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Preface

In this thesis I present several results concerning the Chow ring and the algebraic
equivalence ring of a Jacobian variety. The most important reason for studying
these objects is that they carry information that the (co)homology rings do not
carry. The algebraic equivalence ring contains a subring, the tautological ring, and
for different curves, these rings are really different. One reason for this is the ab-
sence of a Poincaré formula in the algebraic equivalence ring of a generic curve. This
absence is a corollary of Ceresa’s theorem. This in turn makes Ceresa’s theorem into
the cornerstone of this thesis. The proof that Ceresa gave is of an analytic nature,
and it took quite some time for me to grasp all of its ingredients. I have tried to
write down the proof as clearly as I could, in a somewhat more general context than
Ceresa did. A first advantage was that I could simplify a (small) step in the proof.
A second is that it made it easier to compare his proof to other proofs. We will see
that Harris’ theory of harmonic volumes doesn’t give a new proof (for part of the
theorem), by reasoning on the dimensions of the involved moduli spaces. This is
overcome by taking a closer look to the involved mappings (the normal functions):
Collino and Pirola consider the infinitesimal invariants to obtain a new proof of part
of Ceresa’s theorem.
A lot of the objects that I work with (Chow ring, algebraic equivalence ring,
Beauville decompostion, (primitive) intermediate Jacobians, Hodge theory) were
new or rather vague to me. Fortunately, there are many references for these sub-
jects, and I have tried to be as adequate as possible in providing them.

The thesis itself is organized as follows

In section 1 we introduce the Chow ring and the algebraic equivalence ring of
an abelian variety. We show that is possesses a second gradation besides the one
by (co)dimension. This gives the Beauville decomposition, which is exploited in
section 4.

In section 2 we recall the definition of a Jacobian variety. Our first approach is
of an algebraic nature, our second analytic. The latter comes from a more general
construction: the intermediate Jacobian. These in turn have primitive parts, and
they are of our interest in view of section 3. We are particularly interested in how
they vary in a family.

In section 3 we reap the fruits of our work in section 2. We can now state and
prove the theorem of Ceresa. Moreover, our rather general considerations in section
2 allow us to compare the proof by Ceresa to other proofs. That is, we discuss
the harmonic volumes by Harris and we’ll see why this doesn’t generalize to higher
genera. We also sketch a proof of part of Ceresa’s theorem given by Collino and
Pirola.

In section 4 we compare the homology ring of a Jacobian variety to its algebraic
equivalence ring. In particular, we compare their tautological subrings. In coho-
mology, this ring is rather dull: it has the same structure for every curve (of fixed
genus). This is due to the Poincaré formula, which is absent in the algebraic con-
text. This absence is due to Ceresa’s theorem, and it inspires to investigate the
tautological ring. We give generators for this ring and describe relations between
them.
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1 THE CHOW RING

1 The Chow ring

In this chapter we introduce the Chow ring CH(X) of a non-singular algebraic vari-
ety X. It is a graded commutative ring that we can associate to such a variety. We
may think of it as a generalization of the divisor class group of a nonsingular variety.
Its elements are formal sums of subvarieties of X, divided out by an equivalence
relation. The ring structure is given by the intersection product, the graduation by
codimension.
The rest of the chapter is devoted to Chow rings of abelian varieties. We will see
that they carry a second product, the Pontryagin product. Furthermore, they carry
a second grading. This gives rise to the Beauville decomposition of CH(X).
We close the chapter by introducing the algebraic equivalence ring of a variety.
This is a quotient of the Chow ring. In particular, we will see that the algebraic
equivalence ring of an abelian variety inherits the two gradations of the Chow ring.

1.1 Algebraic cycles

We start with looking at divisors on a nonsingular variety X. A prime divisor on X
is a closed integral subscheme Y of codimension one. A Weil divisor is an element of
the free abelian group Div(X) generated by the prime divisors. A divisor is written
as a formal sum

D =
∑

niYi,

where the ni are integers and only finitely many of them are different from zero.
Let Y be a prime divisor on X and let η be its generic point. The local ring Oη,Y

is a discrete valuation ring with quotient field K(X), the function field of X. The
corresponding valuation is denoted with

νY : K(X)∗ → Z.

An element r ∈ K(X) is said to have a zero along Y if νY (r) > 0 and a pole if
νY (r) < 0. The order of a zero or pole is |νY (r)|. For fixed r ∈ K(X)∗, all but
finitely many valuations νY are zero in r.
This allows us to define the divisor of a function r ∈ K(X)∗ by div(r) =

∑
νY (r)·Y ,

where the sum is taken over all prime divisors on X. Such a divisor is called a prin-
cipal divisor. Taking the principal divisor of a function gives an injective homomor-
phism of groups K(X)∗ → Div(X) since div(rs) = div(r) + div(s) and div(1) = 0.
The cokernel of this map is called the divisor class group of X and is denoted by
Cl(X).

We will now generalize this idea. First of all, we want to define divisors and prin-
cipal divisors on a variety that is not necessarily nonsingular. But in that case
we do not have discrete valuations at our disposal, since the local rings need not
be regular. Second, we want to define formal sums of closed subvarieties of higher
codimension. We want to divide this group by an equivalence relation that extends
the linear equivalence relation of divisors.

Let X be a variety and let Y be a closed subvariety of codimension one. The
free abelian group generated by the closed subvarieties of X of codimension one is
denoted by Z 1(X). An element of Z 1(X) is called an algebraic cycle of codimen-
sion one and it is written as a formal sum

D =
∑

ni · Yi,

where the integers ni are zero, except for finitely many.
Let Y be a closed subvariety of X of codimension one. Let η ∈ X be the generic
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1.1 Algebraic cycles 1 THE CHOW RING

point of Y and let Oη,Y be the local ring of Y . For a function r ∈ K(X)∗ we define
the order of vanishing of r along Y by

ordY (r) := ℓOη,X
(Oη,X/(r)),

where ℓOη,X
(Oη,X/(r)) is the length of Oη,X/(r) as an Oη,X -module. For fixed

r ∈ K(X)∗, the value ordY (r) is zero except for finitely many closed subvarieties
Y of X. This allows us to define an algebraic cycle of codimension one for a given
r ∈ K(X)∗ by

div(r) :=
∑

ordY (r) · Y,

where the sum is taken over all the closed subvarieties Y of X of codimension one.
The notation is the same as above, which is justified by the fact that in case of a
nonsingular variety, the divisor of a function and the associated codimension 1-cycle
are the same. Furthermore, taking the corresponding algebraic cycle of a function
on X gives a homomorphism of groups

K(X)∗ → Z 1(X),

since div(rs) = div(r) + div(s) and div(1) = 0. The image div(K(X)) is denoted
by Z 1(X)rat. The cokernel of this map is called the codimension-one Chow group,
denoted with CH1(X). It is defined for any variety and if X is nonsingular, it co-
incides with Div(X). The proofs of these statements can be found in [11], App. A.

Next we generalize the notion of a divisor with respect to the dimension. Let
X be a variety of dimension n. The free abelian group of closed subvarieties of
codimension k is denoted by Z k(X). Its elements are called algebraic cycles of
codimension k and they are written as finite formal sums

∑
niYi,

where the ni are integers and the Yi are closed subvarieties.

Example 1.1 A natural situation in which algebraic cycles appear is the following.
Let Z ⊂ X be a closed subscheme of finite type, all of whose irreducible components
are of dimension k in X. The geometric multiplicity of a component Zj is defined
by mj = ℓOZj,Z

(OZj ,Z). Let Zj,red be the reduced scheme associated to Zj . Then

Zj,red can be viewed as a k-dimensional subvariety of X. To Z we associate an
algebraic k-cycle defined by

∑
mjZj,red. By abuse of notation we denote this cycle

by Z.

Sometimes it is convenient to emphasize the dimension of an algebraic cycle, rather
than the codimension. In that case we write Zk(X). Thus the group of codimension
k-cycles Z k(X) is the same as the group of (n− k)-cycles Zn−k(X).

Next, we look at the functorial behavior of associating the group of cycles to a
variety. Let f : X → X ′ be a proper morphism of varieties and Y a closed sub-
variety of dimension k of X. Then f(Y ) = Y ′ is a closed subvariety of dimension
k′ ≤ k of X ′. If k < k′ we define the k-cycle f∗Y to be the zero cycle in Zk(X). If
k′ = k, then K(Y ′) is a finite extension of K(Y ) of some degree, say d. In this case
we define f∗Y = d · Y ′ ∈ Z k(X). We can extend this map Z-linearly to obtain a
group homomorphism

f∗ : Zk(X) → Zk(X ′).

Recall that a morphism f : X → X ′ of varieties is called flat if for every point x ∈ X,
the stalk Of(x),Y is a flat Ox-module via the natural map f ♯ : Of(x),Y → f∗Ox,X . It

2



1 THE CHOW RING 1.2 The Chow ring

follows from the definition that a flat morphism f : X → X ′ of relative dimension
n associates to a closed k-dimensional subvariety Y ′ of X ′ a (k+ n)-cycle f−1(Y ′),
denoted with f∗(Y ′). We extend this map Z-linearly to a homomorphism of groups

f∗ : Zk(X ′) → Zk+n(X).

The maps f∗ and f∗ are called the push-forward and the pull-back by f . If f is
not proper, the push-forward is not defined, since the image of a closed subvariety
might not be closed. In contrast to this, we will see that we can define the pull-back
of cycles by maps that are not flat.

1.2 The Chow ring

We have seen that an element r ∈ K(X)∗ of the function field of a variety of di-
mension n gives rise to the (n− 1)-cycle div(r), the divisor of r. The free group of
divisors on X that is generated by the divisors of elements r in K(X)∗ is denoted
with Z 1(X)rat. This is a subgroup of Z 1(X) and we say that two divisors D
and D′ are rationally equivalent if their difference D −D′ is in Z 1(X)rat. In this
subsection we generalize this equivalence relation to higher codimension.

Let X be an n-dimensional variety and Y a (k + 1)-dimensional closed subvari-
ety of X. An element r ∈ K(Y )∗ gives rise to a divisor div(r) on Y . Since the
inclusion Y ⊂ X is proper, we can push this divisor forward to obtain a k-cycle
in Zk(X). By abuse of notation, this cycle is also written as div(r). An ele-
ment Z ∈ Zk(X) is rationally equivalent to zero, written Z ∼rat 0, if there are
finitely many (k + 1)-dimensional subvarieties Yi of X and ri ∈ K(Yi)

∗ such that
Z =

∑
div(ri). Note that −Z =

∑
div(r−1

i ). It follows that the set of k-cycles that
are rational equivalent to zero, denoted with Zk(X)rat, is a subgroup of Zk(X).
The quotient

CHk(X) := Zk(X)/Zk(X)rat

is called the k-dimensional Chow group. Usually we want to emphasize the codi-
mension of the cycles. In this case we write CHn−k(X) instead of CHk(X). The
class of a subvariety Y ⊂ X in the Chow group is denoted by [Y ] ∈ CHk(X)
The Chow groups behave nicely under push-forward by a proper- and pull-back by
a flat morphism, which is due to the following proposition.

Proposition 1.2 Let f : X → X ′ be a morphism of varieties.

a If f is proper then f∗(Zk(X)rat) ⊂ Zk(X ′)rat.

b If f is flat of relative dimension n then f∗(Zk(X ′)rat) ⊂ Zk+n(X)rat

Proof. See e.g. Thm.1.4 and Thm.1.7 of [11] or Lemma 9.5 and 9.7 of [33]. �

Note that CHk(X) = 0 for k < 0 and k > n. The (total) Chow group of X is
defined by

CH(X) :=

n∑

k=1

CHk(X).

The Chow group of a nonsingular variety is equipped with a product that makes it
a commutative ring. Before we define it, we look at a simple case first. Recall (e.g.
from [18] or [4]) that on a projective nonsingular surface X there exists a unique
pairing Div(X)×Div(X) → Z such that (1) for two curves C,D in X that intersect
properly1, the pairing C ·D counts the number of points in the intersection C ∩D,

1Two subvarieties C, D intersect properly if all the irreducible components have codimension
codim(C) + codim(D).

3



1.2 The Chow ring 1 THE CHOW RING

(2) it is symmetric and additive and (3) it depends on the linear equivalence classes:
if C ′ ∼rat C then C ·D = C ′ ·D. The proof runs in two steps. First, it is shown that
for any two curves C,D, there is a curve C ′ ∼rat C such that C ′ and D intersect
properly. Second, it is shown that there exists a pairing for curves that intersect
properly and that it satisfies the above requirements. The pairing C · D is then
defined by the pairing C ′ ·D of properly intersecting curves, with C ′ ∼rat C. The
proof is concluded by showing uniqueness of the pairing.
This is not an intersection product on the Chow ring, but it gives rise to one. We
expect the intersection of two curves to consist of the points of the intersection,
together with the right multiplicity. This pairing gives back only an integer: the
degree of the 0-cycle that consists of the points in the intersection. For an inter-
section product we want to get more information out of the pairing, i.e. we want
to know the rational equivalence classes of the points in the intersection, together
with the right multiplicities.
Instead of move one curve in its rational equivalence class and then count the points
in the intersection, we can calculate the pairing in another way: by its intersection
multiplicities. Let C,D be two curves without a common irreducible component.
Given a point x ∈ C ∩ D we define i(C,D;x) by the length of the Ox,X -module
Ox,X/(c, d), where c and d are the local equations of C and D at x. It can be shown
that for such curves, we have C · D =

∑
x∈C∩D i(C,D;x). It remains to mention

a method to calculate the self-intersection of a curve C. This can be done by the
degree of the normal sheaf of C in X.

We now define an intersection product on the Chow ring of a projective surface.
The class of the surface itself is the identity. The intersection of two points or a
point and a curve is always zero. The intersection of two curves without a common
irreducible component is defined by the 0-cycle

C ·D =
∑

x∈C∩D

i(C,D;x)[x].

It remains to show which 0-cycle is attached to C · C. This is a technical matter
that we mention without motivation. Let i : C → X be the inclusion and let NC/X

the the normal sheaf on C. This is an invertible sheaf and its corresponding divi-
sor is denoted by c1(NC/X). Pushing it forward to X gives an expression for the
self-intersection of C, namely C · C = i∗(c1(NC/X)).

This intersection product can be successfully generalized to higher dimensions. It
gives the Chow ring the structure of a commutative ring. Furthermore, it has some
nice functorial properties that we will exploit later on. We formulate this in a
theorem.

Theorem 1.3 Let C be the category of nonsingular quasi-projective varieties over
C. Then there is a unique intersection theory for the cycles modulo rational
equivalence. By an intersection theory we mean a pairing CHk(X) × CHm(X) →
CHk+m(X) for each X in C, that is subject to the following axioms.

A1 The intersection pairing makes CH(X) into a commutative associative graded
ring, with identity, for every X in C. It is called the Chow ring of X.

A2 For any morphism f : X → Y of varieties in C, the map f∗ : CH(Y ) → CH(X)
is a homomorphism of groups. If g : Y → Z is another morphism in C, we
have f∗ ◦ g∗ = (f ◦ g)∗.

A3 For any proper morphism f : X → Y of varieties in C, f∗ : CH(X) → CH(Y )
is a homomorphism of graded groups (which shifts degrees). If g : Y → Z is
another proper map of varieties in C, we have g∗ ◦ f∗ = (g ◦ f)∗.

4



1 THE CHOW RING 1.2 The Chow ring

A4 (Projection formula). If f : X → Y is a proper morphism, x ∈ CH(X) and
y ∈ CH(Y ), then

f∗(x · f∗y) = f∗(x) · y.

A5 (Reduction to the diagonal). If α, β ∈ CH(X), and if ∆ : X → X ×X is the
diagonal morphism, then

α · β = ∆∗(α× β).

