ?ω = ω} ∧2

− V = {ω ∈ ∧2V : ?ω = −ω}

These spaces are both 3-dimensional subspaces of the six-dimensional space
∧2V . If we have a smooth two-form on M , we can divide it into the self-dual
and anti-self-dual part as follows:

ω+ =
1
2
(ω + ?ω) ∈ Ω2

+(M), (1.2.2a)

ω− =
1
2
(ω − ?ω) ∈ Ω2

−(M), (1.2.2b)

Since ? interchanges the kernel of d and δ and the intersection of those
kernels are precisely the harmonic forms, the self-dual and anti-self-dual parts
of a harmonic form are harmonic themselves and we we have the decomposition:

H2(M) = H2
+(M)⊕H2

−(M).

and we define
b+2 = dimH2

+(M), b−2 = dimH2
−(M)

Very important in Seiberg-Witten theory is the fundamental elliptic complex
given by

0 → Ω0(M) d→ Ω1(M) d+

→ Ω2
+(M) → 0 (1.2.3)

where d+ is given by restricting the image of d to the self-dual forms. We use
Hodge theory to calculate the cohomology groups of this complex.

If ω ∈ Ω+(M) is orthogonal to the image of d+, then δω = 0, and self-duality
gives dω = 0 hence ω ∈ H2

+(M). If ω ∈ Ω1(M) lies in the kernel of d+ and in
the cokernel of d, then δω = 0 and d ? ω = 0, so

(d+ δ)(ω + ?ω) = dω + δ ? ω = dω + ?dω = 2d+ω = 0

and we have that ω ∈ H1(M). So the cohomology groups of the complex 1.2.3
are

H0(M), H1(M), H2
+(M) (1.2.4)
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1.3 Connections and characteristic classes

1.3.1 Connections in differential geometry

A connection on a vector bundle E over a manifold M is a map

dA : Γ(E) → Γ(T ∗M ⊗ E)

with Γ(E) a suitably chosen space of sections over E, satisfying the following
axiom:

dA(fσ + τ) = (df)⊗ σ + fdAσ + dAτ (1.3.1)

with σ, τ ∈ Γ(E), f : M → R (or C) a function. If we contract dA with a vector
field X we get the following map:

∇ : Γ(TM ⊗ E) → Γ(E)

satisfying
∇X(fσ + τ) = (Xf)σ + f∇Xσ +∇Xτ

and
∇fX+Y σ = f∇Xσ +∇Y σ

with f, σ and τ as above andX,Y ∈ Γ(TM). This can be taken as an alternative
definition of a connection.

If we want to calculate with connections, it is usually convenient to go to local
representatives. All vector bundles have a local trivialization of the form Uα×Rn

(or Cn), where the Uα cover M , together with smooth invertible transition
functions gαβ . A section σ ∈ Γ(E) has a local representative σα, which is an
n-tuple of functions on Uα, and so dAσ also has a local representative (dAσ)α

, which is an n-tuple of one-forms on Uα. View e1, . . . en, a basis of Rn, as
constant sections over Uα. Then any element of Γ(T ∗M ⊗E) can be written asω

1

...
ωn

 =
n∑

i=1

eiω
i

with the ωi one-forms, so we can write dAej =
∑n

i=1 eiA
i
j . Now we can apply

equation 1.3.1 to write:

dA

(
n∑

i=1

eiσ
i

)
=

n∑
i=1

eidσ
i +

n∑
i,j=1

eiA
i
jσ

j

This can be written in short, suppressing indices as

dAσ = (d+A)σ (1.3.2)

in the trivialization. Now since the connection is well-defined on the overlap of
Uα and Uβ , we must have

dσα +Aασα = gαβ(dσβ +Aβσβ)
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on this overlap. Since sections transform as σβ = g−1
αβσα, we have

dσα +Aασα = gαβ

(
d(g−1

αβσα) +Aβg
−1
αβσα

)
= dσα +

(
gαβdg

−1
αβ + gαβAβg

−1
αβ

)
σα

and we can conclude that

Aα = gαβdg
−1
αβ + gαβAβg

−1
αβ (1.3.3)

If E is a fiber bundle with structure group G, then a G-connection is a
connection whose local representatives ωα take values in the Lie algebra of G, for
example an O(m) connection on a m-dimensional vector bundle is a connection
which is of the form d + Aα with Aα a skew-symmetric matrix, and a U(m)
connection on a complex m-vector bundle is represented by skew-Hermitian
matrices.

1.3.2 Parallel transport along curves

If we have a smooth map f from manifolds N to M , a vector bundle (E, π) on
M , we can pull this bundle back to N , as follows:

f∗E = {(p, v) ∈ N × E : f(p) = π(v)}, π∗((p, v)) = p

We can then pull back sections in Γ(E) as follows:

f∗σ : N → f∗E by f∗σ(p) = (p, σ ◦ f(p)).

Theorem 1.3.1. If dA is a connection on the vector bundle (E, π) over M and
f : N → M a smooth map, there is a unique connection df∗A on the pullback
bundle f∗E over N such that the following diagram commutes:

Γ(E)
dA //

f∗

��

Γ(T ∗M ⊗ E)

f∗

��
Γ(F ∗E)

df∗A

// Γ(T ∗N ⊗ f∗E)

Proof. For existence, we note that df∗A defined locally by f∗Aα with Aα the
local representatives of dA defines a connection, since an easy calculation shows
that this has the transformation properties of a connection form. The unique-
ness follows from the diagram, we see that the local representative of df∗A on
f−1(Uα) must be given by f∗Aα.

An application of the pullback construction is in the case of curves on man-
ifolds. The existence of this pullback implies that we can transport vectors in a
vector bundle along the curve. This is called parallel transport along the curve.
It works by considering a differentiable curve γ : [0, 1] →M . Any vector bundle
over [0, 1] is trivial, because of the following lemma:
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Lemma 1.3.2. Given a vector bundle E → I with I an interval, there exists a
trivialization Rm × I of E.

Proof. Let {Ui} be a trivialization of E over I such that Ui is connected. Choose
a basis ~si for each Ei. Then on overlaps, there is a function fij ∈ Gl(m,R) such
that ~si|Ui∩Uj = fij~sj |Ui∩Uj . Now look at the oriented volume of the paral-
lelepiped spanned by the ~si, vol(~sj). We see that if this volume never vanishes,
we get a global basis of the vector bundle, hence it is trivial. Now on the over-
laps Ui ∩Uj we see that vol(~si)|Ui∩Uj

= det(fij)vol(~sj)|Ui∩Uj
. Now since on the

interval, if Ui and Uj are connected, Ui ∩Uj is connected, εij = sign(det(fij)) is
constant. Then we can define ~s′j to be a suitable permutation of ~sj such that
vol(~sj) = εijvol(~s′j), and we see that we have constructed a compatible series
of sections that form a consistent basis of each Ei, hence we have constructed a
global basis for E.

Now it is easy to see that this global trivialization implies that there are
globally flat sections, so if we look at the induced connection γ∗∇ on the interval,
we can transport any vector v ∈ E along these sections. This is called parallel
transport.

1.3.3 Curvature of connection

We can extend the concept of connection to work on all differential forms by
requiring that it is a derivation, that is, the Leibniz rule holds:

dA(α⊗ σ) = dα⊗ σ + (−1)pα ∧ dAσ for α ∈ Ωp(M), σ ∈ Γ(E)

In contrast to the normal exterior derivative d, dA is not usually closed, dA◦dA 6=
0 generically. However it is linear, by the following calculation:

dA ◦ dA(fσ + τ) = dA(df ⊗ σ + fdAσ + dAτ)
= d(df)σ − df ⊗ dAσ + df ⊗ dAσ + f(dA ◦ dAσ) + dA ◦ dAτ

= f(dA ◦ dAσ) + dA ◦ dAτ

with f ∈ C∞(M) and σ, τ ∈ Ω∗(M) This means that dA ◦ dA is a tensor field
called the curvature of the connection We can look at the local representatives
of this curvature, and since it is linear over functions, we can see that in a local
basis {ei} we have

dA ◦ dA(σ) = dA ◦ dA

(
m∑

i=1

eiσ
i

)
=

m∑
i,j=1

eiFA
i
jσ

j = FAσ (1.3.4)

with FA a matrix of two forms. Now applying equation 1.3.2, we can see that
for a trivialization {Uα}, this matrix can be written as

FAα = dAα +Aα ∧Aα (1.3.5)

On Uα ∩ Uβ we have that

FAασα = gαβFAβσβ = gαβFAβgαβ
−1σα (1.3.6)
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We see from equation 1.3.5 and using the fact that the local representatives of a
U(m) connection are skew-Hermitian, that the curvature of a U(m) connection
is skew symmetric.

One important identity in G-connections is the first of the Bianchi identities:

dFAα = FAα ∧Aα −Aα ∧ FAα = [FAα, Aα] (1.3.7)

which can be proven by differentiating equation 1.3.2.

1.3.4 Characteristic classes

Characteristic classes in general are cohomology classes associated to vector
bundles that are natural with respect to the pull-back bundles. They measure
the “non-triviality” of the vector bundle. For different kind of vector bundles,
different characteristic classes can be constructed. First we will focus on U(m)-
bundles, and construct the Chern class.

Let M be a manifold, and E → M a complex vector bundle with rank m.
It then has a structure group U(m), meaning that the transition functions lie
within U(m). We equip E with a Hermitian metric. As seen before, FAα is then
skew-Hermitian, so the forms

(
i

2πFAα

)k
are Hermitian, hence Trace

[(
i

2πFAα

)k]
is real-valued for all k ∈ N.

Definition 1.3.3. The form τk ∈ Ω2(M) is called a characteristic form

The transformation 1.3.6 shows that this form is left unchanged when going
to different patches by the invariance of the trace, so the characteristic form is
well-defined.

Lemma 1.3.4. The characteristic form is closed, dτk(A) = 0

Proof. The i
2π factor is inconsequential. We get

dτk(A) = d
[
Trace

(
FA

k
α

)]
= Trace

[
d
(
FA

k
α

)]
= Trace

{
k∑

i=1

FA
i−1
α (dFAα)FA

k−i
α

}

= Trace

{
k∑

i=1

FA
i−1
α [FAα, Aα]FA

k−i
α

}

= Trace

{
k∑

i=1

FA
i
αAαFA

k−i
α − FA

i−1
α AαFA

k−i+1
α

}
= Trace

{
FA

k
αAα −AαFA

k
α

}
= 0

where we use the Bianchi identity 1.3.7. Now the last line can be can be seen
to be 0 by using that the trace is invariant under a cyclic permutation, hence
and so the two terms cancel, hence dτk(A) = 0

From this it follows that τk(A) represents a de Rham cohomology class
[τk(A)] ∈ H2k(M ; R). The following two theorems prove that this class is a
characteristic class.
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Theorem 1.3.5. The characteristic form τk(A) is natural with respect to the
pull-back map:

τk(f∗A) = f∗τk(A)

Proof. The local representative of the pull-back connection dF∗A is F ∗Aα so the
curvature of the pull-back connection is

FA
∗
α = f∗dAα + f∗Aα ∧ f∗Aα = f∗FAα

so
Trace

[
(FA

∗
α)k
]

= Trace
[
f∗
(
FA

k
α

)]
= f∗Trace

[
FA

k
α

]
And by the definition of the characteristic form this gives the right identity.

Theorem 1.3.6. The de Rham cohomology class of τk(A), [τk(A)] is indepen-
dent of the choice of unitary connection and Hermitian metric.

Proof. We can connect any two connections A and B by a line in the space of
connections, by setting dCt = d + (1 − t)A + tB. Define Ct = (1 − t)A + tB.
We will show that d

dtτk(Ct) = dθ for some function θ, hence that the class of
the characteristic function is independent of the choice of connection. Note
that we only have to establish this for some fixed t ∈ [0, 1] since d2

dt2Ct = 0 by
construction. We have that the curvature of Ct, FCt , is FCt = dCt + Ct ∧ Ct,
so d

dtFCt
= dĊt + Ċt ∧ Ct + Ct ∧ Ċt. Since

d

dt
Trace(F k

Ct
) =

k∑
i=1

Trace
(
F i−1

Ct
∧ ḞCt

∧ F k−i
Ct

)
So by using the invariance of the trace we see

d

dt
Trace(F k

Ct
) = −1

The same construction can be used for the case of the metric independence,
by using that (1− t)〈, 〉0 + t〈, 〉1 is a Hermitian metric if 〈, 〉0 and 〈, 〉1 are.

Since the characteristic class is not dependent on the connection or the metric
chosen, we write τk(E) = [τk(A)].

Definition 1.3.7. The Chern classes of a vector bundle E are defined as the
cohomology classes ck(E) given by representatives

det
(
itFA

2π
+ I

)
=
∑

k

ck(V )tk

This is a finite sequence, since for 2k > dim(M), F k
A = 0. An easy calculation

shows that
c1(E) = τ1(E) c2(E) =

1
2
(
τ1(E)2 − τ2(E)

)
For four dimensional manifolds, these are the only non-vanishing Chern classes.

We can simply calculate the first Chern class of a tensor product of two line
bundles by a special case of the Whitney product rule:
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Proposition 1.3.8. If L1 and L2 are complex line bundles over M then

c1(L1 ⊗ L2) = c1(L1) + c1(L2)

Proof. Suppose that A1 is a unitary connection on L1 and A2 a unitary con-
nection on L2. Then the curvature of the induced on L1 ⊗ L2, dA1⊗A2 is:

dA1⊗A2σ1 ⊗ σ2 = dA1(σ1)⊗ σ2 + σ1 ⊗ dA2(σ2)

We can then calculate the curvature, dA1⊗A2 ◦ dA1⊗A2 :

dA1⊗A2 ◦ dA1⊗A2(σ1 ⊗ σ2) = dA1⊗A2 (dA1(σ1)⊗ σ2 + σ1 ⊗ dA2(σ2))

= d2
A1

(σ1)⊗ σ2 + σ1 ⊗ d2
A2

(σ2)

and we see that FA1⊗A2 = FA1 + FA2 , and so c1(L1 ⊗ L2) = [τ1(L1 ⊗ L2)] =
[ i
2πFA1⊗A2 ] = c1(L1) + c1(L2)

With the Chern classes we can also define for real vector bundles the Pon-
trjagin classes:

Definition 1.3.9. Let E be a real vector bundle over M . The k-the Pontrjagin
class is defined as:

pk(E) = (−1)kc2k(E ⊗ C) ∈ H4k(M,Z)

Characteristic classes, though defined on vector bundles, can also be used to
investigate properties of the underlying manifold, for example by studying the
class of the tangent space.

1.3.5 Connections and projections

For a good understanding of the ADHM construction of instantons in section
3.1.2, we will review a way to construct connections on non-trivial vector bundles
from flat connections on higher rank trivial vector bundles. We will follow
[DK90].

Let M be a smooth manifold and K and L finite dimensional complex vector
spaces. Let R : M → Hom(K,L) be a smooth map. If Rx is surjective for all x,
the kernels form a vector sub-bundle E over M of the trivial bundle K×M , with
Ex = ker(Rx). We know that K ×M has a flat product connection d0. Now
suppose we have a smooth bundle projection K ×M → E which is left-inverse
to the natural inclusion i : E ↪→ K ×M . We then get an induced connection A
on E given by the covariant derivative

dA = πd0i

IfK has an Hermitian metric we can define such a π as the orthogonal projection
onto E, and this makes A into a unitary connection. Now we turn to the slightly
more special case of holomorphic vector bundles.

Definition 1.3.10. Let K0, K1 and K2 be finite-dimensional complex vector
spaces, M a complex vector manifold and assume we have holomorphic vector
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bundle maps:

K0 ×M
α // K1 ×M

β // K2 ×M

with βα = 0. This sequence is called a monad

This means there is a family of chain complexes parametrized by M :

K0
αx // K1

βx // K2

varying holomorphically with x.

Lemma 1.3.11. The family of cohomology spaces defined by

Ex =
Ker(βx)
Im(αx)

is a holomorphic vector bundle E over M .

Proof. It is clear that Ex has the structure of a vector bundle. The holomorphic
structure is constructed by lifting to K1 ×M .

We define a local section s of E to be holomorphic if it has a lift to a
holomorphic section s′ of Ker(β)K1 ×M .

Let x0 ∈M and k1 ∈ Ker(βx). Choose a right inverse P : K2 → K1 for βx0 .
Now we want to construct a holomorphic section of Ker(β) of the form k1 +j(x)
with j(x0) = 0. Define ηx = βx − βx0 . Then the condition that k1 + j(x) lies
in Ker(β) is satisfied if (1 + Pηx)j(x) = −Pηx(k1). This can be done, since if
x is close to x0, Pηx is small and (1 + Pηx) can be inverted to find a unique
solution for j(x). Even more, j(x) varies holomorphically with x, since ηx does.
With this construction, we find a set of holomorphic local sections of E which
form a basis of the fibers near x0, so E is a holomorphic vector bundle.
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1.4 Equivariant cohomology

1.4.1 Introduction

Equivariant cohomology is a cohomology theory on a manifold where a group
action works. This group action can give us much information about the un-
derlying manifold. There are 2 definitions of equivariant cohomology, which
were proven to be equivalent in the case of compact manifolds with compact
group actions by Cartan. The first uses classifying spaces and is called the Borel
model.

Definition 1.4.1. Let G be a compact Lie group and assume that it acts on a
contractible space E freely. This space is called a classifying space of G. There
is then a principal G-bundle E → B = E/G. The equivariant cohomology of M
is defined to be the normal cohomology of (M × E)/G:

H∗
G(M) = H∗((M × E)/G)

Since every compact Lie group has a faithful linear representation, it can be
embedded into a U(n) for n big enough. If H is a subgroup of G, then if G acts
freely on a space E, then certainly H acts freely. Thus it suffices to prove the
existence of a space E above for all U(n). Let Ek be the space of orthonormal
n-frames in Ck+1 with k ≥ n. Then U(n) acts freely on Ek. We can take the
limit k → ∞, and this gives one example of a space E. For details see chapter
1 of [GS99].

All classifying spaces for a group G can be shown to be homotopy equivalent,
so the cohomology theory is well-defined and does not depend on the choice of
E.

The action of a group G on M induces an action on differential forms on M .
This action can be differentiated, leading to an action of g on differential forms.

Definition 1.4.2. An equivariant form is a map α : g → Ω∗(M) which is
G-equivariant, that is, the following diagram commutes ∀g ∈ G

g α //

Ad(g)

��

Ω∗(M)

g

��
g

α
// Ω∗(M)

or gα(X) = α(Ad(g)(X)) for all X ∈ g and g ∈ G.

The wedge product of two equivariant forms is also equivariant, so we have
the algebra Ω∗G(M) of equivariant forms on M .

Definition 1.4.3. The twisted de Rham differential, deq : Ω∗G(M) → Ω∗G(M)
is defined as the map

deq(α)(X) = d(α(X))− ιX#(α(X))

with d the normal de Rham differential, and ιX# as defined in definition 1.2.3.
So deqα is a map from g to Ω∗(M).
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It is easy to check that (deq)2 = 0 on equivariant forms, and deqα ∈ Ω∗G(M),
so we can define equivariant cohomology in the Cartan model :

Definition 1.4.4. The equivariant cohomology of M under the action of a group
G is the cohomology of (Ω∗G(M), deq).

