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Preface

You are about to read my Master’s thesis about scheduling patients for a CT scan
examination and the introduction of a new queuing theory property. In the first
part of the thesis, an improvement project at Deventer Hospital at the CT scan
area is extended with suggestions for a new appointment schedule. This study aims
at the improvement of the appointment scheduling to facilitate more examinations
while keeping performance very acceptable. This first research gave rise to a new
queue property worth investigating in the second part of the thesis.

In the first year of my Masters, I followed the course Industrial Statistics at the
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possible internship at IBIS UvA which facilitated this course. A year passed and
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at IBIS UvA.

Professor Ronald Does, the director of IBIS UvA, gave me the opportunity to write
my thesis in Amsterdam for which I am very grateful. I asked dr. Eduard Belitser
to be my supervisor in Utrecht. At first, it was not quite clear in which direction
this thesis would go and I thank Eduard Belitser for giving me the freedom to follow
my own path even though he would have loved to see a more statistical point of
view. Benjamin Kemper became my supervisor at IBIS UvA and I especially want
to thank him. His help, guidance and motivation made me possible to finish my
Master.
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want to thank Yohan van der Bijl, Black Belt at Deventer Hospital, for allowing me
to have a look at the radiology department and to gather the data needed for this
thesis. I would like to thank my parents and Marianne for their helpful comments
and support.

Amsterdam, January 2010, Tjarko de Vree.
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Introduction

Hospitals are forced to make its processes more effective and efficient [28]. To pro-
vide the staff with the knowhow to undertake efficiency projects, Deventer Hospital
in the Netherlands has launched a Lean Six Sigma program supported by IBIS UvA.
During this program, employees are educated in quality improvement methodolo-
gies Six Sigma and Lean thinking. They also implement an improvement project
submitted by the hospital. One of these projects investigates the routine at a CT
scanner. It is this project that will be of great interest for this thesis.

Quality Improvement methodologies are used to improve the performance of pro-
cesses. The CT scan project improved the CT scan process drastically which enabled
the department to increase the examined number of patients per day. Sometimes,
using only these methods, is not enough. Since the current appointment schedule
(the planned appointment times for the patients) results in much idle time for the
CT scanner, a new appointment schedule has to be made. How should this new
appointment schedule look like? And how should we treat different patient types?
In the thesis, queuing theory was used to capture the CT scan process. Unfortu-
nately, the process was too complex to derive a sound model. Several characteristics
seemed too difficult to incorporate in the queuing theory model. Also, extensive as-
sumptions, which are not desired, are needed to make the model analytically doable.
Therefore, a computer simulation method is chosen to calculate the performance
measures for different schedules.

The thesis consists of two parts. In the first part of the thesis, a simulation study
is started to find a better appointment schedule to schedule patients at the CT
scanner. Several schedules are simulated to determine their performance.

While trying to capture the CT scan routine as a queuing system, an interesting
property was found. A patient who arrives first in a dressing room is also exam-
ined first. For a next patient, it should not be possible to overtake this previous
patient in the dressing room. However, overtaking in a multi server system with a
first-come-first-served (FCFS) queue is possible. In the second part, the effect of
the non-overtaking property for several multiple server systems is investigated.

The thesis can be described by Figure 1. In both parts of the thesis, a problem
is formulated which may be solved by using queuing theory techniques. Since the
problems are very complex, simulations are necessary to obtain solutions. For the
CT scan case, these simulations are used to determine improvement actions. For the
queuing theory property, performance measures are estimated by using simulations.

9



10

3b. Estimated performance measures

LIST OF FIGURES

Simulations

3a. Improvement suggestions

Non-overtaking

property

X
)
&

1b. Queuing theory
problems to be solved

CT scan case 1a. Queuing theory

problems to be solved

Queuing
theory

Figure 1: Graphical description of reasoning behind the thesis



Part 1

Improving patient flow in the
CT scan routine

11






Introduction of Part 1

In these times of economic decline and the announced reduction of 20% on govern-
ment expenses on health care, efficiency starts to play a more profound role [18].
Improvements in efficiency, controllability of expenses, and income are the main
focus in the following years. The CT scan area at the radiology department is typ-
ically of interest for improvement projects because of its high expenses and often
its lack of efficiency.