A6 (Local nature). If Y and Z are subvarieties of X which intersect properly
(which means that every irreducible component of V ∩W has codimension
equal to codim(Y ) + codim(Z)), we can write

[Y ] · [Z] =
∑

i(Y,Z;Wj)Wj ,

where the sum runs over the irreducible components Wj of Y ∩Z, and where
the integer i(Y,Z;Wj) depends only on a generic point of Wj on X. We call
i(Y,Z;Wj) the local intersection multiplicity of Y and Z along Wj .

A7 (Normalization). If V is a subvariety ofX, andD is an effective Cartier divisor
meeting V properly, then V ·D is the cycle V ∩D on V , which is defined by
restricting the local equation of D to V . (This implies in particular that
transversal intersections of non-singular subvarieties have multiplicity 1).

Here, the pull-back f∗ is defined for every map f : X → Y in C by

f∗(α) = pX∗(Γf · p−1
Y (α))

for an element α ∈ CHk(Y ). The variety Γf denotes the graph of f in X × Y and
pX , p‘Y are projections from the product onto its factors.

Proof. We briefly sketch two proofs. The first one is classical, and references for
it can be found in [18]. The second proof is described in the first eight chapters of
[11].
The classical proof consists of three parts. First one shows that the theory, if it
exists, is unique. Second is Chow’s moving lemma. Two subvarieties Y,Z of X
are said to intersect properly if all the irreducible components are of codimension
codim(Y ) + codim(Z). The lemma states that for every pair of subvarieties Y,Z,
there is a subvariety Y ′, rationally equivalent to Y , that has a proper intersection
with Z. Third, we need an intersection multiplicity. Let Y,Z be subvarieties of
X intersecting properly. Let W be an irreducible component, with local ring O.
The varieties Y and Z are, locally at W , given by ideals y and z. The intersection
multiplicity that does the job is defined by

i(Y,Z;W ) =
∑

i≥0

ℓ(TorO

i (O/y,O/z)).

Fulton’s intersection theory is rather complicated and too involved to explain here.
The main difference is that it avoids Chow’s moving lemma. Instead, it assigns
to every pair of cycles Z and Z ′ a cycle class in the Chow ring of the intersection
scheme of the supports of the cycles. This gives a class in CH(X) and it doesn’t
change if we vary Z or Z ′ in their rational equivalence classes. In the various chap-
ters of his book [11] Fulton develops this theory and shows that his product satisfies
the axioms A1-A7. �
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1.3 Beauville decomposition 1 THE CHOW RING

1.3 Beauville decomposition

As we mentioned before, we are interested in the Chow rings of the Jacobian variety
of curves. A first step in understanding this ring better, is to study the Chow ring
of an abelian variety, because the Jacobian of a nonsingular curve is an abelian
variety. Arnaud Beauville showed that the Chow ring of an abelian variety carries
a second gradation (besides gradation by codimension). We introduce it by giving
an interpretation of Mumford’s formula for divisor classes.

First we recall this formula. Let A be an abelian variety over C of dimension g.
An integer n ∈ Z gives an isogeny [n] : A → A. The pull-back is a homomorphism
[n]∗ : Z 1(A) → Z 1(A) and Mumford’s formula gives an expression for [n]∗(D) in
the Chow group CH1(A) by

[n]∗D ∼rat

(
n2 + n

2

)
D +

(
n2 − n

2

)
[−1]∗D.

If we extend scalars by CH1
Q(A) := CH1(A) ⊗Z Q, we can write

[D] =
1

2
([D] + [−1]∗[D]) +

1

2
([D] − [−1]∗[D])

for any divisor class [D] ∈ CH1
Q(A). So every divisor class can be written as the sum

of a symmetric and an anti-symmetric divisor class1. Let CH1
0(A) ⊂ CH1

Q(A) denote

the subgroup of symmetric divisor classes and CH1
1(A) ⊂ CH1

Q(A) the subgroup of
anti-symmetric divisor classes. Since a (non-trivial) symmetric divisor class is not
anti-symmetric in CH1

Q(A) and vice versa2, we have

CH1
Q(A) = CH1

0(A) ⊕ CH1
1(A).

Mumford’s formula gives another interpretation of this decomposition: the group
CH1

0(A) ⊂ CH1
Q(A) is the group consisting of divisor classes [D] such that [n]∗[D] =

n2 · [D] and CH1
0(A) ⊂ CH1

Q(A) is the subgroup consisting of divisor classes [D]
such that [n]∗([D]) = n · [D].
We conclude that the endomorphisms [n]∗ on the codimension one Chow groups
have eigenvalues of the form n2−s, with s = 0, 1, and these two types of eigenvalues
give rise to a decomposition of the Chow group CH1

Q(A).

This result can be generalized to higher codimensions. Let CHk
Q(A) denote the

Chow group with extended scalars CHk(A) ⊗Z Q. In this way we lose the torsion
of the Chow groups, which is crucial for the theorem.

Theorem 1.4 (A. Beauville, 1986) For s ∈ Z, let CHk
s(A) denote the subgroup

of CHk
Q(A) consisting of classes α such that [n]∗(α) = n2k−s · α for every n ∈ Z.

Then

CHk
Q(A) =

k⊕

s=k−g

CHk
s(A).

Before we can give the proof, we have to introduce two concepts: the Pontryagin
product and the Fourier transform.
The multiplication on A is denoted by µ : A×A→ A, the identity by e : Spec(C) →
A. This structure on A gives rise to a second product in the Chow ring CH(A) called

1A divisor class [D] is called symmetric/anti-symmetric if [−1]∗[D] = ±[D]
2An element that is both symmetric as anti-symmetric is a torsion point. But there are none

since we tensored with Q
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1 THE CHOW RING 1.3 Beauville decomposition

the Pontryagin product. Let pi denote the projection A×A→ A onto its i-th factor.
Given two elements α ∈ CHk(A) and β ∈ CHm(A), we define

α ⋆ β = µ∗(p
∗
1(α) · p∗2(β)) ∈ CHk+m−g(A).

This is the Pontryagin product, and it is a commutative and associative product on
the Chow ring.
Let At denote the dual abelian variety of A and let ℘ ∈ CH1(A × At) denote the
divisor class of the Poincaré bundle P on A × At. We use the formal expression
exp(℘) to denote the sum

1 + ℘+
1

2!
℘ · ℘+

1

3!
℘ · ℘ · ℘+ · · · .

Note that this is a finite sum, since the k-fold self-intersection of a divisor is zero if
k > dim(A). The Mukai-Fourier transform F : CHQ(A) → CHQ(At) is defined by

F(α) = pAt∗(exp(℘) · p∗Aα),

where pA and pAt are the projections of A × At onto their factors and CHQ(A)
is the Chow ring with extended scalars. Shigeru Mukai introduced this transform
in a different context (as a functor) in [28]. Arnaud Beauville studied in [2] the
particular case that we consider here. From now on we shall refer to F simply as
the Fourier transform.

Lemma 1.5 The Fourier transform F : CHQ(A) → CHQ(At) has the following
properties:

F1 Let F t : CHQ(At) → CHQ(A) be the Fourier transform of At, where we have
identified Att = A. Then F t ◦ F = (−1)g[−1]∗.

F2 F(α ⋆ β) = F(α) · F(β) and F(α · β) = (−1)gF(α) ⋆ F(β).

F3 Let f : A→ A be an isogeny. Then F ◦ f∗ = f t
∗ ◦ F and F ◦ f∗ = f t∗ ◦ F .

F4 Let α ∈ CHp
Q(A) and write F(α) =

∑
q β

q, with βq ∈ CHq
Q(At). Then

[k]∗(βq) = kg−p+q · βq.

Proof. This is Prop. 3 of [3]. �

Remark 1.6 In classical analysis, the Fourier transform provides a isometry

L2(V ) → L2(V ∗),

where V is a real vector space and V ∗ its dual. The Fourier transform of the
convolution product of two functions equals the normal product of the transforms
of the functions. In view of F2, the map F is called the Fourier transform.

Before we give a proof of the Beauville decomposition we make some observations
for an element α ∈ CHp

Q(A).
(1) Application of A6 of theorem 1.3 on the map [k] : A → A and the cycles
1 ∈ CH0

Q(A) and α ∈ CHp
Q(A) yields

[k]∗[k]
∗(α) = [k]∗(1) · α = k2g · α.

7
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The second equality follows from the definition of [k]∗ and the degree of [k] being
k2g. It follows that [k]∗[k]

∗ = k2g · idCH(A). If α ∈ CHp
s(A), then [k]∗[k]

∗(α) =
k2p−s · k∗(α) = k2g · α; we conclude

CHp
s(A) = {α ∈ CHQ(A) : [k]∗(α) = k2g−2p+s · α, for all k ∈ Z}.

(2) If F(α) ∈ CHg−p+s
Q (At), then F(α) ∈ CHg−k+s

s (At). Indeed, application of F4,

with βg−p+s = F(α) yields [k]∗(βg−p+s) = k2g−2p+s · βg−p+s.
(3) Furthermore, F(α) ∈ CHs

Q(At) if and only if α ∈ CHp
s(A). To see this, put

β = (−1)g[−1]∗F(α) and q = g − p + s. Then β ∈ CHq
Q(At) and F t(β) = α ∈

CHg−q+s
Q (A). Our previous observation now implies that α ∈ CHp

s(A). For the

converse, we have [k]∗[k]
∗ = k2g · idCH(A). So [k]∗(α) = k2g−2p+s · α and by F3 we

find

[k]∗F(α) = F([k]∗(α)) = k2g−2p+s · α.

By F4 we conclude that F(α) is of dimension p− s.

Proof of theorem 1.4. Let α ∈ CHp
Q(A) and put β = (−1)g[−1]∗F(α). The

latter decomposes as
∑

q β
q with βq ∈ CHq

Q(At). From the observations we just

made, it follows that βq ∈ CHq
q+p−g(A

t) and thus F t(βq) ∈ CHp
p+q−g(A). We con-

clude that α =
∑

q F
t(βq). We only need to show that the decomposition is unique.

But this follows from the fact that a non-trivial element in CHp
m(A) ∩CHp

n(A) is a
torsion element, while CHQ(A) doesn’t have torsion. �

According to the theorem, every Chow group decomposes into g summands. The
following proposition shows that several of these summands vanish.

Proposition 1.7 (1) If s < 0 and p ∈ {0, 1, g − 1, g} then CHp
s(A) = 0. The same

space is also trivial if p ≤ g − 2 and s < p− g + 2.

Proof: This is Prop. 3 of [5]. �

So in the case of g = 5 and p = 2 we might have non-trivial CH2
−1(A). In general,

it remains an open question whether the spaces CHp
s(A) with s < 0 are trivial.

1.4 Algebraic equivalence

On an abelian variety we can translate subvarieties using the group law. In partic-
ular on a Jacobian variety, where certain subvarieties carry information about the
curve. But a translation of such a subvariety will carry the same information. We
will make this more precise later, but for now this is the reason for looking at a
quotient of the Chow ring of an abelian variety: the algebraic equivalence ring.

Before we introduce the subgroup of cycles that are algebraically equivalent to zero,
we give a geometric definition of a cycle being rationally equivalent to zero. To this
end we consider a variety X and the product X × P1 with pX , pP1 the projections
onto its factors. Let Z =

∑
Zi be a (k + 1)-cycle on X × P1 such that every for

all i, the map fi := pP1 |Zi
: Zi → P1 is dominant. The subscheme f−1(a) can be

viewed a cycle on Zi and thus on X. As a cycle on X it is denoted with Zi(a). In
this way, the cycle Z gives a family of cycles Z(a) =

∑
Zi(a) on X with a ∈ P1.

It can be shown (Prop. 1.6 of [11]) that a cycle on X of the form Z(0) − Z(∞) is
rationally equivalent to zero and conversely, any cycle in Z k(X)rat is of the form
Z(0) − Z(∞), with Z a (k + 1)-cycle on X × P1 satisfying the above condition.

8
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We use this description to define algebraic equivalence. The only difference is that
P1 may be replaced by any nonsingular variety T . To be precise:

Definition 1.8 Let X and T be nonsingular varieties of dimensions g,m respec-
tively. Let Z =

∑
i Zi be a (k +m)-cycle such that the varieties Zi satisfy the fol-

lowing condition: the map fi : Zi → T , which is the restriction of pT : X × T → T ,
is dominant. For t ∈ T , we view the subscheme f−1

i (t) of Zi as a k-cycle on X. A
cycle a of the form Z(t0) − Z(t1) is called algebraically equivalent to zero, written
as a ∼alg 0. Two cycles Z and Z ′ are algebraically equivalent if their difference is
algebraically equivalent to zero.

If two cycles V and W are algebraically equivalent to zero, then so is their sum
V +W . Furthermore, the algebraic equivalence relation is maintained under proper
push-forward and flat pull-back. A closer look to the definition reveals that the pa-
rameter space T in the definition may be replaced by a nonsingular projective curve.
Finally, two positive k-cycles V,W are algebraically equivalent on X, i.e. V ∼alg W ,
if and only if there is a nonsingular, projective curve T , a positive cycle U on X
and a positive cycle Z together with points t0 and t1 such that V +U = Z(t0) and
W+U = Z(t1). In other words, two positive cycles that are algebraically equivalent
cannot necessarily be deformed into one another via some algebraic curve: we might
need to add a positive cycle to it first. For proofs of these statements we refer to
Chap. 10 of [11].

The group of k cycles that are rationally equivalent to zero is denoted with Zk(A)alg

or Z g−k(A)alg if we want to stress the codimension. We have an inclusion of groups

Z k(A) ⊃ Z k(A)alg ⊃ Z k(A)rat.

The quotient Z k(A)/Z k(A)alg is denoted with Ak(A). The direct sum

A(A) :=

g⊕

i=0

Ai(A)

is the same as the quotient of CH(A) and
⊕

(Z k(A)alg/Z k(A)rat). The latter is an
ideal of the Chow ring and it follows that A(A) is a ring. It is called the algebraic
equivalence ring of A. Just as before, we denote Ak

Q(A) and AQ(A) for the group
and the ring with extended scalars.

The ideal
⊕

(Z k(A)alg/Z k(A)rat) ⊂ AQ(A) is also homogeneous with respect to
the Beauville decomposition. Indeed, consider

α = α(k−g) + α(k−g+1) + · · · + α(k) ∈ Z k(A)alg/Z
k(A)rat

and the elements [n]∗α for n = 1, . . . , g + 1. These elements are also algebraically
equivalent to zero and the linear space that they generate lies in the span of
{a(k−g), . . . , α(k)}. A base change is given by a nonsingular integral matrix1, so
each α(j) is algebraically equivalent to zero. This shows in particular that AQ(A)
inherits both gradations.

Remark 1.9 We close this section by noting that in view of the gradations on
AQ(A), the intersection and Pontryagin products are homogeneous of some degree.
More precise, for elements α ∈ Ap

s(A) and β ∈ Aq
t (A) we have

α · β ∈ Ap+q
s+t (A) and α ⋆ β ∈ Ap+q−g

s+t (A).

1The n-th column is of the form np−g · (1, n, n2, . . . , ng). So the matrix is a Vandermonde
matrix whose n-th column is multiplied by np−g.
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2 JACOBIAN VARIETIES

2 Jacobian Varieties

In the previous section we defined the algebraic equivalence ring for a variety and
we have seen that for an abelian variety, it carries two gradations. In this section
we turn our attention to Jacobian varieties and their algebraic equivalence rings.
First we recall some facts about the Jacobian variety. Then we look at the classes
of certain cycles in the Chow ring of a Jacobian variety, the Ceresa cycles. In the
last two subsections we make preperations for section 3. In particular, we recall
some facts about intermediate Jacobians and normal functions.