These two definitions of equivariant cohomology are actually the same in
many common cases [Car51]:

Theorem 1.4.5. If G is a compact Lie group acting on a smooth compact
manifold M then he twisted de Rham complex Ω∗G computes the equivariant
cohomology of M :

H∗
G(M,C) = H∗(Ω∗G(M), deq)

Many common objects on a manifold can be made into equivariant objects.
For example, if (M,ω,G, µ) is a symplectic manifold with Hamiltonian action
G with moment map µ, then ω̃ = ω + µX with µX the moment map defined
in 1.2.3 is the equivariant symplectic form, a map from g to Ω∗(M), for we see
that

dµ(X) = ιX#ω

by definition of the moment map and dω = 0 so deqω̃ = 0.
Now we can easily prove theorem 1.2.5:

Proof. We consider the equivariant symplectic form ω̃ = ω+µX . The restriction
on the level set p of µX is equivariant closed: (d− iX#)i∗pω̃ = 0 ∀X ∈ Lie(T ) by
definition of the moment map. We also have i∗pµ

X = p, so i∗pω̃ = ω+ p. Since ω
is a symplectic form, we have dω = 0, hence we get (using that dp = ιXp = 0),
0 = deqi

∗
pω̃ = ιa(i∗pω) ⊗ xa with xa a dual basis to the basis a of g. This

means that ιa(i∗pω) = 0 ∀a, and since ι∗pω is G-invariant, i∗pω is in the image
of π∗ : Ω(M/G) → Ω(M). This map clearly is injective, so there is a unique
two-form νp such that π∗νp = i∗pω.

We still need to show that this two-form is symplectic, i.e. closed and non-
degenerate. It is certainly closed, since π∗ is injective and π∗dνp = dπ∗νp =
DI∗pω = 0. Set d = dim(G) and 2d = dim(M). To prove that νp is non-
degenerate, it suffices to show that (νp)d−n vanishes nowhere. This is sufficient,
since dim(µ−1(p)/G) = 2d− n− n = 2d− 2n.

Since νn−d
p is nowhere vanishing if and only if π∗(νp)n−d vanishes nowhere

on µ−1(p) and π∗νp = i∗pω, we need to show that ωn−d vanishes nowhere on
µ−1(p). Now, using some basic combinatorics and definition 1.2.3 we see that

ιξ1ιξ2 . . . iξn
(ω)d =

d!
n!
ωd−n ∧ dµ1 ∧ · · · ∧ dµn

on µ−1(p), where the ξi form a basis of g. Since the ξi are independent and ω
is non-degenerate, we see that the right hand side is not identically zero, hence
νp is symplectic.

An important theorem in equivariant cohomology is the splitting principle
which asserts that the equivariant cohomology of a manifold with respect to a
group G can be computed by just looking at the equivariant cohomology with
respect to a maximal torus T inside G:
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Theorem 1.4.6 (Abstract splitting principle). Let G be a connected com-
pact Lie group, T a maximal torus of G and W the Weyl group. Then there is
a natural isomorphism

H∗
G(M) ' H∗

T (M)W

with H∗
T (M)W the W invariant classes of the T -equivariant cohomology of M .

For a proof see for example [GS99].
This splitting principle has some important consequences, for example the

splitting principle in topology

Corollary 1.4.7. For every vector bundle E → M there exists a manifold N
and a fibration π : N →M such that

1. The induced map π∗H∗(M) → N is injective

2. The pull-back bundle π∗E splits into a direct sum of line bundles ⊕Li

1.4.2 Equivariant characteristic classes

The theory of characteristic classes also can be viewed within equivariant co-
homology, instead of normal cohomology. Of particular interest in this thesis
is the equivariant Euler class. First we will define the notions of equivariant
connections and curvature forms.

Let E → M be a G-equivariant vector bundle, that is, G acts on E by
vector bundle maps E → E. The tangent bundle is just one example of a
G-equivariant vector bundle, and the definition for G-equivariant differential
forms from subsection 1.4.4 just carries over to the case of differential forms
with values in E. We denote the action of X on this space by X#

E . We can
build G-invariant connections dA by averaging a normal connection over the
Haar measure on G. We can then define the equivariant connection

Definition 1.4.8. The equivariant connection dAeq corresponding to a G-
invariant connection dA is the operator on C[g]⊗ Ω∗(M,E) defined by

(dAeqα)(X) = (dA − ιX)α(X)

where X ∈ g and ιX = ιX#
E
.

The definition of equivariant curvature cannot be just dA
2
eq as in the non-

equivariant case as a simple example shows. Let E = M × Cn be the trivial
vector bundle of rank n and take dA = d be the standard de Rham operator.
Then by definition dAeq = deq and (dAeq)2 = d2

eq = −(dιX + ιXd) = −X#
E ,

which is not 0 outside the equivariant forms. This motivates the definition:

Definition 1.4.9. The equivariant curvature FAeq of an equivariant connection
dAeq is defined as

FAeq(X) = dAeq(X)2 +X#
E

with X ∈ g

Then, almost by the same reasoning as above we have that Trace(FA
n
eq) is

equivariantly closed, and the equivariant cohomology class is independent of the
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choice of G-invariant connection on E. This leads to equivariant characteristic
classes.

For the equivariant Euler class, we recall that any A ∈ so(V ) defines an
anti-symmetric bilinear form on V by 〈Av1, v2〉. Now identifying V with V ∗ by
a metric we get an element α ∈

∧2
V , α =

∑
i<j〈Aei, ej〉ei∧ ej . We then define

the Pfaffian Pf of a A ∈ so(V ) as

Pf(A) = Pf(α) =
∫

(exp
∑
i<j

〈Aei, ej〉ei ∧ ej)

where the integral is the Berezin integral :

Definition 1.4.10. Let V be a R-vector space of dimension n, with oriented
volume element µ ∈

∧n
V . The Berezin integral is the linear function

∫
:∧∗

V → R defined as follows:

• If β ∈
∧k

V with k < n then
∫
β = 0.

• If β = µ then
∫
β = 1.

• If β ∈
∧n then β can be written as ba · µ and we define

∫
β = b.

Since α is a 2-form, this implies that Pf(A) = 0 if V is not a even-dimensional
vector space. If dAeq is a metric compatible connection, the curvature of the
connection takes values in so(V ) so we can compute its Pfaffian.

Definition 1.4.11. Let G be a Lie group acting on a manifold M , let A be an
equivariant metric-compatible connection with equivariant curvature FAeq and
X ∈ g. The equivariant Euler class eeq ∈ H∗

G(M) or eG is

eeq(dA)(X) = Pf(−FAeq(X))

1.4.3 Thom class

Given an n-dimensional compact oriented submanifold of an m-dimensional ori-
ented manifold M , we can construct a characteristic class associated to this
submanifold. Since every manifold can be viewed as a submanifold of a vector
bundle by identification with the zero section, this gives a characteristic class of
a vector bundle.

Integration over N gives a linear function on the de Rham cohomology group
Hn(M). By Poincaré duality we also have a non-degenerate pairing

Hn(M)×Hm−n
c (M) → C, (a, b) =

∫
M

a ∧ b

with Hm−n
c (M) the compactly supported cohomology groups. This gives a

unique cohomology class τ(N) ∈ Hm−n
c (M) such that∫

N

α =
∫

M

α ∧ τ(N)

This class τ is called the Thom class of N . Any closed form τN representing
τ(N) is called a Thom form.
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Unfortunately, Poincaré duality does not hold in equivariant cohomology,
which can be seen by using the upcoming Berline-Vergne localization theorem
1.4.15. We have a natural pairing

(, ) : Ω∗G(M)× Ω∗G(M) → C[g] (α, β) =
∫

M

α ∧ β

However, if the action of G is free on M , we see from equation 1.4.4 that
the integral is always zero. However, the Thom class can be generalized to
equivariant cohomology.

First we will say something about integration of equivariant forms. Let
α ∈ Ω∗G(M), with M a n-dimensional manifold. Then we write

α = α[0] + α[1] + . . .+ α[n]

with α[i] of degree i in Ω∗G(M). Then integration∫
: Ω∗G(M) → C[g]G :

(∫
α

)
(X) 7→

∫
M

(
α[n](X)

)
If α is equivariant exact, α = deqβ we see that α[n](X) = dβ[n−1](X) since iX
cannot map to an n-form, so Stokes’ theorem holds for equivariant de Rham
operators and we see that integration descends to equivariant de Rham classes∫

: H∗
G(M) → C[g]G

Theorem 1.4.12 (Mathai-Quillen [MQ86]). Let π : V → N be a G-
equivariant vector bundle of rank k, with V and N oriented. Denote by (H∗

c )G

the equivariant cohomology of compactly supported equivariant differential forms.
Then the following holds

1. The map π∗ : (H l
c)G(V ) → H l−k

G (N) is an isomorphism for all l

2. There exists a from τG ∈ Ωk
G(V ) with compact support which is equivari-

antly closed so that π∗τG = 1

3. Let eG(V ) be the equivariant Euler class associated to V , denote by i0 :
N → V the embedding of N in V as the zero section, then i∗0τG(V ) =
eG(V )

The form τG is called the equivariant Thom form.

1.4.4 A first localization theorem

In this section we will prove some of the localization theorems which form the
basis of the equivariant localization of instantons later in section 3.2.3. The basic
idea behind localization is the exact stationary phase approximation. Suppose
we want to calculate the integral of the function eitf(x) over a manifold. If
t is large, we can take the exact stationary phase approximation, which says
that the dominant contributions to the integral come from the critical points.
These can then be calculated using a quadratic approximation to f(x) near each
critical point and calculating the resulting Gaussian function. Duistermaat and



CHAPTER 1. PRELIMINARIES 23

Heckman proved in [DH82] that in case this approximation is exact if interpreted
in equivariant cohomology. We will consider equivariant localization in this
section in the most basic cases, and in section 3.2.3 in cases where we have an
extra structure on the manifold we are integrating over. The later equivariant
localizations are based on the basic localization theorems proven here.

Let G be a compact Lie group acting on a compact manifold M . Let X ∈ g.
We define a corresponding vector field on M as follows. If α is an equivariant
differential form, that is, gα(X) = α(Ad(g)(X)) then if Y ∈ g, we set g = exptY ,
differentiate with respect to t and then set t = 0 to get an action of g on forms,
giving a vector field X# associated to each element X of g, see also definition
1.2.3

(X#f)(x) =
d

dt
f(exp(−tX) · x)|t=0

This is also a Lie algebra map by the relation [X#, Y #] = [X,Y ]#. From now
on, when X ∈ g we will denote by abuse of notation ιX# = ιX .

Now set M0(X) to be the zeroes of the vector field X#.

Lemma 1.4.13. If α is a smooth map from g to Ω∗(M) and is equivariantly
closed, then α(X)[dim(M)] is exact on M\M0(X).

Proof. Set θX ∈ Ω1(M) to be a one-form such that X#θX = 0 and ιXθX 6= 0
on M\M0. Such a θX exists, for example θX(v) = 〈X#, v〉. It is easy to see
that X#θX = 0 and ιXθX = ‖X#‖2 6= 0. Then

(d− ιX)2 θX = −dιXθX − ιXdθX = −X#θX = 0 (1.4.1)

We can then invert (d− ιX) θX on M\M0 using a geometric series:

1
(d− ιX) θX

= −(ιXθX)−1 − (ιXθX)−2dθX − (ιXθX)−3 (dθX)2 − . . . (1.4.2)

Note that this geometric series is finite, because the (dθX)n term vanishes if
2n > dim(M). So

(d− ιX)θX ∧ 1
(d− ιX)θX

= 1

Applying (d− ιX) again on the both sides, and using equation 1.4.1, we get

(d− ιX)θX ∧ (d− ιX)
1

(d− ιX)θX
= 0

and since (d− ιX)θX is invertible hence non-zero, we see that

(d− ιX)
1

(d− ιX)θX
= 0

Since α(X) is equivariantly closed on M\M0 we can write on this set:

α(X) = (d− ιX)
(
θX ∧ α(X)
(d− ιX)θX

)



CHAPTER 1. PRELIMINARIES 24

If we only look at the n-form part with n = dim(M) we see immediately that

α(X)[dim(M)] = d

(
θX ∧ α(X)
(d− ιX)θX

)
[dim(M)−1]

(1.4.3)

We can look at the action of X# on the tangent space of the fixed points of
X#. We will first specialize to the case where the set of fixed points is finite.
The Lie action of X# on vector fields F , F 7→ [LX# , F ] induces a map on TpM
for p ∈M0(X), L(X, p)

Lemma 1.4.14. The transformation L(X, p) on TpM is invertible for each
p ∈M0.

Proof. Suppose v ∈ TpM v 6= 0 is in the kernel of L(X, p). Then we can pick
a G-invariant metric since G is compact, and look at the geodesic defined by
expp(tv) for t ∈ (−ε, ε) ⊂ R. This geodesic is then in the kernel of expp(sX) for
s ∈ (−ε′, ε′) hence p is not an isolated point and we have a contradiction.

If we now pick a torus T ⊂ G such that X ∈ Lie(T ), then T fixes p ∈M0(X)
and thus we have a representation of T on TpM . Also, since T is compact, we
have a Riemannian metric which is T invariant such that the metric on TpM is
preserved by T , called the isotropy representation. Hence L(X, p) ∈ so(TpM).
Since by the above lemma L(X, p) is invertible, it can then be written in block
diagonal form, with blocks of the form(

0 −cj
cj 0

)
with cj ∈ R. Note also that M and thus TpM must be even dimensional in this
case. Define n = dim(M), then det1/2(L(X, p)) =

∏n/2
i=1 ci.

Theorem 1.4.15 (Berline-Vergne localization [BV82]). Let G be a com-
pact Lie group with Lie algebra g, acting on a compact orientable manifold M
with dimension n even. Let α : g → Ω∗(M) be a smooth equivariantly closed
form and X ∈ g such that X# has a finite set of zeroes. Then∫

M

α(X) = (−2π)n/2
∑

p∈M0

α(X)[0](p)

det1/2(L(X, p))
(1.4.4)

If we take α(X) to be the equivariant symplectic volume form, that is
exp(ω̃) =

∑∞
n=0

ω̃n

n! , we get immediately the Duistermaat-Heckman formula
from this theorem.

Proof. Without loss of generality we replace G by the torus T ⊂ G such that
X ∈ Lie(T ). Now we use the the exponential map at p: expp : TpM → M to
construct local coordinates in an open subset Up around p such that

X# = c1

(
x2

∂

∂x1
− x1

∂

∂x2

)
+ . . .+ cn/2

(
xn

∂

∂xn−1
− xn−1

∂

∂xn

)



CHAPTER 1. PRELIMINARIES 25

with ci as in the discussion above. Now set θp
X to be the one-form given in Up

as
θp

X = c−1
1 (x2dx1 − x1dx2) + . . .+ c−1

n/2 (xndxn−1− xn−1dxn)

This θp
X has the properties that X#θp

X = 0 and ιXθ
p
X = θp

X(X#) = ‖x‖2 so
iXθ

p
X 6= 0 at Up\{p}. Now we can use a G-invariant partition of unity to extend

this θp
X to a one form θX on all of M such that X#θX = 0 and ιXθX 6= 0 on

M\M0.
Around each fixed point p we cut out an open ball of radius ε, Bp

ε and we
see with the help of formula 1.4.3:∫

M

α(X) = lim
ε→0

∫
M\∪pBp

ε

α(X) = lim
ε→0

∫
M\∪pBp

ε

d

(
θX ∧ α(X)
(d− ιX)θX

)
(1.4.5)

Now we use Stokes’ theorem to write this as an integral over the surfaces of the
Bp

ε , the spheres Sp
ε with a minus sign added because the balls now lie in the

exterior:

lim
ε→0

−
∫
∪pSp

ε

(
θX ∧ α(X)
(d− ιX)θX

)
= − lim

ε→0

∑
p

∫
Sp

ε

θp
X ∧ α(X)

(d− ιX)θp
X

if the Sp
ε lie within the Up

Now we use formula 1.4.2 to expand the denominator:

1
(d− ιX)θp

X

= −(ιXθ
p
X)− (ιXθ

p
X)(dθp

X)− . . .− (ιXθ
p
X)−n/2−1(dθp

X)n/2

On the sphere Sp
ε , ιXθ

p
X = ε by construction and the rightmost term in the

expansion vanishes, because together with the θp
X one-form in the numerator it

is a n+ 1-form on the n-dimensional manifold M , so the series reduces to

−ε−1 − ε−2dθp
X − . . .− ε−n/2(dθp

X)n/2−1

so we can write, remembering that we are integrating over an (n−1)-dimensional
manifold:

θp
X ∧ α(X)

(d− ιx)θp
X

= −ε−n/2α(X)[0]θ
p
X∧(dθp

X)n/2−1−
n/2−2∑

j=0

ε−(j+1)θp
X∧α[n−2j−2]∧(dθp

X)j

Now the factor in the summations will vanish when we actually integrate over
Sp

ε and take the limit ε→ 0, so we write∫
M

α(X) = lim
ε→0

∑
p

∫
Sp

ε

ε−n/2α(X)[0]θ
p
X ∧ (dθp

X)n/2−1

=
∑

p

α(X)[0](p) lim
ε→0

∫
Sp

ε

ε−n/2θp
X ∧ (dθp

X)n/2−1

=
∑

p

α(X)[0](p) lim
ε→0

∫
Bp

ε

ε−n/2(dθp
X)n/2

Now since dθp
X = −2c−1

1 dx1∧dx2−. . .−2c−1
n/2dxn−1∧dxn we see that the n-form
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part of (dθp
X)n/2 is (−2)n/2(n/2)!

(∏n/2
i=1 ci

)−1

dx1 ∧ . . .∧ dxn. The volume of a

n-dimensional ball if n is even is πn/2

(n/2)! and so we get the asked formula:∫
M

α(X) = (−2π)n/2
∑

p∈M0(X)

α(X)[0](p)∏n/2
i=1 ci

As an example, we can compute the area of a sphere. Let G = S1 the circle,
act on S2 = {(x, y, z) ∈ R3|x2 +y2 +z2 = 1} by rotation around the z-axis. The
fixed points are (0, 0, 1) and (0, 0,−1). The sphere has a natural symplectic form
ιNdx ∧ dy ∧ dz with N the outward pointing normal. This is clearly invariant

under the action of S1. The vector field LX# are proportional to x
∂

∂y
− y

∂

∂x
.

A moment map µ : S2 → Lie(S1) ' R of this action is given by µ(t) = tz, and
set ω̃(t) = µ(t) + ω. Now c1 = ∓t, so we get∫

S2
µ(t) + ω =

∑
p=(0,0,±1)

ω̃[0](t)(p)∏n/2
i=1 ci

=
∑

p=(0,0,±1)

µ(t)(p)
∓t

=
t

−t
+
−t
t

= −2

which together with the (−2π) factor give exactly the area of the sphere, which
could also be directly computed by using the symplectic volume form (the mo-
ment map is of degree 0 so does not contribute to the integral in that case).

This theorem can also be proven in the case where the fixed points are
not isolated, replacing the sum over the fixed points by an integral over each
connected component of the set of fixed points. If we study the proof of theorem
1.4.15 carefully, we see that the only point in which we make use of the isolation
of the fixed points is in lemma 1.4.14. This fact can be amended as follows.

Lemma 1.4.16. Fix a X ∈ g and let M0(X) be the set of zeroes of the vector
field X#. Then connected components Fi of M0(X) are smooth submanifolds
of M . The dimensions of different connected components do not have to be the
same. The normal bundles Ni of Fi are orientable vector bundles with even-
dimensional fibers.

Proof. Choose a G-invariant Riemannian metric on M . Let p ∈ M0(X). The
exponential map TpM → M is a diffeomorphism near from a neighborhood of
0 ∈ TpM to a neighborhood of p ∈ M . A vector v ∈ TpM is fixed by the
induced transformation L(X, p) if and only if the image exp(v) is contained
within the connected component of M0(X) of p. From this we can construct
adapted coordinates on Fi by taking a basis of the subspace of vectors fixed by
L(X, p), hence Fi is a submanifold.