The radiology department at Deventer Hospital has invested 1.227 million euros
in 2008 in the CT scan area [38]. Capital intensive processes such as the CT scan,
are found to be the bottleneck in many health care processes (from patient arrival to
discharge) resulting in long access times. Therefore one of the projects at Deventer
Hospital focused on the radiology department. Currently the radiology department
does more than 7700 CT scans a year. The number of patients being scanned on a
day, however, can be improved by using a quality improvement methodology. Being
able to perform more examinations increases revenue.

Using discrete event simulations for this process, adjustments in procedures and
appointment schedules can be simulated. The main interest is finding an improved
appointment schedule to be able to examine more patients on a day while maintain-
ing appropriate performance.

Three types of patients are distinguished in the simulation study (namely out-
patients, in-patients, and urgent patients). Patients who have an appointment time
scheduled in advance and are not hospitalized are called out-patients. Hospitalized
patients who are also scheduled in advance are called in-patients. These are patients
come from other departments. Urgent patients are patients who arrive unscheduled.
The appointment schedule has to be designed in such a way that arriving urgent
patients are examined within at most two hours after their arrival.

In the as-is process, scheduled patients arrive at the check-in desk and take place
in a waiting room (WR). When the previous patient has almost finished the pro-
cedures in the scan room (SR), the next patient is forwarded to the dressing room
(DR). Undressed, the patient proceeds to the SR. An intravenous (IV) access line is
installed on the patient in the SR when contrast fluids (also abbreviated with con-
trast further on) are part of the examination. When arrived in the SR, the patient
takes place on the scanner. A scout (prescan) is made to determine the area to scan.
This is needed since any patient is positioned differently in the scanner. The scout
is used to focus on the part of the body needed to be scanned. When the patient
needs contrast (IV-patient), this is admitted after the scout by a pump. The next
step is the actual scan. A next scans and a direct diagnosis follows if necessary (this
direct diagnosis is now only done for some in-patients because a specialist needs to
be called to give his or her judgment).

When contrast is part of the patients examination, a small recovery time is nec-
essary to remove the IV access line. After completing this scanning routine, the

13
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patient returns to his! DR. When dressed, he leaves the radiology department.

With the use of the Lean Six Sigma methodology, the process was improved and the
need for a new appointment schedule became clear. With this process knowledge,
a simulation study is started to determine improvement actions. In chapter 1, a
literature review is given on CT scan process improvement articles and the use of
simulations to model health care processes.

With the simulation program developed for the thesis, proposed schedules can be
simulated to estimate their performance. The assumption document (containing the
information for the simulation project) is given in chapter 2. Two schedules were
suggested by Deventer Hospital, both seemed to be able to examine much more
patients and to keep waiting times within reasonable bounds. With the use of liter-
ature about appointment scheduling, the advantages and disadvantages of several
appointment methods are discussed in chapter 3. The results of the simulations are
shown in chapter 4. The proposed schedules could be improved further more. Sim-
ulating several 'what if” scenarios (more urgent patients, longer scan times) other
possible improvements can be found and performance in different situations can be
estimated. In chapter 5, the results are discussed and improvements actions are
suggested. In chapter 6, the quality improvement methodology Lean Six Sigma, as
used by Deventer Hospital, is explained. Besides another methodology, Theory of
Constraints, is introduced, as well as its additional suggested improvements on the
CT scan process.

1From now on, when his or he is used, it is also possible to read respectively her or she.



Chapter 1

Literature overview

The CT scan area has been widely studied in improvement projects, see [3], [9], [32],
and [34]. One common improvement action found is to remove certain procedures
from the SR. Many examinations need to be conducted with IV-patients. Real-
locating the insertion of the intravenous access line to a preparation room (PR),
resulted in a decrease in access time from 21 days to less than 5 days at the Aca-
demic Medical Center (AMC) in Amsterdam, the Netherlands [9]. One substantial
difference with the CT scan area at Deventer Hospital is the availability of three
CT scanners where one is reserved for urgent patients. Elkhuizen et al. [9] stress
the need to reduce the variability in the lead times. The time interval reserved
for one appointment is determined by the mean examination time plus some slack
time. This slack time is needed to compensate for the variability in examination
times. Reducing the variability of an examination reduces the needed slack time
and therefore smaller time intervals are applicable. Although this project resulted
in a tremendous reduction in access time for scheduled patients, it did not make
use of industrial statistics. The improvement actions were suggested in brainstorm
sessions and data was not gathered to support these ideas. Only the access time
before and after the project was measured, and indeed the reallocating of installing
the intravenous line resulted in a higher possible capacity. Waiting times and other
performance measures for the improved process were hard to estimate in advance.
Vermeulen et al. [40] started a new project to determine the improved schedules.
Increasing the capacity will not be sufficient, since being able to treat more pa-
tients in a day is of no use if the patients are not scheduled accordingly. After
the improvement project done by Elkhuizen, scheduling was still done manually in
cooperation with medical experts and based on experience and future expectations.
A new method for scheduling patients is needed to make full use of this increased
capacity [40].