In this section, a curve is a complete, nonsingular connected curve over C of some
genus g 6= 0. This holds for this section only.

2.1 Jacobian varieties

Let C be a curve and let D =
∑
niPi be a divisor on C, where Pi ∈ C and ni an

integer. The associated invertible sheaf is denoted with O(D). Recall that the map
D 7→ O(D) is a 1-1 correspondence between Div(C) and the invertible sheaves on C
and that O(D1−D2) ∼= O(D1)⊗O(D2)

−1. Furthermore, two divisors are rationally
equivalent if and only if their associated invertible sheaves are isomorphic. The
quotient Div(C)/ ∼rat is denoted with Cl(C) and is called the divisor class group.
We could also have written CH1(C) for this group, but this is not customary.
The homomorphism Cl(C) → Pic(C) is an isomorphism of groups. This allows us
to define the degree of the class of an invertible sheaf: it is just the degree of the
associated divisor. This is well defined, because if two divisors both represent the
same class of invertible sheaves, then they differ by a rational divisor, which is of
degree zero. Let Pic0(C) denote the group of classes of invertible sheaves of degree
zero. Loosely speaking, the Jacobian variety is an abelian variety over C whose
closed points are isomorphic to the group Pic0(C).
We will now define it rigorously, as the variety that represents the functor of a
moduli problem. Let T be a connected scheme over C and let L be an invertible
sheaf on C × T . The projections of C × T onto its factors are denoted by pC and
pT . For any point t ∈ T we can consider the restriction L |C×{t} as an invertible
sheaf on C. We denote it by Lt and it can be shown that its degree is independent
of t. If M is any invertible sheaf on T then p∗T is an invertible sheaf on C × T all
of whose restrictions (p∗T M )t are trivial. In particular, they are of degree zero. To
a scheme T over C we can associate the group

P 0
C(T ) = {L ∈ Pic(C × T )|deg(Lt) = 0 for all t}/p∗T Pic(T ).

This association is a functor from the category of schemes over C to the category
of abelian groups.

Theorem 2.1 There is an abelian variety J(C) over C and a morphism of functors
ι : P 0

C → J such that ι(T ) : P 0
C(T ) → J(C)(T ) is an isomorphism whenever C(T )

is non-empty.

Proof. See e.g. section 4 of [27]. �

In our case there is always a rational point, since we work over the complex numbers.
So we can view the curve C as a pointed variety: a variety with a specified rational
point. Likewise, (J(C), o) is a pointed variety, where o ∈ J(C)(C) is the identity.
This leads to the following definition. For two pointed varieties (X,x) and (Y, y),
a divisorial correspondence between them is an invertible sheaf L on X × Y such
that the restriction to both X × {y} and {x} × Y are trivial.
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2 JACOBIAN VARIETIES 2.1 Jacobian varieties

Theorem 2.2 Let P be a C-rational point on C. Then there is a divisorial corre-
spondence M P between (C,P ) and (J(C), o) with the following universal property:
for any pointed variety (T, t) and any divisorial correspondence L between (C,P )
and (T, t) there is a unique morphism φ : T → J(C) such that (1 × φ)∗M P ∼= L .

Proof. See e.g. Thm. 1.2 of [27]. �

This has an interesting consequence. Consider the divisorial correspondence be-
tween (C,P ) and itself via the sheaf L P := O(∆ − {P} × C − C × {P}) on
C × C, where ∆ is the diagonal. It has the property that L P |C×{Q}

∼= O(P −Q).
By theorem 2.2 there is a unique map φP : C → J(C) with φP (P ) = o and
(1 × fP )∗M P = L P . If we identify J(C)(C) with Cl0(C), the divisors on C of
degree zero, then φp can be regarded as the map sending Q to [Q−P ]. This map is
in fact a closed immersion. For injectivity, look at the fibers of φP : these are P1’s
or P0’s. If P1 occurs as a fiber, then C = P1, contradicting with the genus g ≥ 1.
The rest of the proof can be found in [27].

The subvarieties Wr. The image of φP is denoted by W1 and it is the subvariety
that paramatrizes divisor classes of degree zero that can be represented by Q− P ,
for Q ∈ C. Note that the image of φP ′

is a translation of W1 by the point [P −P ′].
All the translates of W1 carry the same information: they paramatrize the divisor
classes that can be represented by an effective divisor of degree one.
We generalize this to higher dimensions. Let r ≥ 1 be an integer. The closed points
of Cr = C × C × · · · × C represent effective divisors on C of degree r. Let Σr be
the symmetric group on r letters and consider its action on Cr via

σ : (Q1, . . . , Qr) 7→ (Qσ(1), . . . , Qσ(r)).

The quotient of Cr by this action is denoted by C(r) and it is called the r-th
symmetric power of C.

Proposition 2.3 The symmetric power C(r) is a nonsingular variety. It has the
following universal property: every symmetric morphism1 Cr → T factors through
π : Cr → C(r).

Proof. See e.g. §3 of [27]. �

Consider the morphism φP
r : Cr → J(C) : (Q1, . . . , Qr) 7→

∑
i φ

P (Qi). It is clearly
symmetric so it factors through the symmetric product. We get a proper morphism

φP
(r) : C(r) → J(C) : Q1 + · · · +Qr 7→

∑

i

φP (Qi).

The image is a subvariety of J(C) that paramatrizes the divisor classes that can
be represented by an effective divisor of degree r. On the closed points this map is∑

iQi 7→
∑

[Qi − P ]. The fiber of φP
(r) over a point

∑
[Qi − P ] is the linear system

|
∑
Qi|. The variety Wr paramatrizes the divisor classes that can be represented

by a positive divisor of degree r. This is independent of the embedding of C in
J(C). Any other choice of P ∈ C would give a translate of the Wr, but it still
paramatrizes the same kinds of linear systems. In other words:

The varieties Wr carry geometric information: they paramatrize linear systems on
the curve of the form |D|, with D positive of degree r. This information is indepen-
dent of the choice of embedding φP : C → J(C).

1A morphism ϕ : Cr → T is called symmetric if ϕ ◦ σ = ϕ, for every σ ∈ Σr.
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If r ≥ g then Wr = J(C). Indeed, let [D] be a divisor class of degree zero. Then
[D + r · P ] is of degree r ≥ g. It follows from the Riemann-Roch theorem that
|D + r · P | is a linear system of dimension ≥ 1. So there is an effective divisor D′

of degree r with D′ ∼rat D + r · P . Hence φP
(r)(D

′) = [D], which shows that φP
(r) is

surjective.

Remark 2.4 The classes of Wr in CHQ(J(C)) are related by the Pontryagin prod-
uct by [W1]

⋆r = [Wr]·r! for 1 ≤ r ≤ g. Indeed, in view of the following commutative
diagram

C × C(r)

(r:1)

��

φP ×φP
(r−1) // J(C) × J(C)

µ

��
C(r)

φP
(r) // J(C)

we have that [W1] ⋆ [Wr−1] = r · [Wr]. Induction on r yields the result.

The case of r = g − 1 is of special interest: the subvariety Wg−1 is a divisor and
it has some remarkable properties. First of all, it gives a principal polarization on
J(C). Second, there is a translation of Wg−1 that is a symmetric divisor.

Theorem 2.5 Let κ ∈ J(C) be the image of the canonical divisor K under the
map φP

2g−2. Let W−
g−1 be the pull-back of Wg−1 by [−1]. Then

W−
g−1 = t∗κWg−1,

where tκ : J(C) → J(C) is translating over κ.

Proof. See e.g. p.338 of [12] or Thm. A.8.2.1 of [20]. �

The map [2] : J(C) → J(C) is an isogeny of degree 22g. In particular, we can
find an element λ ∈ J(C) such that 2λ = κ. Such an element is called a theta
characteristic and it yields an identity

t∗−λW
−
g−1 = t∗λWg−1.

This divisor is symmetric. Indeed, we have t∗λ[−1]∗ = [−1]∗t−λ, so

[−1]∗t∗λWg−1 = t∗−λW
−
g−1 = t∗λWg−1.

The fact that the variety Wg−1 is a principal polarization is proven in e.g. Cor.
8.2.3 of [20].

We close this paragraph with an example that uses proposition 2.3, and that we
need in section 3.

Example 2.6 (The difference map) Let F be a curve of genus 2. The map
δ : F 2 → J(F ) : (P,Q) 7→ [P − Q] is the difference map. It is independent of the
choice of a point in F . Since F is hyperelliptic, we have the hyperelliptic involution
ι : F → F and this gives rise the map (id, ι) : F × F → F × F . Composing with δ
gives the map

F × F → J(F ) : (P,Q) 7→ [P − ι(Q)].
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But [P − ι(Q)] = [Q− ι(P )], so the map is symmetric. Hence it factors through the
symmetric product and we obtain a commutative diagram

F × F
δ // J(F ) J(F )

t−κoo

F × F

(id,ι)

OO

π
// F (2)

OO�
�

�

;;wwwwwwww

The Ceresa cycles The Ceresa r-cycle is defined by Wr −W−
r . The cycle W1 −

W−
1 is sometimes called the basic cycle and some denote it with C−C−. These cycles

depend on a chosen point of P , but as we have seen, their geometric information
does not depend on this choice. This is the reason for considering the classes of
the Ceresa cycles in AQ(J(C)), because these are independent of the choice of
embedding of C in J(C). The class of the r-cycle Wr in AQ(J(C)) is denoted with
wr, or wg−r if we want to stress codimension. There are a few occasions in which
the class of a Ceresa cycle vanishes. We mention two of them.
First, for any nonsingular complete curve C of genus g, the image of the Ceresa
(g − 1)-cycle in AQ(J) is zero. Indeed, we may represent the class wg−1 by a
symmetric divisor, showing that Wg−1 and W−

g−1 have the same image in AQ(J(C)).
Second, if C is hyperelliptic. Then there is a Weierstrass point P ∈ C, i.e. a point
P such that the linear system |2P | is a base-point free pencil. Furthermore, there is
the hyperelliptic involution ι : C → C which has the property that for every point
Q, the divisor Q+ ι(Q) is in |2P |. In other words,

ι(Q) − P ∼rat P −Q.

It follows that W−
1 = (φP ◦ ι)(C). But ι : C → C is an isomorphism, so W1 = W−

1 .
So in this case, the image of the Ceresa 1-cycle in AQ(J(C)) is trivial.

In section 3 we will see that the vanishing of the Ceresa cycles in AQ(J(C)) is
rather an exception than a rule. Before we can state and prove the various theo-
rems there, we need some preliminary results.

2.2 Intermediate Jacobians

To a projective complex manifold X of dimension g we can associate the k-th
intermediate Jacobian, for k = 1, . . . , g. This is a complex torus that is constructed
as follows. The manifold X has a polarization ω ∈ H1,1(X)∩H2(X,Z) which is the
Chern class of an ample bundle on X. This form gives rise to the Hodge filtration1

Hk(X,C) = F 0Hk ⊃ F 1Hk ⊃ · · · ⊃ F kHk ⊃ F k+1Hk = 0

of the cohomology group Hk(X,C). In particular, for 2k − 1 we have

H2k−1(X,R) ⊗R C = H2k−1(X,C) = F kH2k−1(X,C) ⊕ F kH2k−1(X,C)

and this decomposition defines a complex structure on H2k−1(X,R). We find an

isomorphism H2k−1(X,R) ∼= F kH2k−1(X,C). For the manifolds of our interest,
the cohomology groups H2k−1(X,Z) are without torsion. The k-th intermediate

1For the groups involved in the Hodge decomposition and filtration we use the (standard)
notation of [12].
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Jacobian is defined as the cokernel of the horizontal arrow below.

H2k−1(X,Z) //

''PPPPPPPPPPPP
F kH2k−1(X,C)

H2k−1(X,R)

66mmmmmmmmmmmm

It is denoted with Jk(X) and for k = 1 and k = g, we get the Picard variety and
the Albanese variety of X. For a curve C these varieties coincide, and moreover,
J1(C) is isomorphic as a complex manifold, with J(C)(C). This is the content of
the famous theorems by Abel and Jacobi, which can be found in [12]. From now
on, we will write J(C) for these varieties.
Using Poincaré duality we find an alternative description:

J2k−1(X) =
(F g−k+1H2g−2k+1(X,C))∗

H2g−2k+1(X,Z)

and this description is suited to define the Abel-Jacobi map. This map is associates
to certain algebraic cycles an element in Jk(X). We use this image to study the
cycle in question. More precise, consider the cycle class map

cl : Zk(X) → H2g−2k(X,Z)

that associates to a variety its fundamental class. If the variety is singular, we use a
desingularization to define a fundamental class. The kernel of this map is the group
of algebraic cycles that are homologous to zero, denoted with Z k(X)hom. The
various subgroups of Z k(X) we have defined so far are subgroups of each other:

Z k(X) ⊃ Z k(X)hom ⊃ Z k(X)alg ⊃ Z k(X)rat.

The Abel-Jacobi map associates to a cycle Z ∈ Z k(X)hom the element
∫
Γ
−, which

is integrating over a singular (2g−2k+1)-chain Γ whose boundary is Z. This gives
a homomorphism

Φk
X : Z k(X)hom → J2k−1(X)

which is called the Abel-Jacobi map.

The intermediate Jacobian Jk(X) contains an abelian variety1 Jk(X)alg, which
is the largest subtorus whose tangent space is contained in Hk−1,k(X), or Poincaré
dual, in Hg−k+1,g−k(X)∗. The Abel-Jacobi map, when restricted to Z k(X)alg,
factors through this abelian variety, i.e. the diagram

Z k(X)alg

Φk
X //

''NNNNNNNNNNN
J2k−1(X)

J2k−1(X)alg

77ppppppppppp

commutes. This is a crucial observation, which is exploited in proofs of the next
section. We give a motivation for this fact. For a Z ∈ Z k(X)alg we can find a
curve S, a cycle E ∈ Z k(X×S) and two points s, t ∈ S such that E(s)−E(t) = Z.

1We use the form (ξ, η) 7→ i2k−1(−1)k−1
R

J(C) ξ ∧ η ∧ ω ∧ · · · ∧ ω. It is Hermitian form on

H2k−1(J(C), C) that is positive definite on the summand Hk−1,k(J(C)). Its imaginary part takes
integer values on the lattice H2k−1(J(C), Z), so we may invoke the Appell-Humbert theorem [24]
to conclude that the subtorus is an abelian variety.
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Since Z is homologous to zero, there is a (2g − 2k + 1)-cycle whose boundary is Z.
We can choose this chain be the push-forward of a chain Γ lying on E. The image
Z in Jk(X) is independent of this choise so we find that Φk

X(Z) is integrating forms
of type

(g − k + 1, g − k) + (g − k + 2, g − k − 1) + · · ·

over a chain on a (g − k + 1)-dimensional variety. This gives zero, except possibly
for forms of type (g − k + 1, g − k).

In a similar fashion as above, we can define the primitive intermediate Jacobians.
LetX be a g-dimensional projective complex manifold, with polarization ω as above.
For k = 1, . . . , g, the primitive cohomology group P k

Z (X) with values in Z is defined
by the kernel of the Lefschetz operator

L : Hk(X,Z) → H2g−k(X,Z) : ξ 7→ ξ ∧ ω ∧ · · · ∧ ω.