The normal bundle N is defined fiberwise as the orthogonal complement of
TpM0(X) inside TpM . We see that the linear transformation L(X, p) induced
by X# is 0 on TpM0(X) and invertible anti-symmetric on Np. Thus the fibers
Np must be even-dimensional. We can choose an orientation on N by requiring
det
(
L(X, p)|Np

)
> 0

Now using the orientation of N and of M , we can set an orientation on
M0(X) as follows. A basis of TpM0(X) is positively oriented if and only if
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that basis forms a positively oriented basis of TpM together with a positively
oriented basis of Np.

Now consider the centralizer of X in g: g0(X) = {Y ∈ g|[X,Y ] = 0} and
let G0(X) be the connected component of the identity such that g0(X) is its
Lie algebra. Clearly, since ·# is a Lie algebra homomorphism, G0(X) preserves
M0(X) and also acts on the normal bundle N . Now choose a G0(X) invariant
Riemannian metric and corresponding connection dA

N on the vector bundle N .
We get an equivariant curvature form

FA
N
eq(Y ) = FN + µN (Y ), µN (Y ) = Y #

N − dA
N
Y , Y ∈ g0(X)

SinceX# vanishes onM0(X), we have µN (X) = X#
N and µN (X)|p = L(X, p)|Np

which is invertible onNp. SinceN has the orientation as above, we can calculate
the G0(X)-equivariant Euler class of N :

χeq(N )(Y ) = Pf(−FA
N
eq(Y ))

If Y is sufficiently close to X, we have the 0-th order term of this equivariant
Euler class is non-zero, hence the equivariant Euler class for Y sufficiently close
to X is invertible. With some extra, technical observations, we can then prove:

Theorem 1.4.17 (Berline-Vergne localization with non-isolated fixed
points). Let G be a compact Lie group with Lie algebra g, acting on a compact
orientable manifold M with dimension n even. Let α : g → Ω∗(M) be a smooth
equivariantly closed form and X ∈ g. Then for Y in the centralizer of X and
sufficiently close to X∫

M

α(Y ) = (2π)RankN/2
∑

i

∫
Fi

α(Y )
eeq(N )(Y )

(1.4.6)

with eeq the equivariant Euler class of 1.4.11.

Note that the above reduces to theorem 1.4.15 in the case where the Fi are
zero-dimensional, since then the integral over Fi just gives the degree 0 part in
p of α, and the equivariant Euler class reduces to its degree 0 part as well.

1.4.5 Symplectic cut

Many interesting manifolds, especially in when we are considering instantons
are not compact. This gives problems for many techniques, including equiv-
ariant localization. A method for dealing with this problems is the symplectic
cut, described first by Lerman in [Ler95]. It is a generalization of the blowup
operation in symplectic geometry, and makes use of the symplectic reduction of
Marsden and Weinstein.

We have the standard symplectic form on C: idw∧dw̄. We use this, together
with the symplectic reduction as described above, to get the symplectic cut:

Definition 1.4.18. Let (M,ω) be a symplectic manifold, with a Hamiltonian
circle action and a moment map µ : M → R and assume ε is a regular value of
µ. Then the symplectic cut of M is

Mµ≤ε = {(m, z) ∈M × C : µ(m) + |z|2 = ε}/S1 = (M × C)//εS
1
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or equivalently, defining µ̃ : M × C → R, µ̃(m, z) = µ(m) + |z|2, as:

Mµ≤ε = µ̃−1(ε)/S1

We see that Mµ≤ε has dimension 2n, is compact if µ̃ is proper and has a natural
symplectic form by theorem 1.2.5.

Of course, we can also consider the space

Mµ≥ε = {(m, z) ∈M × C : µ(m)− |z|2 = ε}/S1

As an example, we calculate the symplectic cut in the simplest case, the
complex plane C with circle action eit. The moment map is |z|2, so µ̃−1(ε) =
S3(ε), the sphere in 4 real dimensions with radius ε. Now we need to divide out
the circle actions on C×C. We see that we can write µ̃−1(ε) as the disjoint union
of two spaces, {(m, 0)|m ∈ µ−1(ε)} and {(m,w)|µ(m) < ε,w = eit

√
ε− µ(m)}).

The first is the boundary of the open disk with radius ε, D(ε) and the second is
the open disk D(ε) with on each point a circle. We thus see that the action of S1

on these spaces give the closed disk with radius ε with the boundary collapsed
to a point.

This splitting is a general feature of the symplectic cut. We also see that
if we let ε → ∞, we recover the original manifold as one of the components.
If there is another group K acting on M whose action commutes with the S1

action on M , we see that because this action descends to µ−1(ε) the group K
acts on Mµ≤ε.

Of course, this can easily be generalized to higher dimensional Lie groups.

Definition 1.4.19. Take a maximal torus T of a Lie group G that acts Hamilto-
nian with respect to a symplectic form ω on a manifold M , and let µ : M → t∗ be
its moment map. Let β = {β1, . . . , βk} be a set of weights that are linearly inde-
pendent. We allow k to be less than the dimension of T . Let T act with weight β
on Cβ ≡ Ck. Of course, T is Hamiltonian with respect to the standard symplec-
tic form ωβ =

∑
i dzi∧dz̄i, and the moment map is ψ(z) =

∑
βi|zi|2. The image

of Cβ under the moment map is the cone of dimension k Σ = {
∑
siβi|si ≥ 0}.

The combined action of G on M × Ck is Hamiltonian with respect to the sym-
plectic form (ω, ωβ) with moment map φ(x, z) = µ(x) + ψ(z). If we have a
set of indices I between 1 and k then we denote the open face of Σ given by
{
∑

i∈I siβi|si > 0} by ΣI . The subtorus of T that acts perpendicular to ΣI is
denoted by T I .

The symplectic cut with respect to a cone MΣ of M is then the symplectic
reduction

MΣ = (M × Cβ)//0T

If µ is a proper map, then φ is also, so we have that MΣ is compact. Further-
more, in [LMTW98] it is shown that the action of T descends to a Hamiltonian
action TΣ on MΣ and that the image of the moment map µΣ is µ(M)∩Σ. Note
that the action of T on MΣ is not effective unless dimΣ = dimT , since the
subtorus TΣ of T which acts perpendicular to Σ acts trivially on MΣ.

Now if H is a Lie group with an action on M which commutes with G, the
action descends to M//ΣG. The fixed points of the action of H are related to
the If we set MH to be the set of fixed points of M under the action of H, we
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see that if MH is compact, we recover MH if the cone Σ is large enough, that
is µ(MH) ⊂ Σ, and k = dimT . There are also new fixed points in MΣ.

For example, we can look at the symplectic cut of C2 by a circle S1 acting
on C2 as s(z1, z2) = (sz1, s−1z2), and look at the fixed points of a circle T
acting as t(z1, z2) = (tz1, tz2). Then for any ε > 0, the symplectic cut Mε =
{(z1, z2) ∈ C2||z1|2+ |z2|2 < ε}tCP1. We see that T has now 3 fixed points: the
original (0, 0), and two new fixed points in CP1, [0 : 1] and [1 : 0] in projective
coordinates.

This technique can be used to easily prove the following generalization of
the standard equivariant localization theorems.

Theorem 1.4.20 (Prato-Wu[PW94]). Let (M,ω) be a symplectic manifold
(possibly non-compact) of dimension 2n on which there is a Hamiltonian action
of a torus T . If the fixed point set MT is compact and there exists a t0 ∈ t such
that the component of the moment map µt0 = 〈µ, t0〉 is proper and bounded on
one side then the Duistermaat-Heckman formula∫

M

e〈µ,t〉ω
n

n!
= (−2π)n/2

∑
F⊂MT

∫
F

eω+〈µ,t〉

eT (νF )
(1.4.7)

still holds true if we interpret the left hand side as the integral of e〈µ,t〉 with
respect to the measure induced by ωn

n! and we restrict t to an open cone C ⊂ tC
such that the left hand side converges.

The Duistermaat-Heckman formula in the compact case can easily be proven
by using the Berline-Vergne localization 1.4.15 if we notice that

∫
M
eµ ωn

n! =∫
M
eω̃, with ω̃ the equivariant symplectic form. We also make use of the follow-

ing result:

Theorem 1.4.21 (Duistermaat-Heckman [DH82]). The cohomology class
of the symplectic form ωλ on M//λS

1 behaves linearly in λ:

[ωλ] = [ω0] + 〈λ, c〉 (1.4.8)

where c ∈ H∗(M0)⊗ t is the first Chern class of the circle bundle µ−1(0) →M0

Now we can prove theorem 1.4.20

Proof. We can choose a circle within the torus action such that the moment
map of the circle is proper and bounded above, and we can take the symplectic
cut with respect to this circle action:

Mλ = µ−1((−∞, λ) tM//λS
1

As in the above discussion, the fixed points of the torus action on this (compact)
space are the old ones, together with new ones introduced by the cut:

MT
λ = (µ−1((−∞, λ)))T t (M//λS

1)T

Since µ−1((−∞, λ)) is open and dense in Mλ, inherits the symplectic structure
of M and is equal to M in the limit λ→∞ we can recover the original integral
over M as the limit λ→∞ of integrals over the symplectic cut Mλ.
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If we take λ large enough, since MT is compact, we have that µ−1((−∞, λ))
contains all of MT hence the original fixed points are restored. Since Mλ is
compact, we can apply Duistermaat-Heckman, and if λ is large enough, the
only λ dependence is in the new fixed points:

1
(−2π)n/2

∫
M

eω+µ =
∑

F⊂MT

∫
F

eω+µ

eT (νF )
+ lim

λ→∞

∑
F ′⊂(M//λS1)T

∫
F ′

eω+µ

eT (ν′F )

The cohomology of the symplectic form on the new fixed point depends
linearly on λ by theorem 1.4.21 and since we only run over regular values of
µ, the topology of µ−1(λ) does not change, so eT (νF ) is constant. Since we
assume that t is in the open cone such that integral on the left-hand side of 1.4.7
converges, we must have 〈µ, t〉 = 〈λ, t〉 on µ−1(λ) goes to −∞ when λ → ∞.
This means the contributions of the new fixed point vanish:

lim
λ→∞

∑
F ′⊂(M//λU(1))T

∫
F ′

eω+〈µ,t〉

eT (νF ′)
= 0

For example, if we calculate the equivariant integral on C with respect to a
circle action acting with weight a ∈ R+, we get the Gaussian integral:∫

C
eω+µT (t) =

∫
C

e−a||z||2t i

2
dz ∧ dz̄

We already know that the value of the integral is 2π
at .

This action has one fixed point, z = 0, and the weight of the isotropy
representation on this point is −at, plugging this in in 1.4.7 we get∫

M

eω+µT (t) = (−2π)
∑
p=0

e0

−at
=

2π
at

We also see that the cone we have to choose t in, must lie within (0,∞) × iR,
otherwise the integral above does not converge, and the “new” fixed point in
µ−1(λ)/U(1) would give a contribution scaling with e−λt which does not vanish
when λ→∞.



Chapter 2

Seiberg-Witten theory

In this chapter we will derive the Seiberg-Witten invariants, which allows us to
establish in some cases when two homeomorphic 4-manifolds are not diffeomor-
phic. The existence of manifolds which are homeomorphic but not diffeomorphic
to each other was first established by Milnor in 1956 with his construction of the
exotic 7-spheres. Donaldson constructed invariants of four-manifolds which were
invariant under diffeomorphisms but not under general homeomorphisms, thus
giving a powerful tool for checking whether two homeomorphic manifolds were
diffeomorphic. In practice however, the Donaldson invariants were very hard
to compute. In 1994 Witten, based on his work on supersymmetric Yang-Mills
theory with Seiberg, proved that there exist much simpler invariants, which
share the property that they are invariant under diffeomorphisms but not un-
der homeomorphisms. They are much simpler to compute, and in this chapter
we will establish their existence and some of their properties, along with some
examples on how they can be used to classify certain manifolds.

We will first recall the notions of spin geometry, together with the Atiyah-
Singer index theorem which allows us to calculate the dimensions of the moduli
space of the Seiberg-Witten equations. We then state some results on Sobolev
spaces and elliptic operators, tools which are essential to study partial differen-
tial equations. After this setup, we will introduce the Seiberg-Witten equations
and study their properties. The compactness of the moduli space is proven,
which makes the Seiberg-Witten invariants much easier to handle than the
Donaldson invariants. This moduli space is then established to be a compact
smooth finite dimensional manifold, where the dimension can be calculated by
the Atiyah-Singer index theorem. Finally, the invariants are defined and some
of their applications to the differential topology of 4-manifolds are mentioned.

31
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2.1 Spin geometry

We recall some basic facts of Dirac operators and spin structures on mani-
folds. See for details [HM89]. Spin(n) is a double cover of SO(n), the group
of orientation-preserving rotations in n dimensions. In 4 dimensions, Spin(4)
can be written as SU(2) × SU(2) and it is simply connected for all n > 2. A
spin structure is a double covering of an SO(n) principal bundle such that the
covering is a Spin(n) principal fiber bundle. Such a covering exists if the second
Stiefel-Whitney class w2(TM) vanishes. A spinc structure is a double covering
of SO(n) × U(1), the complexified rotations. It exists if the second Stiefel-
Whitney class is the mod 2 reduction of an integral class. For 4-dimensional
manifolds this is always the case.

In caseM has a spin structure, we can write this as a SU(2)×SU(2) principal
fiber bundle. We call one of these SU(2)+ and the other SU(2)−. With those
fiber bundles we can associate vector bundles, in this case of rank 2 and we call
these W+ and W−. We have

TM ⊗ C ' Hom(W+,W−).

Since the transition functions for a complex line bundle live in U(1) hence
are commutative, they cancel each other out and we can write TM ⊗ C '
Hom(W+ ⊗L,W− ⊗L). Now associated to a spinc structure we have two U(2)
bundles, and thus two complex vector bundles of rank two, which we call W+⊗L
and W− ⊗ L. The bundles W−,W+ and L only exist if the manifold has a spin
structure, but their products do exist for all 4-manifolds. Sections of W+ ⊗ L
and W−⊗L are called spinor fields, respectively of positive or negative chirality.
The bundle L⊗L = L2 also exists in all cases, and comes from the determinant
map on the linear representation of spinc on the vector bundle W+⊗L⊗W−⊗L.

The double covering of SO(4) has a natural representation inside the Clifford
algebra C`4,0, which has as a basis 1, ei, where ei is a basis for the 4 dimensional
vector space R4, eiej for i < j, eiejek for i < j < k and e1e2e3e4. There is
a product on this algebra, generated by the relation eiej + ejei = −2δij with
δij the Kronecker delta. The spinors sit inside this Clifford algebra, and we
have a natural identification of the exterior algebra

∑4
k=0 ∧kV with the Clifford

algebra as vector spaces. The product of the Clifford algebra in terms of the
interior and wedge product of the exterior algebra is then

ei · α = ei ∧ α− ı(ei)α (2.1.1)

for α ∈
∧∗

V . Now we can see that ∧2
+V , see equation 1.2.2a for a definition,

is exactly the space of trace free Hermitian endomorphisms of W+, but this
precisely the Lie algebra of SU(2)+. Thus we can define a quadratic map
σ: W+ → ∧2

+V to be the map

σ(ψ) = − i
2

∑
i<j

〈ψ, ei · ej · ψ〉ei · ej (2.1.2)

for ψ ∈ W+. This can be extended to a map from W+ ⊗ L → ∧2
+TM . This

has the following interpretation: a spinor is the “square root” of a self-dual
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two-form, together with a choice of phase. We also see that

|σ(ψ)|2 =
1
2
|ψ|2 (2.1.3)

Definition 2.1.1. The Dirac operator DA : Γ(W ⊗ L) → Γ(W ⊗ L) on a
Riemannian manifold with spinc structure is the first order differential operator
defined in local coordinates by:

DA(ψ) =
4∑

i=1

eidAψ(ei)

with dA a connection with group spinc(4), that is, a lift of the Levi-Civita con-
nection on the SO(4) bundle, together with a choice of a unitary connection A
on the determinant line bundle L2.

The Dirac operator is formally self-adjoint for smooth sections, that is∫
M

〈DA(ψ), η〉 =
∫

M

〈ψ,DA(η)〉

and is essentially self-adjoint for L2 sections.
We have the Weitzenböck formula:

D2
Aψ = ∆Aψ +

s

4
ψ −

∑
i<j

FA(ei, ej)(iei · ej · ψ) (2.1.4)

where ∆A is the vector bundle Laplacian ∇∗∇ with ∇ the induced covariant
derivative on the spinor bundle by the Levi-Civita connection, ∇∗ the formal
adjoint of ∇, s is the scalar curvature and FA the curvature of the connection
on L.

Now the final piece of spin geometry we need is the Atiyah-Singer index theo-
rem. This theorem gives the index of an elliptic operator in terms of topological
data. The index of an operator is defined to be

ind(Φ) = dim(ker(Φ))− dim(coker(Φ))

We will only state the theorem for the case of a Dirac operator with coefficients
in the vector bundles W± ⊗ L. First we note that since the full Dirac operator
DA is formally self-adjoint, so it has index 0. We can, however split the Dirac
operator in two pieces:

D+
A : Γ(W+ ⊗ L) → Γ(W− ⊗ L), D−

A : Γ(W− ⊗ L) → Γ(W+ ⊗ L),

which have non-trivial index.

Theorem 2.1.2 (Atiyah-Singer index theorem). If DA is a Dirac operator
with coefficients in a line bundle L on a compact oriented four-manifold M , then

ind(D+
A) = −1

8
τ(M) +

1
2

∫
M

c1(L)2 (2.1.5)

with τ(M) = b+2 − b−2 the signature of M and c1(L) the first Chern class of L.
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2.2 The Seiberg-Witten invariants

2.2.1 Sobolev spaces

In this section we define Sobolev spaces and summarize some results about them.
See for proofs for example [Aub98] and [Rud86]. We want to consider the space
of all U(1) connections A, the space of all U(1) gauge transformation G and
related spaces as manifolds modelled on infinite dimensional Hilbert or Banach
spaces. Unfortunately, the spaces of C∞ functions are not complete, hence not
Banach, so we need a suitable completion.

Consider the norm ‖f‖q =
(∫
|f(x)|q|

)1/q on the space of continuous func-
tions on Rn with standard measure. For compactly supported functions f this
is a norm, and we call the completion of the space of continuous functions with
respect to this norm the space Lq. The space L∞ is defined to be the completion
with respect to the norm ‖f‖∞ = supx |f(x)|

Now we wish to control in some way not only the norm of the functions, but
also the norm of derivatives of the functions. This leads to the notion of Sobolev
spaces.

Definition 2.2.1. Set k ≥ 0 integer, then the Sobolev space Lp
k is the comple-

tion of the space of smooth compact supported functions under the norm:

‖f‖Lp
k

=

(
k∑

i=0

‖∇if‖p
Lp

)1/p

We say a function f is locally in Lp
k if each point of an open subset U is

contained in a neighborhood over which the Lp
k norm is finite.

We define Lp
k sections of a vector bundle V over a compact manifold M

by choosing local coordinates and say a section is in Lp
k if it is represented by

locally Lp
k functions in the trivializations.

Now we have a few theorems about these Sobolev spaces which are useful in
this thesis. In these theorems, M is a compact Riemannian manifold without
boundary.

Theorem 2.2.2. The space Lp
k(M) does not depend on the metric.

Theorem 2.2.3. If r ≥ k then Cr(M) is dense in Lp
k(M).

