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Abstract

Many insurance companies sell products that involve embedded options. The value of such an option
represents the expected future liability and therefore it is important that insurers can value the options
they sold. Since most of these options are very complex, they are valued using Monte Carlo simulations.
This requires considerable computation resources and therefore methods have been developed to approx-
imate the option values analytically. In this thesis we study two of these options and give analytical
approximations for their values. The first option is a guarantee in unit-linked insurance for which upper
and lower bounds are derived using the concept of comonotonicity as developed by Dhaene, Denuit,
Goovaerts, Kaas and Vyncke (2002a, 2002b). This is done in the Black-Scholes model as well as in the
Hull-White-Black-Scholes model, where the latter has the additional feature of stochastic interest rates.
The lower bound is the same as derived in Schrager and Pelsser (2004), but the derivation by explicitly
applying the concept of comonotonicity was not given before. The second option is a call option on an
average of swap rates as used in profit sharing. The value is approximated by using approximate swap
rate dynamics as developed by Schrager and Pelsser (2006). Finally, the quality of the approximations
is determined by comparing them to Monte Carlo simulations. It turns out that the lower bound for the
guarantee in unit-linked insurance is a very accurate approximation.
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1 Introduction

Many insurance companies sell products that contain embedded options. Similar to stock options, the seller
of the option is at risk, because the buyer has the right to exercise the option, but not the obligation. This
means that the buyer will only exercise the option if it has a positive terminal value and in that case, the
seller has to pay. An example of such an embedded option is a guarantee in unit-linked insurance. This is
a contract where a customer pays a yearly premium that is invested in an investment fund. At maturity of
the product, the customer gets the total amount of money accumulated over the years. This amount will
depend on the performance of the investment fund, but for many customers this would be to risky. Imagine
what happens when you are saving for your retirement and the fund performs really bad. Therefore, insurers
guarantee to pay a minimum amount at maturity. This is basically a put option that the insurance company
sells to its customers. If the fund performs bad, the customer exercises the option and gets the guaranteed
amount. If the fund performs well, the accumulated value will be higher than the guaranteed amount and
the customer will not exercise the option.

The problem with embedded options is that the insurer is not definite about how much he has to pay
in the future. However, with the recent financial crises in mind, it is not hard to imagine that the amount
an insurer has to pay can be significant. To prepare for this, insurance companies need to ensure that they
have enough capital to cover these liabilities.

So the question that arises is how much capital should this be? The answer is the value of the option,
because the value of the option reflects the expected future liability. This looks very simple, but what is the
value of the option? That is not so easy, because embedded options are not traded. So we cannot simply
look at the market to see what the value of the option is.

To answer this question, we need other techniques and mathematics can help us out. Since the 1970’s
a whole framework of pricing financial products was developed and the basic idea is that the value of any
financial product is given by the expected value under the risk neutral measure of the discounted payoff (see
Harrison and Kreps (1979), Harrison and Pliska (1981)). In most cases it is not possible to compute this
value analytically and simulations are used to get approximations. These approximations are almost exact
if enough simulations are used.

This technique of determining the value of financial products (an embedded option is also a financial product)
is now widespread. However, many financial products are so complex that simulations take huge amounts
of time. This is very inconvenient if an insurance company wants to compute values in different scenario’s.
Therefore, it is important to find good analytical approximations for the value of embedded options that can
replace the simulations.

In the literature we can find different analytical approximations for different kinds of embedded options.
In this thesis we will study two of these options. We will give analytical approximations for the value of
these options and we will test them. As we will see, some of these approximations are very accurate.

The first embedded option we will study is the guarantee in unit-linked insurance that we introduced above.
As will be discussed in chapter three, we have to compute the following expectation under the risk neutral
measure to obtain the value of the guarantee:

E

[(
G−

T−1∑
i=0

Pi
ST
Si

)
+

]
,

where G is the guaranteed payoff, T the maturity of the product, Pi the premium paid by the customer
at time i for i = 0, . . . , T − 1 and Si is the value of the investment fund at time i. Also, the notation z+

is adopted for the positive part z+ = max(z, 0). The fractions ST
Si

are unknown at time 0, since we don’t
know what the value of the investment fund will be in the future. So this means that the guarantee in
unit-linked insurance is a put option on a sum of the random variables Pi STSi . These random variables are
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even dependent which makes it impossible to compute the exact value.

In this thesis we will therefore derive an accurate approximation of the option value. For this we will use
bounds on the value of the option as developed by Dhaene, Denuit, Goovaerts, Kaas, Vyncke (2002a,2002b).
These bounds are based on the theory of comonotonicity and the parts from the theory that we will heavily
use, are given in chapter 2. In the appendix, a complete treatment of the theory is given, since it can also
be used in similar valuation problems. Here I would like to stress that this is copied from Dhaene, Denuit,
Goovaerts, Kaas, Vyncke (2002a,2002b) except that I extended some derivations to make them easier to
understand for students in the Master’s. Furthermore, I would like to thank the authors for providing me
with the tex version of their work, saving me a lot of writing.

In order to be able to derive concrete bounds on the value of the option, we need a model for the value of
the investment fund St at any time 0 ≤ t ≤ T . In chapter three we will use a Black-Scholes model. This
model has the advantages that it is easy to use and well-known in practice. A big disadvantage is that
the interest rate is fixed. Therefore, we will use the Hull-White-Black-Scholes model in chapter four, where
the interest rate is stochastic. The modelling in this chapter comes from Schrager and Pelsser (2004), but
they use a Jamshidian decomposition (see also Jamshidian (1989), Nielsen and Sandmann(2002)) instead of
comonotonicity to find an approximation for the value of the option. Both approaches give exactly the same
result, but the derivation of this result by explicitly applying the concept of comonotonicity is not given
before.

In chapter five we will study the second embedded option. This option is called profit sharing and ba-
sically means that a customer always gets a guaranteed rate of return TR(t) at time t, but if a certain
reference rate R(t) is higher than the guaranteed rate of return, he gets this higher rate. Often swap rates
are used as the reference rate and the chapter will start with an explanation of swap rate dynamics. Then,
to determine the value of the option, we have to compute an expectation like

E [(R(t)− TR(t))+] ,

where the reference rate R(t) (now the swap rate) at time t is unknown at time 0. This swap rate will
therefore be modelled, but it will turn out that the swap rate has a stochastic volatility. This makes it again
impossible to compute the above expectation and therefore we will approximate the stochastic volatility by
a deterministic one. This is an interesting idea developed by Schrager and Pelsser (2006) and applied to
profit sharing by Plat and Pelsser (2009). Chapter five comes from Plat and Pelsser (2009), although we
extend a lot of derivations to make them easier to understand. Also, we have tested the approximation in
our own test environment.
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2 The theory of comonotonicity

As mentioned in the introduction we will approximate the value of the guarantee in unit-linked insurance
using bounds. These bounds are based on the theory of comonotonicity. In this chapter we will give an
overview of the theory and the bounds it produces. The results are limited to the ones we need in the
following chapters and stated without proof. For a complete overview of the theory including proofs we refer
to the appendix.

2.1 Convex order

Recall from the introduction that the value of the guarantee in unit-linked insurance depends on:

E

[(
G−

T−1∑
i=0

Pi
ST
Si

)
+

]
.

To get bounds on this value, we need random variables X and Y such that

E [(G−X)+] ≤ E

[(
G−

T−1∑
i=0

Pi
ST
Si

)
+

]
≤ E [(G− Y )+] ,

and such that we can compute E [(G−X)+] and E [(G− Y )+] explicitly. The approach we take will be
based on convex order:

Definition 2.1 Consider two random variables X and Y . Then X is said to precede Y in the convex order
sense, notation X ≤cx Y , if and only if

E [X] = E [Y ] ,

E [(d−X)+] ≤ E [(d− Y )+] , −∞ < d <∞. (1)

Here it is important to note that we will always consider random variables with finite mean. This makes sure
that the expectations as above exist. Furthermore, we can see from the definition that we are looking for ran-
dom variables X and Y such that they have the same mean as

∑T−1
i=0 Pi

ST
Si

and such that X ≤cx
∑T−1
i=0 Pi

ST
Si

and
∑T−1
i=0 Pi

ST
Si
≤cx Y .

It can also be proved that X ≤cx Y if and only if E [v(X)] ≤ E [v(Y )] for all convex functions v, pro-
vided the expectations exist. This explains the name convex order. Also, we have X ≤cx Y if and only if
E [X] = E [Y ] and E [u(−X)] ≥ E [u(−Y )] for all non-decreasing concave functions u, provided the expec-
tations exist. Hence, in a utility context, convex order represents the common preferences of all risk-averse
decision makers between random variables with equal mean. More explicit, suppose you can choose between
two random payments X and Y that you have to make in one year and that your utility function u is a
non-decreasing concave function. If X ≤cx Y , then X and Y have the same mean. Furthermore it holds that
E [u(−X)] ≥ E [u(−Y )], i.e. the expected utility of making payment X is larger than the expected utility of
making payment Y . Since rational individuals want to maximize their utility, they will choose X.

If we look at the inequality E [v(X)] ≤ E [v(Y )] for the specific convex function v(x) = x2, we immedi-
ately see that X ≤cx Y implies V ar(X) ≤ V ar(Y ). Furthermore, we have the following relation for the
variance:

1
2
V ar(X) =

∫ ∞
−∞

E [(X − t)+]− (E [X]− t)+dt, (2)

which is proved in the appendix (equation (101)). This will play an important role when we derive one of
the estimates for the value of the embedded option in unit-linked insurance.
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2.2 Comonotonicity

When valuing the option in unit-linked insurance, we are dealing with a sum of dependent random variables.
That is, we are dealing with random variables of the type S =

∑n
i=1Xi where the Xi are not mutually

independent. Since it is not possible to compute the value of an option on such a sum, we are looking
for bounds on this value. Therefore, given the marginal distributions of the terms in a random variable
S =

∑n
i=1Xi, we will look for the joint distribution with the largest sum in the convex order sense. This

will give an upper bound and as we will see in section 2.4, the convex-largest sum of the components of a
random vector with given marginals will be obtained in the case that the random vector (X1, X2, . . . , Xn)
has the comonotonic distribution, which means that each two possible outcomes (x1, . . . , xn) and (y1, . . . , yn)
of (X1, X2, . . . , Xn) are ordered component wise.
We start by defining comonotonicity of a set of n-vectors in Rn. A n-vector (x1, . . . , xn) will be denoted by
~x. For two n-vectors ~x and ~y, the notation ~x ≤ ~y will be used for the component wise order which is defined
by xi ≤ yi for all i = 1, . . . , n.

Definition 2.2 The set A ⊆ Rn is said to be comonotonic if for all ~x and ~y in A, either ~x ≤ ~y or ~y ≤ ~x
holds.

So, a set A ⊆ Rn is comonotonic if for any ~x and ~y in A we have that if xi < yi for some i, then ~x ≤ ~y
must hold. Hence, a comonotonic set is simultaneously non-decreasing in each component. Notice that a
comonotonic set is a thin set: it cannot contain any subset of dimension larger than 1. Any subset of a
comonotonic set is also comonotonic.

Next, we will define the notion of support of an n-dimensional random vector ~X = (X1, . . . , Xn). Any
closed subset A ⊆ Rn will be called a support of ~X if P

[
~X ∈ A

]
= 1 holds true. In general we will be

interested in supports which are ” as small as possible ”. Informally, the smallest support of a random
vector ~X is the subset of Rn that is obtained by subtracting from Rn all points which have a zero probability
neighbourhood with respect to ~X. This support can be interpreted as the set of all possible outcomes of ~X.
We will now define the important concept of comonotonicity of random vectors:

Definition 2.3 A random vector ~X = (X1, . . . , Xn) is said to be comonotonic if it has a comonotonic
support.

From the definition we can conclude that comonotonicity is a very strong positive dependency structure.
Indeed, if ~x and ~y are elements of the comonotonic support of ~X, i.e. ~x and ~y are possible outcomes of ~X,
then they must be ordered component wise. This is also the intuition behind comonotonicity. A random
vector ~X with components Xi is comonotonic if the set of all possible outcomes is ordered component wise.

In the following theorem, some useful equivalent characterizations will be given for comonotonicity of a
random vector, but we first need to introduce the cumulative distribution function (cdf) of a random vari-
able X and some related properties. The cdf FX(x) = P [X ≤ x] of a random variable X is a right-continuous
(r.c.) non-decreasing function with

FX(−∞) = lim
x→−∞

FX(x) = 0, FX(∞) = lim
x→∞

FX(x) = 1,

where right-continuous means that for any x and any sequence xn decreasing to x we have

lim
n→∞

FX(xn) = FX(x).

The usual definition of the inverse of a distribution function is the non-decreasing and left-continuous (l.c.)
function F−1

X (p) defined by

F−1
X (p) = inf{x ∈ R|FX(x) ≥ p}, p ∈ [0, 1] (3)

with inf ∅ = ∞ by convention. Left-continuous means that for any x and any sequence xn increasing to x
we have

lim
n→∞

FX(xn) = FX(x).

4



From these definitions it follows that for all x ∈ R and p ∈ [0, 1], we have

F−1
X (p) ≤ x ⇐⇒ p ≤ FX(x). (4)

Furthermore, it can be proved from (4) that (see (109) in the appendix)

X =d F
−1
X (U), (5)

where =d denotes equality in distribution and U is a uniform(0, 1) random variable, i.e. FU (p) = p and
F−1
U (p) = p for all 0 < p < 1.

The theorem is now as follows (for the proof see appendix theorem 8.7).

Theorem 2.4 A random vector ~X = (X1, . . . , Xn) is comonotonic if and only if one of the following equiv-
alent conditions holds:

(1) ~X has a comonotonic suppport.

(2) For all ~x = (x1, . . . , xn), we have

F ~X(~x) = min (FX1(x1), . . . , FXn(xn)) , (6)

where F ~X(~x) = P
[
~X ≤ ~x

]
is the multivariate cdf of ~X.

(3) There exists a random variable U =dUniform(0,1), such that

~X =d

(
F−1
X1

(U), . . . , F−1
Xn

(U)
)
. (7)

(4) There exists a random variable Z and non-decreasing functions fi, i = 1, . . . , n, such that

~X =d (f1(Z), . . . , fn(Z)) . (8)

From (6) we see that, in order to find the probability of all the outcomes of n comonotonic risks Xi being
less than xi, (i = 1, . . . , n), one simply takes the probability of the least likely of these events. It is obvious
that for any random vector (X1, . . . , Xn), not necessarily comonotonic, the following inequality holds:

P [X1 ≤ x1, . . . , Xn ≤ xn] ≤ min{FX1(x1), . . . , FXn(xn)}, (9)

and from theorem 2.4 we have that the function min{FX1(x1), . . . , FXn(xn)} is the multivariate cdf of the
random vector

(
F−1
X1

(U), . . . , F−1
Xn

(U)
)
, which has the same marginals as (X1, . . . , Xn) (this follows from (5)

). The inequality (9) states that in the class of all random vectors (X1, . . . , Xn) with the same marginals,
the probability that all Xi simultaneously realize ’small’ values is maximized if the vector is comonotonic,
suggesting that comonotonicity is indeed a very strong positive dependency structure.
In the sequel, for any random vector (X1, . . . , Xn), the notation (Xc

1 , . . . , X
c
n) will be used to indicate a

comonotonic random vector with the same marginals as (X1, . . . , Xn).

Example As an example of comonotonicity, consider the random vector (S(T ), (S(T ) −K)+) where K is
some constant. We can think of S(T ) as the price of a certain stock at time T . Then this vector is a stock
and a call option on the stock. This vector is comonotonic: if S(T ) increases both components will increase
or stay equal and if S(T ) decreases both components will decrease or stay equal.

Similarly, (S(T ), (K − S(T ))+) is not comonotonic. If S(T ) increases the first component increases, but
the second component might decrease.
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2.3 Sums of comonotonic random variables

In section 2.1 we started with the observation that we need random variables X and Y such that

E [(G−X)+] ≤ E

[(
G−

T−1∑
i=0

Pi
ST
Si

)
+

]
≤ E [(G− Y )+] ,

and such that we can compute E [(G−X)+] and E [(G− Y )+] explicitly.
It will turn out that we can choose X and Y such that they are comonotonic sums. In this section we will
show how to compute an expectation like E [(G−X)+], when X is a comonotonic sum.
For this, we first define F−1+

X (p) for the random variable X by

F−1+
X (p) = sup{x ∈ R|FX(x) ≤ p}, p ∈ [0, 1]. (10)

Then F−1+
X (p) is a non-decreasing and right-continuous function and this is an alternative definition for the

inverse distribution function of the random variable X. Note that F−1
X (0) = −∞, F−1+

X (1) =∞ and that all
probability mass of X is contained in the interval [F−1+

X (0), F−1
X (1)]. Also note that F−1

X (p) and F−1+
X (p)

are finite for all p ∈ (0, 1) and that F−1
X (p) and F−1+

X (p) differ only for values of p where FX is flat.

The main theorem is now as follows (theorem 8.10 in the appendix).

Theorem 2.5 Suppose that the random vector (X1, . . . , Xn) has strictly increasing and continuous marginals
and let Sc be the sum of the components of the comonotonic random vector (Xc

1 , . . . , X
c
n). Then we have

E [(Sc − d)+] =
n∑
i=1

E [(Xi − di)+] , F
−1(+)
Sc (0) < d < F−1

Sc (1), (11)

with the di given by
di = F−1

Xi
(FSc(d)), i = 1, . . . , n (12)

From this theorem it follows that we also need an expression for the distribution function FSc of Sc in
the point d. This is obtained from the inverse distribution function F−1

Sc which follows from the following
theorem (theorem 8.9 in the appendix).

Theorem 2.6 The inverse distribution function F−1
Sc of a sum Sc of comonotonic random variables

(Xc
1 , . . . , X

c
n) is given by

F−1
Sc (p) =

n∑
i=1

F−1
Xi

(p), 0 < p < 1. (13)

So we get FSc(d) by solving the following equation

d = F−1
Sc (FSc(d)) =

n∑
i=1

F−1
Xi

(FSc(d)), (14)

from which we immediately see that it is enough to know the marginal distributions of the Xi. This will
be very important in chapters three and four. Also note that by definition of the di we have

∑n
i=1 di =∑n

i=1 F
−1
Xi

(FSc(d)) = F−1
Sc (FSc(d)) = d.

Now, the only missing piece is that we are not interested in E [(Sc − d)+] but in E [(d− Sc)+]. Applica-
tion of the relation E[(X − d)+] = E [(d−X)+] + E [X]− d for Sc and the Xi in (11) leads to

E
[
(d− Sc)+

]
=

n∑
i=1

E
[
(di −Xi)+

]
, F−1+

Sc (0) < d < F−1
Sc (1), (15)

with the di as defined in (12).

6



So the above derivation gives the tools to compute an expectation like E [(G− Y )+], when Y is a comonotonic
sum of which we know the marginal distributions. This derivation is only done for strictly increasing and
continuous marginals, but in the appendix an extensive treatment for general marginal distributions is given.

Before we go to an example, we state the following useful theorem (theorem 8.3 in the appendix)

Theorem 2.7 Let X and g(X) be real-valued random variables, and let 0 < p < 1.

(a) If g is non-decreasing and continuous, then

F−1
g(X)(p) = g(F−1

X (p)).

(b) If g is non-increasing and continuous, then

F−1
g(X)(p) = g(F−1+

X (1− p)).

Example Consider a random vector (α1X1, α2X2, . . . , αnXn) of which the αi are non-zero real numbers
and the Xi are lognormally distributed: ln (Xi) ∼ N

(
µi, σ

2
i

)
. We have that

E [Xi] = eµi+
1
2σ

2
i , (16)

V ar [Xi] = e2µi+σ
2
i

(
eσ

2
i − 1

)
. (17)

As an example we can think of the situation where the αi are deterministic payments at times i, and the Xi

are the corresponding lognormally distributed discount factors. Then (α1X1, α2X2, . . . , αnXn) is the vector
of the stochastically discounted deterministic payments. From Φ−1(1 − p) = −Φ−1(p), and Theorem 2.7 (
(a) for αi > 0 and (b) for αi < 0) we find that

F−1
αiXi

(p) = αi e
µi+sgn(αi) σiΦ

−1(p), 0 < p < 1, (18)

where sgn (αi) equals 1 if αi > 0 and −1 if αi < 0. In particular, we find that the product of n comonotonic
lognormal random variables is again lognormal(this is not always the case, for example, if the individual
normal distributions do not constitute a multivariate normal distribution):

Πn
i=1F

−1
Xi

(U) =d e
∑n
i=1 µi+

∑n
i=1 σiΦ

−1(U). (19)

Also, for Xi lognormal we have

E[(Xi − di)+] = eµi+
σ2
i
2 Φ(di,1)− di Φ(di,2), di > 0. (20)

where di,1 and di,2 are determined by

di,1 =
µi + σ2

i − ln (di)
σi

, di,2 = di,1 − σi. (21)

This result can be proved as follows. Differentiating E[(Xi − di)+] with respect to di using
E [(X − d)+] =

∫∞
d

(1−FX(x))dx we find that the derivative is given by FXi(di)−1. Similarly, differentiation

of eµi+
σ2
i
2 Φ(di,1)−di Φ(di,2) with respect to di also gives FXi(di)−1 (this requires quite some computation).

Also, for di → ∞, both sides in (20) go to zero. So both sides end up with the same value and have the
same derivative everywhere. But then they should be equal everywhere.
For the lower tails we find

E[(di −Xi)+] = −eµi+
σ2
i
2 Φ(−di,1) + di Φ(−di,2), di > 0. (22)

As E[(αi(Xi − di))+] = −αi E[(di −Xi)+] if αi is negative, we find from (20) and (22)

E[(αi(Xi − di))+] = αi e
µi+

σ2
i
2 Φ(sgn(αi) di,1)− αi di Φ(sgn(αi) di,2), di > 0, (23)
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with di,1 and di,2 as defined in (21).

Now, let S = α1X1 + . . .+αnXn, and Sc its comonotonic counterpart: Sc = F−1
α1X1

(U)+ . . .+F−1
αnXn

(U).
As the marginal distribution functions are strictly increasing and continuous, we find that the distribution
function FSc (x) is implicitly defined by F−1

Sc (FSc (x)) = x, which is by (13) and (18) equivalent to,

n∑
i=1

αi e
µi+sgn(αi) σiΦ

−1(FSc (x)) = x, F−1+
Sc (0) < x < F−1

Sc (1). (24)

For F−1+
Sc (0) < d < F−1

Sc (1), we have from theorem 2.5 and (18):

E[(Sc − d)+] =
n∑
i=1

E[(αiXi − F−1
αiXi

(FSc (d)))+]

=
n∑
i=1

E[
(
αi

(
Xi − eµi+sgn(αi) σiΦ

−1(FSc (d))
))

+
].

Now, from (21) we find for di = eµi+sgn(αi) σiΦ
−1(FSc (d)) that

di,1 =
µi + σ2

i − ln (di)
σi

=
µi + σ2

i − (µi + sgn (αi) σiΦ−1(FSc (d)))
σi

=
σ2
i − sgn (αi) σiΦ−1(FSc (d)))

σi
= σi − sgn (αi) Φ−1(FSc (d))),

and di,2 = di,1 − σi = −sgn (αi) Φ−1(FSc (d))). So for this di we have

n∑
i=1

αi di Φ(sgn(αi) di,2) =
n∑
i=1

αi di Φ(−sgn(αi) sgn (αi) Φ−1(FSc (d))))

=
n∑
i=1

αi di Φ(− Φ−1(FSc (d))))

=
n∑
i=1

αi di Φ( Φ−1(1− FSc (d))))

=
n∑
i=1

αi e
µi+sgn(αi) σiΦ

−1(FSc (d)) (1− FSc (d))

= d(1− FSc (d)),

where we used (24) for the last equality. Plugging this in (23) we find for F−1+
Sc (0) < d < F−1

Sc (1)

E[(Sc − d)+] =
n∑
i=1

αi e
µi+

σ2
i
2 Φ

(
sgn (αi) σi − Φ−1 (FSc(d))

)
− d (1− FSc(d)) . (25)

Similarly, the lower tails are given by

E[(d− Sc)+] = −
n∑
i=1

αi e
µi+

σ2
i
2 Φ

(
−sgn (αi) σi + Φ−1 (FSc(d))

)
+ d FSc(d), (26)

for F−1+
Sc (0) < d < F−1

Sc (1).

In the sequel, equation (26) will play a very important role, because in computing the value of the option in
unit-linked insurance we will work with lognormally distributed random variables.
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2.4 Convex bounds for sums of random variables

In the previous section we already mentioned that the bounds on the value of the guarantee in unit-linked
insurance can be obtained from comonotonic random vectors. Also, we have seen that if a random vector ~X
is comonotonic, we can compute the value of a put option using only the marginal distributions (equation
(15)). In this section we will derive explicitly the comonotonic random vectors that will produce the bounds.

An upper bound is obtained from the following theorem (appendix theorem 8.11)

Theorem 2.8 For any random vector (X1, X2, . . . , Xn) we have

S = X1 +X2 + . . .+Xn ≤cx Xc
1 +Xc

2 + . . .+Xc
n = Sc. (27)

This theorem states that an upper bound can be obtained by assuming that the components of a sum of
random variables have the comonotonic dependency.

We can also derive an improved upper bound. For this, we assume that we have some additional informa-
tion available concerning the stochastic nature of (X1, . . . , Xn). More precisely, we assume that there exists
some random variable Λ with a given distribution function, such that we know the conditional cdf’s, given
Λ = λ, of the random variables Xi, for all possible values of λ. We will show that in this case we can derive
improved upper bounds in terms of convex order for S which are smaller in convex order than the upper
bound Sc. Essentially, the idea is to determine comonotonic upper bounds for the sum S, conditionally
given Λ = λ. Next, we mix the resulting distributions with weights dFΛ(λ). By this procedure, convex order
is maintained. The upper bound obtained in this way turns out to be sharper than the comonotonic upper
bound Sc because it still has the right marginal cdf’s for its terms.

In the following theorem (appendix theorem 8.12), we introduce the notation F−1
Xi|Λ(U) for the random

variable fi(U,Λ), where the function fi is defined by fi(u, λ) = F−1
Xi|Λ=λ(u).