Rhea et al. in [34] have a more cost based focus on improving the capacity at
the CT scan area. Since this article is dated from 1994 suggested improvement ac-
tions might not be relevant anymore. Where a head CT took about 27.1 minutes in
total, today less than 10 minutes are needed. Literature before the beginning of this
century might therefore not be applicable anymore. Also digital image archiving
as is discussed in [32] is now commonly used. Although most of the improvement
actions discussed in these two articles have already been implemented, they show
one common type of improvement: remove process steps form the SR.

Reinus et al. [33] use queuing theory to model the CT scan routine. They are

interested in the steady state (the situation after some time when start up effect
have worn out) waiting times. In reality steady state will not be reached. A work-
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16 CHAPTER 1. LITERATURE OVERVIEW

ing day is too short, and simply not enough patients are examined to make sure
steady state is reached. They do conclude that when multiple scanners are available,
scanners should be allocated to certain examinations only. Also the more difficult
examinations, with more variability and higher mean examination times should be
planned later on the day.

Boland [3] gives an overview on ways to improve CT scan capacity. These sug-
gestions were collected from earlier research. Boland suggests that capacity can be
increased by two options: by scanning more patients per hour or by scanning for
more hours. Before deciding to proceed with an improvement action, the process
has to be made visible carefully. Using flowcharting, the workflow can be outlined
from start to end. Then, an operation management team can evaluate areas of
opportunity to increase CT capacity. Proposed directions to search for improve-
ments are adding technologists, reframe the workflow process or make use of RIS
(Radiology Information System) and PACS (Picture Archiving and Communication
System). When there are multiple technologists available per CT scanner, the flow
of a patient through the CT scan process has shown to be much faster in compar-
ison with using one technologist only. Especially when it is possible to install the
intravenous access line outside the SR, much time can be saved by using multi-
ple technologists. Several suggestions are made concerning reframing the workflow.
Boland stresses the availability of all information the technologist needs before the
starting time of the examination. Delays due to improper information can easily be
avoided. Also reallocating preparatory procedures, such as installing the intravenous
access line outside then SR in a room close by, can decrease the time necessary in
the SR significantly. Lateness of the patient or, especially, the medical staff can
disrupt the flow of the process seriously. Procedures which can be done by other
personnel after working hours have to be eliminated from the process. Restocking
of material is for example one thing which is possible at times when the CT SR is
not in use. There has to be spent time for professional development. It is commonly
known that using a multi skilled workforce performs much better then using only
specialists. Many hospitals already use RIS and PACS, but when this is not the
case it is advised to invest in these information systems. RIS is critical to measure
and record productivity. It is necessary to effectively schedule the patients. PACS
made the change possible from printing the photos to digital archiving. When the
process flow is already optimized, another way to increase capacity is to extend the
working hours. Many more examinations can be done when the CT scan is also
used in the evening or weekends. Boland stresses that the increased personnel costs
will be marginally compared to the increased income due to more examinations.

Since life expectation is expected to increase and the population is aging rapidly, it
is important to find how to cope with this high demand for medical services and to
determine if current plans will still be feasible. Health care modeling is a field which
studies the flow of an individual patient through the health care system. During
these studies information is collected (such as patients arrival, departure, exami-
nation, and waiting times). With this information, departments can be compared,
trends can be identified and bottlenecks found. With the use of simulation tech-
niques, process adjustment options can be investigated to determine the impact and
consequences. Ivatts and Millard discuss the benefits and several pitfalls of health
care modeling in [19] and [20]. Determining the performance of the health care
process is one of the difficulties and commonly used performance measures should
be reconsidered precisely defined as well. For example, Ivatts and Millard explain
the difficulties concerning bed occupancy. The number of beds in use was counted
at midnight in numerous studies, but the bed occupancy during the afternoon could
be much higher (some patients are discharged in the afternoon to spent the night
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at home). They regard the current health care management methods to support
changes as ’'black-box’ models (you do not have a clue what really takes place). In
these models, flawed performance measures are used to justify the changes. Using
health care modeling with individual patient data helps to tackle this problem.

