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Introduction

The aim of this thesis is to develop a deformation theory which classifies infinitesimal deformations of multi-
categories. In order to achieve this, methods from homological algebra will be used: a cochain complex will
be constructed such that infinitesimal deformations up to equivalence correspond to elements of the second
cohomology group. The thesis starts with presenting the classical result of deformations of associative alge-
bras. On the way we also encounter deformations of Lie algebras and of categories.

In chapter 1 we present the deformation theory of associative algebras which goes back to the article ”On
the deformations of rings and algebras” by Murray Gerstenhaber in 1964 (see [11]) preceded by a warming
up ”The cohomology of an associative ring” in 1963 (see [10]) of the same author. An associative algebra
is a vector space with an associative multiplication. We want to perturb this multiplication. A deformation
of an associative algebra is an associative algebra structure on an extension of the underlying vector space
such that it reduces to the original algebra when the extended vector space is reduced to the original one.
This means the following. Take the underlying vector space of an associative algebra and extend the scalars
by some ring R, i.e. if the k-vector space is A then the extension of scalars is given by the tensor product
A ⊗k R. This is now both a k-vector space and an R-module. An infinitesimal deformation is a special
extension, namely one where R is k[t]/(t2). The motivation for the name comes from synthetic differential
geometry: A⊗k k[t]/(t2) is isomorphic to A⊕At and it holds that (At)2 = 0, which is called an infinitesimal
object. It follows that an infinitesimal deformation of an associative algebra (A,m) is another associative
algebra (A⊕At,mt) such that for t = 0 we have (A,m0) ∼= (A,m).

We want to classify all these deformations up to equivalence. For this purpose Gerstenhaber describes
in [11] a method to construct a cochain complex bringing us into the arena of homological algebra. The
idea of homological algebra is to assign to an object a cochain complex, i.e. a sequence of modules such
that the composition of any two consecutive maps is zero. This complex gives rise to abelian groups called
cohomology groups, defined by the quotient of the kernel of a map divided by the image of the preceding map.
Throughout all of mathematics cohomology groups give all kind of interesting invariants. In our case, the
second cohomology group corresponds to all infinitesimal deformations up to equivalence. Now let us see how
a cochain complex is associated to an associative algebra. We want a bilinear map mt : (A⊕At)⊗k⊕kt (A⊕
At)→ (A⊕At) to be associative. First note that for mt there are maps m0,m1 ∈ Homk(A⊗A,A) such that
the linear extension of m0 +m1t is exactly mt. In what follows, we will only consider m0 +m1t. Note that
since mt evaluated in t = 0 must be m we have m0 = m, hence our candidates for infinitesimal deformations
are in Homk(A ⊗ A,A). One can write down the conditions which m1 has to satisfy in order for m +m1t
to be associative. This condition gives rise to a map d : Homk(A⊗A,A)→ Homk(A⊗A⊗A,A) such that
if d(m1) = 0 then the condition is satisfied. It is possible to define a map between any Homk(A⊗n, A) →
Homk(A⊗n+1, A) for all n ≥ 0 such that d ◦ d = 0. The complex obtained in this way is the Hochschild
complex introduced in the article ”On the cohomology groups of an associative algebra” by G. Hochschild
in 1945. The cohomology associated to this complex is the Hochschild cohomology. It is then shown that
the second cohomology group classifies all infinitesimal deformations.

Another central idea in the formal deformation theory is the extension of deformations. Suppose we
are given an associative algebra (⊕n

k=0At
k,mt) such that for t = 0 it reduces to (A,m). Such a deforma-

tion is called an n-deformation. In the same way, as for infinitesimal deformations, mt corresponds to a
family of multiplications mi ∈ Homk(A ⊗ A,A) for i = 0, . . . , n. Suppose this family satisfies a condition
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such that mt is associative. Now take another mn+1 ∈ Homk(A ⊗ A,A). The question is now, when is
m0 +m1t + . . . +mnt

n +mn+1t
n+1 an associative multiplication given that m0 + . . . +mnt

n is one. This
problem is called an extension problem. There will be a certain term, called obstruction, which, if it vanishes,
will allow such an extension. As a last step it will be shown that obstructions are in the third cohomology
group.

The same techniques can also be applied to Lie algebras as is pointed out in [11] and will be done in
chapter 2. For a given Lie algebra there is an underlying vector space. This vector space will be extended,
where a bracket will be defined such that the Lie algebra conditions are satisfied. The result is called a de-
formation of a Lie algebra if, when reducing the vector space to the original one, gives back the original Lie
algebra structure. Since one of the conditions is that the bracket should be anti-symmetric we will consider
alternating multilinear forms with values in itself. The only condition which remains is the Jacobi identity.
The differential will again be defined such that if the image of the differential is zero then that alternating
2-form satisfies the Jacobi-identity. In this way we obtain a cochain complex which was introduced in ”Co-
homology theory of Lie groups and Lie algebras” in 1948 by Chevalley-Eilenberg. The second cohomology
group classifies all infinitesimal deformations of Lie algebras and the third cohomology group contains the
obstructions extending n-deformations to (n+ 1)-deformations for all n ≥ 0.

A first step in the generalization is the deformation theory of categories which will be described in chapter
3. A (linear) category consists of a set of objects and for each pair of objects a vector space where the
vectors are called arrows. The first object of the pair is called the domain of the arrow and the second the
codomain. Arrows may be composed and for each object there is an identity arrow. The composition should
be associative and the identity arrows should be compatible with the composition. To get a better feeling
let us see how this generalizes an associative algebra. A category with only one object is an associative
algebra. There is just one pair hence just one vector space, implying that all arrows are composable. The
composition is thus an associative multiplication. Now we want to deform categories. This will be done in
exactly the same way as for associative algebras. First the underlying collection will be extended and then
on the extended arrows we ask for a composition giving rise to a category structure such that if reduced gives
back the original category. In the infinitesimal case, the composition can be written in terms of a family
of maps such that certain conditions are satisfied. These conditions are exactly the same as for associative
algebras with the only difference that the composition is not defined for any pair of arrows (only for the com-
posable ones). Hence it should come as no surprise that we will see the Hochschild complex appearing again.
The second cohomology group classifies all infinitesimal deformations of a category composition. A good ref-
erence for this theory is the paper ”On Deformations of Pasting Diagrams” by D. N. Yetter in 2009 (see [34]).

So far the examples. Let us do some serious work and try to deform multicategories. This is done in
chapter 4. A multicategory has, like a category, objects but instead of having just arrows with one input
and one output they may have several, possibly zero, inputs. Composing arrows can be done in two ways.
Either we take an arrow and choose for each input another arrow and compose them to form a new arrow or
we just choose two arrows and specify where the arrow should be inserted into the other one. Even though
the first composition might seem more natural at first sight it turns out that the second gives rise to much
nicer structures. Therefore we will work with the second one. In order to do this in a systematic way one
observes that multicategories conform to the dynamics of trees. To see this, represent arrows by trees. The
composition is then the grafting of trees such that the order of successive graftings does not matter. Apart
from the compositions already the collection can be elegantly described by trees. A collection is a functor
assigning to each corolla a vector space and to each isomorphism of trees an isomorphism between vector
spaces. Thus the functor transfers the dynamics of the category of trees to the category of vector spaces.

A deformation of multicategories will then be, again, an extension of the underlying collection with a mul-
ticategory structure on it, which reduces to the original multicategory for the original collection. From here
everything can be developed as before; express the composition as a family of compositions and determine
the conditions on this family. Then define a differential such that if the differential is zero the conditions
are satisfied. It will be shown that in this way a complex is obtained for which the second cohomology
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group classifies all infinitesimal deformations of multicategories. This complex is a generalization of the
Hochschild complex, meaning that if only trees with one input are considered one obtains the Hochschild
complex for linear categories. The main result of this thesis is the demonstration that the complex exhibits
a differential graded Lie algebra (dg-Lie algebra for short) structure. For this dg-Lie algebra the differential
is equal to the graded Lie bracket curried by the composition of the original multicategory. From here
it can easily be shown that the differential is indeed a differential, i.e. the composition of two successive
differentials is zero. It further holds that this structure reduces to the dg-Lie algebra structures for cate-
gories and associative algebras. The same way as before, the obstructions are in the third cohomology group.

Finally it is also possible to deform the morphisms of each structure, which is done at the end of each
chapter. The desire to deform the morphisms comes from the fact that representations of multicategories
and especially of operads, multicategories with one object, are known algebras. The essence of a repre-
sentation of an object of some category is to choose another object in that category which is well-known
and study the induced dynamics of the original object in the well-known object. In case of multicategories,
the well-known object is the endomorphism multicategory End. A representation of a multicategory M is
then just a multifunctor fromM to End. By the hom-tensor adjunction a representation is the same as an
algebra. There exists for example an operad whose representations are associative algebras, or an operad
whose representations are Lie algebras. Some examples of representations of multicategories are categories,
operads and even multicategories themselves. Knowing how to deform a multifunctor, a representation can
be deformed. It is then shown that infinitesimal deformations of representations give infinitesimal deforma-
tions of the algebras.

In the epilogue some topics will be described which might be worth considering after reading this the-
sis. Some of the topics are the following. The extensions, as they have been described here, turn out to
be 1-extensions. As the name suggest there exist higher extensions too, so one might wonder whether they
have deformation theoretic interpretations. A different topic is about deformation functors, which were de-
velopped by Grothendieck, Artin and Schlessinger. A deformation functor is a functor from the category
of local Artinian rings over some field k of characteristic zero. The local Artinian rings are used since
Grothendieck noticed that they have similar behavior as jets in differential geometry. A deformation functor
is supposed to send the ground field to the original structure and for any other ring the deformations of the
structure over that ring. In the thesis such a deformation functor is implicitly constructed in the section of
Maurer-Cartan elements of each chapter.

In appendix A the end and the coend are described. Both are notions from category theory. It is a
limit and colimit respectively in which several diagrams are simultaneously satisfied. These constructions
are described since they are used in the free multicategory and, more importantly, in the definition of the
cochain complex for multicategories. In appendix B the deformation theory for multicategories with a full
composition is given. Remember that it was said, that the composition might be given in two ways, where
in the exposition of chapter 4 the second has been chosen. Here the theory is developed for the first choice.
This leads naturally to the consideration of layered trees, for which most of the constructions of chapter 4
go through, mutatis mutandis. Yet, there are two reasons why this appears only in the appendix. The first
is that no dg-Lie algebra structure could be found on the cochain complex described with the help of layered
trees. This is not too much of a problem at the beginning: it can be shown that the second cohomology
group classifies all infinitesimal deformations of the full composition. The lack of a dg-Lie algebra structure is
especially annoying at the moment one has to show that the obstructions are cocycles. With two definitions
of compositions and two complexes around it is naturally to ask how they relate. Here appears the other
problem. Two maps can be constructed in an attempt to relate them, but they turn out not to commute
with the differential. Hence the more modest place in this thesis.

As a final word, I would like to take this opportunity to thank all the people involved in the creation
of this thesis for their stimulating discussions, brilliant suggestions and for their incredible support.
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Chapter 1

Deformation Theory of Associative
Algebras

Deformation theory is concerned with variations of structures such that the deformed structure is still of
the same type as the original one. In this chapter deformations of associative algebras will be considered.
The main idea is to augment the underlying field of an associative algebra, thus obtaining a unital ring R.
An R-algebra B is a deformation of an algebra A if it is associative and the reduction is isomorphic to A.
In order to get richer structures, certain restrictions will be imposed on the deformations. These make it
possible to write the deformed multiplication m on B as a sum of multiplications mk defined over A. The
associativity of m then translates into the condition that all the mk-s have to satisfy some equations. In
particular, an infinitesimally deformed multiplication has to satisfy the following equation:

am1(b⊗ c)−m1(ab⊗ c) +m1(a⊗ bc)−m1(a⊗ b)c = 0,

for all a, b, c ∈ A. This is where homological algebra enters the picture. The essential step is to interpret
m1 ∈ HomV ec(A ⊗ A,A) as a so-called Hochschild 2-cocycle. In fact, it will be shown that the second
Hochschild cohomology group coincides with infinitesimal deformations, up to equivalence. Also, the ex-
tensions of n-deformations to (n + 1)-deformations are controlled by the third cohomology group. With
the Gerstenhaber bracket the deformation complex carries a differential graded Lie algebra structure which
turns the Hochschild cohomology into a graded Lie algebra. The Hochschild complex and the Hochschild
cohomology form even a homotopy Gerstenhaber algebra and a Gerstenhaber algebra respectively. Solutions
to the Maurer-Cartan equation will be related to deformations; they give rise to infinitesimal deformations.
Furthermore, obstructions to extensions of deformations are described using the Maurer-Cartan equation.
This chapter finishes with the deformation theory of algebra morphisms. This will enable the study of
representations, relevant for later chapters.

1.1 Deformation

1.1.1 Associative algebras

Let R be a commutative ring. An associative algebra (A,m) consists of an R-module A and a binary
operation m : A⊗R A→ A, such that m is bilinear and satisfies

m(m(x, y), z) = m(x,m(y, z)).

for all x, y, z ∈ A .
In some literature an algebra is already considered to be associative. In this thesis this is not the case.

Note that if R is a field then A becomes a vector space. The associative algebra is not supposed to have a
unit unless explicitly stated.
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A morphism f : (A,mA)→ (B,mB) between associative algebras is an R-module morphism compatible
with the multiplications, i.e. the following diagram commutes:

A⊗R A

f⊗f

²²

mA // A

f

²²
B ⊗R B mB

// B.

The associative algebras together with the morphisms define a category Ass where the composition is
just the composition of functions.

Example 1.1.1.

Matn(k): The n× n-matrices with values in a field k together with the matrix product.

R[X]: Polynomials with coefficients in R together with the usual product of polynomials.

C: The complex numbers together with their multiplication.

U(g): The universal enveloping algebra of a finite dimensional Lie algebra g.

Throughout this chapter A will be an associative algebra over a field k of characteristic zero, unless
otherwise stated.

1.1.2 Augmentation

An augmentation of k by an ideal I of R is a k−module R together with a k−module morphism ε : R→ k
such that the exact sequence

0 // I // R
ε // k // 0

splits with splitting ω : k → R. That the exact sequence splits just means that ε ◦ ω = idk. Note that in
this case R = I ⊕ k.
Example 1.1.2.

For all n ∈ N the module k[t]/(tn) is an augmentation of k by (t) with augmentation map ε(
∑

i rit
i) = r0,

i.e. evaluating the polynomials in zero. The splitting is just the inclusion of k into k[t]/(tn).

k[[t]] is an augmentation of k by (t) with augmentation map evaluation in t = 0 and splitting the inclusion.

Note that a field, K, can not be a non-trivial augmentation, because the only ideal of K extending k is
the trivial one, thus by the exactness K/(0) = K is equal to k. Therefore the only augmentation of a field
is the field itself. Given an augmentation (R, ε) it then follows that R is a k-module by the use of ε and k
an R-module by using ω.

Let (A,m) be an associative k−algebra and let (R, ε) be an augmentation of k. Then A can be augmented
to an R−module by A ⊗k R. The multiplication can be extended bilinearly giving rise to an augmented
algebra (A⊗k R,m).

1.1.3 Deformations

With the help of the previous notions deformations of associative algebras can be defined.

Definition 1.1.1. Given an algebra A and an augmented unital ring R, an R-deformation (B,α) of A is
an associative R-algebra B together with a k-algebra isomorphism α : B ⊗R k → A.

12



In case the multiplication m of B needs to be stressed, a deformation will be denoted by (B,m,α).
Certain R-deformations carry a name, the following are the most important ones:

A formal deformation is a k[[t]]-deformation.

An n-deformation is a k[t]/(tn+1)-deformation.

An infinitesimal deformation is a k[t]/(t2)-deformation.

Note that an infinitesimal deformation is a special case of a n-deformation. In the general form not much
can be said about deformations, so certain restrictions will be imposed on B,R and α. In this chapter B will
be chosen to be of the form A⊗k R and only formal or n-deformations will be considered. The isomorphism
α will be chosen to be can : (A⊗k R)⊗R k → A given by (a⊗ 1)⊗ 1 7→ a. This choice is not very restrictive
since it will be shown in 1.1.5 that (A⊗k R, can) is equivalent to an arbitrary (A⊗k R,α).

There is a more convenient way of writing A ⊗k k[[t]] using the isomorphism A ⊗k k[[t]] ∼= A[[t]]. Thus
the elements of A[[t]] are formal power series

∑
k akt

k, where ak ∈ A. Using a similar construction elements
of n-deformations can be written as

∑n
k=0 akt

k, with ak ∈ A.
For formal there is an alternative definition of a deformation. Instead asking for an k[[t]]-algebra morphism

mt, one ask for a map mt : A⊗k A→ A[[t]] such that the diagram

A⊗k A
mA //

mt $$JJJJJJJJJ A

A[[t]].

ev0

OO

commutes. By linearity this map extends tomt : A[[t]]⊗k[[t]]A[[t]]→ A[[t]] giving rise to a formal deformation
in the previous sense. The same holds for n-deformations. In what follows this definition will be used.

1.1.4 Family of operations

The next lemma provides another description of deformations, namely as a family of multiplications. Re-
member that only formal or n-deformations are considered.

Lemma 1.1.1. A formal deformation is equivalent to a family of multiplications

{mi : A⊗k A→ A | i ∈ N0},

such that

(Dk) :
∑

i+j=k,i,j≥0

mi(mj(a⊗ b)⊗ c)−mi(a⊗mj(b⊗ c)) = 0

holds for all a, b, c ∈ A and for all k ∈ N0. Furthermore m0 = mA.

Proof. Consider a formal deformation (A⊗kk[[t]],m, can). Since A⊗kk[[t]] ∼=
⊕

i≥0At
i and the Hom-functor

preserves limits it follows that

Homk(A⊗k A,
⊕

i≥0

Ati) ∼=
⊕

i≥0

Homk(A⊗k A,A).

More explicitly, consider two elements a, b ∈ A. Since m(a ⊗ b) ∈ A[[t]], there exists a sequence (ck)k∈N0

of elements of A, such that m(a ⊗ b) =
∑

k ckt
k. Let mk(a ⊗ b) := ck. In this way a multiplication

mk : A⊗A→ A is obtained for each k ∈ N0. Therefore m gives rise to a family of multiplications

{mi : A⊗k A→ A | i ∈ N0}.
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Thus m has the form m = m0 + m1t
1 + m2t

2 + . . .. Since (A ⊗k k[[t]],m, can) is a deformation, m is
associative, therefore

0 =m(m(a⊗ b)⊗ c)−m(a⊗m(b⊗ c))
=

∑

i,j

(mi(mj(a⊗ b)⊗ c)−mi(a⊗mj(b⊗ c))) ti+j .

This sum is zero exactly if the coefficient of tk is zero for all k. These coefficients are
∑

i+j=k

(mi(mj(a⊗ b)⊗ c)−mi(a⊗mj(b⊗ c))) ,

which are exactly (Dk). That m0 is equal to the multiplication on A will follow from the fact that ev0 ◦m =
mA ◦ (ev0 ⊗ ev0). Let a, b ∈ A. Then ev0 ◦m(a ⊗ b) = ev0(

∑
i≥0mi(a ⊗ b)ti) = m0(a ⊗ b). On the other

hand mA(ev0(a)⊗ ev0(b)) = mA(a⊗ b). Hence the desired equality.
To prove the other implication consider a family of multiplications {mi}i∈N0 satisfying (Dk). Define

m :=
∑

k mkt
k. This is a multiplication on A[[t]]. It has to be proved that m is associative, but this

is straightforward by the previous calculation. Start with (Dk) and derive m(m ⊗ id) − m(id ⊗ m) = 0.
Therefore (A⊗k k[[t]],m, can) gives rise to a k[[t]]-deformation.

Similar results may be obtained for n-deformations. Using the same reasoning it can be shown that an
n-deformed multiplication m is given by a family of multiplications {mi}0≤i≤n satisfying (Dk) up to k = n.
Thus m on A⊗A can be written as

∑n
k=0mkt

k. Also in this case m0 is the original multiplication on A.
For an infinitesimal deformation, being a 2-deformation, a multiplication m working on A ⊗ A is thus

given by m = m0 +m1t. In order for m to be associative (D0) and (D1) have to be satisfied.
If the family of a deformation should be stressed the deformation will be written as (A[[t]], {mi}∞i=1) or

(A[[t]]/(tn), {mi}ni=1) in case of a formal or n−deformation respectively.

1.1.5 Equivalence of deformations

In this section it will be explained what it means for two R-deformations to be equivalent. With this notion
a trivial deformation can be defined. It will be shown that an algebra morphism is equivalent to a family of
automorphisms in a similar way as deformations were characterized by a family of multiplications.

Finally it will be shown that the deformation of unital algebras is equivalent to the deformation of an
algebra where the unit is not deformed. This proves that no special attention has to be given to unital
algebras with respect to their deformation theory.

Definition 1.1.2. Two R-deformations (B,α) and (B′, α′) are said to be equivalent, (B,α) ∼ (B′, α′), if
there exists an R-algebra isomorphism φ : B → B′ such that

B ⊗R k

α
##GG

GG
GG

GG
G

φ⊗Rk // B′ ⊗R k

α′{{wwwwwwwww

A

commutes.

It was said that any R-deformation (A⊗k R,α) is equivalent to (A⊗k R, can). This means that for each
α there exists an R-algebra isomorphism. This isomorphism is given by φα(a⊗ r⊗v) := α(a⊗ r⊗v)⊗1⊗1.
It is obviously an isomorphism since α is one and α = can ◦ φα.

Two formal deformations mt and m′
t are equivalent if there exists a formal k[[t]]-algebra isomorphism

φt satisfying the previous commutative diagram. As for formal deformations, there is an alterate way of
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defining an equivalence. Two formal deformations are equivalent if there is an isomorphism φt : A → A[[t]]
such that the diagram

A
idA //

φt !!DD
DD

DD
DD

A

A[[t]]

ev0

OO

commutes. In this case, φt corresponds to a family of morphisms (φk)k∈N0 such that

φt =
∑

k

φkt
k.

It follows that φ0 = idA.If φt is an isomorphism then so are the φk-s. Similar results are obtained by
considering equivalences of n-deformations.

An R-deformation (B,α) is trivial if (B,α) ∼ (A, id). In case of a formal deformation a trivial deformation
is of the form m0(a, b) +

∑
k 0tk for all a, b ∈ A.

So far no special attention has been given to the question what happens to the unit in a unital associative
algebra. The following theorem justifies this lack of attention.

Theorem 1.1.1. Let (A[[t]],m′, u′) be a deformation of the associative unital algebra (A,mA, uA) where u′ =∑
i u
′
it

i is the deformed unit. Then there exists a deformation (A[[t]],m′′, uA) equivalent to (A[[t]],m′, u′).

Proof. Define α : A[[t]]→ A[[t]] by x 7→ m′(x, uA). Note that the unit is preserved since α(u′) = m′(u′, uA) =
uA. The inverse to α is given by α−1(y) := m′(y, u−1

A ) where the components of u−1
A are recursively defined

by the property
∑k

i=0m
′
i((u

−1
A )k−i, uA) = u′k. Define the multiplication m′′ to be

m′′(x, y) := m′(m′(x, id−1
A ), y),

for all x, y ∈ A. The associativity follows from the associativity of m′. That α is compatible with m′ and
m′′ follows from

α(m′(x, y)) =m′(m′(x, y), uA)
=m′(x,m′(y, uA))
=m′(m′(x, u′), α(y))

=m′(m′(x,m′(uA, u
−1
A )), α(y))

=m′(m′(m′(x, uA), u−1
A ), α(y))

=m′(m′(α(x), u−1
A ), α(y))

=m′′(α(x), α(y)).

It remains to check that α gives rise to the commutative square in the definition of an equivalence of
deformations. Let

∑
i≥0 xit

i ∈ A[[t]].

ev0 ◦ α(
∑

i≥0

xit
i) =ev0


 ∑

i,j≥0

m′
j(xi, uA)ti+j




=m′
0(x0, u0)

=x0.

This proves the commutativity, showing that (A[[t]],m′, u′) is equivalent to (A[[t]],m′′, u).
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1.1.6 Extension and obstructions

Extensions and obstructions will now be defined. To shorten the notation the multiplication m(a ⊗ b) will
be denoted by m(a, b) or even by ab.

Definition 1.1.3. An extension of a n-deformation {m1, . . . ,mn} is {m1, . . . ,mn} ∪ {mn+1} such that
(Dn+1) is satisfied.

The equation (Dn+1) holds if
∑

i+j=n+1,i,j≥0

mi(mj(a, b), c)−mi(a,mj(b, c)) = 0.

This can be rewritten as

0 =
∑

i+j=n+1,i,j≥0

(mi(mj(a, b), c)−mi(a,mj(b, c)))

= (mn+1(a, b)c− amn+1(b, c) +mn+1(ab, c)−mn+1(a, bc)) +
∑

i+j=n+1
i,j>0

(mi(mj(a, b), c)−mi(a,mj(b, c))) .

The first part, mn+1(a, b)c− amn+1(b, c) +mn+1(ab, c)−mn+1(a, bc), will later be recognized as a cocycle.

Definition 1.1.4. The term

On :=
∑

i+j=n+1
i,j>0

mi(a,mj(b, c))−mi(mj(a, b), c)

in (Dn+1) is called obstruction.

Consider the following example. Let a 2-deformation be given, it will be extended by introducing a
multiplication m3. An explicit calculation of m(m(a, b), c)−m(a,m(b, c)) for m = m0 +m1t+m2t

2 +m3t
3

arranged by the tk-levels gives:

t0 : (ab)c− a(bc) = 0 (D0)

t1 : −am1(b, c) +m1(ab, c)−m1(a, bc) +m1(a, b)c = 0 (D1)

t2 : −am2(b, c) +m2(ab, c)−m2(a, bc) +m2(a, b)c+

+(m1(m1(a, b), c)−m1(a,m1(b, c))) = 0 (D2)

t3 : −am3(b, c) +m3(ab, c)−m3(a, bc) +m3(a, b)c+

m2(m1(a, b), c) +m1(m2(a, b), c)−m2(a,m1(b, c))−m1(a,m2(b, c)) (D3)

It has been used that (Dk) holds up to k = 2 (because of the associativity of the 2-deformation). What is
left is again a cocycle minus O2. Note that the term m1(m1(a, b), c)−m1(a,m1(b, c) in the coefficient of t2

would exactly be the obstruction O1 of extending a 1-deformation to a 2-deformation.

16



1.2 Hochschild Complex

Given an infinitesimal deformation, the multiplication m : A→ A[t]/(t2) is of the form m = m0 +m1t. Writ-
ing out explicitly the condition for m to be associative gives, collected by the corresponding tk coefficients:

t0 : (ab)c− a(bc) = 0

t1 : −am1(b, c) +m1(ab, c)−m1(a, bc) +m1(a, b)c = 0.

The aim is now to interpret m0 and m1 as 2-cochains such that d(m1) = −am1(b, c)+m1(ab, c)−m1(a, bc)+
m1(a, b)c. In order for m0 +m1t to be associative m1 has to be a cocycle. The cochain complex providing
this setting for associative algebras is the Hochschild complex. The cohomology over this complex is the
Hochschild cohomology which has deformation theoretical interpretations.

1.2.1 Hochschild Complex

The Hochschild complex is constructed as follows. Let n ∈ Z and let A be an associative algebra. Define

Cn
Hoch(A,A) :=

{
HomVeck

(A⊗n, A) n ≥ 0
0 n < 0,

where A0 is defined to be k and let dn
Hoch : Cn

Hoch(A,A)→ Cn+1
Hoch(A,A) be given by

(dn
Hochf)(a1, . . . , an, an+1) :=





0 , n < 0
(af − fa) , n = 0
a1f(a2, . . . , an+1)+ , n > 0

n∑

i=1

(−1)if(a1, . . . , ai−1, (aiai+1), ai+2, . . . , an+1)+

(−1)n+1f(a1, . . . , an)an+1.

In case n = 0, the isomorphism HomVeck
(k,A) ∼= A allows the interpretation of f as an element of A.

As it is done often in homological algebra, the map dn
Hoch will simply be written dHoch or even just d, for all

n ∈ Z.
The proof that d is a differential, i.e. d2 = 0, will be postponed until lemma 1.2.1. For now the result

will be assumed.

Definition 1.2.1. The positive cochain complex (C•Hoch(A,A), d), i.e.

. . . d // 0
d // C0

Hoch(A,A) d // C1
Hoch(A,A) d // C2

Hoch(A,A) d // . . .

is called the Hochschild complex.

To endow the Hochschild complex with additional structures a degree shift will be necessary. The kth

degree shift of a complex C•, denoted by C•[k], is defined to be (C•[k])n := Cn+k. The dimension of an
element f ∈ Cn

Hoch[k](A,A) is defined to be dim(f) := n+ k and the degree deg(f) := n.
The Hochschild complex gives rise to a differential graded module over the field k by defining

CHoch(A,A) :=
⊕

n∈Z
Cn

Hoch(A,A).

17



1.2.2 Graded pre-Lie algebra

The Hochschild complex can be given the structure of a pre-Lie system by providing circle-i operations.
These circle-i operations allow the definition of a circle operation giving rise to a graded pre-Lie algebra.

Definition 1.2.2. A pre-Lie system consists of a collection of R-modules {An}n≥0 together with binary
operations ◦i : Am ⊗k A

n → Am+n, such that for a ∈ Am, b ∈ An and c ∈ Ap

(a ◦i b) ◦j c =





a ◦i (b ◦j−i+1 c) i ≤ j ≤ i+ n− 1
(a ◦j−i c) ◦i b i+ n ≤ j ≤ m+ n− 1
(a ◦j c) ◦i+p−1 b 1 ≤ j ≤ i− 1

is satisfied for all i and j in Z.

Take CHoch(A,A)[1]n as a sequence of k-modules and define the circle-i operations for all f ∈ CHoch(A,A)[1]m

and g ∈ CHoch(A,A)[1]n as:

f ◦i g(a0, . . . , am+n) := f(a1 ⊗ . . . ai−1 ⊗ g(ai ⊗ . . .⊗ ai+n)⊗ ai+n+1 ⊗ . . .⊗ am+n).

Note that the complex has been shifted by one in order for the circle-i operations to respect the grading on
the Hochschild complex. In case of the unsuspended sequence the degree is deg(f ◦i g) = m+ n− 1 and not
deg(f) + deg(g) = m+ n. On the other hand, in the shifted case, deg(f ◦i g) = m+ n = deg(f) + deg(g). It
is a straightforward verification that the axioms of a pre-Lie system are satisfied by CHoch(A,A)[1] with the
above defined ◦i-operations.