Theorem 2.2.4 (Sobolev embedding theorem). Let n = dim M . There is
a natural bounded inclusion map from Lp

k into Cr if k − n
p > r

Theorem 2.2.5 (Rellich’s theorem). Assume k > m. Then the inclusion
Lp

k(M) ↪→ Lq
m(M) is bounded and compact if k − n

p > m − n
q and bounded if

k − n
p = m− n

q . In particular, there is a compact inclusion of Lp
k+1 into Lp

k.

Theorems 2.2.4 and 2.2.5 together can be combined to work out in which
space the product f × g of two function f, g ∈ Lp

k lies.
We have a compact embedding Lp

k → L2p if k > n
2p . This gives by multipli-

cation a bounded bilinear map Lp
k × Lp

k → Lp. Now if k > n
p then there is a

bounded inclusion map of Lp
k into C0. We see that by expanding differentiation

through the Leibniz rule, we see that the product fg must lie within Lp
k:
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Theorem 2.2.6 (Sobolev Multiplication). If k > n
p there is a bounded

multiplication map
Lp

k × Lp
k → Lp

k

2.2.2 Some theorems on elliptic operators

Let D : Γ(E) → Γ(E) be a differential operator that sends smooth sections to
smooth sections of a vector bundle E over M . The principal symbol of D is a
map which assigns to each point x ∈ M and each cotangent vector ξ ∈ T ∗xM a
linear map σξ(D) : Ex → Ex as follows. If we can write D in local coordinates
as

D =
∑
|i|≤m

Ai(x)
∂|i|

∂xi
and ξ =

∑
ξkdxk

with m the order of D then

σxi(D) = im
∑
|i|=m

Ai(x)ξi

It calculates the coefficients of the highest-order part of the operator. An op-
erator is called elliptic if it’s principal symbol is an isomorphism for all ξ 6= 0.
Examples include the Dirac operator (by definition 2.1.1), the vector bundle
Laplacian (can be seen using the Weitzenböck formula 2.1.4).

We need some fundamental results on elliptic operators. For proofs see for
example [HM89]. The first result we need relates properties of elliptic operators
on smooth functions to properties of those same operators on Sobolev spaces:

Theorem 2.2.7. Let P : Γ(E) → Γ(F ) be an elliptic operator of order m over
a compact manifold M . Then the following is true:

1. For any open set U ⊂M and any u ∈ L2
s(E),

Pu|U ∈ C∞ ⇒ u|U ∈ C∞

2. For each s, P extends to a Fredholm map P : L2
s(E) → L2

s−m(F ) whose
index is independent of s.

3. For each s there is a constant Cs such that

‖u‖ ≤ Cs (‖u‖s−m + ‖Pu‖s−m)

for all u ∈ L2
s. If P has trivial kernel, the ‖u‖s−m term can be left out.

The following theorem can be used to prove the Hodge theorem, but has
other uses as well:

Theorem 2.2.8. Let P : Γ(E) → Γ(E) be an elliptic self-adjoint differential
operator over a compact Riemannian manifold. Then there is an L2-orthogonal
direct sum decomposition:

Γ(E) = kerP ⊕ imP
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Finally the Dirac operator has a unique continuation property [Aro56]:

Theorem 2.2.9. Let M be a connected manifold. If D+
Aψ = 0 on M and ψ

vanishes identically on an open subset of M , then ψ = 0.

2.2.3 Seiberg-Witten equations

We now turn to the Seiberg-Witten equations and the moduli space of their
solutions. If we take a 4 dimensional oriented Riemannian manifold with spinc

structure (M, 〈, 〉) with positive spinor bundle W+⊗L, the Seiberg-Witten equa-
tions are:

D+
Aψ = 0 F+

A = σ(ψ) (2.2.1)

where d2A is a unitary connection on the determinant bundle L2, F+
A = 1

2F
+
2A is

the self-dual part of the curvature of this connection, and ψ a smooth section of
W+⊗L. Solutions to these equations are called monopoles because their physical
interpretation is that of magnetic monopoles. The Seiberg-Witten equations
are non-linear first order differential equations, but their non-linearity is mild
compared to the Donaldson equations F+

A = 0, with A a SU(2) connection.
In fact the equations above have a compact solution space, which is a huge
improvement over the Donaldson equations.

If we look at the total space of connections and sections, we can set some a
priori bounds on the norms of solutions to the Seiberg-Witten equations. Set

A = {(A,ψ) : A is a U(1) connection on L, ψ ∈ Γ(W+ ⊗ L)} (2.2.2)

to be the total space of smooth sections and unitary connections. We can then
define a functional on this space:

S(A,ψ) =
∫

M

[
|DAψ|2 + |F+

A − σ(ψ)|2
]
dV (2.2.3)

and we see immediately that solutions to the Seiberg-Witten equations 2.2.1
are global minima of this functional. This sets some a-priori bounds on these
solutions.

Theorem 2.2.10. Solutions to the Seiberg-Witten equations are bounded as
follows: ∫

M

|F+
A |

2dv ≤
∫

M

s2

32
dV (2.2.4a)

|ψ|2(p) ≤− s

2
(p) (2.2.4b)

where the last inequality holds at the maximum of |ψ|2 if ψ is not identically 0.

Proof. We have due to the Weitzenböck formula 2.1.4 and the self-adjointness
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of DA that

0 = S(A,ψ) =
∫

M

|D+
Aψ|

2 + |F+
A |

2 − 2〈F+
A , σ(ψ)〉+ |σ(ψ)|2

=
∫

M

|D+
Aψ|

2 + |F+
A |

2 + |σ(ψ)|2 +
∑
i<j

F+
A (ei, ej)〈ψ, i · ei · ej · ψ〉

=
∫

M

|∇Aψ|2 + |F+
A |

2 + |σ(ψ)|2 +
s

4
|ψ|2

We then use that |σ(ψ)|2 = 1
2 |ψ|

4 to conclude the following:

1. We have a bound on |F+
A |2 :∫

M

|F+
A |

2 ≤
∫

M

(
−s

4
|ψ|2 − 1

2
|ψ|4

)
The left hand side is an integral over a positive function, thus must be
≥ 0, so we can complete the square to conclude

∫
M
|F+

A |2dv ≤
∫

M
s2

32dV .

2. Since |∇Aψ|2 + |F+
A |2 + 1

2 |ψ|
4 + s

4 |ψ|
2 = 0 for solutions to the Seiberg-

Witten equations, we have that 1
2 |ψ|

4 + s
4 |ψ|

2 ≤ 0 at all x ∈M , so at the
maximum of |ψ| we have − s

2 (p) ≥ |ψ|2(p) if ψ(p) 6= 0.

From the preceding we can also conclude that if M has positive scalar cur-
vature, the only solution to the Seiberg-Witten equations is ψ = 0. Before
we investigating the moduli space of solutions to the Seiberg-Witten equations
we first derive some properties of the total space A. First choose a basepoint
A0 ∈ A, then A can be written as:

A = {(dA0 − ia, ψ) : a ∈ Ω1(M), ψ ∈ Γ(W+ ⊗ L)}.

We use the Fréchet derivative to calculate derivatives of functions on this infinite
dimensional space. A function f is Fréchet differentiable at a ∈ A if there is a
bounded linear operator Aa such that

lim
h→0

‖f(a+ h)− f(a)−Aa(h)‖W

‖h‖A
= 0

We have a gauge group G = Map(M,S1) which acts on A as

(g, (dA0 − ia, ψ)) → (dA0 − ia+ gd(g−1), gψ)

Lemma 2.2.11. The gauge group leaves the set of Seiberg-Witten equations
invariant

Proof. We have, due to the chain rule:

D+
A+gdg−1(gψ) = gD+

Aψ + dg · ψ + gd(g−1)g · ψ = 0 + dg · ψ − dg · ψ = 0

For the second Seiberg-Witten equation we have:

F+
A+gdg−1 − σ(ψ) = F+

A dgdg
−1 − |g|2σ(ψ) = F+

A − σ(ψ)



CHAPTER 2. SEIBERG-WITTEN THEORY 38

Also of interest is the group of based gauge transformations or the stabilizers
of a point x0, Stabx0 :

Gx0 = {g ∈ G : g(x0) = 1}

We see that G = S1 × Gx0 with S1 the space of constant transformations. This
group acts freely on A, so we can write B̃ = A/Gx0 .

If the manifold is simply connected, the map g ∈ G has a global logarithm u
such that g = eiu(x), with u(x0) = 0 for based gauge transformations. In that
case G acts on A as

(eiu, (dA0 − ia, ψ) → (dA0 − i(a+ du), eiuψ) (2.2.5)

Using this, we can describe B̃ as follows [Mor96]:

Lemma 2.2.12. Let A be any connection. Then there is a unique gauge trans-
formation g in the identity component, such that δ(gA−A0) = 0

Proof. We can write A = A0+α0 for some α0. We see that δα0 is L2-orthogonal
to the constant functions. On the orthogonal complement I of the constant
functions, we can invert the Laplacian, since if g ∈ I, g is either constant 0
or non-constant, hence if g 6= 0, dg 6= 0, hence by proposition c we have that
∆g 6= 0.

Now define θ = −∆−1(δα0). And set g0 = exp(θ), clearly a gauge trans-
formation in the identity component of G. Then α1 = α0 + dg0 is such that
g0A = A0 + α1 by construction and

δα1 = δα0 − δd∆−1(δα0) = 0

Uniqueness: If we have two representatives of (dA0−ia, ψ), say (dA0−ia1, ψ1)
and (dA0−ia2, ψ2) with δa1 = δa2 = 0 such that there is a gauge transformation
eiu such that eiuψ1 = ψ2 and a1 + du = a2. But then

〈a1 − a2, a1 − a2〉 = 〈du, a1 − a2〉 = 〈u, δ(a1 − a2〉 = 0

so a1 = a2.

We can thus, after choosing a base point, fix a point in the gauge orbit of A,
gA such that δ(A−gdg−1−A0) = 0. This gauge choice is called Coulomb gauge.
This is not a unique choice though, we could pick a harmonic transformation
in component not containing the identity and apply it, the resulting connection
will still be in Coulomb gauge, but the action on ψ will certainly not give the
same.

Now we look at the space B = A/G. This quotient is more intricate, as the
group of constant gauge transformations S1 does not act freely on the whole of
A, but has fixed points at points ψ = 0, so B has singularities there. We call
these points reducible.In order to work around these reducible points, we add a
perturbation in the form of a self-dual two form φ:

DAψ = 0 (2.2.6a)

F+
A = σ(ψ) + φ (2.2.6b)
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Now, ψ = 0 can only be a solution of the perturbed Seiberg-Witten equations
if φ is the self-dual part of the curvature of a connection.

Lemma 2.2.13. Let L be a complex line bundle over a compact oriented Rie-
mannian manifold M . Then an element φ ∈ Ω2

+(M) will be the self-dual part of
a unitary connection on L if and only if φ lies in an affine subspace of Ω2

+(M)
of codimension b+2 .

For a proof, see [Tau83].

2.2.4 Structure of the moduli space

We have now enough materials to prove the compactness of the Seiberg-Witten
moduli space.

Theorem 2.2.14 (Compactness of the moduli space). Let M be a con-
nected Riemannian 4-manifold, then the moduli space M of solutions to the
Seiberg-Witten equations is compact.

Proof. Choosing a base connection A0, we can write all unitary connections on
L as dA0 − ia, for some a ∈ Ω1(M). Imposing the Coulomb gauge, we can write
the Seiberg-Witten equations as:

DA0ψ = ia · ψ
(da)+ = σ(ψ)− F+

A0

δ
(
ia+ gdg−1

)
= 0

We have that ψ is bounded in C0 due to theorem 2.2.10, and is thus bounded in
every Lp. The kernel of d+⊕ δ : Ω1(M) → Ω2

+(M)⊕Ω0(M) is precisely the set
of harmonic forms, hence we can write, due to theorem 2.2.8: a = (h, β) with
h harmonic and β non-harmonic. We see that ‖a‖p,k+1 ≤ ‖h‖p,k+1 + ‖β‖p,k+1.
First we take a look at the non-harmonic part.

Because of theorem 2.2.7, we see that

‖β‖p,k+1 ≤ Cp,k‖(δ + d+)β‖p,k

= Cp,k‖0 + σ(ψ)− F+
A0
‖p,k

= Cp,k‖F+
A − F+

A0
‖p,k

≤ Cp,k

(
‖F+

A ‖p,k + ‖ − F+
A0
‖p,k

)
= Cp,k

(
‖F+

A ‖p,k + Cp,kK1

)
Now we need to bound the harmonic part h of a. We need a small lemma[Mor96]:

Lemma 2.2.15. For every real harmonic one-form h whose periods all lie within
2πZ there is a harmonic function φ : M → S1 such that h = dφ

Proof. Choose a basepoint x0 and integrate h along paths to define a C∞-
function φ̃ : M̃ → R on the universal cover M̃ of M . Now since the periods of
h are in 2πZ, we see that φ̃ descends to a map φ : M → R/(2πZ) ' S1 and by
construction dφ = h, so φ is harmonic.
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Now the space of harmonic one-forms divided out by harmonic one-forms
with periods all within 2πZ is a compact torus, so there is a constant K2 such
that any harmonic one-form h can be written as h = h1 − h2 = h1 − dφ with
‖h1‖p,k+1 ≤ K2 and h2 with periods in 2πZ. Now apply this map φ to our
connection A on L2. We see that (detφ)∗A = A0 + ia + dφ since φ is in the
component of the identity so we see that (detφ)∗A = A0 + h1 + β. Applying
Coulomb gauge to (detφ)∗A we see that

‖a‖p,k+1 ≤ ‖h1‖p,k+1 + ‖β‖p,k+1 ≤ K2 +K1 +Cp,k‖F+
A ‖p,k = Cp,k‖F+

A ‖p,k +K

To prove compactness, we need to show that every sequence (dA0 − ai, ψi) of
solutions to the Seiberg-Witten equations has a convergent subsequence. Now
by the above bounds we have ai is bounded in every L1

p for all p. If p > 4
we can use the Sobolev Embedding Theorem 2.2.4 to see that it is bounded in
C0, and so aiψi is bounded in Lp for all p. Then, by theorem 2.2.7 applied to
DA0ψ = ia · ψ we see that this is bounded in Lp

1 for all p. Then, if p > 4 we
can use the Sobolev multiplication theorem 2.2.6 to show that if ai and ψi are
bounded in Lp

k, then aiψiσ(ψi) are bounded in Lp
k, hence by the above ai, ψi

are bounded in Lp
k+1. Repeating this process, we get that ai, ψi are bounded in

Lp
k for all k. We apply Rellich’s theorem 2.2.5 to produce a subsequence which

converges in Lp
k for all k, then use the Sobolev Embedding Theorem again to

show this converges in Cl for all l, hence the moduli space is compact.

This proof of the compactness also goes through in the case of the perturbed
moduli space defined by 2.2.6a and 2.2.6b.

So now we have that the moduli space is compact, we want to show it
is a smooth manifold. For this we need an infinite dimensional analogue of
the implicit function theorem, and a theorem that guarantees the existence of
regular values for this function. This can be done using Fredholm maps, an
obvious generalization of Fredholm maps in normal, linear functional analysis.

Recall that a map F between Banach spaces E1 and E2 is Fredholm if:

1. the kernel of F is finite dimensional,

2. the cokernel of F is finite dimensional, meaning that the range of F has
finite codimension, and

3. the range of F is closed.

The index of a Fredholm map is then

dim(ker(F )− dim(coker(F ))

Now if M1 and M2 are Banach manifolds, we define a nonlinear smooth map
F to be a Fredholm map of index k if for every p ∈ M1, the map dF (p) :
TpM1 → TF (p)M2 is a Fredholm map of index k. Obviously, every smooth map
between finite-dimensional manifolds M and N is a Fredholm map of index
dim(M) − dim(N). For the implicit function theorem, we are interested when
the map dF (p) has an empty cokernel. We say that q ∈ M2 is regular, if for
every p ∈ F−1(q) the map dF (p) is surjective.

We then have an infinite dimensional version of the implicit function theo-
rem:
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Theorem 2.2.16. Suppose F : M1 → M2 is a smooth Fredholm map between
separable Banach manifolds of index k. If b ∈ M2 is regular, then F−1(b) is a
smooth finite dimensional manifold with dimension equal to k.[Lan72]

Also, for Fredholm maps, we have the Sard-Smale theorem (see for example
[DK90]):

Theorem 2.2.17. If F : M1 → M2 is a Ck Fredholm map between separable
Banach manifolds and k > max(0, Ind(F )), then the set of regular values of F
is residual in M2.

The term residual means that it is the countable intersection of open dense
sets. Due to the Baire Category theorem [Sch00] this means that it is dense.
Hence the set of regular values of F is dense. The condition that the manifolds
be separable is in the case at hand satisfied, since the Lp

k spaces are separable.
Now we can state the main theorem of this section

Theorem 2.2.18 (Transversality theorem). Let M be a compact connected
smooth four-manifold with a spinc structure, with b+2 > 0. Then for a generic
choice of self-dual two form φ, M̃φ is an oriented smooth manifold, with dimen-
sion

dim
(
M̃φ

)
= 2(complex index of D+

A)− b+2 + b1 (2.2.7)

Proof. The proof goes in two steps: first we prove the surjectivity of our operator
at hand, and second we prove that the manifold is oriented.

Surjectivity Define

F : B̃ × Ω2
+(M) → Γ(W− ⊗ L)× Ω2

+(M)

as
F (A,ψ, φ) = (D+

Aψ, F
+
A − σ(ψ)− φ).

We can then calculate the differential of F at a point (A,ψ, φ):

dF (A,ψ, φ)(a, ψ′, φ′) = (D+
Aψ

′ − ia · ψ, (da)+ − 2σ(ψ,ψ′)− φ′

First of all, by fixing a, ψ′, we see that by varying φ′, the entirety of Ω2
+(M) is

mapped upon. Now it suffices to show that for φ′ = 0 the first component is
surjective.