Theorem 2.9 Let U be uniform(0,1), and independent of the random variable Λ. Then we have

X1 +X2 + . . .+Xn ≤cx F−1
X1|Λ(U) + F−1

X2|Λ(U) + . . .+ F−1
Xn|Λ(U). (28)

Note that the random vector
(
F−1
X1|Λ(U), F−1

X2|Λ(U), . . . , F−1
Xn|Λ(U)

)
has marginals FX1 , FX2 , . . . , FXn ,

because

FXi(x) =
∫ ∞
−∞

P [Xi ≤ x | Λ = λ] dFΛ(λ)

=
∫ ∞
−∞

P
[
F−1
Xi|Λ=λ(U) ≤ x

]
dFΛ(λ)

=
∫ ∞
−∞

P [fi(U, λ) ≤ x ] dFΛ(λ)

= P [fi(U,Λ) ≤ x] .

From theorem 2.8 it follows that for a random vector with given marginal distributions the comonotonic sum
is the largest possible sum in the convex order sense. This implies

F−1
X1|Λ(U) + . . .+ F−1

Xn|Λ(U) ≤cx F−1
X1

(U) + . . .+ F−1
Xn

(U), (29)

which means that the upper bound derived is indeed an improved upper bound.
If Λ is independent of all X1, X2, . . . , Xn, then we actually do not have any extra information at all and the
improved upper bound reduces to the comonotonic upper bound derived in Theorem 2.8.

Finally, we would like to have a lower bound. Again we assume that there exists some random variable
Λ with a given distribution function, such that we know the conditional cdf’s, given Λ = λ, of the random
variables Xi , for all possible values of λ. The idea is then to observe that the expectation of a random
variable is always smaller than or equal in convex order than the random variable itself, and also that convex
order is maintained under mixing (appendix theorem 8.13):
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Theorem 2.10 For any random vector X and any random variable Λ, we have

E [X1 | Λ] + E [X2 | Λ] + . . .+ E [Xn | Λ] ≤cx X1 +X2 + . . .+Xn. (30)

Now let S = X1 +X2 + . . .+Xn and let Sl be defined by

Sl = E [S | Λ] (31)

Note that if Λ and S are mutually independent, we find the trivial result

E [S] ≤cx S. (32)

On the other hand, if Λ and S have a one-to-one relation (i.e. Λ completely determines S), the lower bound
coincides with S. Note further that E [E [Xi | Λ]] = E [Xi] always holds, but V ar [E [Xi | Λ]] < V ar [Xi]
unless E [V ar [Xi | Λ]] = 0. This follows from the identity

V ar(Xi) = E [V ar [Xi | Λ]] + V ar [E [Xi | Λ]]

and this means that Xi, given Λ = λ, is degenerate for each λ. This implies that the random vector
(E [X1 | Λ] ,E [X2 | Λ] , . . . ,E [Xn | Λ]) will in general not have the same marginal distribution functions as
X. But if we can find a conditioning random variable Λ with the property that all random variables E [Xi | Λ]
are non-increasing functions of Λ (or all are non-decreasing functions of Λ), the lower bound Sl is a sum of
n comonotonic random variables by theorem 2.4(4).
To judge the quality of the stochastic lower bound E[S | Λ], we might look at its variance. To maximize it,
i.e. to make it as close as possible to V ar [S], the average value of V ar[S | Λ = λ] should be minimized. In
other words, to get the best lower bound, Λ and S should be as alike as possible.

To compute the lower bound, we need to compute conditional expectations like E [Y | Λ]. An important
case for us will be that we have a random vector (Y1, Y2, . . . , Yn) with a multivariate normal distribution
and where Y and Λ are linear combinations of the variates: Y =

∑n
i=1 αiYi and Λ =

∑n
i=1 βiYi. Then also

(Y, Λ) has a bivariate normal distribution. Further, if (Y, Λ) has a bivariate normal distribution, then,
conditionally given Λ = λ, Y has a univariate normal distribution with mean and variance given by

E [Y | Λ = λ] = E [Y ] + r (Y,Λ)
σY
σΛ

(λ− E [Λ]) (33)

and
V ar [Y | Λ = λ] = σ2

Y

(
1− r (Y,Λ)2

)
, (34)

where r (Y,Λ) = Cov(Y,Λ)
σΛσY

is the correlation coefficient for the couple (Y,Λ).

10



3 Pricing guarantees in unit-linked insurance

In the previous chapter we studied the concept of comonotonicity and we used this to derive convex bounds
on sums of random variables. By definition of convex order the convex bounds also give bounds on a put
option on the particular sum of random variables.
In this chapter we will apply this theory to the guarantee in unit-linked insurance. We will start with an
explanation of this contract and our main goal will then be to get bounds on the value of this contract
using the theory from chapter 2. These bounds will, of course, depend on the modelling assumptions. In
this chapter we will start with a simple model, in which the value of the investment fund is modelled as a
geometric Brownian motion (Black-Scholes model). The advantage of this model is that computations are
relatively easy. Furthermore, the model is well-known in the financial industry. One of the disadvantages
of the model is that it assumes a fixed interest rate and it is obvious that in practice that is not the case.
Therefore we will extend the model in chapter 4 by assuming the interest rate is not fixed but stochastic.

3.1 Introduction

Recall from section one that unit-linked insurance is an insurance contract where a customer pays a premium,
typically on an annual basis, that will be invested in an investment fund (for example, this investment fund
could be a portfolio of stocks, a portfolio of bonds or a portfolio of stocks and bonds). At maturity, the
customer then gets the total capital accumulated over the years. As an example we can imagine someone
who has just started working and who wants to save for retirement. The problem for this person is, that
there is a significant amount of risk. If the investments go really bad, he/she will end up with a little money.
Therefore, insurers often guarantee to pay at least a guaranteed amount at maturity. This makes the product
attractive for customers: if the investments go well, the customer gets the full profit, but if the investment
go bad, he/she always gets at least the guaranteed amount. Note that this means that the customer has a
put option on the investment fund.
This put option comes from the insurance company and the insurance company is now at risk. If the
investments go bad, they will have to pay the difference between the guaranteed amount and the accumulated
amount. In the past, insurance companies did not pay much attention to this, because they were used to a
situation where investment returns were such that the accumulated value was bigger than the guaranteed
value. But in the beginning of 2000, bearish stock markets and new accounting principles made insurers
realize that the options could have significant value and that they had to have an idea about this value. This
is important, because the value reflects the amount of money you expect to pay for the guarantees in the
future.

Mathematically we can formalize the contract as follows. Suppose the customer pays a premium Pi in
year i where i = 0, . . . , T − 1. This premium will be invested in an investment fund and at maturity T the
customer gets back the total amount of money accumulated over the years. If we denote St the value of the
investment fund at time t, then the accumulated value at time T (denoted UT ) will be

UT =
T−1∑
i=0

Pi
ST
Si
.

Note that UT is a sum of the random variables Pi STSi , which have a certain dependency structure. In the
sequel we will denote U cT the analogous sum where we assume the random variables in the sum to have the
comonotonic dependency structure, i.e. U cT =

∑T−1
i=0 F−1

Pi
ST
Si

(U), where U =dUniform(0,1). Similarly we will

denote U lT =
∑T−1
i=0 E

[
Pi

ST
Si
| Λ
]

and UuT =
∑T−1
i=0 F−1

Pi
ST
Si
|Λ

(U), where Λ is a conditioning random variable.

In case the customer gets a guaranteed amount G, the payoff to the customer after T years will be
max(UT , G). Since UT is totally financed by the customer and the performance of the investment fund, the
cost to the insurer of the guarantee at time T equals

CT = (G− UT )+

11



where again z+ = max(z, 0).
We are now interested in pricing this guarantee at time t = 0. To compute this, we will suppose a Black-
Scholes model for St, i.e. under the risk neutral measure we have:

St = S0e
(r−σ2

2 )t+σWt ,

where r is the (constant) risk free interest rate, σ the volatility of the fund and Wt a standard Brownian
motion. As we mentioned, the investment fund could be a portfolio of stocks, a portfolio of bonds, a portfolio
of stocks and bonds or a portfolio of stocks, bonds and other securities. In the Black-Scholes model, the
composition of the fund is captured by the volatility parameter. For example, a volatility of 20 % would be
typical for stocks.
We will denote V (T,G) the present value of this guarantee option with maturity T and guarantee level
G. From the basic principles of risk-neutral valuation (see Harrison and Kreps (1979), Harrison and Pliska
(1981)) we have for the present value of the option

V (T,G) = E
[
e−rT (G− UT )+

]
,

where the expectation is taken with respect to the risk neutral measure. Plugging in UT we get the following
risk neutral valuation formula for V (T,G):

V (T,G) = E
[
e−rT (G− UT )+

]
= E

[
e−rT (G−

T−1∑
i=0

Pi
ST
Si

)+

]
= e−rT E

[
(G−

T−1∑
i=0

Pi
ST
Si

)+

]

Using standard properties of Brownian motion we also get

Pi
ST
Si

= Pi
S0e

(r−σ2
2 )T+σWT

S0e(r−σ2
2 )i+σWi

= Pi e
(r−σ2

2 )(T−i)+σ(WT−Wi) =d Pi e
(r−σ2

2 )(T−i)+σWT−i (35)

where =d means equality in distribution.
Now, V (T,G) cannot be computed explicitly since it involves a sum of dependent random variables. There-
fore, we will apply the theory from chapter 2 to derive upper and lower bounds on the value of the guarantee.
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3.2 An upper bound on the value of the guarantee

We have the following upper bound on the value of the guarantee:

Theorem 3.1 Let V (T,G) be the value of the guarantee with maturity T and guarantee level G. Then

V (T,G) ≤ −
T−1∑
i=0

Pie
−riΦ

(
−σ
√
T − i+ Φ−1(FUcT (G))

)
+ e−rT G FUcT (G), (36)

where FUcT (G) follows from solving

T−1∑
i=0

Pie
(r−σ2

2 )(T−i)+σ
√
T−iΦ−1(FUc

T
(G)) = G. (37)

Proof This result is derived as follows. From the introduction we have that

V (T,G) = E
[
e−rT (G− UT )+

]
.

From theorem 2.8 we have that UT ≤cx U cT . By definition of convex order this means

V (T,G) = E
[
e−rT (G− UT )+

]
≤ E

[
e−rT (G− U cT )+

]
.

The marginal distributions of the terms in the sum UT are given by (35). Equivalently, we can write
Pi

ST
Si

=d Pie
(r−σ2

2 )(T−i)+σ
√
T−iΦ−1(U), where Φ−1 denotes the cumulative distribution function of the stan-

dard normal distribution and U is again a uniformly distributed random variable on the unit interval. From
this we see that the marginals are lognormal with parameters µi = (r − σ2

2 )(T − i) and σ2
i = σ2(T − i)

multiplied by the constant Pi. From (26) we therefore have for all F−1+
UcT

(0) < G < F−1
UcT

(1)

E [(G− U cT )+] = −
T−1∑
i=0

Pie
µi+

σ2
i
2 Φ

(
−σi + Φ−1(FUcT (G))

)
+GFUcT (G). (38)

Inserting the parameters µi = (r − σ2

2 )(T − i) and σ2
i = σ2(T − i) we have that for all 0 < G <∞

E [(G− U cT )+] = −
T−1∑
i=0

Pie
r(T−i)Φ

(
−σ
√
T − i+ Φ−1(FUcT (G))

)
+GFUcT (G).

So we conclude that

V (T,G) = e−rT E [(G− UT ] ≤ e−rT E[(G− U cT )+]

= e−rT

[
−
T−1∑
i=0

Pie
r(T−i)Φ

(
−σ
√
T − i+ Φ−1(FUcT (G))

)
+GFUcT (G)

]

= −
T−1∑
i=0

Pie
−riΦ

(
−σ
√
T − i+ Φ−1(FUcT (G))

)
+ e−rT G FUcT (G),

which gives (36). Also, from (24) with αi = Pi and µi and σ2
i as above we immediately find

T−1∑
i=0

Pie
(r−σ2

2 )(T−i)+σ
√
T−iΦ−1(FUc

T
(G)) = G,

which is equivalent to (37).

In terms of computations this means that we first need to solve (37) and then the result can be plugged in
(36). Note that (37) cannot be solved analytically. However, FUcT (G) will be between 0 and 1 and therefore
the equation can easily be solved numerically.
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3.3 A lower bound for the value of the guarantee

A lower bound on the value of the guarantee is given by:

Theorem 3.2 Let V (T,G) be the value of the guarantee with maturity T and guarantee level G. Then

V (T,G) ≥ −
T−1∑
i=0

Pie
−riΦ

(
−σRT−i

√
T − i+ Φ−1(FU lT (G))

)
+ e−rT GFU lT (G), (39)

where FU lT (G) follows from

T−1∑
i=0

Pie
(r−σ2

2 R
2
T−i)(T−i)+σRT−i

√
T−iΦ−1(F

Ul
T

(G))
= G. (40)

Furthermore, RT−i is given by

RT−i =

∑T−1
j=0 Pje

(r−σ2
2 )(T−j) min(T − i, T − j)
σΛ

√
T − i

, (41)

where

σ2
Λ =

T−1∑
i=0

T−1∑
j=0

PiPje
(r−σ2

2 )(2T−i−j) min(T − i, T − j). (42)

Proof This lower bound is derived as follows. From theorem 2.10 we have that U lT ≤cx UT for any condi-
tioning random variable Λ. As noted in section 2.4 we need to take Λ as alike to UT to get the best lower
bound. Therefore we consider the conditioning random variable

Λ =
T−1∑
i=0

Pie
(r−σ2

2 )(T−i)WT−i

where W is a standard Brownian motion. This Λ is a linear transformation of a first order approximation
of UT as is shown by the following computation:

UT =
T−1∑
i=0

Pie
(r−σ2

2 )(T−i)+σWT−i

≈
T−1∑
i=0

Pie
(r−σ2

2 )(T−i)(1 + σWT−i)

=
T−1∑
i=0

Pie
(r−σ2

2 )(T−i) + σ

T−1∑
i=0

Pie
(r−σ2

2 )(T−i)WT−i.

The variance of Λ (denoted σ2
Λ) is given by

V ar(Λ) = Cov(Λ,Λ) = Cov

T−1∑
i=0

Pie
(r−σ2

2 )(T−i)WT−i,

T−1∑
j=0

Pje
(r−σ2

2 )(T−j)WT−j


=

T−1∑
i=0

T−1∑
j=0

PiPje
(r−σ2

2 )(2T−i−j)Cov(WT−i,WT−j)

=
T−1∑
i=0

T−1∑
j=0

PiPje
(r−σ2

2 )(2T−i−j) min(T − i, T − j),

14



which gives (42).
Next we define the correlation coefficient RT−i for the couple (WT−i,Λ):

RT−i =
Cov (WT−i,Λ)
σΛ

√
T − i

=
Cov

(
WT−i,

∑T−1
j=0 Pje

(r−σ2
2 )(T−j)WT−j

)
σΛ

√
T − i

=

∑T−1
j=0 Pje

(r−σ2
2 )(T−j) min(T − i, T − j)
σΛ

√
T − i

.

So indeed, RT−i is given by (41). Now, we have that (WT−(T−1),WT−(T−2), . . . ,WT ) = (W1, . . . ,WT ) has a
multivariate normal distribution. So given Λ = λ, it follows from equations (33) and (34) that the random
variable WT−i is normally distributed with mean

E [WT−i |Λ = λ] = E [WT−i] +RT−i
σWT−i

σΛ
(λ− E [Λ]) = RT−i

√
T − i
σΛ

λ

and variance
V ar(WT−i |Λ = λ) = σ2

WT−i
(1−R2

T−i) = (T − i)(1−R2
T−i).

By definition we have U lT =
∑T−1
i=0 E

[
Pi

ST
Si
|Λ
]
. Plugging in Pi

ST
Si

from (35) gives

U lT =
T−1∑
i=0

E
[
Pie

(r−σ2
2 )(T−i)+σWT−i |Λ

]
=
T−1∑
i=0

Pie
(r−σ2

2 )(T−i)E
[
eσWT−i |Λ

]
Now, let B be normally distributed with parameters a and b2. If c > 0, then cB is normally distributed
with parameters ca and c2b2. So, since σ > 0, we have that eσWT−i |Λ = λ is lognormal with parameters
µi = σRT−i

√
T−i
σλ

λ and σ2
i = σ2(T − i)(1−R2

T−i). From (16) we have that the expectation of a lognormally

distributed random variable is eµi+
σ2
i
2 , so, given Λ = λ, we get

U lT =
T−1∑
i=0

Pie
(r−σ2

2 )(T−i)e
σRT−i

√
T−i
σλ

λ+σ2
2 (T−i)(1−R2

T−i) =
T−1∑
i=0

Pie
(r−σ2

2 R
2
T−i)(T−i)+σRT−i

√
T−i
σλ

λ
.

Since Λ is normally distributed with mean zero we have that Λ
σλ

is standard normally distributed. Hence we
have

U lT =d

T−1∑
i=0

Pie
(r−σ2

2 R
2
T−i)(T−i)+σRT−i

√
T−iΦ−1(U) (43)

where U is as before a random variable with uniform distribution on the unit interval. From this expression we
see that U lT is a comonotonic sum of lognormal random variables XT−i = e(r−σ2

2 R
2
T−i)(T−i)+σRT−i

√
T−iΦ−1(U)

multiplied by Pi. So from (26) it follows that for all 0 < G <∞

E
[
(G− U lT )+

]
= −

T−1∑
i=0

Pie
r(T−i)Φ

(
−σRT−i

√
T − i+ Φ−1(FU lT (G))

)
+GFU lT (G)

where FU lT (G) is computable as in (24) from

T−1∑
i=0

Pie
(r−σ2

2 R
2
T−i)(T−i)+σRT−i

√
T−iΦ−1(F

Ul
T

(G))
= G, (44)

which gives (40).

From U lT ≤cx UT it follows by definition of convex order that

V (T,G) = e−rT E [(G− UT )+] ≥ e−rT E
[
(G− U lT )+

]
. (45)
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So we conclude

V (T,G) ≥ e−rT E
[
(G− U lT )+

]
= e−rT

(
−
T−1∑
i=0

Pie
r(T−i)Φ

(
−σRT−i

√
T − i+ Φ−1(FU lT (G))

)
+GFU lT (G)

)

= −
T−1∑
i=0

Pie
−riΦ

(
−σRT−i

√
T − i+ Φ−1(FU lT (G))

)
+ e−rT GFU lT (G),

which gives (39).
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3.4 An improved upper bound

From chapter 2 we know that it is also possible to derive an improved upper bound by conditioning on a
random variable Λ. This improved upper bound is given by:

Theorem 3.3 Let V (T,G) be the value of the guarantee with maturity T and guarantee level G. Then

V (T,G) ≤

e−rT
∫ 1

0

−
T−1∑
i=0

Pie
(r−σ2

2 R
2
T−i)(T−i)+σRT−i

√
T−iΦ−1(v)Φ

(
−σ
√
T − i

√
1−R2

T−i + Φ−1(FUuT |V=v(G))
)

+GFUuT |V=v(G)dv,

where FUuT |V=v(G) follows from

T−1∑
i=0

Pie
(r−σ2

2 )(T−i)+σRT−i
√
T−iΦ−1(v)+σ

√
T−i
√

1−R2
T−iΦ

−1(FUu
T
|V=v(G)) = G. (46)

Proof To derive this result we start with Λ = WT as the conditioning random variable. The reason to take
this Λ different from the one in the previous section is that this choice will keep the computations tractable.
From equations (33) and (34) we then have

E [σWT−i |Λ = λ] = σE [WT−i] + σRT−i
σWT−i

σΛ
(λ− E [Λ]) = σRT−i

√
T − i
σΛ

λ

and
V ar(σWT−i |Λ = λ) = σ2σ2

WT−i
(1−R2

T−i) = σ2(T − i)(1−R2
T−i),

where

RT−i =
Cov (WT−i,Λ)
σΛ

√
T − i

=
Cov (WT−i,WT )

σΛ

√
T − i

=
T − i

√
T − i

√
T

=
√
T − i√
T

.

From this it follows that (r − σ2

2 )(T − i) + σ(WT−i | Λ = λ) is normally distributed with parameters µi =

(r−σ
2

2 )(T−i)+σRT−i
√
T−i
σΛ

λ and σ2
i = σ2(T−i)(1−R2

T−i). So
(
Pi

ST
Si
|Λ = λ

)
= Pie

(r−σ2
2 )(T−i)+σWT−i |Λ = λ

is Pi times a lognormally distributed random variable with parameters µi and σ2
i . So we find from equation

(18)

F−1

Pi
ST
Si
|Λ=λ

(p) = Pie
(r−σ2

2 )(T−i)+σRT−i
√
T−i λσΛ

+σ
√
T−i
√

1−R2
T−iΦ

−1(p)
.

So it follows that

(UuT |Λ = λ) =d

T−1∑
i=0

Pie
(r−σ2

2 )(T−i)+σRT−i
√
T−i λσΛ

+σ
√
T−i
√

1−R2
T−iΦ

−1(U)
.

Since λ
σΛ

is standard normally distributed this is the same as

(UuT |V = v) =d

T−1∑
i=0

Pie
(r−σ2

2 )(T−i)+σRT−i
√
T−iΦ−1(v)+σ

√
T−i
√

1−R2
T−iΦ

−1(U),

where V is uniformly distributed on the unit interval and independent from U .
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From σ
√
T − i

√
1−R2

T−i ≥ 0 for all i = 0, . . . , T − 1 we can conclude that, given V = v, UuT is a comono-

tonic sum with lognormal marginals with parameters µi = (r − σ2

2 )(T − i) + σRT−i
√
T − iΦ−1(v) and

σ2
i = σ2(T − i)(1−R2

T−i) multiplied by Pi. So from (26) it now follows that

E [(G− UuT )+|V = v] =

−
T−1∑
i=0

Pie
(r−σ2

2 R
2
T−i)(T−i)+σRT−i

√
T−iΦ−1(v)Φ

(
−σ
√
T − i

√
1−R2

T−i + Φ−1(FUuT |V=v(G))
)

+GFUuT |V=v(G).

From theorem 2.9 it follows that UT ≤cx UuT and equation (29) tells us that UuT is indeed an improved
upper bound. By definition of convex order we therefore find the improved upper bound as V (T,G) =
E [(G− UT )+] ≤ E [(G− UuT )+] =∫ 1

0

−
T−1∑
i=0

Pie
(r−σ2

2 R
2
T−i)(T−i)+σRT−i

√
T−iΦ−1(v)Φ

(
−σ
√
T − i

√
1−R2

T−i + Φ−1(FUuT |V=v(G))
)

+GFUuT |V=v(G)dv.

Furthermore, equation (24) gives that FUuT |V=v(G) follows from

T−1∑
i=0

Pie
(r−σ2

2 )(T−i)+σRT−i
√
T−iΦ−1(v)+σ

√
T−i
√

1−R2
T−iΦ

−1(FUu
T
|V=v(G)) = G.

Together the previous two equations give the improved upper bound as stated.

In theory, the improved upper bound is more interesting than the original upper bound if we want to use
the bounds as estimates for the value of the guarantee. However, as we can see above, the expression for
the improved upper bound is much more complicated. In particular, there is an integral to compute, which
makes it harder to implement. For this reason, we will not test the performance of the improved upper
bound.
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3.5 Another estimate for V (T,G)

The upper and lower bounds for V (T,G) derived in the previous sections can serve as estimates for V (T,G).
These estimates were derived by using the relation U lT ≤cx UT ≤cx U cT , which is equivalent to

E
[
(t− U lT )+

]
≤ E [(t− UT )+] ≤ E [(t− U cT )+] , ∀t ∈ R.

It is also possible to improve these estimates by considering the random variable UmT defined by

E [(t− UmT )+] = zE
[
(t− U lT )+

]
+ (1− z)E [(t− U cT )+] , 0 ≤ z ≤ 1, (47)

which lies between the lower and upper bound. In this case the estimate for V (T,G) is given by

V̂ (T,G) = e−rTE [(G− UmT )+] = e−rT
(
zE
[
(G− U lT )+

]
+ (1− z)E [(G− U cT )+]

)
, (48)

where E
[
(G− U lT )+

]
and E [(G− U cT )+] can be computed as in the previous sections. Of course, the result

depends on z and we will show that a reasonable choice for z is given by

z =
V ar(U cT )− V ar(UT )
V ar(U cT )− V ar(U lT )

. (49)

For this choice of z we will see that UmT has the same mean and variance as UT .

We start with the identities
lim
t→∞

(t− E [(t−X)+]) = E [X] , (50)

and

E [(t−X)+] =
∫ t

−∞
FX(x)dx, (51)

which are proved in the appendix (equation (100) and the derivation thereafter). From this we find

E [UmT ] = lim
t→∞

(t− E [(t− UmT )+]) = z lim
t→∞

(t− E
[
(t− U lT )+

]
) + (1− z) lim

t→∞
(t− E [(t− U cT )+])

= zE
[
U lT
]

+ (1− z)E [U cT ]

Since UT , U lT and U cT all have the same expectation we conclude E [UmT ] = E [UT ].

Of course we want UmT as close as possible to S. A natural choice of z is such that∫ ∞
−∞

E [(t− UmT )+]− E [(t− UT )+] dt = 0. (52)

How such z could be determined? To answer this we recall equation (2), which tells us that V ar(X) =
2
∫∞
−∞ E [(X − t)+]− (E [X]− t)+dt. It also holds that E [(X − t)+] = E [X]− t+ E [(t−X)+]. So we get

V ar(X) = 2
∫ ∞
−∞

E [X]− t+ E [(t−X)+]− (E [X]− t)+dt.

Using

E [X]− t− (E [X]− t)+ =
{

0 if t ≤ E [X]
E [X]− t if t > E [X] = −(t− E [X])+ ,

we find
V ar(X) = 2

∫ ∞
−∞

E [(t−X)+]− (t− E [X])+dt. (53)

By definition of UmT we now see that (52) is equivalent to∫ ∞
−∞

zE
[
(t− U lT )+

]
+ (1− z)E [(t− U cT )+]− E [(t− UT )+] dt = 0.