Now it will be shown that the complex can be endowed with a right pre-Lie algebra structure. A right
pre-Lie algebra is a graded module A =

⊕
n∈ZA

n together with a binary operation ◦ : A⊗kA→ A respecting
the grading, such that

(a ◦ b) ◦ c− a ◦ (b ◦ c) = (−1)deg(b)deg(c) ((a ◦ c) ◦ b− a ◦ (c ◦ b))

for all homogeneous a, b and c in A.

Theorem 1.2.1. Let (Vn, ◦i)n,i be a pre-Lie system and f ∈ V [1]m and g ∈ V [1]n. Define

f ◦ g :=
m+1∑

i=1

(−1)(i−1)nf ◦i g.

Then the shifted vector space V [1] =
⊕

n≥0 V [1]n together with ◦ forms a right algebra.

For a prove see [10]. A corollary is that (CHoch(A,A)[1], ◦) is a graded pre-Lie algebra.

Remark 1.2.1. The sign (−1)n(i−1) can nicely be interpreted as coming from the permutations. Let x⊗y =
(−1)|x||y|y ⊗ x then the sign of f ◦i g is obtained by the permutation

f ⊗ g ⊗ x1 ⊗ . . . xm+n−1 7→ f ⊗ x1 . . . xi−1 ⊗ g ⊗ xi ⊗ . . .⊗ xm+n−1

with |xi| = 1.

1.2.3 Graded Lie algebra

Now the Hochschild complex will be endowed with a graded Lie algebra structure.

Definition 1.2.3. A graded Lie algebra (A, [−,−]) is a graded vector space A together with a bracket [−,−]
respecting the grading, such that the following two axioms hold:

Graded antisymmetry: [b, a] = −(−1)deg(a)deg(b)[a, b]
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Graded Jacobi identity: (−1)deg(c)deg(a)[a, [b, c]] + (−1)deg(a)deg(b)[b, [c, a]] + (−1)deg(b)deg(c)[c, [a, b]] = 0.

Define the Gerstenhaber bracket on CHoch(A,A)[1] as follows. For f ∈ CHoch[1]m(A,A) and g ∈
CHoch[1]n(A,A) let

[f, g] :=f ◦ g − (−1)mng ◦ f.
Lemma 1.2.1. The Gerstenhaber bracket [−,−] is a graded Lie bracket on CHoch(A,A)[1].

Proof. The grading is respected by the bracket since it is respected by ◦.
Let f ∈ Cm

Hoch[1](A,A), g ∈ Cn
Hoch[1](A,A) and h ∈ Cp

Hoch[1](A,A). Then

[f, g] =f ◦ g − (−1)mng ◦ f
=− (−1)mn(g ◦ f − (−1)mnf ◦ g)
=− (−1)mn[g, f ],

i.e. the graded antisymmetry is satisfied. Now the graded Jacobi identity has to be checked.

[f, [g, h]] + (−1)m(n+p)[g, [h, f ]] + (−1)p(m+n)[h, [f, g]] =

=
(
f ◦ (g ◦ h− (−1)nph ◦ g)− (−1)m(n+p)(g ◦ h− (−1)nph ◦ g) ◦ f

)

+ (−1)m(n+p)
(
g ◦ (h ◦ f − (−1)pmf ◦ h)− (−1)n(p+m)(h ◦ f − (−1)pmf ◦ h) ◦ g

)

+ (−1)p(m+n)
(
h ◦ (f ◦ g − (−1)mng ◦ f)− (−1)p(m+n)(f ◦ g − (−1)mng ◦ f) ◦ h

)

=
(
f ◦ g ◦ h− (−1)npf ◦ h ◦ g − (−1)m(n+p)g ◦ h ◦ f + (−1)(np)+m(n+p)h ◦ g ◦ f

)

+
(
(−1)m(n+p)g ◦ h ◦ f − (−1)2mp+mng ◦ f ◦ h− (−1)2mn+(m+n)ph ◦ f ◦ g + (−1)2(mn+mp)+npf ◦ h ◦ g

)

+
(
(−1)p(m+n)h ◦ f ◦ g − (−1)(mn)+p(m+n)h ◦ g ◦ f − (−1)2p(m+n)f ◦ g ◦ h+ (−1)(mn)+2p(m+n)g ◦ f ◦ h

)

=0.

Thus the Gerstenhaber bracket is a graded Lie bracket on (CHoch(A,A)[1], [−,−]).

1.2.4 Differential graded Lie algebra

The Hochschild complex carries even more structure, namely that of a differential graded Lie algebra.

Definition 1.2.4. Given a graded Lie algebra (g, [−,−]) and a map d : g → g such that d2 = 0 and d is a
derivation of degree 1, then (g, [−,−], d) is said to be a differential graded (dg) Lie algebra.

In order to show that (CHoch(A,A)[1], [−,−]) together with dHoch forms a dg-Lie algebra, the following
lemma will be useful.

Lemma 1.2.2. Let m0 ∈ C1
Hoch[1](A,A) and f ∈ Cn

Hoch[1](A,A). Then dHoch(f) = [m0, f ].

Proof. This follows from an easy computation.

[m0, f ] =m0 ◦ f − (−1)1nf ◦m0

=
2∑

i=1

(−1)(i+1)nm0 ◦i f − (−1)n
n+1∑

i=1

(−1)(i+1)1f ◦i m0

=(−1)n

(
(−1)nm0 ◦1 f +m0 ◦2 f +

n+1∑

i=1

(−1)if ◦i m0

)

=(−1)n

(
m0 ◦2 f +

n+1∑

i=1

(−1)if ◦i m0 − (−1)n+1m0 ◦1 f
)

= d(f).
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Now it is easy to prove that d2 = 0 (which is quite a job to check directly from the definition).

Proposition 1.2.1. The Hochschild map dHoch is a differential and a degree 1 derivation.

Proof. For f ∈ Cm
Hoch[1](A,A)

d2f =(−1)2m[m0, [m0, f ]] (df = [m0, f ])

=− (−1)1+m[m0, [f,m0]]− (−1)m(1+1)[f, [m0,m0]] (graded Jacobi identity)
=− (−1)m(−1)[m0, [f,m0]] ([m0,m0] = 0)
=− [m0, [m0, f ]], (graded antisymmetry)

thus d2f = 0, and therefore proves that d is a differential.
For f ∈ Cm

Hoch[1](A,A) and g ∈ Cn
Hoch[1](A,A) the following holds:

[df, g]+(−1)m[f, dg] =
=[[m0, f ], g] + (−1)m[f, [m0, g]] (d(f) = [m0, f ])

=[[m0, f ], g] + (−1)m
(
−(−1)m(1+n)[m0, [g, f ]]− (−1)n(m+1)[g, [f,m0]]

)
(graded Jacobi identity)

=[[m0, f ], g]− (−1)mn[m0, [g, f ]]− [[m0, f ], g] (graded antisymmetry)
=[m0, [f, g]] (graded antisymmetry)
=d([f, g]). (d(f) = [m0, f ])

This shows that d is a derivation of degree 1.

Therefore (CHoch(A,A)[1], [−,−], dHoch) is a dg-Lie algebra.

1.2.5 Homotopy Gerstenhaber algebra

The Hochschild cochain complex CHoch(A,A) has the structure of a homotopy Gerstenhaber algebra (c.f.
[18]).

Definition 1.2.5. A homotopy Gerstenhaber-algebra, or homotopy G-algebra for short, is a quadruple
(V, {}, ·, d), where

V is a graded vector space: V =
⊕

n

Vn

{} is a collection of braces degree −k: −{−, . . . ,−} : Vm × Vn1 × . . .× Vnk
→ V(m−k)+

P
i ni

· is a dot product of degree 0: · : Vm × Vn → Vm+n

d is a differential degree 1: d : Vm → Vm+1, d
2 = 0.

such that

1. (V, ·, d) is a associative dg-algebra

2. composition of braces:

x{y1, . . . , ym}{z1, . . . , zn} =

=
∑

0≤i1≤...≤im≤n

(−1)(
Pm

p=1(deg(yp)−1))
“Pip

q=1(deg(zq)−1)
”
x{z1, . . . , yi1 , y1{zi1+1, . . . , yj1}, yj1+1, . . . , zn}
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3. · must be compatible with the braces:

(x1 · x2){y1, . . . , yn} =
n∑

k=0

(−1)deg(x2)
Pk

p=1(deg(yp)−1)x1{y1, . . . , yn} · x2{y1, . . . , yn}

4. d must be compatible with the braces:

d(x{y1, . . . , yn+1})−(dx){y1, . . . , yn} − (−1)deg(x)−1
n+1∑

i=1

(−1)
Pi−1

j deg(yj)−i−1x{y1, . . . , d(yi), . . . , yn+1} =

=− (−1)deg(x)(deg(y1)−1)y1 · (x{y2, . . . , yn+1}) +

− (−1)deg(x)
n∑

i=1

(−1)
Pi

j=1 deg(yj)−ix{y1, . . . , (yi · yi+1), . . . , yn+1}+

+ (−1)deg(x)+
Pn

j=1 deg(xj)−nx{y1, . . . , yn} · yn+1.

If (V, {}) satisfies only (2) then it is called a brace algebra (c.f. [20]). Every brace algebra and
hence every homotopy G-algebra gives rise to a dg-Lie algebra (V, [−,−], d) by defining [x, y] = x{y} −
(−1)deg(x)deg(y)y{x}. The graded commutativity of the dot product and the graded Leibniz rule of the
bracket only hold up to coboundaries:

x · y − (−1)deg(x)deg(y)y · x =(−1)deg(x)−1
(
d(x ◦ y)− d(x) ◦ y − (−1)deg(x)−1x ◦ d(y)

)

[x, y · z]− [x, y] · z − (−1)(deg(x)−1)deg(y)y · [x, z] =

= (−1)(deg(x)−1)deg(y)(d(x{y, z})− d(x){y, z} − (−1)deg(x)−1x{d(y), z} − (−1)(deg(x)−1)+(deg(y)−1)x{y, d(z)})
for all x, y and z in V . In cohomology the coboundaries vanish and will give rise to a Gerstenhaber algebra
as will be seen later.

Remark 1.2.2. The name homotopy comes from the fact that an algebra over a cofibrant replacement of an
operad in the category of differential graded operads is called a homotopy algebra. The homotopy Gerstenhaber
algebras are algebras over a cofibrant replacement of the Gerstenhaber-operad.

To show that the Hochschild cochain complex CHoch(A,A) has the structure of a homotopy G-algebra,
note that CHoch(A,A) is a graded vector space and define the following operations:

Braces: Let x, y1, . . . , yn ∈ C•Hoch(A,A).

x{y1, . . . , yn}(a1, . . . , ani) :=
∑

1≤i1≤i1+deg(y1)≤i2≤...≤in+deg(yn)≤m

(−1)
Pn

p=1(deg(yp)−1)ip

x(a1, . . . , ai1 , y1(ai1+1, . . .), . . . ain , y2(ain+1, . . .), . . . , am)

where the summation runs over all possible ways of composing y1, . . . , yn with x in such a way that
it respects the order of {y1, . . . , yn} and i1, . . . , in ∈ {1, . . . , n}. By convention define x{} := x and
x ◦ y := x{y}. In case x is a unitary map, ◦ reduces to the ordinary composition since there is just one
way to compose y with x.

Dot product: · : Cm
Hoch ⊗ Cn

Hoch → Cm+n
Hoch , x⊗ y(v1, . . . , vm+n) 7→ x(v1, . . . , vm)y(vm+1, . . . , vn).

Differential: Let d be the Hochschild differential.

From the definition of the dot product it can readily be seen that it respects the grading of CHoch(A,A).
A straightforward calculation shows that the dot product is associative. Since d is the Hochschild differential,
it follows that it is a differential and a degree one derivation. It remains to check the axioms 2 till 4. The
proofs are long calculations and can be found in [18] or [10]. With these operations (CHoch(A,A), {}, ·, d) is
a homotopy G-algebra.
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1.3 Hochschild Cohomology

1.3.1 Hochschild cohomology

In the previous section the Hochschild complex has been introduced. Cohomology can now be taken over
this cochain complex giving rise to the Hochschild cohomology.

Definition 1.3.1. The nth Hochschild cohomology group Hn
Hoch(A,A) is defined by

Hn
Hoch(A,A) :=Hn(C•Hoch(A,A))

=Ker(dHoch)/Im(dHoch).

The degree shift of the Hochschild cohomology is defined in the same way as for the Hochschild complex.
It will be used to endow the Hochschild cohomology with a differential graded Lie algebra structure.

1.3.2 Differential graded Lie algebra

Let HHoch[1](A,A) :=
⊕

m∈ZH
m
Hoch[1](A,A).

Proposition 1.3.1. The dg-Lie algebra (CHoch(A,A)[1], [−,−], dHoch) induces a graded Lie algebra structure
on (HHoch[1](A,A), [−,−]′), where [−,−]′ is induced by the Gerstenhaber bracket.

Proof. For [f ], [g] ∈ HHoch[1](A,A) the bracket is defined to be [[f ], [g]]′ = [[f, g]]. It has to be shown that
it is well-defined and that it is a Lie bracket preserving the grading on HHoch[1](A,A).

For the well-definedness, let f ∈ Ker(dm+1) ⊂ Cm
Hoch[1](A,A) and g ∈ Ker(dn+1) ⊂ Cn

Hoch[1](A,A).
Then [f, g] ∈ Cm+n

Hoch [1](A,A), and since d is a derivation of degree 1,

d([f, g]) =[df, g] + (−1)m[f, dg] (derivation)
=0. (elements of the kernel of d)

Thus [f, g] ∈ Ker(dm+n+1). This shows that
⊕

m∈ZKer(dm+1) is a subring of C•+1
Hoch(A,A). Now it will

be shown that
⊕

m∈Z Im(dm+1) form a two-sided ideal of
⊕

m∈ZKer(dm+1). For f ∈ Ker(dm+1) and
g ∈ Im(dn+1), there exists an h ∈ C(n−1)

Hoch [1](A,A), such that g = d(h). Then

[f, g] =[f, d(h)]
=− (−1)md([f, h]) + (−1)m[df, h]
=− (−1)md([f, h]).

Therefore [f, g] is the image of −(−1)m[f, h] ∈ Cm+(n−1)
Hoch [1](A,A), showing that [f, g] ∈ Im(dm+n+1) and

proving that
⊕

m∈Z Im(dm+1) is a left ideal of
⊕

m∈ZKer(dm+1). The right ideal property follows immedi-
ately from the graded antisymmetric property of the Gerstenhaber bracket.

Now it will be shown that this bracket is actually a graded Lie bracket. The graded antisymmetry follows:

[f + Im(d), f ′ + Im(d)] =[f, f ′] + [f, Im(d)] + [Im(d), f ′] + [Im(d), Im(d)]
=[f, f ′] + Im(d) (Im(d) is a two-sided ideal)
=− (−1)mn[f ′, f ] + Im(d) (Graded antisymmetry)
=− (−1)mn[f ′ + Im(d), f + Im(d)].

To prove the graded Jacobi identity, similar calculations together with the two-sided ideal property of
Im(d[1]) give the desired result.

It is easily seen that [−,−]′ preserves grading, therefore (HHoch[1](A,A), [−,−]) is a graded Lie algebra.

To endow the Hochschild cohomology with a differential the trivial map 0 will be used. This is trivially
a differential and a degree one derivation, thus (HHoch[1](A,A), [−,−], 0) is a dg-Lie algebra.
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1.3.3 Gerstenhaber algebra

The homotopy G-structure of the Hochschild complex induces a Gerstenhaber algebra structure onHHoch(A,A).

Definition 1.3.2. A G-algebra is a triple (V, ·, [−,−]) where

V is a graded vector space.

· is a dot product of degree 0.

[−,−] is a bracket of degree −1.

These operations are subject to the following axioms:

(V, ·) is an associative and graded commutative algebra, i.e.

(x · y) · z =x · (y · z)
x · y =(−1)deg(x)deg(y)y · x

(V, [−,−]) is a graded Lie algebra, i.e.

[x, y] =− (−1)(deg(x)−1)(deg(y)−1)[y, x]

0 =(−1)(deg(x)−1)(deg(z)−1)[x, [y, z]] + (−1)(deg(y)−1)(deg(x)−1)[y, [z, x]] + (−1)(deg(z)−1)(deg(y)−1)[z, [x, y]]

the · and [−,−] are related by the graded Leibniz rule:

[x, y · z] = [x, y] · z + (−1)(deg(x)−1)deg(y)y · [x, z]
for all homogenous x, y, z ∈ V .

Note that the Lie bracket is of degree -1 rather than 0. This is needed since the cohomology has been
taken over the non-shifted Hochschild complex. Calculations show (see [18]) that:

x · y − (−1)deg(x)deg(y)y · x = (−1)deg(x)−1
(
d(x ◦ y)− d(x) ◦ y − (−1)deg(x)−1x ◦ d(y)

)

and

[x, y · z]− [x, y] · z − (−1)(deg(x)−1)deg(y)y · [x, z] =

=(−1)(deg(x)−1)+(deg(y)−1)+1(

d(x{[y, z]})− (dx){y, z} − (−1)(deg(x)−1)x{d(y), z} − (−1)(deg(x)−1)+(deg(y)−1)x{y, d(z)})
for all x, y and z in V . In case of the Hochschild cohomology the right hand side of the previous equations
vanishes and thus the equations become:

x · y − (−1)deg(x)deg(y)y · x = 0

and

[x, y · z]− [x, y] · z − (−1)(deg(x)−1)deg(y)y · [x, z] = 0.

This shows that that the Hochschild cohomology forms a graded commutative algebra and satisfies the
graded Leibniz rule. It follows that (HHoch(A,A), ·, [−,−]) is a Gerstenhaber algebra.

1.4 Classification

The Hochschild cohomology groups have a deformation theoretic interpretation.
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1.4.1 Center

Let a, b ∈ C0
Hoch(A,A) = A. Then the kernel of d : C0

Hoch(A,A)→ C1
Hoch(A,A) is:

(da)(b) = ab− ba = 0

for all a, b. Thus H0
Hoch(A,A) = {b ∈ A | ab − ba = 0 for all a ∈ A} is exactly the center of A. Maps

db ∈ C1
Hoch(A,A) of the form db(a) = ab− ba are called inner derivations.

1.4.2 Outer derivations

Let f ∈ C1
Hoch(A,A). The kernel of d : C1

Hoch(A,A)→ C2
Hoch(A,A) is:

df(a, b) =− af(b) + f(ab)− f(a)b = 0

for all a, b ∈ A. Thus f(ab) = f(a)b− af(b) demonstrating that f is a derivation. Therefore H1
Hoch(A,A) =

{derivations}
{inner derivations} . Elements in the quotient are called outer derivations.

1.4.3 Infinitesimal deformations

Let (A,m0) be an associative algebra. An infinitesimal deformation gives rise to a family of multiplications
{m0,m1}. This family satisfies D0 and D1 since m0 + m1t is associative. That D1 is satisfied implies
that d(m1) = 0, thus m1 is a cocycle. It follows that all cocycles give rise to an infinitesimal deformation.
The following theorem says that equivalent deformations differ by a coboundary, thus H2

Hoch(A,A) classifies
infinitesimal deformations up to equivalence.

Theorem 1.4.1. Let (A,m0) be an associative algebra. Two infinitesimal deformations (A[[t]]/(t2), {m0,m1})
and (A[[t]]/(t2), {m0,m

′
1}) are equivalent if and only if [m1] = [m′

1] in H2
Hoch(A,A).

Proof. The fact that (A[[t]]/(t2), {m0,m1}) and (A[[t]]/(t2), {m0,m
′
1}) are equivalent implies that there

exists an algebra isomorphism φ : A[[t]]/(t2)→ A[[t]]/(t2). Now φ is completely determined by its action on
A, so there exists a φ1 such that φ = idA + ϕt. Since φ is an algebra morphism it is compatible with the
multiplications, i.e.

φ ◦m = m′ ◦ (φ⊗ φ).

Evaluating the left hand gives

φ(m(a⊗ b)) =φ(mA(a⊗ b) +m1(a⊗ b)t)
=mA(a⊗ b) + ϕ(mA(a⊗ b))t+m1(a⊗ b)t+ ϕ(m1(a⊗ b)t2
=mA(a⊗ b) + ϕ(mA(a⊗ b))t+m1(a⊗ b)t

and the right hand side

m′(φ(a)⊗ φ(b)) =mA(φ(a)⊗ φ(b)) +m′
1(φ(a)⊗ φ(b))t

=mA((a+ ϕ(a)t)⊗ (b+ ϕ(b)t)) +m′
1((a+ ϕ(a)t)⊗ (b+ ϕ(b)t))t

=mA(a⊗ b) +mA(a⊗ ϕ(b))t+mA(ϕ(a)⊗ b)t+mA(ϕ(a)⊗ ϕ(b))t2+

+m′
1(a⊗ b)t+m′

1(a⊗ ϕ(b))t2 +m′
1(ϕ(a)⊗ b)t2 +m′

1(ϕ(a)⊗ ϕ(b))t3

=mA(a⊗ b) +mA(a⊗ ϕ(b))t+mA(ϕ(a)⊗ b)t+m′
1(a⊗ b)t.

Since the infinitesimal deformations are equivalent, the two sides should be equal, thus

mA(a⊗ b) + ϕ(mA(a⊗ b))t+m1(a⊗ b)t =mA(a⊗ b) +mA(a⊗ ϕ(b))t+mA(ϕ(a)⊗ b)t+m′
1(a⊗ b)t

m1(a⊗ b) = (mA(a⊗ ϕ(b))− ϕ(mA(a⊗ b)) +mA(ϕ(a)⊗ b)) +m′
1(a⊗ b)

=d(ϕ)(a⊗ b) +m′
1(a⊗ b).
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Since m1,m
′
1 ∈ Ker(d) ⊆ C2

Hoch(A,A) it follows that

[m1] = [m′
1] ∈ H2

Hoch(A,A).

Now the other way around. Suppose [m1] = [m′
1] in H2

Hoch(A,A). Note that m1 and m′
1 are both 2-cocycles,

thus satisfy (D1). This implies that they give rise to infinitesimally deformed multiplications.
The equality of classes means there exists a θ ∈ C1

Hoch(A,A), such that

m1 = d(θ) +m′
1.

By the previous calculation it follows that there is an algebra morphism with an action on A⊗ A given by
φ = idA + θt. The action on A[[t]]/(t2) is then given by

φ(a+ bt) = φ(a) + φ(b)t = (a+ θ(a)t) + (b+ θ(b)t)t = a+ (θ(a) + b)t.

It remains to check that φ is an isomorphism. The injectivity of φ follows immediately. For the surjectivity,
let x+ yt be arbitrary, where x, y ∈ A. Then x+ yt = φ(x+ (y − θ(x)t)) gives the desired result.

1.4.4 Obstructions

Let {mi}i=1,...,n be a family of multiplications on A. The obstruction extending this family to an (n + 1)-
deformation is given by

On =
∑

i+j=n+1
i,j>0

mi{mj} =
∑

i+j=n+1
i,j>0

mi ◦mj .

The obstruction On is a cocycle, thus [On] is an element of H3
Hoch(A,A). The idea of the proof is to use the

fact that Dk holds for one till n, thus d(mk) + Ok−1 = 0, the rest is just calculations (see 1.5.1). In case On

is a coboundary then there exists a multiplication extending the n-deformation to an (n + 1)-deformation.
This is the content of the following theorem.

Theorem 1.4.2. For an associative algebra A, an n-deformation extends to an (n+ 1)-deformation if and
only if [On] = [0] ∈ H3

Hoch(A,A).

Proof. Suppose an n-deformation extends to an (n+ 1)-deformation. In that case Dn+1 holds showing that
On = d(mn+1), thus [On] = [0] ∈ H3

Hoch(A,A).
Now suppose that [On] = [0] ∈ H3

Hoch(A,A). It follows that there exists a mn+1 ∈ C2
Hoch(A,A) such

that On = d(mn+1). Suppose the n-deformation is equivalent to the family {m1, . . . ,mn}. Extend this set
of multiplications with mn+1 to {m1, . . . ,mn} ∪ {mn+1}. Since On = d(mn+1), it follows that Dn+1 holds,
thus proving that {m1, . . . ,mn+1} is an (n+ 1)-deformation.

An immediate consequence of the previous theorem is, that if H3
Hoch(A,A) = 0, then all deformations

extend to formal deformations.

1.5 Maurer-Cartan equation

The Lie bracket and the associativity of an operation are related. A multiplication m ∈ C1
Hoch[1](A,A) is

associative if and only if [m,m] = 0. First assume associativity of m.

0 =m(m⊗ id)−m(id⊗m) (associativity)
=m ◦1 m+ (−1)m ◦2 m (definition of ◦i)
=m ◦m. (definition of ◦)

If m ◦m = 0 then clearly [m,m] = m ◦m− (−1)1·1m ◦m = 0.
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On the other hand, if [m,m] = 0 it follows that 0 = [m,m] = m ◦m − (−1)1·1m ◦m = 2(m ◦m) thus
m ◦m = 0 and by the previous computation m is associative.

Consider now the case where mt is of the form mt :=
∑

k≥0mkt
k. From the previous result it holds that

mt is associative if [mt,mt] = 0. It follows that

0 =[mt,mt]

=[
∑

i≥0

mit
i,

∑

j≥0

mjt
j ]

=
∑

k≥0

∑

i+j=k

[mi,mj ]tk

=
∑

k≥0

2


d(mk) +

∑

i+j=k
i,j≥1

1
2
[mi,mj ]


 tk

or rather for all k ≥ 0 it must hold that

(MCk) : d(mk) +
∑

i+j=k
i,j≥1

1
2
[mi,mj ] = 0.

Here the Maurer-Cartan equation can be recognized.
Let x =

∑
i≥1mit

i. Then mt = m+ x. Thus mt is associative if

0 = [mt,mt] = [m+ x,m+ x] = [m,m] + [m,x] + [x,m] + [x, x] = 2(d(x) +
1
2
[x, x]).

Therefore define a set

MCCHoch(A,A)[1](k[[t]]) = {x ∈ CHoch(A,A)[1]⊗k (t) | d(x) +
1
2
[x, x] = 0},

where (t) is the maximal ideal of k[[t]].
Note that any x ∈ MCCHoch(A,A)[1](k[t]/(t2)) is an infinitesimal deformation since mt = m + x is asso-

ciative. Further it holds that MCCHoch(A,A)[1](k[[t]]) are all formal deformations. Note that it is possible
that two deformations are equivalent. It is possible, as will be seen later, to define an equivalence relation
modding out the equivalent deformations.

There is an intimate relation between MCk and Dk, namely they are equivalent for all k ≥ 0.

d(mk) +
1
2

∑

i+j=k
i,j>0

[mi,mj ] =d(mk) +
1
2

∑

i+j=k
i,j>0

(mi ◦mj +mj ◦mi)

=d(mk) +
1
2

∑

i+j=k
i,j>0

mi ◦mj +
1
2

∑

i+j=k
i,j>0

mj ◦mi

=d(mk) +
1
2

∑

i+j=k
i,j>0

mi ◦mj +
1
2

∑

i+j=k
i,j>0

mi ◦mj

=d(mk) +
∑

i+j=k
i,j>0

mi ◦mj

=d(mk) +
∑

i+j=k
i,j>0

(mi ◦2 mj −mi ◦1 mj)

=d(mk) + Ok−1.
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It follows that 1
2

∑

i+j=k,i,j>0

[mi,mj ] is exactly the obstruction Ok−1.

Proposition 1.5.1. The obstruction On is a cocycle.

Proof. The result is trivial for O0 and O1 since the obstructions are equal to zero. The first non-trivial
obstruction occurs for O2 = 1

2 [m1,m1]. In this case the obstruction O2 can be seen to be a cocycle by the
following computation.

2d(O2) =d([m1,m1])
=[d(m1),m1]− [m1, d(m1)]
=[0,m1]− [m1, 0]
=0

where the fact d(m1) + O1 = 0 has been used. Therefore O2 is a cocycle. The same approach will be used
in general. Assume that MCn is satisfied for n = 0, . . . , k − 1. Consider now the obstruction Ok.

2d(Ok) =
∑

i+j=k
i,j>0

d([mi,mj ])

=




∑

i+j=k
i,j>0

[d(mi),mj ]


−




∑

i+j=k
i,j>0

[mi, d(mj)]




=2
∑

i+j=k
i,j>0

[d(mi),mj ]

=2
∑

i+j=k
i,j>0

[
1
2

∑

p+q=i
p,q>0

[mp,mq],mj ]

=
∑

p+q+j=k
p,q,j>0

[[mp,mq],mj ].

Note that any cyclic permutation of a fixed p, q and j appears in the sum. In case k is even there is just
one term for p = q = j = k/2, but the Jacobi identity in this case gives 3[[mk/2,mk/2],mk/2] = 0. Thus
[[mk/2,mk/2],mk/2] = 0. In all the other cases the sum of the corresponding three terms obtained by a cyclic
permutation are zero by the Jacobi identity. Therefore d(Ok) = 0. Since Ok ∈ CHoch(A,A)[1]2, it follows
that Ok is a cocycle.

1.5.1 Gauge Action on the Maurer-Cartan Elements

If a Lie algebra is nilpotent then it is possible to construct a Lie group to the Lie algebra. Using local Artinian
rings a nilpotent Lie algebra will be constructed from a dg-Lie algebra. A local ring is one with a unique
maximal ideal and the prefix Artinian means that any decreasing chain stabilizes. For more information on
this topic the reader is referred to [9].

Let g be a dg-Lie algebra and let R be a local Artinian ring with maximal ideal m. Define a new dg-Lie
algebra L by Ln := gn⊗km with [x⊗r, y⊗s] := [x, y]⊗rs and d(x⊗r) := d(x)⊗r. In this case MCg(R) ⊆ L1.
The maximal ideal m is nilpotent and hence is the Lie algebra L0.

The aim is to construct a group which acts on the Maurer-Cartan elements in such a way that elements
in the same orbit correspond to equivalent deformations. Define Gg(R) := (exp(L0), ·) where · is given by
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the Baker-Campbell-Hausdorff-Dynkin formula:

x · y :=
∑

n≥0

(−1)n−1

n

∑
ri+si>0
1≤i≤n

1
n∑

i=1

(ri + si)

1
r1!s1! . . . rn!sn!

[xr1ys1xr2ys2 . . . xrnysn ]

where [xr1ys1 . . . xrnysn ] := [x, [x, . . . [x, [y, . . . [y, . . . [x, . . . [x, [y, [y, . . . [y, y]] . . .]. Note that if sn ≥ 1 or
sn = 0 together with rn ≥ 1 then the previous term is zero.

Lemma 1.5.1. (Gg(R), ·) is a group, called the gauge group.

Proof. Note that m is nilpotent and hence L0 is nilpotent. The nilpotency assures the convergency of the
BCHD-formula and therefore the closure of the multiplication. The identity element is given by e0. Note
that 0 commutes with all elements of g0 hence the BCHD-formula reduces to the sum and adding zero
gives the identity, hence the identity is well-defined. The inverse of eX is given by e−X since X and −X
commute, i.e. [X,−X] = 0 and therefore eXe−X = eX+(−X) = e0. Finally the associativity follows from the
associativity of the addition on g0. This shows that G is a group.