Simulation methods and queuing theory are used to make these decisions more
sound. The number of beds a ward has is a performance measure of much interest.
Using queuing theory, Green determines how many beds need to be availably to
meet certain goals [15]. The simple queuing model is only applicable when service
time and arrival times are close to the exponential distribution (in terms of coef-
ficient of variation). In [47], Worthington applies queuing models to the hospital
waiting list problem to compare waiting lists with or without feedback (patients are
more likely to go to a hospital with a small waiting list). These models are useful
to determine the effects of changes in demand and available resources. However,
when these models become more complicated (emergency patients, priorities, de-
pendence between service times, etc.) queuing theory is not sufficient. Unrealistic
assumptions have to be made and the question arises to what extend the model
still is an appropriate resemblance of reality. Another problem with queuing theory
is calculating performance measures when steady state is not reached. In health
care systems, steady state is hardly reached anytime. Methods to overcome this
deficiency almost invariably make the model even more complicated [6].

Queuing theory has the advantage that it is able to produce expressions for perfor-
mance measures. This way, the effect of the parameters (such as service and arrival
rates) is exactly known. For many different systems, these measures are already
calculated. To be able to derive these expressions, assumptions have to be made.
When these assumptions are very unlikely, simulations can be used instead. Sim-
ulation methods have more flexibility. However, using simulations also comes with
disadvantages. More time is needed to program, test and verify the model. Since a
program is only capable in producing approximations, much computation time may
be needed to obtain good estimates. The challenge in simulations is to model the
reality in the least complex way, to keep data requirements at a minimum, but still
be able to derive sound conclusions. A review on the advantages and disadvantages
on these methods and several others to model patient flows in health care, is given
in [6].

In [23], the basics of simulations are given. It introduces a framework to set up a
simulation study which will be the main topic of the next chapter.
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Chapter 2

Starting the simulation
project

Simulation is a powerful tool when used correctly. Complex systems can be analyzed
by determining performance of what if situations. When determining possible new
appointment schedules, which is one of the goals of this part of the thesis, it is
impossible to try many different schedules in practice. Time, money, and reputation
will be wasted and possibly even patients safety will be at risk if schedules are tested
in practice. Therefore, simulations are of vital importance to decision making.
The simulation study should of course be applicable in practice. Results from
a time consuming simulation study are useless when not properly documented.
Therefore, time and effort have to be put into making an Assumption Document.
This document contains the information necessary to understand, implement and
reproduce the simulation project.

2.1 Assumption document

The need of an assumption document is stressed in [23]. This document states all
information needed before starting the actual programming stage. It should contain
the following:

e Project goals and scope.

e Flow chart of the process to be modeled.

Performance measures for evaluation.

Detailed descriptions of the subsystems and their interactions.

Clarification of the assumptions.
e Summaries of data which need to be used for model fitting.
e Limitations of the simulation model.

These items are defined for the CT scan process in this section.

2.1.1 Project goals and scope

To increase the number of patients examined on a day a new appointment schedule
are introduced. This project tries to obtain the following goals:

19



20 CHAPTER 2. STARTING THE SIMULATION PROJECT

1. Calculate performance measures for different appointment schedules.
2. Incorporate corresponding improvement actions to facilitate decision making.

With the obtained performance measures (which are defined in the Appendix) im-
provement actions are compared to make the CT scanning process more efficient.
Schedules are tested to determine a better appointment schedule for scheduling pa-
tients.

2.1.2 SIPOC chart of the CT scan simulation procedure

A graphical description of the system helps to visualize the steps the process needs
to take in order to get the desired results. The SIPOC chart, which is a macro-
description of the process and is shown in Figure 2.1, describes the process in such
a manner. This is a STPOC of the simulation model and not the SIPOC of the
process in reality.