19



Adding and subtracting (t−E [UT ])+ in the integral and using E
[
U lT
]

= E [UmT ] = E [U cT ] = E [UT ] we obtain
that this is equivalent to

z

∫ ∞
−∞

E
[
(t− U lT )+

]
− (t− E

[
U lT
]
)+dt + (1− z)

∫ ∞
−∞

E [(t− U cT )+]− (t− E [U cT ])+dt

=
∫ ∞
−∞

E [(t− UT )+]− (t− E [UT ])+dt,

which is by (53) equivalent to

z
1
2
V ar(Sl) + (1− z)1

2
V ar(Sc) =

1
2
V ar(S).

From this we conclude that (52) holds for

z =
V ar(U cT )− V ar(UT )
V ar(U cT )− V ar(U lT )

,

which is exactly (49).

For this z we have that (52) holds. Assuming this z, adding and subtracting (t − E [UT ])+ in (52) and
using E [UmT ] = E [UT ] we find that in this situation (52) is equivalent to∫ ∞

−∞
E [(t− Sm)+]− (t− E [Sm])+dt =

∫ ∞
−∞

E [(t− S)+]− (t− E [S])+dt,

which is by (53) equivalent to 1
2V ar(U

m
T ) = 1

2V ar(UT ), so V ar(UmT ) = V ar(UT ). So indeed, for z given by
(49) we have that UmT can be seen as a moment estimator.

Let us now apply the preceding derivations to the model of the previous sections. For this we recall that for X
lognormally distributed with parameters µi and σ2

i we have E [X] = eµi+
1
2σ

2
i and V ar(X) = e2µi+σ

2
i (eσ

2
i −1).

(see also equations (16) and (17))
From the definition of U cT we have

U cT =
T−1∑
i=0

Pie
(r−σ2

2 )(T−i)+σ
√
T−iΦ−1(U).

Defining µi = (r − σ2

2 )(T − i) and σ2
i = σ2(T − i) we find V ar(U cT ):

V ar(U cT ) = Cov(U cT , U
c
T ) = Cov

T−1∑
i=0

Pie
µi+σiΦ

−1(U),

T−1∑
j=0

Pje
µj+σjΦ

−1(U)


=

T−1∑
i=0

T−1∑
j=0

PiPje
µi+µjCov(eσiΦ

−1(U), eσjΦ
−1(U))

=
T−1∑
i=0

T−1∑
j=0

PiPje
µi+µj

(
E
[
eσiΦ

−1(U)eσjΦ
−1(U)

]
− E

[
eσiΦ

−1(U)
]

E
[
eσjΦ

−1(U)
])

=
T−1∑
i=0

T−1∑
j=0

PiPje
µi+µj

(
E
[
e(σi+σj)Φ

−1(U)
]
− e 1

2σ
2
i e

1
2σ

2
j

)

=
T−1∑
i=0

T−1∑
j=0

PiPje
(r−σ2

2 )(2T−i−j)
(
e

1
2 (σi+σj)

2
− e 1

2σ
2
i e

1
2σ

2
j

)

=
T−1∑
i=0

T−1∑
j=0

PiPje
r(2T−i−j) (eσiσj − 1)
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=
T−1∑
i=0

T−1∑
j=0

PiPje
r(2T−i−j)

(
eσ

2
√

(T−i)(T−j) − 1
)
.

From equation (43) and a similar computation we also find

V ar(U lT ) =
T−1∑
i=0

T−1∑
j=0

PiPje
r(2T−i−j)

(
eσ

2RT−iRT−j
√

(T−i)(T−j) − 1
)
.

Finally, V ar(UT ) is given by

V ar(UT ) = Cov

T−1∑
i=0

Pie
(r−σ2

2 )(T−i)+σWT−i ,

T−1∑
j=0

Pje
(r−σ2

2 )(T−j)+σWT−j


=

T−1∑
i=0

T−1∑
j=0

PiPje
(r−σ2

2 )(2T−i−j) (E [eσWT−ieσσWT−j
]
− E

[
eσWT−i

]
E
[
eσWT−j

])
=

T−1∑
i=0

T−1∑
j=0

PiPje
(r−σ2

2 )(2T−i−j)
(
E
[
eσ(WT−i+WT−j)

]
− e 1

2σ
2(T−i)e

1
2σ

2(T−j)
)

=
T−1∑
i=0

T−1∑
j=0

PiPje
r(2T−i−j)

(
eσ

2 min((T−i),(T−j)) − 1
)
.

This gives all the ingredients to compute z as given by (49) explicitly. The estimate for V (T,G) is then
given by (48), where E

[
(G− U lT )+

]
and E [(G− U cT )+] have to be computed as in the previous sections. In

summary, the estimator for the value of the guarantee is given by:

Theorem 3.4 Let V (T,G) be the value of the guarantee with maturity T and guarantee level G. Then an
estimator of V (T,G) is given by

V̂ (T,G) = e−rT
(
zE
[
(G− U lT )+

]
+ (1− z)E [(G− U cT )+]

)
,

where z is given by

z =
V ar(U cT )− V ar(UT )
V ar(U cT )− V ar(U lT )

.
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3.6 Numerical results

This section provides numerical results for the bounds derived in this chapter. In order to judge the quality
of the bounds, we compare them to the value of the guarantee obtained by Monte Carlo simulation. The
Monte Carlo simulations are performed in ALS (copyright by Ortec), which is the programme that SNS
Reaal uses for valuing the guarantees. We have tested the bounds for 5 different model points which are also
used by SNS for valuing their portfolio of guarantees. A model point is a package of individual contracts
and they are used so that not each contract needs to be valued separately. A model point is characterized by
gross premium, investment percentage, maturity, current fund value and guaranteed value which together
determine the option value. The gross premium GP (i) and the investment percentage give the net premium
that is invested in the investment fund. If we denote the investment percentage at time i by I(i), the net
premium NP (i) invested in the fund at time i is given by NP (i) = GP (i)× I(i). Here (1− I(i))×GP (i) are
(fixed) costs that are subtracted from the gross premium and that SNS Reaal uses for example to finance
guarantees for which they have to pay. The investment fund in which the premiums are invested is the
SNS Garantie Mixfonds. This is a fund consisting of 70 % fixed income securities and 30 % stocks. The
management costs of this fund are 0.82 % (denoted c = 0.0082), which means that 0.82 % of the fund value at
the end of each year (or the beginning of each year, since the fund value does not change between December
31 and January 1) is subtracted. This is something we did not consider so far, but we can deal with this as
follows. Define

P̃i = NPi − c
i−1∑
j=0

P̃j
Si
Sj
.

Then
∑i−1
j=0 P̃j

Si
Sj

is the fund value at the end of year i− 1 (=beginning of year i) and c
∑i−1
j=0 P̃j

Si
Sj

are the

management costs that are subtracted at the end of year i − 1 (=beginning of year i). So P̃i is the net
premium at time i minus the management costs that are subtracted at the same time the net premium is
invested in the fund. This means that P̃i is the net value added to the fund. According to our assumption,
the customer does not pay a premium at maturity T (NP (T ) = 0). However, at maturity, management
costs are still deducted for the last year. So we get P̃T = −c

∑T−1
j=0 P̃j

ST
Sj

and the payoff of the guarantee
will be G− T∑

i=0

NP (i)− c
i−1∑
j=0

P̃j
Si
Sj

 ST
Si


+

.

In this form the option payoff becomes very complicated, but Schrager and Pelsser (2004) show that this is
equivalent to (

G−
T∑
i=0

Pi
ST
Si

)
+

=

(
G−

T−1∑
i=0

Pi
ST
Si

)
+

where Pi = NP (i) × (1 − c)T−i and where the equality follows since NP (T ) = 0. So what we did in the
numerical comparison is that we adapted the net premiums as above and we used the Pi as defined in the
computation of our bounds. This we did because this is the way it is done in practice and also the Monte
Carlo simulation can work with the management costs deduction every year.
Another subtlety we had to deal with, is the fact that the model points we considered did not contain
contracts that started today, but somewhere earlier. So there already is a certain amount of accumulated
premiums and returns at time 0. To make this fit in our model, we simply have to add this current fund
value to the premium in year 0.
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Since we consider it inappropriate to disclose all the information on the model points we used, we will
only give the time to maturity and the guaranteed value. We do this, because these parameters are the main
characteristics of a model point. They are as follows:

Model point Time to maturity Guaranteed value
1 26 1,217,993.65
2 22 10,019,706.79
3 17 5,412,609.16
4 15 20,097.40
5 6 132,834.02

Table 1: Time to maturity in years and guaranteed value in Euro’s of the model points.

For the risk free rate we used 3.922 % (the continuous equivalent of an annual rate of 4 %) and the volatility
(σ) of the investment fund is approximately 6%. Since the volatility varies a lot for different funds, we also
studied a scenario with a volatility of 20 %. For the Monte Carlo simulation we used 10,000 simulations and
the results are as follows.

σ Model point UB LB EST MC (s.e.)
0.06 1 14,274 10,902 10,912 10,560 (241)
0.06 2 114,375 89,083 89,147 85,804 (2,135)
0.06 3 71,688 57,402 57,433 55,276 (1,328)
0.06 4 374 304 303 298 (6)
0.06 5 2,280 2,114 2,114 2,081 (43)
0.2 1 109,192 94,618 95,548 94,079 (570)
0.2 2 992,752 874,392 880,354 871,283 (5,734)
0.2 3 593,941 528,565 531,099 525,861 (3,722)
0.2 4 2,290 2,021 2,024 2,017 (13)
0.2 5 15,469 14,787 14,791 14,771 (125)

Table 2: Upper bound (UB), lower bound (LB) and the estimate of section 3.5 (Est) for the value of the
guarantee in the different model points, compared to Monte Carlo estimates (MC) and their standard error
(s.e.). All numbers are in Euro’s.

From these results we immediately see that the lower bound is a very accurate estimate for the value of the
guarantee for all different maturities and guaranteed values. In all cases, the value of the lower bound is even
higher than the value of the Monte Carlo, which indicates that the realized Monte Carlo value is below the
true value of the guarantee. So the scenario’s in the Monte Carlo simulation have given an above average
investment return.
Also, in all cases, the lower bound is less than two standard deviations away from the Monte Carlo simulation
so it lies in the 95 % confidence interval. The estimate of section 3.6 is always very close to the lower bound.
Even though it might be a bit more accurate we would advise to work with the lower bound, since this avoids
the computation of the moments of the theoretical bounds.
The upper bound is a bad estimate for the option value. This is not a surprise, since the assumption that
the Pi STSi for i = 0, . . . , T − 1 are comonotonic is crude.
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4 A model with stochastic interest rates

In chapter 3 we derived bounds on the value of the guarantee under the assumption that the value of
the investment fund follows a geometric Brownian motion. This is a standard assumption in the financial
industry, but one of the disadvantages is that the interest rate is fixed. In practice, interest rates are
stochastic. Working with a stochastic interest rate instead of a fixed interest rate has the biggest impact
if we study products which have a long maturity. This is exactly the case with unit-linked insurance, so it
makes sense to use a model with stochastic interest rates.
In this chapter we will first give some general theory about stochastic interest rate models. Then we will
make some modelling assumptions and apply the theory to derive the distribution of STSi under this modelling
assumptions. This distribution will appear to be lognormal again and therefore we will be able to derive
bounds as in the previous chapter. As a concrete model, we will consider the Hull-White-Black-Scholes
model.

4.1 General theory

Throughout this thesis we used risk neutral valuation to derive bounds on the value of the guarantee. This is
based on the fact that in a complete and arbitrage free market the unique value of any financial claim equals
the expectation of the payoff normalized by the money market account under some equivalent measure.
Under this measure (from now on denoted by Q) the expected return on all assets equals the risk free rate.
Furthermore, the price processes of the normalized assets are martingales under Q. The normalizing asset (in
this setting the money market account) is also called the numeraire. Geman et al. (1995) show how not only
the money market account, but every strictly positive self-financing portfolio of traded assets, can be used
as numeraire. Their change of numeraire theorem shows how an expectation under a probability measure
QN associated with numeraire N is related to an expectation under an equivalent probability measure QM

associated with numerarie M . More specifically, their theorem states that in an arbitrage-free and complete
market, for any numeraires N and M with associated measures QN and QM , the following holds for the
price of an asset H at time t ≤ T :

H(t) = N(t)ENt
[
H(T )
N(T )

]
= M(t)EMt

[
H(T )
M(T )

]
,

where ENt and EMt denote conditional expectations on the information available at time t under QN and QM

respectively. The Radon-Nikodym derivative associated with a change of measure from QN to QM is given
by

dQM

dQN
=

M(T )
M(t)

N(T )
N(t)

.

So if the price of a payoff H(T ), known at time T , can be calculated by taking a risk-neutral expectation it
can also be calculated by changing numeraires.

So far we have modelled the value of the investment fund St as

dSt = rStdt+ σStdWt,

where r is the (constant) risk free interest rate, σ the volatility and Wt a standard Brownian motion under
the risk neutral measure. In this model, with a constant risk free interest rate, the value of the money market
account at time t is given by

Bt = ert.

With the money market account the numeraire associated with the risk neutral measure Q, we have that the
process St

Bt
is a martingale under Q. Furthermore, the price of a zero coupon bond with maturity T (paying

1 unit of currency at time T ) at time t (denoted D(t, T )) is given by

D(t, T ) = e−r(T−t).
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If we now assume the risk free rate rt to be stochastic, the value of the money market account at time t
is given by

Bt = e
∫ t
0 rsds,

and the price of a zero coupon bond is given by

D(t, T ) = EQ
t

[
e−

∫ T
t
rsds

]
.

Under suitable assumptions it holds that for each maturity T the process D(t,T )
Bt

is a martingale under Q.
Now, D(t, T ) is strictly positive and therefore we can also use D(t, T ) as a numeraire. The associated measure
is called the T -forward measure, denoted QT . From the change of numeraire theorem we now have that the
forward stock process FTt = St

Dt,T
and the forward bond process DT (t, U) = D(t,U)

D(t,T ) for each t < U ≤ T are
martingales under QT .
Our choice, which is a common choice, is to model them as lognormal martingales:

dFTt = σF (t)FTt dW
T
t , (54)

and
dDT (t, U) = σU (t)DT (t, U)dWUT

t , (55)

where WT
t and WUT

t are brownian motions under the T -forward measure and σF (t) and σU (t) are determin-
istic functions of time. Correlations between those Brownian motions are given by dWT

t dW
UT
t = ρF,U (t)dt

and dWUT
t dWV T

t = ρUV (t)dt. When using time points ti and tj we will write W iT
t , σi(t), ρF,i(t) and ρij(t)

for W tiT
t , σti(t), ρF,ti(t) and ρtitj (t).

We are now able to derive the distribution of ST
Sti

at time t under the dynamics (54) and (55). At this
moment, it is good to stress that this is really what we are after. The dynamics (54) and (55) represent a
model with stochastic interest and once we know the distribution of ST

Sti
for each i we can go back to valuing

our guarantee. It will turn out that ST
Sti

is lognormal, so we can basically repeat chapter 3 once we know the
parameters of the lognormal distribution.

First suppose that t ≤ ti. From (54) it follows that

FTti = FTt e
− 1

2

∫ ti
t σ2

F (s)ds+
∫ ti
t σF (s)dWT

s

Plugging in the definition of FTt we find

Sti
D(ti, T )

=
St

D(t, T )
e−

1
2

∫ ti
t σ2

F (s)ds+
∫ ti
t σF (s)dWT

s ,

and similarly
ST

D(T, T )
= ST =

St
D(t, T )

e−
1
2

∫ T
t
σ2
F (s)ds+

∫ T
t
σF (s)dWT

s .

Dividing the previous two equations we find

ST
Sti

=
1

D(ti, T )
e
− 1

2

∫ T
ti
σ2
F (s)ds+

∫ T
ti
σF (s)dWT

s . (56)

From (55) we obtain for t′ ≥ ti ≥ t

D(ti, t′)
D(ti, T )

=
D(t, t′)
D(t, T )

e−
1
2

∫ ti
t σ2

t′ (s)ds+
∫ ti
t σt′ (s)dW

t′T
s .

Taking t′ = ti we get
1

D(ti, T )
=
D(t, ti)
D(t, T )

e−
1
2

∫ ti
t σ2

i (s)ds+
∫ ti
t σi(s)dW

iT
s .
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If we insert this result in (56) we obtain

ST
Sti

=
D(t, ti)
D(t, T )

e
− 1

2

∫ ti
t σ2

i (s)ds− 1
2

∫ T
ti
σ2
F (s)ds+

∫ ti
t σi(s)dW

iT
s +

∫ T
ti
σF (s)dWT

s . (57)

For ti ≤ t we can do a similar derivation and find

ST
Sti

=
1
Sti

St
D(t, T )

e−
1
2

∫ T
t
σ2
F (s)ds+

∫ T
t
σF (s)dWT

s . (58)

In order to keep things clear, we simplify the notation. We define∫ T

t

σ̄i(s)dW̄ i
s =

∫ max(t,ti)

t

σi(s)dW iT
s +

∫ T

max(t,ti)

σF (s)dWT
s ,

µ̄i(t) =
D(t, ti)
D(t, T )

I[0,ti](t) +
1
Sti

St
D(t, T )

I[ti,T ](t).

From standard properties of Brownian motion it follows that
∫max(t,ti)

t
σi(s)dW iT

s and
∫ T
max(t,ti)

σF (s)dWT
s

are independent normally distributed. So it follows that∫ T

t

σ̄i
2(s)ds = V ar(

∫ T

t

σ̄i(s)dW̄ i
s) = V ar(

∫ max(t,ti)

t

σi(s)dW iT
s ) + V ar(

∫ T

max(t,ti)

σF (s)dWT
s )

=
∫ max(t,ti)

t

σ2
i (s)ds+

∫ T

max(t,ti)

σ2
F (s)ds.

Using the developed notation, we can now write

ST
Sti

= µ̄i(t)e−
1
2

∫ T
t
σ̄i

2(s)ds+
∫ T
t
σ̄i(s)dW̄ i

s . (59)

From this expression we see that ST
Sti

is indeed lognormally distributed. Therefore we should be able to use
the theory of comonotonicity to derive bounds on the value of the guarantee at time t

Vt(T,G) = e
∫ t
0 rsdsEQ

t

[
e−

∫ T
0 rsds(G−

T−1∑
i=0

Pi
ST
Si

)+

]
= D(t, T )EQT

t

[
(G−

T−1∑
i=0

Pi
ST
Si

)+

]
,

where the last equality follows from the change of numeraire theorem.
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4.2 Bounds under stochastic interest rates

In the previous section we have found the distribution of ST
Sti

in a model with stochastic interest given by
(54) and (55). As noted, the distribution is lognormal, so applying the theory of comonotonicity will enable
us to derive bounds on the value of the guarantee. Here we will first derive an upper bound and then
proceed with the lower bound. This we will do for an arbitrary time 0 ≤ t ≤ T , i.e. we assume that the
contract started at time 0 and that we are now at time t. So we already know the investment fund values
between time 0 and t. Similar to chapter three we will denote UT =

∑T−1
i=0 Pi

ST
Sti

, U cT =
∑T−1
i=0 F−1

Pi
ST
Sti

(U)

and U lT =
∑T−1
i=0 Et

[
Pi

ST
Si
| Λ
]
, given the information at time t.

An upper bound on the value of the guarantee is given by

Theorem 4.1 Let Vt(T,G) be the value of the guarantee with maturity T and guarantee level G at time t.
Then

Vt(T,G) ≤ D(t, T )

− T−1∑
i=0

Piµ̄i(t)Φ

−
√∫ T

t

σ̄i2(s)ds+ Φ−1(FUcT (G))

+GFUcT (G)

 , (60)

where FUcT (G) follows from solving

T−1∑
i=0

Piµ̄i(t)e
− 1

2

∫ T
t
σ̄i

2(s)ds+
√∫ T

t
σ̄i2(s)ds Φ−1(FUc

T
(G)) = G. (61)

To derive this we start with the following observation∫ T

t

σ̄i(s)dW̄ i
s =d

√∫ T

t

σ̄i2(s)ds Φ−1(U),

where U is uniformly distributed on the unit interval under QT .
If we combine this with (59), we find that the comonotonic counter part of UT =

∑T−1
i=0 Pi

ST
Sti

, given the
information at time t, is

U cT =
T−1∑
i=0

Piµ̄i(t)e−
1
2

∫ T
t
σ̄i

2(s)ds+
√∫ T

t
σ̄i2(s)ds Φ−1(U).

Using (26) this gives

Vt(T,G) = D(t, T )EQT
t [(G− UT )+]

≤ D(t, T )EQT
t [(G− U cT )+]

= D(t, T )

− T−1∑
i=0

Piµ̄i(t)Φ

−
√∫ T

t

σ̄i2(s)ds+ Φ−1(FUcT (G))

+GFUcT (G)

 ,
which gives (60). Also from equation (14) we have that FUcT (G) follows from F−1

UcT
(FUcT (G)) = G, or equiva-

lently
T−1∑
i=0

Piµ̄i(t)e
− 1

2

∫ T
t
σ̄i

2(s)ds+
√∫ T

t
σ̄i2(s)ds Φ−1(FUc

T
(G)) = G,

which gives (61).
A lower bound on the value of the guarantee is given by

Theorem 4.2 Let Vt(T,G) be the value of the guarantee with maturity T and guarantee level G at time t.
Then

Vt(T,G) ≥ D(t, T )

[
−
T−1∑
i=0

Piµ̄i(t)Φ
(
−µi|Z(t) + Φ−1(FU lT (G))

)
+GFU lT (G)

]
, (62)

27



where FU lT (G) follows from solving

T−1∑
i=0

Piµ̄i(t)e
µi|Z(t)Φ−1(F

Ult
(G))− 1

2µ
2
i|Z(t)

= G. (63)

Furthermore, µi|Z(t) is given by µi|Z(t) = EQT
t

[
Z
∫ T
t
σ̄i(s)dW̄ i

s

]
, where Z is a standard normally distributed

random variable.

Explicit expressions for Z and µi|Z(t) are given below.

To derive this result we proceed as in chapter 3.3. The only difference is that we want the conditioning
random variable Λ to be standard normally distributed and we will call it Z. So we have to compute
EQT
t

[
Pi

ST
Sti
| Z
]
, for a suitable conditioning random variable Z. If Z is standard normally distributed we get

by equations (33) and (34) (where we plug in the definition of r(Y,Λ))

EQT
t

[∫ T

t

σ̄i(s)dW̄ i
s | Z

]
= Cov

(∫ T

t

σ̄i(s)dW̄ i
s , Z

)
Z = EQT

t

[
Z

∫ T

t

σ̄i(s)dW̄ i
s

]
Z,

and

V ar(
∫ T

t

σ̄i(s)dW̄ i
s | Z) =

∫ T

t

σ̄i
2(s)ds− Cov

(∫ T

t

σ̄i(s)dW̄ i
s , Z

)2

=
∫ T

t

σ̄i
2(s)ds− EQT

t

[
Z

∫ T

t

σ̄i(s)dW̄ i
s

]2

.

We now define µi|Z(t) = EQT
t

[
Z
∫ T
t
σ̄i(s)dW̄ i

s

]
. Applying (16) then gives

U lT = EQT
t

[
Pi
ST
Sti
| Z
]

= Piµ̄i(t)e−
1
2

∫ T
t
σ̄i

2(s)dsEQT
t

[
e
∫ T
t
σ̄i(s)dW̄ i

s |Z
]

= Piµ̄i(t)e−
1
2

∫ T
t
σ̄i

2(s)dseµi|Z(t)Z+ 1
2

∫ T
t
σ̄i

2(s)ds− 1
2µ

2
i|Z(t)

= Piµ̄i(t)eµi|Z(t)Z− 1
2µ

2
i|Z(t).

If µi|Z(t) is positive for all i, then U lT =
∑T−1
i=0 EQT

t

[
Pi

ST
Sti
| Z
]

will be comonotone (with lognormal marginals)

and this will enable us to compute the lower bound. So once we know µi|Z(t) = EQT
t

[
Z
∫ T
t
σ̄i(s)dW̄ i

s

]
, we

can compute the lower bound.

As in chapter 3 we will now choose Z to be a first order approximation of UT . The first order approxi-
mation is

UT =
T−1∑
i=0

Pi
ST
Sti

=
T−1∑
i=0

Piµ̄i(t)e−
1
2

∫ T
t
σ̄i

2(s)ds+
∫ T
t
σ̄i(s)dW̄ i

s

≈
T−1∑
i=0

Piµ̄i(t)e−
1
2

∫ T
t
σ̄i

2(s)ds(1 +
∫ T

t

σ̄i(s)dW̄ i
s)

= C +
T−1∑
i=0

Piµ̄i(t)e−
1
2

∫ T
t
σ̄i

2(s)ds

∫ T

t

σ̄i(s)dW̄ i
s ,

where C is the appropriate constant. So as a conditioning random variable we can take

Z =
T−1∑
i=0

Piµ̄i(t)e−
1
2

∫ T
t
σ̄i

2(s)ds

∫ T

t

σ̄i(s)dW̄ i
s .
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This Z is normally distributed but, we want Z to be standard normally distributed. Therefore, we have to
divide by the standard deviation. This standard deviation will be denoted αt and the conditioning standard
normal random variable becomes

Z =
1
αt

T−1∑
i=0

Piµ̄i(t)e−
1
2

∫ T
t
σ̄i

2(s)ds

∫ T

t

σ̄i(s)dW̄ i
s .

Performing the calculation we find

αt =
T−1∑
i=0

T−1∑
j=0

Piµ̄i(t)Pj µ̄j(t)e−
1
2

∫ T
t
σ̄i

2(s)ds− 1
2

∫ T
t
σ̄j

2(s)dsCov

(∫ T

t

σ̄i(s)dW̄ i
s ,

∫ T

t

σ̄j(s)dW̄
j
s

)
,

where for i ≤ j (i.e. ti ≤ tj) we have

Cov

(∫ T

t

σ̄i(s)dW̄ i
s ,

∫ T

t

σ̄j(s)dW̄
j
s

)
=

Cov

(∫ max(t,ti)

t

σi(s)dW iT
s +

∫ T

max(t,ti)

σF (s)dWT
s ,

∫ max(t,tj)

t

σj(s)dW jT
s +

∫ T

max(t,tj)

σF (s)dWT
s

)
=

∫ max(t,ti)

t

ρij(s)σi(s)σj(s)ds+
∫ max(t,tj)

max(t,ti)

ρF,j(s)σF (s)σj(s)ds+
∫ T

max(t,tj)

σ2
F (s)ds.