The gauge group acts on L1. In order to define this action to (L•, [−,−], d) yet another dg-Lie algebra
will be constructed. Define a graded vector space L•d by

Li
d =

{
L1 ⊕ k · d i = 1
Li otherwise.

The bracket and the differential are defined by [x+ad, y+bd]d := [x, y]+ad(y)−(−1)|v|bd(x) and dd(x+ad) :=
[0 + 1d, x+ ad]d = d(x) for all x, y ∈ Li and a, b ∈ k. Consider the map

φ : L1 → L1
d, x 7→ x+ d.

It then holds that Maurer-Cartan equation is satisfied, i.e. d(x)+ 1
2 [x, x] = 0, if and only if [φ(x), φ(x)]d = 0.

Define an action Gg(R)× L1 → L1 of Gg(R) on L1 by

eX⊗r · (v ⊗ s) := φ−1 ◦ e[X⊗r,−]d ◦ φ(v ⊗ s),
or in a more explicit form:

φ−1 ◦ e[X⊗r,−]d ◦ φ(v ⊗ s) =e[X⊗r,−]d(v ⊗ s+ d)− d

=
∑

j≥0

[X ⊗ r,−]jd
j!

(X ⊗ r + d)− d

=X ⊗ r +
∑

j≥1

[X ⊗ r,−]jd
j!

(X ⊗ r + d)

=X ⊗ r +
∑

j≥0

[X ⊗ r,−]j+1
d

(j + 1)!
(X ⊗ r + d)

=X ⊗ r +
∑

j≥0

[X ⊗ r,−]jd
(j + 1)!

([X, v]⊗ rs− d(X)⊗ r).

Recall that MCg(R) ⊆ L1.

Proposition 1.5.2. The group Gg(R) acts on the Maurer-Cartan elements MCg(R) with the previously
defined action.
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In the proof, due to [15], of this proposition the newly defined dg-Lie algebra really pays off.

Proof. Let x ∈ L0 and v ∈MCg(R) then

d(ex · v) = dd(e[x,−]d(v + d)− d) = [d, e[x,−]d(v + d)− d]d = [d, e[x,−]d(v + d)]d.

On the other hand

[ex · v, ex · v] =[e[x,−]d(v + d)− d, e[x,−]d(v + d)− d]d
=[e[x,−]d(v + d), e[x,−]d(v + d)]d − 2[d, e[x,−]d(v + d)]d

=e[x,−]d [φ(v), φ(v)]d − 2[d, e[x,−]d(v + d)]d

=− 2[d, e[x,−]d(v + d)]d.

Hence

d(ex · v) +
1
2
[ex · v, ex · v] = [d, e[x,−]d(v + d)]d +

1
2

(
−2[d, e[x,−]d(v + d)]d

)
= 0.

This proves that ex · v is again a Maurer-Cartan element.

Chose now R = k[t]/(t2) and g = C•[1]Hoch(A,A), then MCg(R) are infinitesimal deformations and
Gg(R) acts on them.

Lemma 1.5.2. Maurer-Cartan elements in the same orbit give rise to equivalent deformations.

Proof. Let mt and m′
t be two equivalent infinitesimal deformation where mt = m + xt and m′

t = m + yt.
Then there exists a w ∈ C1(A,A) such that y = x+ d(w) or rather yt = xt+ d(w)t. Thus it holds that

y ⊗ t = x⊗ t+ d(w)⊗ t = ew⊗t · x⊗ t
hence x ⊗ t and y ⊗ t are in the same orbit. The proof is complete with the observation that infinitesimal
deformations m + xt and m + yt of m imply that x ⊗ t and y ⊗ t are Maurer-Cartan elements and vice
versa.

Thus the quotient of MCg(R) by Gg(R) gives all infinitesimal deformations up to equivalence. This
quotient is denoted by Defg(R) := MCg(R)/Gg(R). The following theorem comes then as no surprise.

Theorem 1.5.1. DefCHoch[1]•(A,A)(k[[t]]/(t2)) ∼= H2(A,A).

1.6 Deformations of Morphisms

Now the deformation theory of algebra morphisms will be investigated. This enables to study deformations
of representations of algebras. This will be of importance in chapter 4 and chapter 5 where representations
of operads will be in fact algebras.

1.6.1 Deformation

The deformation theory of an algebra morphism will be developed in the same way as for algebras.

Definition 1.6.1. An R-deformation of a morphism f : A → B between two associative k-algebras is an
R-algebra morphism ft : At → Bt between two R-deformations (At, µt) and (Bt, νt) of A and B, respectively,
such that the diagram

At ⊗R k

∼=
²²

ft⊗Rk // Bt ⊗R k

∼=
²²

A
f

// B

commutes.
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For a formal deformation ft : A⊗k k[[t]]→ B ⊗k k[[t]] the following properties should hold:

ft(rx+ sy) =rft(x) + sft(y) r, s ∈ k[[t]], x, y ∈ A⊗k k[[t]]
ft ◦mt =νt ◦ (ft ⊗ ft)

Substituting ft with
∑

k≥0 fkt
k and likewise µt and νt gives

fk(rx+ sy) =rfk(x) + sfk(y) r, s ∈ k[[t]], x, y ∈ A⊗k k[[t]]∑

l+p=q
l,p≥0

fl ◦ µp−
∑

k+i+j=q
k,i,j≥0

νk ◦ (fi ⊗ fj).

The first equation shows that each fi should be a linear map. The second suggest that the differential should
be given by

d((µ1, ν1, f1)) :=ν1 ◦ (f ⊗ f) + ν ◦ (f ⊗ f1) + ν ◦ (f1 ⊗ f)− f1 ◦ µ− f ◦ µ1 (1.1)
= (ν ◦ (f ⊗ f1)− f1 ◦ µ+ ν ◦ (f1 ⊗ f)) + (−f ◦ µ1 + ν1 ◦ (f ⊗ f)) . (1.2)

Equivalence of deformations Two R-deformations f1
t and f2

t of a morphism f : A→ B are equivalent
if there is a pair of R-algebra automorphism (φA

t , φ
B
t ) such that the diagram

At

φA
t //

f1
t

²²

At

f2
t

²²
Bt

φB
t

// Bt

commutes.
In the infinitesimal case, substituting φA

t with 1A+φAt and φB
t with 1B+φBt results in the commutativity

of the square:

f ′1 = f1 + f ◦ φA
1 − φB

1 ◦ f.

Thus f ◦ φA
1 − φB

1 ◦ f should become a coboundary for an appropriate complex.

1.6.2 Cochain complex

Fix a algebra morphism f : A→ B. The first term in equation (1.1) is

ν ◦ (f ⊗ f1)− f1 ◦ µ+ ν ◦ (f1 ⊗ f)

with f1 ∈ C1
Hoch(A,B) and Cn(A,B) := Hom(A⊗n, B). Define an (A,A)-bimodule structure on B by

A⊗B ⊗A ·−→ B

a⊗ b⊗ a′ 7→ f(a)bf(a′).

The map

df (f1) := ν ◦ (f ⊗ f1)− f1 ◦ µ+ ν ◦ (f1 ⊗ f)

defines a differential on C•(A,B), hence it is a cochain complex. If B = A and f = idA then didA
= dHoch.

Using this differential the expression in (1.2) can be described by

− (f ◦ µ1 − ν1 ◦ (f ⊗ f)− df (f1)) .
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This motivates the construction of the following complex for a morphism f : A→ B:

C0(f) :=0,

Cn(f) :=Cn
Hoch(A,A)× Cn

Hoch(B,B)× Cn−1(A,B),

together with the differential

d(α, β, ϕ) := (dHoch(α), dHoch(β), f ◦ α− β ◦ f⊗n − df (ϕ)).

Each of the sets becomes a module by pointwise addition and multiplication.

Remark 1.6.1. On C•(A,B) on C•(f) no dg-Lie algebra structure could be found.

The cohomology groups associated to a morphism are defined to be the cohomology groups over the
cochain complex C•(f).

1.6.3 Classification

Infinitesimal deformations

Lemma 1.6.1. Equivalent infinitesimal deformations differ by a coboundary.

Proof. Let f : A → B be a fixed algebra morphism. Let ft and f ′t be two infinitesimal deformations of f .
Consider the two elements (α, β, f1) and (α′, β′, f ′1) in C2(f).

Suppose ft and f ′t are equivalent then they differ by the term f ◦ φA
1 − φB

1 ◦ f for some automorphisms
(φA

t , φ
B
t ). From equation (1.1) it follows that φA

1 en φB
1 have to be cochains. The equivalence

f ′1 = f1 + f ◦ φA
1 − φB

1 ◦ f

can then be expressed in C2(f) as

(0, 0, f ′1) =(0, 0, f1 + f ◦ φA
1 − φB

1 ◦ f)

=(0, 0, f1) + (0, 0, f ◦ φA
1 − φB

1 ◦ f)

=(0, 0, f1) + (d(φA
1 ), d(φB

1 ), f ◦ φA
1 − φB

1 ◦ f) (using that φA,B
1 are coboundaries)

=(0, 0, f1) + d(φA
1 , φ

B
1 , 0) (definition of the differential)

Therefore equivalent deformations differ by a coboundary.

Theorem 1.6.1. The second cohomology group H2(C•(f)) classifies all infinitesimal deformations of f up
to equivalence.

Proof. Let f : (A,µ) → (B, ν) and let f1, f ′1 ∈ C1(A,B). In order to guarantee that f + f1t and f + f ′1t
are algebra morphisms f1 and f ′1 have to be cochains because of (1.1). This shows that f1 and f ′1 are
in H2(C•(f)). Lemma 1.6.1 shows that equivalent deformations are in the same cohomology class, i.e.
(0, 0, f ′1) ∈ [(0, 0, f1)].

On the other hand let [(α, β, ϕ)] ∈ H2(C•(f)). It follows that α and β have to be cochains. For ϕ it holds
that 0 = f ◦α−β ◦f⊗2−d(ϕ). This shows that f +ϕt is a deformation of f between (A⊗k k[t]/(t2), µ+αt)
and (B ⊗k k[t]/(t2), ν + βt).

Obstructions Analogously to the associative algebra case, the condition that a map is an algebra mor-
phism is

∑

k+i+j=q
k,i,j≥0

νk ◦ (fi ⊗ fj)−
∑

l+p=q
l,p≥0

fl ◦ µp = 0.
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With the help of the differential the equation can be rewritten as

−d((µq, νq, fq)) +
∑

k+i+j=q
k,i,j>0

νk ◦ (fi ⊗ fj) +
∑

k+i+j=q
k,i>0,j=0

νk ◦ (fi ⊗ fj)+

+
∑

k+i+j=q
k,j>0,i=0

νk ◦ (fi ⊗ fj) +
∑

k+i+j=q
i,j>0,k=0

νk ◦ (fi ⊗ fj)+

−
∑

l+p=q
l,p>0

fl ◦ µp.

Definition 1.6.2. The obstruction is defined to be

Oq−1 :=
∑

k+i+j=q
k,i,j>0

νk ◦ (fi ⊗ fj) +
∑

k+i+j=q
k,i>0,j=0

νk ◦ (fi ⊗ fj)+

+
∑

k+i+j=q
k,j>0,i=0

νk ◦ (fi ⊗ fj) +
∑

k+i+j=q
i,j>0,k=0

νk ◦ (fi ⊗ fj)+

−
∑

l+p=q
l,p>0

fl ◦ µp.

Since there is no dg-Lie algebra structure on deformation complex of a morphism it is not possible to
give an elegant proof that the obstructions are cocycles. The proof has to be done in a straight forward way
and can be adopted from the proof in [24]. As a consequence it holds that [Oq] ∈ H3(f).
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Chapter 2

Deformation Theory of Lie Algebras

In this chapter deformations of Lie algebras will be defined and the infinitesimal deformations will be classified
up to equivalence. The theory will be developed in the same way as for associative algebras. The role of the
Hochschild complex will be played by the Chevalley-Eilenberg complex.

2.1 Deformation

For completeness the definition of a Lie algebra and a Lie algebra morphism will now be given.

2.1.1 Lie algebras

Let V be a finite dimensional vector space over a field k with characteristic zero. A Lie algebra g is a vector
space V together with a binary operation [−,−] satisfying:

• Bilinearity: [ax+ by, z] = a[x, z] + b[y, z] and [x, ay + bz] = a[x, y] + b[x, z].

• Antisymmetry: [y, x] = −[x, y]

• Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all a, b ∈ k and x, y, z ∈ g.
Let (g, [−,−]) and (g′, [−,−]′) be two Lie algebras. A Lie algebra morphism is a linear map f : g → g′,

such that f is compatible with the products, i.e. the diagram

g× g
[−,−] //

f×f

²²

g

f

²²
g′ × g′

[−,−]′
// g′

is commutative. The Lie algebras together with the Lie algebra morphisms form a category: Lie.

Example 2.1.1.

(R3,×): 3-dimensional Euclidean space with the cross product on the vectors.

(gl(n)): All n×n−matrices with the commutator as Lie bracket, i.e. for A,B invertible, [A,B] := AB−BA.

Lie(G): Left-invariant vector fields on a Lie group G together with the bracket defined by [A,B] := ad(A)(B)
where ad is the adjoint representation of Lie(G).
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2.1.2 Augmentation

An augmentation (R, ε) of the ring k is a ring R together with a ring morphism ε : R → k, such that the
sequence

0→ Ker(ε)→ R→ k → 0

is exact. The pair (R,Ker(ε)) is called a base. Note that R/Ker(ε) = k, because by exactness Ker(ε)
is a maximal ideal of R. On the other hand, a ring R together with a maximal ideal mR gives rise to an
augmentation (R,R ³ R/mR).

Let g be a Lie algebra over a field k then g⊗k R is an R-module which can be turned into a Lie algebra
by extending the Lie bracket of g bilinearly. This Lie algebra is called the augmented Lie algebra of g.

2.1.3 Deformations

Let g be a Lie algebra over a field k and let R be an augmentation of k.

Definition 2.1.1. A deformation of g with base (R,mR) is a Lie algebra h over R together with a k-
isomorphism α : h⊗R k → g.

For different bases the corresponding deformations have special names.

A deformation with base (k[[t]], (t)) is called formal.

A deformation with base (k[t]/(tn+1), (t)) is called an n-deformation for all n ∈ N.

A deformation with base (k[t]/(t2), (t)) is called infinitesimal.

For a commutative ring the resulting deformation is called global.

In case of a formal deformation it is generally easier to use the isomorphism g[[t]] ∼= g⊗k k[[t]]. To simplify
the analysis, only deformations with base (k[[t]], (t)) or (k[[t]]/(tn), (t)) will be considered. Note that ε in
both of the previous augmentations is given by the evaluation map ev0 : g[[t]]→ g setting t to zero.

2.1.4 Family of operations

A formal deformation (g[[t]], ρ) is equivalent to a family of operations {ρi}∞i=1 where ρ =
∑

i ρit
i and ρ0

is the original Lie bracket on g. The Lie bracket ρ is antisymmetric and satisfies the Jacobi identity. The
antisymmetry is satisfied if ρi(y ⊗ x) = −ρ(x ⊗ y) for all i ≥ 0. The antisymmetry can be guaranteed by
considering maps not in Hom(T 2(g), g) but in Hom(

∧2(g), g) instead. In the first Hom-set the T (g) denotes
the tensor algebra defined by

⊗
n≥0 T

n(g) where T k(g) := g⊗ . . .⊗ g and the multiplication is defined by

(x1 ⊗ . . .⊗ xm) · (y1 ⊗ . . .⊗ yn) := x1 ⊗ . . .⊗ xm ⊗ y1 ⊗ . . .⊗ yn

for x1⊗ . . .⊗xm ∈ Tm(g) and y1⊗ . . .⊗yn ∈ Tn(g). The
∧

(g) is the exterior algebra on g which is defined as
a quotient of the tensor algebra. Let I denote the ideal generated by elements of the form x⊗x for all x ∈ g
then

∧
(g) := T (g)/I. The wedge product is defined to be the tensor product modulo I. The antisymmetry

in characteristic zero follows since for x, y ∈ g it follows that x+ y ∈ g and thus

0 =(x+ y) ∧ (x+ y)
=x ∧ x+ x ∧ y + y ∧ x+ y ∧ y
=x ∧ y + y ∧ x.

The graded anticommutativity y ∧ x = (−1)mnx∧ y for x ∈ ∧m(g) and y ∈ ∧n(g) follows since x∧ y can be
obtained from y ∧ x by sequentially interchanging one element each time introducing a minus sign.
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Now the Jacobi identity is satisfied if

0 =
∑

σ∈Sh(1,2)

ρ(ρ(gσ(1) ∧ gσ(2)) ∧ gσ(3))

=
∑

σ∈Sh(1,2)

(∑

i

ρit
i

)
(


∑

j

ρjt
j


 (gσ(1) ∧ gσ(2)) ∧ gσ(3))

=
∑

σ∈Sh(1,2)

∑

i,j

ρi(ρj(gσ(1) ∧ gσ(2)) ∧ gσ(3))ti+j

for gi ∈ g. Therefore ρ satisfies the Jacobi identity if and only if for each k and all gi ∈ g the equation

Dk :
∑

σ∈Sh(1,2)

∑

i+j=k
i,j≥0

ρi(ρj(gσ(1) ∧ gσ(2)) ∧ gσ(3)) = 0,

holds.

2.1.5 Equivalence of deformations

Two deformations (g⊗kR, ρ, α) and (g⊗kR, ρ
′, α′) of a Lie algebra g with the same base (R,m) are equivalent

if there exists a Lie algebra isomorphism λ : g⊗k R→ g⊗k R, such that the diagram

g⊗k R⊗R k
λ⊗k //

α

%%KKKKKKKKKK g⊗k R⊗R k

α′
yyssssssssss

g

commutes.
In case of two infinitesimal deformations, ρt = ρ0 +ρ1t and ρ′t = ρ0 +ρ′1t this just means that there exists

an isomorphism of the form ϕt = idg + ϕ1t such that

ϕt ◦ ρ′t = ρt ◦ (ϕt ∧ ϕt)

for all t. Thus

ρ′1(h ∧ h′) =ρ1(h ∧ h′) + (ρ0(g1(h) ∧ h′) + ρ0(h ∧ g1(h′))− g1(ρ0(h ∧ h′)))
for all h, h′ ∈ g.

2.2 Chevalley-Eilenberg Complex

The aim is, analogous to the deformation of associative algebras, to construct a cochain complex such that
for a two-form ρ the differential d(ρ) is equal to the coefficient of t1 in D1. The cochain complex providing
this structure will be the Chevalley-Eilenberg complex. It will also be shown that this complex can be
endowed with a dg-Lie algebra structure.

2.2.1 Chevalley-Eilenberg complex

Let g be a Lie algebra. The Chevalley-Eilenberg complex is constructed as follows.

Cn(g, g) :=

{
HomVec(

∧n
g, g) n ≥ 0

0 otherwise
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and the differential dCE : Cn(g, g)→ Cn+1(g, g) is given by:

dCE(ω)(g1, . . . , gn+1) :=
∑

1≤i≤n+1

(−1)i[gi, ω(g1, . . . , ĝi, . . . , gn+1)]+

∑

1≤i<j≤n+1

(−1)i+j−1ω([gi, gj ], g1, . . . , ĝi, . . . , ĝj , . . . , gn+1)

for all g1, . . . , gn+1 ∈ g.
For finite dimensions and non-negative n the module Cn(g, g) is isomorphic to

∧n(g∗)⊗k g. The differ-
ential on

∧n(g∗)⊗k g corresponding to dCE is defined as follows.

• For g ∈ g define d(g)(g1) := −[g1, g] = [g, g1] = adg(g1).

• For ω ∈ g∗ define d(ω)(g1, g2) := ω([g1, g2])− [ω(g1), g2]− [g1, ω(g2)].

• For ω ∈ ∧m(g∗) and η ∈ ∧n(g∗) let d(ω ∧ η) := d(ω) ∧ η + (−1)deg(ω)ω ∧ d(η).

• Finally for ω ⊗ g ∈ ∧n(g∗)⊗k g define d(ω ⊗ g) := d(ω)⊗ g + (−1)deg(ω)ω ⊗ d(g).

Define C(g, g) :=
⊕

n≥0 C
n(g, g) then

Lemma 2.2.1. (C(g, g), dCE) is a complex, i.e. d2
CE = 0.

Proof. Here the characterization of d on
∧

(g∗)⊗k g is useful. First it will be shown that d2 is zero on g:

d2(g)(g1, g2) =dg([g1, g2])− [dg(g1), g2]− [g1, dg(g2)]
=[g, [g1, g2]]− [[g, g1], g2]− [g1, [g, g2]]
=− [g1, [g2, g]]− [g2, [g, g1]] + [g2, [g, g1]] + [g1, [g2, g]]
=0

for all g, g1, g2 ∈ g. By the derivation property of d this extends to
∧n(g∗) and then to

∧n(g∗)⊗k g. Thus
dCE is a differential on C(g, g).

2.2.2 Pre-Lie algebra

The Chevalley-Eilenberg complex (C(g, g), dCE) can be endowed with a pre-Lie algebra. Remember (C(g, g)[1], ◦)
forms a right pre-Lie algebra if

(f ◦ g) ◦ h− f ◦ (g ◦ h) = (−1)|g||h| ((f ◦ h) ◦ g − f ◦ (h ◦ g))

is satisfied for all homogeneous f, g, h ∈ C(g, g)[1]. Define a circle operation ◦ : C(g, g)[1]m × C(g, g)[1]n →
C(g, g)[1]m+n to be

f ◦ g(v1, . . . , vm+n+1) :=
∑

σ∈Sh(n+1,m)

(−1)mn+deg(σ)f(g(vσ(1), . . . , vσ(n+1)), vσ(n+2), . . . , vσ(n+m+1)).

With the above definition it holds that

Lemma 2.2.2. (C(g, g)[1], ◦) is a graded pre-Lie algebra.

Proof. For f ∈ C(g, g)[1]m and g ∈ C(g, g)[1]n the circle operation applied to f and g is an element
of C(g, g)[1]m+n thus ◦ respects the grading. It has to be shown that for h ∈ C(g, g)[1]l the relation
(h ◦ f) ◦ g − (−1)nl(h ◦ g) ◦ f = h ◦ f ◦ g − (−1)mng ◦ f) holds.
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h ◦ (f ◦ g − (−1)mng ◦ f)(v1, . . . , vm+n+l+3) =

=
∑

η

(−1)deg(σ)h(f ◦ g − (−1)mng ◦ f(vη(1), . . . , vη(m+n+1)), vη(m+n+3), . . . , vη(m+n+l+3))

=
∑

σ

(−1)deg(η)+deg(σ)h(f(g(vσ◦η(1), . . . , vσ◦η(n+1)), . . . , vn+m+1)+

− (−1)mng(f(vσ◦η(1), . . . , vσ◦η(m+1)), . . . , vn+m+2), . . . , vσ◦η(n+m+l+3))

=
∑

σ

(−1)deg(η)+deg(σ)h(f(g(vσ◦η(1), . . . , vσ◦η(n+1)), . . . , vn+m+1), . . . , vn+m+2), . . . , vσ◦η(n+m+l+1))+

− (−1)mn
∑

σ

(−1)deg(η)+deg(σ)g(f(vσ◦η(1), . . . , vσ◦η(m+1)), . . . , vn+m+2), . . . , vσ◦η(n+m+l+1))

=(h ◦ f) ◦ g − (−1)mn(h ◦ g) ◦ f(v1, . . . , vm+n+l+1).

2.2.3 Graded Lie algebra

Define a bracket [f, g] := f ◦ g − (−1)mng ◦ f for all f ∈ C(g, g)[1]m and g ∈ C(g, g)[1]n. By the following
proposition the graded pre-Lie algebra structure (C(g, g)[1], ◦) with the above bracket leads to a graded Lie
algebra structure on C(g, g)[1].

Proposition 2.2.1. Let A = ⊕n∈ZAn and let (A, ◦) be a graded pre-Lie algebra. For a ∈ Am and b ∈ An

define [a, b] := a ◦ b− (−1)mnb ◦ a. Then (A, [−,−]) is a graded Lie algebra.

Proof. That [−,−] respects the grading follows immediately from the fact that ◦ does. So the two graded
Lie algebra properties have to be checked.

Graded anti-symmetry:

[g, f ] =g ◦ f − (−1)mnf ◦ g
=− (−1)mn (f ◦ g − (−1)mng ◦ f)
=− (−1)mn[f, g].

Graded Jacobi-identity:

(−1)ml[[f, g], h]+(−1)nm[[g, h], f ] + (−1)ln[[h, f ], g] =

=(−1)ml[f ◦ g, h]− (−1)ml+mn[g ◦ f, h]+
+ (−1)nm[g ◦ h, f ]− (−1)nm+nl[h ◦ g, f ]+

+ (−1)ln[h ◦ f, g]− (−1)ln+lm[f ◦ h, g]
=(−1)ml(f ◦ g) ◦ h− (−1)ml+(m+n)lh ◦ (f ◦ g)+
− (−1)ml+mn(g ◦ f) ◦ h+ (−1)ml+mn+(n+m)lh ◦ (g ◦ f)+

+ (−1)nm(g ◦ h) ◦ f − (−1)nm−(n+l)mf ◦ (g ◦ h)+
− (−1)nm+nl(h ◦ g) ◦ f + (−1)nm+nl+(l+n)mf ◦ (h ◦ g)+
+ (−1)ln(h ◦ f) ◦ g − (−1)ln+(l+m)ng ◦ (h ◦ f)+

− (−1)ln+lm(f ◦ h) ◦ g + (−1)ln+lm+(m+l)ng ◦ (f ◦ h)
=0.

This shows that (A, [−,−]) is a graded Lie-algebra.
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2.2.4 Differential graded Lie algebra

Note that for the graded Lie-algebra (C(g, g)[1], [−,−]) the differential d can be written in the more conve-
nient form

dCE(f) =ρ0 ◦ f − (−1)nf ◦ ρ0

=[ρ0, f ]

for all f ∈ Cn[1](g, g). Since (C(g, g)[1], [−,−]) is a graded Lie-algebra and dCE is a differential and a degree
one derivation, it follows that (C(g, g)[1], [−,−], dCE) is a dg-Lie algebra.

2.3 Lie algebra cohomology

In this section the cohomology over the Chevalley-Eilenberg complex will be taken. The resulting cohomology
is called the Lie algebra cohomology. The cohomology groups can be endowed with the structure of a dg-Lie
algebra.

2.3.1 Lie algebra cohomology

The Lie algebra cohomology groups of g with values in g is defined by the cohomology over the Chevalley-
Eilenberg complex, i.e.:

Hn(g, g) :=
Ker(d : Cn(g, g)→ Cn+1(g, g))
Im(d : Cn−1(g, g)→ Cn(g, g)

.

2.3.2 Differential graded Lie algebra

Define HCE(g, g) :=
⊕

n∈ZH
n(g, g) then HCE(g, g) is a graded vector space. Together with the induced Lie

bracket of the Chevalley-Eilenberg complex gives

Lemma 2.3.1. (HCE [1](g, g), [−,−]) is a graded Lie algebra.

Proof. The following four properties have to be checked:

1. [−,−] is well-defined: Let f ∈ Cm[1](g, g) ∩Ker(d) and g ∈ Cn[1](g, g) ∩Ker(d). Then

d([f, g]) = [d(f), g] + (−1)m[f, d(g)] = 0.

Let h ∈ d(Cm−1[1](g, g)), so there exists an h′ ∈ Cm−1[1](g, g), such that h = d(h′).

[f, h] =[f, d(h′)]
=(−1)md([f, g])− (−1)m[d(f), h′]
=(−1)md([f, g]).

Thus [f, h] ∈ d(Cm+n[1](g, g)). This proves that [−,−] is well-defined on HCE [1](g, g).

2. The bracket preserves grading: Let f ∈ Hm
CE [1](g, g) and g ∈ Hn

CE [1](g, g). Since [f, g] ∈ Cm+n[1](g, g),
by the previous result [f, g] ∈ Cm+n[1](g, g) ∩Ker(d) it follows that [f, g] ∈ Hm+n

CE [1](g, g).

3. Graded anti-symmetry:

[g + Im(d), f + Im(d)] =[g, f ] + [g, Im(d)] + [Im(d), f ] + [Im(d), Im(d)]
=[g, f ] + Im(d)
=− (−1)mn[f, g] + Im(d).

4. Graded Jacobi-identity: With similar calculations it can be seen that the graded Jacobi identity holds.

Therefore (HCE [1](g, g), [−,−]) is a graded Lie algebra.

Note that with the trivial differential the graded Lie algebra becomes a dg-Lie algebra.
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2.4 Classification

In this section the Lie algebra cohomology groups will be determined up to n = 3. It will be shown that the
second cohomology group classifies infinitesimal deformations and obstructions are in the third group.

2.4.1 Center

For x, y ∈ C0(g, g), it holds that

dCE(x)(y) =− [y, x] = ad(x)(y).

Thus H0(g, g) = {x ∈ g | [g, x] = 0}. The map ad(x) : g→ g is called an inner derivation.

2.4.2 Outer derivations

For x, y ∈ C1(g, g), it holds that

0 =dCE(ω)(x, y)
=− α([x, y])
=− [x, ω(y)] + [y, ω(x)] + ω([x, y]).

Therefore ω([x, y]) = [ω(x), y]+ [x, ω(y)], proving that ω is a derivation. The image of α ∈ Im(d) gives inner
derivations. Derivations which are not inner are called outer. Thus

H1(g, g) =
{derivations }
{inner derivations} = {outer derivations}.

2.4.3 Infinitesimal deformations

For n = 2 the group elements are infinitesimal deformations in the following way. For x, y, z ∈ g

0 =dCE(ω)(x, y, z)
=[x, ω(y, z)]− [y, ω(x, z)] + [z, ω(x, y)] + ω([x, y], z)− ω([x, z], y) + ω([y, z], x)
=[ω(x, y), z] + [ω(y, z), x] + [ω(z, x), y] + ω([x, y], z) + ω([z, x], y) + ω([y, z], x).

Let ρ0 be the Lie bracket of g and ρ1 = ω. Then the last expression can be written as
∑

σ

∑

i+j=1,i,j≥0

ρi(ρj(x, y), z) = 0.

Thus ω satisfies D1, and ρ0 + ωt is a Lie bracket giving rise to an infinitesimal deformation.

Theorem 2.4.1. Let (g, ρ0) be a Lie algebra. Two infinitesimal deformations ρ := ρ0+ρ1t and ρ′ := ρ0+ρ′1t
are equivalent if and only if [ρ1] = [ρ′1] in H2(g, g).