Supplier Input Process Output Customer
*Proposed *Performance
Process schedules Simulations measures Process
manager *Improvement u *Improvement manager
decisions actions

Incorporate| _|Incorporate Run erformanc Compare
schedules decisions simulations| | measuring results

Figure 2.1: SIPOC-chart for CT scan simulation procedure

2.1.3 Patient attributes and performance measures

The system starts with a given appointment schedule. This contains the following
information for the patients scheduled on a day (patient attributes):

e Patient’s scheduled time (7}).

e Patient type: out-patient or in-patient (outp;).

Type of CT scan examination: IVP, colon or other examination (exam;).

e Whether contrast is injected (IV;).

Number of scans (2ndscan;).

Whether immediate diagnosis on the CT scan results is necessary or not
(diag;).

The subscript ¢ denotes the attributes corresponding to patient ¢ and are the input
for a schedule.

To determine the influence of a certain adjustment on the performance of the system,
several performance measures need to be calculated. The used notations of the
measures and variables that are used are stated in the Appendix.

e Number of patients examined on a working day: npday.
The number of patients examined on a working day consists of the scheduled
patients (out- and in-patients) and the urgent patients. There will be tried
to obtain schedules were this number of patients is as high as possible while
keeping other measures at acceptable heights.
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n,

e Appointment lateness: 3779 max (0, aSR; — T;).

In this measure aSR; equals the actual entrance time of patient ¢ in the SR.
Whenever patient ¢ is examined before his original appointment time, the
appointment lateness will be 0. Appointment lateness is tried to keep at
reasonable levels while increasing the number of patients on a working day.
Minimizing the appointment lateness is not relevant since this would result
in a schedule which accommodates far less patients. But disregarding this
measure completely will of course result in high waiting times.

e Overtime: max(0, dSRypday — tend)-

The day ends at t.,q. If for some reason the schedule is delayed and patients
have not finished their examinations, some overtime will be the result. It is
also possible that an urgent patient arrives just before the end of the working
day. This patient still has to be examined which causes overtime. Increasing
the number of patients examined on a working day, overtime should also be
taken into consideration. Allowing more overtime is a possibility to increase
the number of patients drastically, but this is not advisable.

PP (dSR;—aSR;

e Occupancy of the CT scanner: T — ) £ 100%.

A commonly used performance measure is the occupancy. This measure is
the percentage of the time the SR is actually in use. An ideal occupancy
equals 100%, but this value is highly unusual. Occupancy in health care is
strongly affected by the inherent variability of arrival and service times. When
increasing the number of patients examined on a working day, the occupancy
increases when service times are kept equal. Low occupancy rates therefore
also suggest that further improvements are possible.

e Possibility to take an uninterrupted break.

At Deventer Hospital is was noted that the medical staff should jointly take
a morning and a lunch break. This means that the SR will not be used for
a quarter of an hour in the morning and for half an hour around noon. If
for some reason the examinations are behind schedule (e.g. due to urgent
patients, unexpected high service times or late arrivals) the breaks have to be
compromised. To record this annoyance, the simulation model keeps track of
the number of occasions in which it is possible to have the break.

e Waiting time urgent patients:

Z?ﬂay ]-{patient i is an urgent patient} * (maX(O, aSRz - aWRz))

Urgent patients need to be examined within two hours. To determine if this is
the case, the waiting times for the urgent patients are recorded. The waiting
time is defined by the time between arrival and entrance in the SR. In some
of the tested schedules, urgent patients are scheduled in emergency slots.
Another possibility is to schedule urgent patients on their arrival time (taking
the appointment time equal to the arrival time). Increasing the number of
patients scheduled on a working day has influence on the expected waiting
time of urgent patients. These waiting times need to be calculated to make
sure urgent patients are treated in time. Also the probability is recorded that
an urgent patient has to wait more than two hours.

Using the above performance measures, appointment schedules are simulated and
performances compared.
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2.1.4 Subsystems

A simulation projects consists of several subsystems.

The first step in the simulation is the alternation of the appointment schedule to
the true arrival schedule. Data-analysis (see 2.1.6) was conducted to determine
distributions which facilitate in calculating the true arrival times. Patients arrival
times need to be simulated because they have high impact on performances.

In the following sections the notations described in Figure 2.2 will be used for the
flow charts.