As mentioned before we also need an explicit expression for µi|Z(t) = EQT
t

[
Z
∫ T
t
σ̄i(s)dW̄ i

s

]
. Plugging in all

the definitions and doing the calculation gives

µi|Z(t) = EQT
t

[
Z

∫ T

t

σ̄i(s)dW̄ i
s

]

= EQT
t

 1
αt

T−1∑
j=0

Pjµ̄j(t)e−
1
2

∫ T
t
σ̄j

2(s)ds

∫ T

t

σ̄j(s)dW̄
j
s

∫ T

t

σ̄i(s)dW̄ i
s


=

1
αt

i∑
j=0

Pj µ̄j(t)e−
1
2

∫ T
t
σ̄j

2(s)ds

[∫ max(t,tj)

t

ρij(s)σi(s)σj(s)ds+
∫ max(t,ti)

max(t,tj)

ρF,i(s)σF (s)σi(s)ds

+
∫ T

max(t,ti)

σ2
F (s)ds

]
+

1
αt

T−1∑
j=i+1

Pj µ̄j(t)e−
1
2

∫ T
t
σ̄j

2(s)ds

[∫ max(t,ti)

t

ρij(s)σi(s)σj(s)ds+
∫ max(t,tj)

max(t,ti)

ρF,j(s)σF (s)σj(s)ds

+
∫ T

max(t,tj)

σ2
F (s)ds

]
.

As noted in Schrager and Pelsser (2006), for reasonable values of the correlations (mainly the correlation
between the forward stock and forward bond processes) the µi|Z(t) are positive for all i. Assuming this we
can compute the lower bound. We have

Vt(T,G) = D(t, T )EQT
t [(G− UT )+] ≥ D(t, T )EQT

t

[
(G− U lT )+

]
,

where U lT =d

∑T−1
i=0 Piµ̄i(t)eµi|Z(t)Φ−1(U)− 1

2µ
2
i|Z(t) and µi|Z(t) as above. By (26) we conclude

Vt(T,G) ≥ D(t, T )

[
−
T−1∑
i=0

Piµ̄i(t)Φ
(
−µi|Z(t) + Φ−1(FU lT (G))

)
+GFU lT (G)

]
,
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which is (62). Also, by (14), we have that FU lT (G) follows from

T−1∑
i=0

Piµ̄i(t)e
µi|Z(t)Φ−1(F

Ul
T

(G))− 1
2µ

2
i|Z(t)

= G,

which gives (63).
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4.3 The Hull-White-Black-Scholes model

In the previous section we derived bounds on the value of the guarantee for a general model with stochastic
interest given by (54) and (55). In this section we will focus on a specific model, namely the Hull-White-
Black-Scholes model (HWBS model). We will start with the definition of the model and then we will show
that the model satisfies (54) and (55) for certain values of the parameters. Using these parameters we are
able to derive all relevant expressions that we need to compute the bounds. So this means that we can
compute a lower bound and an upper bound on the value of the guarantee in this particular model. This
is very interesting, since in practice this model is used to compute the value of the guarantee. However, in
practice it is done by simulation and we do it with bounds that can be used as approximations.

The Hull-White-Black-Scholes model is a combination of the Black-Scholes model for the development of
the value of the investment fund St and the Hull-White model for the development of the short rate rt. More
specifically, the dynamics under the risk neutral measure are given by the following stochastic differential
equations

dSt = rtStdt+
√

1− ρ2σSStdW1,t + ρσSStdW2,t, (64)

drt = (θt − art)dt+ σrdW2,t, (65)

where ρ is the correlation between the stock and short rate, σS is the volatility of the stock, a is the mean
reversion parameter, σr is the volatility of the short rate, W1,t and W2,t are Brownian motions under the risk
neutral measure and θt is a function of time determined by the initial forward rates observed in the market.

To determine the dynamics of the T -forward stock price FTt = St
Dt,T

and the T -forward bond price with

maturity ti, DT (t, ti) = D(t,ti)
D(t,T ) we need to know the bond prices. It is well known that in the Hull-White

model for the short rate these are given by

D(t, T ) = eA(t,T )−B(t,T )rt ,

where

B(t, T ) =
1
a

(1− e−a(T−t))

A(t, T ) =
σ2
r

2

∫ T

t

B(s, T )2ds−
∫ T

t

θsB(s, T )ds.

Furthermore, for θ(t) = ∂f(0,t)
∂t + a f(0, t) + σ2

r

2a (1 − e−2at) the model fits the initial term structure, where
f(0, t) is the forward rate curve as observed in market.

Applying Ito’s lemma it follows that

dD(t, T ) = D(t, T )
(
−σ

2
r

2
B(t, T )2 + θtB(t, T ) + rte

−a(T−t)
)
dt−D(t, T )B(t, T )drt

+
1
2
B(t, T )2D(t, T )d < rt, rt >

= D(t, T )
(
−σ

2
r

2
B(t, T )2 + θtB(t, T ) + rte

−a(T−t)
)
dt

− D(t, T )B(t, T ) ((θt − art)dt+ σrdW2,t) +
1
2
B(t, T )2D(t, T )σ2

rdt,

where < X,Y > denotes the quadratic covariation process of X and Y . Rearranging the terms we conclude

dD(t, T )
D(t, T )

=
(
rte
−a(T−t) + aB(t, T )rt

)
dt− σrB(t, T )dW2,t = rtdt− σrB(t, T )dW2,t. (66)
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To derive the dynamics of the T -forward bond price, we now look at d
(
D(t,ti)
D(t,T )

)
. Applying Ito’s lemma we

get

d

(
D(t, ti)
D(t, T )

)
=

1
D(t, T )

dD(t, ti)−
D(t, ti)
D(t, T )2

dD(t, T )− 1
D(t, T )2

d < D(t, ti), D(t, T ) >

+
1
2

2D(t, ti)
D(t, T )3

d < D(t, T ), D(t, T ) > .

Plugging in (66) it follows that

d

(
D(t, ti)
D(t, T )

)
=

1
D(t, T )

(rtD(t, ti)dt− σrD(t, ti)B(t, ti)dW2,t)

− D(t, ti)
D(t, T )2

(rtD(t, T )dt− σrD(t, T )B(t, T )dW2,t)

− 1
D(t, T )2

σ2
rD(t, ti)D(t, T )B(t, ti)B(t, T )dt+

1
2

2D(t, ti)
D(t, T )3

σ2
rD(t, T )2B(t, T )2dt.

Rearranging the terms we conclude

d
(
D(t,ti)
D(t,T )

)
D(t,ti)
D(t,T )

= σ2
r

(
B(t, T )2 −B(t, T )B(t, ti)

)
dt+ σr (B(t, T )−B(t, ti)) dW2,t. (67)

Similarly, applying Ito’s lemma to St
D(t,T ) we get

St
D(t, T )

=
1

D(t, T )
dSt −

St
D(t, T )2

dD(t, T )− 1
D(t, T )2

d < St, D(t, T ) > +
1
2

2St
D(t, T )3

d < D(t, T ), D(t, T ) > .

Plugging in (64) and (66) we obtain

d
(

St
D(t,T )

)
St

D(t,T )

= rtdt+
√

1− ρ2σSdW1,t + ρσSdW2,t − rtdt+ σrB(t, T )dW2,t

+ ρσSσrB(t, T )dt+ σ2
rB(t, T )2dt,

So rearranging gives

d
(

St
D(t,T )

)
St

D(t,T )

= B(t, T )
(
ρσSσr + σ2

rB(t, T )
)
dt+

√
1− ρ2σSdW1,t + ρσSdW2,t + σrB(t, T )dW2,t. (68)

Now we change measure from the risk neutral measure to the T -forward measure. From Girsanov’s theorem
(see for example Karatzas and Shreve (2000)) we know that this can be done in such a way that we get
dW1,t = dWT

1,t and dW2,t = dWT
2,t − σrB(t, T )dt, with WT

1,t and WT
2,t independent Brownian motions under

the new measure. Defining as before FTt = St
D(t,T ) and DT (t, ti) = D(t,ti)

D(t,T ) , (67) becomes

dDT (t, ti)
DT (t, ti)

= σr (B(t, T )−B(t, ti)) dWT
2,t, (69)

and for (68) we get

dFTt
FTt

= B(t, T )
(
ρσSσr + σ2

rB(t, T )
)
dt+

√
1− ρ2σSdW

T
1,t + ρσSdW

T
2,t − ρσSσrB(t, T )dt

+σrB(t, T )dWT
2,t − σ2

rB(t, T )2dt,
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so
dFTt
FTt

=
√

1− ρ2σSdW
T
1,t + ρσSdW

T
2,t + σrB(t, T )dWT

2,t. (70)

For (70) we can write equivalently (in weak SDE solution terms)

dFTt =
√
σ2
S + 2ρσSσrB(t, T ) + σ2

rB(t, T )2FTt dZ
T
t , (71)

where ZTt is a Brownian motion under the T-forward measure. This can be seen as follows. First note that
it follows from (70) that FTt is a martingale. Also,

dFTt =
( √

1− ρ2σSF
T
t , ρσSF

T
t + σrB(t, T )FTt

)( WT
1,t

WT
2,t

)
.

The covariance matrix of (WT
1,t,W

T
2,t) is given by(

t 0
0 t

)
.

So the variance of FTt is

( √
1− ρ2σSF

T
t , ρσSF

T
t + σrB(t, T )FTt

)( t 0
0 t

)( √
1− ρ2σSF

T
t

ρσSF
T
t + σrB(t, T )FTt

)
=

(
σ2
S + 2ρσSσrB(t, T ) + σ2

rB(t, T )2
) (
FTt
)2
t,

and we conclude that a weak solution is indeed given by (71).

Comparing (69) and (71) with (54) and (55) we conclude that the HWBS model is indeed of our general
form with

σF (t) =
√
σ2
S + 2ρσSσrB(t, T ) + σ2

rB(t, T )2,

and
σi(t) = σr (B(t, T )−B(t, ti)) .

Now, to get the lower bound explicitly we need to compute integrals like
∫max(t,ti)

t
ρij(s)σi(s)σj(s)ds,∫max(t,tj)

max(t,ti)
ρF,j(s)σF (s)σj(s)ds and

∫ T
max(t,tj)

σ2
F (s)ds (these are used in the expression for αt and µi|Z(t)

in 4.2). Therefore it is necessary to find the expressions for ρij(s)σi(s)σj(s), ρF,j(s)σF (s)σj(s) and σ2
F (s).

For this we first note that the solutions of (54) and (55) are given by

FTt = FT0 e
− 1

2

∫ t
0 σ

2
F (s)ds+

∫ t
0 σF (s)dWT

s

and
DT (t, tj) = DT (0, tj)e−

1
2

∫ t
0 σ

2
j (s)ds+

∫ t
0 σj(s)dW

jT
s .

From this we see that

EQT [FTt DT (t, tj)
]

= EQT
[
FT0 D

T (0, tj)e−
1
2

∫ t
0 σ

2
F (s)ds− 1

2

∫ t
0 σ

2
j (s)ds+

∫ t
0 σF (s)dWT

s +
∫ t
0 σj(s)dW

jT
s

]
.

Using properties of the quadratic covariation we find that the covariance of
∫ t

0
σF (s)dWT

s and
∫ t

0
σj(s)dW iT

s

is given by
∫ t

0
σF (s)σj(s)ρF,j(s)ds. Therefore,

∫ t
0
σF (s)dWT

s +
∫ t

0
σj(s)dW jT

s is normally distributed with
mean 0 and variance

∫ t
0
σ2
F (s)ds+

∫ t
0
σ2
j (s)ds+2

∫ t
0
σF (s)σj(s)ρF,j(s)ds. Hence, using the standard properties

of the expectation of lognormal random variables (16) we find

EQT [FTt DT (t, tj)
]

= FT0 D
T (0, tj)e

∫ t
0 σF (s)σj(s)ρF,j(s)ds.
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The expectation of the above product is almost equal to the covariation between FTt and DT (t, tj). The
difference is that for the covariation we still have to subtract EQT [FTt ]EQT [DT (t, tj)

]
, but since both

processes are martingales, that equals FT0 D
T (0, tj). So, the instantaneous covariance at time t is given by

e
∫ t+dt
0 σF (s)σj(s)ρF,j(s)ds − e

∫ t
0 σF (s)σj(s)ρF,j(s)ds

≈ 1 +
∫ t+dt

0

σF (s)σj(s)ρF,j(s)ds −
(

1 +
∫ t

0

σF (s)σj(s)ρF,j(s)ds
)

= σF (t)σj(t)ρF,j(t)dt.

Also, from (69) and (70) we find that the instantaneous covariance between FTt and DT (t, tj) is given by

<
√

1− ρ2σSdW
T
1,t + ρσSdW

T
2,t + σrB(t, T )dWT

2,t , σr (B(t, T )−B(t, tj)) dWT
2,t >

= (ρσS + σrB(t, T ))(σr (B(t, T )−B(t, tj)))dt
= ρσSσr (B(t, T )−B(t, tj)) + σ2

rB(t, T )2 − σ2
rB(t, T )B(t, tj)dt.

So combining both expressions for the instantaneous covariance we find the first expression we will need to
compute our bounds on the value of the guarantee:

σF (t)σj(t)ρF,j(t) = ρσSσr (B(t, T )−B(t, tj)) + σ2
rB(t, T )2 − σ2

rB(t, T )B(t, tj). (72)

From (71) it is easy to see that

σ2
F (t) = σ2

S + 2ρσSσrB(t, T ) + σ2
rB(t, T )2. (73)

Finally, the correlation between bonds with maturity ti and tj normalized by the bond with maturity T is
one, since they are both driven by the same Brownian motion WT

2,t. From (69) we therefore find

ρij(t)σi(t)σj(t) = σ2
r (B(t, T )−B(t, ti)) (B(t, T )−B(t, tj)) . (74)

The equations (72), (73) and (74) are the first ingredients for computing αt and µi|Z(t). But as can be
seen in the expressions for αt and µi|Z(t) we finally need these terms integrated. For this we will assume

t < ti < tj . We will first concentrate on
∫max(t,ti)

t
ρij(s)σi(s)σj(s)ds. According to (74) this is now given

by
∫ ti
t
σ2
r (B(s, T )−B(s, ti)) (B(s, T )−B(s, tj)) ds. Recall that B(s, T ) = 1

a (1 − e−a(T−s)). From this it
follows that B(s, T )−B(s, ti) = 1

a (e−a(ti−s) − e−a(T−s)). So

(B(s, T )−B(s, ti)) (B(s, T )−B(s, tj)) =
1
a

(e−a(ti−s) − e−a(T−s))
1
a

(e−a(tj−s) − e−a(T−s)) =

1
a2

(
e−a(ti+tj−2s) − e−a(ti+T−2s) − e−a(T+tj−2s) + e−a(2T−2s)

)
.

Inserting this, we get the following∫ max(t,ti)

t

ρij(s)σi(s)σj(s)ds =
∫ ti

t

σ2
r

a2

(
e−a(ti+tj−2s) − e−a(ti+T−2s) − e−a(T+tj−2s) + e−a(2T−2s)

)
ds

=
σ2
r

a2

[
1
2a
e−a(ti+tj−2s)

]ti
t

− σ2
r

a2

[
1
2a
e−a(ti+T−2s)

]ti
t

− σ2
r

a2

[
1
2a
e−a(T+tj−2s)

]ti
t

+
σ2
r

a2

[
1
2a
e−a(2T−2s)

]ti
t

=
σ2
r

2a3

[
e−a(tj−ti) − e−a(ti+tj−2t)

]
− σ2

r

2a3

[
e−a(T−ti) − e−a(ti+T−2t)

]
− σ2

r

2a3

[
e−a(T+tj−2ti) − e−a(T+tj−2t)

]
+ σ2

r

2a3

[
e−a(2T−2ti) − e−a(2T−2t)

]
.
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At first sight, this is a terrible expression, but using the definition of B(t, T ) we can rewrite this to get the
following ∫ max(t,ti)

t

ρij(s)σi(s)σj(s)ds =
σ2
r

2a2
[B(2t, ti + tj)

−B(ti, tj)−B(2t, ti + T ) +B(ti, T )−B(2t, T + tj) +B(2ti, T + tj) +B(2t, 2T )−B(2ti, 2T )] .

To compute
∫ tj
ti
ρF,j(s)σF (s)σj(s)ds we proceed in a similar way. From (72) this integral is given by∫ tj

ti
ρσSσr (B(s, T )−B(s, tj)) + σ2

rB(s, T ) (B(s, T )−B(s, tj)) ds. Using the expression for
(B(s, T )−B(s, tj)) that we already derived, we find

B(s, T ) (B(s, T )−B(s, tj)) =
1
a

(1− e−a(T−s))
1
a

(e−a(tj−s) − e−a(T−s))

=
1
a2

(e−a(tj−s) − e−a(T−s) − e−a(T+tj−2s) + e−a(2T−2s)).

So ∫ tj

ti

ρF,j(s)σF (s)σj(s)ds = −ρσSσr
∫ tj

ti

1
a

(e−a(T−s) − e−a(tj−s))ds

+ σ2
r

∫ tj

ti

1
a2

(e−a(tj−s) − e−a(T−s) − e−a(T+tj−2s) + e−a(2T−2s))ds.

If we compute this expression explicitly, we get∫ tj

ti

ρF,j(s)σF (s)σj(s)ds = −ρσSσr
a

[
1
a
e−a(T−s)

]tj
ti

+
ρσSσr
a

[
1
a
e−a(tj−s)

]tj
ti

+
σ2
r

a2

[
1
a
e−a(tj−s)

]tj
ti

− σ2
r

a2

[
1
a
e−a(T−s)

]tj
ti

− σ2
r

a2

[
1
2a
e−a(T+tj−2s)

]tj
ti

+
σ2
r

a2

[
1
2a
e−a(2T−2s)

]tj
ti

=
ρσSσr
a2

[
e−a(T−ti) − e−a(T−tj) − e−a(tj−ti) + 1

]
+
σ2
r

a3

[
1− e−a(tj−ti) − e−a(T−tj) + e−a(T−ti) − 1

2
e−a(T−tj) +

1
2
e−a(T+tj−2ti)

+
1
2
e−a(2T−2tj) − 1

2
e−a(2T−2ti)

]
.

Using that B(tj , T )B(ti, tj) = 1
a2

(
1 + e−a(T−ti) − e−a(T−tj) − e−a(tj−ti)

)
, we can rewrite this to obtain∫ tj

ti

ρF,j(s)σF (s)σj(s)ds = ρσSσrB(tj , T )B(ti, tj) +
σ2
r

a
B(tj , T )B(ti, tj)

+
σ2
r

2a2
[B(tj , T )−B(2ti, T + tj)] +

σ2
r

2a2
[B(2ti, 2T )−B(2tj , 2T )] .

Now we still have to compute (use (73))
∫ T
tj
σ2
F (s)ds =

∫ T
tj
σ2
S + 2ρσSσrB(s, T ) + σ2

rB(s, T )2ds. We find

∫ T

tj

σ2
F (s)ds = σ2

S(T − tj) + 2ρσSσr
∫ T

tj

1
a

(1− e−a(T−s))ds

+σ2
r

∫ T

tj

1
a2

(1− 2e−a(T−s) + e−a(2T−2s))ds

= σ2
S(T − tj) +

2ρσSσr
a

(T − tj)−
2ρσSσr
a2

[
1− e−a(T−tj)

]
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+
σ2
r

a2
(T − tj)−

2σ2
r

a3

[
1− e−a(T−tj)

]
+

σ2
r

2a3

[
1− e−a(2T−2tj)

]
=
(
σ2
S +

2ρσSσr
a

+
σ2
r

a2

)
(T − tj)−B(tj , T )

(
2ρσSσr

a
+

2σ2
r

a2

)
+
σ2
r

2a2
B(2tj , 2T ).

We have now derived all quantities that we need to compute αt and µi|Z(t). So all we have to do to find
the lower bound, is to plug these quantities in formulas (62) and (63). The only thing that remains, is that
we need an explicit expression for D(t, T ). As noted, D(t, T ) = eA(t,T )−B(t,T )rt , with A(t, T ) and B(t, T )
as given before. So what we still have to do, is find an explicit expression for A(t, T ) = σ2

r

2

∫ T
t
B(s, T )2ds−∫ T

t
θsB(s, T )ds. For this we shall assume that the initial term structure is flat, i.e. f(0, t) = f for some

constant rate f . Then θ(t) = af + σ2
r

2a (1− e−2at). From the computation of
∫ T
tj
σ2
F (s)ds we easily derive that

σ2
r

2

∫ T

t

B(s, T )2ds =
σ2
r

2a2
(T − t)− σ2

r

a3

[
1− e−a(T−t)

]
+

σ2
r

4a3

[
1− e−a(2T−2t)

]
,

so it remains to compute
∫ T
t
θsB(s, T )ds. Plugging in the definitions we find∫ T

t

θsB(s, T )ds =
∫ T

t

(
af +

σ2
r

2a
(1− e−2as)

)(
1
a

(1− e−a(T−s))
)
ds

=
∫ T

t

f(1− e−a(T−s))ds +
∫ T

t

σ2
r

2a2
(1− e−2as)(1− e−a(T−s))ds

= f

(
(T − t)− 1

a
+

1
a
e−a(T−t)

)
+

σ2
r

2a2

∫ T

t

1− e−a(T−s) − e−2as + e−a(T+s)ds

= f ((T − t)−B(t, T )) +
σ2
r

2a2
(T − t)− σ2

r

2a3
(1− e−a(T−t)) +

σ2
r

4a3
(e−2aT − e−2at)

− σ2
r

2a3
(e−2aT − e−a(T+t)).

Putting things together, we get

A(t, T ) =
σ2
r

2a2
(T − t)− σ2

r

a3

[
1− e−a(T−t)

]
+

σ2
r

4a3

[
1− e−a(2T−2t)

]
− f ((T − t)−B(t, T ))− σ2

r

2a2
(T − t) +

σ2
r

2a3
(1− e−a(T−t))− σ2

r

4a3
(e−2aT − e−2at)

+
σ2
r

2a3
(e−2aT − e−a(T+t))

= −f ((T − t)−B(t, T ))− σ2
r

4a3

(
2− 2e−a(T−t) − 1 + e−a(2T−2t) + e−2aT

− e−2at − 2e−2aT + 2e−a(T+t)
)

= −f ((T − t)−B(t, T ))− σ2
r

4a3

(
e−aT − e−at

)2 (
e2at − 1

)
.

This concludes the computation of the terms used in the bounds of section 4.2 for the HWBS model. The
expressions are complicated, but they are all explicit. In summary, the results in the HWBS model with flat
initial term structure are as follows:

Theorem 4.3 An upper bound on the value of the guarantee is given by

Vt(T,G) ≤ D(t, T )

− T−1∑
i=0

Piµ̄i(t)Φ

−
√∫ T

t

σ̄i2(s)ds+ Φ−1(FUcT (G))

+GFUcT (G)

 , (75)
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where FUcT (G) follows from solving

T−1∑
i=0

Piµ̄i(t)e
− 1

2

∫ T
t
σ̄i

2(s)ds+
√∫ T

t
σ̄i2(s)ds Φ−1(FUc

T
(G)) = G. (76)

A lower bound on the value of the guarantee is given by

Vt(T,G) ≥ D(t, T )

[
−
T−1∑
i=0

Piµ̄i(t)Φ
(
−µi|Z(t) + Φ−1(FU lT (G))

)
+GFU lT (G)

]
, (77)

where FU lT (G) follows from solving

T−1∑
i=0

Piµ̄i(t)e
µi|Z(t)Φ−1(F

Ult
(G))− 1

2µ
2
i|Z(t)

= G. (78)

Furthermore, we have the following expressions for the terms in the bounds:

D(t, T ) = eA(t,T )−B(t,T )rt ,

µi|Z(t) =
1
αt

i∑
j=0

Pj µ̄j(t)e−
1
2

∫ T
t
σ̄j

2(s)ds

[∫ max(t,tj)

t

ρij(s)σi(s)σj(s)ds+
∫ max(t,ti)

max(t,tj)

ρF,i(s)σF (s)σi(s)ds

+
∫ T

max(t,ti)

σ2
F (s)ds

]
+

1
αt

T−1∑
j=i+1

Pj µ̄j(t)e−
1
2

∫ T
t
σ̄j

2(s)ds

[∫ max(t,ti)

t

ρij(s)σi(s)σj(s)ds+
∫ max(t,tj)

max(t,ti)

ρF,j(s)σF (s)σj(s)ds

+
∫ T

max(t,tj)

σ2
F (s)ds

]
,

αt =
T−1∑
i=0

T−1∑
j=0

Piµ̄i(t)Pj µ̄j(t)e−
1
2

∫ T
t
σ̄i

2(s)ds− 1
2

∫ T
t
σ̄j

2(s)dsCov

(∫ T

t

σ̄i(s)dW̄ i
s ,

∫ T

t

σ̄j(s)dW̄
j
s

)
,

where for i ≤ j (i.e. ti ≤ tj) we have

Cov

(∫ T

t

σ̄i(s)dW̄ i
s ,

∫ T

t

σ̄j(s)dW̄
j
s

)
=

∫ max(t,ti)

t

ρij(s)σi(s)σj(s)ds+
∫ max(t,tj)

max(t,ti)

ρF,j(s)σF (s)σj(s)ds+
∫ T

max(t,tj)

σ2
F (s)ds.