Proof. The fact that ρ and ρ′ are equivalent implies there exists an isomorphism φ : g[[t]] → g[[t]] of the
form φ = idg + φ1t such that ρ′(t) = φ−1 ◦ ρ(φ⊗ φ). Evaluating both sides gives for all a, b ∈ g:

ρ0(a ∧ b) + ρ′1(a ∧ b)t =(idg + g1t) ((ρ0 + ρ1t)(a+ g1(a)t ∧ b+ g1(b)t))
=ρ0(a ∧ b) + (ρ0(a ∧ g1(b)) + ρ0(g1(a) ∧ b)− g1 ◦ ρ0(a ∧ b)) t+ ρ1(a ∧ b)t.

It follows that

ρ′1(a ∧ b) = d(g1)(a ∧ b) + ρ1(a ∧ b).
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Since ρ1 is a cocycle then we have [ρ′1] = [ρ1] in H2(g, g).
Now the converse statement. Let [b], [b′] ∈ H2(g, g) such that [b′] = [b]. By definition there exists an

h ∈ C(g, g)[1]0 such that b′(a∧ b) = d(h)(a∧ b)+ b(a∧ b) for all a, b ∈ g. By reversing the previous deduction
it follows that ρ0 + b′t = (idg − ht) ◦ (ρ0 + bt)(idg + ht ∧ idg + ht). Thus h defines an equivalence between
ρ := ρ0 + bt and ρ′ := ρ0 + b′t.

An immediate corollary is that if H2(g, g) = [0] then all infinitesimal deformations are trivial.

2.4.4 Obstructions

As an analogy to the associative case it will be investigated when an n−deformation extends to an (n +
1)−deformation. The problem will be approached in the same way as in the associative case, i.e. Dk will
be split into a coboundary part and a remaining part which will be called obstruction. The next step is to
show that this obstruction is actually in H3(g, g).

An extension of an n−deformation ρ =
∑n

k=0 ρkt
k to an (n + 1)−deformation is an operation ρ′ =

ρ+ρn+1t
n+1 such that ρ′ satisfies Dn+1 for Lie algebras. The operation ρ′ satisfies Dn+1 if for all a, b, c ∈ g,

it holds that
∑

σ

∑

i+j=n+1,i,j≥0

ρi(ρj(a ∧ b) ∧ c) =
∑

i+j=k,i,j≥0

ρi(ρj(a ∧ b) ∧ c) + ρi(ρj(c ∧ a) ∧ b) + ρi(ρj(b ∧ c) ∧ a)

=− ρ(a ∧ ρn+1(b ∧ c)) + ρ(b ∧ ρn+1(a ∧ c))− ρ(c ∧ ρn+1(a ∧ b))+
− ρn+1(a ∧ ρ(b ∧ c)) + ρn+1(b ∧ ρ(a ∧ c))− ρn+1(c ∧ ρ(a ∧ b))+
+

∑

i+j=k,i,j>0

ρi(ρj(a ∧ b) ∧ c) + ρi(ρj(c ∧ a) ∧ b) + ρi(ρj(b ∧ c) ∧ a)

=− ρ(a ∧ ρn+1(b ∧ c)) + ρ(b ∧ ρn+1(a ∧ c))− ρ(c ∧ ρn+1(a ∧ b))+
+ ρn+1(ρ(a ∧ b) ∧ c)− ρn+1(ρ(a ∧ c) ∧ b)− ρn+1(ρ(b ∧ c) ∧ a)+
+

∑

i+j=k,i,j>0

ρi(ρj(a ∧ b) ∧ c) + ρi(ρj(c ∧ a) ∧ b) + ρi(ρj(b ∧ c) ∧ a)

=d(ρn+1)(a ∧ b ∧ c)+
+

∑

i+j=k,i,j>0

ρi(ρj(a ∧ b) ∧ c) + ρi(ρj(c ∧ a) ∧ b) + ρi(ρj(b ∧ c) ∧ a).

So Dn+1 can be written as a coboundary plus another term. Define

On(a ∧ b ∧ c) :=
∑

i+j=k,i,j>0

ρi(ρj(a ∧ b) ∧ c) + ρi(ρj(c ∧ a) ∧ b) + ρi(ρj(b ∧ c) ∧ a)

for all a, b, c ∈ g to be the obstruction of order n. Obstructions can be seen to be cocycles in the same way
as in the associative case (see 2.5), thus [On] is an element of H3(g, g). This leads to the following theorem.

Theorem 2.4.2. For any Lie algebra g, an n-deformation can be extended to an (n+1)-deformation if and
only if [On] = [0] ∈ H3(g, g).

Proof. Let ρ be an n-deformation and ρ′ be an extension of ρ. Then there exists ρn+1 such that ρ′ =
ρ0+ρn+1t

n+1 =
(∑n

k=0 ρkt
k
)
+ρn+1t

n+1. Since ρ′ is an extension ρn+1 satisfies Dn+1 which means d(ρn+1)+
On = 0. This shows that [On] = [0] in H3(g, g).

Suppose [On] = [0] in H3(g, g). Then there exists a ϕ ∈ ∧2(g, g) such that d(ϕ) = 0. This ϕ will be the
candidate multiplication extending ρ. In order to satisfy the Jacobi identity ϕ has to satisfy Dn+1. Using
the fact that the equation Dn+1 can be written as d(ϕ)+ On = 0 it is clear that ϕ satisfies Dn+1. Therefore
define ρ′ := ρ+ ϕtp+1. This operation is an (n+ 1)-deformation of ρ.

If H3
CE(g, g) = 0, then there are no obstructions implying that each infinitesimal deformation extends to

a formal deformation.
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2.5 Maurer-Cartan Equation

As in the associative case it can be shown that an element ρ ∈ C[1]1(g, g) satisfies the Jacobi identity if and
only if [ρ, ρ] = 0. Suppose ρ ∈ C[1]1(g, g) satisfies the Jacobi identity. It follows that

0 =2 (ρ(ρ(v1, v2), v3) + ρ(ρ(v3, v1), v2) + ρ(ρ(v2, v3), v1))
=2(ρ ◦ ρ)(v1, v2, v3)
=[ρ, ρ](v1, v2, v3).

For the other direction suppose that [ρ, ρ] = 0. Then

0 =[ρ, ρ](v1, v2, v3)

=ρ ◦ ρ(v1, v2, v3)− (−1)1·1ρ ◦ ρ(v1, v2, v3)
=2(ρ ◦ ρ)(v1, v2, v3)

=2

( ∑

σ∈S3

(−1)deg(σ)ρ(ρ(vσ(1), vσ(2)), vσ(3))

)

=2 (ρ(ρ(v1, v2), v3) + ρ(ρ(v2, v3), v1) + ρ(ρ(v3, v1), v2)) ,

thus ρ satisfies the Jacobi identity.

In case ρ can be written as
∞∑

k=0

ρkt
k with ρ0 = ρ, then ρ satisfying the Jacobi identity means:

0 =
∑

σ

ρ(ρ(v1, v2), v3) =
∑

σ

∞∑

i=0

ρit
i(
∞∑

j=0

ρjt
j(v1, v2), v3) =

∑
σ

∑

i,j

ρi(ρj(v1, v2), v3)ti+j ,

where the first sums run over all cyclic permutations of S3. Thus each t-level has to be zero, and so

Dk :
∑ ∑

i+j=k,i,j≥0

ρi(ρj(v1, v2), v3) = 0.

On the other hand



∞∑

i=0

ρit
i,

∞∑

j=0

ρjt
j


 = 0 and using the fact that d(ρk) = [ρ0, ρk], it gives:

0 =



∞∑

i=0

ρit
i,

∞∑

j=0

ρjt
j


 =

∞∑

k=0

∑

i+j=k

[ρi, ρj ]tk = 2d(ρk) +
∞∑

k=1

∑

i+j=k
i,j>0

[ρi, ρj ]tk.

Thus the condition for an infinitesimal deformation ρ = ρ0 +ρ1t to satisfy the Jacobi identity translates into
the requirement that

d(ρ1) +
1
2
[ρ1, ρ1] = 0

should hold, which is the Maurer-Cartan equation.
Note that it also holds that 1

2

∑

i+j=k, i,j>0

[ρi, ρj ] gives the kth obstruction Ok. It immediately follows from

1.5.1 that Ok is a cocycle since in the prove only the dg-Lie algebra structure has been used. The shifted
Chevalley-Eilenberg complex forms a dg-Lie algebra hence the result.

In the Lie algebra case the group Gg(R) acts on MCg(R) for R = k[t]/(t2) and g = C1
CE [1](g, g). Thus

the following theorem holds.

Theorem 2.5.1. Defg(R) ∼= H2
CE(A,A).
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2.6 Relation between Lie and associative algebras

Given an associative algebra it is possible to define a Lie algebra structure on the underlying vector space
by defining the bracket to be the commutator. The other way around, the universal enveloping algebra of
a Lie algebra gives an associative algebra. Note that a morphism between associative algebras respects the
commutator property, thus f([a, b]) = [f(a), f(b)] giving rise to a Lie algebra morphism. The other way
around, a Lie algebra morphism gives rise to an associative algebra morphism which is the unique morphism
obtained by the universal property of the enveloping algebras. In fact this defines a functor L from the
category of associative algebras to the category of Lie algebras and a functor U the other way around. These
functors are adjoint, i.e.

HomAss(U(g), A) ∼= HomLie(g,L(A))

which follows immediately from the universality of the universal enveloping algebra.
There is an even further reaching relation: in [29] it has been shown that HCE(g, g) is isomorphic to

HHoch(U(g),U(g)). Thus every deformation theory of Lie algebras gives rise to a deformation theory of their
universal enveloping algebras and vice versa.

2.7 Deformation of Lie algebra morphisms

The deformation of a Lie algebra morphism f : (g, [−,−]) → (h, [−,−]′) is defined to be a morphism
ft : (gt, [−,−]t)→ (ht, [−,−]′t) between two deformations of g and h, respectively. The family of morphism
associated to a formal deformation of a Lie algebra morphism have to satisfy:

fk(rx+ sy) =rfk(x) + sfk(y)
∑

k+i+j=q
k,i,j≥0

[fi(x), fj(y)]′k −
∑

l+p=q
l,p≥0

fl([x, y]p) =0.

There is no fundamental difference between deforming Lie algebra morphisms and associative algebra mor-
phisms. In fact everything can be developed in exactly the same way.

The deformation complex for a Lie algebra morphism f : g→ h is given by

Cn(f) := Cn(g, g)× Cn(h, h)× Cn−1(g, h)

with the differential

d((ρ1, %1, f1)) := (dCE(ρ1), dCE(%1), f ◦ [−,−]− [−,−]′ ◦ fn − dCE(f1)).
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Chapter 3

Deformation Theory of Linear
Categories

An associative algebra can be considered to be a category with one object by interpreting the elements of the
algebra as morphisms between some objects. This suggests a way to deform categories. In order to do this
the Hom-sets should form vector spaces, therefore linear categories will be introduced. The deformation of
an arbitrary locally small category can be obtained by linearizing the category and then use the deformation
theory of linear categories as will be developed now. The deformation of functors will be done in more
generality in chapter 5.

3.1 Deformation

In this section the language of deformation theory will be developed in the context of categories. First
categories and linear categories will be introduced and then deformations of linear categories will be defined.
Everything will be done completely analogous to the case of deformations of associative algebras.

3.1.1 Categories

For completeness the definition of a category will be given.

Definition 3.1.1. A category C consists of a class of objects Obj(C), a class of morphisms Mor(C), two
maps dom, cod : Mor(C)→ Obj(C) assigning to each morphism a domain and codomain, for each object A in
Obj(C) there exists a morphism idA in Mor(C) called the identity morphism, and a composition ◦ : C×C → C
which is associative and respects the identity.

Denote the morphisms with domain A and codomain B by HomC(A,B). A category is locally small if
HomC(A,B) forms a set for all objects A and B. If in addition the objects form a set, then the category is
called small.

Example 3.1.1.

Set: Objects are sets and morphisms are functions. The composition is the ordinary composition of func-
tions.

R-Mod: Objects are R−modules and morphisms are R−module morphisms. The composition is the com-
position of functions.

uAssk: Objects are unital associative k-algebras and morphisms are k-algebra morphisms. The composition
is the composition of functions.
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Lie: Objects are Lie-algebras and the morphisms are Lie-algebra morphisms. The composition is the com-
position of functions.

Cat: Objects are small categories and morphisms are functors. The composition is given by the composition
of functors.

3.1.2 Linear Categories

An R-linear category C is a category where the Hom-sets are R-modules and the composition is a bilinear
map. Let C and D be two R-linear categories. A functor F : C → D is R-linear if F (HomC(A,B)) is an
R-module, for all A and B in C. The category of all R-linear small categories is denoted by R-Cat.

An arbitrary locally small category C can be linearized by extending each set of morphism with formal
k-linear combinations of morphism and extending the composition bilinearly. For small categories this gives
an adjunction: L : Cat Àk-Cat : U where U is the obvious forgetful functor.

Another way of describing linear categories, which will be of importance later, is as follows. Define a
functor S : Set → Cat which sends a set S to the discrete category whose objects are S × S. Let E be a
symmetric monoidal category. A collection in E is defined to be

Coll(E , S) := [S(S), E ].

A functor C ∈ Coll(E , S) picks for each pair of objects a Hom-object in E .
Definition 3.1.2. An E-category is a set of objects S and a collection C : S(S) → E, together with maps
I → C((x, x)) and arrows in E

◦x,y,z : C((x, y))⊗E C((y, z))→ C((x, z)),

such that they are associative and satisfy the identity law.

A k-linear category is then just a Modk-category. Note that this definition coincides with the above one.
The advantage of this description is the more transparent role of the ’hosting’ category E .

3.1.3 Augmentation

Let (R, ε) be an augmentation of k and let C : S(S) → Modk be a collection. By post-composition with
the functor − ⊗k R : Modk → ModR a new, augmented, collection C ⊗k R : S(S) → ModR is obtained.
An augmented category is a category structure on the augmented collection. This assignment of a k-linear
category to an R-linear one is functorial and gives rise to an adjunction −⊗k R : k-Cat À R-Cat : −⊗R k.

3.1.4 Deformations

Definition 3.1.3. Let (R, ε) an augmentation of k. A deformation of a k-linear category C is an R-linear
category D together with an isomorphism D⊗R k

α−→ C. An R-deformation of C is a category C ⊗kR together
with a functor can : (C ⊗k R)⊗R k → C.

In case of a local ring (R,m) an R-deformation is an R-linear category C ⊗k R, such that modulo the
maximal ideal m the composition and identity of C are obtained. In case of the rings k[[t]] or k[t]/(tn), with
n ∈ N0, the corresponding deformation is called a formal or an n-deformation, respectively.

If R is the module k[[t]], then the morphisms in Homk(A,B)⊗k k[[t]] can be written as f ⊗∑
i ait

i, or
in case Homk(A,B) has a finite dimension, as

∑
i fit

i. As for associative algebras, a composition

mA,B,C
t : Hom(A,B)[[t]]⊗k[[t]] Hom(B,C)[[t]]→ Hom(A,C)[[t]]
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gives rise to a family of maps

mA,B,C
i : Hom(A,B)⊗k Hom(B,C)→ Hom(A,C)

making the diagram

Hom(A,B)⊗k Hom(B,C)

mt|Hom(A,B)⊗Hom(B,C)

**VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

ι⊗ι

²²

mA,B,C
i // Hom(A,C)

Hom(A,B)[[t]]⊗k[[t]] Hom(B,C)[[t]]
mA,B,C

t

// Hom(A,C)[[t]]

ev0◦t−k

OO

commute, for all k ≥ 0 and for all objects A,B,C. On the other hand, given a family of operations, in
order for the sum mt :=

∑
i≥0mit

i to be a composition of a category the operations have to satisfy certain
conditions, namely:

reduction to original composition: mA,B,C
0 = ◦A,B,C

left identity axiom: 0 =
∑

i+j=k
i,j≥0

mA,A,B
i (idA, f) , k ≥ 1

right identity axiom: 0 =
∑

i+j=k
i,j≥0

mA,B,B
i (f, idB) , k ≥ 1

associativity: 0 =
∑

i+j=k
i,j≥0

(
mA,B,D

i (f,mB,C,D
j (g, h))−mA,C,D

i (mA,B,C
j (f, g), h)

)
,m ≥ 1

for all objects A,B,C,D of C.

3.1.5 Equivalence of deformations

Two (R, ε)−deformations of a k−linear category are equivalent if there is an isomorphism between them
which reduces modulo m = Kern(ε) to the identity functor. With the notion of equivalences of deformations
it is possible to state a similar result of theorem 1.1.1 for categories.

Theorem 3.1.1. Let (C[[t]], ◦t, idt) be a deformation of the linear category (C, ◦, id), where idt is the deformed
identity. Then there exists a deformation (C[[t]], ◦′, id) which is equivalent to (C[[t]], ◦t, idt).

The analogue of α in the proof of theorem 1.1.1 is given by the functor A : C[[t]] → C[[t]] acting as an
identity on the objects and sending a morphism f to f ◦t iddom(f). The composition ◦′ is defined to be
f ◦′ g := (f ◦t id−1

dom(f)) ◦t g. With these choices the proof of this theorem is done in exactly the same way
as for algebras and will thus be omitted.

A deformation with the composition given by ◦+∑
i≥1 0ti is called a trivial deformation. A deformation

equivalent to the trivial deformation is also called trivial.

3.2 Hochschild Complex

The similarity of deformations of linear categories to associative algebras suggests that we can use the same
deformation complex, i.e. the Hochschild complex, to classify infinitesimal deformations.
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Let C be an k-linear category. The Hochschild cochain complex is defined by the k-modules

C0
Hoch(C) :=

∐

A∈Obj(C)
C(A,A)

Cn
Hoch(C) :=

∐

A0,...,An∈Obj(C)
Homk-Mod (C(A0, A1)⊗k . . .⊗k C(An−1, An), C(A0, An)) .

Let CHoch(C) be the direct sum of these modules. The differential d : Cn(C)→ Cn+1(C) is defined by:

d(ϕ)(f0,1 ⊗ . . .⊗ fn,n+1) =m0,1,n+1(f0,1, ϕ(f1,2 ⊗ . . .⊗ fn,n+1))+

+
n∑

i=1

(−1)iϕ(f0,1 ⊗ . . .⊗mi−1,i,i+1(fi−1,i, fi,i+1)⊗ . . .⊗ fn,n+1)+

+ (−1)n+1m0,n,n+1(ϕ(f0,1 ⊗ . . .⊗ fn−1,n), fn,n+1).

An alternative description of the Hochschild complex (making later generalizations easier) is by the use
of the nerve functor:

N : Catk →Mod∆op

k ,

sending a category to the simplicial object N(C) : ∆op →Modk. Here ∆ denotes the simplex category. The
simplicial object N(C) sends totally ordered finite sets [n] to N(C)n, the k−module of n−composable arrows.
By definition the zero-composable arrows N(C)0 are the objects of C. The face maps di : N(C)n → N(C)n−1

are defined by:

di :
(
A0 → . . .→ Ai−1

fi−1−−−→ Ai
fi−→ Ai+1 → . . .→ An

)
7→

(
A0 → . . .→ Ai−1

fi◦fi−1−−−−−→ Ai+1 → . . .→ An

)

and the degeneracy maps si : N(C)n → N(C)n+1 by:

si : (A0 → . . .→ Ai−1 → Ai → Ai+1 → . . .→ An) 7→
(
A0 → . . .→ Ai−1 → Ai

idAi−−−→ Ai → Ai+1 → . . .→ An

)
.

The Hochschild complex becomes then

Cn(C) = {ϕ ∈ HomModk
(NCn, NC1) | ∀θ ∈ NCn : dom(ϕ(θ)) = dom(θ) ∧ cod(ϕ(θ)) = cod(θ)}

with

dHochϕ = d1 ◦ (id⊗ ϕ) +
n∑

i=1

(−1)iϕ ◦ di + (−1)n+1d1 ◦ (ϕ⊗ id).

Note that this complex for an associative algebra viewed as a category with one object coincides with the
Hochschild complex for associative algebras. Further note that the Hochschild complex does not come from
a simplicial object, i.e. there is no simplicial object where the alternating sum of the face maps gives the
Hochschild complex, because of the first and last term in the differential.

3.2.1 Differential graded Lie algebra structure

Because of the similarity to the associative case it comes as no surprise that the Hochschild complex for
linear categories gives rise to a preLie system and preLie algebra, a dg-Lie algebra and even a brace algebra.

The circle i-operations are again defined by

θ ◦i ψ(f01 ⊗ . . .⊗ fm+n−2m+n−1) :=
θ(f01 ⊗ . . .⊗ fi−2i−1 ⊗ ψ(fi−1i ⊗ . . .⊗ fi+n−2i+n−1)⊗ fi+n−1i+n ⊗ . . .⊗ fm+n−2m+n−1).
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A straightforward calculation shows that this indeed defines a preLie-system on C[1](C). It follows that
(C[1](C), ◦) with ◦ := i◦i is a preLie algebra and thus the Gerstenhaber bracket turns C[1](C) into a graded
Lie algebra. This is the analogue of the Gerstenhaber bracket. For this bracket it also holds that dHoch is
equal to [◦,−] and the cochain complex (CHoch(C)[1], [−,−], [◦,−]) forms a dg-Lie algebra. Consequently the
cohomology (H(CHoch(C)[1], dHoch), [−,−]) forms a graded Lie algebra. Note that in case a category consists
of just one object, all the constructions give rise to the structures as defined for associative algebras.

3.2.2 Normalized Hochschild Complex

Candidates of infinitesimal deformations are given by C[1](C)1 in the sense that an element m ∈ C[1](C)1
together with the original composition ◦ give a deformed composition ◦+mt, which is associative. In order
to be a composition of a category it should also satisfy the identity axioms.

The left and right identity condition in (3.2) show that as soon as one identity morphism appears in the
composition the differential should be zero. In order to account for this property, the normalized Hochschild
complex (see [34]) will be considered.

Define an k-normalized cochain complex Ck[1](C) to consist of cochains of C[1](C) satisfying the condition
that if at least one of the first k composable arrows is an identity, the result becomes zero. It is easily seen
that Ck[1](C)n ⊆ C(C)[1]n. To check that the differential of C[1](C) restricted to the k-cochains is again a
differential it has to be checked that for a k-cochain ψ it holds that dψ is again a k-cochain.

dψ(id⊗ f12 ⊗ . . .⊗ fnn+1) =id ◦ ψ(f12 ⊗ . . .⊗ fnn+1)− ψ(id ◦ f12 ⊗ . . .⊗ fnn+1)+

+
n∑

i=2

(−1)iψ(id⊗ . . . fi ◦ fi+1 ⊗ . . .⊗ fnn+1)+

+ (−1)n+1ψ(id⊗ f12 ⊗ . . .⊗ fn−1n) ◦ fnn+1

=ψ(f12 ⊗ . . .⊗ fnn+1)− ψ(f12 ⊗ . . .⊗ fnn+1)
=0.

If the identity appears between 2 and k − 1 then everything is just zero. In case it appears at the kth place
the terms

(−1)nψ(f01 ⊗ . . .⊗ fn−1n ◦ fnn+1) + (−1)n+1ψ(f01 ⊗ . . .⊗ fn−1n) ◦ fnn+1

cancel each other, thus are zero too. This shows that (Ck[1](C), d) is a complex. It holds that C0[1](C) ⊆
C[1](C) and Ck+1(C)[1] ⊆ Ck(C)[1]. Define C[1](C) :=

⋂
k≥0 Ck[1](C). This complex is called the normalized

Hochschild complex.

Proposition 3.2.1. The complex C[1](C) is a chain deformation retraction of C[1](C).
Proof. In order to prove that C[1](C) is a chain deformation retraction of C[1](C), it has to be shown that there
exist maps f : C[1](C)→ C[1](C) and g : C[1](C)→ C[1](C), such that idC[1](C) ∼ f ◦ g and g ◦ f = idC[1](C).
This will be done by proving that for each i the i-normalized complex is a deformation retraction of the
(i − 1)−normalized complex. The proof concludes then by the composition of the deformation retractions
which is again a deformation retraction.

Define sk : C[1](C)n−1 → C(C)[1]n−2 by

sk(ψ)(f01 ⊗ . . .⊗ fn−2n−1) :=

{
ψ(f01 ⊗ . . .⊗ 1⊗ . . .⊗ fn−2n−1) k ≤ n
0 k > n.

Now define hk : C(C)[1]n−1 → C[1](C)n−1 by

hk = idC[1](C) − d ◦ sk − sk ◦ d.
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It will be proved that hk : C[1](C)→ C0[1](C). Suppose that ψ does not vanish for any identity. The aim is
to show that h0(ψ) is a 0-normalized cochain.

h0(ψ)(id, f12, . . . , fn−1n) = ψ(id, f12, . . . , fn−1n)− d(ψ)(id, id, f12, . . . , fn−1n)− s0 ◦ d(ψ)(id, f12, . . . , fn−1n)
=ψ(id, f12, . . . , fn−1n)





−ψ(id, f12, . . . , fn−1n)

+ψ(id, f12, . . . , fn−1n)− ψ(id, f12, . . . , fn1n) +
n∑

i=3

(−1)i+1ψ(id, id, f12, . . . , (fi−1i ◦ fii+1), . . . fn−1n)

+(−1)nψ(id, f12, . . . , fn−2n−1)fn−1n



−ψ(id, f12, . . . , fn−1n)

+ψ(id, f12, . . . , fn−1n) +
n−1∑

i=2

(−1)i+1ψ(id, id, f12, . . . , (fi−1i ◦ fii+1), . . . fn−1n)

+(−1)n+1ψ(id, f12, . . . , fn−2n−1)fn−1n

=0.

A similar calculation shows that hk : Cl[1](C) → Cl+1[1](C) for an arbitrary l. Consider idC[1](C) − ι0 ◦ h0.
Then

idC(C)[1](ψ)− ι0 ◦ h0(ψ) =ψ − (ψ − d ◦ s0(ψ)− s0 ◦ d(ψ)) = d ◦ s0(ψ)− s0 ◦ d(ψ),

and therefore s0 is indeed a chain homotopy between idC[1](C) and ι0 ◦h0. On the other hand consider h0 ◦ ι0.
Note that s0(ι0(ψ)) = 0 and s0(d(ψ)) = 0, thus h0 ◦ ι0(ψ) = ψ − d ◦ s0(ψ)− s0(d(ψ)) = ψ. This proves that
C[1](C) is a chain deformation retraction onto C0[1](C).

That Ck[1](C) is a chain deformation retraction of Ck−1[1](C) with chain homotopy sk is shown in
analogous manner. It is easily seen that C1[1](C) is a chain deformation retraction of C[1](C), since s0 + ι0 ◦
s1 ◦ h0 is a chain homotopy between id and ι0 ◦ ι1 ◦ h1 ◦ h0 and h1 ◦ h0 ◦ ι0 ◦ ι1 = id. Define ι := ι0 ◦ ι1 ◦ . . .
then h := . . . ◦h1 ◦h0 and s := s0 + s1 ◦h1 + s2 ◦h1 ◦h0 + . . .. This gives then the desired chain deformation
retraction between C[1](C) and C[1](C).

Since cohomology can not distinguish between homotopic complexes the cohomology of the normalized
is isomorphic to the cohomology of the unnormalized Hochschild complex. Therefore in the classification the
unnormalized chain complex can be used.

3.3 Classification

3.3.1 Center

Let ϕ ∈ C0(C) and f0,1 ∈ C(A0, A1).

dϕ(f0,1) = m0,0,1(ϕ, f0,1)−m0,1,1(f0,1, ϕ)

where the first ϕ ∈ C(A0, A0) and the second ϕ ∈ C(A1, A1). Remember that ϕ is in fact a sum of morphisms
ϕA ∈ C(A,A) over all objects. The only non-zero morphisms are the composable ones hence the result.

3.3.2 Infinitesimal deformations

Let ϕ ∈ C2(C). Then

dϕ(f0,1 ⊗ f1,2 ⊗ f2,3) =m0,1,3(f0,1, ϕ(f1,2 ⊗ f2,3))−
− ϕ(m0,1,2(f0,1, f1,2)⊗ f2,3) + ϕ(f0,1 ⊗m1,2,3(f1,2, f2,3))−
−m0,2,3(ϕ(f0,1 ⊗ f1,2), f2,3).
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Proposition 3.3.1. The infinitesimal deformations of a category C are classified up to equivalence by the
second Hochschild cohomology group H2(C).
Proof. The proof is basically the same as in the associative case. Suppose two deformations are equivalent,
i.e. [c′] = [c] ∈ H2(C). Then they differ by a coboundary which vanishes in cohomology. Thus in cohomology
they are in the same class.

On the other hand, suppose that [c] ∈ H2(C). Define mA,B,C(f, g)+ cA,B,C(f, g)t for all f ∈ C(A,B) and
g ∈ C(B,C) and for all A,B,C ∈ Obj(C). The composition m+ ct is associative if it satisfies condition D0

and D1. D0 is always satisfied since m is the original composition and D1 is satisfied if d(c) = 0, but this is
true since c is a cocycle.

3.3.3 Obstructions

The obstructions for extending an n-deformation to an (n+ 1)-deformation is given by

On =
∑

i+j=n
i,j>0

mi ◦mj .

It follows that On = 1
2

∑
i+j=n
i,j>0

[mi,mj ]. The Hochschild complex for categories is a dg-Lie algebra thus by

proposition 1.5.1 and the fact that in its proof only the dg-Lie algebra structure has been used, it follows
that the obstruction is a cocycle. It should then come as no surprise that a similar result as theorem 1.4.2
holds for categories.

Theorem 3.3.1. For any linear category Ck, an n−deformation can be extended to an (n+1)−deformation
if and only if [On] = [0] ∈ H3(C).
The proof of this theorem is done in exactly the same way as for associative algebras.

3.4 Comparison

It is possible to turn a category into a unital associative algebra by taking the direct sum of the Hom-sets. On
the other hand, to a unital associative algebra a category can be associated. This relationship is functorial
and forms even an adjunction. Using these functors, the deformation of a category will be compared to the
deformation of a category as an algebra.

Adjunction Define a functor A : Catk → uAssk by

(C, ◦) 7→ (
∐

A,B

C(A,B),m,
∐

A

idA)

where

m(f, g) :=

{
g ◦ f cod(f) = dom(g)
0 otherwise.

This multiplication is associative since ◦ is associative. The functor A acts as the identity on the morphisms.
On the other hand, define a functor C : uAssk → Catk by associating to any monoid (M,m, u) the

category C(M) with the idempotents of M as objects and the arrows given by

Hom(a, b) := {x ∈M |m(b, x) = x = m(x, a)}.
The identity is given by (ida : a 7→ a) ∈ Hom(a, a) and the composition of x ∈ Hom(a, b) and y ∈ Hom(b, c)
is given by m(y, x) ∈ Hom(a, c). A morphism f : M → N between two monoids defines a functor between

C(M) and C(N) since idempotents are mapped to idempotents and Hom(a, b)
f−→ Hom(f(a), f(b)).
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Remark 3.4.1. The unit u is always an idempotent and Hom(u, u) = M . The zero-object is also an
idempotent but Hom(0, 0) = 0 and Hom(a, 0) = 0 = Hom(0, b).