We first consider the case where ψ is not identically 0. Then the linear
map a 7→ a · ψ is injective, because a · a · ψ = −|a|2ψ, and because T ∗M and
W− ⊗ L have the same dimension, it is an isomorphism. Then, because ψ is
not identically 0, there is an open set U in M for which ψ does not vanish,
hence the map a 7→ a · ψ is an isomorphism for sections supported in this set.
Now suppose that σ ∈ L2(W− ⊗ L) is orthogonal to the image of dF (A,ψ),
then (−ia · ψ, σ) = 0 for all a supported in U , hence σ is 0 on U . But also
0 = (D+

Aψ, σ) = (ψ,D−
Aσ), hence by the Unique Continuation Theorem 2.2.9

we have that σ = 0, hence we have surjectivity.
Now consider the case where ψ is identically 0. In this case, for the pair

(A,ψ) to be a solution to the perturbed Seiberg-Witten equations, we must
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have φ = F+
A . But this space, according to lemma 2.2.13 has codimension

b+2 > 0 hence the complement is open and dense. Call this complement U =
{φ ∈ Ω2

+ : φ 6= F+
A for any connection A}. Then we have that the following is a

submanifold of B̃ × U :

N = {(A,ψ, φ) ∈ B̃ × U : F (A,ψ, φ) = 0}

The tangents space at a point (A,ψ, φ) is given by

{(a, ψ′, φ′) : (D+
Aψ

′ − ia · ψ, δa, (da)+ − 2σ(ψ,ψ′) = (0, 0, φ′)}

Define
L(a, ψ′) = (D+

Aψ
′ − ia · ψ, δa, (da)+ − 2σ(ψ,ψ′))

which is an elliptic operator Now the projection π : N → Ω2
+(M) given by

π(A,ψ, φ) = φ is a Fredholm map, because the kernel of dπ is precisely the
kernel of L. On the other hand

Im(dπ) = {φ′ ∈ Ω2
+ : (0, 0, φ′) = L(a, ψ′) for a a, ψ′}

which is exactly ImL∩ (0⊕0⊕Ω2
+, which means, due to the ellipticity of L that

the image of dπ is of finite codimension, and is closed.
Now we use the unique continuation theorem to show that the cokernel of

dπ has the same dimension as the cokernel of L. More precisely, we show that(
Γ(W− ⊗ L)⊕ Ω̃0(M)⊕ {0}

)
∩ (Im(L))⊥ (2.2.8)

with Ω̃0(M) the space of functions over M which integrate to 0.
Now if (σ, u, 0) ∈

(
Γ(W− ⊗ L)⊕ Ω̃0(M)⊕ {0}

)
is perpendicular to the im-

age of L, we have D−
Aσ = 0 and (ia · ψ, σ) = (δa, u) for all a ∈ Ω1(M). This

means in particular that (ib · ψ, σ) = 0 for all b such that δb = 0. Now define
such a b by 〈b, a〉 = 〈ia · ψ, σ〉. This is such a b, since we have because D+

A is
the formal adjoint of D−

A , we have

〈D+
A(ψ), σ〉(p)− 〈ψ,D−

A(σ)〉(p) = δb

and D+
A(ψ) = D−

A(σ) = 0. We then get 〈b, b〉 = 〈ib ·ψ, σ〉 = 0 hence b = 0. Now
by assumption, ψ 6= 0, so we must have σ = 0 on an open set, hence by unique
continuation σ = 0 on M and so (δa, u) = 0 for all a ∈ Ω1(M). This can only
mean that u = 0 and so equation 2.2.8

Now we can calculate the dimension of our submanifold. Choose φ ∈ Ω2
+(M)

to be a regular value of π. The dimension of the submanifold π−1(φ) is the index
of L, which is the index of L0 = D+

A ⊕ δ ⊕ d+. The complex index of D+
A is

given by Atiyah-Singer index theorem, so the real index is

−1
4
τ(M) +

∫
M

c1(L)2

The index of δ ⊕ d+ was calculated in equation 1.2.4 and was b1 − b+2 so the
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total dimension is
−1

4
τ(M) +

∫
M

c1(L)2 − b+2 + b1

Orientation If F : V → W is a Fredholm map. Let K be the kernel of F
with dimension k and L the cokernel with dimension l. Then we can define the
determinant bundle of F as

det(F ) =
k∧
K ⊗

l∧
L

If T is a smooth compact manifold, and {Ft}t∈T a continuous family of Fredholm
operators, there is a natural way to describe det(Ft) as a line bundle over T
[FM94].

Now if Fs and Fs′s are two homotopic families of Fredholm operators, we
can look at the product S × {0, 1} and see from the continuously varying part
that they must define two isomorphic line bundles. Now define the following
family of vector bundles:

Lt(a, ψ′) = (D+
Aψ

′ − ita · ψ, δa, (da)+ − 2tσ(ψ,ψ′))

If t = 1, the determinant of this bundle is
∧d(ker(L) =

∧d(M̃φ, so the existence
of a nowhere zero section of this determinant proves that M̃φ is orientable. But
all the determinants of Lt are isomorphic, so we can restrict ourselves to the
simpler case of det(L0) = det(D+

A)⊗ det(δ ⊕ d+).
We can set an orientation on the first factor by observing that it is a com-

plex linear operator. The kernel and cokernel of a complex linear operator are
complex spaces which can be given a orientation by complex multiplication. For
the second factor, we have to choose an orientation for the group H2

+(M) by the
fundamental complex 1.2.3. This gives an nowhere section on det(δ ⊕ d+) We
then have an orientation of det(L0) hence of det(L1) thus of the entire moduli
space.

2.2.5 The invariants

Now with all this machinery established, we can define the Seiberg-Witten in-
variants as follows:

For a 4-dimensional Riemannian manifold M with b+2 > 1, choose a spinc

structure L on it, and fix a Riemannian metric g. Since b+2 > 1 we have that
for a generic choice of π the moduli space ML,φ is a smooth submanifold with
dimension d = 2(complex index of D+

A) − b+2 + b1 − 1. We have a principal S1

bundle B̃∗ over the space B̃, which descends to the moduli space. Define c1 to
be the Chern class associated with this bundle.

Definition 2.2.19. The Seiberg-Witten invariant of M for a generic metric h
is

SW (M) =
∫
ML,φ

c
d/2
1

if d is even and 0 otherwise.

This definition might seem to be dependent on the choice of g and φ, but
we will see that because b+2 > 1, this dependence vanishes.
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Lemma 2.2.20. If for M , b+2 > 1, then the Seiberg-Witten invariants of M
are independent of g and φ

Proof. Pick two metrics g0 and g1 and generic self-dual two forms φ0, φ1 so
that theorem 2.2.18 holds for the spaces M̃φ0 and M̃φ1 with metrics g0 and g1
respectively. Now set g(t) to be a smooth path in the space of all metrics such
that g(0) = g0 and g(1) = g1. We want to establish the existence of a smooth
path φ(t) from φ0 to φ1 such that the space M̃φ(t) ⊂ B̃ × [0, 1] such that

F+t

A = σ(ψ) + φ(t)

D+
A,gt

ψ = 0

where the +t means that the splitting into self-dual and anti-self-dual forms by
the Hodge star is metric dependent and D+

A,gt
varies due to the changing Levi-

Civita connection on the spinor bundle. Consider the space P(φ0, φ1) of smooth
paths η : [0, 1] → Ω2

+(M) such that η(0) = φ0 and η(1) = φ1. This space has
tangent space at a point η consisting of all maps [0, 1] → Omega2

+(M) vanishing
at the endpoints.

Just as in the proof of the transversality in theorem 2.2.18 we want to prove
that the differential of

F : (B̃ × I × P) → Γ(W− ⊗ L)× Ω2
+(M)

given by
F (A,ψ, t, φ) = (D+

A,gt
, F+t

A − σ(ψ)− φ(t))

is surjective for all points where F vanishes. Now on t = 0 and t = 1 this is
the case, due to the choice of φ0 and φ1. When 0 < t < 1 we know that due to
the same argumentation as in theorem 2.2.18 the differential is surjective when
restricted to TP hence by (again) the same argument in 2.2.18 we see that DF
is surjective. Now consider the space ML = F−1(0)/G. By the transversality
of F , this is a smooth manifold with boundary. The projection of ML to P
is smooth so by the Sard-Smale theorem 2.2.17 the fiber over a generic η is a
smooth manifold which is precisely the subset of irreducible solutions in M̃L,η.
Now if η is a generic path, there will be no reducible solutions in ML,η since
by lemma 2.2.13 these form a codimension b+2 > 1 subspace which a path will
generically miss. M̃L,η is also compact, because for every t the M̃L,η(t) is
compact. The boundary consists of M̃L,φ0 and M̃L,φ1 .

It is oriented by a choice of orientation on the boundary and an orientation
on I = [0, 1]. Thus we have a cobordism of M̃L,φ0 and M̃L,φ1 , which means
that the cohomology classes of c1 defined in 2.2.19 are the same, hence the
Seiberg-Witten invariants are invariant under a change of metric and a generic
perturbation.

We also have by theorem 2.2.10

Corollary 2.2.21. If there is a strictly positive metric on M , SW (M) = 0.

The Seiberg-Witten invariants can be used to establish the existence of in-
finitely many non-diffeomorphic smooth structures on nCP2#kC̄P2 for many n
and k. Normally, these manifolds with their standard smooth structure admit
a metric with strictly positive curvature, so their Seiberg-Witten invariants are
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0. However there exist “exotic” smooth structures on these manifolds which do
not admit a positive metric:[PSS05]

Theorem 2.2.22. There exist infinitely many pairwise non-diffeomorphic 4manifolds
all homeomorphic to CP2#5C̄P2.

The same can be established for CP2#kC̄P2 for k = 6, 7, 8 and 9, see the
references in [PSS05]. While this was already know using Donaldson theory for
k = 8 and k = 9, for k = 5, 6 and 7, Seiberg-Witten invariants were instrumen-
tal.



Chapter 3

Instantons

In this final chapter of the thesis, we explore the relation between the Seiberg-
Witten theory and Donaldson theory following the approach by Nekrasov in
[Nek03]. First we will define instantons and give their construction as a hy-
perkähler quotient. We will see that this possible in two ways, first as a hy-
perkähler quotient from the infinite dimensional space of all connections, and
also via the ADHM construction as a hyperkähler quotient of a finite dimen-
sional vector space. These approaches give the same answer.

Then, we want to calculate the equivariant volume of the instanton moduli
space. For this, we need to generalize the localization theorems of chapter 1.
The most powerful tool we use is a generalization of the Jeffrey-Kirwan local-
ization theorem. The Jeffrey-Kirwan theorem is gives the equivariant volume of
a symplectic quotient in terms of residues of integrals over fixed point sets. An
essential part of this theorem is the Kirwan map, which relates the equivariant
cohomology of the symplectic quotient with that of the original space. The
residue operation on differential forms is introduced in the next section.

Then the generalized Jeffrey-Kirwan theorem is applied to the instanton
moduli space given by the ADHM construction. Finally, the generating function
of the total equivariant volume of the instanton moduli space is analyzed, and
the relation with the Seiberg-Witten theory investigated.

46
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3.1 Instantons and the ADHM construction

The Donaldson invariants describe similar invariants of four-manifolds as the
Seiberg-Witten invariants. In fact, one of Witten’s conjectures when writing
down the Seiberg-Witten equations was that they are in fact the same, mod-
ulo some numerical constants. This was of course motivated by the procedure
where Seiberg and Witten obtained their monopole equations from the quan-
tum field theory describing the Donaldson instantons. The correspondence how-
ever is still a conjecture from the mathematical point of view: the derivation
by Seiberg and Witten uses many concepts (Feynman path integral, electric-
magnetic duality) which are not rigorously defined. In the case of instantons
over R4, however, recent progress has been made in this direction by Nekrasov
et. al [Nek03],[NS04] and [NO06]. This goes via the so called Atiyah-Drinfel’d-
Hitchin-Manin, ADHM, construction of instantons.

3.1.1 Instantons

Just as the monopoles are defined as the solutions of certain gauge invariant
differential equations in equation 2.2.1, instantons are connections which satisfy
the differential equation

F+
A = 0 (3.1.1)

with FA the curvature of a SU(2) connection A on a vector bundle, and F+
A

the self-dual part of the curvature 2-form, as defined in 1.2.2a. This partial
differential equation is also called the anti-self-dual equation or shortly the ASD
equation.

Now using the theory of characteristic classes from section 1.3.4, we can
write for a connection A on a vector bundle E:[

1
2π

Tr(FA)
]

= c1(E)

[
1

8π2
Tr(F 2

A)
]

= c2(E)− 1
2
c1(E)2

with c1 and c2 the Chern classes.
The term Tr(F ∧ ?F ) is known in physics literature as the Yang-Mills La-

grangian. The integral over M of this Lagrangian
∫

M
Tr(F ∧ ?F ) is called the

Yang-Mills action. If we assume c1(E) = 0, then the second Chern class c2(E)
is the absolute minimum for a connection on a vector bundle E, as we can see
from the following computation:

0 ≤
∫

M

[Tr(FA − ?FA) ∧ ?(FA − ?FA)]

=
∫

M

TrFA ∧ ?FA − FA ∧ FA − ?FA ∧ ?FA + ?FA ∧ FA

=
∫

M

Tr2FA ∧ ?FA − 2FA ∧ FA

Since the second Chern class of the vector bundle E is c2(E) = 1
8π2 TrF ∧ F we

see that the minimum of the Yang-Mills action is 8π2
∫

M
c2(E). This minimum
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is attained when FA = ± ? FA, especially, FA = − ? FA when c2(E) < 0.
We define the charge of the instanton to be c2(E).
When we compactify R4 to CP2 we set a framing, that is we set a certain

trivialization of the vector bundle on which the connection lives, at the line at
infinity, [0 : z1 : z2]. This means the first Chern class is zero, and such instantons
are called framed instantons.

The instanton moduli space is well-known to be non-compact. In order to
calculate the Donaldson invariants, we need to integrate over the moduli space
of instantons, and this is problematic when the space is non-compact, so we
need to compactify the moduli space. There are several ways to do this, we will
briefly describe the most commonly used one, the Uhlenbeck compactification

The Uhlenbeck compactification works set-theoretically as follows. Let M
be the manifold over which we want to describe the moduli space of instantons.
We then have sequence of moduli spaces Mk of instantons with charge k ≥ 0.
Then define ideal instantons to be:

Definition 3.1.1. An ideal instanton of charge k over M is a pair:

([A], (x1, . . . , xl))

where [A] is a point in Mk−1 and (x1, . . . , xl) is an unordered l-tuple of points
of M .

The curvature density of this ideal instanton is the measure

|F[A]|2 + 8π2
l∑

r=1

δxr

with δxr
the point measure at position xr

These can be viewed as “point-like instantons”, where all the curvature of
the connection A is concentrated at the points (x1, . . . , xl). We can then embed
Mk in the space of all ideal instantons of charge k:

IMk = Mk ∪Mk−1 ×M ∪Mk−2 × s2(M) ∪ . . .

where sl(M) is the l times symmetric product of M . Now we need a topology
on the moduli space.

Definition 3.1.2. Let {Ai} be a sequence of SU(2) connections on a SU(2)
fiber bundle Pk of second Chern class k. A sequence of gauge equivalence classes
{[Ai]}i∈N converges weakly to an ideal instanton ([A], (x1, . . . , xl)) if

1. The curvature densities converge as measure, that is for any continuous
function f :

lim
i→∞

∫
M

f · |FAi
|2dµ =

∫
M

f · |F[A]|2 + 8π2
l∑

r=1

f(xr)

2. There are bundle maps ρi : Pl|M\{x1,...,xl} → Pk|M\{x1,...,xl} such that
ρ∗i (Ai) converges to A.
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This notion of convergence can of course be extended to ideal instantons.
This then defines a topology on IMk and so we can define the closure of Mk in
IMk.

Theorem 3.1.3 (Uhlenbeck compactification). The closure of Mk in IMk,
denoted by M̄k, is compact.

For a proof of this theorem, see for example [DK90]. Though this space is
compact, it has many singularities, making it cumbersome to deal with.

3.1.2 ADHM construction

We want to construct instantons over R4. The anti-self dual equations 3.1.1
are elliptic partial differential equation, which can be very hard to solve. For-
tunately, the solutions to this particular equation on R4 can be constructed
entirely by linear algebra as follows[AHDM78]:

Theorem 3.1.4 (ADHM construction of instantons). Fix a complex struc-
ture I on R4 with coordinates (z1, z2). There is a one-to-one correspondence
between framed SU(n)-instantons of charge k and matrices

(α1, α2, a, b) ∈Mk×k(C)×Mk×k(C)×Mk×n(C)×Mn×k(C)

such that (α1, α2, a, b) satisfy the ADHM equations:

1. [α1, α2] + ba = 0

2. [α1, α
∗
1] + [α2, α

∗
2] + bb∗ − a∗a = 0

3. The map

α1 − λ1Idk×k

α2 − λ2Idk×k

a

 from Ck to C2k+n is injective for all λ1, λ2 ∈ C

4. The map
(
−α2 + λ2Idk×k α1 − λ1Idk×k b

)
from C2k+n to Ck is sur-

jective for all λ1, λ2 ∈ C.

modulo the action of U(k) on this space given by:

(α1, α2, a, b) 7→ (gα1g
−1, gα2g

−1, ag−1, gb)

For a proof see for example [DK90].
We can write these equations as a monad, see definition 1.3.10:

Ck
L// Ck ⊗ Ck ⊕ CnR // Ck (3.1.2)

where L =

α1

α2

a

 and R =
(
−α2 α1 b

)
. The equation in 1 is then equivalent

to saying that that 3.1.2 defines a complex. If we now replace αi by αi−λiIdk×k

we get a family of parametrized by C2, still equivalent to 1:

Ck

0BB@
α1

α2

a

1CCA
// Ck ⊗ C2 ⊕ Cn

“
−α2 α1 b

”
// Ck (3.1.3)
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If we now also demand that this must hold for any complex structure on R4, we
get condition 2.

The vector bundle on which the ASD connection works is given by the co-
homology class, as in lemma 1.3.11:

Ex =
ker
(
−α2 + z2 α1 − z1 b

)
Im =

α1 − z1
α2 − z2

a


and the connection A is given by projecting the flat connection on R4 × Ck ×
Ck × Cn to E.

The Uhlenbeck compactification of the moduli space can also be viewed in
the ADHM construction, as follows. Modify the matrices α1, α2, a, b as follows:

(α1, α2, a, b)×y 7→
[(
α1 0
0 diag(y0

1 , . . . , y
0
l )

)
,

(
α2 0
0 diag(y1

1 , . . . , y
1
l )

)
,
(
a 0

)
,

(
b
0

)]
with (y0

i , y
1
i ) are complex coordinates of R4 and the coordinates (y0

1 , y
1
1 , . . . , y

0
l , y

1
l )

are taken to be in SlR4, the l-times symmetric product of R4.
Now following [Mac91] we will establish a hyperkähler isometry between the

space given by the ADHM construction, and the moduli space of instantons,
thus proving

Theorem 3.1.5. The ADHM correspondence is a hyperkähler isometry.

Proof. Fix a complex structure I on R4. Let ω denote the flat Kähler form
on R4 defined by I. Let Ak be the moduli space of SU(n) connections with
charge k. The symplectic form ω induces a symplectic form Ω on Ak: Ω(u, v) =∫

Tr(u∧v)∧ω/(2π2), where u, v ∈ TAAk, with the tangent space identified with
the space of one-forms on R4 with values in su(n).

Lemma 3.1.6. The function

K(A) =
1

16π2

∫
R4
|x|2TrF 2

A

is a Kähler potential for the Kähler form Ω on Mk,n

Proof. We can construct on E a holomorphic structure compatible with A, so
that the covariant derivative splits :

dA = ∂A + ∂̄A

Pick α, ᾱ ∈ T[A]Mk,n ⊗ C such that ∂Aᾱ = ∂̄Aα = 0. Also, if t > 0 and real,
then F 2

A+ta = F 2
A + 2tFA ∧ dAa+O(t2) as can be computed by using the chain



CHAPTER 3. INSTANTONS 51

rule, so we have

−1
2
i
∂

∂ᾱ

∂

∂α
K(A) =

1
4π2

∂

∂ᾱ

∫
−i
4
|x|2TrFA ∧ ∂Aα

=
1

2π2

∫
−i
4
|x|2Tr

[
(∂̄Aᾱ ∧ ∂Aα) + FA ∧ α ∧ ᾱ

]
=

1
2π2

∫
−i
4
|x|2Tr

[
(∂̄Aᾱ ∧ ∂Aα) + ∂̄A∂Aα ∧ ᾱ

]
Now use that the Kähler potential for ω is given by 1

2 |x|
2, so ω = −i

4 ∂∂̄|x|
2 and

so we see by using Stokes’s theorem twice that

−1
2
i
∂

∂ᾱ

∂

∂α
K(A) =

1
2π2

∫
ω ∧ Tr(α ∧ ᾱ)

and so we get − 1
2 i∂̄∂K(A)(α, β) = Ω(α, β)

If we define three complex structures I1, I2, I3 on R4 satisfying the hy-
perkähler condition 1.2.7, we see that this actually proves the moduli space
Mk,n is actually a hyperkähler manifold, with hyperkähler potential K(A).