Extending scalars to C yields P k
C . This group equals the kernel of the (complxi-

fied) Lefschets operator L : Hk(X,C) → H2g−k(X,C), and since L respects the
bidegree, we see that P k

C (X) admits a Hodge decomposition. It is compatible with
the Hodge decomposition of Hk(X,C) and it gives a filtration on P k

C . The k-th
primitive intermediate Jacobian, where k = 1, . . . , g, is defined by the cokernel of
the integration map

λ : H2g−2k+1(X,Z) → (F g−k+1P 2g−2k+1(X,C))∗

and is denoted by Jk(X)prim. This is a complex torus, and the largest subtorus

whose tangent space is contained in (P g−k+1,g−k
C (X))∗ is called the algebraic prim-

itive intermediate Jacobian, denoted by Jk(X)prim,alg. This is again an abelian
variety. The inclusion

P 2g−2k+1
C (X) ⊂ H2g−2k+1(X,C)

induces the surjective map H2g−2k+1(X,C)∗ → P 2g−2k+1
C (X)∗ and thus a pro-

jection q : Jk(X) → Jk(X)prim. The primitive Abel-Jacobi map is defined by
sending an algebraic cycle Z ∈ Z k(X)hom to integration of primitive (2g− 2k+1)-
forms over a chain whose boundary is Z, modulo periods. This map is denoted by
Ψk

X : Z k(X)hom → Jk(X)prim and it equals q ◦ Φk
X . Finally, the restriction of Ψk

X

to Z k(X)alg factors through Jk(X)prim,alg, i.e. the following diagram commutes.

Z k(X)alg

Ψk
X //

''OOOOOOOOOOO
Jk(X)prim

Jg(X)prim,alg

77ooooooooooo

We will use the (primitive) intermediate Jacobian to study the Ceresa 1-cycles. The
advantage of this Jacobian is that the image

Ψg−1
J(C)(W1 −W−

1 )

does not depend on the embedding φP : C → J(C). A proof of this fact can be
found in [8] or [15].
To show that the Ceresa 1-cycle is not algebraically equivalent to zero, it suffices
to show that there is a closed (primitive) (3, 0)-form on J(C) such that the pairing
of the (primitive) Abel-Jacobi image and this form is not equal to zero. This
shows that the (primitive) Abel-Jacobi image lies outside the (primitive) algebraic
intermediate Jacobian, so C − C− 6∈ Z1(J(C))alg.
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Remark 2.7 Consider a curve of the form C = E + X, where E is an elliptic
curve, X a nonsingular curve of genus g − 1 and where E and X have one point P
in common. This is a curve of compact type and we describe its Jacobian variety
(informally). For background of this construction we refer to the book [17] of Joe
Harris and Ian Morrison.
For the holomorphic 1-forms we have H0(C,ΩC) = H0(E,ΩE) ×H0(X,ΩX). The
first homology group doesn’t change if we leave out P , i.e.

H1(X,Z) = H1(X − {P},Z).

But X − {P} is the disjoint union of E − {P} and X − {P}. It follows that
H1(C,Z) = H1(E,Z) ×H1(X,Z). We find that

J(C) =
H0(C,ΩC)∗

H1(C,Z)
= J(E) × J(F ).

2.3 Families

In the next subsection we will look at the variation of the Abel-Jacobi map in a
family. To this end we have to fix some notations and collect some results concerning
deformations of varieties, variation of Hodge structures and the sheaves H k.

Deformations. A deformation of a compact complex manifold is family1 X → B
such that X occurs as the fiber over a specified point 0 ∈ B. The other fibers
p−1(b) = Xb are called deformations of X = X0. Two deformations of X are
called equivalent if they are isomorphic as families on open neighborhoods of the
specified points. This shows that an equivalence class of a deformation of X can be
represented by a family over an arbitrary small polydisc, such that X is the fiber
over 0. To a deformation X → B we can associate a short exact sequence

0 → TX → TX |X → T0B ⊗ OX → 0

of sheaves on X. The the first connecting homomorphism in the associated long
exact sequence in cohomology is denoted with

ρ0 : T0B → H1(X,TX)

and is called the Kodaira-Spencer map. The elements in H1(X,TX) are called
infinitesimal deformations. The Kodaira-Spencer map measures in a way, how far
the family is off from being trivial. If the family trivial, then we can lift a vector
field on the base without obstruction to one on X . If the family is not trivial then
there is obstruction in glueing the local liftings of the vector field. This obstruction
lies in H1(X,TX). If the Kodaira-Spencer map is injective, the deformation is said
to be effective. For a trivial family, the map ρ0 is the zero map2.
A deformation X → B is complete at 0 ∈ B if every other deformation of X0 is
equivalent to the pull-back of X → B by a morphism B′ → B. Such a pull-back is
defined by the fibered square

X ′ //

��

X

��
B′ // B.

1By a family we mean a holomorphic proper submersion of connected complex manifolds.
2The converse of this statement is not true in general. A counter example is given by a

deformation of Hopf manifolds, see e.g. 4.2(d) of [23]. Note that the family in this example is not
flat.
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A deformation is complete if it is complete at every point in B. Two important
questions in deformation theory are (1) how can we decide whether a deformation
is complete and (2) does such a complete deformation exist for a given manifold?
These questions have been answered in the late fifties and early sixties by K. Ko-
daira, D.C. Spencer and M. Kuranishi.

Theorem 2.8 (Kodaira-Spencer) If the Kodaira-Spencer map of a deformation
X → B is surjective for the point 0 ∈ B over which X occurs, then the deformation
is complete at 0 ∈ B.

Proof. See the Theorem of Completeness in ([23]). �

The existence of a complete deformation was proved by Kuranishi.

Theorem 2.9 (Kuranishi) For any compact complex manifold X there exist a
complete analytic family X → B such that X occurs as a fiber. This family is
called the Kuranishi family of X.

Proof. See the Theorem of Existence in ([23]). �

The inconvenience of the last theorem is that it is a theorem in the category of ana-
lytic spaces. This means that the base space need not be a complex manifold. The
possible obstruction for being a manifold lies in the cohomology group H2(X,TX).
For the cases in which we are interested there appears to be no obstruction. In the
case of curves this cohomology group is zero. In the case of complex tori we can
calculate what happens. Indeed, consider X = Cg/ΛM , where M is a matrix such
that the imaginary part is positive definite and ΛM is the lattice spanned by the
columns of (I,M). The space of matrices with this property is a complex manifold
and if we take B a small neighborhood of M in this space, we can construct a de-
formation of X over B. Indeed, the manifold that arises as the quotient of Cg ×B
by the Z2g-action

Z2g ∋ N : (z,M ′) 7→ (z + (I,M ′)N,M ′)

is a deformation of X with fibers Cg/ΛM ′ . This is a complete and effective defor-
mation of X. Note that for such a complete and effective deformation, the tangent
space TMB can be identified with H1(X,TX) using the Kodaira-Spencer map.

Remark 2.10 Another way of showing that a complex torus X of dimension g
has a Kuranishi family X → B with nonsingular base space B is the following.
The cotangent bundle of X is trivial, which makes it a Calabi-Yau manifold. This
is a compact Kähler manifold with trivial canonical bundle, i.e. KX := Ωg

X
∼=

OX . We can now invoke the Tian-Todorov lemma, to show that every infinitesimal
deformation is integrable. For a brief discussion and references, see e.g. [21].

Not every complex torus is an abelian variety. The Riemann relations imply that
X = Cg/ΛM is an abelian variety if M is in addition symmetric. Indeed, to be
an abelian variety, X needs an ample line bundle. We can construct one if M is
symmetric with positive imaginary part, using the Appell-Humbert theorem (see
e.g. [24]). Suppose that X = Cg/ΛM is an abelian variety. Let B be as above,
and let B′ ⊂ B be the closed subvariety consisting of the symmetric matrices.
This gives a deformation of X such that all the fibers are abelian varieties. This
deformation is complete as a deformation of abelian varieties. Moreover, B′ can be
viewed of an open neighborhood of the class of X is de moduli space of polarized
abelian varieties. The image of the Kodaira-Spencer map consists of the symmetric
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endomorphisms of Cg. We formalize this as follows.
A polarized abelian variety is a pair (X,ω), where X is an abelian variety and
where ω ∈ H1,1(X) ∩H2(X,Z) is the first Chern class of an ample line bundle on
X. A deformation of a (X,ω) is a deformation X → B of X with a polarization
Ω ∈ H2(X ,Z) that restricts to ω on X. We are interested in the image of the
Kodaira-Spencer map of this deformation.
Such a polarization gives an isogeny ϕω : X → Xt of X with its dual abelian variety
Xt. Its differential dϕω(o) : ToX → ToX

t at the identity o ∈ X is an isomorphism
and using the identifications ToX

t = H1(X,OX) and ToX = H0(X,TX), we get a
commutative diagram

T0X

dϕω(o)

��

H0(X,TX)bω
��

ToX
t H1(X,OX),

where the right vertical map is cupping with ω. The tangent sheaf TX is free, i.e.
we have TX = ToX ⊗ OX . It follows that H1(X,TX) = H1(X,OX) ⊗ ToX, which
in turn is isomorphic to H1(X,OX) ⊗H1(X,OX) via the map id ⊗ ω̂. This must
hold for every fiber in the family, and this imposes a symmetric condition on the
image of ρ0. This is reflected in the fact that ρ0 maps onto the symmetric part of
H1(X,TX). The symmetric part can be identified with the kernel of the natural
projection

H1(X,OX) ⊗H1(X,OX) →

2∧
H1(X,OX).

Using the identification H2(X,OX) = H1(X,OX)
∧
H1(X,OX), we get the com-

mutative square

H1(X,TX)
bω //

id⊗bω
��

H2(X,OX)

H1(X,OX) ⊗H1(X,OX) // ∧2
H1(X,OX).

The kernel of the upper horizontal map (cupping with ω) is denoted with

H1(X,TX)ω.

It consists of the infinitesimal deformations that might occur in the image of the
Kodaira-Spencer map of a complete effective deformation of the polarized abelian
variety (X,ω). The fact that they actually do occur, follows from the fact that
there is a complete and effective deformations of the pair (X,ω). It follows that
the base space is an open neighborhood of the class [X] of X in Ag, the moduli
space of g-dimensional polarized abelian varieties over C. The tangent space of Ag

at [X] is identified with H1(X,TX). Rigorous proofs of the above statements about
deformations of abelian varieties can be found in [34].

The period map. The complex structure on a manifold is closely related to the
Hodge structure. The way in which this structure varies in a family is described with
the period map. For a deformation X → B of a compact complex manifold X with
B small enough, we see that the cohomology groups Hk(Xb,C) are all isomorphic.
With these isomorphisms we can map the Hodge filtrations of the cohomology of
a fiber, to the flag manifold of the filtrations of the cohomology Hk(X,C) of the
central fiber X. This map is the holomorphic period map

Pk : B → Flag(bk,k, bk,k−1, . . . , bk,0;Hk(X,C)).
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This flag manifold appears as a submanifold of the product of the Grassmann vari-
eties, i.e.

Flag(bk,k, bk,k−1, . . . , bk,0;Hk(X,C)) ⊂
k∏

p=0

Grass(bk,p,Hk(X,C)).

The period map factors through this product, and projecting onto its factors gives
the maps

Pk,p : B → Grass(bk,p,Hk(X,C)), k = 0, . . . , k.

These are also holomorphic and the differentials at b ∈ B are linear maps

dPk,p(b) : TbB → HomC(F pHk(Xb,C),Hk(Xb,C)/F pHk(Xb,C)).

Investigation of these period maps shows that the the differential dPk,p(b) factors,
i.e. the following diagram commutes.

HomC(F p
b /F

p+1
b , F p−1

b /F p−2
b )

� _

��
TbB

dPk,p(b)

//

44iiiiiiiiiiiiiiiiiiii
HomC(F p

b ,H
k/F p

b )

(2.1)

In view of the identifications Hp,q(Xb) ∼= Hq(X,Ωp
Xb

), we arrive at the commutative
diagram

TbB

ρb

��

// HomC(F pHk(Xb,C),Hk(Xb,C)/F pHk(Xb,C))

H1(Xb,TXb
) // HomC(Hk−p(Xb,Ω

p
Xb

), (Hk−p+1(Xb,Ω
p−1
Xb

))).
?�

OO

The upper horizontal arrow is dPk,p(b), the lower sends an element θ to “cupping
with θ”.

In the case of the Kuranishi family X → B of a complex torus of dimension g,
we may consider the period map Pg,g. Since F gHg(X,C) = H0(X,Ωg

X) is of di-
mension one, this is a map

Pg,g : B → P(Hg(X,C)).

This map is an immersion and we say that “the periods give local moduli”. The
proof can be found in 10.3.2 of [32]. This results in an isomorphism

H1(X,TX) → HomC(H0(X,Ωg
X),H1(X,Ωg−1

X )),

or equivalently, an isomorphism

µ : H1(X,TX) ⊗H0(X,Ωg
X) → H1(X,Ωg−1

X ),

where µ is induced by the cup product.
Our main interest however, lies at abelian varieties and their deformations. The
infinitesimal deformations of a polarized abelian variety (X,ω) of dimension g are
paramatrized by H1(X,TX)ω. To see how µ acts on H1(X,TX)ω ⊗H0(X,Ωg

X) we
first consider the commutative diagram

H1(X,TX) ⊗H0(X,Ωg
X)

bω⊗id //

µ

��

H2(X,OX) ⊗H0(X,Ωg
X)

��
H1(X,Ωg−1

X )
L // H2(X,Ωg

X).

19
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The map ω̂ is cupping with ω and L is the Lefschetz operator. The right vertical
map is an isomorphism. It follows that µ′, the restriction of µ to H1(X,TX)ω ⊗
H0(X,Ωg

X), takes values in the primitive part H1(X,Ωg−1
X )0. Moreover, we see that

µ′ : H1(X,TX)ω ⊗H0(X,Ωg
X) → H1(X,Ωg−1

X )0

is surjective. This is an important observation.

All the primitive forms of type (g − 1, 1) can be obtained by taking a (g, 0)-form
and cup it with some infinitesimal deformation of (X,ω).

The sheaves H k. Let π : X → B be a deformation of the polarized abelian
variety (X,ω). Instead of looking at the period maps, we can also study the variation
of the Hodge structures via the sheaves

H k := Rkπ∗C ⊗ OB.

The sheaf H k is locally free, so we may view it as the sheaf of sections of a vector
bundle. The fiber of this bundle over b ∈ B is isomorphic to the cohomology
group Hk(Xb,C). Furthermore, H k has a filtration that corresponds to the Hodge
filtration on the fibers, i.e. there are locally free subsheaves

0 = F k+1H k ⊂ F kH k ⊂ . . . ⊂ F 1H k ⊂ F 0H k = H k

and the inclusion F pH k ⊂ H k corresponds to F pHk(XbC) ⊂ Hk(Xb,C) on the
fibers.
The sheaf H k carries a flat connection

∇ : H k → H k ⊗ ΩB

called the Gauss-Manin connection. It satisfies Griffiths transversality

∇ : F pH k → F p−1H k ⊗ ΩB .

An important aspect of this construction is the following. Given a deformation
π : X → B of X and a class ξ0 in F pHk(X,C), we can view this class as a varying
class, i.e. the value of a local section ξ of F pH k. Its values are denoted with
ξb ∈ F pHk(Xb,C). Using the isomorphisms Hk(Xb,C) ∼= Hk(X,C), this gives a
map x : B → Hk(X,C) that depends holomorphically on b. We want to know its
derivative in the direction of v, a vector field on B. This can be calculated with the
formula:

v(x)(b) = ∇v(ξ)|b = dPk,p(b)(v(b))(ξb),

where ∇v(ξ) is the evaluation of ∇ξ on v. The right hand side is an element of
F p−1Hk(Xb,C) which gives a class in the quotient Hp−1,k−p+1(Xb,C). With the
identifications of Hp,q(Xb) ∼= Hq(Xb,Ω

p
Xb

), this corresponds to

ρb(v(b)) · ξb ∈ Hk−p+1(Xb,Ω
p−1
Xb

).