Note that the category C(A) is equivalent to the Karubi envelope (c.f. [1]) of the one object category
associated to the unital associative algebra. The Karubi envelope of a category C is the category with
objects pairs consisting of an object of C and an idempotent on that object. An arrow f : (A, a) → (B, b)
is a morphism f : A → B in C such that b ◦ f = f = f ◦ a. This category is denoted by Split(C). The
Karubi envelope of a category has the property that every idempotent splits and in fact is the smallest with
this property in the sense that there is an obvious inclusion functor ι : C → Split(C). For any other functor

F : C → D there is a unique functor F̄ : Split(C)→ D defined by F̄ ((A, a)
f−→ (B, b)) := F (A)

F (f)−−−→ F (B).

Lemma 3.4.1. The functor A : Catk → uAssk is left adjoint to C : uAssk → Catk.

Proof. The adjunction will proved by constructing the unit and counit of the adjunction and prove that they
satisfy the triangular identities. Consider the following two natural transformations:

AC(M)
∃!εM //_____ M

M = Hom(u, u)

ιu,u

OO qqqqqqqqqqqq

qqqqqqqqqqqq

where εM is obtained by the universality of the coproduct, and ηC : C → CA(C) defined by sending an object
to the identity arrow of it and a morphism f : X → Y to the same morphism f : idX → idY . Basically only
the objects change in appearance.

It holds that

idA(C) =εA(C) ◦AηC : A(C)→ ACA(C)→ A(C),
idC(M) =CεM ◦ ηC(M) : C(M)→ CAC(M)→ C(M),

showing that A is left adjoint to C.

Deformation of a category C versus A(C) Deforming a category C as described in this chapter will
be compared to the deformation of the associated algebra A(C). Let R = k[[t]] be an augmentation of k.
Consider the following two formal deformations, A(C)⊗k R and C ⊗k R. Note that

A(C)⊗k R =


∐

X,Y

C(X,Y )


⊗k R ∼=

∐

X,Y

(C(X,Y )⊗k R) = A(C ⊗k R)

hence, using the unit of the adjunction,

ηC⊗kR : C ⊗k R→ CA(C ⊗k R).

Note that both A(C ⊗k R) and A(C) ⊗k R have the same idempotents and equally trivial contain the
idempotents of A(C). It also holds that Cn(C) ⊆ Cn

Hoch(A(C), A(C)) since

A(C)⊗k A(C) ∃! //_______ A(C)

Hom(X,Y )⊗k Hom(Y, Z)

ιX,Y,Z

OO

// Hom(X,Z)

ιX,Z

OO

commutes. Since both use the Hochschild differential, it follows that C•(C) is a subcomplex of C•Hoch(A(C), A(C)).
In general it just forms a subcomplex since the candidates of multiplications when restricted toHom(X,Y )⊗k

Hom(Y, Z) end up in A(C) and not necessarily in Hom(X,Z) which would be needed in order to be a can-
didate for the composition.
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Lemma 3.4.2. For a linear category C it holds that Hn(C) ⊆ Hn
Hoch(A(C), A(C)).

Proof. The complex C•(C) is a subcomplex of C•Hoch(A(C), A(C)), as was seen before, by defining the maps
to be zero on non-composable arrows. This map, denoted by ι, is a chain-map. By the functoriality of the
nth cohomology group functor a morphism Hn(ι) : Hn(C) → Hn(A(C), A(C)) is obtained, it is given by
[ψ] 7→ [ι(ψ)]. It remains to check the injectivity of this map.

Let ψ,ϕ ∈ Cn(A(C), A(C)). Suppose [ι(ψ)] = [ι(ϕ)]. Then there exists an α ∈ Cn−1(A(C), A(C)) such
that ι(ψ) = ι(ϕ) + d(α). If these maps are applied to a non-composable arrow, then both ι(ψ) and ι(ϕ) are
zero, hence forcing d(α) to be zero. The equation forces α(f1⊗ . . .⊗ fn) to have the same domain as f1 and
the same codomain as fn, where fi ∈ A(C). This shows that d(α) is in the image of ι, hence there exists an
α′ such that ι(α′) = α. Further that ψ = ϕ+ d(α′) holds. Since ι is an embedding, it follows that [ψ] = [ϕ]
completing the proof that Hn(ι) is an injective group morphism.

3.5 Maurer-Cartan Elements

The Maurer-Cartan elements for k[t]/(t2) based on the dg-Lie algebra (C[1](C), dHoch, [−,−]) are infinitesimal
deformations. Let x⊗ t ∈MCC[1](C)(k[t]/(t2)). Note that in this case x ∈ C[1](C)1 so it really is a candidate
for an infinitesimal deformation. Then x⊗ t is a cocycle since d(x⊗ t) = −[x⊗ t, x⊗ t] = [x, x]⊗ t2 = 0. By
definition 0 = d(x⊗ t) = d(x)⊗ t thus d(x) = 0, implying that x is a cocycle. On the other hand, let x be a
representative of [x] ∈ H2(C). It has to be checked that x⊗ t satisfies the Maurer-Cartan equation.

d(x⊗ t) +
1
2
[x⊗ t, x⊗ t] =d(x)⊗ t+

1
2
[x, x]⊗ t2 = 0.

Thus x ∈ MCC[1](C)(k[t]/(t2)). The only difference between H2(C) and MCC[1](C)(k[t]/(t2)) is that the
latter contains also equivalent deformations which are modded out in the cohomology case. It is also true
that the Maurer-Cartan elements in the same orbit of the GC[1](C)(k[t]/(t2)) action are equivalent, hence
DefC[1](C)(k[t]/(t2)) ∼= H2(C).
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Chapter 4

Deformation Theory of Linear
Multicategories

In a category all arrows have one input. The same way as the notion of multivariable functions generalizes
that of functions, multicategories generalize categories: in multicategories arrows are allowed to have several
inputs. A special case consists of multicategories with only one object, these are called operads. An important
role is played by the endomorphism multicategory End for which the n-ary operations are defined to be
linear maps from a tensor product of n vector spaces to some other vector space. With the help of this
multicategory it is possible to define M-algebras, i.e. algebras modeled by a multicategory, these are just
multifunctors ρ :M→ End. They are also called representations ofM. For example, the representations of
the operad Ass gives rise to associative algebras, Lie gives rise to Lie algebras and Cat-algebras are exactly
categories. The aim is develop deformation theory for multicategories and multifunctors. This in particular
enables the study of the deformation of representations of multicategories.

4.1 Multicategories

Multicategories will be introduced in two ways. As a slogan, the two ways correspond to multicategories given
with full versus partial compositions. The first definition is the classical way of introducing multicategories
and it is given here because of its accessible nature while the second definition uses the language of trees
which is more suited for the deformation theory. Using the trees a collection is defined. A multicategory
is then a collection with extra structure. As an example, among others, the endomorphism multicategory
will be described, enabling the definition of representations and algebras. Categories, operads and even
multicategories can be obtained as representations over suitably chosen multicategories.

4.1.1 Multicategories, a first definition

Multicategories come in two flavors: as symmetric and non-symmetric ones.

Definition 4.1.1. A multicategory M consists of a class of objects Obj(M) and for n ≥ 0 and objects
X1, . . . , Xn, X a class of n-ary operations from X1, . . . , Xn to X, denoted by M(X1, . . . , Xn|X). For each
object X there is an identity arrow idX ∈M(X|X). Finally there is a family of compositions, denoted by ◦,

M(X1, . . . , Xn|X)× (M(X1,1, . . . , X1,m1 |X1)× . . .×M(Xn,1, . . . , Xn,mn |Xn))
↓

M(X1,1, . . . , Xn,mn |X),

53



such that the compositions satisfies the associativity and unit laws.

Definition 4.1.2. A symmetric multicategory is a multicategory M with a right action of the permutation
group Sn on the class of n-ary operations given by

− · σ :M(X1, . . . , Xn|Y )→M(Xσ(1), . . . , Xσ(n)|Y )

such that

ψ · 1Sn
=ψ

(ψ · σ) · ρ =ψ · (σρ)

and it is compatible with the composition, i.e.:

(θ · σ) ◦ (ψσ(1) · ρσ(1), . . . , ψσ(n) · ρσ(n)) = (θ ◦ (ψ1, . . . , ψn)) · (σ ◦ (ρσ(1), . . . , ρσ(n))).

Note that a multicategory with just unary operations is a category and in that case the symmetric struc-
ture on the multicategory becomes trivial. A (symmetric) multicategory is called small if the objects and
the n-ary operations form sets.

A map between multicategories, called a multifunctor, sends objects to objects and n−ary operations to
n−ary operations such that the composition and the identities are respected. A symmetric multifunctor is in
addition compatible with the symmetric action on the n−ary operations. All small multicategories together
with the multifunctors form a category Multicat, and the symmetric ones form MulticatS .

Definition 4.1.3. A (symmetric) operad is a (symmetric) multicategory with one object.

Since operads have just one object, say ∗, the class of n-ary operations M(∗, . . . , ∗|∗) is simply denoted
by M(n) for each n ≥ 0. The operads form a full subcategory of the (symmetric) multicategories denoted
by Operad and OperadS respectively.

Enrichment Let E be a symmetric monoidal category. An E-enriched multicategoryM is a multicategory
where each set of n-ary operations is an object of the category E and both the composition and the units
are morphisms in E . A multifunctor F :M→N between E-enriched multicategories is E-enriched if all the
maps

FX1,...,Xn|X :M(X1, . . . , Xn|X)→ N (F0(X1), . . . , F0(Xn)|F0(X))

are morphisms in E . The category of E-enriched multicategories and E-enriched symmetric multicategories
are denoted by Multicat(E) and MulticatS(E), respectively. In particular for multicategories with one
object, the above construction gives E-enriched operads.

Note that Set-enriched multicategories are ordinary multicategories.

Definition 4.1.4. A linear multicategory is a multicategory enriched over Modk.

4.1.2 Trees

A tree is defined to be a finite, simply connected graph without cycles and a chosen outer edge called the
root. An edge is outer if it is connected to only one vertex. To a tree T the following sets can be associated.
The set of all edges denoted by edges(T ), the set of outer edges outer(T ), the set of inputs in(T ) formed
by outer edges except the root, and the set of inner edges inner(T ) consisting of those edges which are not
outer. All these notions may be defined for a vertex of T as well. By convention a tree is depicted by drawing
for each vertex the output under the inputs.
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The category of planar trees Ωp is given as follows. The objects of Ωp are all planar trees. In order to
describe the arrows, a tree T will be interpreted as a multicategory Ω(T ) in the sense of chapter 4. The
objects of Ω(T ) are the edges of T . Every subtree T ′ ⊆ T gives an operation in Ω(T )(in(T ′)|root(T ′)). Note
that each Hom-set has at most one element. The arrows between trees T and T ′ are then defined to be
the multifunctors, again in the sense of chapter 4, from Ω(T ) to Ω(T ′). The composition in Ωp is given by
composition of multifunctors.

In Ωp there are special arrows which are the dendroidal analogs of the face and degeneracy maps of the
simplicial case. Given a tree T with an inner edge e denote by T/e the tree obtained from T by contracting
the edge e. Then a face map de : T/e→ T is defined by sending the edges of T/e to the corresponding ones
in T . The same happens for the vertices, except for the vertex v in T/e which corresponds to the contracted
part of T . The vertex v is sent to the unique element of Ω(T )(in(v)|root(v)). Let v be an outer vertex of
T , then T/v is the tree obtained from T by removing v, i.e. all the edges in in(v) and the vertex v are
deleted. The face map dv : T/v → T is just the inclusion. To describe the degeneracy maps suppose T
contains a subtree t1. Denote the two edges and the vertex of t1 by e1, e2 and v, respectively. Let T\v be
the tree obtained from T by replacing t1 with a single edge e. Then a degeneracy sv : T → T\v is defined
by sending e1 and e2 to e, v to ide and acts as the identity on the remaining edges and vertices. The face
and degeneracy maps satisfy similar relations to the simplicial identities, called dendroidal identities, which
may be found in [27].

The edges of a tree may be labeled by the elements of some set S, resulting in a labeled tree. Explicitly,
a labeled tree is a pair (T, l) consisting of a tree T and a function l : edges(T )→ S called the labeling of T .

The following category will play an important role in the generalization of collections. Define the category
T(S) to have objects all S-labeled trees and arrows all isomorphisms of trees preserving the labeling, i.e.

(T, l)
φ−→ (T ′, l′) ⇐⇒ φ(T ) ∼= T ′ and l′ ◦ φ|edges(T ) = l.

If the labeling of T(S) is removed one obtains a subcategory of Ωp. The assignment of S to T(S) is functorial:
the functor T : Set → Cat maps f : S → S′ to T(f) : T(S) → T(S′), which is given by (T, l) 7→ (T, f ◦ l)
and φ 7→ φ.

There are full subcategories T(S)n,m of T(S) consisting of trees with n vertices and m inputs. The
categories T(S)n,• :=

∐
m≥0 T(S)n,m and T(S)•,m :=

∐
n≥0 T(S)n,m are subcategories of T(S) as well. In

fact all these categories are groupoids. Define a functor ∂ : T(S)n,• → T(S)1,• for n ≥ 1 by sending a tree
(T, l) to (T/inner(T ), l|outer(T )) and an isomorphism φ to φ|outer(T ). For n = 0 define ∂ : T(S)0,• → T(S)1,•
by sending a tree (|, l) to a tree with one vertex and one input such that both edges have the same label as |.

Sometimes the degeneracies should also be taken into account. Therefore define yet another category
D(S) by extending T(S) with all the degeneracies preserving the labeling. Note that degeneracies leave the
number of inputs invariant but decrease the number of vertices by one, thus D(S) can not be graded by the
number of vertices. Define the subcategories D(S)n,m by first adding to T(S)n,m the degeneracies whose
domain is in T(S)n,m. Then also add the codomains of these degeneracies together with their identities.
Note that D(S)1,1 contains both T(S)1,1 and T(S)0,1, since T(S)0,1 is a discrete category and for any tree
(t1, l) where the labels of the two edges coincide there exists a degeneracy σ : (t1, l)→ (|, l).

4.1.3 Collections

Let E be a symmetric monoidal category and let S be an arbitrary set. Define T(S)1 := T(S)1,• ∪ T(S)0,1

and D(S)1 :=
∐

m≥0,m6=1 T(S)1,m ∪ D(S)1,1.

Definition 4.1.5. For S define the category of symmetric collections and symmetric pointed collections in
E to be

CollS(E , S) := [T(S)op
1 , E ] and Coll•S(E , S) := [D(S)op

1 , E ],
such that any collection M sends (|, l) to the tensor unit I. Non-symmetric collections and non-symmetric
pointed collections are defined similarly after removing the isomorphisms from T(S)1 and D(S)1, respectively.
The categories of the non-symmetric versions are denoted by Coll(E , S) and Coll•(E , S).
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Let M be a collection. Then the image of (T, l) in E is denoted by M((T, l)) = M(l(e1), . . . , l(en)|l(e)),
where in(T ) = {e1, . . . , en} and e = root(T ). From now on by a collection a symmetric collection will be
meant, unless otherwise specified.

Remark 4.1.1. The definition of pointed and unpointed collections gives back the definition as stated in [2]
and [3], respectively.

To see this first consider the unpointed collections. If S is a singleton ∗ then T(∗)1,m consists of one
object, namely the m-corolla, and the morphisms are all permutations of Sm. It follows that T(∗)1,m

∼= Sm

as categories. Thus

CollS(E , ∗) =[T(∗)op
1,• ∪ T(∗)op

0,1, E ] = [T(∗)op
1,•, E ]× [T(∗)op

0,1, E ] ∼=
∏

m≥0

[Top
1,m, E ]× [T(∗)op

0,1, E ]

∼=CollS(E)× [T(∗)op
0,1, E ]

The last part is completely determined since a collection has to send (|, l) to the tensor unit.
Now consider the pointed collection for a set S. It holds that

Coll•S(E , S) =
∏

m≥0
m 6=1

[T(S)op
1,m, E ]× [D(S)op

1,1, E ].

Note that a functor K in [D(S)op
1,1, E ] is equivalent to give a functor K in [T(S)op

1,1 ∪T(S)op
0,1, E ] together with

the specification where the degeneracies are mapped to, i.e. K(σ) : K((|, l)) → K((t1, l)), but that implies
that giving a collection K in Coll•S(E , S) is exactly the same as giving a collection K in CollS(E , S) together
with maps Ks : I → K(s|s).

A morphism between collections is a natural transformation F : M → N , i.e.

M((T, l))
FT //

M(σ)

²²

N((T, F ◦ l))
N(σ)

²²
M((T ′, l′))

FT ′
// N((T ′, F ◦ l′))

commutes for all T, T ′ and σ : T ′ → T . In other words, a map between collections is a family of equivariant
morphisms in E .

Each collection could be extended to all of T(S) in the following way. Let M be a collection then define
M to agree with M on the corollas. Let (T, l) be an arbitrary tree in T(S). Note that each tree T can be
written as T = tn ◦ (T1, . . . , Tn), for some n, where ◦ denotes the grafting of trees. Now define M recursively
by

M((T, l)) := M((tn, l|tn))⊗E (M(T1, l|T1)⊗E . . .⊗E M(Tn, l|Tn)).

An isomorphism φ decomposes in the same way into σ ◦ (φ1, . . . , φn), define

M(φ) := M(σ)⊗E (M(φ1)⊗E . . .⊗E M(φn).

In this way a functor M : T(S)op → E is obtained such that the diagram

T(S)op
1Ä _

²²

M // E

T(S)op

M

77oooooooooooooo

commutes.
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4.1.4 Multicategories with partial compositions

Now multicategories can be described in terms of partial compositions.

Definition 4.1.6. A symmetric multicategoryM consists of a set of objects S and a collectionM : T(S)op
1 →

E together with a family of compositions

◦T :M(T )→M◦ ∂(T )

for all T ∈ T(S)2,• and units 1s : I →M(s, s) for all objects s ∈ S such that:

Associativity: All trees with three vertices have two outer vertices denoted by v1 and v2. For all T ∈
T(S)3,• the diagram

M(T )

1⊗◦dv1 (T )

²²

1⊗◦dv2 (T )
//M(de2(T ))

◦dv1 (T )

²²
M(de1(T )) ◦dv2 (T )

//M◦ ∂(T )

commutes.

Unit axiom: The diagram below commutes for all objects A,B ∈ S.

I ⊗M(B|A)

1A⊗1

²²

∼ M(B|A) M(B|A)⊗ I∼

1⊗1B

²²
M(A|A)⊗M(B|A)

◦

66mmmmmmmmmmmmm
M(B|A)⊗M(B|B)

◦

hhQQQQQQQQQQQQQ

Equivariance: For all φ : T ′ → T in T(S)2,• the diagram

M(T )

M(φ)

²²

◦T //M◦ ∂(T )

M◦∂(φ)

²²
M(T ′) ◦T ′

//M◦ ∂(T ′).

commutes.

Instead of specifying the units, a pointed collection can be used. The unpointed collection is used
because of clarity. The definition of a non-symmetric multicategory is obtained by dropping the equivariance
condition.

Remark 4.1.2. In this setting it also makes sense to talk about operads, i.e. multicategories with one
object. If the units are removed from the definition of a multicategory one obtains the notion of a pseudo-
multicategory, a generalization of a pseudo-operad (c.f. [25]). The partial compositions of pseudo-operads
are called ◦i-compositions. This motives the terminology ◦T -compositions in the many object case.

Comparison In this paragraph multicategories given with the full composition will be compared to multi-
categories given with the ◦T -composition. In order to describe the full composition in such a way that it can
be conveniently compared, the category of layered trees will be introduced. A layered tree is a tree where
the first layer consists of one corolla, the second layer of corollas grafted into the input of the previous layer
for all inputs, etc. Define the category L(S) to have objects S-labeled layered trees and isomorphisms of
layered trees as arrows. The composition is given by the composition of isomorphisms.
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Lemma 4.1.1. The category L(S) is isomorphic to the category T(S).

Proof. Every layered tree is in particular a tree in the sense of T(S) hence every arrow in L(S) is an arrow
in T(S). On the other hand, each tree in T(S) can be extended to a layered tree by grafting of the unit
tree |. Since the unit is sent to the tensor unit the isomorphism obviously extends to the layered tree. Thus
there are functors ι : L(S) À T(S) : ε. Obviously ε ◦ ι = idL(S) and ι ◦ ε = idT(S), since | is the unit of the
grafting operation.

The category L(S) can be graded by the number of layers and the number of inputs. It is even possible
to grade with respect to the number of vertices. Thus there are full subcategories L(S)l,m,n, where l,m and
n denote the number of layers, inputs and vertices, respectively. It is easily seen that T(S)n,m and L(S)•,m,n

are isomorphic too. Note that

L(S)1 := L(S)1,•,• ∼= T(S)1,• ∪ T(S)0,1 = T(S)1.

Thus [L(S)op
1 , E ] ∼= [T(S)op

1 , E ].
It is possible to extend a functor M ∈ [L(S)op

1 , E ] to a functor ML : L(S)op → E by applying M to each
component in a layer from left to right starting with the first layer.

The full composition of a multicategoryM is given by maps

◦LT :ML(T )→M◦ ∂(T ),

for all T ∈ L(S)2,•,•. The aim is now to compare these maps to the ◦T -compositions.
Given a full composition ◦L then define ◦T for T ∈ T(S)2,• by

M(T )

shuffle

²²

◦T //M◦ ∂(T )

ML(ε(T ))
◦L

ε(T )

//M◦ ∂(ε(T )).

This just means that ◦T = ◦Ltn◦(1,...,1,tm,1,...,1), where T = tn ◦ tm. On the other hand, given ◦T -compositions
construct a full composition as follows. Note that ι(T ) for T ∈ L(S)2,•,• does not have to be in T(S)2,•.
Therefore define Ti to be the subtree of T with two vertices containing the inner edge ei ∈ inner(T ). Then
the full composition is given by

◦LT :M(T )
◦T1 //M(T/e1)

◦T2 // . . .
◦Te−n //M(T/{e1, . . . , en−1}) =M◦ ∂(T ).

This ◦L is well-defined since the ◦T -compositions are associative.

Lemma 4.1.2. Thus multicategories defined using the full composition are equivalent to multicategories
defined by ◦T -compositions.

This generalizes the observation that each operad gives rise to a pseudo-operad and each pseudo-operad
with unit an operad.

4.1.5 Multifunctors

Recall that a function f : S → S′ induces a functor T(f) : T(S) → T(S′). Using T(f) a functor f∗ :
[T(S′)1, E ]→ [T(S)1, E ] between collections can be constructed by

f∗ : M 7→M ◦ T(f).
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A symmetric multifunctor between symmetric multicategories M and N is a pair (FO, F ) consisting of
a function FO : Obj(M) → Obj(N ) and a natural transformation F : M =⇒ N ◦ T(FO) between the
collections respecting the composition and satisfying the unit axiom

I

1F (A)

²²

1A //M(A|A)

Fwwoooooooooooo

N (F (A)|F (A))

for all objects A in M. Note that F can be extended to a map from M to N ◦ T(FO) = N ◦ T(FO) again
denoted by F . Then the compatibility with the compositions can be expressed by the commutativity of the
following diagram

M(T )

FT

²²

◦M //M◦ ∂(T )

F◦∂(T )

²²
N ◦ T(FO)(T )

◦N ◦T(F O)

// N ◦ T(FO) ◦ ∂(T )

for all T ∈ T(S)2,• and the equivariance by

M(T )

M(φ)

²²

FT // N ◦ T(FO)(T )

N◦T(F O)(φ)

²²
M(T ′)

FT ′
// N ◦ T(FO)(T ′)

for any φ : T ′ → T .

Definition 4.1.7. An isomorphism between two multicategories M and N is a functor F such that FO is
a bijection and F a natural isomorphism on the collections respecting the compositions and the equivariance
condition.

4.1.6 Category of multicategories

All small symmetric multicategories and all symmetric multifunctors form the category MulticatS. The
small E-enriched multicategories together with the symmetric multifunctors form a subcategory denoted by
MulticatS(E). Note that for each multicategory the objects are fixed, hence the category MulticatS(E) is
fibred over Set, i.e.

MulticatS(E) =
∐

S∈Obj(Set)

MulticatS(E , S).

In the same way all small non-symmetric multicategories form a category with the non-symmetric multi-
functors

Multicat(E) =
∐

S∈Obj(Set)

Multicat(E , S).

4.1.7 Examples of multicategories

Categories and operads Note that a multicategory with one object is an operad and a multicategory
with only unitary operations is a category. A unitary associative algebra can be interpreted as a special
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operad or as a special category, hence it is a special multicategory as well. All these structures may be
arranged into the following diagram.

Cat

''OOOOOOOOOOOO

uAss

88rrrrrrrrrr

%%LLLLLLLLLL Multicats

Operads

77ooooooooooo

Permutation operad The operad S is defined by S(n) := Sn the permutation group of n elements, for
all n. The composition σ ◦ (σ1, . . . , σn) is defined by block permutations.

Initial multicategory Suppose E has an initial object, then there is an initial object I in Multicat(E , S),
the constant multicategory I induced by the tensor unit I of E . Explicitly, the collection is given by
I(A|A) := I, for all A ∈ S, and all the other Hom-objects are defined to be the initial object in E . The
composition is given by the isomorphism I ⊗E I ∼= I. The units I 1s−→ I(s, s) are given by the identity idI .

Free (symmetric) multicategory There are forgetful functors U : MulticatS(E , S) → Coll•S(E , S) and
U : Multicat(E , S)→ Coll•(E , S) sending a multicategory to its underlying collection. The free (symmetric)
multicategory in E over S is defined to be the left adjoint to the forgetful functor, i.e.

Coll•(E , S)
F //

Multicat(E , S)
U

oo and Coll•S(E , S)
F //

MulticatS(E , S).
U

oo

Intuitively F assigns to a collection over S a new collection consisting of trees whose edges are labeled by
S and the vertices are labeled by elements of the collection. For an explicit description consider a collection
M in E over S. It was shown that M extends to T(S). In order to extend M to D(S) it has to be specified
what M does with the degeneracies. Let s : T → T ′ be a degeneracy then define M(s) : M(T ′) → M(T )
with the help of the units ηs : I →M(s|s) to be

M(tn)⊗. . .⊗M(tm)∼=M(tn)⊗. . .⊗ I ⊗. . .⊗M(tm)
1⊗...⊗ηs⊗...⊗1

// M(tn, l)⊗ . . .⊗M(s|s)⊗ . . .⊗M(tm).

These degeneracies have been introduced in order to assure that the free multicategory satisfies the unit
axiom.

The free non-symmetric multicategory over a collection M ∈ Coll•(E , S) is given by a new collection

F(M)((tn, l)) :=
∐

(T,l′)∈T(S)
l′|outer(T )=l

M(T ),

and the compositions are defined in the following way. Let (T, l) ∈ T(S)2,•. Then there are trees (tn, ln) and
(tm, lm) such that T is obtained from grafting tm into tn. Since in a closed symmetric monoidal category
the tensor product preserves colimits it suffices to specify the composition on M ⊗M , i.e.

F(M)(T ) F(M)(tn)⊗F(M)(tm)
∃!◦T //_______ F(M)(∂T )

M(Tn)⊗M(Tm)
?Â

OO

M(Tn ◦ Tm),
?Â

OO
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whenever the inclusion makes sense.
Now let M ∈ Coll•S(E , S) be a symmetric collection. Define a functor λ : D(S) → Set → E by the

composition of the following maps. First send a tree (T, l) to the set of all bijections between {1, . . . , n} and
in(T ). Then take the copower (see A) over that set to obtain an object in E . An isomorphism φ : T → T ′

is mapped to the post composition of a bijection with φ|in(T ) and a degeneracy is mapped to the identity.
Define D((tn, l)) to be the full subcategory of D(S) consisting of the trees (T, l′) with n inputs for which

l′(in(T )) ∼= l(in(tn)) and l′(root(T )) = l(root(tn)). The collection for the free symmetric multicategory is
then given by the coend (see A)

F(M)((tn, l)) :=
∫ (T,l)∈D((tn,l))

M(T )⊗ λ(T ).

The composition is defined in the same way as for the free non-symmetric multicategory.

Multicategories in terms of generators and relations A right ideal I of a multicategoryM in E over
S is a collection I : T(S)op

1 → E such that I(tn, l) ½M(tn, l) for all (tn, l) ∈ T(S)1 satisfying

M(tn)⊗ I(tm)
◦tn◦tm−−−−→ I(tn ◦ tm)

for all (tn, l), (tm, l′) ∈ T1,•.
Similarly a left ideal is as a right ideal except it satisfies

I(tn)⊗M(tm)
◦tn◦tm−−−−→ I(tn ◦ tm)

for all (tn, l), (tm, l′) ∈ T1,•. An ideal is a left and a right ideal.
The quotientM/I of a multicategoryM by an ideal I is a collection M/I : T(S)op

1 → E defined by

M/I(tn) :=M(tn)/I(tn)

for all (tn, l) ∈ T(S)1. The composition of M induces a composition on M/I.
Definition 4.1.8. Let E be a collection in Coll(E , S) and R a collection such that R(tn, l) ⊂ F (E)(tn, l)
for all (tn, l) ∈ T(S)1. The multicategory generated by E with relations R is given by

F(E)/(R)

where (R) is the ideal generated by R.

Quadratic Multicategories Certain algebraic structures can be modeled by a multicategory in terms of
generators and relations that involve just the composition of two operations.

Definition 4.1.9. A quadratic data (E,R) consists of a collection E in Coll(E , S), such that E0 = 0,
and a collection R consisting of Rn ⊆ F(E)(2)(n) where F(E)(2) is the free multicategory with generators
E consisting of all possible compositions of two operations. The quadratic data is called binary if the only
non-zero object in E is E2.

Definition 4.1.10. Let (E,R) be a quadratic data. The multicategory F(E)/(R) is called quadratic and is
denoted by M(E,R).

Given a binary quadratic multicategory M the quadratic data can be extracted by E2 := M(2) and
R := Ker(π : F(E2)(3) ³M(3)).

Lemma 4.1.3. LetM(E2, R) be a binary quadratic multicategory and let Q be an arbitrary multicategory. A
morphism ρ :M(E2, R)→ N is completely determined by a morphism β : E2 → N (2) satisfying β(R) = 0.
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Proof. To simplify notation let M :=M(E2, R). Note that the fact thatM is binary quadratic implies that
it is of the form F(E2)/R. First it will be shown that β gives rise to a map between F(E2) and N . If this
map respects the relations R then it gives a morphism betweenM and N .