Now to prove that the hyperkähler potential on the ADHM moduli space is
the same, we first note that the hyperkähler structure on the space of matrices
(α1, α2, a, b) is simpler since the flat Kähler structure on this space is invariant
under the action of U(k) given in theorem 3.1.4.

There is an obvious Kähler potential on the space of matrices, given by the
norm squared of the matrices:

1
2
(
||α1||2 + ||α2||2 + ||a||2 + ||b||2

)
Denote by p the ADHM correspondence, we then need to prove

1
2
||p(A)2|| = K(A)

Now, while it is possible to calculate directly the Kähler potential K(A) in
terms of matrices p(A) in the case that k = 1, but this becomes much harder
when k increases. Instead, we will use a formula due to Osborn [Osb79]:

?TrF 2
A = −1

2
∆∆logdetL(x) (3.1.4)

where L(x) = (α1− z1)∗(α1− z1)+ (α2− z2)∗(α2− z2)+ a∗a for (α1, α2, a, b) =
p(A) and ∆ the standard Euclidean Laplacian on R4.

We can now integrate K(A) by parts:

K(A) =
1

32π2
limR→∞

∫
S3(R)

[
R4xd∆ log detL− 2R4∆ log detL+ 8R2xd log detL

]
dS

(3.1.5)
with S3(R) the 3-sphere of radius R with measue R3dS Now we rewrite L in
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terms of the vector of matrices γ given by:

γ1 =
1
2
(α1 + α∗1) γ2 =

i

2
(α1 − α∗1)

γ3 =
1
2
(α2 + α∗2) γ4 =

i

2
(α2 − α∗2)

This gives for the derivatives of L

L′i :=
∂

∂xi
L = 2(xi − γi)

Now substituting this into equation 3.1.5:

Tr
[
16R2〈γ, x〉L2(L−1)3 − 24R4(R2 − 〈γ, x〉)L(L−1)3

+ 2R4(L+ 2R2 − 2〈γ, x〉)(R2(L−1)2 + 〈L−1γ, L−1γ〉 − 2〈γ, x〉(L−1)2)L−1
]
dS

where we have cyclically permuted the matrices because of the properties of the
trace. Also we have left explicit factors of L−1 since in limit of R → ∞ this
matrix tends to R−2Ik×k and so we can neglect terms which are of order less
than 1 in terms of R. Now we substitute

L = α∗1α1 + α∗2α2 +R2 − 2〈γ, x〉+ a∗a

and we obtain

Tr
[(
−16R6(α∗1α1 + α∗2α2 + a∗a)− 24R6〈γ, x〉+ 80R4〈γ, x〉2

)
(L−1)3

+ 24R6〈L−1γ, L−1γ〉L−1
]
dS

We use the x 7→ −x symmetry of all the terms to calculate the 24R6〈γ, x〉(L−1)3

terms which seems at first glance to diverge.∫
S3(R)

Tr24R6〈γ, x〉(L−1)3dS = 12
∫

S3(R)

R6〈γ, x〉(L(−x)3 − L(x)3)M(x)3M(−x)3

= 144
∫

S3(R)

TrR10〈γ, x〉2M(x)3M(−x)3dS

≈ 144
∫

S3(R)

Tr
〈γ, x〉
R2

dS in the larg R limit

= 72π2
(
||α1||2 + ||α2||2

)
Now we can calculate:

K(A) =
−1

32π2

[
−32π2

(
||α1||2 + ||α2||2 + ||a||2

)
+ (−72 + 40 + 48)π2

(
||α1||2 + ||α2||2

)]
=

1
2
(
||α1||2 + ||α2||2 + ||a||2 + ||b||2

)
which is precisely the Kähler potential for the ADHM construction.
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This proof together with the formula for the Kähler potential highlights
also that the ADHM construction is a hyperkähler quotient, with [α1, α2] + ba
and [α1, α

∗
1] + [α2, α

∗
2] + bb∗ − a∗a as moment maps on Mk×k(C)×Mk×k(C)×

Mk×r(C)×Mr×k(C) ' C2k2+2kr divided out by the action of U(r) on C2k2+2kr.
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3.1.3 The Donaldson invariants

We will sketch how the Donaldson invariants are defined, in order to relate them
to the Seiberg-Witten invariants via the conjecture of Witten in [Wit94]. We
follows [Mor98].

Let M be a 4-dimensional manifold with b+2 > 1 and odd, and set P to be
a principal SU(2) bundle over M with c2(P ) > 0. Then the dimension of the
moduli space of instantons on P can be calculated by using the Atiyah-Singer
index theorem to be

d′(P ) = 8c2(P )− 3(b0(M)− b1(M) + b+2 (M)

This number is even if M is simply connected and b+2 (M) is odd, and since we
will be integrating 2-forms over this manifold, we will demand it is even and
define d to be half the dimension:

d(P ) = 4c2(P )− 3
2
(b0(M)− b1(M) + b+2 (M) (3.1.6)

The Donaldson polynomial invariant associated to a SU(2)-bundle P is a
symmetric multilinear function of degree d on H2(M,Z) with values in Q:

γd(M) : H2(M,Z)⊗ . . .⊗H2(M,Z)︸ ︷︷ ︸
d times

→ Q

There exists a principal SO(3) bundle

A∗(P )×G(P ) P → B∗ ×M

where A∗(P ) is the space of all irreducible SU(2) connections on P , B∗ the space
of irreducible SU(2) connections modulo the gauge group, and A∗(P )×G(P ) P
the associated vector bundle under the action of the gauge group G(P ) on P .
This is a SO(3) principal fiber bundle by the identification of Ad(SO(3)) =
Ad(SU(2)) since SU(2) is a double cover of SO(3). We call the total space of
the fiber bundle ξ. Now we use the slant product

/ : Hn(X × Y ;R)×Hj(Y ;R) → Hn−j(X;R)

with the Pontrjagin class, defined in 1.3.9 in cohomology to define a homomor-
phism:

H2(M ; Z) → H2(B∗(P ); Z) : x 7→ p1(ξ)/x

Restrict this map to the moduli space of irreducible instantons M∗(P ) ⊂ B∗(P )
to define the map

µ′ : H2(M ; Z) → H2(M∗(P ); Z)

Using the properties of the Pontrjagin class we can see that this map is divisible
by 4 and so define the µ-map:

µ : H2(M ; Z) → H2(M∗(P ); Z) µ(x) =
−p1(ξ)/x

4
(3.1.7)
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Similarly, there is a map

µ : H0(M ; Z) → H4(B∗; Z)

given by sending 1 ∈ H0(M ; Z) to (−1/4)px(ξ)
These maps can be extended to maps µ̄ over the Uhlenbeck compactification

of the moduli space of instantons with charge k : M(Pk), as in theorem 3.1.3.
Now for technical reasons, we need each part of the space of ideal instantons
Mk−l × Sl(M) to be of dimension two less than Mk. This is automatic for
all l < k, since then dim

(
Mk−l × Sl(M)

)
= 2d(Pk) − 4l, but for l = k we get

the moduli space of the trivial bundle, which is a single point, but with formal
dimension due to equation 3.1.6 of −3(1 + b+2 (M)), so we demand that k is in
the stable range, that is:

4k ≥ 3b+2 (M) + 5

Definition 3.1.7. For classes x1, . . . xa ∈ H2(M ; Z) and e1, . . . , eb ∈ H0(M ; Z)
with a+2b = d(P ) and 4a ≥ 3b+2 +5 we define the stable Donaldson polynomial
invariant

γd(B) : H2(M ; Z)⊗ . . .⊗H2(M ; Z)︸ ︷︷ ︸
a times

⊗H0(M ; Z)⊗ . . .⊗H0(M ; Z)︸ ︷︷ ︸
b times

→ Z

as

γd(x1, . . . , xa, e1 . . . eb) =
∫
M(P )

µ̄(x1) . . . µ̄(xa)µ̄(e1) . . . µ̄(eb) (3.1.8)

where µ̄ is the extension to the Uhlenbeck compactification of the map µ defined
in equation 3.1.7

Using essentially the same type of arguments as in lemma 2.2.20 we can see
that these polynomial invariants are invariant under a C∞ change of metric.

This definition can be extended to the unstable range by considering blow-
ups.

Theorem 3.1.8. Consider a 4-manifold M , and assume b+2 (M) > 1. Let P
be a principal SU(2)-bundle over M for which half the formal dimension of
the moduli space of instantons, given by 3.1.6 is given by d. Then there is a
b > 0 such that d+ b is in the stable range for the b-fold blowup M ′ of M . Let
e1, . . . , eb ∈ H2(M ′; Z) be the classes represented by the exceptional curves in
M ′. For any classes x1, . . . , xd ∈ H2(M ; Z) consider(

−1
2

)b

γd+b(M ′)(x1, . . . xd, e1, . . . , eb)

where each ei occurs 4 times. This result is independent of b if d+ b lies in the
stable range for M and defines a multilinear symmetric function

γd(B) : H2(M ; Z)⊗ . . .⊗H2(M ; Z)︸ ︷︷ ︸
d times

→ Q
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where the image is contained (
1
2

)b0

Z ⊂ Q

where b0 is the minimal integer b such that d+ b lies in the stable range.

This can be extended to maps

γd(B) : H2(M ; Z)⊗ . . .⊗H2(M ; Z)︸ ︷︷ ︸
a times

⊗H0(M ; Z)⊗ . . .⊗H0(M ; Z)︸ ︷︷ ︸
b times

→ Q

which is called the full Donaldson polynomial invariant.
This is only defined when d ≡ 3(1+ b+2 (M))/2(mod4) due to equation 3.1.6.

This can be extended to d ≡ 3(1 + b+2 (M))/2(mod2) by defining

γd(M)(x1, . . . , xd) =
1
2
γd+2(M)(x1, . . . , xd, 1)

where 1 ∈ H0(M ; Z) is the generator of the orientation, if d ≡ 3(1+b+2 (M))/2(mod2)
but not d ≡ 3(1 + b+2 (M))/2(mod4). We can then define the Donaldson series
as a formal power series:

DM (x) =
∞∑

d=0

γd(M)(x)
d!

There is no general proof of convergence of this series, but in all known examples
this does converge. An important simplification in the calculation of Donaldson
invariants is when the manifold is of simple type. This definition is due to
Kronheimer and Mrowka. A manifold is said to be of simple type when

γd(α1, . . . , αt, 1, 1) = 4γd(α1, . . . , αt)

for all classes αi ∈ H2(M ; Z) and with 1 ∈ H0(M ; Z) the generator of the
orientation.

Now we can state the conjecture of Witten regarding Donaldson and Seiberg-
Witten invariants

Conjecture 3.1.9. Consider a 4-manifold M of simple type, with b+2 > 1. Let
SW (x) denote the Seiberg-Witten invariants for each isomorphism class x of
spinc structures on M . Introduce formal variables q1, . . . , qb2 , λ and write the
generating function for the Donaldson series:

DM

(
e

P
a qaαa+λ1

)
=
∑
ai,b

DM

(
(q1α1)a1 , . . . , (qb2αb2)

ab2 , (λ1)b
)

a1! · · · ab2 !b!

Set v =
∑

a qaαa, then the Witten conjecture is

DM

(
e

P
a qaαa+λ1

)
=

21+ 1
4 (7ξ+11σ) ·

[
e

“
v2
2 +2λ

”∑
x

SW (x) · ev·x + i
ξ+σ
4

∑
x

SW (x) · e−iv·x

]
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where ξ is the Euler class of M and σ the signature.
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3.1.4 The Seiberg-Witten prepotential

One of the most important objects in Seiberg-Witten theory is the prepotential,
which Seiberg and Witten used to determine the low energy limit of the Don-
aldson theory, leading them to the U(1) monopole equations. This prepotential
is given as the generator of periods of a family of curves, the Seiberg-Witten
curves. We follow [NY04].

Definition 3.1.10. Let ~u = (u1, . . . , ur) be global complex coordinates on a
special Kähler manifold, called the u-plane. The Seiberg-Witten curves is the
family of curves parametrized by ~u:

C~u : Λr

(
w +

1
w

)
= P (z) = zr + u2z

r−2 + u3z
r−3 + . . .+ ur

For generic u these are curves of genus r − 1. If we project (w, z) ∈ C~u

to z ∈ CP1, we see that they have the structure of hyperelliptic curves, with
hyperelliptic involution ι : w 7→ 1

w .
We can write y = Λr

(
w − 1

w

)
, then the equations become

y2 = (P (z)− 2Λr)(P (z) + 2Λr) (3.1.9)

The parameter Λ is called the renormalization scale in physics.
Let {z1, . . . , zr} be the solutions of P (z) = 0. First assume that we work

in the sector U∞ of the u-planet such that |zα − zβ | and |zα| are much larger
than |Λ|, in particular, the zα are distinct. By Vieta’s formula for the roots of
a polynomial, we have

∑
α zα = 0, so these form r − 1 independent functions

of u. In U∞, we can consider the zα as local coordinates. From equation 3.1.9
we see that near each zα there are solutions z±α of the equation P (z±α ) = ±2Λr

when |zα| � |Λ|. By the definition of y, we see that these are the points where
w = 1

w , these are called the branch points of the projection C~u to CP1. The
genus of C~u is then r − 1 by the Riemann-Hurwitz formula.

Since the curve C~u is hyperelliptic, we can view it as being made up of two
copies of the Riemann sphere, glued along cuts through z+

α and z−α . Now define
the cycles Aα as the cycles encircling the cut between z+

α and z−α . Now choose
cycles Bα such that {Aα, Bα} form a symplectic basis of H1(C~u,Z), that is
Aα ·Aβ = Bα ·Bβ = 0 and Aα ·Bβ = δαβ . Note that these are not global cycles
on the u-plane.

Definition 3.1.11. The Seiberg-Witten differential is given by

dS = − 1
2π
z
dw

w
= − 1

2π
zP ′(z)dz√
P (z)2 − 4Λ2r

= − 1
2π

zP ′(z)dz
y

where P (z) as defined in 3.1.10.

We can differentiate the Seiberg-Witten differential by setting w to be con-
stant

∂

∂up
dS

∣∣∣∣
w=constant

=
1
2π

zr−p

P ′(z)
dw

w
=

1
2π

zr−pdz

y

These form a basis of the holomorphic differentials due to[GH78]



CHAPTER 3. INSTANTONS 59

Lemma 3.1.12. Let S be a hyperelliptic Riemann surface of genus g, given by
the equation y2 = g(z) with g(z) a polynomial of degree 2g+2. The differentials{

dz

y
, z
dz

y
, . . . , zg−1 dz

y

}
form a basis of holomorphic differentials on S

Proof. The hyperelliptic involution ι : y 7→ −y is of order 2, and so the induced
transformation ι∗ : H0(S,Ω1) → H0(S,Ω1) has eigenvalues ±1 and we obtain
a decomposition of H0(S,Ω1) into eigenspaces with eigenvalues ±1. The +1
eigenspace is trivial, since given a holomorphic one-form ω with ι∗ω = ω this
would descend to a holomorphic one-form on CP1 which does not exist. So
ι∗ω = −ω for ω ∈ H0(S,Ω1) . Now start with the one-form ω0 = dz

y . This is
holomorphic and nonzero away from the points above ∞. Now if ω is any other
holomorphic 1-form on S we must have ω = hω0 with h a meromorphic function,
holomorphic away from ∞. But since ω, ω0 both lie in the −1 eigenspace for ι∗

we must have ι∗h = h, so h is a function of z alone, hence a polynomial in z. If
h is of degree d, it has 2d zeroes away from ∞ and so a pole of order d at each
of the points at ∞. Now ω0 has total degree 2g − 2 and must have the same
order of poles or zeroes at each of the points at ∞, so it must have a zero of
oder g− 1 at each of these points. In order for hω0 to be holomorphic, we then
need degh ≤ g − 1, hence the 1-forms in the lemma form a basis.

This means the Seiberg-Witten differential is a “potential” for holomorphic
differentials.

Now define function aα and aD
β on the U∞ part of the u-plane by

aα =
∫

Aα

dS aD
β = 2πi

∫
Bβ

dS (3.1.10)

Let σαp be the matrix defined as

σαp =
∂aα

∂up

we can then set

ωβ =
∂

∂aβ
dS

∣∣∣∣
w=constant

=
1
2π

∑
p

σ−1
αp

zr−pdz

y

This holomorphic one form is normalized:
∫

Aα
ωβ = δαβ . This means it can be

used to calculate the period matrix

ταβ =
∫

Bα

ωβ =
1

2πi
∂aD

α

∂aβ
(3.1.11)

Because of the first Riemann bilinear equation [GH78], this function is symmet-
ric, and so aD

α must be the the derivative of locally defined holomorphic function
F , called the prepotential.
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Definition 3.1.13. The Seiberg-Witten prepotential is the holomorphic func-
tion F , locally defined as

aD
α = −∂F

∂aα
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3.2 Equivariant localization of instantons

3.2.1 Kirwan map

We want to compute equivariant integrals over spaces which are given as sym-
plectic quotients of other spaces. For this, we need a map from the equivariant
cohomology of the original space to the normal cohomology of the reduced space.
Here, we follow [JK05].

Recall our definitions of equivariant cohomology, definitions 1.4.1 and 1.4.4.
If T acts freely on M , we have

H∗
T (M) = H∗(M/T ) (3.2.1)

On the other hand, if T acts trivially on M , then

H∗
T (M) = H∗(M)⊗ S(t∗) = H∗(M)⊗H∗

T ({pt}) (3.2.2)

Now let p ∈ t∗ be a regular value of the moment map µ associated to T and
denote by ip : µ−1(p) ↪→ M the canonical inclusion. Then T acts locally free
on µ−1(p). This induces a map i∗p : H∗

T (M) → H∗
T (µ−1(p)). Then, by equation

3.2.1, we have

H∗
T (µ−1(p)) ' H∗(µ−1(p)/T ) = H∗(M//pT )

Combining this with the canonical inclusion and we get the Kirwan map

κp : H∗
T (M) → H∗(M//pT ) (3.2.3)

This map is a surjection if M is compact [Kir84]. This procedure also works
if M is the symplectic quotient of a space by another (commuting) action, so
we get the equivariant Kirwan map, where we split a torus T into the direct
product of two tori: T = R× S.

p ∈ µ(M) κp : H∗
R×S(M) → H∗

R(µ−1(p)/S) (3.2.4)

with µ the moment map of R. This map is also a surjection [Gol02]. In par-
ticular, if p ∈ MR, the fixed points of M under the action of R, we get the
surjection

p ∈ µ(MR) κR
p : H∗

R×S(MR) → H∗
R(MR//pS)

Now apply this to the procedure of the symplectic cut. Given a cone Σβ , the
product T × T acts on M × Cβ and the cut MΣ is given by reducing M × Cβ

at 0. We We can think of T × T as the product of T × e and ∆T , and the
equivariant version of the Kirwan map 3.2.4 gives a map

κT
Σ : H∗

T×T (M × Cβ) → H∗
T×e(MΣ) = H∗

T (MΣ)

which is surjective.
The torus TΣ, orthogonal to Σ actually acts trivial on MΣ, hence we get by

equation 3.2.2
H∗

T (MΣ) = H∗
T/TΣ

(MΣ)⊗HTΣ(pt)

Now, for η ∈ H∗
T (M) denote by the ηΣ the class κΣ(η ⊗ 1) ⊂ H∗

T (MΣ). Now
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if Fi is a connected component of the fixed point set of both M and MΣ with
µ(Fi) = µΣ(Fi) ∈ Int(Σ) then

ι∗Fi
η = ι∗Fi

ηΣ

The equivariant Kirwan map gives rise to a map of equivariant Euler classes
[JK05]

Lemma 3.2.1. Decompose a torus action T as T = S × H. Let π : t∗ → s∗

be the natural projection, p ∈ µ(MH), and q = π(p). Then κH
p : H∗

T (MH) →
H∗

H(MH//pS) takes the T -equivariant Euler class of the normal bundle of MH

onto the H-equivariant Euler class of the normal bundle of MH//pS in M//pS

Proof. Set Z = µ−1(p) ∩MH with µ the moment map for T , and let ρ be the
projection from Z to MH//pS. Let i : Z ↪→MH be the natural inclusion. Then
i∗ν(MH) = ρ∗ν(MH//pS), and since by theorem 1.3.5 characteristic classes are
natural with respect to pull-backs, we get the asked mapping.