The Gauss-Manin connection is also compatible with Poincaré duality. More pre-
cisely, if ν is a section of H k∗ and η is a section of H k, then ν corresponds to a
section ν′ of H g−k and the pairing ν(η) = 〈ν′, η〉 is a section of OB . For a vector
field v on B we can calculate the directional derivative

v(ν(η)) = 〈∇vν
′, η〉 + 〈ν′,∇vη〉. (2.2)
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2.4 Variation of the Abel-Jacobi map

For a polarized complex manifold X we have defined the various intermediate Jaco-
bians, and they behave nicely in a family. More precise, for a deformation π : X → B
of X we have the sheaf H 2k−1 with subsheaf F kH 2k−1. The exact sequence

0 → F kH 2k−1 → H 2k−1 → L ie(J k) → 0

defines the sheaf L ie(J k) on B. If we denote the locally constant sheaf Rkπ∗Z
with H 2k−1

Z , we get the defining sequence

0 → H 2k−1
Z → L ie(J k) → J k → 0,

which we stipulate to be exact. The sheaf J k may be thought of as the sheaf of
sections of the family of k-th intermediate Jacobians of the fibers over B.
Let’s denote this family with {Jk(Xb)}b for a moment. The manifold X is also
polarized and hence projective. Let Z ∈ Z k(X) be a cycle that is flat over B. If
we intersect with the fibers Xb, we see that Z may be considered as a family of
algebraic cycles {Zb}b where

Zb = Xb · Z ∈ Z k(Xb).

If in addition, each Zb is homologous to zero, we can associate to every point b ∈ B
the Abel-Jacobi image of Zb. In this way we get a map

B → {Jk(Xb)}b : b 7→ Φk
Xb

(Zb).

This map turns out to be holomorphic, which was first proven by Griffiths. So it is
a section of the sheaf J k, and as such, it is denoted with νZ .
Suppose that B is a projective variety. Then the section νZ possesses yet another
property: it is normal. This means that it is a section of the subsheaf of nor-
mal functions, which is defined as follows. The Gauss-Manin connection induces a
morphism

∇ : J k → H 2k−1/F k−1H 2k−1 ⊗ ΩB

and the sheaf of normal functions is the kernel of this morphism.
One consequence of νZ being normal is the following. Locally, we can lift ν to a
section ν̃ of H 2k−1, and application of ∇ yields

∇ν̃ ∈ F k−1H 2k−1 ⊗ ΩB . (2.3)

In fact, this holds for every lift of νZ . Condition (2.3) is equivalent to

〈∇v ν̃, η〉 = 0, for all η ∈ Fn−k+2H 2n−2k+1

and all vector fields v on B. In view of (2.2), this shows that any local lift ν̃ of the
normal function ν satisfies

v(〈ν̃, η〉) = ν̃(∇vη) (2.4)

for every vector field v on B and every section η of Fn−k+2H 2n−2k+1. Another
consequence of νZ being normal, is that we can consider its infinitesimal invariant.
We discuss this in subsection 3.3.

Finally, we note the existence of the families

{Jk(Xb)alg}b, {Jk(Xb)prim}b and {Jk(Xb)prim,alg}b

21



2.4 Variation of the Abel-Jacobi map 2 JACOBIAN VARIETIES

whose sheaves of sections we denote with respectively

J k
alg, J k

prim and J k
prim,alg.

The projection Jk(X) → Jk(X)prim and the inclusions of the abelian subvarieties

Jk(X)alg ⊂ Jk(X) and Jk(X)prim,alg ⊂ Jk(X)prim

are reflected by the sheaf morphism q : J k → J k
prim and the inclusions

J k
alg ⊂ J k and J k

prim,alg ⊂ J k
prim.

The section νZ , or rather the cycle Z, gives rise to a section ν0,Z of J k
prim. It

corresponds to the holomorphic map

B → {Jk(Xb)prim}b : b 7→ Ψk
Xb

(Zb).

If the cycles Zb are in Z k(Xb)alg, then νZ and ν0,Z can be seen as sections of the
sheaves J k

alg and J k
prim,alg respectively.

Remark 2.11 We close this section with a different kind of variation of the Abel-
Jacobi map. Let X be a complex projective variety of dimension g and let S be
a nonsingular connected curve. Consider an algebraic cycle Z ∈ Z k(X × S) all of
whose components map onto S. Fix a base point s0 ∈ S and define

νZ : S → J2k−1(X) : s 7→ Φk
X(Z(s) − Z(s0)).

Griffiths has shown that this map is holomorphic. See e.g. Thm. 12.4 of [32].

22



3 THEOREM OF CERESA

3 Theorem of Ceresa

In the previous section we have defined the Ceresa cycles Wr −W−
r on a Jacobian

variety of a curve of genus g. We have seen the vanishing of the class of the Ceresa
r-cycle in two cases. First for the Ceresa (g − 1)-cycle, since it has a symmetric
translate. Second for the cycle C−C− in case C is hyperelliptic. In the next section
we will show that all the Ceresa r-cycles vanish in the algebraic equivalent ring if
C is hyperelliptic. But as we mentioned before, these cases are exceptions.

Theorem 3.1 (Ceresa,1983) On a generic Jacobian variety J(C) of dimension
g ≥ 3, the algebraic cycles

Wr −W−
r , 1 ≤ r ≤ g − 2

are not algebraically equivalent to zero.

The proof that was given by Ceresa in [6] takes three steps. In step 1 he shows that
if the theorem is not true for g = 3, r = 1, then the normal function ν0 with respect
to the Ceresa cycle and values in the 2nd p rimitive intermediate Jacobian, is the
zero function. In step 2 he produces a counterexample for this statement. In step
3 he generalizes to the case g ≥ 3 and 1 ≤ r ≤ g − 2 using an induction argument.

In the same year that Ceresa’s result was published, Bruno Harris produced an
article [15] in which he analyses the normal function we described above. He finds
a way to express the value of this normal function with iterated integrals, using the
concept of a “harmonic volume”. Furthermore, he shows that the differential of ν0
is not equal to zero. This is another counterexample of step 1 of Ceresa’s proof.
In his article [16] he uses his formulae to calculate explicitly the value of ν0 at the
Fermat curve of genus 3, paired with a non-trivial (3, 0)-form. This turns out to
be nonzero, which shows that for this curve the Ceresa 1-cycle is not algebraically
equivalent to zero. This is another counter example to the conclusion of step 1.
The techniques of Harris cannot be used prove to Ceresa’s theorem for g ≥ 3, r = 1.
The normal function ν0 need not be zero if C − C− ∼alg 0, for g ≥ 4. So the non-
vanishing of the differential of ν0 is not a counterexample for curves of higher genera.

This problem is solved in the paper [8] by Collino and Pirola. They note that
the normal function ν0 can be viewed as a section of the family of algebraic primi-
tive intermediate Jacobians if Ceresa’s theorem is not true for g ≥ 3, r = 1. In this
case, the infinitesimal invariant (which we will discuss later) δ(ν0) of ν0 can be seen
as a trivial functional on some vector space K ′. However, they show that for every
non-hyperelliptic curve, the functional δ(ν0) acts nontrivially on K ′. This proves
Ceresa’s theorem for g ≥ 3, r = 1.

3.1 Ceresa’s proof

Before we start the proof, we take a closer to the statement of the theorem. This
way of looking at the theorem was pointed out to me by Frans Oort and it clarifies
what happens if the theorem is not true in the case of g = 3, r = 1.

An observation involving a Chow variety. Let M3 be the moduli space of
nonsingular curves over C of genus 3. We want to apply techniques of section 2, so
we need a universal family of curves. This doesn’t exist over M3, so we consider
the fine moduli space M3,N of curves of genus 3 with some level N -structure1. This

1N ≥ 3 suffices
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gives a finite covering
M3,N → M3

and over M3,N there is a universal family π : C → M3,N . For this family, there is a
family of Jacobian varieties J → M3,N , and this is a projective family. By this we
mean that both J and M3,N are projective.
The fibers of these families over a point [C] give the curve C and its Jacobian variety
J(C). Suppose that the Ceresa 1-cycle is algebraically equivalent to zero for this
curve. Then there is a curve SC , a positive 2-cycle EC ∈ Z2(J(C)), a positive
1-cycle DC on J(C) and two points sC , tC in S such that

EC(sC) = W1(C) +DC and EC(tC) = W−
1 (C) +DC . (3.1)

The cycle EC can be seen as a 2-cycle in some fixed projective space, the curve
S can be embedded as a curve in P3, and the cycle DC is a 1-cycle on the fiber
of a family of projective varieties. These objects can be paramatrized by a Chow
variety Chow, and it obviously consists of many components. We can now look
for a point (E,S,DC) in Chow if there are s, t in S such that (3.1) holds. This
is a locally closed condition on the points of Chow, i.e. the points for which this
holds form a locally closed set V of Chow. The image V ′ of V of the projection
morphism Chow → M3 is constructable. This follows from the observation that a
locally closed set is constructible and a theorem by Chevalley, which says that the
image of a constructible set is constructible. For proofs and references, see e.g. [18],
Exercise II.3.19. We distinguish two cases for the dimension of V ′.

Case 1 We have dimV ′ = dim M3. In this case, there is a Zariski open set U ⊂ M3

contained in V ′ and families

{EC}[C], {SC}[C] and {DC}[C]

over U of positive 2-cycles EC on J(C) × SC , curves SC and 1-cycles DC on
J(C) that vary algebraically with [C] and for which we can find points sC , tC
such that (3.1) holds.

Case 2 We have dimV ′ < dimM3, in which case there are countably many subvari-
eties of M3 such that for points outside their union, the Ceresa 1-cycle is not
algebraically equivalent to zero.

The theorem of Ceresa says that if g = 3, r = 1, we are in Case 2. If we assume
that Ceresa’s theorem is not true then Case 1 applies.

Proof of Ceresa’s theorem. As we mentioned before, we proceed in three
steps. The adjective ‘open’ means analytically open.

Step 1. Suppose that the theorem is not true for g = 3, r = 1, i.e. we are in
Case 1. The pre-image of the Zariski open set U ⊂ M3 in M3,N is denoted with
U′. The family of curves {SC}[C] is denoted with S → U′. The family J → M3,N

gives rise the families of (primitive) 2nd intermediate Jacobians of the fibers of J .
The sheaves of sections are denoted with J 2

prim and J 2. The family C → M3,N

has local sections and these are used to embed the curves in their Jacobians. More
precise, a local section P : U → C on U ⊂ M3,N gives a map φP : CU → JU . The
image is a flat cycle {W1(C)}[C] in JU over U . Using the inverse on each fiber, we
can construct the flat cycle

{W1(C) −W−
1 (C)}[C]

over U . This gives local sections ν and ν0 of J 2 and J 2
prim. Since the Abel-

Jacobi image Ψ2
J(C)(W1(C) −W−

1 (C)) is independent of the choice of embedding
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C → J(C), we see that the local sections ν0 glue to a global section over M3,N . This
section is holomorphic and moreover, it is the zero section. We present two proofs
for this fact. The first one was used by Ceresa, the second follows from observations
in the previous section.
(1) Let U be an open set in U′, and consider the sections ν and ν0. Note that ν is
a lift of ν0 if U is small enough. It is sufficient to show that ν0 is zero on U since
it will then be zero on U. But then it is automatically zero on the whole of M3,N

since U is a dense subset.
Assume [C] ∈ U . The value of ν0([C]) is Ψ2

J(C)(W1(C) −W−
1 (C)), and in view of

(3.1) and remark 2.11, we have

Ψ2
J(C)(W1(C) −W−

1 (C)) = ψsC
(tC).

The map ψsC
: SC → J2(J(C))prim is holomorphic and moreover, it lifts to the

universal cover of J2(J(C))prim. This shows that φsC
is the zero map. Indeed,

the lift is holomorphic and SC is a compact Riemann surface so we can apply the
maximum principle. To see that there is a lift, we show that the induced map
in homology is trivial. To this end, consider a cycle class Γ ∈ H1(SC ,Z). Let

Γ̃ ∈ H3(EC ,Z) be the cycle class of the inverse image of Γ. This in turn can be
pushed forward to a cycle class Γ ∈ H3(J(C),Z). Using Poincaré duality

PD : H3(J(C),Z) → H3(J(C),Z),

this gives an element γC ∈ H3(J(C),Z). We may view this as the value of a
local section γ of the sheaf H 3

Z . In particular, for every vector field u on U ,
we have ∇u(γ) = 0. Let ξC ∈ F 3H3(J(C),C) = H3,0(J(C)) be the value at
[C] of a local section ξ of F 3H 3. By consideration of type, or by noting that
ν([C]) ∈ J2(J(C))alg, it follows that the pairing 〈γ, ξ〉 = 0. This pairing is a local
section of OMg,N

, and application of the derivation u yields

0 = u(〈γ, ξ〉) = 〈∇u(γ), ξ〉 + 〈γ,∇u(ξ)〉 = 〈γ,∇u(ξ)〉.

Evaluated at [C], the section ∇u(ξ) is an element of F 2H3(J(C),C). It can be
written as a sum ξ′C + ξ′′C , where the first term is in H3,0(J(C)) and the second is
in H2,1(J(C)). Since

〈γC , ξ
′
C〉 =

∫

Γ

ξ′C = 0,

we arrive at the conclusion that
∫
Γ
ξ′′C = 0.

But JU → U is a family of principally polarized abelian varieties over C of dimension
3. So it arises as the pull-back of the family over a subset of the moduli space A3

of principally polarized abelian varieties over C, by the induced map

U → A3.

This map is an injection by the Torelli theorem1. The dimensions of U and A3

spaces are equal. Indeed, for g ≥ 2 we have

dim Mg = 3g − 3 and dimAg =

(
g + 1

2

)
.

So we may consider JU → U as the Kuranishi family of J(C). We now invoke an
observation of the previous section:

All the primitive forms of type (2, 1) can be obtained by taking a (3, 0)-form and

1This theorem states that the induced map Mg → Ag is injective.
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cup it with some infinitesimal deformation of J(C).

So the class of ξ′′C corresponds to a primitive form

ρC(u([C])) · ξC ,

and by varying ξ and u, we can obtain every primitive (2, 1)-form in this way. This
shows that ∫

Γ

η = 0

for every class η ∈ F 2P 3
C(J(C)). So the induced map ψsC∗ in homology is zero,

showing that ψsC
lifts to (F 2P 3

C(J))∗. This establishes the claim that ψsC
is the

zero function. This holds for every point [C] ∈ U , so ν0 is the zero section over U .
(2) Another way of showing that ν0 is the zero section, is to exploit the fact that
ν is normal. Let U ⊂ M3,N be an open set lying in U′ and let ν̃ be a (local) lift of
ν to H 3. Let ξ be a section of F 3H 3 over U . Since ν is normal, it follows from
(2.4) that we have

u(〈ν̃, ξ〉) = ν̃(∇vξ)

for every vector field u on U . By considerations of type we conclude that ν̃(∇vξ) = 0.
Reasoning in the same fashion as above, we conclude that ν0 is the zero section on
U .
Note that ν0 being the zero section is exclusive for the case g = 3, since we need all
the deformations of J(C) to arrive at this conclusion. For higher genera we have
dimMg < dim Ag, in which cases we cannot use this reasoning.