To show that β determines an operad morphism the adjunction

HomMulticat(E,S)(F(E),N ) ∼= HomColl(E,S)(E,U(N ))

will be used. Here E is a collection, but E is concentrated in degree two thus β : E2 → N (2) determines a
morphism ρ : E → N and therefore by the adjunction a morphism γ : F(E2)→ N .

It follows that if γ respects the relations R, i.e. γ(R) = 0, then γ is well-defined on M and therefore
provides an operad morphism γ :M→N .

Associative operad There is a symmetric and a non-symmetric operad, both denoted by Ass, whose
representations are associative algebras. The non-symmetric one is defined by the collection

Ass(n) :=k,

for all n ≥ 0. The collection for the symmetric one is given by:

Ass(0) :=k,
Ass(n) :=k[Sn],

for all n ≥ 1. It is also possible to set Ass(0) = 0 but then the unit of the algebra is lost. The identity and
the composition are in both cases given by the identity map on k and by block permutations respectively.

A different description of Ass is given by generators and relations. The quadratic data for the non-
symmetric version is given by E2 := k[µ] and En := 0 for all n 6= 2 and with the relation µ◦ (µ, 1)−µ◦ (1, µ).
For the symmetric one E is defined by the graded vector space concentrated in degree two with E2 = k[S2],
and relation 12 ◦ (12, 11)− 12 ◦ (11, 12). Note that both are binary quadratic operads.

Lie operad The Lie operad will be given in terms of generators and relations. The quadratic data for
Lie is given by the graded vector space E concentrated in degree zero with E2 = k[µ] and the relations are
given by

µ+ σ(12)µ

µ ◦ (µ, 1) + σ(123)µ ◦ (µ, 1) + σ(132)µ ◦ (µ, 1).

These relations describe anti-symmetry and the Jacobi relation. Also this operad is an example of a binary
quadratic operad.

Endomorphism multicategory There is an analog of the endomorphism operad for multicategories. Let
S be a set and ϕ : S → Obj(E) a function. The objects of Endϕ are the elements of S. The collection
Endϕ : T(S)op

1 → E is defined by

Endϕ((tn, l)) := HomE(ϕ ◦ l(e1)⊗E . . .⊗E ϕ ◦ l(en) | ϕ ◦ l(e)),
where in(tn) = {e1, . . . , en} and e is the root of tn. The composition is given by the obvious composition of
arrows.

If S is the singleton ∗ then it suffices to specify V := ϕ(∗) and one writes EndV ((tn, l)). In this way, the
endomorphism operad is obtained, where EndV (tn) = Homk(V ⊗n, V ).

In order to describe the endomorphism multicategory in a nicer way, define the functors XI,ϕ : T(S)op
1 →

Eop and XO,ϕ : T(S)op
1 → E by

XI,ϕ((tn, l)) :=ϕ ◦ l(e1)⊗E . . .⊗E ϕ ◦ l(en), (4.1)
XO,ϕ((tn, l)) :=ϕ ◦ l(e) (4.2)
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on the objects. On the arrows of T(S)1 they are defined to be XI,ϕ(φ)(X1⊗. . .⊗Xn) := Xφ−1(1)⊗. . .⊗Xφ−1(n)

and XO,ϕ(φ)(X) = idX . Then the endomorphism operad is given by the composition

Endϕ : T(S)op
1

∆ // T(S)op
1 × T(S)op

1

XI,ϕ×XO,ϕ // Eop × E Hom // E .
It follows that for some isomorphism φ, Endϕ(φ) is given by

Endϕ(φ) = Hom(XI,ϕ(φ)|XI,ϕ(φ)) = Hom(XI,ϕ(φ)|id).

4.1.8 Representations and algebras of a multicategory

The interest in multicategories comes from the fact that they encode algebraic information, i.e. represen-
tations of multicategories give rise to algebras and vice versa. The essence of a representation of an object
of some category is to chose another object in that category which is well-known and study the induced
dynamics of the original object in the well-known object. In case of multicategories, the well-known object
is the endomorphism multicategory.

Definition 4.1.11. A representation of a (symmetric) multicategory M over S in E is a (symmetric)
multifunctor ρ :M→ Endϕ, for some set ϕ : Obj(End)→ Obj(E).
Definition 4.1.12. Let M be a non-symmetric multicategory. An M-algebra is a family of morphisms
indexed by T(S)1, where for each (tn, l) there is a morphism given by

ρ(tn,l) :M((tn, l))⊗E XI,ϕ ◦ T(ρO)((tn, l))→ XO,ϕ ◦ T(ρO)((tn, l)),

with ρO : S → Obj(End) a function and χI,ϕ and χO,ϕ are defined in (4.1) and (4.2), respectively.
For a symmetric multicategory M an M-algebra is a family of morphisms

ρ(tn,l) :M((tn, l))⊗T(S)op
n,• XI,ϕ ◦ T(ρO)((tn, l))→ XO,ϕ ◦ T(ρO)((tn, l)).

Note that T(ρO)(tn, l) = (tn, ρO ◦ l). In case S is a singleton, i.e. an operad, and ρO : ∗ → {V } then the
maps ρtn become

ρtn :M(n)⊗Sn V
⊗n → V.

This is the definition of an algebra over an operad (see [25]).

Proposition 4.1.1. Let M be a (symmetric) multicategory. A representation of M is equivalent to an
M-algebra.

Proof. First consider the non-symmetric case. In a closed monoidal category the following adjunction holds:

−⊗E E :
//

⊥ HomE(E,−)oo

for all objects E in E , in particular for E := XI,ϕ((tn, ρO ◦ l)). Hence

HomE(M((tn, l))⊗ E,XO,ϕ((tn, l))) ∼= HomE(M((tn, l)),HomE(E,XO,ϕ((tn, l)))),

showing the equivalence of the two notions.
Now consider the symmetric case. Let ρ : M → Endϕ be a representation. Then ρ is a symmetric

multifunctor. By definition the maps ρ(tn,l) :M((tn, l))→ Hom(XI,ϕ((tn, ρO ◦ l)), XO,ϕ((tn, ρO ◦ l))) for all
(tn, l) ∈ T(S)1 are equivariant, i.e.

M((tn, φ ◦ l))
M(φ)

²²

ρ(tn,φ◦l) // Endϕ((tn, ρO ◦ φ ◦ l))
Endϕ(ρO◦φ)

²²
M((tn, l)) ρ(tn,l)

// Endϕ((tn, ρO ◦ l))
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for any isomorphism φ : (tn, l)→ (tn, φ ◦ l). By the adjunction any ρ(tn,l) corresponds to some

α(tn,l) :M((tn, l))⊗E XI,ϕ((tn, ρO ◦ l))→ XO,ϕ((tn, ρO ◦ l)).

The aim is to show that the maps α(tn,l) are equivariant. This is done by first applying the functor −⊗EXI,ϕ

to the above commutative diagram. Then apply the counit to the right side of the diagram to obtain the
commutative diagram

M((tn, l))⊗E XI,ϕ((tn, ρO ◦ φ ◦ l))
M(φ)⊗XI,ϕ(ρO◦φ)

²²

α(tn,φ◦l) // XO,ϕ((tn, ρO ◦ φ ◦ l))
id

M((tn, l))⊗E XI,ϕ((tn, ρO ◦ l)) α(tn,l)
// XO,ϕ((tn, ρO ◦ l)).

Hence the α(tn,l) for all (tn, l) ∈ T(S) are equivariant. Finally, by construction of the coend it follows that
the maps α(tn,l) for (tn, l) ∈ T(S)n,• factor through M⊗T(S)op

n,• XI,ϕ.
The other direction follows immediately from the adjunction too and clearly they are inverses to each

other. This shows the equivalence of the two notions for the symmetric case.

Note thatM⊗T(S)op
n,•XI,ϕ in the proof above reduces toM(n)⊗Sn

V ⊗n in the operad case with V := ϕ(∗).

4.1.9 Examples of representations

Lie algebras Given a representation for the Lie operad over V , i.e. ρ : Lie → EndV . The Lie operad
is binary quadratic therefore by (4.1.3) ρ is completely determined by ρ2 : Lie(2) → EndV (2). Remember
that Lie(2) = E2 = k[S2] · µ thus ρ2 is completely determined by where µ is mapped to. Define m := ρ2(µ).
The aim is to show that (V,m) is a Lie algebra. It has to be shown that m is antisymmetric and satisfies
the Jacobi identity. For the antisymmetry consider the following calculation.

0 = ρ2(0) = ρ2(µ+ σ(12)µ) = m+ σ(12)m

and for the Jacobi identity

0 = ρ2(0) =ρ2(µ ◦ (µ, 1) + σ(123)µ ◦ (µ, 1) + σ(132)µ ◦ (µ, 1))
=m ◦ (m, 1) + σ(123)m ◦ (m, 1) + σ(132)m ◦ (m, 1).

Thus m is a Lie bracket on V .

Associative algebras Note that associative algebras can be interpreted as a special category or as a
special operad. Both categories and operads can be obtained as representations, as will be seen shortly, it
follows that associative algebras can be obtained as representations as well.

Categories The multicategory whose representations are categories over a fixed set of objects S will now
be described. Denote this multicategory by CatS or simply by Cat if the set S is clear from the context
and there is no danger to confuse it with the category of small categories. The objects of CatS are S × S
and the n-ary operations are defined to be

Cat(·|(A,A)) :=∗, ∀A ∈ S
Cat((A,B)|(A,B)) :=∗, ∀(A,B) ∈ S × S

Cat((A1, A2), (A3, A4), . . . , (A2n−3, A2n−2), (A2n−1, A2n)|(A1, A2n)) :=

{
∗, ∀1 ≤ i ≤ n− 1, A2i = A2i+1,

∅, otherwise.
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Now define a representation ρ : Cat→ Endϕ by a function ϕ : (A,B) 7→ ϕ((A,B)) =: Hom(A,B) and

Cat(·|(A,A))→HomSet(I,Hom(A,A)) ρ(∗) =idA

Cat((A,B)|(A,B))→HomSet(Hom(A,B),Hom(A,B)) ρ(∗) =idHom(A,B)

Cat((A,B), (B,C)|(A,C))→HomSet(Hom(A,B)×Hom(B,C),Hom(A,C)) ρ(∗) =◦A,B,C

It has to be shown that a Cat-algebra (C, ◦) is indeed a category, i.e. the composition is associative and
respects the identity. The associativity follows from the diagram below

∗, (∗, ∗) //

ρACCD⊗ρABBC⊗ρCD

²²

∗

ρAB

²²

∗, (∗, ∗)oo

ρABBD⊗ρAB⊗ρBCCD

²²
◦A,C,D, (◦A,B,C , idC,D)

++XXXXXXXXXXXXXXXXXXXXXX
◦A,B,D, (idA,B , ◦B,C,D)

ssffffffffffffffffffffff

◦A,C,D ◦ (◦A,B,C , idC,D) = ◦A,B,D ◦ (idA,B , ◦B,C,D)

and the unit axiom from

∗, (∗, ∗)
ρABBB⊗ρB⊗ρAB

²²

// ∗
ρAB

²²

∗, (∗, ∗)oo

ρAAAB⊗ρAB⊗ρA

²²
◦A,B,B , (idB , idHom(A,B)) // idHom(A,B) ◦A,A,B , (idHom(A,B), idA).oo

The category of all small categories Cat is fibred over the category Set with fibers Cat(S) = [CatS ,End].

Operads The multicategory Operad, due to [3], will now be constructed whose representations are sym-
metric operads. The objects of Operad are the natural numbers including zero. The Hom-set Operad(n1, . . . , nk |
n) consist of equivalence classes of tuples (T, σ, τ), where T is a planar tree with k vertices and n inputs, a
bijection σ : {1, . . . , k} → vertices(T ) such that the number of inputs of the ith vertex is ni and a bijection
τ : {1, . . . , n} → in(T ). Two such tuples are equivalent if there exists a planar isomorphism compatible with
the bijections. Note that Operad(0 | 1) contains just the unit tree, i.e. the tree with one input and no
vertices. Finally set Operad(· | 1) := I. The idea behind this construction is, that the compositions of an
operad are indexed by trees, hence the planar trees. The σ is needed to be able to describe the symmetric
action on the collection Operad and the τ is used to describe the symmetry of the collection for the operad.

The unit I → Operad(n | n) is given by the equivalence class of the n-corolla with τ the increasing
ordering.

The composition is defined as follows. Let T ∈ T(N)2,• of the shape T = tn ◦ (1, . . . , 1, tm, 1, . . . , 1).
Then the composition ◦T : Operad(T ) → Operad ◦ ∂(T ) is defined by replacing the vertex in the tree of
the equivalence class [(tn, σn, τn)] corresponding to the inner edge of T by the tree of the equivalence class
[(tm, σm, τm)].

For the symmetry let π ∈ Sk. Then the map

π∗ : Operad(n1, . . . , nk | n)→ Operad(nπ(1), . . . , nπ(k) | n)

is given by [(T, σ, τ)] 7→ [(T, σ ◦ π, τ)].
So far this gives operads in Set. To obtain operads in an arbitrary monoidal category copowering can

be used, i.e. the collection is given by

Operad(n1, . . . , nk | n) :=
∐

[(T,σ,τ)]

I.
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Given a representation F : Operad → End it will be shown that indeed operads are obtained. First a
collection will be constructed. Define F : T(?)op

1 → Set by tn 7→ FO(n) and | 7→ I. The symmetry on this
collection is obtained from the fact that Operad(n | n) ∼= Sop

n . Hence the representation gives a map

Sop
n
∼= Operad(n | n)→ Hom(FO(n) | FO(n)).

By the Hom-tensor adjunction a map Sop
n ×FO(n)→ FO(n) is obtained giving the desired symmetric action.

For the composition consider a tree T ∈ T(?)2,• obtained from grafting an m-corolla on top of an n-
corolla. Then [(T, σ, τ)] ∈ Operad(n,m | n + m − 1), where σ sends σ(1) = tn and σ(2) = tm and τ the
increasing order in the planar representation. The composition is then defined to be cT := cF ([(T,σ,tau)]).
Note that F ([(T, σ, τ)] ∈ Hom(FO(n)× FO(m) | FO(n+m− 1)) = Hom(FO(T ) | FO ◦ ∂(T )).

The unit is determined by the single element [|] in Operad(· | 1) and it is given by F (∗) ∈ Hom(I |
FO(1)).

It remains to check the axioms. The unit axiom is derived from the functor property together with the
equality of the following diagram

Operad(1, n | n)×Operad(n | n)

composition

²²

∼ Operad(1, n | n)×Operad(− | 1)×Operad(n | n)

I
unit // Operad(n | n)

Operad(n, 1 | n)×Operad(n | n).

composition

OO

The associativity is derived as follows. Let T ∈ T(?)3,• be the tree obtained from grafting an m- and a
k-corolla on top of an n-corolla. Then the equality of the following diagram together with the functoriality
of F gives the associativity.

Operad(n, (m+ k − 1) | n+m+ k − 2)×Operad(m, k | m+ k − 1)

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Operad(n,m, k | n+m+ k − 2)

Operad((n+m− 1), k | n+m+ k − 2)×Operad(n,m | n+m− 1).

22dddddddddddddddddddddddddddddd

The compatibility of the symmetry with the composition is derived by the diagram:

Operad(n,m | n+m− 1)×Operad(n | n)×Operad(m | m)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYY

Operad(n,m | n+m− 1)

Operad(n,m | n+m− 1)×Operad(n | n)×Operad(m | m).

22eeeeeeeeeeeeeeeeeeeeeeeeeee

In words the diagram says that if nothing is permuted, i.e. if the τ ′s are all just increasing in the pla-
nar representation, then both sides are the same. If on the other hand the trees of Operad(n | n) and
Operad(m | m) are permuted and the tree Operad(n,m | n+m−1) is not, then a certain tree is obtained.
This same tree can be obtained by permuting the tree Operad(n,m | n+m−1) and the other tree have the
increasing order. This exactly means that the composition of the operad is compatible with the symmetric
action.
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Multicategories There is even a multicategory, MultS , which has as representations symmetric multi-
categories over a fixed set S. The objects of MultS are tuples (c1, . . . , ck|c) with ci, c ∈ S.

The collection is given by MultS((c1,1, . . . , c1,n1 |c1), . . . , (ck,1, . . . , ck,nk
|ck) | (c1, . . . , ck|c)) consisting of

the equivalence classes [(T, l, σ, τ)] as before with in addition a labeling l : edges(T ) → S and besides
the matching number of inputs of σ(i) now also the labels have to match. The remaining constructions
are done in exactly same way as for Operad. This construction generalizes Operad and Cat. Since
the objects of small multicategories form a set it follows that Multicat is fibred over Set with fibers
Multicat(S) := [Mult(S),End].

4.2 Deformation of Multicategories

The deformation theory of multicategories differs from a straightforward generalization of the deformation
theory of operads by the use of ◦T -operations. All notions needed for the deformation of multicategories,
like augmentations, equivalence and extensions of deformations, can be formulated with respect to the ◦T -
operations. The result is a deformation complex on which a differential graded Lie algebra structure can be
defined. Hence obstructions can be conveniently classified, solving the problem described in ??.

4.2.1 Augmentation

The underlying collection of a multicategory can be augmented the same way as the underlying module of
an algebra. Recall that there are functors

−⊗k R : Modk ←→ModR : −⊗R k.

Using these functors by post composition with a collection the following functors between collections are
obtained:

−⊗k R : Coll(Modk, S)←→ Coll(ModR, S) : −⊗R k.

More generally, given two collections, F and G, in Modk it is possible to define a new collection F ⊗ G :
T(S)op

1 →Modk by

(F ⊗G) ((tn, l)) :=F ((tn, l))⊗k G((tn, l)),
(F ⊗G) (σ) :=F (σ)⊗G(σ).

The previous augmentation can then be interpreted by tensoring with the constant collection R.

4.2.2 Deformation

Let R be a local Artinian ring with residual field k and maximal ideal m. A multicategory M in the
symmetric monoidal category Modk = (Modk,⊗k, k, τ) is called linear.

Definition 4.2.1. An R-deformation of M is a multicategory N in ModR such that there is a natural
isomorphism α : N ⊗R k →M.

Only multicategories over the collectionM⊗k R for some R will be considered rather than an arbitrary
multicategory N in ModR. In that case the canonical isomorphism

can : (M⊗k R)⊗R k ∼=M

can be used. A formal deformation is a k[[t]]-deformation and an n-deformation is a k[t]/(tn+1)-deformation.
Let R be an augmentation of k, i.e. the sequence

0→ m
ι−→ R

p−→ k → 0
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is short exact. Let N be an R-deformation of M. If the functor N ⊗R − is flat one obtains a short exact
sequence

0→ N ⊗R m
ι−→ N ⊗R R

p−→ N ⊗R k → 0.

Note that this is equivalent to the pullback diagram

Ker(p) ∼ N ⊗R m
_Â

²²

ι // N ⊗R R

p

²²

∼ N

0 // N ⊗R k
∼
α M.

If the functorM⊗k− is flat then an augmentation can be used to construct a deformation ofM by applying
that functor to the sequence. In that case one obtains the pullback diagram

Ker(p) ∼ M⊗k m
_Â

²²

ι //M⊗k R

p

²²
0 //M⊗k k

∼ M.

Consider the case for R = k[t]/(t2). Note that M⊗R − is flat and note that there is an obvious section
δ : M → M⊗k R defined by sending θ to θ ⊗ 1. Hence the sequence is split exact and one obtains the
diagram

Mt
_Â

²²

ι //M⊕Mt

p

²²
0 //M

where the composition ◦T on M⊕Mt for any T ∈ T(S)2,• is given by

◦T : (θ + θ1t⊗ γ + γ1t) 7→ (θ ◦T γ) + (θ ◦T γ1 + θ1 ◦T γ)t.
Note that (Mt)2 = 0, hence M⊕Mt is called the square-zero extensions of M.

Now consider formal deformations. By linearity a composition on the collection
⊕

k≥0Mtk is completely
determined by maps m : M⊗k M → ⊕

k≥0Mtk, which is equivalent to a family of compositions {mk :
M ⊗k M → M}k≥0. Since the composition should be associative and equivariant, there will be some
conditions on the family of compositions. These conditions are given by

mk(α⊗ 1) = 0, (left unit axiom)

mk(1⊗ α) = 0, (right unit axiom)

mk
i (σ1(α)⊗ σ2(β)) = (σ1 ◦i σ2)mk

σ(i)(α⊗ β), (equivariance)

0 =





∑

k+l=q

mk
i (ml

j(α⊗ β)⊗ γ)−mk
j+p−1(m

l
i(α⊗ γ)⊗ β), 1 ≤ i ≤ j − 1

∑

k+l=q

mk
i (ml

j(α⊗ β)⊗ γ)−mk
j (α⊗ml

i−j+1(β ⊗ γ)), j ≤ i ≤ j + n− 1

∑

k+l=q

mk
i (ml

j(α⊗ β)⊗ γ)−mk
j (ml

i−n+1(α⊗ γ)⊗ β), j + n ≤ i

(associativity)
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where σ1 ◦i σ2 is the block permutation (see 4.1.7) and mk
i is the kth composition in the family grafting the

given operations on the ith place. The associativity condition could have been given with the help of the
functor M. Note that the three cases of the associativity correspond to the three different ways of grafting
three corollas into each other.

Equivalence of deformations

Definition 4.2.2. Two R-deformations (N , α) and (N ′, α′) of M are equivalent if there is a natural iso-
morphism φ : N → N ′ such that the diagram

N ⊗R k

α
$$HH

HH
HH

HH
H

φ⊗Rk // N ⊗R k

α′zzvvv
vv

vv
vv

M
commutes.

This is equivalent to asking for the existence of an isomorphism φ in

0 // N ⊗R m

²²

ι // N ⊗R R

φ

²²

p // N ⊗R k

∼

// 0

0 // N ′ ⊗R m
ι′

// N ′ ⊗R R
p′

// N ′ ⊗R k // 0.

The following lemma is one of the main reasons to use local Artinian rings.

Lemma 4.2.1. Let R be a local Artinian ring with maximal ideal m. Then any R-linear multifunctor
φ : N → N ′ such that

N ⊗R k

α
$$HH

HH
HH

HH
H

φ⊗Rk // N ′ ⊗R k

α′zzuuuuuuuuu

M
is an equivalence of deformations.

In case of infinitesimal deformations it holds that two deformations are equivalent if φ in

0 //Mt

²²

ι //M⊕Mt

φ

²²

p //M // 0

0 //Mt
ι //M⊕Mt

p //M // 0

is an isomorphism. Using the canonical reductions, one finds that φ reduced to M is indeed the identity.
This is true for n-deformations and formal deformations as well. Thus an arrow φ has the form 1 + φ(t)

where (t) is the maximal ideal of the local Artinian algebra. It follows by the previous lemma that it suffices
to consider φ(t), since any such morphism induces an arrow φ and hence an equivalence of deformations.

Extensions and obstructions Extensions of deformations of multicategories can be defined too.

Definition 4.2.3. An extension of an n-deformation N to an (n + 1)-deformation is an k[t]/(tn+1)-
deformation N̂ such that N̂ ⊗k[t]/(tn+1) k[t]/(tn) ∼= N .
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Since the deformations are supposed to have a special shape an extension of an n-deformation to an
(n + 1)-deformation amounts to add a composition mn+1 to the family of the n-deformation such that a
similar condition as before is satisfied. The obstruction to a q-extension is then given by:

Oq(α⊗ β ⊗ γ) =





∑

k+l=q+1
k,l>0

mk
i (ml

j(α⊗ β)⊗ γ)−mk
j+p−1(m

l
i(α⊗ γ)⊗ β), 1 ≤ i ≤ j − 1

∑

k+l=q+1
k,l>0

mk
i (ml

j(α⊗ β)⊗ γ)−mk
j (α⊗ml

i−j+1(β ⊗ γ)), j ≤ i ≤ j + n− 1

∑

k+l=q+1
k,l>0

mk
i (ml

j(α⊗ β)⊗ γ)−mk
j (ml

i−n+1(α⊗ γ)⊗ β), j + n ≤ i.

4.2.3 Deformation Complex

The deformation complex of linear multicategories will be defined by first specifying the modules of the
cochain complex. Before defining the differential it will be shown that these modules carry a graded Lie-
algebra structure. The differential will then be defined with the help of the Lie bracket. Let M be a linear
multicategory. Then there is a functor M : T(Obj(M))op → Modk. Denote the restriction of M to the
category T(S)n,• byMn,•.

Define Cn(M,M) to be the end (see A) of the functor Homk(Mn,•,M1,• ◦ ∂), i.e.

Cn(M,M) :=
∫

T(S)op
n,•

Homk(Mn,•,M1,• ◦ ∂)

for all n ≥ 0. In other words Cn(M,M) consists of natural transformations m :Mn,• →M1,• ◦ ∂, i.e the
diagram

Mn,•(T )

Mn,•(φ)

²²

mT //M1,• ◦ ∂(T )

M1,•◦∂(φ)

²²
Mn,•(T

′)
mT ′

//M1,• ◦ ∂(T ′)

commutes for all T, T ′ and φ. Note that these modules are constructed such that the ◦T -operations of the
multicategory are elements in C2(M,M).

Graded Lie algebra structure on C•[1](M,M) Define an operation

f / g :Mn+m−1,• −→M1,• ◦ ∂
for f ∈ Cn(M,M) and g ∈ Cm(M,M) by

(f / g)T :=
∑

T ′⊂T
T ′∈T(S)m

(−1)ε(f /T ′ g),

where f /T ′ g is obtained as follows. First extend the map gT ′ :M(T ′)→M◦ ∂(T ′) to a map g′T :M(T )→
M(T/inner(T ′)) by defining g′T to act as the identity on the components of M(T ) that do not belong to
M(T ′). Then define f /T ′ g to be the composition

M(T ′)
gT ′ //M(T/inner(T ′))

f //M(T/inner(T )) =M◦ ∂(T ).
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To obtain ε, let b be the number of components inM(T ) before the first component ofM(T ′). Let s be the
number of transposition needed to obtain an uninterrupted sequence of components ofM(T ′) such that the
component corresponding to the root vertex of T ′ stays fixed and the order of the components is preserved.
Then ε := b|g| + s. Note that in the case of linear trees this exactly gives back the classical sign |g|(i − 1),
where the root vertex of the subtree T ′ appears at the ith place.

Proposition 4.2.1. The operation / defines a right pre-Lie algebra structure on C•[1](M,M).

Proof. It has to be shown that the operation / satisfies

(f / g) / h− f / (g / h) = (−1)|g||h| ((f / h) / g − f / (h / g)) .

For a subtree T ′ ⊆ T define the set BT (T ′) to consist of those vertices of T which are before the first
vertex of T ′ with respect to the evaluation order of M. For a subtree T ′ ⊆ T define lk(T ′) to be the set of
vertices appearing on top of the kth input of T ′ in T .

Each term of the equation above is a double sum. Suppose h is acting on the subtree T1 of T with n
vertices and g is on the subtree T2 of T with m vertices. If T1∪T2 is a subtree with (n+m−1) vertices then
g/h and h/g may act on it. In that case (f /T2 g)/T1h = f /T1∪T2 (g/T1h) and (f /T1h)/T2 g = f /T1∪T2 (h/T2 g).
If, on the other hand, T1 and T2 are disjoint, then (f /T2 g) /T1 h = (f /T1 h) /T2 g. Note that these two cases
take into account all terms of the double sums. It will be shown that the signs of the corresponding terms
are equal. To do this in each of the above cases two further subcases have to be distinguished.

Case Ia: Suppose T1 is on top of T2, i.e. the root vertex of T1 is also a vertex of T2. In other words:
T1 − root(T1) ⊂ lk(T2). The following profile illustrates howM(T ) is built up.

BT (T2)
T2,1

l2,1
T2,2

l2,3

. . .
l2,k−2

T2,k−1
l2,k−1

T2,k | T1,1
l1,1

. . .
EDBC

GF@A
l1,p−1

T1,p
l1,p

T2,k+1
l2,k+1

. . .
l2,q−1

T2,q
l2,q

. . .

Here Ti,j stands for the jth uninterrupted sequence of components of M(Ti) in M(T ) and li,j the
uninterrupted sequence of the components of lj(Ti). By definition T2,k contains the root of T1,1. First
b and then s will be calculated. Then

ε1h =(m− 1) (BT (T2) + (T2,1 + . . .+ T2,k−1 + (T2,k − 1)) + (l2,1 + . . .+ l2,k−1))︸ ︷︷ ︸
b

+

+ T1,2l1,1 + . . .+ T1,p(l1,1 + . . .+ l1,p−1)︸ ︷︷ ︸
s

,

ε1g =(n− 1) (BT (T2))+

+ T2,2l2,1 + . . .+ T2,k(l2,1 + . . .+ l2,k−1)+
+ T2,k+1((l2,1 + . . .+ l2,k−1) + (l1,1 + . . .+ l1,p))+
+ . . .+ T2,q((l2,1 + . . .+ l2,k−1) + (l1,1 + . . .+ l1,p) + (l2,k+1 + . . .+ l2,q−1)).
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On the other hand ε2g/h and ε2h are

ε2g/h =(m+ n− 2) (BT (T2))+

+ T2,2l2,1 + . . .+ T2,k−1(l2,1 + . . .+ l2,k−2 + (T2,k + T1,1)(l2,1 + . . .+ l2,k−1)+
+ T1,2((l2,1 + . . .+ l2,k−1) + l1,1)+
+ . . .+ T1,p((l2,1 + . . .+ l2,k−1) + (l1,1 + . . .+ l1,p−1)+
+ T2,k+1((l2,1 + . . .+ l2,k−1) + (l1,1 + . . .+ l1,p)+
+ . . .+ T2,q((l2,1 + . . .+ l2,k−1) + (l1,1 + . . .+ l1,p) + (l2,k+1 + . . .+ l2,q−1)),

ε2h =(n− 1) (T2,1 + . . .+ T2,k−1 + (T2,k − 1)) .

Comparing the terms it follows that (ε1h + ε1g)− (ε2g/h + ε2h) = 0 (mod2). Therefore the corresponding
terms cancel each other.

Case Ib: In this case the role of T1 and T2 are switched, i.e. T2 − root(T2) ⊂ lk(T1). The difference with
case Ia is, that this time the contraction of T1 has effect on T2. The profile ofM(T ) is:

BT (T1)
T1,1

l1,2
T1,2

l1,3

. . .
l1,k−2

T1,k−1
l1,k−1

T1,k | T2,1
l2,1

. . .
EDBC

GF@A
l2,q−1

T2,q
l2,q

T1,k+1
l1,k+1

. . .
l1,p−1

T1,p
l1,p

. . .