3.2.2 Residues

We will define the residues needed for the calculation of the Jeffrey-Kirwan
localization formula by iterating the one-dimensional case.

Let f(z) be a meromorphic function on the Riemann-sphere with values in
a vector space V which is of the following form

f(z) =
∑

j

gj(z)eλjz

a finite sum with the gj(z) rational functions of z and λj ∈ R. Then we define
the residue of the form fdz as:

res+(fdz) =
∑
λj≥0

∑
b∈C

resbgj(z)eλjz (3.2.5)

Now if all λj are zero, we see that this is just the standard residue, and we see
that if f is holomorphic

res+(fdz) = −resz=∞(fdz)

and from this we conclude that res+ p(z)
q(z) = 0 if deg(p(x)) + 1 6= def(q(x)) for

polynomials p and q.
The higher dimensional residue needed in the Jeffrey-Kirwan formula can be

obtained from this one-dimensional residue by iterating this procedure. Con-
sider functions f which can be written as linear combinations of the following
functions on t⊗ C taking values in a vector space V :

h(X) =
q(X)eλ(X)∏k

j=1 αj(X)
(3.2.6)

with q(X) a polynomial on tC, λ ∈ t∗ and αj ∈ t∗−{0}. Now choose a connected
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component Λ of the set

{X ∈ t : αj(X) 6= 0∀αj}.

The set Λ is a cone. Now we choose a linear coordinate system X1, . . . Xn on
t and write res+Xi

for the residue with respect to i-th coordinate by treating
the other coordinates as constants. The resulting functions has as remaining
variables the original ones with Xi left out. Now we define the residue with
respect to a cone as follows:

JKResΛ(h[dx]) = ∆res+X1
. . . res+Xn

h(X1, . . . , Xn)[dX]n1 (3.2.7)

with ∆ the determinant of a n×n matrix with columns defining an orthonormal
basis of t with the same orientation as the coordinate system and [dX]nl stands
for the form dXl ∧ . . . ∧ dXn. This definition only depends on the choice of
the cone and the inner product on t, not on the coordinates chosen, as shown
in [JK97]. There also some properties which uniquely define this residue are
determined. They are the following:

1. Let α1, . . . , αv ∈ Λ∗ be vectors in the dual cone. Assume that λ is not in
any cone of dimension m− 1 or less spanned by a subset of these vectors.
Then if J = (j1, . . . , jm) is a multi-index and XJ = Xj1

1 . . . Xjm
m we have

JKResΛ
(
XJeiλ(X)[dX]∏v

i=1 αi(X)

)
= 0

unless all of the following are true:

(a) the vectors {αi}v
i=1 span t∗ as vector space.

(b) v −
∑m

i=1 ji ≥ m

(c) λ lies in the positive span of the vectors {αi}.

2. If the properties 1 a) - c) are satisfied then

JKResΛ
(
XJeiλ(X)[dX]∏v

i=1 αi(X)

)
=
∑
k≥0

lim
s→0+

JKResΛ
(
XJ(iλ(X))keisλ(X)[dX]

k!
∏v

i=1 αi(X)

)

and only the term where k = v −
∑m

j=1 ji −m is non-zero.

3. If properties 1 a) -c) are satisfied with α1, . . . , αm are linearly independent,
then

JKResΛ
(
eiλ(X)[dX]∏v

i=1 αi(X)

)
=

1
det(ᾱ)

with ᾱ the non-singular matrix whose columns are the coordinates of
α1, . . . , αm with respect to an orthonormal basis defining the same ori-
entation. Thus the residue is not identically 0.

Lemma 3.2.2. Let f(X1, . . . , XM ) be a linear combination of functions on t
given by equation 3.2.6 such that for every set of values (a1, . . . , am−1), the func-
tion f(a1, . . . , am1 , z) is holomorphic. Set Λ to be a cone such that (0, . . . , 1) ∈ Λ
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and Y1, . . . , Ym to be coordinates such that (0, . . . , 1) ∈ −Λ. Then

JKResΛ(f [dX]) = JKRes−Λ(f [dY ]) (3.2.8)

Proof. Pick a a1, . . . am−1. Then

f(a1, . . . , am−1, z) =
∑

j

fj(z)eiλjz

and define

res−(f(a1, . . . , am−1, z)dz) =
∑
λj<0

∑
b∈C

(
resfj(z)eiλjz; z = b

)
Since f(a1, . . . , am, z) is holomorphic, its total residue is zero,

res−(f(a1, . . . , am−1, z)dz) = −res+(f(a1, . . . , am−1, z)dz)

Now we can choose Y1, . . . , Ym arbitrary such that (0, . . . , 0, 1) ∈ −Λ since the
residue is independent of the choice of coordinates, we choose Yi = Xi for i < m
and Ym = −Xm. Then fixing the first m− 1 coordinates, we calculate

res+(f(Y1, . . . , Ym)dYm) = res+(−f(X1, . . . , Xm−1,−Xm)dXm)

= res−(−f(X1, . . . , Xm−1, Xm)dXm)

= res+(f(X1, . . . , Xm−1, Xm)dXm)

Where the last line makes use of the fact that the total residue is zero. Then by
equation 3.2.7, we see that since the other coordinates are unchanged, formula
3.2.8 holds.

With the help of this lemma, we can prove the Jeffrey-Kirwan localization.
This theorem is a first step to the full equivariant localization theorem for hy-
perkähler quotients.

3.2.3 Equivariant volumes

The Berline-Vergne, Duistermaat-Heckman and Prato-Wu localization theorems
all describe general symplectic manifolds. However, given a special manifold,
such as a manifold constructed as a symplectic quotient, one can strengthen
these theorems, in order to simplify the computation of the fixed-point contri-
bution. Jeffrey-Kirwan localization is one possible strengthening of localization
theorems. First proven in [JK95], we will instead follow the approach of [JK05],
since this approach easily generalizes to equivariant actions on symplectic quo-
tients.

Theorem 3.2.3 (Jeffrey-Kirwan localization). Let M be a manifold with
a symplectic form ω and a compact connected torus T which acts Hamiltonian
on M . Then for any η ∈ H∗

T (M) we have:∫
M//0T

κ0(η)eω =
∑

F⊂MT

1
vol(T )

JKResΛ
∫

F

i∗F ηe
ω+µT

eT (νF )
(3.2.9)
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With κp the Kirwan map H∗
T (M) → H∗(M//T ). Furthermore eT (νF ) is the

equivariant Euler class of the normal bundle of the fixed point set F .

Proof. We prove this theorem by considering the integral
∫

MΣ
ηΣe

ω̃ε for a suit-
ably chosen cone Σ, taking the residue and using the various properties of the
residue to reduce this to the asked formula.

First we consider the choice of a cone Σ inside Λ with respect to which we
take the symplectic cut. The torus T is an effective Hamiltonian torus action
on M . Let {αi} be the set of all weights of the isotropy representation of T at
the fixed points. Choose the cone Λ to be a connected component of the set
{ξ ∈ t|αi(ξ) 6= 0}. The dual cone Λ∗ is given by {X ∈ t∗|X(ξ) ≥ 0 for alli}.

Now in [JK05] it is proven we can pick a cone Σ transverse to µ(M) spanned
by dimt weights {β1, . . . , βm} such that Λ∗ ⊆ Σ and for every wall W of µ(M)
such that W ∩ Σ is not empty, there exists a ξW ∈ Σ∗ such that the maximum
of q(ξW ) ∈W ∩ Σ is attained at a vertex of W .

Define {γi} to be the set of all weights appearing as weighs of isotropy
representations at fixed points of the symplectic cut MΣ. Now define a cone Λ̄
to be a connected component of the set Σ∗ ∩ {ξ ∈ t|γi(ξ) 6= 0 for all i} For each
connected component F of MT

Σ let {γF
j } be the set of weights of the isotropy

representation of T at F . We now polarize the weights {γF
j } by the rule that if

γF
j (ξ) < 0 for all ξ ∈ Λ̄ then γ̄F

j = γF
j and γ̄F

j = −γF
j otherwise. We then define

another cone CF associated to each connected component of the fixed point set
of MΣ to be the cone containing all points of the form

µΣ(F ) +
∑

sj γ̄
F
j

with sj nonnegative real numbers.
Then in [JK05] the following useful fact is proven about these CF

Lemma 3.2.4. Let F be a new connected component of the fixed point set MT
Σ .

Then the cone CF does not intersect the interior of Σ.

Also, if F is an old connected component, then Λ̄ ⊆ Λ and they define the
same polarization. Lastly, if F = M0 then CF = −Σ.

Now take these cones Λ, Λ̄ and Σ. Consider the symplectic cut with respect
to the cone Σ. MΣ. For technical reasons, we will not pick the standard moment
map for Σ, but slightly modify it. Let p ∈ Σ be a point close to the origin. Then
µε = µΣ − εp is a moment map on M for ε > 0. Define ω̃ε = ωΣ + iµε, the
equivariant symplectic form on MΣ. Now we have an action of TG on MΣ,
so we look at the fixed points of this action, MTG

Σ . There are three different
cases we must consider. The “old” fixed points, the image of all F under µε in
Σ, the symplectic reduction at 0, M0 and the new fixed points F ′. We apply
the Berline-Vergne localization theorem 1.4.15 to the integral over MΣ of the
corresponding form ηΣ ∈ H∗

T (MΣ):

∫
MΣ

ηΣe
ω̃ε =

∫
M//0T

eω̃εi∗ηΣ
eT (νM//0T

+
∑
Fi

∫
Fi

eω̃εi∗Fi
ηΣ

eT (νFi
)

+
∑
F ′

j

∫
F ′

j

eω̃εi∗F ′
j
ηΣ

eT (νF ′
j
)

(3.2.10)

We can now take the residue of the left hand side. By lemma 3.2.2 we see that
it does not matter if we take the residue with respect to Λ or −Λ. We take
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the residues with respect to Λ̄ −Λ̄ and set these equal, leading to six terms.
However, four of them will actually vanish. By lemma 3.2.4 the cones CF ′ and
FM0 do not contain εp. Then by property 1 we get

JKResΛ̄
(∫

M//0T

eω̃εi∗ηΣ
eT (νM//0T

)
= JKResΛ̄

∑
F ′

j

∫
F ′

j

eω̃εi∗F ′
j
ηΣ

eT (νF ′
j
)

 = 0

Now if we choose ε small enough, the cones −CF ′
j

and −CFi will not contain εp
hence again by property 1:

JKRes−Λ̄

∫
Fi

eω̃εi∗Fi
ηΣ

eT (νFi)
= JKRes−Λ̄

∑
F ′

j

∫
F ′

j

eω̃εi∗F ′
j
ηΣ

eT (νF ′
j
)

= 0

This means we can summarize equation 3.2.10 and the operations after it as:

JKRes−Λ̄

∫
M//εpT

eω̃εi∗ηΣ
eT (νM//εT )

= JKResΛ̄
∑
Fi

∫
Fi

eω̃εi∗Fi
ηΣ

eT (νFi
)

(3.2.11)

Finally, we want to take the limit ε→ 0 of both sides. By the splitting principle,
the normal bundle ν(M0) splits a sum of line bundle ⊕iLi whose Euler class is
given by e(ν(M0)) =

∏
(β̃i + c1(L1)) with β̃i weights of the action of T/TΣ on

M0 and c1(Li) the first Chern class of Li. Then by property 2 of the residue,
we see that

lim
ε→0+

JKRes−Λ̄

∫
M//εpT

eω̃εi∗ηΣ
eT (νM//εT )

= c′
∫

M0

κ0(ηeω)

for some constant c′. The limit of the right-hand side of 3.2.11 is simple, just

JKResΛ̄
∑

Fi

∫
Fi

eω̃i∗Fi
ηΣ

eT (νFi
) hence we have

∫
M0

κ0(ηeω) = cJKResΛ̄
∑
Fi

∫
Fi

eω̃i∗Fi
ηΣ

eT (νFi)

To conclude the proof, note that Fi are the old connected components of the
fixed point set MT

Σ , so µ(Fi) = µΣ(Fi), and so ι∗Fi
(ηΣeω) is the restriction of

ηeω ∈ H∗
T (M) to Fi. Also, if for a Fi ⊂MT the image of the moment map µ is

not inside Σ and the cone CFi
does not contain the origin and thus by property

1 of the residue of this term is 0. The constant c can be proven to be 1
volT ,

[JK95].

In [Mar00] the following abelianization theorem was proven, which allows
us to generalize the Jeffrey-Kirwan localization to group actions which are not
abelian.

Theorem 3.2.5 (Abelianization theorem). Let M be as in theorem 3.2.3
and let G be a compact connected Lie group which acts Hamiltonian on M . Set
TG to be a maximal torus of G, α ∈ H∗

G×H(M), and κG : H∗
G(M) → H∗(M//G)
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the equivariant Kirwan map. Then∫
M//G

κG(α) =
1
WG

∫
M//TG

κTG
($2α)

where $ is the product of the positive roots of the Lie algebra of G, defined in
section 1.1.2.

This means we have as a corollary of 3.2.3 and 3.2.5:

Corollary 3.2.6. Let G and M be as in theorem 3.2.5, then:∫
M//G

κG(α)eω =
∑

F⊂MTG

(−1)n+

vol(TG)|WG|
JKResΛ$2

∫
F

i∗F ηe
ω+µTG

eTG
(νF )

(3.2.12)

with n+ the number of positive roots.

In [Mar08], the Jeffrey-Kirwan localization theorem is generalized to include
equivariant actions.

Theorem 3.2.7 (Equivariant Jeffrey-Kirwan localization). Let G and H
be two compact connected Lie groups with commuting Hamiltonian actions on a
compact symplectic manifold M with symplectic form ω. Then the action of H
descends to the symplectic quotient M//G. Also, with equivariant Kirwan map
κ : H∗

G×H(M) → H∗
H(M//G) we have for any η ∈ H∗

G×H(M) we have:∫
M//G

κ(η)eω+µH =
∑

F⊂MTG

−1n+

vol(TG)|WG|
JKResΛ$2

∫
F

i∗F ηe
ω+µTG

+µH

eTG
(νF )

(3.2.13)
with the same notation as in corollary 3.2.6.

The proof goes via successive approximations of the Borel model of equivari-
ant cohomology by successive spaces (EiH×M)/H, see the notes after definition
1.4.1. These are not symplectic, but are built out of symplectic leaves, which
make it possible to generalize the localization theorems to those spaces. For the
full proof, see [Mar08].

3.2.4 Quotients by linear actions

Actually, the theory described so far is a bit overkill for the problem at hand,
the calculation of the volume of the equivariant instanton moduli space. This
space is given as the hyperkähler quotient of a vector space V by a linear group
action G, see definition 1.2.8.

V///(ζ1,ζ2,ζ3)G =
(
µ−1

1 (ζ1) ∩ µ−1
2 (ζ2) ∩ µ−1

3 (ζ3)
)
/G

In fact, the space
(
µ−1

C (0)
)
ζ1

= µ−1
C (0)//ζ1G can be viewed as a zero set of a

section of a T -equivariant vector bundle. The moment map µC is quadratically
homogeneous, and Vλ, being the symplectic cut of a vector space with respect
to a circle action with constant weight, is the projective space PV . Thus the
zeroes of µC coincide with the zeroes of a section of O(2), the tensor product
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of the tautological line bundle over PV with itself. This vector bundle is also
clearly equivariant.

We will call this section, by abuse of notation, also µC
This allows us, by using the equivariant Thom class of theorem 1.4.12 to

express integration over (V///ζ1,0,0G)λ in terms of integration over (V//ζ1G)λ as
follows:

∫
(V///G)λ

eω+µT =
∫

(V )λ///G

eω+µT (3.2.14a)

=
∫

(V )λ//G

eω+µT eT (O(2)⊗ gC) (3.2.14b)

since for an equivariant vector bundle E → M and a submanifold N of M , we
have

∫
M
eG(E) ∧ α =

∫
M
i∗(τG(E)) ∧ α =

∫
N
i∗α.

Roughly speaking, a hyperkähler quotient gives an extra Euler class in the
enumerator of the integral 3.2.3. By further abuse of notation, we call the
Euler class associated to the vector bundle O(2) ⊗ gC at a fixed point x ∈ Vλ

eT×TG
(µx

C).
In practice, the procedure for the symplectic cut is a bit cumbersome. Since

we know already how the symplectic cut Vλ is going to look after taking the
limit λ → ∞, V t PV , we can try to calculate the residue immediately. Since
V is a vector space and T × TG acts linearly by assumption, we see that there
can be only one fixed points in V , 0. The other fixed points must lie within
PV = V//λU(1).

First we will make some assumptions on the action of T × TG that will sim-
plify our calculations. These assumptions are valid for the equivariant ADHM
construction, so will not restrict us in the calculation of the equivariant volume.

We will assume the fixed points of T × TG are isolated. Also assume the
group G acts tri-Hamiltonian on the hyperkähler vector space V , with complex
moment map µC. Also assume that inside the torus T there is a circle acting
with global weight 1, so we are in a situation where the symplectic cut makes
sense.

Now we will analyze when a term in the equivariant localization formula of
theorem 3.2.7 will be non-trivial.

Let ρi be the weights of the torus action of T × TG on V . Now consider the
fixed point in PV , the symplectic reduction µ−1

TG
(λ)/U(1). Since the fixed points

are assumed to be isolated, we see that they must lie within a weight space Vρi

and at most one can lie within each weight space. The image of such a fixed
point under µT×TG

is then λρi. The weights of the isotropy representation at
a fixed point in Vρi

can easily be calculated, since it is all just torus actions.
They are:

ρ1
i = ρ1 − ρi, ρ

2
i = ρ2 − ρi, . . . , ρ

i
i = −ρi, . . .

With some abuse of notation, we call the fixed point in Vρi
ρi. By the notation

above we will call the associated equivariant Euler class eT×TG
(µρi

C ). The Euler
class of the fixed point 0 we denote simply by eT×TG

(µC).
The ρj

i are functions in the linear coordinate system (X1, . . . , Xn) on V in
which the cone Λ is described. Now we write, for a function in these coordinates,
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with the ql linear functions
resXi

j

p∏
ql

for taking the residue with respect to the j-th term of the denominator in
the variable Xi. This is a function with term less in the denominator in the
coordinate system

(X1, . . . , Xi−1, Xi+1, . . . , Xn)

.
Now at a fixed point ρi we see that the contribution to the equivariant

localization due to theorem 3.2.7 is:

JKResΛ$2eT×TG
(µρi

C )
eλρi

eT×TG
(νρi

)
=
∑

resX1
j1
. . . resXn

jn

$2eT×TG
(µρi

C )eλρi∏
j ρ

i
j

There is no integral, since the fixed points are assumed to be isolated. Since the
ρj

i are sums of weights expressed in the coordinate system (X1, . . . , Xn), they
are linear in that coordinate system.