Finally, A(t, T ), B(t, T ) and the integrals
∫max(t,ti)

t
ρij(s)σi(s)σj(s)ds,

∫max(t,tj)

max(t,ti)
ρF,j(s)σF (s)σj(s)ds and∫ T

max(t,tj)
σ2
F (s)ds are as computed in this section.
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4.4 Numerical Results

This section provides numerical results for the lower bound in the HWBS model. The reason we only study
the lower bound, is that the upper bound is not accurate as we have already seen in chapter 3. Again, the
lower bound is compared to the value obtained by 10,000 Monte Carlo simulations.
We have computed the lower bound in Excel, but because it was hard to implement the formulas in excel, we
only studied one contract which has a long maturity. The longer the maturity, the worse the approximation
(Schrager and Pelsser (2004)) and therefore we believe that the results obtained are representative. Further-
more, the lower bound and Monte Carlo simulation are additive. So if the lower bound for our representative
contract is accurate, this will also hold for a model point (package of contracts) or the whole portfolio (all
model points together).
The maturity of the contract we used is 29 years and the guaranteed value is 24,764.61. We have tested the
lower bound for various values of the parameters that are typical in practice. For the mean reversion a we
used 0.01 and 0.03, for σr we used 0.005, 0.01 and 0.015, for σS we used 0.06 and 0.20, for ρ we used 0 and
-0.02 and in all situations we assumed the initial term structure to be flat with rate 3.922 %. The results
are as follows.

For σS = 0.06 and ρ = 0

σr a LB MC (s.e.)
0.005 0.01 618 622 (15)

0.03 486 482 (11)
0.01 0.01 1,457 1,415 (46)

0.03 1,122 1,156 (32)
0.015 0.01 2,341 2,478 (105)

0.03 1,839 1,928 (68)

Table 3: Lower bound (LB) compared to Monte Carlo estimate (MC) and their standard error (s.e.) for
σS = 0.06 and ρ = 0

For σS = 0.20 and ρ = 0

σr a LB MC (s.e.)
0.005 0.01 1,926 1,905 (20)

0.03 1,864 1,838 (17)
0.01 0.01 2,396 2,438 (50)

0.03 2,193 2,204 (36)
0.015 0.01 3,003 3,137 (108)

0.03 2,646 2,725 (72)

Table 4: Lower bound (LB) compared to Monte Carlo estimate (MC) and their standard error (s.e.) for
σS = 0.20 and ρ = 0
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For σS = 0.06 and ρ = −0.02

σr a LB MC (s.e.)
0.005 0.01 610 614 (15)

0.03 479 475 (11)
0.01 0.01 1,478 1,505 (46)

0.03 1,113 1,147 (31)
0.015 0.01 2,333 2,469 (105)

0.03 1,830 1,918 (68)

Table 5: Lower bound (LB) compared to Monte Carlo estimate (MC) and their standard error (s.e.) for
σS = 0.06 and ρ = −0.02

From these results we immediately conclude that the lower bound is again a very accurate estimate for the
value of the guarantee. The lower bound is always within two standard deviations of the Monte Carlo, which
means that it lies in the 95 % confidence interval.
We can also see that the higher the values of σS and σr, the higher the option value. This is explained by
the fact that the option value is higher if the total volatility of the investment returns is higher and this is
determined by σS and σr. Also, the standard deviation of the Monte Carlo is higher when σS and σr are
higher, which has the same explanation.
Another observation is that the higher the mean reversion a, the lower the option value. This is because a
higher mean reversion dampens the volatility of the short rate so that total volatility goes down.
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5 Profit Sharing

In chapters 3 and 4 we studied bounds on the value of the guarantee in unit-linked insurance. For this
we heavily relied on the theory developed in chapter 2. From now on we will study the second product
mentioned in the introduction: profit sharing.

As opposed to unit-linked insurance, profit sharing is a form of non-linked insurance. There are many
variations but the product as we will study looks as follows. A customer pays a premium (for example, this
could be yearly) until maturity. The insurance company will then give a yearly guaranteed return on the
total value of premiums and accumulated returns built up until that moment. This guaranteed return is
called the technical interest rate TR(t). This rate is typically low and therefore the product is combined with
profit sharing. This refers to a situation where some reference return R(t) is paid out to the policy holder
if this reference return exceeds the technical interest rate. So the interest rate return above the technical
interest rate is given by

(R(t)− TR(t))+

and therefore the embedded option in this product is a call option on the rate R(t).

There are two basic ways in which the profit sharing can be paid out. One possibility is that the cus-
tomer gets the profit sharing bonus the moment it is determined. This is called direct payment. The other
possibility is that the profit sharing bonus is not paid out until maturity, but added to the total value already
accumulated (compounding profit sharing). The advantage of this is that a customer can get profit sharing
over profit sharing and this method is mostly used in practice. Also, there are different types of reference
rates that are used and in most cases these rates are very complex. For example (Plat and Pelsser (2008)),
in the Netherlands the most common form of profit sharing is based on a moving average of the so-called
u-rate. The u-rate is the 3-months average of u-rate-parts, where the subsequent u-rate-parts are weighted
averages of an effective return on a basket of government bonds. This leads to a complicated expression.
Therefore, it is common practice to approximate the u-rate by a moving average of swap rates.

A moving average of swap rates can also be used to approximate other profit sharing rates. For this
reason we will assume in this chapter that the profit sharing is based on an average of swap rates. The
rest of the chapter will then look as follows. First we introduce the swap rate and derive a model for the
dynamics of this rate. Using these dynamics, we will give approximations for the value of the option in profit
sharing based on an average of swap rates in the case of direct payment and compounding profit sharing.
Finally, we will test the quality of the approximation in the case of compounding profit sharing, since this
is the most important case in practice. The concrete model we use for that will be the 1-factor Hull-White
model.
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5.1 Swap rate dynamics

To compute the value of the call option in insurance with profit sharing, we need to have a model for the
interest rate on which the profit sharing is based. This will be an average of swap rates and therefore we will
start with the derivation of an approximation of the swap rate dynamics which will turn out to work well.
The swap rate is dependent on the bond prices and therefore we will first need a model for the short rates
which determines the bond prices. We will assume an m-factor gaussian short rate model, which means that
the short rate is described as follows (Schrager and Pelsser 2006):

r(t) = 1′Y (t) + α(t), (79)

dY (t) = −AY (t)dt+ ΣdWQ(t), (80)

where WQ(t) is a m-dimensional brownian motion under the risk-neutral measure Q, 1 is a column vector
of ones, ´ denotes transposition and A and Σ are m×m matrices with A a diagonal matrix. The function
α(t) is chosen in such a way that the fit with the initial term structure is perfect. The covariance matrix of
the Y -variables is Σ̂ = ΣΣ′. Note that for m = 1, Σ = σ, A = a, Y (t) = r(t) and ∂α(t)

∂t = θ(t) we have the
one-factor Hull-White model as in (65).

It is well known that this model is an affine term structure model. That is, the bond price at time t of
a bond paying one unit of currency at maturity T , is given by

D(t, T ) = eC(t,T )−
∑m
i=1 B

i(t,T )Y i(t), (81)

where Bi(t, T ) = 1
Aii

(
1− e−Aii(T−t)

)
. The expression for C(t, T ) will not be important for us, and therefore

we omit it here.

Now, the swap rate is defined using the zero coupon bond prices as we will now explain. Let us first
give the definition of the forward LIBOR rate. The forward LIBOR rate LTS(t) is the interest rate one can
contract at time t to put money in a money-market account for the time period [T, S]. Precisely:

LTS(t) =
1

∆L
TS

D(t, T )−D(t, S)
D(t, S)

,

where ∆L
TS is the LIBOR market convention for the calculation of the daycount fraction for the period [T, S].

In the market, the tenor of the LIBOR rate, S − T , is usually fixed at 3 or 6 months. In financial markets
there can be different definitions for how many days there are in a year and this makes the daycount fraction
important. As an example, we can have that there are 360 days in a year and that S − T is 180 days. Then
the daycount fraction will be 1

2 .

An interest rate swap is a contract in which two parties agree to exchange a set of fixed cash flows, consisting
of a fixed rate K on the swap principal A, for a set of floating rate payments, consisting of the LIBOR rate
on the principal A. In a payer swap you pay the fixed side and receive floating, in a receiver swap you receive
the fixed side and pay the floating side. Given a set of dates Ti, i = n + 1, . . . , N , at which swap payments
are to be made, the value at time t of a (payer) swap contract starting at Tn (paying out for the first time
at Tn+1) and lasting until TN with a principal of 1 and fixed payments at rate K is given by

V payn,N (t) = V flon,N (t)− V fixn,N (t) = {D(t, Tn)−D(t, TN )} −K
N∑

i=n+1

∆Y
i−1D(t, Ti), (82)

where ∆Y
i−1 is the market convention for the calculation of the daycount fraction for the swap payment at Ti.

This formula follows, since the value of the fixed leg at time Tn is given by discounting the payments of size
K∆Y

i−1 at times Ti to time Tn. This gives the value at time Tn of K
∑N
i=n+1 ∆Y

i−1D(Tn, Ti). Discounting
this to time t to get the value at time t, we get V fixn,N (t) = K

∑N
i=n+1 ∆Y

i−1D(t, Ti). For the floating side we
have that the value at time Tn is given by 1 −D(Tn, TN ). This is a bit harder to see, but the explanation
can be found in for example (Neftci: Principles of financial engineering, 2004). Discounting this to time t
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we find V flon,N (t) = D(t, Tn)−D(t, TN ).

Again, given a set of payment dates Ti, a forward par swap rate yn,N (t) is defined by the fixed rate for
which the value of the (forward starting) swap equals zero. Solving (82) gives

yn,N (t) =
D(t, Tn)−D(t, TN )∑N
i=n+1 ∆Y

i−1D(t, Ti)
=
D(t, Tn)−D(t, TN )

Pn+1,N (t)
. (83)

The rate yn,N (t) is the arbitrage free rate at which at time t a person would like to enter into a swap
contract starting at time Tn(paying out for the first time at time Tn+1) and lasting until TN .

Now, under the basic modelling assumptions that there exists a money market account and a risk neu-
tral measure Q such that for all maturities T the discounted bond prices are martingales under Q, we can
also use Pn+1,N (t) as a numeraire since it is strictly positive. Using Pn+1,N (t) as numeraire, we have that
all asset prices normalized by Pn+1,N (t) must be martingales under the measure Qn+1,N , associated with
this numeraire. This follows from the change of numeraire theorem. But then we find from (83) that yn,N
is a martingale under this so called swap measure.

For our purpose of pricing the embedded call option that is dependent on the swap rate, we will need
the dynamics of the swap rate under the swap measure. As we will see, the dynamics of the swap rate
under this measure in our model will have a stochastic volatility. This makes it hard to work with and
therefore we will approximate the stochastic volatility by a deterministic volatility. It will turn out that this
approximation works well, since the volatility of the stochastic volatility is low and therefore it is already
almost deterministic.

We will now proceed with the derivation of the swap rate dynamics under the swap measure. For this,
we will use Ito’s lemma under the risk neutral measure and then change measure to the swap measure using
Girsanov’s theorem. Since we already know that the swap rate is a martingale under the swap measure,
we can forget about the dt terms appearing when we apply Ito’s lemma under the risk neutral measure,
since when we then change measure all these dt terms will necessarily cancel. This also implies that we
can find the swap rate dynamics under the swap measure by finding all the dWQ(t) terms that appear
when we apply Ito’s lemma and in the end replace the dWQ(t) by dWn+1,N (t), which is a m-dimensional
Brownian motion under the swap measure. This is true because from Girsanov’s theorem it follows that
dWQ(t) = dWn+1,N (t) + γ(t)dt for some function γ(t). The γ(t) will cancel all dt terms and in the dWQ(t)
terms, dWQ(t) is replaced by dWn+1,N (t). Additionally, we will use that in our model we are only dealing
with stochastics driven by Brownian motions. This means that quadratic covariations will be of the order
dt and hence can be forgotten. With these remarks in mind, we start by deriving the dynamics under the
risk neutral measure of D(t, T ). From (81) we find by Ito’s lemma

dD(t, T ) = . . . dt−D(t, T )
m∑
i=1

Bi(t, T )dY i(t).

Plugging in (80) we get

dD(t, T ) = . . . dt−D(t, T )
m∑
i=1

Bi(t, T )
m∑
j=1

ΣijdWQ,j(t),

where Σij denotes the (i, j)-th element of Σ and dWQ,j(t) is the j-th element of dWQ(t). Using the definition
of Pn+1,N (t) and the previous equation we get by Ito’s lemma

d

(
D(t, Tn)
Pn+1,N (t)

)
= . . . dt+

1
Pn+1,N (t)

dD(t, Tn)− D(t, Tn)
P 2
n+1,N (t)

dPn+1,N (t)

= . . . dt+
1

Pn+1,N (t)

−D(t, Tn)
m∑
i=1

Bi(t, Tn)
m∑
j=1

ΣijdWQ,j(t)


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− D(t, Tn)
P 2
n+1,N (t)

− N∑
k=n+1

∆Y
k−1D(t, Tk)

m∑
i=1

Bi(t, Tk)
m∑
j=1

ΣijdWQ,j(t)


= . . . dt+

−D(t, Tn)
Pn+1,N (t)

m∑
i=1

Bi(t, Tn)
m∑
j=1

ΣijdWQ,j(t)

+
D(t, Tn)
P 2
n+1,N (t)

N∑
k=n+1

∆Y
k−1D(t, Tk)

m∑
i=1

Bi(t, Tk)
m∑
j=1

ΣijdWQ,j(t).

So

dyn,N (t) = d

(
D(t, Tn)
Pn+1,N (t)

− D(t, TN )
Pn+1,N (t)

)
= d

(
D(t, Tn)
Pn+1,N (t)

)
− d

(
D(t, TN )
Pn+1,N (t)

)

= . . . dt+
1

Pn+1,N (t)

−D(t, Tn)
m∑
i=1

Bi(t, Tn)
m∑
j=1

ΣijdWQ,j(t)

+ D(t, TN )
m∑
i=1

Bi(t, Tn)
m∑
j=1

ΣijdWQ,j(t)


+

1
P 2
n+1,N (t)

[D(t, Tn)−D(t, TN )]
N∑

k=n+1

∆Y
k−1D(t, Tk)

m∑
i=1

Bi(t, Tk)
m∑
j=1

ΣijdWQ,j(t)

 .

We now define Dp(t, Tn) = D(t,Tn)
Pn+1,N (t) (the bond price normalized by the numeraire). Then we get from the

previous equations

dyn,N (t) = . . . dt+
m∑
i=1

−Bi(t, Tn)Dp(t, Tn)
m∑
j=1

ΣijdWQ,j(t)

+
m∑
i=1

Bi(t, TN )Dp(t, TN )
m∑
j=1

ΣijdWQ,j(t)

+
D(t, Tn)−D(t, TN )

Pn+1,N (t)

m∑
i=1

N∑
k=n+1

∆Y
k−1D

p(t, Tk)Bi(t, Tk)
m∑
j=1

ΣijdWQ,j(t)

= . . . dt+

(
m∑
i=1

(
−Bi(t, Tn)Dp(t, Tn) +Bi(t, TN )Dp(t, TN )

)
+ yn,N (t)

N∑
k=n+1

∆Y
k−1D

p(t, Tk)Bi(t, Tk)

)
m∑
j=1

ΣijdWQ,j(t).

If we now change to the swap measure, the dt term will cancel out and dWQ(t) is replaced by dWn+1,N (t).
Furthermore, if we switch to vector notation, we find the following dynamics of yn,N (t) under the swap
measure

dyn,N (t) =
∂yn,N (t)
∂Y (t)

ΣdWn+1,N (t), (84)

with the i-th element of the m-dimensional vector ∂yn,N (t)
∂Y (t) (denoted ∂yn,N (t)

∂Y i(t) ) given by

−Bi(t, Tn)Dp(t, Tn) +Bi(t, TN )Dp(t, TN ) + yn,N (t)
N∑

k=n+1

∆Y
k−1D

p(t, Tk)Bi(t, Tk).

Note that ∂yn,N (t)
∂Y (t) suggests some sort of derivative, but it is just notation for the vector we specified above.

As already mentioned, the volatility of the swap rate under the swap measure ∂yn,N (t)
∂Y (t) Σ is stochastic, since
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∂yn,N (t)
∂Y (t) depends on the stochastic Dp(t, Ti). However, for all i we have that Dp(t, Ti) is a martingale

under the swap measure, since it is the asset D(t, Ti) normalized by the numeraire Pn+1,N (t). Also, these
martingales have a low variance and Schrager and Pelsser (2006) show that we can approximate these low-
variance martingales by their time zero values. They show that prices of options computed under this
approximated swap rate dynamics are very close to the prices of options computed under the exact model.
Therefore, we will also work with this approximation, in which the volatility of the swap rate becomes a
deterministic function of time. More precisely, the approximated dynamics is given by

dyn,N (t) =
˜∂yn,N (t)
∂Y (t)

ΣdWn+1,N (t), (85)

with the i-th element of the m-dimensional vector ˜∂yn,N (t)
∂Y (t) given by

−Bi(t, Tn)Dp(0, Tn) +Bi(t, TN )Dp(0, TN ) + yn,N (0)
N∑

k=n+1

∆Y
k−1D

p(0, Tk)Bi(t, Tk).

Recall that Bi(t, T ) = 1
Aii

(
1− e−Aii(T−t)

)
. If we insert this in the previous expression, we see that this

expression can be split in a constant and a time dependent part. Also note that terms coming from 1
Aii

cancel. This can be seen by simply writing everything down and inserting the definitions of yn,N (0) and
Pn+1,N (0). Finally we get

˜∂yn,N (t)
∂Y i(t)

=
1
Aii

eAiit
[
e−AiiTnDp(0, Tn)− e−AiiTNDp(0, TN )

− yn,N (0)
N∑

k=n+1

∆Y
k−1e

−AiiTkDp(0, Tk)

]
= eAiitCin,N .

All this results in the following expression for the swap rate at time Tn (by integration of (84))

yn,N (Tn) = yn,N (0) +
∫ Tn

0

∂yn,N (t)
∂Y (t)

ΣdWn+1,N (t)

≈ yn,N (0) +
∫ Tn

0

˜∂yn,N (t)
∂Y (t)

ΣdWn+1,N (t)

= yn,N (0) +
∫ Tn

0

eAt
′

diag(Cn,N )ΣdWn+1,N (t),

where eAt is the vector with elements eAiit and diag(Cn,N ) is a diagonal matrix with element (i, i) equal to
Cin,N and all other elements equal to zero. Furthermore, the integrated variance of yn,N over the interval
[0, Tn] is

σ2
n,N ≈

∫ Tn

0

eAs
′

diag(Cn,N )ΣΣ
′
diag(Cn,N )eAsds

=
m∑
i=1

m∑
j=1

Σ̂ijCin,NC
j
n,N

e(Aii+Ajj)Tn − 1
Aii +Ajj

.

So yn,N (Tn) is approximately normally distributed with mean yn,N (0) and variance σ2
n,N .
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5.2 Direct payment

With the approximate swap rate dynamics of the previous section at hand, we are now able to value the call
option in profit sharing insurance products. In general, the profit sharing payoff PS(t) in year t is

PS(t) = L(t)Max{c(R(t)−K(t)), 0},

where L(t) is the profit sharing basis, c is the percentage that is distributed to the policyholder and K(t) is
the strike of the option. The strike equals the sum of the technical interest TR(t) and a margin. In most
cases, either margin or c is used for the benefits of the insurer. In this case, R(t) is the profit sharing rate
and will be taken as a weighted average swap rates. Again, it is clear from the above expression that profit
sharing is a call option on the rate R(t) and therefore we will use option pricing techniques to find its value.
In the case of direct payment, the client will directly receive the profit sharing the moment it is determined.
This is done on certain dates between initiation and maturity of the contract. So if the contract runs from
time 0 to time Tn and the profit sharing is determined at times Ti, i = 1, . . . , n, then the client receives
an amount L(Ti)Max{c(R(Ti) − K(Ti)), 0} at time Ti. This means that in case of direct payment, the
embedded option is in fact a strip of options that mature at time Ti and lead to a direct payment depending
on R(Ti) on these dates.

We will assume that R(Ti) is a weighted average of τ -year maturity swap rates with weights wk and the
averaging period is from time Ti−s to time Ti:

R(Ti) =
Ti∑

k=Ti−s

wkyk,k+τ (k), (86)

where
∑
wk = 1.

As we have seen in the previous section, the yk,k+τ (k) are approximately normally distributed and therefore
the R(Ti) are also approximately normally distributed. So to value the option the expectation and the
variance of R(Ti) have to be approximated under the Ti-forward measure and feed into a gaussian option
valuation formula for each time Ti. For determining the variance of R(Ti) the covariances of the yk,k+τ (k)
with the yl,l+τ (l) have to be specified.

5.2.1 Mean of R(Ti)

The above means that each individual option has to be priced in the Ti-forward measure. To come to the
expectation of R(Ti) under the right measure the following steps have to be done:

(a) For each (forward) swap rate yk,k+τ a change of measure has to be done from the swap measure Qk+1,k+τ

to the Tk-forward measure QTk

(b) If the payoff of the option on the average of the swap rates is at time Ti, for each of the individual
swap rates in the average ( yk,k+τ for Ti−s ≤ k ≤ Ti), a change of measure has to be done from the
Tk-forward measure to the Ti-forward measure.

The corrections mentioned above can be interpreted as a convexity correction (a), which is a change of
measure where the numeraire changes to a different asset and a timing correction (b), which is a change of
measure where the numeraire is the same kind of asset, but with a different maturity. For a mathematical
foundation of convexity correction see (Pelsser (2003)).

Now, let us first change measure from the swap measure Qk+1,k+τ to the Tk-forward measure QTk . From
the change of numeraire theorem we have that the density ρ(t) is given by

dQTk

dQk+1,k+τ
= ρ(t) =

D(t, Tk)/D(0, Tk)
Pk+1,k+τ (t)/Pk+1,k+τ (0)

.
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As in the previous section, we have by Ito’s lemma:

d

(
D(t, Tk)

Pk+1,k+τ (t)

)
= . . . dt+

−D(t, Tk)
Pk+1,k+τ (t)

m∑
i=1

Bi(t, Tk)
m∑
j=1

ΣijdWQ,j(t)

+
D(t, Tk)

P 2
k+1,k+τ (t)

k+τ∑
l=k+1

∆Y
l−1D(t, Tl)

m∑
i=1

Bi(t, Tl)
m∑
j=1

ΣijdWQ,j(t).

From the change of numeraire theorem, we already know that ρ(t) is a martingale under the Tk-forward
measure. So when we change measure in the previous equation to the Tk-forward measure, the dt terms
will cancel and the dWQ,j(t) will be replaced by dWQTk (t). Furthermore, taking into account the constant
Pk+1,k+τ (0)
D(0,Tk) , we get

dρ(t) = ρ(t)
m∑
i=1

(
−Bi(t, Tk) +

k+τ∑
l=k+1

∆Y
l−1D

p(t, Tl)Bi(t, Tl)

)
m∑
j=1

ΣijdWQTk,j (t),

where again Dp(t, Tl) = D(t,Tl)
Pk+1,k+τ (t) . So in vector notation we have

dρ(t) = ρ(t)κ(t)ΣdWQTk (t), (87)

where κ(t) is a 1×m vector with i-th element

κi(t) = −Bi(t, Tk) +
k+τ∑
l=k+1

∆Y
l−1D

p(t, Tl)Bi(t, Tl).

Again, κ(t) is stochastic which makes it hard to work with. As before we will therefore replace the stochastic
terms Dp(t, Ti) by their time zero values Dp(0, Ti). Using this and plugging in Bi(t, T ) = 1

Aii

(
1− e−Aii(T−t)

)
we find

κi(t) =
1
Aii

eAiit

[
e−AiiTk −

k+τ∑
l=k+1

∆Y
l−1e

−AiiTlDp(0, Tl)

]
= eAiitGik,k+τ .

From (87) we now see that ρ(t) is the stochastic exponential of (κ(t)Σ)′. So, by Girsanov’s theorem, we have
that dWTk(t) = dW k+1,k+τ (t)− κ(t)Σdt. Plugging this into (85) we find the dynamics of yk,k+τ under the
new measure:

dyk,k+τ (t) =
˜∂yk,k+τ (t)
∂Y (t)

ΣdW k+1,k+τ (t)

=
˜∂yk,k+τ (t)
∂Y (t)

ΣdWTk(t) +
˜∂yk,k+τ (t)
∂Y (t)

Σκ(t)Σdt.

Using the expression ˜∂yk,k+τ (t)
∂Y i(t) = eAiitCik,k+τ , the expression for κ(t), Σ̂ = ΣΣ′ and the notation developed

before, we get

dyk,k+τ (t) = eAt
′

diag(Ck,k+τ )ΣdWTk(t) + eAt
′

diag(Ck,k+τ )Σ̂diag(Gk,k+τ )eAtdt. (88)

Integrating this and taking the expectation under QTk , we get

EQTk [yk,k+τ (Tk)] = yk,k+τ (0) +
∫ Tk

0

eAt
′

diag(Ck,k+τ )Σ̂diag(Gk,k+τ )eAtdt.

Now note that under Qk+1,k+τ we have EQk+1,k+τ
[yk,k+τ (Tk)] = yk,k+τ (0) and therefore the term∫ Tk

0
eAt

′

diag(Ck,k+τ )Σ̂diag(Gk,k+τ )eAtdt is called the convexity correction for not taking the expectation
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under Qk+1,k+τ but under QTk . This convexity correction term will be denoted CCk,k+τ (Tk). Performing
the integration leads to

CCk,k+τ (Tk) =
m∑
i=1

m∑
j=1

Σ̂ijCik,k+τG
j
k,k+τ

e(Aii+Ajj)Tk − 1
Aii +Ajj

. (89)

To compute the value of the option in the direct payment case, we need to know the mean and vari-
ance of R(Ti) under the Ti-forward measure. The above analysis gives us the mean of each yk,k+τ (k) in∑Ti
k=Ti−s

wkyk,k+τ (k) under the Tk-forward measure, so we still have to derive the mean under the Ti-
forward measure. This means that we still have to do step (b). From the change of numeraire theorem we
have that the density ρ(t) for a change of measure from the Tk-forward measure to the Ti-forward measure
is given by (where Tk ≤ Ti)

dQTi

dQTk
= ρ(t) =

D(t, Ti)/D(0, Ti)
D(t, Tk)/D(0, Tk)

=
D(0, Tk)
D(0, Ti)

exp

[
C(t, Ti)− C(t, Tk)−

(
m∑
q=1

Bq(t, Ti)−
m∑
q=1

Bq(t, Tk)

)
Y q(t)

]
,

where we used (81). If we apply Ito’s lemma using (80), we find

dρ(t) = . . . dt+ ρ(t)
m∑
q=1

(Bq(t, Tk)−Bq(t, Ti))
m∑
j=1

ΣqjdWQ,j(t).