This time T1,k is defined to contain root(T2). Then ε1h and ε1g are given by

ε1h =(n− 1) (BT (T1))+
+ T1,2l1,1 + . . .+ T1,k(l1,1 + . . .+ l1,k−1)+
+ T1,k+1 ((l1,1 + . . .+ l1,k−1) + (l2,1 + . . .+ l2,q) + (T2,1 + . . .+ T2,q)) +
+ T1,k+2 ((l1,1 + . . .+ l1,k−1) + (l2,1 + . . .+ l2,q) + (T2,1 + . . .+ T2,q) + l1,k+1) +
+ . . .+ T1,p ((l1,1 + . . .+ l1,k−1) + (l2,1 + . . .+ l2,q) + (T2,1 + . . .+ T2,q) + (l1,k+1 + . . .+ l1,p−1)) ,

ε1g =(m− 1) (BT (T1))+

+ T2,1 ((l1,1 + . . .+ l1,k−1))+
+ T2,2 ((l1,1 + . . .+ l1,k−1) + l2,1)+
+ . . .+ T2,q ((l1,1 + . . .+ l1,k−1) + (l2,1 + . . .+ l2,q−1)) .

On the other hand:

ε2g/h =(m+ n− 2) (BT (T2)) +

+ T1,2l1,1 + . . .+ T1,k−1(l1,1 + . . .+ l1,k−2) + (T1,k + T2,1)(l1,1 + . . .+ l1,k−1)+
+ T2,2 ((l1,1 + . . .+ l1,k−1) + l2,1) +
+ . . .+ T2,q ((l1,1 + . . .+ l1,k−1) + (l2,1 + . . .+ l2,q−1))+
+ T1,k+1 ((l1,1 + . . .+ l1,k−1) + (l2,1 + . . .+ l2,q−1) + l2,q) +
+ . . .+ T1,p ((l1,1 + . . .+ l1,k−1) + (l2,1 + . . .+ l2,q−1) + l2,q + (l1,k+1 + . . .+ l1,p−1)) ,

ε2h =(n− 1) (0) +
+ T1,k+1 (T2,1 + . . .+ T2,q)+
+ . . .+ T1,p (T2,1 + . . .+ T2,q) .
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Note that T2,1 + . . .+T2,q = T2 = m. Matching the terms one finds again that (ε1h +ε1g)− (ε2g/h +ε2h) =
0 (mod2).

Case IIa: Suppose that T1 and T2 are disjoint and suppose that T1 appears completely before T2 inM(T ).
In other words: T1 ⊆ BT (T2). Then the profile looks like

BT (T1)
T1,1

l1,2
T1,2

l1,3

. . .
l1,p−1

T1,p
l1,p+S

. . .
EDBC

GF@A
l1,p+S

T2,1
l2,1

T2,2
l2,2

. . .
l2,q−1

T2,q
l2,q

. . .

where S is some fixed set of vertices between l1,p and T2,1. Then

ε1h =(n− 1) (BT (T1))+
+ T1,2l1,1 + . . .+ T1,p ((l1,1 + . . .+ l1,k−1) + (l1,k+1 + . . .+ l1,p−1)) ,

ε1g =(m− 1) (BT (T1) + 1 + (l1,1 + . . .+ l1,p) + S)+

+ T2,2l2,1 + . . .+ T2,q(l2,1 + . . .+ l2,q−1),

and

ε2g =(m− 1) (BT (T1) + (T1,1 + . . .+ T1,p) + (l1,1 + . . .+ l1,p) + S)+

+ T2,2l2,1 + . . .+ T2,q(l2,1 + . . .+ l2,q−1),

ε2h =(n− 1) (BT (T1))+
+ T1,2l1,1 + . . .+ T1,p ((l1,1 + . . .+ l1,k−1) + (l1,k+1 + . . .+ l1,p−1)) .

The aim is to show that (ε1h + ε1g) = (ε2h + ε2g) + (m − 1)(n − 1). Note that ε1h = ε2h. Subtracting the
second sum of the first gives:

(ε1h + ε1g)− (ε2h + ε2g) + (m− 1)(n− 1) =ε1g − ε2g − (m− 1)(n− 1)

=(m− 1)− (m− 1)(T1,1 + . . .+ T1,p)− (m− 1)(n− 1)
=(m− 1)(1− n− (n− 1))
=0 (mod2).

Case IIb: T1 and T2 are again disjoint, but this time T1 appears on top of the kth input of T2 for some k,
i.e. T1 ⊂ lk(T2). The profile is then:

BT (T2)
T2,1

l2,1
T2,2

l2,2

. . .
l2,k−1

T2,k
S

. . .
EDBC

GF@A
S

T1,1
l1,1

T1,2
l1,2

. . .
l1,p−1

T1,p
l1,p

. . .
EDBC

GF@A
l2,k+1

T2,k+1
l2,k+2

. . .
l2,q−1

T2,q . . .
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for some fixed set S. Then

ε1h =(n− 1) (BT (T2) + (T2,1 + . . .+ T2,k) + (l2,1 + . . .+ l2,k−1) + S)+
+ T1,2l1,1 + . . .+ T1,p ((l1,1 + . . .+ l1,k−1) + (l1,k+1 + . . .+ l1,p−1)) ,

ε1g =(m− 1) (BT (T2))+

+ T2,2l2,1 + . . .+ T2,k(l2,1 + . . .+ l2,k−1)+
+ T2,k+1 ((l2,1 + . . .+ l2,k−1) + (l1,1 + . . .+ l1,p) + S + 1)+
+ . . .+ T2,q ((l2,1 + . . .+ l2,k−1) + (l1,1 + . . .+ l1,p) + S + 1 + (l2,k+1 + . . .+ l2,q−1)) ,

and

ε2g =ε1g+

+ T2,k+1(T1,1 + . . .+ T1,p) + . . .+ T2,q(T1,1 + . . .+ T1,p).

ε2h =(n− 1) (BT (T2) + 1 + (l2,1 + . . .+ l2,k−1) + S) +
+ T1,2l1,1 + . . .+ T1,p ((l1,1 + . . .+ l1,k−1) + (l1,k+1 + . . .+ l1,p−1)) .

It follows that (ε1h + ε1g) = (ε2h + ε2g) + (m− 1)(n− 1).

This completes the proof.

Hence the bracket

[ϕ, γ] := ϕ / γ − (−1)|ϕ||γ|γ / ϕ

defines a graded Lie algebra structure on C•[1](M,M).

Differential graded Lie algebra structure on C•[1](M,M) There is a special element in C1[1](M,M)
namely the composition ◦ ofM. Define the differential d : Cn[1](M,M)→ Cn+1[1](M,M) to be

d(ϕ) := [◦, ϕ].

Together with this differential C•[1](M,M) forms a complex and furthermore a differential graded Lie
algebra.

Consider the case for n = 0, and let ϕ ∈ C0(M,M). Then ϕ(|,l) : M((|, l)) → M ◦ ∂((|, l)) is a map
I →M(A | A), where A := l(|). Therefore

C0(M,M) ∼=
∐

A∈Obj(M)

M(A | A).

The differential d(ϕ) is given by

d(ϕ)T = [◦, ϕ]T =
∐

T ′⊆T
T ′∈T(S)0,•

(−1)ε ◦ /T ′ϕ+
∐

T ′⊆T
T ′∈T(S)2,•

(−1)ε′ϕ /T ′ ◦ =
∐

T ′⊆T
T ′∈T(S)0,•

(−1)ε ◦ /T ′ϕ

for all T ∈ T(S)1,•. Thus d(ϕ)T (θ) is obtained by the sum of all possible compositions of ϕ with θ.
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Examples Let T := t2(BC|A)◦1 t2(DE|B)◦1 t2(FG|E)◦2 t3(HIJ |C) ∈ T(S)4,6 and let θ1⊗ θ2⊗ θ3⊗ θ4 ∈
M(T ) =M(BC|A)⊗M(DE|B)⊗M(FG|E)⊗M(HIJ |C). Then

d(ϕ)(θ1 ⊗ θ2 ⊗ θ3 ⊗ θ4) =(−1)0+0ϕ(θ1 ⊗ θ2 ⊗ θ4) ◦ θ3+
+ (−1)0+1ϕ(θ1 ⊗ θ2 ⊗ θ3) ◦ θ4−
− (−1)0+0ϕ((θ1 ◦ θ2)⊗ θ3 ⊗ θ4)−
− (−1)|◦|1+0ϕ(θ1 ⊗ (θ2 ◦ θ3)⊗ θ4)−
− (−1)0+2ϕ((θ1 ◦ θ4)⊗ θ2 ⊗ θ3).

Note that the leading minus sign of the last three terms comes from d(ϕ) = [◦, ϕ] = ◦ / ϕ− (−1)1·2ϕ / ◦.

Consider now an example where T is linear. Let T := t1(A|B)◦1 t1(B|C)◦1 t1(C|D) and θ1⊗θ2⊗θ3 ∈M(T ).
Let ϕ ∈ C2(M,M).

d(ϕ)(θ1 ⊗ θ2 ⊗ θ3) =(−1)|ϕ|1+0θ1 ◦ ϕ(θ2 ⊗ θ3) + ϕ((θ1 ◦ θ2)⊗ θ3)+
+ (−1)|◦|1+0ϕ(θ1 ⊗ (θ2 ◦ θ3)) + ϕ(θ1 ⊗ θ2) ◦ θ3.

In this case the ordinary Hochschild differential is obtained.

Finally consider the example where ϕ ∈ C0(M,M). Let (t3, l) such that M((t3, l)) = M(A,B,C|D).
The subtrees of (t3, l) with zero vertices are |A, |B, |C and |D, where the edges have been decorated by the
label. Then

(−1)ε1(◦ /|A ϕ) :M(A,B,C|D) ∼=M(A,B,C|D)⊗ I 1⊗ϕ−−−→M(A,B,C|D)⊗M(A|A) ◦−→M(A,B,C|D)

(−1)1(−1)+0(◦ /|A ϕ) =− f ◦1 ϕ(1).

(−1)ε2(◦ /|B ϕ) :M(A,B,C|D) ∼=M(A,B,C|D)⊗ I 1⊗ϕ−−−→M(A,B,C|D)⊗M(B|B) ◦−→M(A,B,C|D)

(−1)1(−1)+0(◦ /|B ϕ) =− f ◦2 ϕ(1).

(−1)ε3(◦ /|C ϕ) :M(A,B,C|D) ∼=M(A,B,C|D)⊗ I 1⊗ϕ−−−→M(A,B,C|D)⊗M(C|C) ◦−→M(A,B,C|D)

(−1)1(−1)+0(◦ /|C ϕ) =− f ◦3 ϕ(1).

(−1)ε4(◦ /|D ϕ) :M(A,B,C|D) ∼=I ⊗M(A,B,C|D)
ϕ⊗1−−−→M(D|D)⊗M(A,B,C|D) ◦−→M(A,B,C|D)

(−1)0+0(◦ /|D ϕ) =ϕ(1) ◦1 f.

Therefore the differential is given by

d(ϕ)(t3,l)(f) = ϕ(1) ◦1 f − f ◦1 ϕ(1)− f ◦2 ϕ(1)− f ◦3 ϕ(1).

In the algebra case this just means d(ϕ)(θ) = ϕ◦θ−θ◦ϕ and for operads d(ϕ)(θ) = ϕ◦θ−θ◦1ϕ− . . .−θ◦nϕ
if the arity of θ is n.

Normalized Complex As noticed in 4.2.2, the unit axiom forces ϕ to be zero. In order to ensure this
property for categories and associative algebras it was shown that the normalized cochain complex was a de-
formation retraction. In the proof the notion of an i-cochain was used, so the question is what the equivalent
statement is for general trees and not just linear ones. The definition that as soon as one of the first i vertices,
with respect to the order imposed byM, is an identity the image should be zero turns out to be too naive.
Everything works fine, except for the case that the identity appears at an input vertex. In that case the sign
will depend on the number of vertices under and left of the identity which depends on the shape of the tree
and one can easily construct a counter example. Hence another way to normalize the complex has to be found.
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The dual Dold-Kan correspondence (see [32]) states that there is an equivalence of categories between
Ch+(A) and [∆,A] where A is any abelian category. The equivalence is given by the Moore complex
functor N and an inverse K. These two functors will be described below.

Consider the functor N : [∆,A] → Ch+(A). For a cosimplicial object A then the cochain complex
(N(A)•, ∂) is defined as follows. The modules N(A)n are given by

N(A)n := An
/
(‘n

i=1 di(An−1))
∼=

n−1⋂

i=0

Ker(si)

and the differentials by

∂ :=
n∑

i=0

(−1)idi.

An inverse to N is given by K : Ch+(A) → [∆,A] sending a cochain complex C• to the cosimplicial
object K(C•) : ∆→ A. The object K(C•)n of n-cosimplices is defined to be

K(C•)n :=
n∐

p=0

(
n

p

)
Cp.

Note that
(
n
p

)
is the number of epimorphisms from [n] to [p] in ∆. Let α : [m]→ [n] be an arrow in ∆. The

map K(α) will now be described by specifying which components Cp and Cq in K(C•)m and K(C•)n will be
identified, respectively. Suppose Cp corresponds to the epimorphism η : [m] → [p] and Cq to η′ : [n] → [q].
Consider the diagram

[m]

η

²²

α // [n]

η′

²²
[p]

ε
//___ [q].

If ε = id[q] makes the diagram commute then Cp is identified with Cq by the identity map. If ε = δq with

q = p + 1 makes the diagram commute then Cp and Cq are identified by Cp d−→ Cp+1 = Cq. In all other
cases there is no identification.

The coface and codegeneracy maps can be derived from the general case by di := K(δi) and si := K(σi).
The cosimplicial algebra K(C•) may be depicted as

C0
//
//
C0 ⊕ C1oo

//
//
//

C0 ⊕ C1 ⊕ C1 ⊕ C2
oo
oo

//
//
//
//
. . .

where the first five face and three degeneracy maps are:

d0(x) =x+ 0 d0(x+ y) =x+ 0 + y + 0
d1(x) =x+ d(x) d1(x+ y) =x+ y + y + 0

s0(x+ y) =x d2(x+ y) =x+ y + d(x) + d(y)
s0(x+ y + z + w) =x+ z

s1(x+ y + z + w) =x+ y.

Since C•(M,M) is a cochain complex and Modk is abelian, N ◦K(C•(M,M)) is naturally isomorphic
to C•(M,M). It follows that N ◦K(C•(M,M)) inherits a dg-Lie algebra structure. So the deformation
complex of M with values in itself is defined to be N ◦K(C•(M,M)).
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Cohomology of multicategories The cohomology of multicategories is defined to be the cohomology of
the cochain complex (C•(M,M), d), i.e.

Hn(M,M) := Hn(C•(M,M), d).

Note that in cohomology the normalized and non-normalized deformation complex can not be distinguished
therefore it is sufficient to consider the non-normalized one.

4.2.4 Classification

Derivations Let δ ∈ C1(M,M) be a cocycle, i.e. for all T = T1 ◦e T2 ∈ T2,• it holds that

0 = d(δ)(θ1 ⊗ θ2) = θ1 ◦T/e δT2(θ2)− δT/e(θ1 ◦T θ2) + δT1(θ1) ◦T/e θ2,

where e is the inner edge of T . In case of linear trees with a singleton set, i.e. in the associative case, this
exactly defines a derivation of δ. On the other hand note that d(φ) gives rise to an inner derivation, where
φ ∈ C0(M,M). It follows that H1(M,M) consists of the outer derivations.

Infinitesimal Deformations Let M be a linear multicategory with composition ◦. By construction it
holds that if ϕ ∈ C2(M,M) is a cocycle then the sum ◦+ϕt defines a multicategory structure on the extended
collection M⊗k k[t]/(t2). On the other hand, let (Mt,mt) and (Mt,m

′
t) be two equivalent deformations

ofM with equivalence φt. The compatibility with the composition means that the following equation must
hold: m′

t ◦ (φt ⊗ φt) = φt ◦mt. By substituting φt with 1 + φ1t, mt with m0 +m1t and m′
t with m0 +m′

1t,
it follows that m′

1 and m1 differ by d(φ1). This shows that equivalent infinitesimal deformations differ by a
coboundary. Therefore

Theorem 4.2.1. H2(M,M) classifies all infinitesimal deformations up to equivalence.

Obstructions Using the differential graded Lie algebra structure on C•[1](M,M) the obstructions are
given by

Oq =
1
2

∑

k+l=q+1
k,l>0

[mk,ml]

for all mk,ml ∈ C1[1](M,M). It follows from 1.5.1 that Oq is a cocycle, hence [Oq] ∈ H3(M,M).

4.3 Examples of deformations of multicategories

4.3.1 Associative algebras

It will be shown that in the case of a unital associative algebra the complex defined for multicategories
reduces to the Hochschild complex. Let (A,m, u) be a unital associative algebra over k. The collection
A : T(∗)1,• →Modk of A is given by A(t1) := A and all the other Hom-sets are 0. The composition is given
by the multiplication m. Then

Cn(A,A) =
∫

T(∗)n,1

Homk(An,1, A1,1 ◦ ∂)

=
∫

T(∗)n,1

Homk(A⊗n, A) (A(t1 ◦ . . . ◦ t1) = A⊗ . . .⊗A)

=Homk(A⊗n, A) (the symmetric action is trivial)
=Cn

Hoch(A,A).

The differential reduces to the Hochschild differential, therefore the deformation complex coincides with the
Hochschild complex.
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4.3.2 Categories

A category is also a special case of a multicategory: the underlying collection is trivial for all trees with k 6= 1
inputs. The symmetric action is trivial, therefore the end vanishes and the natural transformation reduces
to a family of maps between the objects indexed by all trees with n vertices and one input. The differential
coincides with the Hochschild differential for categories, therefore the complexes are equal.

The deformation complex of categories is also related to a particular case of the Baues-Wirsching com-
plex, defined as follows. First the notion of a natural system has to be introduced. Define the category
of fractions FC to have all arrows of C as objects and arrows are pairs (α, β) of arrows in C such that the
diagram

B
α // B

A

f

OO

β
// A′

g

OO

commutes in C. A natural system is then a functor D : FC → Ab. An example of such a natural system
is the composite FC π−→ Cop × C Homk−−−−→ Ab, where the first functor is given by f 7→ (dom(f), cod(f)) and
(α, β) 7→ (β, α). Note that here the linearity of the category has been used in order to land in Ab instead
of Set. The complex is then defined to be

C0
BW (C, D) :=

∐

A∈C0
DidA

Cn
BW (C, D) :={ϕ ∈ Homk(NCn,

∐

g∈C1
Dg) | ϕ(θ1 ⊗ . . .⊗ θn) ∈ Dθ1◦...◦θn}

and the differential is given by

d(ϕ)(θ1) :=D(θ1, 1)(ϕ(dom(f)))−D(1, θ1)(ϕ(cod(f)))
d(ϕ)(θ1 ⊗ . . .⊗ θn) :=D(θ1, 1)ϕ(θ2 ⊗ . . .⊗ θn)+

+
n−1∑

i=1

(−1)iϕ(θ1 ⊗ . . .⊗ (θi ◦ θi+1)⊗ . . .⊗ θn)+

+ (−1)nD(1, θn)ϕ(θ1 ⊗ . . .⊗ θn−1).

Now fix the natural system given in the example and denote by S the objects of C. Let ϕ ∈ Cn(C, C), then
there are morphisms ϕT : C(T )→ C(T/inner(T )). Note that

NCn =
∐

T∈T(S)n,1

C(T ) and NC1 =
∐

T∈T(S)1,•

C ◦ ∂.

Further, for the given natural system it holds that
∐

g∈C1(Homk ◦ π)g = NC1. Let θ1 ⊗ . . .⊗ θn ∈ C(T ), i.e.
θ1 ⊗ . . .⊗ θn is a sequence of composable arrows. Note that ϕT (θ1 ⊗ . . .⊗ θn) ∈ C(T/inner(T )), showing that
ϕT (θ1 ⊗ . . .⊗ θn) ∈ Dtheta1◦...◦θn ↪→

∐
g∈C1 Dg. Then it holds that

∐

T∈T(S)n,1

C(T ) ∃! //______
∐

T∈T(S)1,1

C(T )

C(T )
OO

OO

ϕT

// C(T/inner(T ))
OO

OO
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for all T ∈ T(S)n,1. Therefore ϕ ∈ Cn
BW (C,Homk ◦ π).

On the other hand, let ϕ ∈ Cn
BW (C,Homk ◦π). It follows that ϕ : NCn → NC1. Let θ1⊗ . . .⊗ θn ∈ NCn,

then θ1 ⊗ . . . ⊗ θn ∈ C(T ) for some T ∈ T(S)n,•. Define ϕT := ϕ|C(T ). Then ϕ defines a multifunctor from
Cn to C ◦ ∂, since there is just a trivial symmetric action. Therefore Cn(C, C) and Cn

BW (C,Homk ◦ π) are
equal. This suggests to generalize natural systems to multicategories, but it is not clear what that should
be if it makes sense at all.

4.4 Deformations of Multifunctors

Let F :M→M′ be a multifunctor.

Definition 4.4.1. A deformation of F is a multifunctor G : N → N ′ between deformations N and N ′ of
M and M′, respectively, such that the diagram

N ⊗R k

α ∼=
²²

G⊗Rk // N ′ ⊗R k

α′∼=
²²

M
F

//M′

commutes.

A functor G between formal deformations ofM andM′ can be written as
∑

k≥0Gkt
k. Since the reduction

is given by evaluation t in zero, it follows that G0 = F .
An equivalence between two deformations is defined as follows.

Definition 4.4.2. Let G : N → N ′ and H : P → P ′ be two deformations of F :M→M′. G and H are
equivalent if there exist two isomorphisms φ : N → P and φ′ : N ′ → P ′ such that the diagrams

N

φ

²²

G // N ′

φ′

²²
P

H
// P ′

and N ⊗R k

α
∼= $$JJJJJJJJJ

φ⊗Rk

²²

G⊗Rk // N ′ ⊗R k

α′

∼=yysssssssss

φ′⊗Rk

²²

M F //M′

P ⊗R k

β

∼=
::ttttttttt

H⊗Rk
// P ′ ⊗R k

β′

∼=
eeKKKKKKKKK

commute.

Denote the respective compositions of M⊗k k[[t]] and M′ ⊗k k[[t]] by
∑

i≥0 αit
i and

∑
j≥0 βjt

j . Then∑
k≥0 Fkt

k is a multifunctor between the formal deformations if and only if the Fk’s satisfy the following
conditions:

Fk(id) = 0, (unit axiom)
∑

i+j=q
i,j≥0

Fi ◦ αj −
∑

p+l+r=q
k,l,r≥0

βr ◦ (Fp ⊗ Fl) = 0, (compatibility with the compositions)

for all q ≥ 0 and all k ≥ 1.

4.4.1 Modules

In order to define the deformation complex, modules over a multicategory have to be introduced.
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Definition 4.4.3. A left M-module is a collection N together with maps

mtn◦tm : N(tn)⊗M(tm)→ N ◦ ∂(tn ◦ tm),

for all tn ◦ tm ∈ T(S)2,• satisfying an obvious associativity law.
A right M-module is a collection N together with maps

mtn◦tm :M(tn)⊗N(tm)→ N ◦ ∂(tn ◦ tm),

for all tn ◦ tm ∈ T(S)2,• again satisfying an associativity law.
An (M,M)-bimodule N is a left and right M-module.

An example of a module which will play an important role in the following construction is as follows.
Let F : M → N be a multifunctor. Then F gives rise to an (M,M)-bimodule structure on N by the
composition

◦FT : N (tn)⊗M(tm) 1⊗F−−−→ N (tn)⊗N (tm)
◦NT−−→ N ◦ ∂(T ),

◦FT :M(tn)⊗N (tm) F⊗1−−−→ N (tn)⊗N (tm)
◦NT−−→ N ◦ ∂(T ).

The deformation complex of a multicategoryM may be generalized to take values in an arbitrary (M,M)-
bimodule N by

Cn(M, N) :=
∫

T(S)op
n,•

Homk(Mn,•, N ◦ ∂)

with differential d(ϕ) := m / ϕ− (−1)|m||ϕ|ϕ / ◦M.
Given a multifunctor F : M → N between two multicategories. Then by the previous example N is

endowed with an (M,M)-bimodule structure. The differential of Cn(M,N ) is denoted by

dF (ϕ) = ◦FN / ϕ− (−1)|ϕ|ϕ / ◦M.

Remark 4.4.1. Note that there is no Lie algebra structure on C•(M, N).

4.4.2 Deformation complex

Consider the equation
∑

i+j=q
i,j≥0

Fi ◦ αj −
∑

p+l+r=q
k,l,r≥0

βr ◦ (Fp ⊗ Fl) = 0

for q = 1, i.e.

F ◦ α1 + (F1 ◦ α− β ◦ (F ⊗ F1)− β ◦ (F1 ⊗ F ))− β1 ◦ (F ⊗ F ) = F ◦ α1 − β1 ◦ (F ⊗ F )− dF (F1).

This motivates the following definition. The deformation complex of a functor F :M→M′ is defined to be

Cn(F ) := Cn(M,M)× Cn(N ,N )× Cn−1(M,N ),

for n ≥ 1 and the differential

d(α, β, ϕ) :=
(
d(α), d(β), F ◦ α− β ◦ F⊗n − dF (ϕ)

)
.

The set Cn(F ) is endowed with a k-module structure by pointwise addition and multiplication. The module
C0(F ) is defined to be trivial, i.e. C0(F ) := 0. Note that this complex is normalized if each of the constituting
chains is. The cohomology of F is then the cohomology of the deformation complex.
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4.4.3 Classification

First cohomology group The first cohomology group is the quotient of the kernel by the image of the
following maps.

0 0−→ C1(F ) d−→ C2(F ).

Thus H1(F ) = Ker(d). Let α⊗ β ⊗ γ ∈ C1(F ). Then

(0, 0, 0) = d(α, β, γ) = (d(α), d(β), F ◦ α− β ◦ F − dF (ϕ)) .

This shows that α and β have to be cocycles. If both α and β are 0 then it follows that γ is a cocycle in
C•(M,M′).

Infinitesimal deformations The motivation for the complex comes from the following. Let Ft :Mt →
M′

t be an infinitesimal deformation of F :M→M′. Then it holds that for some T ∈ T(S)2,n+m−1, where
T = tn ◦ tm, the diagram

(M(tn)⊕M(tn)t)⊗ (M(tm)⊕M(tm)t)

Ftn+F 1
tn

t⊗Ftm+F 1
tm

t

²²

◦M
T +α1

T t //M(∂(T ))⊕M(∂(T ))t

F∂(T )+F 1
∂(T )t

²²
(M′(tn)⊕M′(tn)t)⊗ (M′(tm)⊕M′(tm)t)

◦N
T +β1

T t

//M′(∂(T ))⊕M′(∂(T ))t

commutes. Take care not to confuse the formal parameter t with a tree. This shows that

◦NT ◦ (Ftn ⊗ Ftm) =F∂(T ) ◦ ◦MT
◦NT ◦ (F 1

tn
⊗ Ftm) + ◦NT ◦ (Ftn ⊗ F 1

tm
) + β1

T ◦ (Ftn ⊗ Ftm) =F 1
∂(T ) ◦ ◦MT + F∂(T ) ◦ α1

T .

The first equation is satisfied since F is a multifunctor and the second equation is exactly d(α1 ⊗ β1 ⊗ F 1).
Therefore:

Lemma 4.4.1. Cocycles in C2(F ) correspond to deformations of the source and target category and defor-
mations of multifunctors.

On the other hand:

Lemma 4.4.2. Equivalent infinitesimal deformations differ by a coboundary.

Proof. Suppose G and H are equivalent infinitesimal deformations of F . Then the diagram

M(T )⊕M(T )t

1T +ϕ1
T t

²²

FT +G1
T t //M′(T )⊕M′(T )t

1T +φ1
T t

²²
M(T )⊕M(T )t

FT +H1
T t

//M′(T )⊕M′(T )t

commutes. Thus

H1
T ◦ 1T + FT ◦ ϕ1

T = φ1
T ◦ FT + 1T ◦G1

T .

This shows that (0, 0,H1) = (0, 0, G1) + d(ϕ1, φ1, 0), which gives the desired result.

Note that in the last step it has been used that C•(F ) is a product of the constituent cochains rather
than a tensor product. It follows that:

Theorem 4.4.1. Infinitesimal deformations of F are classified by H2(F ).
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Extensions Let Ft be an n-deformation of F , i.e. Ft :
⊕n

k=0Mtk →⊕n
k=0M′tk. Given a functor Fn+1,

F +
∑n

k=1 F
ktk +Fn+1tn+1 is an (n+1)-deformation of F if and only if the following conditions are satisfied:

F k ◦ φ =φ ◦ F k, (equivariance)

F k(1) =0, (unit axiom)
∑

i+j1+j2=n+1
i,j1,j2≥0

βi ◦ (F j1 ⊗ F j2)− F (j1+j2) ◦ αi =0, (associativity)

for all k ≥ 0. Suppose that either i, j1 or j2 is equal to (n+ 1), then

−F ◦ αn+1 + βn+1 ◦ (F ⊗ F ) + β ◦ (Fn+1 ⊗ F ) + β ◦ (F ⊗ Fn+1)− Fn+1 ◦ α = d(αn+1, βn+1, Fn+1).

Define the nth obstruction to be

On :=
∑

i+j1+j2=n+1
i,j1,j2>0

βi ◦ (F j1 ⊗ F j2)− F (j1+j2) ◦ αi+

+
∑

i+j1+j2=n+1
i=0,j1,j2≥0

β ◦ (F j1 ⊗ F j2)− F (j1+j2) ◦ α+

+
∑

i+j1+j2=n+1
j1=0,i,j2≥0

βi ◦ (F ⊗ F j2)− F j2 ◦ αi+

+
∑

i+j1+j2=n+1
j2=0,i,j1≥0

βi ◦ (F j1 ⊗ F )− F j1 ◦ αi.

It follows that
∑

i+j1+j2=n+1
i,j1,j2≥0

βi ◦ (F j1 ⊗ F j2)− F (j1+j2) ◦ αi = d(αn+1, βn+1, Fn+1) + On.

Unfortunately the obstruction can not be written in terms of a Lie bracket, since no differential graded Lie
algebra structure could be found on C•(F ).

4.5 Examples of deformations of multifunctors

4.5.1 Associative algebras

Let (A,m) be a unital associative algebra and ρ : Ass → EndA the corresponding representation, i.e.
ρ(2) : Ass(2)→ Hom(A⊗2, A) is defined by ρ(2)(id) = m.

Lemma 4.5.1. A infinitesimal deformation of (A,m) corresponds to an infinitesimal deformation of ρ and
vice versa.

Proof. Suppose (A ⊕ At,mt) is an infinitesimal deformation of (A,m). Then there is a representation
χ : Ass → EndA⊕At with χ2(1) = mt. Since EndA⊕At

∼= EndA ⊕ EndAt there is a representation
ρ + γt : Ass → EndA ⊕ EndAt. It holds that γ ∈ C1(Ass,EndA). Since ρ + γt is a representation which
reduces to ρ when evaluated in t = 0, it follows that ρ + γt is an infinitesimal deformation of ρ, hence
[γ] ∈ H2(ρ).