Step 2. Here we present the counterexample for ν0 being the zero section on M3,N .
First we consider the local sections1 ν0 on open pieces of the moduli space M3.
These are also zero sections, since they agree with restrictions of the zero section ν0
we defined on M3,N . In fact, we can define these local sections on M3, the moduli
space consisting of classes of curves whose Jacobian is an abelian variety. These
local sections must be zero too.
Consider the connected curve C0 = E + F , where E is an elliptic curve and F a
nonsingular complete connected curve of genus 2 (see remark 2.7). We assume that
the intersection E∩F = {P0} is not a Weierstrass point of F . The Jacobian variety
J(C0) degenerates:

J(C0) = J(E) × J(F ).

The polarizing classes of J(E) and J(F ) are denoted with ωE and ωF respectively.
The polarizing class of J(C0) is then ωE + ωF . Any class ξ ∈ H1,0(J(F )) gives rise
to a class η = ξ ∧ (ωE − ωF ) and this is a primitive form. The Ceresa 1-cycle can
be written as

(E × {0} + {0} × F ) − (E × {0} + {0} × F−) = ({0} × F ) − ({0} × F−),

where we use the point P0 to embed the curves. The curve F− is the same as the
image of the embedding F in J(F ) using the point ι(q). Indeed, we have

F− = −φP0(F ) = (φι(P0) ◦ ι)(F ) = φι(P0)(F ).

Consider the map F ×F → J(F )×F : (P,Q) 7→ ([P −Q], Q). Its image is a cycle in
J(F )×F such that intersection with a horizontal slice yields φQ(F ). In particular,
if Γ is a path on F from P0 to ι(P0), then the image of F ×Γ in J(F )×F , projected

1There is no global section, since there is no family of Jacobian varieties over Mg . This is due
to the absence of a universal curve over this space.
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onto J(F ) is a singular chain Γ′ with boundaries F and F−. We want to integrate
the form ξ∧ωF over the chain Γ′, i.e. we want to calculate

∫
Γ′
ξ∧ωF , which equals

∫

Γ′

ξ ∧ ωF =

∫

δ∗(F×Γ)

ξ ∧ ωF =

∫

δ∗(F×ι(Γ))

ξ ∧ ωF ,

since id × ι : F × F → F × F is an isomorphism. In view of example 2.6 and the
Künneth formula, this is equal to

1

2

∫

F

(φP0)∗ωF ·

∫

Γ

(φP0)∗ξ.

The chain Γ′, viewed as a singular chain on J(C0) has boundary

({0} × F ) − ({0} × F−) = W1(C0) −W−
1 (C0),

so we find

ν0([C0])(η) =
1

2

∫

Γ′

η =

∫

F

(φP0)∗ωF ·

∫

Γ

(φP0)∗ξ.

We can arrange this expression to be zero. The first factor is already nonzero
because (φP0)∗ωF is a Kähler form. For the second we note that since P0 is not

a Weierstrass point, the chain Γ is not a cycle. This implies that
∫ ι(P0)

P0
is not a

period of F and since H1,0(J(F )) ∼= H0(F,ΩF ), we can find ξ ∈ H1,0(J(F )) such
that ∫

Γ

(φP0)∗ξ 6= 0.

This contradicts our conclusion from step 1, that the primitive normal function is
zero.

Step 3. We argue with induction on the genus g. Suppose that the theorem holds
up to g−1. Let C0 = E+X be stable curve of genus g, with E an elliptic curve and
X a generic nonsingular complete curve of genus g − 1. For the Jacobian varieties
we have J(C0) = J(X) × J(E). The r-cycle Wr specializes to

Wr(X) × {0} +Wr−1(X) × E. (3.2)

If we assume the Ceresa r-cycles to be algebraically equivalent to zero, then

(Wr(X) × {0} +Wr−1(X) × E) −
(
W−

r (X) × {0} +W−
r−1(X) × E

)
∼alg 0 (3.3)

Projecting onto J(F ) yields

Wr(X) −W−
r (X) ∼alg 0 on J(X), r = 0, 1, . . . , g − 1.

This contradicts the hypothesis for r = 1, . . . , g − 3. For the Ceresa (g − 2)-cycle,
note that the equations (3.2) and (3.3) imply that

(Wg−3(X) × E) −
(
W−

g−3(X) × E
)
∼alg 0.

Intersecting with the cycle J(X) × {0} and projecting onto J(X) yields

Wg−3(X) −W−
g−3(X) ∼alg 0,

again contradicting the hypothesis. This finishes the final step and concludes the
proof of the theorem of Ceresa. �

Remark 3.2 We would like to stress that the original proof by Ceresa was not in
the language of the normal functions. By using these functions anyway, we tried to
clarify what happens on a conceptual level.
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3.2 B. Harris’ papers 3 THEOREM OF CERESA

3.2 B. Harris’ papers

In his paper [15], Bruno Harris defines the concept of a harmonic volume. Let
C be a nonsingular curve over C of genus g. The harmonic volume is an element
I(ξ1, ξ2, ξ3) of the circle R/Z, associated to a triple (ξ1, ξ2, ξ3) of real harmonic forms
on C that satisfies the following two conditions.

∫

C

ξi ∧ ξj = 0, 0 ≤ i, j ≤ 3 (3.4)

∫

Γ

ξi ∈ Z, for any 1-cycle Γ on C. (3.5)

The first first equation shows that ξi ∧ ξj is exact. This gives a 1-form ηij with
dηij = ξi ∧ ξj . If we fix a point P ∈ C we can define the map

xi : C → R/Z : Q 7→

∫ Q

P

ξi.

Let Γ3 be the Poincaré dual of ξ3. These ingredients are used to define the harmonic
volume:

I(ξ1, ξ2, ξ3) :=

∫

Γ3

x1ξ1 − η12 ∈ R/Z.

This is an integral that could be calculated, at least for certain curves. We will now
explain why this is called a “harmonic volume”, by presenting another interpretation
of this number. The functions x1 : C → R/Z together give a map

x = (x1, x2, x3) : C → T 3 = R/Z × R/Z × R/Z : Q 7→ (x1(Q), x2(Q), x3(Q)).

The image of this map is a 2-cycle in the 3-dimensional torus T 3, and Harris shows
that this chain is the boundary of a singular 3-chain Γ′. The volume of this chain
modulo Z, agrees with I(ξ1, ξ2, ξ3).
These considerations seem rather ad hoc, but we will now show how they correspond
to the normal function of the previous section. To begin with, the harmonic 1-forms
that satisfy (3.4) are denoted with Har1Z(C). This is a free abelian group of rank

2g. The elements in the kernel of the map
∧3

Har1Z(C) → Har1Z(C), defined on
generators by

ξ1 ∧ ξ2 ∧ ξ3 7→

[∫

C

ξ1 ∧ ξ2

]
ξ3 +

[∫

C

ξ2 ∧ ξ3

]
ξ1 +

[∫

C

ξ3 ∧ ξ1

]
ξ2,

give triples for which the harmonic volume is defined. The next step is to iden-
tify Har1Z(C) with H1(C,Z) and in turn with H1(J(C),Z). We may also identify∧3

H1(J(C),Z) with H3(J(C),Z). In view of these identifications, the kernel we
described above corresponds to the classes of the closed primitive 3-forms P 3

Z (J(C)).
Harris shows that the association of a harmonic volume to a triple (ξ1, ξ2, ξ3) cor-
responds to a homomorphism

I : P 3
Z (J(C)) → R/Z.

Then it is shown that the elements in Hom(P 3
Z (J(C)),R/Z) correspond to points

on the 2nd primitive intermediate Jacobian of C. In fact, we have

Hom(P 2k−1
Z (J(C)),R/Z) ∼= Jk(J(C))prim.

We will now show that the element 2I corresponds to the primitive Abel-Jacobi im-
age of the Ceresa 1-cycle. To this end, we describe J(C) by Hom(Har1Z(J(C)),R/Z).
We use that Har1Z(J(C)) = P 1

Z (J(C)). Then Hom(Har1Z(J(C)),R/Z) is actually
equal to J1(J(C))prim, but all the 1-forms are primitive. Moreover, J1(J(C)) is
canonically isomorphic to J(C) by auto-duality1. If we fix a basis {ξ1, . . . , ξ2g} for

1This is the phenomenon that Alb(Pic0(X)) = Alb(X) and Pic0(Alb(X)) = Pic0(X). See e.g.
p331 of [12].
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Har1Z(C), the embedding φP : C → J(C) corresponds to the smooth map

C → HomR(Har1Z(J(C)),R/Z) : Q 7→ x1(Q) + · · · + x2g(Q).

Composing with the projection π : J(C) → T 3 of the first three coordinates gives
the map x : C → T 3. Let Γ be the singular 3-chain whose boundary is the Ceresa
1-cycle in J(C). Then

∂(π∗(Γ)) = π∗(C − C−) = π∗(C) − (−1)∗π∗(C),

where (−1)∗ is the map in homology induced by the inverse on T 3. But π∗(C) =
x(C) = ∂(Γ′), for some 3-chain Γ′ in T 3. We find that

∂(π∗(Γ)) = x(C) − (−1)∗x(C) = ∂(Γ′ − (−1)∗(Γ
′)),

showing that π∗(Γ) and Γ′ − (−1)∗(Γ
′) are homologous. By abuse of notation, we

write

Ψ1
J(C)(C − C−)(ξ1 ∧ ξ2 ∧ ξ3) =

∫

Γ

ξ1 ∧ ξ2 ∧ ξ3 modulo periods.

and Harris shows that right hand side equals the volume of π∗(Γ) modulo Z, which in
turn equals the volume of Γ′−(−1)∗(Γ

′) modulo Z. The homology map (−1)∗ com-
mutes with taking the volume, so we see that the value of the primitive Abel-Jacobi
image of the Ceresa cycle, acting on a primitive holomorphic 3-form corresponds to
taking twice the harmonic volume of this 3-form.

Harris furthermore shows that the harmonic volume is independent of the choice
of embedding C → J(C) and that it is a holomorphic section of the family of 2nd

primitive intermediate Jacobians over a covering of the moduli space. To be precise,
he considers the Torelli space, the moduli space of isomorphism classes of curves
together with a basis of the homology group H1(C,Z). This is a fine moduli space,
so it admits a universal curve. Note that 2I being holomorphic follows readily from
the identification 2I([C]) = ν0([C]) and our considerations in the previous section.
He also shows that the differential of ν0 is non-zero at some points of the hyper-
elliptic locus of the Torelli space. This shows that ν0 is not the zero section on
any fine moduli space of curves of genus 3 with additional structure. This gives a
new counterexample for step 2 in the proof of Ceresa’s theorem. One could say,
that reasoning further on, this gives a new proof of Ceresa’s theorem. But for the
induction argument we have to get back to Ceresa’s methods of specializing to a
degenerate curve. Indeed, his observation is not useful if we want to prove Ceresa’s
theorem for g ≥ 4, r = 1, since ν0 need not be the the zero section in those cases.
In 1995, William Faucette generalized the harmonic volume to higher dimensions in
his paper [10]. He presents formulae to calculate the primitive Abel-Jacobi image
acting on primitive forms. His results also cannot be used to prove Ceresa’s theorem
either: the normal functions involved need not be zero either. Before we move on
to another proof of Ceresa’s theorem for g ≥ 3, r = 1, we present an application of
the harmonic volume.

3.2.1 The Fermat curve of genus 3

In his paper [16], Bruno Harris shows that the Ceresa 1-cycle is not algebraically
equivalent to zero for the curve

X4 + Y 4 = Z4.

This curve has been studied a lot, so there is a lot of information about it that can
be applied to do some calculations.
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Harris writes a primitive (3, 0)-form as a real harmonic triple that satisfies (3.4)
and (3.5) and then calculates its harmonic volume. With the choices he makes, this
boils down to calculating

2
∫ 1

0

[∫ x

0
dt

(1−t4)1/2

]
dx

(1−x4)3/4

[∫ 1

0
dt

(1−t4)1/2

]
·
[∫ 1

0
dx

(1−x4)3/4

] .

The value is not in Z, from which it follows that the harmonic volume of this triple
is not an integer. This translates to the statement that ν0([C]) is non-zero.

Remark 3.3 The above two counterexamples by Harris, for step 1 in Ceresa’s
theorem don’t give a really new proof of the theorem. The techniques that Ceresa
used to construct his counterexample (specializing to a degenarated curve) are also
used in the induction argument. As we remarked earlier, the nonvanishing of the
differential of ν0 does not serve as a counterexample for higher genera, since ν0 need
not be zero then.

3.3 Collino and Pirola’s paper.

In this subsection we present the proof that Collino and Pirola [8] gave of Ceresa’s
thereom for g ≥ 3, r = 1. Just like in the proof by Ceresa, we shall show that the
assumption that the general Ceresa 1-cycle is algebraically equivalent to zero leads
to a contradiction. We will work with a nonsingular connected and projective curve
over C of genus g ≥ 3. Let ν0 denote the section of J g−1

prim associated to the Ceresa
1-cycle. Under our assumption, the only thing we know about ν0 is that it is a sec-
tion of J g−1

alg . Therefore the non-vanishing of dν0 doesn’t lead to a contradiction.
We need to be more precise in our considerations: this is where the infinitesimal
invariant comes into play. Other ingredients of the proof are: an algebraic view on
deformations and an adjunction map. We will introduce these notions briefly.

Let C be a curve as above. If we vary C in the moduli space, then we get a
deformation of the pair1 (J(C), ω) by the induced map Mg → Ag. This gives a
diffential H1(C,TC) → H1(J(C),TJ(C)) which factors through H1(J(C),TJ(C))ω.
The latter space may be identified with the space of symmetric2 homomorphisms

Hom(s)(H0(C,ΩC),H1(C,OC)).

Using these identifications, we get a map

H1(C,TC) → Hom(s)(H0(C,ΩC),H1(C,OC)) : ξ 7→ ξ̂,

where ξ̂ means cupping with ξ. If C is not hyperelliptic, then this map is injective.
This follows from Max Noether’s theorem, see e.g. [1]. The kernel of ξ̂ is denoted
by Ξξ.

Suppose for a moment that C occurs as the fiber of a deformation C → B over 0 ∈ B.
A tangent vector v ∈ T0B is uniquely determined by a morphism Spec C[ǫ]/(ǫ2) →
B, which we also denote by v. Let ξ = ρ0(v) be the Kodaira-Spencer class of this

1The class ω is the first Chern class of the canonical ample bundle on J(C).
2Symmetric with respect to the pairing (σ, τ) =

R
C

σ ∧ τ , where σ ∈ H0(C, ΩC) and τ ∈

H1(C, OC).
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vector. Let Cξ be a “thickening” of C, defined by the fibered diagram

Cξ //

��

C

��
Spec C[ǫ]/(ǫ2)

v // Spec C.

Formally, such a thickening Cξ → Spec C[ǫ]/(ǫ2) is characterized by the property
that the fiber over 0 is isomorphic to C. We can associate such a thickening to every
infinitesimal deformation and in fact: the isomorphism classes of these thickenings
are paramatrized by H1(C,TC).

This way of looking at the infinitesimal deformations of C gives rise to an ad-
junction map that we construct now. Let ξ be an infinitesimal deformation of C
and let Cξ the associated thickening. The embedding C → Cξ gives rise to the
normal sheaf NC/Cξ

and the restricted cotangent sheaf ΩCξ
⊗OC . We denote them

briefly by Nξ and Ωξ. They fit into the exact sequence

0 → N ∗
ξ → Ωξ → ΩC → 0, (3.6)

where the asterisk denotes the dual sheaf. The conormal sheaf is trivial, i.e. we
have an isomorphism µ : N ∗

ξ → OC . Using this identification, we get the long exact
sequence from (3.6),

0 → H0(C,OC) → H0(C,Ωξ) → H0(C,ΩC)
∂
→ H1(C,OC) → · · ·

The first connecting homomorphism is equal to ξ̂. Taking the determinants of (3.6)

gives an isomorphism
∧2

Ωξ
∼= N ∗

ξ ⊗ ΩC . This shows that
∧2

Ωξ ⊗ Nξ
∼= ΩC . We

use the isomorphism µ∗ : OC → Nξ to get the map H0(C,
∧2

Ωξ) → H0(C,
∧2

Ωξ ⊗

Nξ). Precomposing with the natural map
∧2

H0(C,Ωξ) → H0(C,
∧2

Ωξ) yields the
adjunction map

αξ :

2∧
H0(C,Ωξ) → H0(C,ΩC).