We want to find out which terms on the left hand side contribute, in other
words, in which order we must take the iterated residues. First, notice that
each pole ρj

i and each variable Xl can only occur once. Secondly, if ρi
i is not

in the list, we still end up with a non-trivial term in the exponent, which,
when taking the limit λ → ∞, will suppress the entire term. Likewise, if the
pole ρi

i is evaluated, the next step in the iterated residue will be 0, since the
poles

∏
j ρ

j
i will be trivial then. So ρi

i must be evaluated last. Then there is a
third, more complicated condition. Recall the definition of the one-dimensional
residue 3.2.5. We see that for each variable Xl, the term in the exponent λρi

must be ≥ 0. So the condition is that before taking each residue with respect
to a variable Xl, the l-th term of ρi must be ≥ 0.

Reiterating, we have three conditions in order for a term in the iterated
residue to be non-zero:

1. All Xl and ρj
i occur at most once

2. The last residue step must be resX1
i

3. Before taking the residue with respect to Xl, we need the l-the component
of ρi ≥ 0

This may seem complicated, but these conditions can be used simplify all the
calculations. In fact, in [Mar08] with some bookkeeping and simple linear alge-
bra, the following is proven:

Lemma 3.2.8. An iterated residue

resX1
i resX2

j2
. . . resXn

jn
$2eT×TG

(µρi

C )
eλρi∏

j ρ
j
i

satisfies the above conditions if and only if at the beginning the Xn component
of ρi ≥ 0 and then at step l we have the Xl−1 component of ρl−1 ≥ 0. Also, the



CHAPTER 3. INSTANTONS 70

residue above can also be computed as

(−1)nresX1
j2
. . . resXn−1

jn
resXn

i $2 eT×TG
(µC)∏

j ρ
j
i

This gives us the following, relatively easy, way of calculating equivariant
integrals over manifolds given by a hyperkähler quotient

Theorem 3.2.9. Let G be compact connected Lie group with maximal torus TG,
acting tri-Hamiltonian on a hyperkähler vector space V , and let T be commuting
torus action on V such that it acts Hamiltonian with respect to one of the kähler
structures on V . Denote by ωT and µT the corresponding kähler form and
moment map on V///G. We then have∫

V///G

eωT +µT =
(−1)n+ · (−1)n

Vol(TG)|WG|
ResX1,...,Xn

+

$2eT×TG
(µC)∏

j ρ
i
j

with the notation as as in theorem 3.2.7, ρj
i the ρi − ρj for the weights ρi and

ResX1,...,Xn

+ defined as the iterated residue:

ResX1,...,Xn

+

p∏
j ρ

i
j

= resX1
+ . . . resXn

+

p∏
j ρ

i
j

and each step defined as

resX
+

p∏
j ρ

i
j

=
∑

resX
i

p∏
j ρ

i
j

where the sum is over all i such that X-coefficient of ρi ≥ 0.

3.2.5 Localization of instantons

Now, we are ready to connect this work with the work of Nekrasov in [Nek03]. He
constructed a partition function, based in part on integrals over moduli spaces of
instantons, that described the whole N = 2 supersymmetric Yang-Mills theory.
We will use the techniques above to construct this partition function, and extract
some information on the supersymmetric Yang-Mills theory from it.

In the case of the ADHM construction, we set G to be the action of SU(k),
with k the instanton charge, on the 2k2 + 2kr dimensional vectorspace V =
(α1, α2, a, b), consisting of the matrices α1, α2, a, b as in theorem 3.1.4. We have
two moment maps

µR = [α1, α
∗
1] + [α2, α

∗
2] + bb∗ − a∗a

µC = [α1, α2] + ba

by theorem 3.1.5 and µ1 = µR and µ2 + iµ3 = µC. We can then think of
hyperkähler quotients as being the symplectic quotient

µ−1
C (ζ2 + iζ3)//ζ1G
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The action of U(k) on this vector space is given in 3.1.4 and is

(α1, α2, a, b) 7→ (gα1g
−1, gα2g

−1, ag−1, gb)

From the definition of Donaldson invariants in section 3.1.3 , we know that the
Donaldson invariants can be viewed as gauge invariants polynomials and inte-
grals over cycles of such cycles. However, on R4, all such cycles are homologically
trivial, and we end up with trivial invariants. A key idea of Nekrasov in [Nek03]
was to not look at normal instantons, but at equivariant ones. In particular, let
us fix a complex structure C2 on R4. We demand that our instanton structure
is equivariant with respect to an action of U(2) acting on this complex space,
acting with weights ε1 and ε2. The moment map µU(2) is given by

µU(2) = ε1|z1|2 + ε2|z2|2

We then look at equivariant instantons, calculate their prepotential and then
look at the limit ε1, ε2 → 0.

Now we look at the action of the torus T 2×TU(n) on this vector space. This
was calculated in [NY05a] and is:

(e1, e2, t)(α1, α2, a, b) = (e1α1, e2α2, at
−1, e1e2tb) (3.2.15)

where e1 and e2 are in T 2 and t ∈ TU(n).
The torus action we are considering for the equivariant ADHM construction,

T 2 × TU(n), does not actually preserve the hyperkähler structure, but since
µC = [α1, α2] + ba is quadratic homogeneous, the action of T 2 × TU(n) does
preserve the level set µ−1

C (0).
Nekrasov sought to calculate the integral∫

Mn,k

eω+µT

where µT is the moment map belonging to the action of TU(n)×T 2 where TU(n)

is the action of a maximal torus of U(n), given by rotation at infinity and T 2

is a rescaling of C2 ⊂ CP2. The action of this torus on Mn,k is calculated in
[NY05a] and is as follows:

(t, e1, e2)(α1, α2, a, b) 7→ (e1α1, e2α2, at
−1, e1e2tb)

with t ∈ TU(n) and (e1, e2) ∈ T 2

Normally Mn,k is non-compact, however we can take the Uhlenbeck com-
pactification to fix this. The Uhlenbeck space is however not a proper manifold,
but a stratified space, given by components of varying dimensions given by the
various ideal instantons one is adding. One approach to fix this is by not taking
the hyperkähler quotient at 0, but by considering (µ−1

R (ζId) ∩ µ−1
C (0))/U(n).

This space has several different names, the Gieseker compactification, the space
of instantons over non-commutative R4 [NS98], or the moduli space of torsion-
free sheaves[OSS80]. Alternatively, we can view it as the blow-up of the singular
points of the Uhlenbeck space.

We must take care that we still calculate the same quantity however. Denote
by Mu

k,n the Uhlenbeck compactification and by Mg
k,n the Gieseker compact-
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ification. We can view the symplectic form on Mg
k,n as the pull-back of the

symplectic form on Mu
k,n via the blow-up map. On the degenerate set of this

map, the symplectic form degenerates, however, on the original space Mn,k this
map stays proper, and one can still speak of moment maps associated to this
symplectic form. Finally, we note that the set Mg

k,n\Mn,k has measure zero,
so the equivariant volume is the same.

Now theorem 3.2.9 shows us how to calculate this integral:∫
Mn,k

eω+µT =
K · (−1)k

|WG|
Resσ1,...,σk

+

ω̄2eT×TG
(µC)∏

j ρj
(3.2.16)

we can now calculate what the various terms on the right hand side are. The
Weyl group WG of SU(k) is the permutation group of Sk, which has k! elements.
Positive roots of G are given by σi−σj for i < j, which gives $ =

∏
i<j(σi−σj).

The number of positive roots n+ = k(k− 1)/2 can be absorbed into the second
$ factor, to give (−1)n+$2 =

∏
i 6=j(σi − σj). The total number of roots n is

even. The volume of TG can be chosen to be 1.
The action of TSU(k) × T 2 × TU(n) on µC is given by

(s, (e1, e2), t)([α1, α2] + ba)

= se1α1s
−1e2sα2s

−1 − e2sα2s
−1se1α1s

−1 + sat−1e1e2tbs
−1

= se1 ([α1, α2] + ab) e2s−1

Where we denote s = diag(eσ1 , . . . , eσk) ∈ TU(k), (e1, e2) = (eε1 , eε2) and t =
diag(eτ1 , . . . , eτn). The result of this action on the tangent space of µ−1

C (0), gives
rise to an action with weights σi + ε1 + ε2 − σj . This determines the factors in
the numerator. For the denominator, we need to calculate the weights of the
action of TU(n)×T 2×TSU(k) on the tangent space of a fixed point. We see that∏

j ρj is the product of the weights of the action on α1, α2, a and b, so we get
the following expression:

∫
Mn,k

eω+µT =
1
k!

Resσi
+

∏
e 6=f

(σe − σf )
∏

1≤g,h≤k

(ε1 + ε2 + σg − σh)∏
1≤i,j≤k
l∈{1,2}

(εl + σi − σj)
∏

1≤m≤k
1≤o≤n

(σm − τo)
∏

1≤p≤k
1≤q≤n

(ε1 + ε2 − σp + τq)

(3.2.17)

3.3 From instanton counting to Seiberg-Witten
theory

3.3.1 The free energy

While equation 3.2.17 already is a big step forward in the calculation of in-
stanton corrections of N = 2 supersymmetric Yang-Mills theory, Nekrasov and
collaborators in [NS04] and [NO06] went further, and extracted information on
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the ε1, ε2 → 0 limit of the whole partition function

Zinst(τ, ε1, ε2,Λ) =
∞∑

k=1

Λ2nk

∫
Mn,k

eω+µT (3.3.1)

We follow [Sha04].
In order to extract this information, we will first do some simple manipula-

tions on equation 3.2.17. We first look at∏
e 6=f

(σe − σf )
∏

1≤g,h≤k

(ε1 + ε2 + σg − σh)∏
1≤i,j≤k
l∈{1,2}

(εl + σi − σj)

We can write this as

(ε1 + ε2)k

(ε1ε2)k

∏
i 6=j

(σi − σj)(σi − σj + ε1 + ε2)
(σi − σj + ε1)(σi − σj + ε2)

by extracting the i = j terms. We see that this is equal to

(ε1 + ε2)k

(ε1ε2)k

∏
i<j

(σi − σj)2
(
(σi − σj)2 − (ε1 + ε2)2

)
((σi − σj)2 − ε21)) ((σi − σj)2 − ε22))

by multiplying the (i, j) term with the (j, i) terms. We see that we can extract
an equal number of −1 terms in the numerator and the denominator.

Now define ∆(t) =
∏

i<j

(
(σi − σj)2 − t2

)
. We see that ∆′(t)|t=0 = 0, so

d2

dt2
log ∆(t)

∣∣∣∣
t=0

= lim
ε1,ε2→0

log(∆(ε1 + ε2)− log(∆(ε1))− log(∆(ε2)) + log(∆(0))
ε1ε2

and we can write

∆(0)∆(ε1 + ε2)
∆(ε1)∆(ε2)

= exp
(
ε1ε2

d2

dt2
log ∆(t)

∣∣∣∣
t=0

+ higher order terms in ε
)

Now we want to convert the other part of equation 3.2.17 into a similar
expression. Note that

∏
(σm − τo)

∏
(ε1 + ε2 − σp + τq) can be written as

exp
(∑

log(σm − τo) +
∑

log(ε1 + ε2 − σp + τq)
)

Again, we are only interested in the limit ε1, ε2 → 0 and the term
∑

log(ε1 +
ε2 − σp + τq) can be written as a series in ε1 + ε2, of which then only the first
term

∑
log(σp + τq) survives. Together with the Λ2n, we get thus a term

2
k∑

i=1

log

(∏n
j=1(σi − τn)

ΛN

)
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in the exponent. We expect that in the limit ε1, ε2 → 0, the term k ∼ 1
ε1ε2

gives
the main contribution. In the limit k →∞, the number of σi becomes infinite,
and we can introduce the density

ρk(x) = ε1ε2

k∑
i=1

δ(x− σi)

with δ(x) the Dirac distribution. This is k dependent, when k = c
ε1ε2

→∞ with
c some constant, this becomes a smooth function, still normalized due to the
ε1ε2 term. We can then write

Zk
inst(τ, ε1, ε2,Λ) = exp

(
−1
ε1ε2

EΛ[ρ]
)

with

EΛ[ρ] =
∫

x6=y

dxdy
ρ(x)ρ(y)
(x− y)2

− 2
∫
dxρ(x)log

(∏n
j=1(φi − τj)

Λn

)

Since we are interested in the limit ε1, ε2 → 0, we see that we must find the ρ(x)
such that EΛ[ρ] is minimal.

Nekrasov then argues that in order to get a physical system, and to repro-
duce the results of 3.1.4, we need to add a term independent of ρ, that diverges
logarithmically with Λ, which has an interpretation from physics as the pertur-
bative (in contrast to the instanton) contribution to the prepotential

1
2

∑
k 6=l

(τk − τl)2log
((

|τl − τk|
Λ

)
− 3

2

)
(3.3.2)

This gives the free energy

EΛ[ρ] = −1
2

∑
k 6=l

(τk − τl)2log
((

|τl − τk|
Λ

)
− 3

2

)

+
∫

x6=y

dxdy
ρ(x)ρ(y)
(x− y)2

− 2
∫
dxρ(x)log

(∏n
j=1(z − τj)

Λn

)
(3.3.3)

which we wish to minimize.

3.3.2 Profile function

We wish to include equation 3.3.2 into our expression for Z. In order to do this,
we introduce the profile function f(x) and derive some of its properties. The
name profile function comes from the derivation in [NO06], where the profile
function is first introduced as the profile of a random partition.

Definition 3.3.1. The profile function is the following function

f(x) =
n∑

l=1

|x− τl| − 2ρ(x)
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where ρ(x) is the density of eigenvalues defined above.

We derive some properties of this profile function. Note that the ρ(x) have
compact support, which can be chosen to be n disjoint intervals [α−l , α

+
l ] such

that τl ∈ [α−l , α
+
l ]. Also f(x) behaves like n|x| for x → ±∞. The second

derivative f ′′(x) also has support inside [α−l , α
+
l ]. We have∫ α+

l

α−l

f ′′(x)dx = 2
∫ α+

l

α−l

(δ(x− τl)− ρ′′(x)) dx = 2 (3.3.4)

since ρ′(x) = 0 on the boundaries α−l and α+
l . From this it follows∫

R
f ′′(x)dx = 2n (3.3.5)

Also∫ α+
l

α−l

xf ′′(x)dx = 2
∫ α+

l

α−l

x (δ(x− τl)− ρ′′(x)) = 2τl−2 (xρ′(x)− ρ(x))|α
+
l

α−l
= 2τl

and since
∑n

l=1 τl = 0 because the τl are the weights of a torus in SU(n) we
have ∫

R
xf ′′(x)dx = 0 (3.3.6)

Finally we have∫
R
x2f ′′(x)dx = 2

∫
R
x2 (δ(x− τl)− ρ′′(x)) dx

= 2
∑

l

τ2
l − 4

∫
R
ρ(x)dx = 2

∑
l

τ2
l − 4ε1ε2k (3.3.7)

3.3.3 The minimizer

With this profile function, we can write the free energy 3.3.3 as

EΛ[f ] = −1
4

∫
f ′′(x)f ′′(y)

1
2

∑
k 6=l

(x− y)2log
((

|x− y|
Λ

)
− 3

2

)
dxdy (3.3.8)

In order to study the minimum of this functional, we first introduce Lagrange
multipliers ξ1, . . . , ξn:

L[f, ξ] = EΛ[f ] +
n∑

l=1

ξn

(
1
2

∫ α+
l

α−l

xf ′′(x)dx− τl

)

= S[f, ξ]−
n∑

l=1

ξlτl (3.3.9)

with

S[f, ξ] = EΛ[f ] +
n∑

l=1

ξn
1
2

∫ α+
l

α−l

xf ′′(x)dx (3.3.10)
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Now if we have found the minimizer f∗ we should now also check that this is a
stationary point with respect to the ξl:

∂S[f∗, ξ]
∂ξl

∣∣∣∣
keep f∗ constant

= τl

We can neglect the ξl dependence of f∗ since it is a minimizer of S[f∗, ξl] hence
the derivative of S is zero with respect to f at f∗. This gives the ξl as functions
of τl. In order to finally recover the prepotential we should plug back these
functions in equation 3.3.9.

We note an apparent problem: the last term in 3.3.10 requires information
on the support of f∗ which is needed to solve the equation. However, we know
that, due to equation 3.3.4

f ′(α+
l )− f ′(α−l ) =

∫ α+
l

α−l

f ′′(x)dx = 2

This means we can introduce a piecewise linear function σ(t) such that σ′(t) = ξl
when t = f ′(x) with x ∈ [α−l , α

+
l ], or equivalently t ∈ (−n+ 2(l − 1),−n+ 2l).

Then the last term in equation 3.3.10 becomes

−1
2
σ(f ′(x))dx (3.3.11)

Now we are ready to implement the Euler-Lagrange program. The Euler-
Lagrange equation for the functional 3.3.10 is

2
δS[f, ξ]
δf ′(x)

=
∫
dyf ′′(y)(y − x)

(
log
(
|x− y|

Λ

)
− 1
)
− σ′(f ′(x)) = 0 (3.3.12)

when x ∈ [α−l , α
+
l ] we know that σ′(f ′(x)) = ξl. Outside this interval, we do

not know what the value of σ′ is, except that it must lie between ξl and ξl+1 if
x between α+

l and α−l+1. Now taking the derivative with respect to x we get∫
dyf ′′(y) log

∣∣∣∣x− y

Λ

∣∣∣∣ = 0 when x ∈ [α−l , α
+
l ] (3.3.13)

Define

F (z) =
1

4πi

∫
R
dyf ′′(y) log

(
z − y

Λ

)
Then we have the equation

F (x) = φ(x)

where the complex map φ(x) is holomorphic, and maps the upper half-plane to
the domain [0, n/2]× iR+. Now suppose |τl − τm| � Λ if l 6= m, then the map
φ(z) can be reconstructed by using that φ(z) = 0 if z ∈ [α−l , α

+
l ]:

φ(z) =
1
2π

arccos
P (z)
2Λn

with P (x) =
∏n

l=1(x − τl). This reproduces the Seiberg-Witten theory on
Riemann surfaces as described in section 3.1.4.



Chapter 4

Conclusions and outlook

We have seen that one the one hand, the Donaldson invariants are related to the
Seiberg-Witten invariants by the conjecture of Witten 3.1.9 which he argued by
using indirect properties of the prepotential. On the other hand, Nekrasov et.
al. established a procedure to calculate all terms of the prepotential. This is a
huge breakthrough in the field of gauge theories, since it establishes the validity
of the approach of Seiberg and Witten with mathematical sound arguments.
This also could shed new light on the analysis of integrable systems based on
Seiberg-Witten theory, especially on the geometric side.

On the other hand, the equivariant localization approach has some limita-
tions. There is still no direct calculation of either the Donaldson or Seiberg-
Witten invariants from the prepotential, leaving all the arguments of their equiv-
alence indirect. Some progress has been made in [GNY06], where the higher
order terms of the limε1,ε2→0 of the equivariant prepotential were related to
the wall-crossing terms of manifolds with b+2 = 1. Also, the use of the ADHM
construction of the instantons seems limited to hyperkähler manifolds, and the
extra torus action needed for the equivariant localization further restricts the
class of manifolds for which this approach might work. Maybe an infinite di-
mensional generalization can be found, which allows us to utilize an equivariant
volume directly from the total space of connections.

The equivariant localization approach also lends itself to generalization, from
gauge group SU(2) to higher rank bundles. In [Kro05] the corresponding Don-
aldson invariants were introduced. It seems worthwhile to further investigate
the relation with the Nekrasov approach. Finally, another generalization comes
to mind, one where not only the classical groups SU(n), SO(n) and Sp(n) are
consider but also the gauge theory with the exceptional groups E6, E7, E8, F4

and G2. This might give some clues on how a possible classification of simply
connected smooth 4 dimensional manifolds up to diffeomorphisms might look
like.
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