Again. from the change of numeraire theorem, we already know that ρ(t) is a martingale under the Ti-
forward measure. So when we change measure in the previous equation to the Ti-forward measure, the dt
terms will cancel and the dWQ,j(t) will be replaced by dWQTi ,j(t). So, switching to vector/matrix notation
we have

dρ(t) = ρ(t)κ(t)ΣdWQTi (t), (90)

where κ(t) is a 1×m vector with q-th element

κq(t) = Bq(t, Tk)−Bq(t, Ti).

Plugging in Bq(t, T ) = 1
Aqq

(
1− e−Aqq(T−t)

)
we find

κq(t) =
1
Aqq

eAqqt
[
e−AqqTi − e−AqqTk

]
= eAqqtHq

k,i.

From (90) we get that ρ(t) is the stochastic exponential of (κ(t)Σ)′. So, by Girsanov’s theorem, we have
that dWTi(t) = dWTk(t) − κ(t)Σdt. Plugging this into (88) we find the dynamics of yk,k+τ under the new
measure:

dyk,k+τ (t) = eAt
′

diag(Ck,k+τ )ΣdWTi(t) + eAt
′

diag(Ck,k+τ )Σ̂diag(Hk,i)eAtdt

+ eAt
′

diag(Ck,k+τ )Σ̂diag(Gk,k+τ )eAtdt.

Integrating this and taking the expectation under QTi , we get

EQTi [yk,k+τ (Tk)] = yk,k+τ (0) +
∫ Tk

0

eAt
′

diag(Ck,k+τ )Σ̂diag(Hk,i)eAtdt

+
∫ Tk

0

eAt
′

diag(Ck,k+τ )Σ̂diag(Gk,k+τ )eAtdt.

= yk,k+τ (0) + CCk,k+τ (Tk) +
∫ Tk

0

eAt
′

diag(Ck,k+τ )Σ̂diag(Hk,i)eAtdt,
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with CCk,k+τ (Tk) the convexity correction term as in (89). Now note that changing from the measure QTk

to the measure QTi gives the extra term
∫ Tk

0
eAt

′

diag(Ck,k+τ )Σ̂diag(Hk,i)eAtdt in the expectation. This
term is called the timing correction and will be denoted by TCk,k+τ (Tk, Ti). If we work out the integration
we get

TCk,k+τ (Tk, Ti) =
m∑
q=1

m∑
j=1

Σ̂qjC
q
k,k+τH

j
k,i

e(Aqq+Ajj)Tk − 1
Aqq +Ajj

. (91)

So, we are now able to compute the expectation of R(Ti) under the Ti-forward measure. Indeed, for
every yk,k+τ (k) in

∑Ti
k=Ti−s

wkyk,k+τ (k), we have that the expectation under the Ti-forward measure is
yk,k+τ (0) + CCk,k+τ (k) + TCk,k+τ (k, Ti). We conclude that

µ(R(Ti)) = EQTi

 Ti∑
k=Ti−s

wkyk,k+τ (k)

 =
Ti∑

k=Ti−s

wk (yk,k+τ (0) + CCk,k+τ (k) + TCk,k+τ (k, Ti)) . (92)

There is still one remark to make. If Tk ≤ 0, then yk,k+τ (k) = yk,k+τ (Tk) is known. So in that case
CCk,k+τ (k) and TCk,k+τ (k, Ti) are 0.

5.2.2 variance of R(Ti)

In order to compute the option value in profit sharing, we still have to find an expression for the variance
of R(Ti) under the Ti-forward measure. In the derivation for the mean, we found that under the Ti-forward
measure we have

dyk,k+τ (t) = eAt
′

diag(Ck,k+τ )ΣdWTi(t) + eAt
′

diag(Ck,k+τ )Σ̂diag(Hk,i)eAtdt

+ eAt
′

diag(Ck,k+τ )Σ̂diag(Gk,k+τ )eAtdt.

The drift terms are deterministic and therefore we get the following the following expression for the variance:

σ2
R(Ti)

=
Ti∑

k=Ti−s

Ti∑
l=Ti−s

wkwlCov(yk,k+τ (k), yl,l+τ (l))

=
Ti∑

k=Ti−s

Ti∑
l=Ti−s

wkwlCov

(∫ Tk

0

eAt
′

diag(Ck,k+τ )ΣdWTi(t),
∫ Tl

0

eAt
′

diag(Cl,l+τ )ΣdWTi(t)

)
,

where

Cov

(∫ Tk

0

eAt
′

diag(Ck,k+τ )ΣdWTi(t),
∫ Tl

0

eAt
′

diag(Cl,l+τ )ΣdWTi(t)

)

=
∫ min(Tl,Tk)

0

eAt
′

diag(Ck,k+τ )ΣΣ′diag(Cl,l+τ )eAtdt

=
m∑
i=1

m∑
j=1

Σ̂ijCik,k+τC
j
l,l+τ

e(Aii+Ajj) min(Tl,Tk) − 1
Aii +Ajj

.

Here we can make a similar remark as we made for the mean. Namely, if min(Tl, Tk) ≤ 0, then
Cov(yk,k+τ (k), yl,l+τ (l)) = 0.
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5.2.3 Option price

The total value of the profit sharing option in the direct payment case is now the sum of call options on the
rate R(Ti) for times Ti, i = 1, . . . , n. Each option has a profit sharing payoff PS(Ti) = L(Ti)Max{c(R(Ti)−
K(Ti)), 0} at time Ti. We can compute the value of this option at time 0 using that R(Ti) is normally
distributed with mean µ(R(Ti)) and variance σ2

R(Ti)
under the Ti-forward measure. For this, let φµ,σ(.) be

the density of a normal random variable with mean µ and standard deviation σ, Φµ,σ the corresponding
distribution function and Φ = Φ0,1. Then the value at time 0 of the profit sharing payoff PS(Ti) is:

V [PS(Ti)] = D(0, Ti)L(Ti)cETi [Max{(R(Ti)−K(Ti)), 0}]

= D(0, Ti)L(Ti)c
∫ ∞
K(Ti)

(x−K(Ti))φµ(R(Ti)),σR(Ti)
(x)dx

= D(0, Ti)L(Ti)c

[∫ ∞
K(Ti)

xφµ(R(Ti)),σR(Ti)
(x)dx−K(Ti)

∫ ∞
K(Ti)

φµ(R(Ti)),σR(Ti)
(x)dx

]
.

Using Φµ,σ(z) = Φ( z−µσ ), 1− Φ(z) = Φ(−z) and making the changes of variables x = y + µ and y
σR(Ti)

= z,
we get

V [PS(Ti)] = D(0, Ti)L(Ti)c

[∫ ∞
K(Ti)−µ(R(Ti)

(y + µ(R(Ti))φ0,σR(Ti)
(y)dy

− K(Ti)(1− Φµ(R(Ti)),σR(Ti)
(K(Ti))

]
= D(0, Ti)L(Ti)c

∫ ∞
K(Ti)−µ(R(Ti)

σR(Ti)

σR(Ti)zφ0,1(z)dz

+ µ(R(Ti)
∫ ∞
K(Ti)−µ(R(Ti)

φ0,σR(Ti)
(x)dx−K(Ti)Φ

(
µ(R(Ti)−K(Ti)

σR(Ti)

)]

= D(0, Ti)L(Ti)c

(−σR(Ti)√
2π

e
−z2

2

)∞
K(Ti)−µ(R(Ti)

σR(Ti)

+ (µ(R(Ti)−K(Ti))Φ
(
µ(R(Ti)−K(Ti)

σR(Ti)

)
= D(0, Ti)L(Ti)c

[
σR(Ti)φ

(
K(Ti)− µ(R(Ti)

σR(Ti)

)
+ (µ(R(Ti)−K(Ti))Φ

(
µ(R(Ti)−K(Ti)

σR(Ti)

)]
.

So, the total value of the profit sharing at time 0 is

V [PS] =
n∑
i=1

V [PS(Ti)].

When the profit sharing payoff at a time > 0 is dependent on swap rates observed at times < 0 (so they are
known), a slight adjustment has to be done. In that case the expectation to be valued is:

V [PS(Ti)] = D(0, Ti)L(Ti)cETi [Max{(R(Ti)−K(Ti)), 0}]
= D(0, Ti)L(Ti)cETi [Max{(R(Ti)t>0 +R(Ti)t≤0 −K(Ti)), 0}]
= D(0, Ti)L(Ti)cETi [Max{(R(Ti)t>0 −K∗(Ti)), 0}] ,

where R(Ti)t>0 =
∑Tj=0
k=Ti−s

wkyk,k+τ (k), R(Ti)t≤0 =
∑Ti=0
k=Tj

wkyk,k+τ (k) and K∗(Ti) = K(Ti)−R(Ti)t≤0.

The computation is similar as before and therefore we conclude that the option in the profit sharing with
direct payment is relatively easy to compute and implement with a gaussian option formula.

The quality of this approximation is tested in Plat and Pelsser (2009). They report that the approximation
is very accurate. We will not test the approximation ourselves, but we will proceed with compounding profit
sharing, which is commonly used in practice. Furthermore, we will need the formulas derived in this section
to get the approximation of the option value in the compounding profit sharing case.
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5.3 Compounding profit sharing

In the case of direct payment, a client gets the profit sharing payoff each time it is determined. However,
it is often the case that the profit sharing is not paid immediately, but is compounded and paid out at the
end of the contract. If the maturity of the contract is Tn, then there will only be a payoff at time Tn and
the payoff L(Tn) is of the form (in case the customers only pays the amount P (0) at the beginning of the
contract)

L(Tn) = P (0)
n∏
i=0

[1 + TR(Ti) +Max{c(R(Ti)−K(Ti)), 0}] , (93)

where the definition of the variables is as before. The distribution of the right term is very complicated and
there is no analytical expression for this payoff. However, if we assume that the R(Ti) are independent, the
expectation of L(Tn) under the Tn-forward measure is

ETn [L(Tn)] = ETn
[
P (0)

n∏
i=0

[1 + TR(Ti) +Max{c(R(Ti)−K(Ti)), 0}]

]

= P (0)
n∏
i=0

[
1 + TR(Ti) + ETn [Max{c(R(Ti)−K(Ti)), 0}]

]
.

To compute this expectation, we need to know the distribution of R(Ti) under the Tn-forward measure. This
can be done in a similar way as in the previous section. There we first made a convexity correction and
then a timing correction to get the distribution of the yk,k+τ in R(Ti) =

∑Ti
k=Ti−s

wkyk,k+τ (k) under the
Ti-forward measure. The procedure is now exactly the same, except that the timing correction has to be
made to Tn instead of Ti by using TCk,k+τ (k, Tn) instead of TCk,k+τ (k, Ti). Then we can use option pricing
from section 5.2.3.

The value of the compounding profit sharing option is now the payoff L(Tn) the client receives at Tn
minus the payoff the client would have received without the option ( which equals P (0)

∏n
i=0 [1 + TR(Ti)])

discounted to time 0. So the option value is

V [PS] = D(0, Tn)

[
ETn [L(Tn)]− P (0)

n∏
i=0

[1 + TR(Ti)]

]
. (94)

In case the customer pays a premium P (Tj) at time Tj (j = 0, . . . , n − 1) it is easy to see that the payoff
L(Tn) at time Tn is given by

L(Tn) =
n−1∑
j=0

P (Tj)
n∏
i=j

[1 + TR(Ti) +Max{c(R(Ti)−K(Ti)), 0}] , (95)

Similar reasoning as in the case where the customer only pays at the beginning of the contract, gives that
the expected payoff under the Tn-forward measure is

ETn [L(Tn)] = ETn
n−1∑
j=0

P (Tj)
n∏
i=j

[1 + TR(Ti) +Max{c(R(Ti)−K(Ti)), 0}]


=

n−1∑
j=0

P (Tj)
n∏
i=j

[
1 + TR(Ti) + ETn [Max{c(R(Ti)−K(Ti)), 0}]

]
.

This expectation can again be computed using the convexity and timing correction and the option pricing
formulas from section 5.2.3.
The value of the compounding profit sharing option is now the payoff L(Tn) the client receives at Tn minus
the payoff the client would have received without the option ( which equals

∑n−1
j=0 P (Tj)

∏n
i=j [1 + TR(Ti)])
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discounted to time 0. So the option value is

V [PS] = D(0, Tn)

ETn [L(Tn)]−
n−1∑
j=0

P (Tj)
n∏
i=j

[1 + TR(Ti)]

 . (96)

Now, in both cases, the assumption that the R(Ti) are independent is very crude, because they are obviously
not independent. However the analytical approximation could still work well: When the expected R(Ti) are
low, the impact of the compounding effect is relatively low, resulting in a relatively good approximation of
the time value of the option. When the expected R(Ti) are high, the impact of the compounding effect is
relatively high and the quality of the approximation will be less (in terms of time value). However, in this
case the total value of the option will also be high and the impact of approximation errors in the time value
on the total value will be less. This reasoning is tested by Plat and Pelsser (2009) and they show that the
approximation is indeed reasonable. In the next section we will compare this to our test results.
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5.4 Numerical results

We will now present test results for the approximation of the option value in the case of compounding profit
sharing, where we use a 1-factor Hull-White model for the development of the short rate (i.e. in (79) and
(80) we have m = 1, Σ = σr, A = a, Y (t) = r(t) and ∂α(t)

∂t = θ(t)). The product we study is one where a
customer pays a premium of 100 every year starting at time 0 and continuing until time Tn−1. The customer
receives a guaranteed rate TR(t) of 4 % for every t and K(t) = TR(t). Furthermore, we assume c = 1. The
results will be given for different maturities Tn and different parameters in the Hull-White model (mean
reversion a and σr). In calibrating the Hull-White model we assumed the initial term structure to be flat at
rate 3.848 %. Also, we use 10-year swap rates and an averaging period of 10-years. The swap rates for the
past are all assumed to be 3.848 %.

For σr = 0.0075 we have the following results.

Mean reversion(a) Maturity (years) Value by simulation (s.e.) Analytical approximation
0.1 10 5.50 (0.19) 5.28

20 41.49 (1.10) 39.10
30 101.27 (2.15) 91.71

0.03 10 10.03 (0.31) 9.64
20 82.47 (2.02) 76.02
30 219.74 (4.23) 188.05

0.01 10 11.98 (0.37) 11.51
20 102.50 (2.43) 93.36
30 284.91 (5.15) 235.24

Table 6: Comparison of the option value as obtained by Monte Carlo simulation and by analytical approxi-
mation in compounding profit sharing. Here σr = 0.0075 and (s.e.) denotes the standard error.

For σr = 0.01 we have

Mean reversion(a) Maturity (years) Value by simulation (s.e.) Analytical approximation
0.1 10 7.97 (0.25) 7.63

20 57.38 (1.41) 53.46
30 138.96 (2.67) 123.99

0.03 10 14.16 (0.42) 13.55
20 112.17 (2.49) 101.26
30 295.10 (4.90) 243.05

0.01 10 16.83 (0.48) 16.10
20 138.82 (2.95) 123.43
30 379.74 (5.76) 297.95

Table 7: Comparison of the option value as obtained by Monte Carlo simulation and by analytical approxi-
mation in compounding profit sharing. Here σr = 0.01 and (s.e.) denotes the standard error.

From these results we conclude the following. For short maturities (10 years) the approximation works well,
since the approximation lies in all cases within two standard deviations of the Monte Carlo. So the approx-
imation is in the 95 % confidence interval of the true value.
For longer maturities the approximation deteriorates and is smaller than the value obtained from the Monte
Carlo simulation. This can be explained by the fact that we assume the R(Ti) to be independent although
they have a positive dependence. The total volatility for independent R(Ti) is lower than the total volatility
for positively dependent R(Ti) and therefore the option value is lower. Intuitively, this can be seen as follows.
If R(Ti−1) is higher, then R(Ti) tends to be higher. Hence we get a path that tends to go up. Similarly, if
R(Ti−1) is lower, then R(Ti) tends to be lower. So we get a path that tends be lower. This gives on average
a large volatility. Now, if we assume independence, then R(Ti−1) does not say anything about R(Ti), so this
can be either higher or lower with the same probability. The result is that each path will be less volatile and
the option value will be lower.
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The reasoning from Plat and Pelsser (2009) that a worse approximation is compensated by a larger option
value does not hold in our situation. It is true that the higher the option value, the worse the approximation.
However, the higher option value cannot compensate enough to make to approximation still relatively close
to the option value. For example, with a maturity of 20 years, σr = 0.0075 and a = 0.01, the approximation
is 8.9 % lower than the Monte Carlo. This is way to far off to use the analytical approximation for pricing.
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6 Conclusion

In this thesis we studied two embedded options that are used in insurance and we derived analytical approx-
imations for their values. The first option we studied was a guarantee in unit-linked insurance. We derived
bounds on the value of this option using the concept of comonotonicity in the Black-Scholes model and in
the Hull-White-Black-Scholes model. The derivation of the bounds making explicit use of the concept of
comonotonicity has not been given before and was an effective way to derive the bounds. Then it turned
out that the lower bound is always very close to the true option value and can therefore be used for pricing.
This is very interesting, because it avoids the use of time-consuming Monte Carlo simulations. The upper
bound turned out to be a very bad estimate for the option value. Finally, we combined the upper and lower
bound which gave us the estimator of section 3.5 for the option value. This estimator is always very close
to the lower bound and therefore it is my advice to use the lower bound as the approximation which avoids
the computation of the moments of the upper and lower bound.

The second option we studied was profit sharing. This we modelled as a call option on an average of
swap rates. To get an approximation for the option value we approximated the stochastic volatility of the
swap rate by a deterministic one. Plat and Pelsser (2009) have shown that this is very accurate in case of
direct payment and that it also works well in the case of compounding profit sharing. We have tested this
in the case of compounding profit sharing and it turned out that for our product the approximation only
works well for short maturities (10 years). For the longer maturities the approximation is to low and it is
more difficult to price the contract.
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7 Discussion

Looking back, there are some issues I like to discuss. The first thing is that in chapter three and four of this
thesis, we assumed the initial term structure to be flat. This made the computations easier because it gives
explicit formulas for all parameters in the Hull-White-Black-Scholes model. However, in practice the initial
term structure will not be flat. The good thing is that using a realistic term structure does not change the
underlying ideas, but only some formulas. Furthermore, Schrager and Pelsser (2004) used a realistic term
structure and they concluded that the lower bound is still a very accurate estimate.
Secondly, if we look carefully to the results in chapter four, we see that the option value and standard
deviation of the Monte Carlo increases if σr and σS increase. Also, in absolute terms, the difference between
the lower bound and the Monte Carlo increases in this situation. This indicates that for even larger values of
σr and σS the lower bound might not be a good approximation any more. Therefore, if we want to use this
model with more extreme volatilities we first need to do more research to the performance of the lower bound
in case of extreme volatilities. A more subtle thing is that we assumed all premiums to be invested in an
investment fund which value we modelled as a geometric Brownian motion. In many cases, the investment
fund will be a mix of stocks and fixed income and it is therefore also possible to model the value of stocks
and fixed income separately. The stocks would again be modelled as a geometric Brownian motion, but the
fixed income would depend on the short rate which was modelled by a 1-factor Hull-White model. This
implies that the fixed income process has a large autocorrelation. In some sense, such a model would be
more realistic, but also much more complex. Interesting research would be to see if it is still possible to get
accurate analytical approximations in such a model.
Finally, the approximation for the option value in profit sharing was only accurate for short maturities. This
is due to the crude assumption of independence of the underlying process. So there is still work to do to see
if different techniques can lead to better approximations.
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8 Appendix: The theory of comonotonicity

In this appendix an extensive treatment of the theory of comonotonicity and the bounds it produces on
options on sums of random variables is given. The most important parts are already given in chapter 2, but
here the theory is presented in full generality and with proofs. We do this because this theory forms the
basis of our research and because it is interesting on its own. For example, it could also be used to derive
bounds on other financial products than are treated in this thesis. Again, I would like to stress that this
theory is copied from Dhaene, Denuit, Goovaerts, Kaas, Vyncke (2002a,2002b), except that I extended a few
derivations to make them easier to understand for students in the Master’s degree.

8.1 Ordering Random Variables

In the sequel we will always consider random variables with finite mean. This implies that for any Random
Variable X we have that limx→∞ x(1−FX(x)) = limx→−∞ xFX(x) = 0, where FX(x) denotes the cumulative
distribution function (cdf) of X. Under this assumption we can derive, by partial integration, the following
expression for the expectation of the random variable X:

E [X] =
∫ ∞
−∞

xdFX(x) =
∫ 0

−∞
xdFX(x)−

∫ ∞
0

xd(1− FX(x))

= xFX(x)|0−∞ −
∫ 0

−∞
FX(x)dx−

(
x(1− FX(x))|∞0 −

∫ ∞
0

(1− FX(x))dx
)

= −
∫ 0

−∞
FX(x)dx+

∫ ∞
0

(1− FX(x))dx.

In order to derive bounds on the value of embedded options, we will replace random variables by more
attractive or less attractive ones, which have a simpler structure. This will make it easier to compute
the distribution functions of the random variables. Of course, we have to clarify what we mean by a
more or less attractive random variable and for this purpose we first introduce the notation of ”stop-loss
premium”. The stop-loss premium at level d of random variable X is defined by E [(X − d)+], with the
notation (X − d)+ = max(X − d, 0). Using again an integration by parts, we find for −∞ < d <∞

E [(X − d)+] = −
∫ ∞
d

(x− d)d(1− FX(x))

= −
(

(x− d)+(1− FX(x))|∞d −
∫ ∞
d

(1− FX(x))dx
)
.

Using the assumption that X has finite mean we conclude that

E [(X − d)+] =
∫ ∞
d

(1− FX(x))dx −∞ < d <∞, (97)

from which we see that the stop-loss at level d can be considered as the weight of an upper tail of (the
distribution function) of X: it is the surface between the cdf FX of X and the constant function 1, from d
on. Also useful is the observation that E [(X − d)+] is a decreasing continuous function of d, with derivative
FX(d)− 1 at d, which vanishes at +∞.
Now we are able to define the stop-loss order between random variables.

Definition 8.1 Consider two random variables X and Y . Then X is said to precede Y in the stop-loss
order sense, notation X ≤sl Y , if and only if X has lower stop-loss premiums than Y :

E [(X − d)+] ≤ E [(Y − d)+] , −∞ < d <∞. (98)

Hence, X ≤sl Y means that X has uniformly smaller upper tails than Y , which in turn means that making
a payment Y is less attractive than a payment X. Indeed, for each value of d, the probability that Y is
larger than d is bigger than the probability that X is larger than d and therefore everybody would prefer to
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pay the uncertain amount X.
Stop-loss order also has a natural economic interpretation in terms of expected utility. It can be shown that
X ≤sl Y if and only if E [u(−X)] ≥ E [u(−Y )] holds for all non-decreasing concave real functions u for which
the expectation exists. This means that any risk-averse decision maker would prefer to pay X instead of Y
(the utility of −X is larger than the utility of −Y ).
The characterization of stop-loss order in terms of utility functions is equivalent to E [v(X)] ≤ E [v(Y )] hold-
ing for all non-decreasing convex functions v for which the expectations exist. Therefore, stop-loss order is
often called increasing convex order and denoted by ≤icx. For more details and properties of stop-loss order
in a general context, see Shaked & Shanthikumar(1994), or Kaas, Van Heerwaarden & Goovaerts (1994).

Stop-loss order between random variables X and Y implies a corresponding ordering of their means. To
prove this, assume that d < 0. From (97) we obtain

d+ E [(X − d)+] = −
∫ 0

d

1dx+
∫ 0

d

(1− FX(x))dx+
∫ ∞

0

(1− FX(x))dx

= −
∫ 0

d

FX(x)dx+
∫ ∞

0

(1− FX(x))dx,

so combining this with the expression for the expectation of a random variable we get

lim
d→−∞

(d+ E [(X − d)+]) = E [X] .

Hence, adding d to both sides of the inequality (98) in definition 8.1, and taking the limit for d→ −∞, we
find E [X] ≤ E [Y ].

Recall that to derive approximations for the value of embedded options, we will replace random variables X
by more attractive or less attractive Y , which have a simpler structure. If X ≤sl Y , then also E [X] ≤ E [Y ]
and it is intuitively clear that we get the best approximations in the case where E [X] = E [Y ]. This leads
to the so-called convex order.

Definition 8.2 Consider two random variables X and Y . Then X is said to precede Y in the convex order
sense, notation X ≤cx Y , if and only if

E [X] = E [Y ] ,

E [(X − d)+] ≤ E [(Y − d)+] , −∞ < d <∞. (99)

From E [(X − d)+]− E [(d−X)+] = E [X]− d, we find

X ≤cx Y ⇐⇒
{

E [X] = E [Y ] ,
E [(d−X)+] ≤ E [(d− Y )+] , −∞ < d <∞.

Partial integration leads to

E [(d−X)+] =
∫ d

−∞
(d− x)dFX(x)

=

(
(d− x)+FX(x)|d−∞ +

∫ d

−∞
FX(x)dx

)
.

Using the assumption that X has finite mean we conclude that

E [(d−X)+] =
∫ d

−∞
FX(x)dx, (100)

which means that E [(d−X)+] can be interpreted as the weight of a lower tail of X: it is the surface between
the constant function 0 and the cdf of X, from −∞ to d. We have seen that stop-loss order entails uniformly
heavier upper tails. The additional condition of equal means implies that convex order also leads to uniformly
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heavier lower tails.
If we let d > 0 we find from (100)

d− E [(d−X)+] =
∫ d

0

1dx−
∫ d

−∞
FX(x)dx = −

∫ 0

−∞
FX(x)dx+

∫ d

0

(1− FX(x))dx.

So from the expression for the expectation of X it follows that

lim
d→∞

(d− E [(d−X)+]) = E [X] .

This implies that convex order can also be characterized as follows:

X ≤cx Y ⇐⇒
{

E [(X − d)+] ≤ E [(Y − d)+] , −∞ < d <∞,
E [(d−X)+] ≤ E [(d− Y )+] , −∞ < d <∞.