We use this adjunction map to define a pairing

Qξ :

2∧
Ξξ ×H0(C,ΩC) → C

as follows. Let s1 and s2 be in Ξξ. They lift to sections σ1 and σ2 of H0(C,Ωξ).
Then we can calculate αξ(σ1 ∧ σ2). Define

Q(σ1 ∧ σ2, τ) :=

∫

C

αξ(σ1 ∧ σ2) ∧ ξ̂(τ).

This definition is independent of the chosen liftings. For this pairing to be inter-
esting at all, we want dim Ξξ ≥ 2. Among the infinitesimal deformations with
dim Ξξ ≥ 2, we have the special ones, for which Qξ = 0 and the general ones, for
which Qξ 6= 0. The first important result from the paper [8] is that every non-
hyperelliptic curve has a general deformation.

The infinitesimal invariant of a normal funtion has been introduced by Griffiths
in his paper [14]. In fact, he uses a whole section to define it. Here we will do
with an informal description. Let C → B be a deformation of C. The infinitesimal
invariant δν0 of the normal function ν0 from above is a global section of some (tau-
tological) bundle on some (incidence) variety and it can be “evaluated at a point
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b ∈ B”. The resulting object is a linear map K → C, where K is the kernel of the
map

TbB ⊗ P 2,1
C (J(Cb)) → P 1,2

C (J(Cb)) :
∑

i

ξi ⊗ ηi 7→
∑

i

∇ξi
(ηi). (3.7)

Before we can describe this linear map, we need to give another description of the
primitive intermediate Jacobian. Using Poincaré duality, we find

F 2P 3
C(J(Cb))

∗ ∼= ωg−3P 3
C(J(Cb))/ω

g−3F 1P 3
C(J(Cb))

and accordingly, we find a (dual) lattice. The most important thing is that we can
lift ν0 to a section ν̃0 of {ωg−1P 3

C(J(Cb))}b∈B . The infinitesimal invariant of ν0,
evaluated at b is defined by

δν0(b)(
∑

i

ξi ⊗ ηi) =
∑

i

∫

J(Cb)

(∇ξi
ν̃0) ∧ ηi.

If ν0 is constant on B, then the δν0 will be zero.

We will now see what happens if ν0 is a section of J g−1
prim,alg. Let L ie(J g−1

prim,alg)
denote the sheaf of Lie-algebras on B of the family of abelian varieties

{Jg−1(J(Cb))prim,alg}b∈B .

Let {Lb} ⊂ {P 3
C(J(Cb))}b∈B be the bundle of sections that are fiberwise orthogonal

to L ie(J g−1
prim,alg), i.e.

L = {η ∈ P 3
C(J(C))|

∫

C

η ∧ ψ = 0,∀ψ ∈ Lie(Jg−1(J(C))prim,alg)}

on each fiber, were we left out the subscript b. Note that P 3,0
C (J(C)) ⊂ L. We

denote this space with L3,0. The space L ∩ P 2,1
C (J(C)) is denoted with L2,1. Let

K ′ denote the kernel of the map

TbB ⊗ L2,1 → P 1,2
C (J(C))

that is the restriction of (3.7). Clearly, K ′ ⊂ K. If ξ⊗η ∈ K ′, then
∫

C
∇ξ ν̃0∧η = 0,

since
∇(L ie(J g−1

prim,alg)) ⊂ L ie(J g−1
prim,alg) ⊗ ΩB .

This shows that if we assume the general Ceresa 1-cycle to be algebraically equiv-
alent to zero, then δν0(b)(K

′
b) = 0. This observation can be compared to the

observation in step 1 of Ceresa’s proof. The difference is that we get a conclusion
that holds for all g ≥ 3.

We will now lead the above conclusion to a contradiction. Collino and Pirola came
up with the following formula of δν0(b), using the adjunction map we discussed
above. Suppose that dim Ξξ ≥ 2. Let σ1, σ2 ∈ Ξξ be linearly independent, and
τ ∈ H0(C,ΩC). Then we have

δν0(0)(ξ ⊗ σ1 ∧ σ2 ∧ ξ̂(τ)) = −2Qξ(σ1 ∧ σ2, τ).

If C is not hyperelliptic, we can always find a general deformation ξ, with σ1, σ2 ∈ Ξξ

and τ such that Qξ(σ1 ∧ σ2, τ) 6= 0. It remains to show that ξ⊗ σ1 ∧ σ2 ∧ ξ̂(τ) is in
K ′. To this end, Collino and Pirola first show that it is in K. Then they note that
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σ1 ∧ σ2 ∧ τ is a (3, 0)-form, and hence it is in L. Application of ∇ξ and projection

onto L2,1 gives σ1 ∧ σ2 ∧ ξ̂(τ) ∈ L2,1 and thus

ξ ⊗ σ1 ∧ σ2 ∧ ξ̂(τ) ∈ K ′.

Summing up, if we assume that the general Ceresa 1-cycle is algebraically equiva-
lent to zero then ν0 is a section of J g−1

prim,alg over some fine moduli space of curves
of genus g. In particular, the infinitesimal invariant, evaluated at a point and re-
stricted to the space L, is trivial. However, outside the hyperelliptic locus this is
shown to be false, since we can always find a general deformation in this case. �

As Collino and Pirola remarked in their paper, it would be interesting to compare
their results to those of Harris. For example, does Harris use the infinitesimal in-
variant in disguise? In this case, what do his results imply in view of Collino and
Pirola’s approach?

The results by Collino and Pirola have been generalized by Atsushi Ikeda in his
article [22]. His result provides an algebraic proof of Ceresa’s theorem. It is per-
haps interesting to compare his result to that of Faucette in [10]. This comparison
will give insight in how the results of Collino and Pirola are related to that of Harris.
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4 TAUTOLOGICAL RING

4 Tautological ring

Let C be a nonsingular connected projective curve. Its embedding φP : C → J(C)
gives classes C in the rational homology ring and the algebraic equivalence ring (with
extended scalars) of J(C). Let H denote the either of these rings for a moment.
Since J(C) is abelian, we have induced homomorphisms

[k]∗, [k]∗ : H → H.

Moreover, there is a second product besides the intersection product, that makes H

into a commutative group. This is the Pontryagin product ⋆ that we defined earlier
(section 1.3). The class C in H gives rise to new classes, by application of ⋆, ·, [k]∗

and [k]∗. All the classes we obtain in this way are called tautological classes. They
are contained in the smallest Q-vector subspace that contains the class C of the
curve, and that is stable under the natural operations ⋆, ·, [k]∗ and [k]∗. This vector
space is called the tautological ring and we denote it with R.
In case H is the homology ring, we have the Poincaré formula. Using this formula
we show that the ring R is just Q[Θ]/(Θg+1), where Θ denotes the homology class
of Wg−1. This is explained in subsection 4.1
In case H is the algebraic equivalence ring of a generic curve, we do not have this
formula at our disposal. This follows from Ceresa’s theorem. Moreover, it has been
shown that AQ(J(C)) is infinite dimensional for a generic curve of genus 3. So it
is not even obvious that R is finite dimensional. But surprisingly it is, as has been
shown by Arnaud Beauville in [5]. We sketch the proof of this result in subsection
4.2.
After we have determined the generators of R, we are going to collect relations. We
start with the vanishing of generators, in case the curve admits a certain covering
of P1. This is the famous result by Colombo and Van Geemen (see [9]). This result
has been generalized by Herbaut in [19]. Polishchuk [30] found relations for the
generators of R that hold for every curve of fixed genus.

4.1 Poincaré’s formula in the homology ring

Let C be a curve of genus g as above. Consider the integral homology ring of the
Jacobian variety of C,

H•(J(C),Q) =

2g⊕

k=0

Hk(J(C),Q).

Poincaré dual to this ring is the cohomology ring,

H•(J(C),Q) =

2g⊕

k=0

Hk(J(C),Q).

The Poincaré duality map PD : Hk(J(C),Q) → H2g−k(J(C),Q) provides an iso-
morphism between these rings, changing the intersection product into the wedge
product. The homology classes of the subvarieties W1,W2, . . . ,Wg−1 of J(C) are
denoted with the same symbols, except for W1 and Wg−1. These are denoted with
C and Θ. The Poincaré duals are denoted with

ηC , ηW2
, . . . , ηΘ.

Note that ηΘ is the first Chern class of the divisor Θ. We may view this class as
a Kähler class on J(C), and from this it follows that ∧gηΘ 6= 0. We can say more
about the powers of ηΘ.
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4 TAUTOLOGICAL RING 4.1 Poincaré’s formula

Theorem 4.1 (Poincaré) With the notation from above, we have

ηWn
=

1

(g − n)!

g−n∧
ηΘ.

Proof. See [12] or [24]. �

This translates to a dual statement in homology: for n = 1, . . . , g, the class of the
n-fold self-intersection of the divisor Θ equals the class Wg−n times n!.
Consider the isogeny [k] : J(C) → J(C). We want to see what the induced maps
[k]∗ and [k]∗ in homology are. The first one is just the push-forward. For the second
we take the class of the inverse image of the cycle by [k]. To see what these classes
are, we transfer to cohomology. The differential of [k] is just multiplication with k,
so [k]∗ acts on H1(J(C),Q) by multiplication with k. Since we have

Hp(J(C),Q) ∼=

p∧
H1(J(C),Q),

the homomorphism [k]∗ is just multiplication with kp. The push-forward of a dif-
ferential n-form ξ by [k] is defined as follows. The map [k] is an étale morphism of
degree k2g, so the preimage of a small open set is the union of k2g open subsets of
J(C). We can lift an n-tuple of vector fields to these slices, and sum up the values
of ξ on these n-tuples. For a cohomology class ξ this shows that

[k]∗ξ = k2g−nξ.

In view of the projection formula [k]∗([k]
∗(ξ) ∧ η) = ξ ∧ [k]∗(η) with η = 1, we get

[k]∗[k]
∗ξ = k2gξ. Summing up, for ξ ∈ Hn(J(C),Q) we have

[k]∗[k]
∗ξ = k2gξ, [k]∗ξ = k2nξ and [k]∗ξ = k2g−2nξ.

The Poincaré duality map is compatible with the natural actions of [k] on homology
and cohomology (by natural we mean the push-forward and pull-back in homology
and cohomology respectively), i.e. the following diagram commutes.

H•(J(C),Q)
PD //

[k]∗

��

H•(J(C),Q)

H•(J(C),Q)
PD

// H•(J(C),Q)

[k]∗

OO

From this we deduce the actions of [k] in homology. For α ∈ Hn(J(C),Q) we get

[k]∗[k]
∗α = k2gα, [k]∗α = k4g−2nα and [k]∗α = k2n−2gα.

Finally, we want to see how the Pontryagin product transfers to cohomology. Let

∗ : H•(J(C),Q) → H•(J(C),Q)

be the Hodge star operator with respect to the form ηΘ. Let

P̃D : H•(J(C),Q) → H•(J(C),Q)

be the map that restricts to (−1)g+n ∗ PD on the summands Hn(J(C),Q).

Lemma 4.2 The map P̃D : H•(J(C),Q) → H•(J(C),Q) transfers the Pontryagin
product into the wedge product, i.e., we have

P̃D(α ⋆ β) = P̃D(α) ∧ P̃D(β).
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4.2 The tautological ring 4 TAUTOLOGICAL RING

Proof. See §4.10 of [24]. �

We can now reap the fruits of the above observations.

Theorem 4.3 The tautological ring R in homology is isomorphic to Q[Θ]/(Θg+1).

Proof. The only thing that we have to show is that Q[Θ]/(Θg+1) is stable under
the Pontryagin product. Indeed, if this is the case then Q[Θ]/(Θg+1) is contained
in every space that is stable under the natural actions and that contains C. Hence
it is contained in the smallest. To show that it is stable under ⋆, we transfer to
cohomology. It is sufficient to show that

PD(Q[Θ]/(Θg+1)) = Q[ηΘ]/(∧g+1ηΘ)

is stable under the Hodge star operator ∗, since

PD(α ⋆ β) = (−1)g ∗−1 (∗PD(α) ∧ ∗PD(β)) .

But ∗ηΘ = ∧g−1ηΘ/(g − 1)!, which is in Q[ηΘ]/(∧g+1ηΘ). �

Note that we have not put any constraints on the curve, except that is has to be
nonsingular and projective. Due to the Poincaré formula, the tautological rings of
the (co)homology rings of the Jacobian varieties are all alike. Even if the curve is
special, e.g hyperelliptic. This is in contrast to the tautological ring of AQ(J(C)).
In this ring we do not have a Poincaré formula, for a generic curve. This is a
corollary of Ceresa’s theorem.

4.2 The tautological ring in the algebraic equivalence ring

Let C again be a nonsingular projective curve of genus g. The classes of the subva-
rieties W1,W2, . . . ,Wg−1 in AQ(J(C)) are denoted with

C,wg−2, . . . , w2, θ

respectively. Suppose that we have a Poincaré formula, i.e.

wk =
1

k!
θk, for k = 0, . . . , g,

where the product on the right hand side is the intersection product. Then we find
in particular that

[−1]∗w2 = [−1]∗
(

1

2
θ2

)
=

1

2
θ2 = w2,

where the last equality follows from the fact that θ2 ∈ A2
0(J(C)). But this violates

Ceresa’s theorem for a generic curve of genus g ≥ 3.

For a generic curve, there is no Poincaré formula in the algebraic equivalence ring
AQ(J(C)).

This observation inspires to investigate the tautological ring R ⊂ AQ(J(C)). It
will not have a simple description like the tautological ring in cohomology, but
the advantage is that it carries geometric information about the curve. Arnaud
Beauville determined the generators of R. The following theorem is the content of
his paper [5].
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4 TAUTOLOGICAL RING 4.2 The tautological ring

Theorem 4.4 (A. Beauville, 2004) Let C be a nonsingular projective curve
over C of genus g. The tautological ring, as described above, is generated as a
Q-algebra by the classes θ, w2, . . . , wg−2, C.

Sketch of proof. Consider the Q-algebra R′ that is generated by

θ, w2, . . . , wg−2, C,

and where the product is the intersection product. If we can show it is stable under
the actions of [k]∗ and [k]∗ and closed under the Pontryagin product, then R′ = R.
We will first show that R′ is stable under [k]∗ and [k]∗. To this end, we give different
generators for R′. Let R′ be as above and consider the equation

tg − w1tg−1 + · · · + (−1)gwg

in AQ(J(C))[t]. This factors in some extension ring,

tg − w1tg−1 + · · · + (−1)gwg =

g∏

i=1

(t− λi). (4.1)

We use the λi to produce the Newton polynomials

Nk =
1

k!

g∑

i=1

λk
i

which are in AQ(J(C)) again. For example, we have

N1 = θ, N2 =
1

2
θ2 − w2, N3 =

1

6
θ3 −

1

2
θ · w2 +

1

2
w3, . . .

In fact, the class Nk is a polynomial in w1, . . . , wg and conversely, wk is a polynomial
in N1, . . . , Nk.
For a Jacobian variety J(C) we have a special Fourier transform. The principal
polarization gives an isomorphism ϕΘ : J(C) 7→ J(C)t. This induces isomorphisms
for the Chow rings and the algebraic equivalence rings,

CHQ(J(C)) = CHQ(J(C)t) and AQ(J(C)) = AQ(J(C)t).