Suppose ρ+γt : Ass→ EndA⊕EndAt is an infinitesimal deformation of ρ : Ass→ EndA. Again using
the isomorphism EndA⊕At

∼= EndA ⊕EndAt it follows that there is a representation χ : Ass→ EndA⊕At.
Define mt := χ2(1). Then (A ⊕ At,mt) is an associative algebra which reduces to (A,m) and hence an
infinitesimal deformation of (A,m). Note that mt is completely determined by ρ2(1) + γ2(1)t = m+m1t for
some m1 ∈ C2

Hoch(A,A). If follows that [m1] ∈ H2
Hoch(A,A).
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In order to relate the cohomology groups H2(ρ) and H2
Hoch(A,A) it remains to check what happens for

equivalent deformations.

Lemma 4.5.2. Equivalent infinitesimal deformations of (A,m) give rise to an equivalence of infinitesimal
deformations of ρ.

Proof. Suppose (A ⊕ At,mt) and (A ⊕ At,m′
t) are equivalent infinitesimal deformations of (A,m). Then

there are representations χ : Ass→ EndA⊕At and χ′ : Ass→ EndA⊕At with χ2(1) = mt and χ′2(1) = m′
t.

By the isomorphism EndA⊕At
∼= EndA⊕EndAt there are correpsonding representations ρ+γt and ρ+γ′t.

The aim is to show that γ′ ∈ [γ] ∈ H2(ρ).
The fact that mt and m′

t are equivalent implies that there is an isomorphism φ : A → A such that
m′

1 = m1+d(φ), wheremt andm′
t are identified withm+m1t andm+m′

1t, respectively and φ ∈ C1
Hoch(A,A).

Hence γ′2(1) = m′
1 = γ2(1) + d(φ).

Define ϕn : EndA(n)→ EndA(n) by

f 7→ [f, φ]Hoch

for all n ≥ 0. Note that ϕ2(m) = [m,φ] = d(φ). Thus it holds that γ = γ′ − ϕ ◦ ρ and therefore

(0, 0, γ) = (0, 0, γ′) + d(0, ϕ, 0).

This shows that ρ+ γt and ρ+ γ′ are equivalent infinitesimal deformations of ρ.

This shows that there is a well-defined map H2
Hoch(A,A)→ H2(ρ). Define H2

01(ρ) to be the group of all
[γ] ∈ H2(ρ) such that ρ+ γt : Ass→ EndA ⊕EndA is an infinitesimal deformation of ρ.

Proposition 4.5.1. H2
Hoch(A,A) ∼= H2

01(ρ).

Proof. The previous construction assigns to an infinitesimal deformation of (A,m) an infinitesimal defor-
mation in H2

01(ρ) of ρ. There is also an assignment of any element H2
01(ρ) to an element in H2

Hoch(A,A).
It remains to check that this map is well-defined, i.e. equivalent deformations in H2

01(ρ) give equivalent
deformations in H2

Hoch(A,A).
Let ρ+ γt and ρ+ γ′t be equivalent deformations of ρ. Then there are α and β such that

(0, 0, γ) = (0, 0, γ′) + d(α, β, 0).

Since Ass is just the trivial deformation it follows that α = 0. Thus it holds for m1 := γ2(1) and m′
1 := γ′2(1)

that

m1 = m′
1 − β2(m).

If β2(m) is a coboundary then the result follows. Since m+m1t and m+m′
1t are infinitesimal deformations

of m it follows that m′
1 ∈ [m1] ∈ H2

Hoch(A,A). Therefore [m1] = [m′
1] = [m1 +β2(m)] = [m1]+ [β2(m)]. This

shows that β2(m) is a coboundary for some φ ∈ C1
Hoch(A,A). Therefore m1 and m′

1 differ by a coboundary,
hence equivalent.

Let (⊕n
k=0,mt) be an n-deformation of (A,m) and χn : Ass → End⊕n

k=0
the corresponding represen-

tation. Then there exists a representation
∑n

k=0 ρkt
k : Ass → ⊕n

k=0EndAt
k such that mt corresponds to

m + m1t + . . . + mnt
n. Suppose (⊕n

k=0,mt) extends to an (n + 1)-deformation (⊕n+1
k=0 ,m

′
t). Then there

is a representation χn+1 : Ass → End⊕n+1
k=0

such that χn+1
2 (1) = m′

t. Hence there is a representation
∑n+1

k=0 ρkt
k : Ass→ ⊕n+1

k=0EndAt
k such that m′

t corresponds to m+m1t+ . . .+mnt
n +mn+1t

n+1. This is
clearly an (n + 1)-deformation of ρ, hence the vanishing of the Hochschild obstruction On implies that the
obstruction OAss

n vanishes. The converse statement, if the representation extends from an n-deformation to
an (n+ 1)-deformation then On is zero, is similarly derived.
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4.5.2 Lie algebras

The previous constructions hold equally well for the Lie case since no special use of the multicategory in
question has been made except in the definition of ϕ which becomes ϕn := [−, φ]CE . Therefore

Proposition 4.5.2. H2(g, g) ∼= H2
01(ρ : Lie→ Endg).

and an extension of a representation implies an extension of multiplications and vice versa.

4.5.3 Categories

With the same reasoning it holds that

Proposition 4.5.3. H2(C) ∼= H2
01(ρ : Cat→ End)

for a linear category C with objects S. Here the objects of End are chose to be Obj(Modk), i.e. ϕ = id.
Let ρ : Cat→ End be the corresponding representation, with ρO : S × S →Modk defined by (A,B) 7→

C(A,B). The idea is that an infinitesimal deformation (C ⊕ Ct,mt) of (C, ◦) corresponds to a representation
χ : Cat→ End with χO(A,B) = C(A,B)⊕C(A,B)t. Then χABC

2 (∗) = mABC
t ∈ Hom(C(A,B)⊕C(A,B)t⊗

C(B,C) ⊕ C(B,C)t, C(A,C) ⊕ C(A,C)t). But then there is a representation ρ + γt : Cat → End with
ρABC(∗)+γABC(∗)t = ◦ABC +mABCt and γO := ρO. Since this is a representation which reduces to ρ when
evaluated in t = 0 it follows that ρ+ γt is an infinitesimal deformation of ρ.

4.5.4 Multicategories

Everything goes through the same way for operads and for multicategories as for categories, showing that
H2(P,P) and H2(M,M) are mapped to H2(ρ : ρ : Oper→ End) and H2(ρ : Mult→ End), respectively.
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Chapter 5

Epilogue

So far the formal deformation theory of algebras, Lie algebras, categories, operads and multicategories have
been described. From here there are several ways to go. On one hand, it is possible to consider structures on
the higher extensions of the underlying collection. In this way it is possible to give a deformation theoretic
interpretation to the higher cohomology groups. Instead of looking at formal deformations one might study
other sorts of deformations, like continuous ones or the deformations of structure constants. On the other
hand the structures at hand may be varied. It would be interesting to consider a deformation theory of
monoid objects in some monoidal category, since all of the structures mentioned earlier are monoid objects
in appropriate categories. Some of these topics will be in short described in this chapter.

5.1 Higher Extensions

Recall that an augmentation of a k-module V by a ring R is a short exact sequence 0→ V ⊗k m→ V ⊗kR→
V ⊗k k ∼= V → 0. This corresponds to the notion of a 1-extension where an n-extension is defined as follows.

Definition 5.1.1. Let C be an abelian category. An n-extension of A by B in C is an exact sequence

0→ B → Xn → . . .→ X1 → A→ 0.

Two n-extensions X and Y are said to be equivalent if there exist fi : Xi → Yi for all 1 ≤ i ≤ n such
that the diagram

0 // B // Xn

fn

²²

// . . . // X1

f1

²²

// A // 0

0 // B // Yn
// . . . // Y1

// A // 0

commutes. The set of all equivalence classes of n-extensions of A by B is denoted by Extn
C(A,B). The Baer

sum defines a group structure on Extn
C(A,B), it is given by

X ⊕ Y := 0→ B → Xn ∪B Yn → Xn−1 ⊕ Yn−1 → . . .→ X2 ⊕ Y2 → X1 ×A Y1 → A→ 0,

where Xn ∪B Yn denotes the pushout and X1 ×A Y1 the pullback.
Let X be an element of Extm

C (A,B) and Y an element of Extn
C(B,C) then the Yoneda composite X ◦Y ,

defined by

X ◦ Y := 0→ C → Yn → . . .→ Y1
ιX◦πY−−−−→ Xn → . . .→ X1 → A→ 0,

where πY : X1 → B and ιX : B → Xn, gives an (m+ n)-extension Extm+n
C (A,C).
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This Yoneda composite defines a (Grp-enriched) category structure on the collection Ext•C : T(Obj(C))op
1 →

Grp, where Ext•C is given by

(t0, l) 7→ 1, (t1, l) 7→
∐

n≥0 Extn
C(l ◦ in(t1)|l ◦ root(t1)), (tn, l) 7→ 0,

for all n ≥ 2.

Associative case Let A be a k-algebra and M an (A,A)-bimodule. Then it holds that

Ext•ModA⊗kAop (A,M) ∼= H•+1
Hoch(A,M).

In other words, the extensions of A by an (A,A)-bimodule M correspond to higher Hochschild coho-
mology groups.

To see how this works consider the case n = 1. Let [f ] ∈ H2(A,M). Define a multiplication on A⊕M
by

(x, y)(z, w) := (xy, xw + yz + f(x, z)).

There are obvious inclusion and projection maps M ι−→ A⊕M and A⊕M π−→ A. It follows that

0→M
ι−→ A⊕M π−→ A→ 0

is a 1-extension and hence the corresponding equivalence class is in Ext1
A⊗Aop−Mod(A,M).

On the other hand, let [0 → M
ι−→ X

π−→ A → 0] ∈ Ext1
A⊗kAop−Mod(A,M). Choose a section

σ : A → X, which can be done since π is a surjection. This implies that X ∼= A ⊕M . Then it is
possible to endow A⊕M with a multiplication defined by

(x, y)(z, w) := (xy, xw + yz + f(x, z)),

where f : A⊗k A → M is a k-linear map. The associativity of the just defined multiplication implies
that the following equation must hold:

−xf(z, u) + f(xz, u)− f(x, zu) + f(x, z)u = 0.

Thus dHoch(f) = 0 and hence [f ] ∈ H2(A,M). These two constructions are inverses to each other. For
a more detailed treatment see [19].

Lie case Consider the universal enveloping algebra of a Lie group g. Then it holds that

Ext•U(g)−Mod(U(g),M) ∼= H•+1
CH (g,M),

for a U(g)-module. In this way the Lie algebra cohomology is obtained.

It would be interesting to give also to the higher extensions a deformation theoretic interpretation and
to extend the isomorphisms to the case of categories, operads and multicategories.

5.2 Continuous Deformations

Recall that a formal deformation is of the form
∑

k≥0mkt
k with m0 = m where both m and the sum are

of the same structure. Instead of formal deformations now continuous deformations will be considered. A
deformation is continuous if the assignment of a structure to some parameter, say t, is continuous and for a
particular point, t = 0, the original, undeformed, structure is obtained. This implies that the set of structures
has to be endowed with a topology.

86



As an example, consider the case of associative k-algebras. Let (A,m) be an associative k-algebra. In
order to describe the set of all structures, the multiplication on a vector space is expressed in terms of
structure constants. This works only if the underlying k-vector space is finite dimensional or such that
certain sums converge. For simplicity assume it to be finite dimensional. Denote the category of finite
dimensional unital associative k-algebras by fuAssk.

Suppose A is an n-dimensional vector space with basis e1, . . . , en. Then a multiplication m gives rise to
n3 constants (cki,j)1≥i,j,k,≥n ⊂ kn3

by

m(ei, ej) =
n∑

k=1

cki,jek.

These constants are called structure constants. Note that these constants still make sense if the basis is
infinite and the above sum converges. Not all vectors in kn3

give rise to associative multiplications. The
condition on such a vector is

n∑
p,r=1

cpi,jc
r
p,k −

n∑
q,r=1

cqj,kc
r
i,q = 0.

This equation is obtained from writing out the equation m(m(ei, ej), ek) = m(ei,m(ej , ek)) in terms of the
structure constants. Define linear maps pi,j,k : kn3 → k by

pi,j,k(v) =
n∑

p,q,r=1

vp
i,jv

r
p,k − vq

j,kv
r
i,q.

Thus {v ∈ kn3 | pi,j,k(v) = 0, ∀1 ≤ i, j, k ≤ n} is isomorphic to all associative k-algebras of dimension n. If
the underlying field k has characteristic zero, then the norm ||x|| :=

√
〈x, x〉, where 〈x, y〉 :=

∑n
i=1(xiyi),

induces a topology on kn3
. The subset of kn3

of all associative k-algebras of dimension n can be endowed
with the subspace topology.

Definition 5.2.1. A continuous deformation of an associative k-algebra (A,m) of dimension n is a path in
{v ∈ kn3 | pi,j,k(v) = 0,∀1 ≥ i, j, k ≥ n}, i.e. a continuous map

γ : I → {v ∈ kn3 | pi,j,k(v) = 0,∀1 ≤ i, j, k ≤ n},
such that 0 ∈ I and γ(0) = m.

The theory of continuous deformations is described in [4].

5.3 Deformation in terms of the structure constants

In the previous section structure constants have been introduced. Now another way of looking at structure
constants will be given bringing the deformation problem into the arena of algebraic geometry. Note that
the functions p<n>

i,j,k : kn3
=: An3 → k are polynomials in k[{vk

i,j}i,j,k] =: R. It was shown that the set

{v ∈ kn3 | pi,j,k(v) = 0, 1 ≤ i, j, k ≤ n} corresponds to all n-dimensional associative k-algebras. Hence all
associative multiplications are given by

Ass(A) := Z


∐

n≥0

{p<n>
i,j,k }1≤i,j,k≤n


 ,

where Z(S) := {p ∈ An3 | f(p) = 0, ∀f ∈ S}. In order to apply Hilberts root theorem (Nullstellensatz)
the field k is supposed to be algebraically closed. Then it follows that Ass(A) is an algebraic set and hence
closed with respect to the Zariski topology. This shows that the set Ass(A) is algebraic. It is even a scheme.
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Deformations A deformation of a scheme is like a bundle with a special fibre isomorphic to the scheme
to be deformed. The other fibers are then deformations of the special fibre. In order to have a good notion
of such a bundle flat families of schemes have to be discussed. A family of schemes is a scheme whose fibers
are again schemes. The prefix flat implies that the bundle map is flat.

Definition 5.3.1. Let f : X → Y be a morphism of schemes and F be an OX-module, then F is flat over
Y at x ∈ X if Fx, the stalk of F at x, is a flat Of(x),Y -module. The family F is called flat over Y if it is
flat over all points of X. X is said to be flat over Y if OX is flat over Y .

Remember that a module M is flat if the associate functor M ⊗k − is also left exact.

Definition 5.3.2. Let X be flat over T w.r.t. f : X → T , then X is a global deformation of X0 over T if
there exists an arrow t : Spec(k)→ T such that f−1(t) ∼= X0, i.e. the diagram

X0

²²

//
_Â X

f

²²
Spec(k)

t
// T

is a pullback square. An infinitesimal deformation of X0 is a deformation of X0 over Spec(k[t]/(t2)). Further
a deformation of X0 over T is trivial if X is isomorphic to the product scheme X × T .

It can be shown that for an algebraically closed field k all infinitesimal deformation of a nonsingular
scheme X0 are classified by the first sheaf cohomology group H1(X, TX), where TX is the tangent sheaf. For
more information see [14].

5.4 Deformation Functors

There is yet another approach to deformation theory, namely that by deformation functors. A deformation
functor is a covariant functor from the category of local Artinian rings with residual field k, i.e. for such
a local Artinian ring R with maximal ideal m it holds that R/m = k, and ring morphisms to the category
of sets. Such a functor is supposed to satisfy the property that F (k) is a singleton. This singleton can be
interpreted as the structure to be deformed and the elements of F (R), for any local Artinian ring R, as
deformations of that structure.

Let g be a dg-Lie algebra. Then Defg : Artink → Set is an example of a deformation functor. It
sends an Artinian ring R to the set MCg(R)/Gg(R) and an arrow f : R → S to the arrow defined by
Defg(f)(x⊗ r) := x⊗ f(r). To show that Defg(f) is indeed a morphism between Maurer-Cartan elements
consider:

d(x⊗ f(r)) +
1
2
[x⊗ f(r), x⊗ f(r)] =d(x)⊗ f(r) +

1
2
[x, x]⊗ f(r)f(r)

=f(d(x)⊗ r +
1
2
[x, x]⊗ r2) = f(0) = 0.

Each of the cochain complexes with a dg-Lie algebra structure described in the previous chapters gives
rise to such a deformation functor. The representability of a deformation functor, i.e. whether there exists
an Artinian ring R such that the deformation functor is isomorphic to HomArtink

(R,−), plays an important
role in further analyses of the resulting deformations (see [28])
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Appendix A

Ends and Coends

Let F,G : Cop × C → D be two functors. A natural transformation η : F =⇒ G is just a family of
maps η(A,B) : F (A,B) → G(A,B) for every pair of objects (A,B) in Cop × C, such that for any morphism
(f, g) : (A′, B)→ (A,B′) the diagram

F (A,B)

F (f,g)

²²

η(A,B) // G(A,B)

G(f,g)

²²
F (A′, B)

η(A′,B)

// G(A′, B)

commutes. Note that η(A,A′) is completely determined by η(A,A). In this case there is a more efficient way
of defining a natural transformation leading to the notion of a dinatural transformation.

Definition A.0.1. A dinatural transformation η between two functors F,G : Cop × C → D is defined by a
map ηA : F (A,A)→ G(A,A) for all objects A of C such that for all morphisms f : A′ → A the diagram

F (A′, A′)
ηA′ // G(A′, A′)

G(1,f)

&&MMMMMMMMMM

F (A,A′)

F (f,1)
88rrrrrrrrrr

F (1,f) &&MMMMMMMMMM
G(A′, A)

F (A,A)
ηA // G(A,A)

G(f,1)

88qqqqqqqqqq

commutes.

End Let e be an object in D, then the constant functor 1e : Cop×C → D sends every object to e and every
arrow to ide.

Definition A.0.2. An end of a functor F : Cop×C → D is an object e in D and a dinatural transformation
η : 1e =⇒ F such that for any other dinatural transformation ω : 1x =⇒ F with x an object in D there exists
a unique arrow h : x→ e making the diagram

1x

ω

¾#
@@

@@
@@

@

@@
@@

@@
@

∃!h
®¶

1e η
+3 F

commute. For an end the object e is denoted by
∫

c∈C F (c, c).
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Example A.0.1. Natural transformations form an example of an end. Consider the functors F,G : C → D.
Then another functor

HomD(F (−), G(−)) : Cop × C F×G−−−→ Dop ×D Hom−−−→ Set

can be constructed. Then the diagram

e :=
∫

c∈C HomD(F (c), G(c))

ttiiiiiiiiiiiiiiiii

**UUUUUUUUUUUUUUUUU

Hom(F (X), G(X))

Hom(1,G(f)) **UUUUUUUUUUUUUUUUU
Hom(F (Y ), G(Y ))

Hom(F (f),1)ttiiiiiiiiiiiiiiiii

Hom(F (X), G(Y ))

is a pullback square for any arrow f : X → Y simultaneously. In other words, let η ∈ e and denote the
images of η in Hom(F (X), G(X)) and Hom(F (Y ), G(Y )) by ηX and ηY respectively then it holds that

ηY ◦ F (f) = G(f) ◦ ηX .

Hence η is a natural transformation between F and G and e can be identified with Nat(F,G).

Coend Similarly the notion of a coend of a functor is defined as follows.

Definition A.0.3. A coend of a functor F : Cop×C → D is an object e in D and a dinatural transformation
η : F =⇒ 1e such that for any other dinatural transformation ω : F =⇒ 1x with x an object in D there exists
a unique arrow h : e→ x making the diagram

F

ω
¾#

@@
@@

@@
@

@@
@@

@@
@

η +3 1e

∃!h
®¶

1x

commute. For a coend the object e is denoted by
∫ c∈C

F (c, c).

Example A.0.2. An example of a coend is the symmetric tensor product of two functors F : Sop
n → E and

G : Sn → E, whit E a monoidal category. Then it is possible to define a functor

F ⊗G : Sop
n × Sn

F×G−−−→ E × E ⊗−→ E .

The coend
∫ n∈Sn F (n)⊗G(n) of this functor is F (n)⊗Sn G(n) since for any permutation σ : n→ n of Sn

the diagram

F (n)⊗G(n)
σ⊗1

vvmmmmmmmmmmmm
1⊗σ−1

((QQQQQQQQQQQQ

F (n)⊗G(n)

((QQQQQQQQQQQQ
F (n)⊗G(n)

vvmmmmmmmmmmmm

F (n)⊗Sn G(n)

is a pushout diagram. In other words, let x ∈ F (n) and y ∈ G(n) then in F (n) ⊗Sn G(n) it holds that
x.σ ⊗ y = x⊗ σ−1.x.
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Copower Let E = (E ,⊗, I) be a symmetric monoidal category with coproducts. Given a set-valued functor
F : C → Set it is possible to construct a functor F ′ : C → E by defining

F ′(A) :=
∐

x∈F (A)

I.
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Appendix B

Multicategories using layered trees

Instead of deforming the partial compositions it is also possible to deform the full one. Recall that a
multicategoryM with full compositions is defined to be a collection M : T(S)op

1 → E together with maps

◦LT :ML(T )→M◦ ∂(T )

for all T ∈ L(S)2,• satisfying some obvious axioms. The problem with this deformation theory is, that no
differential graded Lie algebra structure could be found on the deformation complex, which will be described
in a moment. Because of this the obstructions can not elegantly be described. Despite the lack of a dg-Lie
algebra structure the complex classifies all infinitesimal deformations. There is a complex for the layered
multicategories and one for the non-layered ones. It is natural to ask how they are related, and how the
cohomology groups relate. Two maps will be constructed relating the complexes, but these maps turn out
not to commute with the differentials hence it is not clear how to compare.

A deformation of a multicategory is again a multicategory structure on the extended collection which
reduces to the original structure when the collection is reduced to the original collection. All the other notions
can be stated as for multicategories with partial compositions using layered trees instead. The deformation
complex is given by

Cm
L (M,M) :=

∫

L(S)m,•
Homk(ML,M◦ ∂),

with differential

d(γ)(θ ⊗−→θ 1 ⊗ . . .⊗−→θ n) =

=
m∑

j=1

θ ◦ (θ1 ◦ −→θ 2
1 ◦ . . . ◦

−→
θ n

1 , . . . , γ(θj ⊗−→θ 2
j ⊗ . . .⊗

−→
θ n

j ), . . . , θm ◦ −→θ 2
m ◦ . . . ◦

−→
θ n

m)+

+
n∑

i=1

(−1)iγ(θ ⊗−→θ 1 ⊗ . . .⊗ (
−→
θ i−1 ◦ −→θ i)⊗ . . .⊗−→θ n)+

+ (−1)n+1γ(θ ⊗−→θ 1 ⊗ . . .⊗−→θ n−1) ◦ −→θ n.

It can be checked by long and tedious calculation, see the next page, that d is indeed a differential, i.e.
d2 = 0.

To see that everything becomes zero in that calculation note that (4.1) cancels (4.4), (4.2) cancels (4.5),
(4.3) cancels (4.8), (4.6) cancels itself and (4.9 + 4.10) cancels with (4.7). Therefore (C(M,M), d) is a
cochain complex. In order to obtain the left and right unit condition, the Dold-Kan correspondence is used
again.
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d
2(γ)(θ⊗

−→θ
1⊗

...⊗
−→θ

n)
=

m
∑j
=

1

θ◦
(θ

1 ◦ −→θ
11 ◦

...◦ −→θ
n1
,...,d(γ)(θ

j ⊗
−→θ

2j ⊗
...⊗

−→θ
nj ),...,θ

m
◦ −→θ

1m
◦
...◦ −→θ

nm
)
+

n
∑i=

1 (−
1)

id(γ)(θ⊗
−→θ

1⊗
...⊗

( −→θ
i−

1◦ −→θ
i)⊗

...⊗
−→θ

n)+

+
(−

1)
n
+

1d(γ)(θ⊗
−→θ

1⊗
...⊗

−→θ
n−

1)◦ −→θ
n

=
m

∑j
=

1

m
2

∑k
=

1

θ◦
(θ

1 ◦ −→θ
21 ◦

...◦ −→θ
n1
,...,θ

j ◦
( −→θ

2j,1 ◦
...◦ −→θ

nj,1 ,...,γ( −→θ
2j,k ⊗

...⊗
−→θ

nj,k ),..., −→θ
2j,m

2 ◦
...◦ −→θ

nj,m
2 ),...,θ

m
◦ −→θ

2m
◦
...◦ −→θ

nm
)

(B
.1)

+
m

∑j
=

1

n
∑l=

2 (−
1)

l−
1θ◦

(θ
1 ◦ −→θ

11 ◦
...◦ −→θ

n1
,...,γ( −→θ

1j ⊗
...⊗

( −→θ
l−

1
j
◦ −→θ

lj )⊗
...⊗

−→θ
nj ),...,θ

m
◦ −→θ

2m
◦
...◦ −→θ

nm
)

(B
.2)

+
m

∑j
=

1 (−
1)

m
θ◦

(θ
1 ◦ −→θ

11 ◦
...◦ −→θ

n1
,...,γ(θ

j ⊗
−→θ

2j ⊗
...⊗

−→θ
n−

1
j

)◦ −→θ
nj
,...,θ

m
◦ −→θ

2m
◦
...◦ −→θ

nm
)+

(B
.3)

−
n−

1
∑r
=

1 (−
1)

rθ◦ −→θ
1◦

( −→θ
21 ◦

...◦ −→θ
n1
,...,γ( −→θ

2r ⊗
...⊗

−→θ
nr ),..., −→θ

1n ◦
...◦ −→θ

nm
)

(B
.4)

+
n

∑i=
2

n−
1

∑r
=

1 (−
1)

iθ◦
( −→θ

11 ◦
...◦ −→θ

n1
,...,γ( −→θ

1r ⊗
...⊗

( −→θ
i−

1
r
◦ −→θ

ir )⊗
...⊗

−→θ
nr ),..., −→θ

1n ◦
...◦ −→θ

nm
)

(B
.5)

+
n

∑i=
1

n−
1

∑s
=

1 (−
1)

i+
sγ(θ⊗

−→θ
1⊗

...⊗
( −→θ

s−
1◦ −→θ

s)⊗
...⊗

( −→θ
i−

1◦ −→θ
i)⊗

...⊗
−→θ

n)
(B

.6)

+
n−

1
∑i=

1 (−
1)

iγ(θ⊗
−→θ

1⊗
...⊗

( −→θ
i−

1◦ −→θ
i)⊗

...⊗
−→θ

n−
1)◦ −→θ

n
+

(−
1)

n
γ(θ⊗

−→θ
1⊗

...⊗
−→θ

n−
2)◦ −→θ

n−
1◦ −→θ

n
(B

.7)

+
v

∑u
=

1 (−
1)

n
+

1θ◦
(θ

1 ◦ −→θ
11 ◦

...◦ −→θ
n−

1
1

,...,γ(θ
j ⊗
−→θ

2j ⊗
...⊗

−→θ
n−

1
j

),...,θ
m
◦ −→θ

1m
◦
...◦ −→θ

n−
1

m
)◦ −→θ

n
(B

.8)

+
q

∑w
=

1 (−
1)

n
+

1
+

w
γ(θ⊗

−→θ
1⊗

...⊗
( −→θ

w
−

1◦ −→θ
w
)⊗

...⊗
−→θ

n−
1)◦ −→θ

n
(B

.9)

+
(−

1)
n
+

1
+

q
+

1γ(θ⊗
−→θ

1⊗
...⊗

−→θ
n−

2)◦ −→θ
n−

1◦ −→θ
n

(B
.10)

=
0.
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Comparison Comparing the layered complex with the non-layered one boils down to comparing the de-
formation of the full composition versus the deformation of the ◦T -compositions.

Given a functor γ ∈ Homk(M2,•,M◦ ∂) a similar trick as in 4.1.4 can be applied to obtain a functor
ν(γ) ∈ Homk(ML

2,•,M◦ ∂). On the other hand, given a functor ϕ ∈ Homk(ML
2,•,M◦ ∂) it is possible to

obtain a functor ξ(ϕ) ∈ Homk(M2,•,M◦ ∂) by ξ(ϕ)T := ϕεT .
This construction can be generalized to obtain maps ξ : Cn

L(M,M) ¿ Cn
M (M,M) : ν. Let ϕ be a

multifunctor in Homk(ML
m,•,M◦ ∂) and T ∈ T(S)n,•. Note that ε(T ) has at most n layers. If it has less,

add as many layers consisting of identities as needed. Denote this extension of ε by ε̂. Then ξ(ϕ)T := ϕε̂(T )

gives the desired functor. On the other hand, let γ ∈ Homk(Mm,•,M◦ ∂). For a tree T ∈ L(S)m,•,• there
are three cases, |T | = n, |T | < n or |T | > n. In the first case, define γ̂T := γT . In the second case, there
are not enough vertices to apply γ to. This can be resolved by adding identities and then apply γ. In the
third case apply γ repeatedly till there are less than n vertices left, then add identities and apply γ once
more. This defines a functor ν(γ) ∈ Homk(ML

n,•,M◦ ∂). Unfortunately, these maps are not chain maps.
Therefore it is not clear how to compare the complexes and their cohomology groups.

Origin Originally this complex in case of operads was inspired by the nerve construction used for categories.
Define the ’nerve’ of an operad by

NPi
n =

∐

T∈Ln,i

PL(T ).

Using this description the deformation complex can be defined by

Cm
O (P,P) =

∐

i≥0

Hom[Si,Modk](NPi
m, NPi

1)

together with the same differential as above.
This complex can be rewritten as

Cm
O (P,P) =

∐

i≥0

Hom[Si,Modk](NPi
m, NPi

1)

=
∐

i≥0

Hom[Si,Modk](
∐

T∈Lm,i

PL(T ),P(ti))

∼=
∐

i≥0

∏

T∈Lm,i

Hom[Si,Modk](PL(T ),P(ti))

=
∐

i≥0

∏

T∈Lm,i

Hom[Si,Modk](PL(T ),P ◦ ∂(T )) (∂(T ) = ti)

=
∫

T∈Lm,•
Homk(PL(T ),P ◦ ∂(T ))

=Cm
L (P,P).

The problems with the layered complex C•O(P,P) led me to consider the complex C•M for multicategories.
Retrospectively it was then recognized that C•O is just C•L, which is C•M for layered trees.
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