Indeed, the ⇐ implication follows from observing that the upper tail inequalities imply E [X] ≤ E [Y ], while
the lower tail inequalities imply E [X] ≥ E [Y ], hence E [X] = E [Y ] must hold.
It can also be proved that X ≤cx Y if and only if E [v(X)] ≤ E [v(Y )] for all convex functions v, provided the
expectations exist. This explains the name convex order. Note that when characterizing stop-loss order, the
convex functions v are additionally required to be non-decreasing. Hence, stop-loss order is weaker: more
pairs of random variables are ordered.
Finally, we also have X ≤cx Y if and only if E [X] = E [Y ] and E [u(−X)] ≥ E [u(−Y )] for all non-decreasing
concave functions u, provided the expectations exist. Hence, in a utility context, convex order represents
the common preferences of all risk-averse decision makers between random variables with equal mean.
If we look at the inequality E [v(X)] ≤ E [v(Y )] for the specific convex function v(x) = x2, we immediately
see that X ≤cx Y implies V ar(X) ≤ V ar(Y ). Furthermore, the following relation between variances and
stop-loss premiums holds:

1
2
V ar(X) =

∫ ∞
−∞

E [(X − t)+]− (E [X]− t)+dt. (101)

To prove this relation we note that E [(X − t)+]− (E [X]− t) = E [(t−X)+]. So we get∫ ∞
−∞

E [(X − t)+]− (E [X]− t)+dt =
∫ E[X]

−∞
E [(X − t)+]− (E [X]− t)dt+

∫ ∞
E[X]

E [(X − t)+] dt

=
∫ E[X]

−∞
E [(t−X)+] dt+

∫ ∞
E[X]

E [(X − t)+] dt.

Plugging in (100), interchanging the order of integration and using partial integration for the first term gives∫ E[X]

−∞
E [(t−X)+] dt =

∫ E[X]

−∞

∫ t

−∞
FX(x)dxdt =

∫ E[X]

−∞

∫ E[X]

x

FX(x)dtdx

=
∫ E[X]

−∞
FX(x)(E [X]− x)dx = −FX(x)

1
2

(E [X]− x)2|E[X]
−∞ +

1
2

∫ E[X]

−∞
(x− E [X])2dFX(x)

=
1
2

∫ E[X]

−∞
(x− E [X])2dFX(x).

Similarly, we find for the second term∫ ∞
E[X]

E [(X − t)+] dt =
1
2

∫ ∞
E[X]

(x− E [X])2dFX(x).

This proves (101), since by definition we have V ar(X) =
∫ E[X]

−∞ (x−E [X])2dFX(x)+
∫∞

E[X]
(x−E [X])2dFX(x).

As we have seen before X ≤cx Y implies E [X] = E [Y ]. Using this, we deduce from (101) that for X ≤cx Y
we have ∫ ∞

−∞
E [(Y − t)+]− E [(X − t)+] dt =

1
2

(V ar(Y )− V ar(X)). (102)
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Now, X ≤cx Y implies E [(Y − t)+] − E [(X − t)+] ≥ 0. Thus, if X ≤cx Y , their stop-loss distance, i.e.
the integrated absolute difference of their respective stop-loss premiums, equals half the variance difference
between these two random variables. Also, the integrand above is non-negative, so if in addition V ar(Y ) =
V ar(X), then X and Y must necessary have equal stop-loss premiums, which implies that they are equal
in distribution. Furthermore, if X ≤cx Y , and X and Y are not equal in distribution, then V ar(X) <
V ar(Y ) must hold. Note that (101) and (102) have been derived under the additional conditions that both
limx→∞x

2(1 − FX(x)) and limx→−∞x
2FX(x) are equal to 0(and similar for Y ). A sufficient condition for

this is that X and Y have finite second moments.
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8.2 Inverse distribution functions

The cdf FX(x) = P [X ≤ x] of a random variable X is a right-continuous (r.c.) non-decreasing function with

FX(−∞) = lim
x→−∞

FX(x) = 0, FX(∞) = lim
x→∞

FX(x) = 1,

where right-continuous means that for any x and any sequence xn decreasing to x we have

lim
n→∞

FX(xn) = FX(x).

The usual definition of the inverse of a distribution is the non-decreasing and left-continuous (l.c.) function
F−1
X (p) defined by

F−1
X (p) = inf{x ∈ R|FX(x) ≥ p}, p ∈ [0, 1] (103)

with inf ∅ = ∞ by convention. Left-continuous means that for any x and any sequence xn increasing to x
we have

lim
n→∞

FX(xn) = FX(x).

From these definitions it follows that for all x ∈ R and p ∈ [0, 1], we have

F−1
X (p) ≤ x ⇐⇒ p ≤ FX(x). (104)

Later on we will introduce the concept of comonotonicity and to treat this subject well, we will use a more
sophisticated definition for inverses of distribution functions. For any real p ∈ [0, 1], a possible choice for the
inverse of FX in p is any point in the closed interval

[inf{x ∈ R|FX(x) ≥ p}, sup{x ∈ R|FX(x) ≤ p}],

where sup ∅ = −∞. Taking the left hand border of this interval to be the value of the inverse cdf at p, we
get F−1

X (p). Similarly, we define F−1+
X (p) as the right hand border of the interval:

F−1+
X (p) = sup{x ∈ R|FX(x) ≤ p}, p ∈ [0, 1] (105)

which is a non-decreasing and right-continuous function. Note that F−1
X (0) = −∞, F−1+

X (1) =∞ and that
all probability mass of X is contained in the interval [F−1+

X (0), F−1
X (1)]. Also note that F−1

X (p) and F−1+
X (p)

are finite for all p ∈ (0, 1). In the sequel, we will always use p as a variable ranging over the open interval
(0, 1), unless stated otherwise.
For any α ∈ [0, 1], we define the α-mixed inverse function of FX as follows:

F
−1(α)
X (p) = αF−1

X (p) + (1− α)F−1+
X (p), p ∈ (0, 1), (106)

which is again a non-decreasing function. In particular, we find F
−1(0)
X (p) = F−1+

X (p) and F
−1(1)
X (p) =

F−1
X (p). Also, for all α ∈ [0, 1] we have,

F−1
X (p) ≤ F−1(α)

X (p) ≤ F−1+
X (p), p ∈ (0, 1). (107)

Note that the definition of F−1(α)
X (p) is such that only for values of p corresponding to a horizontal segment

of FX lead to different values of F−1(α)
X (p), F−1+

X (p) and F−1
X (p).

Now, let d be such that 0 < FX(d) < 1. Then F−1
X (FX(d)) and F−1+

X (FX(d)) are finite, and F−1
X (FX(d)) ≤

d ≤ F−1+
X (FX(d)). So for some value αd ∈ [0, 1], d can be expressed as d = αdF

−1
X (FX(d)) + (1 −

αd)F−1+
X (FX(d)) = F

−1(αd)
X (FX(d)). This implies that for any random variable X and any d with 0 <

FX(d) < 1, there exists an αd ∈ [0, 1] such that F−1(αd)
X = d.

Later on we will not only use the sophisticated inverse distribution function F
−1(α)
X (p), but we will also

need the relation between inverse distribution functions of the random variables X and g(X) for a monotone
function g
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Theorem 8.3 Let X and g(X) be real-valued random variables, and let 0 < p < 1.

(a) If g is non-decreasing and l.c., then
F−1
g(X)(p) = g(F−1

X (p)).

(b) If g is non-decreasing and r.c., then

F−1+
g(X)(p) = g(F−1+

X (p)).

(c) If g is non-increasing and l.c., then

F−1+
g(X)(p) = g(F−1

X (1− p)).

(d) If g is non-increasing and r.c., then

F−1
g(X)(p) = g(F−1+

X (1− p)).

Proof We will only prove (a), since the other results can be proved similarly. Let 0 < p < 1 and consider a
non-decreasing and l.c. function g. For any real x we find from (104) that

F−1
g(X)(p) ≤ x ⇐⇒ p ≤ Fg(X)(x).

As g is non-decreasing and l.c., we have that

g(z) ≤ x ⇐⇒ z ≤ sup{y|g(y) ≤ x} (108)

holds for all real z and x. From this it follows that Fg(X)(x) = P [g(X) ≤ x] = P [X ≤ sup{y|g(y) ≤ x}] and
therefore we have

p ≤ Fg(X)(x) ⇐⇒ p ≤ FX [sup{y|g(y) ≤ x}] .

If sup{y|g(y) ≤ x} is finite, then we find from (104) and the equivalence above

p ≤ FX [sup{y|g(y) ≤ x}] ⇐⇒ F−1
X (p) ≤ sup{y|g(y) ≤ x}.

If sup{y|g(y) ≤ x} is ∞ or −∞ we cannot use (104), but then the equivalence still holds. Indeed, if the
supremum equals −∞, then the equivalence becomes p ≤ 0 ⇐⇒ F−1

X (p) ≤ −∞, which is true. If the
supremum equals ∞, then the equivalence becomes p ≤ 1 ⇐⇒ F−1

X (p) ≤ ∞, which is also true.
From the previous equivalence and (108) we now find

F−1
X (p) ≤ sup{y|g(y) ≤ x} ⇐⇒ g(F−1

X (p)) ≤ x.

Finally, combining the equivalences we get that

F−1
g(X)(p) ≤ x ⇐⇒ g(F−1

X (p)) ≤ x

holds for all values of x, which means that (a) must hold

For the special case that g and FX are continuous and strictly increasing on [F−1+
X (0), F−1

X (1)] the proof is
simpler. In this case we have

Fg(X)(x) = P [g(X) ≤ x] = P
[
X ≤ g−1(x)

]
= (FX ◦ g−1)(x),

which is a continuous and strictly increasing function of x. The results (a) and (b) then follow by inversion
of this relation.
Similarly, if g is continuous and strictly decreasing and FX is continuous and strictly increasing we have

Fg(X)(x) = P [g(X) ≤ x] = P
[
X ≥ g−1(x)

]
= 1− (FX ◦ g−1)(x).
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From this it follows that (FX ◦ g−1)(x) is strictly decreasing (since Fg(X)(x) is strictly increasing) and
inversion gives

F−1
g(X)(p) = inf{x ∈ R|Fg(X)(x) ≥ p} = inf{x ∈ R|1− (FX ◦ g−1)(x) ≥ p}

= inf{x ∈ R|(FX ◦ g−1)(x) ≤ 1− p} = (FX ◦ g−1)−1(1− p) = g(F−1
X (1− p)).

So indeed, (c) and (d) hold.

Hereafter, we will reserve the notation U for a uniform(0, 1) random variable, i.e. FU (p) = p and F−1
U (p) = p

for all 0 < p < 1. Then one can prove that for all α ∈ [0, 1],

X =d F
−1
X (U) =d F

−1+
X (U) =d F

−1(α)
X (U), (109)

where =d denotes equality in distribution. The first equality follows immediately from (104), since (104)
implies

FF−1
X (U)(x) = P

[
F−1
X (U) ≤ x

]
= P [U ≤ FX(x)] = FX(x).

Note that FX has at most a countable number of horizontal segments, implying that the last three random
variables in (109) only differ in a null-set of values of U . This implies that these random variables are equal
with probability one.
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8.3 Comonotonicity

In valuing the option in unit-linked insurance, we have to deal with a sum of dependent random variables.
That is, we have to deal with random variables of the type S =

∑n
i=1Xi where the Xi are not mutually

independent. In some situations it can also be that the multivariate distribution function of the random
vector X = (X1, X2, . . . , Xn) is not completely specified because we only know the marginal distribution
functions of the random variables Xi or that the dependence structure is to cumbersome to work with. In
case the random variable S represents a payment the insurance company has to do, it may be helpful to find
the dependence structure for the random vector (X1, X2, . . . , Xn) producing the least favourable payment
S with the given marginals Xi. This is a prudent strategy, since the insurance company will then make
decisions based on the least favourable outcome.
Therefore, given the marginal distributions of the terms in a random variable S =

∑n
i=1Xi, we will look

for the joint distribution with the largest sum in the convex order sense. As we will prove in section 6.5,
the convex-largest sum of the components of a random vector with given marginals will be obtained in the
case that the random vector (X1, X2, . . . , Xn) has the comonotonic distribution, which means that each two
possible outcomes (x1, . . . , xn) and (y1, . . . , yn) of (X1, X2, . . . , Xn) are ordered component wise.
We start by defining comonotonicity of a set of n-vectors in Rn. A n-vector (x1, . . . , xn) will be denoted by
~x. For two n-vectors ~x and ~y, the notation ~x ≤ ~y will be used for the component wise order which is defined
by xi ≤ yi for all i = 1, . . . , n.

Definition 8.4 The set A ⊆ Rn is said to be comonotonic if for any ~x and ~y in A, either ~x ≤ ~y or ~y ≤ ~x
holds.

So, a set A ⊆ Rn is comonotonic if for any ~x and ~y in A we have that if xi < yi for some i, then ~x ≤ ~y
must hold. Hence, a comonotonic set is simultaneously non-decreasing in each component. Notice that a
comonotonic set is a thin set: it cannot contain any subset of dimension larger than 1. Any subset of a
comonotonic set is also comonotonic.
We will denote the (i, j) projection of a set A in Rn by Ai,j It is defined by

Ai,j = {(xi, xj)|~x ∈ A}

Lemma 8.5 A ⊆ Rn is comonotonic if and only if Ai,j is comonotonic for all i 6= j in 1, 2, . . . , n.

Proof It is clear that if A ⊆ Rn is comonotonic then Ai,j is comonotonic for all i 6= j in 1, 2, . . . , n.
Now suppose that Ai,j is comonotonic for all i 6= j in 1, 2, . . . , n and suppose that ~x and ~y in A such that
neither ~x ≤ ~y nor ~y ≤ ~x holds. Then we can find i ∈ 1, 2, . . . , n and j ∈ 1, 2, . . . , n (i 6= j) such that either
xi > yi and xj ≤ yj or xi < yi and xj ≥ yj . But (xi, xj) and (yi, yj) are in Ai,j , which is comonotonic. So
this cannot happen and therefore we have for ~x and ~y in A that either ~x ≤ ~y or ~y ≤ ~x must hold. Hence, A
is comonotonic.

Next, we will define the notion of support of an n-dimensional random vector ~X = (X1, . . . , Xn). Any subset
A ⊆ Rn will be called a support of ~X if P

[
~X ∈ A

]
= 1 holds true. In general we will be interested in

supports which are ” as small as possible ”. Informally, the smallest support of a random vector ~X is the
subset of Rn that is obtained by subtracting from Rn all points which have a zero probability neighbourhood
with respect to ~X. This support can be interpreted as the set of all possible outcomes of ~X.
We will now define the important concept of comonotonicity of random vectors:

Definition 8.6 A random vector ~X = (X1, . . . , Xn) is said to be comonotonic if it has a comonotonic
support.

From the definition we can conclude that comonotonicity is a very strong positive dependency structure.
Indeed, if ~x and ~y are elements of the comonotonic support of X, i.e. ~x and ~y are possible outcomes of ~X,
then they must be ordered component wise. This is also the intuition behind comonotonicity. A random
vector ~X with components Xi is comonotonic if the set of all possible outcomes is ordered component wise.
In the following theorem, some useful equivalent characterizations are given for comonotonicity of a random
vector.
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Theorem 8.7 A random vector ~X = (X1, . . . , Xn) is comonotonic if and only if one of the following equiv-
alent conditions holds:

(1) ~X has a comonotonic suppport.

(2) For all ~x = (x1, . . . , xn), we have

F ~X(~x) = min (FX1(x1), . . . , FXn(xn)) , (110)

where F ~X(~x) = P
[
~X ≤ ~x

]
is the multivariate cdf of ~X.

(3) For U =d Uniform(0, 1), we have

~X =d

(
F−1
X1

(U), . . . , F−1
Xn

(U)
)
. (111)

(4) There exists a random variable Z and non-decreasing functions fi, i = 1, . . . , n, such that

~X =d (f1(Z), . . . , fn(Z)) . (112)

Proof (1)⇒ (2): Assume that ~X has comonotonic support B. Let ~x ∈ Rn and let Aj be defined by

Aj = {~y ∈ B|yj ≤ xj}, j = 1, . . . , n.

Because of the comonotonicity of B, there exists an i such that Ai = ∩nj=1Aj . Hence, we find

F ~X(~x) = P
[
~X ∈ ∩nj=1Aj

]
= P

[
~X ∈ Ai

]
= FXi(xi)

= min(FX1(x1), . . . , FXn(xn)).

The last equality follows from Ai ⊆ Aj , so that FXi(xi) ≤ FXj (xj) holds for all values of j.
(2)⇒ (3): Now assume that F ~X(~x) = min (FX1(x1), . . . , FXn(xn)) for all ~x = (x1, . . . , xn). Then we find
(using (104) for the first equality):

P
[
F−1
X1

(U) ≤ x1, . . . , F
−1
Xn

(U) ≤ xn
]

= P [U ≤ FX1(x1), . . . , U ≤ FXn(xn)]

= P
[
U ≤ min

j=1,...,n
(FXj (xj))

]
= min

j=1,...,n
(FXj (xj)) = F ~X(~x),

which means that (111) holds.
(3)⇒ (4): this is clear.
(4)⇒ (1): Assume (4) and let B be the support of Z. The set of possible of outcomes of X is then
{(f1(z), . . . , fn(z))|z ∈ B}. Since the functions fi are non-decreasing this is comonotonic, which implies that
~X is indeed comonotonic.

From (110) we see that, in order to find the probability of all the outcomes of n comonotonic risks Xi being
less than xi, (i = 1, . . . , n), one simply takes the probability of the least likely of these events. It is obvious
that for any random vector (X1, . . . , Xn), not necessarily comonotonic, the following inequality holds:

P [X1 ≤ x1, . . . , Xn ≤ xn] ≤ min{FX1(x1), . . . , FXn(xn)}, (113)

and we have seen in the proof of theorem 8.7 that the function min{FX1(x1), . . . , FXn(xn)} is the multi-
variate cdf of the random vector

(
F−1
X1

(U), . . . , F−1
Xn

(U)
)
, which has the same marginals as (X1, . . . , Xn).

The inequality (113) states that in the class of all random vectors (X1, . . . , Xn) with the same marginals,
the probability that all Xi simultaneously realize ’small’ values is maximized if the vector is comonotonic,
suggesting that comonotonicity is indeed a very strong positive dependency structure.
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In the sequel, for any random vector (X1, . . . , Xn), the notation (Xc
1 , . . . , X

c
n) will be used to indicate a

comonotonic random vector with the same marginals as (X1, . . . , Xn). From (111), we find that for any
random vector ~X the outcome of its comonotonic counterpart ~Xc = (Xc

1 , . . . , X
c
n) is with probability 1 in

the set
{F−1

X1
(p), . . . , F−1

Xn
(p)|0 < p < 1}. (114)

This support is not necessarily a connected curve. Indeed, all horizontal segments of the cdf of Xi lead to
missing pieces in this curve. By connecting the endpoints of consecutive pieces in this curve by straight lines,
we obtain a comonotonic connected curve in Rn. Hence, it may be traversed in a direction which is upwards
for all components simultaneously. We will call this set the connected support of ~Xc. To give a possible
parametrization, we note that the random vectors

(
F−1
X1

(U), . . . , F−1
Xn

(U)
)

and
(
F
−1(α1)
X1

(U), . . . , F−1(αn)
Xn

(U)
)

as defined previously are equal with probability 1. So comonotonicity of ~X can also be characterized by

~X =d

(
F
−1(α1)
X1

(U), . . . , F−1(αn)
Xn

(U)
)
, (115)

for U =d Uniform(0, 1) and real numbers αi ∈ [0, 1]. From this it follows that a possible parametrization
of the connected support of ~Xc is given by

{
(
F
−1(α)
X1

(p), . . . , F−1(α)
Xn

(p)
)
|0 < p < 1, 0 ≤ α ≤ 1}. (116)

Before we go to an example, we state the following useful theorem.

Theorem 8.8 A random vector ~X is comonotonic if and only if (Xi, Xj) is comonotonic for all i 6= j in
{1, . . . , n}.

Proof The ⇒ implication is clear.
For the proof of the ⇐ implication, consider the set A ∈ Rn defined by

A = {(F−1
X1

(p), . . . , F−1
Xn

(p))|0 < p < 1}.

Its (i, j)-projections are given by

Ai,j = {(F−1
Xi

(p), F−1
Xj

(p))|0 < p < 1}.

Since (Xi, Xj) is comonotonic for all i 6= j, we have for all i 6= j that (Xi, Xj) ∈ Ai,j with probability 1. But

the event (Xi, Xj) ∈ Ai,j for all i 6= j is equivalent to the event ~X ∈ A. So P
[
~X ∈ A

]
= 1 and therefore the

comonotonic set A is a support of ~X. Hence, ~X is a comonotonic random vector.

This theorem states that comonotonicity of a random vector is equivalent with pairwise comonotonicity.

Example As an example of comonotonicity, consider the distributions ~X =d Uniform{0, 1, 2, 3} and Y =d

Binomial(3, 1
2 ). The random vector (X,Y ) is not comonotonic, because two possible outcomes are for

example (0, 1) and (1, 0). And for these outcomes it does not hold that (0, 1) ≤ (1, 0) nor does it hold
that(0, 1) ≥ (1, 0). Now, we can compute that for 0 < p < 1 we have

(F−1
X (p), F−1

Y (p)) = (0, 0) for 0 < p ≤ 1
8
,

= (0, 1) for
1
8
< p ≤ 2

8
,

= (1, 1) for
2
8
< p ≤ 4

8
,

= (2, 2) for
4
8
< p ≤ 6

8
,

= (3, 2) for
6
8
< p ≤ 7

8
,

= (0, 1) for
7
8
< p < 1.

The support of (Xc, Y c) is just these six points and the connected support arises by simply connecting them
consecutively with straight lines.
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8.4 Sums of comonotonic random variables

Recall again that if we want to value the option in unit-linked insurance, we have to deal with a sum of
dependent random variables. That is, we will have to deal with random variables of the type S =

∑n
i=1Xi

where the Xi are not mutually independent. In the sequel, we will use the notation Sc for the comonotonic
counterpart of S. That is, Sc =

∑n
i=1X

c
i , where (Xc

1 , . . . , X
c
n) is the comonotonic counterpart of the random

vector (X1, . . . , Xn).
Further on, we will prove that approximating the distribution function of S by the distribution function of
the comonotonic sum Sc is a prudent strategy for an insurer in the sense that S ≤cx Sc. This means that
computing the value of the option in unit-linked insurance using Sc instead of S will lead to a higher option
value and since the option is a liability for the insurer, the insurer will base its decisions on a worst case
scenario.
Of course, this approximation will only be meaningful if we can easily determine the distribution function
and the stop-loss premiums of Sc (since we will need those to compute the option value). In this section
we will show that these quantities can indeed easily be determined from the marginal distribution functions
of the terms in the sum. In the next theorem we will first prove that the inverse distribution function of a
sum of comonotonic random variables is simply the sum of the inverse distribution functions of the marginal
distributions.

Theorem 8.9 The α-inverse distribution function F
−1(α)
Sc of a sum Sc of comonotonic random variables

(Xc
1 , . . . , X

c
n) is given by

F
−1(α)
Sc (p) =

n∑
i=1

F
−1(α)
Xi

(p), 0 < p < 1, 0 ≤ α ≤ 1. (117)

Proof Consider (X1, . . . , Xn) and its comonotonic counterpart (Xc
1 , . . . , X

c
n). Then we have from theorem

8.7 (3) that (Xc
1 , . . . , X

c
n) =d

(
F−1
X1

(U), . . . , F−1
Xn

(U)
)
, with U uniformly distributed on (0, 1). So Sc =∑n

i=1X
c
i =d g(U) with the function g defined by

g(u) =
n∑
i=1

F−1
Xi

(u), 0 < u < 1.

By definition of the inverse distribution function F−1
X (p) of a random variable X, we have that this function

is left-continuous and non-decreasing. So g is also left-continuous and non-decreasing. Applying theorem
8.3(a) we therefore get

F−1
Sc (p) = F−1

g(U)(p) = g(F−1
U (p)) = g(p), 0 < p < 1,

so the inverse distribution function of Sc can be computed from

F−1
Sc (p) =

n∑
i=1

F−1
Xi

(p), 0 < p < 1.

Similarly, we find from (109) that we also have Sc =
∑n
i=1X

c
i =d h(U) with the function h defined by

h(u) =
n∑
i=1

F
−1(+)
Xi

(u), 0 < u < 1.

Applying theorem 8.3(b) then gives

F
−1(+)
Sc (p) = h(p) =

n∑
i=1

F
−1(+)
Xi

(p), 0 < p < 1.

Multiplying the last equality by 1 − α, the equivalent equality for F−1
Sc (p) by α and adding up, we get the

result
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Now, from section 6.2 we know that F−1(+)
Xi

is a right-continuous function on [0, 1] and F−1
Xi

is a left-continuous
function on [0, 1]. So, taking limits (respectively from the right and left ) in (117) we find

F
−1(+)
Sc (0) =

n∑
i=1

F
−1(+)
Xi

(0), (118)

and

F−1
Sc (1) =

n∑
i=1

F−1
Xi

(1). (119)

Hence, the minimal value of the comonotonic sum equals the sum of the minimal values of each term. Sim-
ilarly, the maximal value of the comonotonic sum equals the sum of the maximal values of each term. The
number

∑n
i=1 F

−1(+)
Xi

(0), which is either finite or −∞, is the minimum possible value of Sc, and
∑n
i=1 F

−1
Xi

(1)
is the maximum.

For any (X1, . . . , Xn), we have that S = X1 + . . . + Xn ≥
∑n
i=1 F

−1(+)
Xi

(0) must hold with probability

1. This holds because we have seen in section 6.2 that Xi ≥ F
−1(+)
Xi

(0) with probability 1 for every i. This
implies

n∑
i=1

F
−1(+)
Xi

(0) ≤ F−1(+)
S (0), (120)

because the minimal value of the sum S, given by F−1(+)
S (0), must be bigger then the sum of minimal values.