We can describe the Fourier map as follows. The variety J(C)×J(C) carries a line
bundle

L ′(Θ) := m∗O(Θ) ⊗ p∗1O(Θ)−1 ⊗ p∗2O(Θ)−1,

where m is the multiplication on J(C) and the pi are the projections from J(C) ×
J(C) onto the factors and O(Θ) is the line bundle associated to Θ. The map

1 × ϕΘ : J(C) × J(C) → J(C) × J(C)t

induces an isomorphism of the pairs

(J(C) × J(C),L ′(Θ)) → (J(C) × J(C)t,P)

where P is the Poincaré bundle on J(C) × J(C)t. We denote the algebraic equiv-
alence class of L ′(Θ) with ℓ ∈ A1(J(C)× J(C)). The Fourier transform is defined
by F(x) = p2∗(e

ℓ · p∗1x) and it satisfies the properties F1-F4 from the first section.
An application of the Grothendieck-Riemann-Roch formula yields the equality

−F(C) = N1 +N2 + · · · +Ng.

37



4.2 The tautological ring 4 TAUTOLOGICAL RING

With regard to the Beauville decomposition C = C(0) + C(1) + · · · + C(g−1), this
shows that

−F(C(k−1)) = Nk and F(Nk) = (−1)g+kC(k−1).

Summing up, R′ can be generated by elementsN1, . . . , Ng and sinceNk ∈ Ak
k−1(J(C)),

we see that R′, viewed as a Q-vector subspace, is stable under the intersections prod-
uct and the actions [k]∗ and [k]∗.
It remains to show that R′ is closed under the Pontryagin product. For this it
suffices to show that R′ is stable under F . Indeed, in that case

x ⋆ y = (−)gF(F(x) · F(y)) ∈ R′.

The inclusion FR′ ⊂ R′ follows, as soon as we have shown that FR′ is stable under
F , i.e. if FFR′ ⊂ FR′. Note that FR′ is closed under the Pontryagin product.
We first show that 1 and θ are in FR′.
The element 1 ∈ AQ(J(C)) is actually the class of w0, or rather, of J(C) itself.
Since

[k]∗w
0 = k2gw0,

we have 1 = w0 ∈ A0
0(J(C)). For the class wg, which may be represented by the

class of the identity element of J(C), we have [k]∗w
g = k2gwg, so wg ∈ Ag

g(J(C)).
In fact, since F : Ag

g(J(C)) ∼= A0
0(J(C)), we see that F(wg) is a Q-multiple of w0.

This shows that 1 ∈ FR′.
To show that θ is in FR′, we use the equality F(C(0)) = N1 = θ. The Beauville
decomposition of the curve gives the formula

[k]∗C = k2
(
C(0) + k · C(1) + · · · + kg−1 · C(g−1)

)
.

Consider the subspace of R′ that is generated by C, [2]∗C, . . . , [g]∗C. This is clearly
a subspace of the vector space generated by C(0), . . . , C(g−1). In fact, these spaces
are the same. The base change is performed by a nonsingular matrix1. This shows
that C(0) is in R′ which establishes the claim that 1, θ ∈ FR′. It follows that

eθ ∈ FR′.
Next, Beauville shows that FR′ is stable under intersecting with θ. In view of the
formula

F(x) = eθ
(
([−1]∗(x) · eθ ⋆ e−θ)

)
, (4.2)

which is proven in [5], this shows that FR′ is stable under F . This closes the sketch
of the proof. �

Remark 4.5 In his article, Beauville does not mention explicitly that 1 and θ are
in FR′, which is essential for the proof. This is the reason for adding a proof of
this fact.

Remark 4.6 The cycle class map cl : CHQ(J(C)) → H•(J(C),Q) is compatible
with both the intersection and the Pontryagin product. Furthermore, it is com-
patible with the actions of [k]∗ and [k]∗. This implies that cl(Ni) = 0 for i 6= g.
It follows that the tautological ring in homology is equal to Q[Θ]/(Θg), giving a
different proof of theorem 4.3.

1This matrix is similar to the one we discussed on page 9.
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4 TAUTOLOGICAL RING 4.3 Collecting relations

4.3 Collecting relations

The tautological ring is bigraded, since N1, . . . , Ng−1 are homogenous for both gra-
dations of AQ(J(C)). The map

Q[N1, N2, . . . , Ng−1] → R. (4.3)

is a surjective ring homomorphism. We are interested in the kernel of this map,
denoted with Kg. If we know the kernel, we know exactly what R is. Unfortunately,
we don’t know Kg, but Alexander Polishchuk [30] has determined a number of

relations among the classes N1, . . . , Ng−1. The expression N
[d]
1 denotes the class

Nd
1 /d! if d ≥ 0 and 0 otherwise.

Theorem 4.7 (A.Polishchuk, 2005) For every k ≥ 0, every n1, . . . , nk such that
ni ∈ Z≥2, and every d ∈ Z such that 0 ≤ d ≤ k − 1, we have

∑ (
m− 1

d+m− k

)
b(I1) . . . b(Im)N

[g−d−m+k−
Pk

i=1 ni]
1 Nd(I1) . . . Nd(Im) = 0 (4.4)

in AQ(J(C)) and where the sum is over all partitions [1, k] = I1 ⊔ I2 ⊔ . . . ⊔ Im of
the set [1, k] = {1, . . . , k} into the disjoint union of nonempty subsets I1, . . . , Im,

with k− d ≤ m ≤ g− d+ k−
∑k

i=1 ni (two partitions differing only by an ordering
of parts are considered to be the same); for a subset I = {i1, . . . , is} ⊂ [1, k] we
denote

b(I) =
(ni1

+···+nis )!

ni1
!...nis ! ,

d(I) = ni1 + · · · + nis
− s+ 1.

Proof. See [30]. �

Polishchuk shows on top of this, that the Q-linear span of all the elements in
AQ(J(C)) that satisfy (4.4) is an ideal in Q[N1, . . . , Ng−1]. It is clearly contained in
the kernel of (4.3) and it is conjectured that for a generic curve, this is an equality.
Polishchuk gives a motivation for this conjecture in [30].

As a corollary, Polishchuk shows that Nn = 0 for n ≥ g
2 + 1. Note that a generic

curve of genus g has a base point free g1
d, for some d ≤ g+3

2 (see e.g. Ch. V, Thm
1.1). In this way we recover the famous result by Elisabetta Colombo and Bert van
Geemen for generic curves.

Theorem 4.8 (Colombo and Van Geemen, 1993) Let C be a curve of genus g
and suppose it has a g1

d. Then the classes C(d′) are zero in AQ(J(C)), for d′ ≥ d−1.
Equivalently, the classes Nd′′ are zero for d′′ ≥ d.

Proof. See Thm. 1.3.3 of [9]. �

This is a vanishing result that leads to an effective description of R for hyperelliptic
curves. Suppose that C is hyperelliptic of genus g. The ring R is generated by θ,
so we need to determine the kernel of the projection

Q[θ] → R.

We claim that this is just (θg+1). We show that any power θk with 1 ≤ k ≤ g is
nonzero. The Riemann-Roch theorem for abelian varieties states

χ(O(Θ)) =
deg Θg

g!
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where χ(L ) is the Euler characteristic

χ(L ) =
∑

i≥0

(−1)i dimHi(J(C),L ).

But χ(ϕΘ) = 1, since ϕΘ is an isomorphism (for proofs of these facts, see e.g. [26],
Thm. 13.3). We conclude that θg equals g! times the class of a point on J(C). This
shows that no lower power θk is zero. Since θg+1 = 0, this establishes the claim.
Still under the assumption that C is hyperelliptic, we take a closer look at the New-
ton polynomials. Expanding the right hand side of equation (4.1) and comparing
coefficients yields

wk =
1

k!
(N1)

k mod (N2, . . . , Ng).

But the Ni are already zero for i = 2, . . . , g, since C is hyper-elliptic. It follows that
algebraic equivalence ring of a hyper-elliptic curve has a Poincaré formula. This has
been shown earlier by Alberto Collino in his paper [7]. We sketch his proof briefly.

Collino’s proof of the Poincaré formula in A(J(C)). Let C be a hy-
perelliptic curve of genus g and let P ∈ C be a Weierstrass point. We introduce
two subvarieties of C(n) for 1 ≤ n ≤ g. The first one is S(n); it paramatrizes the
positive divisors on C of degree n whose complete linear system is non-trivial. More
precise, with φP

(n) : C(n) → J(C) as usual,

S(n) := {D ∈ C(n)| dim |D| ≥ 1}.

It turns out that S(n) is a divisor. The second variety is the image of S(n) by the
morphism φP

(n) and it is denoted by G(n). It has been shown by Henrik Martens [25]

that G(n) is of dimension n− 2 for n = 1, . . . , g− 1 if and only if C is hyperelliptic.
In particular, if we denote the class of S(n) in CH(J(C)) by sn, then (φP

(n))∗sn = 0.

The next observation is that the Chow ring of C(n) is a CH(J(C))-algebra via
(φP

(n))
∗. The image of

C(n−1) → C(n) : D′ 7→ D′ + P

gives a class z ∈ CH(C(n)), and this class generates CH(C(n)) as a CH(J(C))-
algebra. Collino gives a proof for the crucial identity

sn = (φP
(n))

∗[Wg−1] − (g − n+ 1)z

in CH(C(n)). Pushing this forward to CH(J(C)) gives

0 = [Wg−1] · [Wn] − (g − n+ 1)[Wn−1].

Passing to the algebraic equivalence ring, we get w1wg−n = (g−n+1)wg−n+1. We
apply induction to n to prove the Poincaré formula:

θn

n!
= wn, for n = 1, . . . , g.

in AQ(J(C)). �

The Poincaré formula for hyperelliptic curves shows that [−1]∗C = C in the alge-
braic equivalence ring. Moreover, if C(1) 6= 0 in AQ(J(C)), then the curve can’t be
hyperelliptic. This is an important observation, since it shows that the algebraic
equivalence ring carries geometric information about the curve that we cannot re-
veal from the cohomology ring of the the Jacobian of the curve.
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The result by Colombo and Van Geemen has been generalized by Fabien Herbaut.
In his article [19] he presents a set of relations for the generators of R, in case C
has a base-point free gr

d. His relations have been simplified by Gerard van de Geer
and Alexis Kouvidakis in their article [31]. We present these simplified relations in
a theorem.

Theorem 4.9 (G. van der Geer, A. Kouvidakis, 2007) If C has a base point
free gr

d then
∑

a1+···+ar=n

(a1 + 1)! . . . (ar + 1)!Na1+1 . . . Nar+1 = 0,

for n ≥ d− 2r + 1. �

Note that for a d-gonal this yields k!Nk = 0 for k ≥ d − 1. Again, we recover the
result by Colombo and Van Geemen.
Herbaut showed another interesting thing. We state it in a theorem

Theorem 4.10 Let C be a curve of genus g with a base point free gr
d. Let A(r, d, g)

denote the number

r−1∑

i=0

(−1)i

d− 2r + 2

(
i+ g + r − d− 2

i

)(
d− 2r

r − 1 − i

)(
d− r + 1 − i

r − i

)
.

If A(r, d, g) 6= 0 then C(i) = 0 for i ≥ d− 2r + 1.

Proof. Herbaut gives two proofs in [19]. We give a sketch of the second. First he
proves that A(r, d, g) denotes the number of (r− 2)-planes Pr−2 in Pr such that the
intersection of the image of C → Pr and Pr−2 consists of 2r − 2 points, whenever
this number is finite. Assuming A(r, d, g) 6= 0, we can consider such a Pr−2 and the
linear system of hyperplanes in Pr containing Pr−2. This system is 1-dimensional,
so it gives a g1

d−2r+2 on C. Application of Colombo and Van Geemen yields the
result. �

We conclude this subsection with a question of Beauville. In his paper [5] he asked
whether for a generic curve of genus ≥ 5, the class N3 is zero or not. Let’s consider
this question here for g = 5. We may disregard the hyperelliptic curves, since
for those we have N2 = N3 = 0. This allows us to identify C with its canonical
embedding in P4. This is a curve of degree 8 and we denote is also with C. The
canonical divisor on C is denoted with K.
Now C has a g1

3 if and only if it has no g3
7 (see e.g. Ex.6.4.6 of [18]). Theorem 4.10

with g3
7 does not imply a vanishing of C(2). This can be seen in two ways. The

first is to calculate A(3, 7, 5); this number is 0. A more geometric reasoning is the
following.
Let C be the curve in P4 and let P ∈ C. Projecting from P to P3 gives C ′, a
nonsingular curve of degree 7. This has a trisecant. Indeed, if it hasn’t, we could
project onto P2 to obtain a nonsingular curve of degree 6. But such a curve has
genus 10, which is absurd. Let Q′, R′, S′ ∈ C ′ be points on a line. Suppose that
there is a fourth point T ′ on this line. Denote the inverse images on C by Q,R, S
and T . These points span a P2 in P4 but no three of them are colinear. So the linear
system of hyperplanes that contains the points P,Q,R, S and T is of dimension 1.
This linear system equals |K−P−Q−R−S−T |, and application of Riemann-Roch
yields

dim |P +Q+R+ S + T | = dim |K − P −Q−R− S − T | + 1 = 2.
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This gives a g2
5 on C. The image C ′′ of C is singular, having one node P ′′. The

lines through P ′′ give a linear system on C of degree 3 and dimension 1, i.e. a g1
3

on C. This is contradicting the assumption that C has a g3
7 , so there are no four

points colinear on C ′.
To answer the question of Beauville, we have to come up with other methods.
Indeed, if a gr

d on a generic curve implies C(2) = 0 via theorem 4.10, then the
locus of these curves is contained in the locus of curves with a g1

3 . The latter is of
dimension ≤ 11, so the curve could not have geen generic in the first place.

4.4 Concluding remarks

Griffiths has shown in 1969 in [13] that algebraic and homological equivalence are
not the same. Today we say that the Griffiths group

Griffk := Z k(X)hom/Z
k(X)alg

for an algebraic variety X might be non-trivial. In 1974 it was not yet clear whether
the Griffiths groups of an abelian variety were trivial or not. Indeed, Alberto Collino
writes in the introduction of his paper [7]:

“. . . it is an open question whether they (the homological and algebraic equivalence)
coincide on abelian varieties.”

In fact, it was not even known at the time whether there was or wasn’t a Poincaré
formula on the Jacobian variety of a generic curve. In this thesis we have seen that
both questions have been answered. The first is answered by Ceresa’s theorem, in
1983. It gave rise to a new question: what does the tautological ring in the algebraic
equivalence ring look like?
A first result directing to an answer was given by Colombo and Van Geemen in
1992. Beauville gave more structure to this ring in 1995 by providing the gen-
erators. Polishchuk contributed to a better understanding of the ring in 2005 by
providing relations that hold for every curve. Herbaut and Van Der Geer and Kou-
vidakis finally contributed in 2007 with relations in the ring for particular curves.
Research to (the tautological ring of) the algebraic equivalence ring of a Jacobian
variety is important because this ring is a finer invariant than the (tautological ring
of) the cohomology ring. It may also lead to a better understanding of the Hodge
conjecture on Jacobian varieties or to applications in number theory.
A better understanding may also give insight in the Bloch-Beilinson conjecture
about filtrations on the Chow groups of smooth projective varieties. One can look
for a discussion and references in the beautiful book [33] by Claire Voisin. For a
survey article about algebraic cycles we refer to the interesting paper [29] by Kapil
Hari Paranjape and Vasudevan Srinivas. It contains an overview of the subject
together with 43 references.
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