Similarly, we find

F−1
S (1) ≤

n∑
i=1

F−1
Xi

(1). (121)

This means that the sum S of the components of any random vector (X1, . . . , Xn) has a support that is
contained in the interval

[∑n
i=1 F

−1(+)
Xi

(0),
∑n
i=1 F

−1
Xi

(1)
]
.

So far, we only derived an expression for F−1(α)
Sc (p) and we derived some properties. However, we are

interested in the distribution function FSc of Sc. For us, an important case will be that the marginal dis-
tribution functions FXi , i = 1, . . . , n of the comonotonic random vector (Xc

1 , . . . , X
c
n) are strictly increasing

and continuous. Where, from now on, the expression FX is strictly increasing should be interpreted as FX
is strictly increasing on

(
F
−1(+)
X (0), F−1

X (1)
)

. In this case we can find a useful relation that enables us to

compute the distribution function FSc of Sc once we know F
−1(α)
Sc (p). For this we first observe that for any

random variable X, the following equivalences hold:

FX is strictly increasing ⇐⇒ F−1
X is continuous on (0, 1), (122)

and also
FX is continuous ⇐⇒ F−1

X is strictly increasing on (0, 1). (123)

So if the marginal distribution functions FXi , i = 1, . . . , n of the comonotonic random vector (Xc
1 , . . . , X

c
n)

are strictly increasing and continuous, then each inverse distribution function F−1
Xi

is continuous on (0, 1) by
(122). This implies that F−1

Sc is continuous on (0, 1) because F−1
Sc (p) =

∑n
i=1 F

−1
Xi

(p) holds for 0 < p < 1.

This in turn implies that FSc is strictly increasing on (F−1(+)
Sc (0), F−1

Sc (1)) by using (122) the other way
around. By a similar reasoning using (123) we find that FSc is continuous.
Hence, in case of strictly increasing and continuous marginals, for any F−1(+)

Sc (0) < x < F−1
Sc (1), the proba-

bility FSc(x) is uniquely determined by F−1
Sc (FSc(x)) = x, or equivalently from theorem 8.9

n∑
i=1

F−1
Xi

(FSc(x)) = x, F
−1(+)
Sc (0) < x < F−1

Sc (1). (124)
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It suffices to solve the latter equation to get FSc(x).

As mentioned before, we will also be interested in the stop-loss premium of a sum of comonotonic ran-
dom variables. In the following theorem we prove that this stop-loss premium can also be obtained form the
stop-loss premiums of the terms.

Theorem 8.10 The stop-loss premiums of the sum Sc of the components of the comonotonic random vector
(Xc

1 , . . . , X
c
n) are given by

E [(Sc − d)+] =
n∑
i=1

E [(Xi − di)+] , F
−1(+)
Sc (0) < d < F−1

Sc (1), (125)

with the di given by
di = F

−1(αd)
Xi

(FSc(d)), i = 1, . . . , n (126)

and αd ∈ [0, 1] determined by
F
−1(αd)
Sc (FSc(d)) = d. (127)

Proof Let d ∈ (F−1(+)
Sc (0), F−1

Sc (1)). Then 0 < FSc(d) < 1. As the connected support of Xc as defined in
(116) is comonotonic, it can have at most one point of intersection with the hyperplane {~x|x1 + . . .+xn = d}.
This is because the hyperplane clearly cannot contain different points ~x and ~y such that ~x ≤ ~y or ~x ≥ ~y
holds.
We will now proof that the vector ~d = (d1, . . . , dn) as defined above is the unique point of this intersection.
As 0 < FSc(d) < 1 must hold, we know from section 6.2 that there exists an αd ∈ [0, 1] that fulfils condition
(127). Also note that by theorem 8.9, we have that

∑n
i=1 di =

∑n
i=1 F

−1(αd)
Xi

(FSc(d)) = F
−1(αd)
Sc (FSc(d)) = d.

Hence, the vector ~d is an element of both the connected support of Xc and the hyperplane {~x|x1 + . . .+xn =
d}. We can conclude that ~d is the unique point of intersection of the connected support and the hyperplane.
Now, let ~x be an element of the connected support of Xc. Then the following equality holds:

(x1 + . . .+ xn − d)+ = (x1 − d1)+ + . . .+ (xn − dn)+.

This is because ~x and ~d are both elements of the connected support of Xc, so if there exists any j such that
xj > dj holds, then we also have xk ≥ dk for all k (the connected support is comonotonic), and the left hand
side equals the right hand side because

∑n
i=1 di = d. On the other hand, when all xj ≤ dj , both sides are 0.

Now replacing constants by the corresponding random variables in the equality above and taking expecta-
tions, we find (125)

Note that we also have

E
[
(Sc − d)+

]
=

n∑
i=1

E [Xi]− d, if d ≤ F−1+
Sc (0) (128)

and
E
[
(Sc − d)+

]
= 0, if d ≥ F−1

Sc (1). (129)

This follows since for d ≤ F
−1(+)
Sc (0) we have Sc ≥ d with probability 1, Xi ≥ di = F

−1(αd)
Xi

(FSc(d)) with
probability 1 and

∑n
i=1 di = d. Also, for d ≥ F−1

Sc (1) we have Sc ≤ d with probability 1.
So from (118), (119), (128), (129) and Theorem 8.10 we can conclude that for any real d, there exist di

with
∑n
i=1 di = d, such that E

[
(Sc − d)+

]
=
∑n
i=1 E

[
(Xi − di)+

]
holds.

The expression for the stop-loss premiums of a comonotonic sum Sc can also be written in terms of the
usual inverse distribution functions. Indeed, for any d ∈

(
F
−1(+)
Sc (0), F−1

Sc (1)
)

, we have

E
[
(Xi − F−1(αd)

Xi
(FSc(d)))+

]
= E

[
(Xi − F−1

Xi
(FSc(d)))+

]
−
(
F
−1(αd)
Xi

(FSc(d))− F−1
Xi

(FSc(d))
)

(1− FSc(d))
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Summing over i, and taking into account the definition of αd,we find for any d ∈
(
F−1+
Sc (0), F−1

Sc (1)
)

:

E [(Sc − d)+] =
n∑
i=1

E
[
(Xi − F−1

Xi
(FSc(d)))+

]
−
(
d− F−1

Sc (FSc(d))
)

(1− FSc(d)) . (130)

In the important case where the marginal cdf’s FXi are strictly increasing, (130) reduces to

E[(Sc − d)+] =
n∑
i=1

E
[
(Xi − F−1

Xi
(FSc(d))+

]
, d ∈

(
F−1+
Sc (0), F−1

Sc (1)
)
. (131)

From Theorem 8.10, we can conclude that any stop-loss premium of a sum of comonotonic random variables
can be written as the sum of stop-loss premiums for the individual random variables involved. The theorem
provides an algorithm for directly computing stop-loss premiums of sums of comonotonic random variables,
without having to compute the entire distribution function of the sum itself. Indeed, in order to compute
the stop-loss premium with level d, we only need to know FSc(d), which, in the case of strictly increasing
and continuous marginals, can be computed from (124).

Application of the relation E[(X − d)+] = E [(d−X)+] + E [X] − d for Sc and the Xi in relation (125)
leads to the following expression for the lower tails of a sum of comonotonic random variables:

E
[
(d− Sc)+

]
=

n∑
i=1

E
[
(di −Xi)+

]
, F−1+

Sc (0) < d < F−1
Sc (1), (132)

with the di as defined in (126) and (127).

Example Consider a random vector ~X with exponential marginals: Xi ∼ Exp(1/βi). Then

FXi(x) = 1− e−
x
βi , βi > 0, x ≥ 0. (133)

We find the following expression for the inverse distribution function:

F−1
Xi

(p) = −βi ln (1− p) , 0 < p < 1. (134)

One can easily verify that the stop-loss premium with level d is given by∫ ∞
d

(1− FXi)dx = E[(Xi − d)+] = βi e
− d
βi , 0 < d <∞ (135)

The inverse distribution function of the comonotonic sum Sc is then given by

F−1
Sc (p) = −

(
n∑
i=1

βi

)
ln (1− p) , 0 < p < 1. (136)

This means that the comonotonic sum of exponentially distributed random variables is again exponentially
distributed with parameter β =

∑n
i=1 βi. The stop-loss premiums of Sc are given by

E [(Sc − d)+] = β e−
d
β , 0 < d <∞. (137)
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8.5 Convex bounds for sums of random variables

Our ultimate goal is to find approximations for a put option on a sum of dependent random variables and
in the previous section we have seen that if a random vector ~X is comonotonic, we can compute the value of
a put option using only the marginal distributions (equation (132)). In this section we will show that it is
possible to find an upper bound and a lower bound on a put option on a sum of dependent random variables
by using the concept of comonotonicity.

8.5.1 The comonotonic upper bound for
∑n
i=1Xi

To derive an upper bound on the value of an option on a sum of dependent random variables, we first need
an upper bound on the sum of random variables itself. This upper bound will be an upper bound in the
convex order sense and therefore we will call it a convex bound. The upper bound that we will derive here is
attainable in the class of all random vectors with given marginals. It is reached by the comonotonic random
vector in this class. So, the upper bound is a supremum in the sense of convex order.

Theorem 8.11 For any random vector (X1, X2, . . . , Xn) we have

X1 +X2 + . . .+Xn ≤cx Xc
1 +Xc

2 + . . .+Xc
n. (138)

Proof It is obvious that the means of these two sums are equal, so from definition 8.2 we have that it is
sufficient to prove stop-loss order. Hence, we have to prove that

E[(X1 +X2 + . . .+Xn − d)+] ≤ E[(Xc
1 +Xc

2 + . . .+Xc
n − d)+]

holds for all d with d ∈
(
F−1+
Sc (0), F−1

Sc (1)
)
, since the stop-loss premiums are clearly equal for other values

of d.
The following holds for all (x1, x2, . . . , xn) when d1 + d2 + . . .+ dn = d:

(x1 + x2 + . . .+ xn − d)+

= ((x1 − d1) + (x2 − d2) + . . .+ (xn − dn))+

≤ ((x1 − d1)+ + (x2 − d2)+ + . . .+ (xn − dn)+)+

= (x1 − d1)+ + (x2 − d2)+ + . . .+ (xn − dn)+.

Now replacing constants by the corresponding random variables in the inequality above and taking expec-
tations, we get that

E[(X1 +X2 + . . .+Xn − d)+] ≤ E[(X1 − d1)+] + E[(X2 − d2)+] + . . .+ E[(Xn − dn)+] (139)

holds for all d and di such that
∑n
i=1 di = d.

By choosing d ∈
(
F−1+
Sc (0), F−1

Sc (1)
)

and the di as in Theorem 8.10, we have by (125)

E[(X1 − d1)+] + E[(X2 − d2)+] + . . .+ E[(Xn − dn)+] = E [(Sc − d)+] .

Now Sc = Xc
1 +Xc

2 + . . .+Xc
n, so combining this with (124) we proved what we had to prove.

Theorem 8.11 states that if we see the random vector (X1, . . . , Xn) as a vector of payments, the
least attractive one with given marginals Fi, in the sense that the sum of their components is largest in
convex order, has the comonotonic joint distribution, which means that it has the joint distribution of(
F−1

1 (U), F−1
2 (U), . . . , F−1

n (U)
)
. The components of this random vector are maximally dependent, all com-

ponents being non-decreasing functions of the same random variable.

If we write S = X1 + X2 + . . . + Xn and Sc = Xc
1 + . . . + Xc

n, then we have from definition 8.2 and
theorem 8.10 for all d ∈

(
F−1+
Sc (0), F−1

Sc (1)
)

that

E [(S − d)+] ≤ E [(Sc − d)+]

=
n∑
i=1

E[(Xi − F−1(αd)
Xi

(FSc (d)))+].
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Also, from (139), we have for all d ∈
(
F−1+
Sc (0), F−1

Sc (1)
)

and for all di such that
∑n
i=1 di = d

E [(Sc − d)+] ≤
n∑
i=1

E[(Xc
i − di)+].

Combining these two inequalities gives that

E[(X1 +X2 + . . .+Xn − d)+] ≤
n∑
i=1

E[(Xi − F−1(αd)
Xi

(FSc (d)))+]

≤
n∑
i=1

E[(Xi − di)+] (140)

holds for all d ∈
(
F−1+
Sc (0), F−1

Sc (1)
)

such that
∑n
i=1 di = d. Hence, the smallest upper bound of the form∑n

i=1 E[(Xi−di)+] with
∑n
i=1 di = d for the stop-loss premium E[(X1+X2+. . .+Xn−d)+] is the comonotonic

upper bound.

Example Consider a random vector (α1X1, α2X2, . . . , αnXn) of which the αi are non-zero real numbers
and the Xi are lognormally distributed: ln (Xi) ∼ N

(
µi, σ

2
i

)
. We have that

E [Xi] = eµi+
1
2σ

2
i , (141)

V ar [Xi] = e2µi+σ
2
i

(
eσ

2
i − 1

)
. (142)

As an example we can think of the situation where the αi are deterministic payments at times i, and the Xi

are the corresponding lognormally distributed discount factors. Then (α1X1, α2X2, . . . , αnXn) is the vector
of the stochastically discounted deterministic payments. From Φ−1(1 − p) = −Φ−1(p), and Theorem 8.3 (
(a) for αi > 0 and (d) for αi < 0) we find that

F−1
αiXi

(p) = αi e
µi+sgn(αi) σiΦ

−1(p), 0 < p < 1, (143)

where sgn (αi) equals 1 if αi > 0 and −1 if αi < 0. In particular, we find that the product of n comonotonic
lognormal random variables is again lognormal:

Πn
i=1F

−1
Xi

(U) =d e
∑n
i=1 µi+

∑n
i=1 σiΦ

−1(U). (144)

The stop-loss premiums of a lognormal distributed random variable are given by

E[(Xi − di)+] = eµi+
σ2
i
2 Φ(di,1)− di Φ(di,2), di > 0. (145)

where di,1 and di,2 are determined by

di,1 =
µi + σ2

i − ln (di)
σi

, di,2 = di,1 − σi. (146)

This result can be proved as follows. Differentiating E[(Xi− di)+] with respect to di using equation (97) we

find that the derivative is given by FXi(di)− 1. Similarly, differentiation of eµi+
σ2
i
2 Φ(di,1)− di Φ(di,2) with

respect to di also gives FXi(di)− 1 (this requires quite some computation). Also, for di →∞, both sides in
(145) go to zero. So both sides end up with the same value and have the same derivative everywhere. But
then they should be equal everywhere.
For the lower tails we find

E[(di −Xi)+] = −eµi+
σ2
i
2 Φ(−di,1) + di Φ(−di,2), di > 0. (147)

As E[(αi(Xi − di))+] = −αi E[(di −Xi)+] if αi is negative, we find from (145) and (147)

E[(αi(Xi − di))+] = αi e
µi+

σ2
i
2 Φ(sgn(αi) di,1)− αi di Φ(sgn(αi) di,2), di > 0, (148)
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with di,1 and di,2 as defined above.

Now, let S = α1X1 + . . .+αnXn, and Sc its comonotonic counterpart: Sc = F−1
α1X1

(U)+ . . .+F−1
αnXn

(U).
Then S ≤cx Sc. As the marginal distribution functions are strictly increasing and continuous, we find by
(124) that the distribution function FSc (x) is implicitly defined by F−1

Sc (FSc (x)) = x, or equivalently,

n∑
i=1

αi e
µi+sgn(αi) σiΦ

−1(FSc (x)) = x, F−1+
Sc (0) < x < F−1

Sc (1). (149)

For F−1+
Sc (0) < d < F−1

Sc (1), the stop-loss premium of Sc at level d follows from (132) and (143):

E[(Sc − d)+] =
n∑
i=1

E[(αiXi − F−1
αiXi

(FSc (d)))+]

=
n∑
i=1

E[
(
αi

(
Xi − eµi+sgn(αi) σiΦ

−1(FSc (d))
))

+
].

Now, from (146) we find that for di = eµi+sgn(αi) σiΦ
−1(FSc (d)) we have

di,1 =
µi + σ2

i − ln (di)
σi

=
µi + σ2

i − (µi + sgn (αi) σiΦ−1(FSc (d)))
σi

=
σ2
i − sgn (αi) σiΦ−1(FSc (d)))

σi
= σi − sgn (αi) Φ−1(FSc (d))),

and di,2 = di,1 − σi = −sgn (αi) Φ−1(FSc (d))). Plugging this in (148) and using that for
di = eµi+sgn(αi) σiΦ

−1(FSc (d)) we have (using (149) for the last equality)

n∑
i=1

αi di Φ(sgn(αi) di,2) =
n∑
i=1

αi di Φ(−sgn(αi) sgn (αi) Φ−1(FSc (d))))

=
n∑
i=1

αi di Φ(− Φ−1(FSc (d))))

=
n∑
i=1

αi di Φ( Φ−1(1− FSc (d))))

=
n∑
i=1

αi e
µi+sgn(αi) σiΦ

−1(FSc (d)) (1− FSc (d))

= d(1− FSc (d)),

we find

E[(Sc − d)+] =
n∑
i=1

αi e
µi+

σ2
i
2 Φ

(
sgn (αi) σi − Φ−1 (FSc(d))

)
− d (1− FSc(d)) . (150)

Similarly, the lower tails are given by

E[(d− Sc)+] = −
n∑
i=1

αi e
µi+

σ2
i
2 Φ

(
−sgn (αi) σi + Φ−1 (FSc(d))

)
+ d FSc(d). (151)
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8.5.2 Improved upper bounds for
∑n
i=1Xi

If the only information available concerning the multivariate distribution function of the random vector
(X1, . . . , Xn) consists of the marginal distribution functions of the Xi, then the distribution function of
Sc = F−1

X1
(U) + F−1

2 (U) + . . . + F−1
n (U) is a prudent choice for approximating the unknown distribution

function of S = X1 + . . .+Xn. It is a supremum in terms of convex order, hence it is the best upper bound
that can be derived under the given conditions.
Let us now assume that we have some additional information available concerning the stochastic nature of
(X1, . . . , Xn). More precisely, we assume that there exists some random variable Λ with a given distribution
function, such that we know the conditional cdf’s, given Λ = λ, of the random variables Xi, for all possible
values of λ. We will show that in this case we can derive improved upper bounds in terms of convex order
for S, which are smaller in convex order than the upper bound Sc. Essentially, the idea of this subsection
is to determine comonotonic upper bounds for the sum S, conditionally given Λ = λ. Next, we mix the
resulting distributions with weights dFΛ(λ). By this procedure, convex order is maintained. The upper
bound obtained in this way turns out to be sharper than the comonotonic upper bound Sc because it still
has the right marginal cdf’s for its terms.

In the following theorem, we introduce the notation F−1
Xi|Λ(U) for the random variable fi(U,Λ), where

the function fi is defined by fi(u, λ) = F−1
Xi|Λ=λ(u).

Theorem 8.12 Let U be uniform(0,1), and independent of the random variable Λ. Then we have

X1 +X2 + . . .+Xn ≤cx F−1
X1|Λ(U) + F−1

X2|Λ(U) + . . .+ F−1
Xn|Λ(U). (152)

Proof From Theorem 8.11, we get for any convex function v,

E [v (X1 + . . .+Xn)] =
∫ +∞

−∞
E [v (X1 + . . .+Xn) | Λ = λ] dFΛ(λ)

≤
∫ +∞

−∞
E [v (f1(U, λ) + . . .+ fn(U, λ))] dFΛ(λ)

= E [v (f1(U,Λ) + . . .+ fn(U,Λ))] .

From this the stated result follows, since one of the characterizations of convex order is that the above
inequality holds for all convex functions v.

Note that the random vector
(
F−1
X1|Λ(U), F−1

X2|Λ(U), . . . , F−1
Xn|Λ(U)

)
has marginals FX1 , FX2 , . . . , FXn ,

because

FXi(x) =
∫ ∞
−∞

P [Xi ≤ x | Λ = λ] dFΛ(λ)

=
∫ ∞
−∞

P
[
F−1
Xi|Λ=λ(U) ≤ x

]
dFΛ(λ)

=
∫ ∞
−∞

P [fi(U, λ) ≤ x ] dFΛ(λ)

= P [fi(U,Λ) ≤ x] .

As we have seen before, for a random vector with given marginal distributions we have that the comonotonic
sum is the largest possible sum in the convex order sense. This implies

F−1
X1|Λ(U) + . . .+ F−1

Xn|Λ(U) ≤cx F−1
X1

(U) + . . .+ F−1
Xn

(U), (153)

which means that the upper bound derived in this subsection is indeed an improved upper bound.
If Λ is independent of all X1, X2, . . . , Xn, then we actually do not have any extra information at all and the
improved upper bound reduces to the comonotonic upper bound derived in Theorem 8.11.
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Let Su be defined by
Su = F−1

X1|Λ(U) + F−1
X2|Λ(U) + . . .+ F−1

Xn|Λ(U). (154)

Then we are again interested in the distribution function of Su and its stop-loss premiums.
In order to obtain the distribution function of Su, observe that given the event Λ = λ, the random variable
Su is a sum of comonotonic random variables. Hence, from theorem 8.9 we have

F−1
Su|Λ=λ(p) =

n∑
i=1

F−1
Xi|Λ=λ(p), p ∈ (0, 1) . (155)

If the marginal cdf’s FXi|Λ=λ are strictly increasing and continuous, then FSu|Λ=λ(x) follows by solving

n∑
i=1

F−1
Xi | Λ=λ

(
FSu | Λ=λ(x)

)
= x, F−1+

Su | Λ=λ(0) < x < F−1
Su | Λ=λ(1), (156)

see (124). In this case, we also find from (131) that for any d ∈
(
F−1+
Su|Λ=λ(0), F−1

Su|Λ=λ(1)
)

:

E
[
(Su − d)+ | Λ = λ

]
=

n∑
i=1

E

[(
Xi − F−1

Xi|Λ=λ

(
FSu|Λ=λ(d)

))
+
| Λ = λ

]
, (157)

from which the stop-loss premium at level d of Su can be determined.

8.5.3 Lower bounds for
∑n
i=1Xi

Let ~X = (X1, . . . , Xn) be a random vector with given marginal cdf’s FX1 , FX2 , . . . , FXn . As in the previous
subsection, we assume that there exists some random variable Λ with a given distribution function, such
that we know the conditional cdf’s, given Λ = λ, of the random variables Xi , for all possible values of λ.
We will show how to obtain a lower bound, in the sense of convex order, for S = X1 + X2 + . . . + Xn by
conditioning on this random variable. If we view S as a payment we have to make, this means that we are
considering a more attractive random variable to pay than S. This will help to give an idea of the degree of
overestimation of the risk involved by replacing S by the less attractive random variables Su or Sc.
The idea of this subsection is to observe that the expectation of a random variable is always smaller than
or equal in convex order than the random variable itself, and also that convex order is maintained under
mixing.

Theorem 8.13 For any random vector ~X and any random variable Λ, we have

E [X1 | Λ] + E [X2 | Λ] + . . .+ E [Xn | Λ] ≤cx X1 +X2 + . . .+Xn. (158)

Proof By Jensen’s inequality, we find that for any convex function v, the following inequality holds:

E [v (X1 +X2 + . . .+Xn)] = EΛ E [v (X1 +X2 + . . .+Xn) | Λ]
≥ EΛ [v (E [X1 +X2 + . . .+Xn | Λ])]
= EΛ [v (E [X1 | Λ] + . . .+ E [Xn | Λ])] .

From this the stated result follows, since one of the characterizations of convex order is that the above
inequality holds for all convex functions v.

Let S be defined as above, and let Sl be defined by

Sl = E [S | Λ] (159)

Note that if Λ and S are mutually independent, we find the trivial result

E [S] ≤cx S. (160)
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On the other hand, if Λ and S have a one-to-one relation (i.e. Λ completely determines S), the lower bound
coincides with S. Note further that E [E [Xi | Λ]] = E [Xi] always holds, but V ar [E [Xi | Λ]] < V ar [Xi]
unless E [V ar [Xi | Λ]] = 0. This follows from the identity

V ar(Xi) = E [V ar [Xi | Λ]] + V ar [E [Xi | Λ]]

and this means that Xi, given Λ = λ, is degenerate for each λ. This implies that the random vector
(E [X1 | Λ] ,E [X2 | Λ] , . . . ,E [Xn | Λ]) will in general not have the same marginal distribution functions as
X. But if we can find a conditioning random variable Λ with the property that all random variables E [Xi | Λ]
are non-increasing functions of Λ (or all are non-decreasing functions of Λ), the lower bound Sl is a sum of
n comonotonic random variables. The cdf of this sum can then be obtained by previous results.
To judge the quality of the stochastic lower bound E[S | Λ], we might look at its variance. To maximize it,
i.e. to make it as close as possible to V ar [S], the average value of V ar[S | Λ = λ] should be minimized. In
other words, to get the best lower bound, Λ and S should be as alike as possible.
Let’s further assume that the random variable Λ is such that all gi (λ) ≡ E [Xi | Λ = λ] are non-decreasing
and continuous functions of λ. The quantiles of the lower bound Sl then follow from theorem 8.9 combined
with an application of theorem 8.3(a):

F−1
Sl

(p) =
n∑
i=1

F−1
E[Xi|Λ](p) =

n∑
i=1

F−1
gi(Λ)(p)

=
n∑
i=1

E
[
Xi | Λ = F−1

Λ (p)
]
, p ∈ (0, 1) . (161)

If we now additionally assume that the cdf’s of the random variables E [Xi | Λ] are strictly increasing and
continuous, then the cdf of Sl is also strictly increasing and continuous, and from (28) we get for all x ∈(
F−1+

E[S|Λ] (0) , F−1
E[S|Λ] (1)

)
,

n∑
i=1

F−1
E[Xi|Λ] (FSl(x)) = x,

or equivalently,
n∑
i=1

E
[
Xi | Λ = F−1

Λ (FSl(x))
]

= x, (162)

which unambiguously determines the cdf of the convex order lower bound Sl = E [S | Λ] for S.

Under the same assumptions, the stop-loss premiums of Sl can be determined from (131):

E
[(
Sl − d

)
+

]
=

n∑
i=1

E
[(

E [Xi | Λ]− E
[
Xi | Λ = F−1

Λ (FSl(d))
])

+

]
, (163)

which holds for all d ∈
(
F−1+
Sl

(0) , F−1
Sl

(1)
)
.
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