Process Waiting

Parameter/
Data

Figure 2.2: Flow-chart: Legenda

Patient information
from appointment
schedule

. . Generate adjusted Generate service
Arrival time N N To CT scan
distributions ’ appointment — times Schedule procedure
schedule (IV/dressing/scan)

Urgent
patient arrival
rate

Figure 2.3: Flow-chart: Scheduling patients

The flow-diagram stated in 2.4 shows the steps a patient has to proceed to complete
the CT scan procedure.

Arrival . Arrival IV and Arrival
. Out-patient? A PR V2 .
in WR in DR in emp in PR

Arrival
in DR

Arrival
in SR

<G>

N

Waiting Depar-
DR/PR ture

Figure 2.4: Flow-chart: Overall CT scan procedure

#DR
The number of dressing rooms (DRs) can be changed. In Deventer Hospital three of
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the four DRs are currently used. The fourth acts as an exit for personnel. Therefore
#DR =1, 2, 3, or 4.

DR rules

During the DR routine, rules are used to make sure a patient does not have to wait
an inappropriate amount of time. A patient in the WR is forwarded based on the
residual service times of the patients in the remainder of the process. This estimate
depends on the residual service time of a patient in the SR, the residual service time
of a patient in the PR and the residual service times of the patients in the other
DRs. If this amount of time does not exceed a predefined time length, the patient
enters a DR.

PR rules

Similar to the DR rules are the rules in the PR. When a patient needs to receive
contrast, the patient has the possibility to use the PR. If the SR is available, the
injection takes place in the SR. Patients who do not need contrast skip this process
step.

Subroutines
In Figures 2.5, 2.6, 2.7, and 2.8, the subroutines for an arrival in the WR, DR, PR,
or SR, are represented by their flow charts.
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Arrival
in DR

changing Departure
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Arrival
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Figure 2.7: Flow-chart: PR routine
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Arrival Scan-
in SR routine

ture

Figure 2.8: Flow-chart: SR routine

2.1.5 Assumptions

The following assumptions have to be made before proceeding with the data anal-
ysis.
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The patient arrival rate does not fluctuate among days (multiple runs). The
drawback of this assumption will be explained in 2.1.8.

Residual service times can be estimated. When a patient is being scanned, an-
other patient can start undressing. This way, the scanner idle time decreases.
Since the DRs are particularly small (1 by 1 meter) it is not appropriate to
let a patient wait in the DR for a long time. Using the DR/PR rules, the
medical staff estimated the waiting time in the DR/PR. By testing different
distributions for this estimation, the effect is investigated.

Constant urgent patient arrival rate. The system has to deal with urgent
patients. With the use of data, an estimated arrival rate for the urgent patients
was obtained. Since the arrivals were not recorded by time of entrance (but
only by number per day) the assumption of random arrival times has to be
made. Therefore the arrivals of emergent and urgent patients are considered
to follow a Poisson process' with a predefined rate. Fluctuation in arrival rate
of the urgent patients between days or months are not considered. One could
argue that the arrival rate is influenced by seasons but this is not part of the
simulation project. When this problem occurs in reality, the simulation can
simply be adjusted.

Medical staff takes breaks if possible. Adjustments to the breaks of the medical
staff were not allowed. Sometimes it is possible that there is no time to let
the two technicians take a break at the same time. The simulation program
however only calculates the percentage where the break was possible.

Patients are examined according their arrival and appointment time. Patients
are served according to their planned arrival time, but there is a possibility
that a later patient is served first due to earliness of this patient or lateness
of the preceding patient. Due to this overtaking, an earlier planned patient
receives a longer waiting time (when a later patient arrives much too early). In
reality the medical staff has the possibility to change the order of examinations
or to deliberately let a patient wait to maintain the flow in the system.

Dressing time equals undressing time. The time an out-patient needs to get
dressed after the examination equals his undressing time.

Personnel is on time. Personnel is assumed to arrive several minutes before
the actual opening of the SR so patients can enter the DR to undress.

No break downs of equipment. The scanner is assumed not to break down
during a day and also enough personnel is assumed to be available during the
working hours.

The process is not influenced by different employees. Personnel is not as-
sumed to influence any performance measures. Different technicians are not
considered in this simulation project.

Infinite WR size is possible. The size of the WR is of no interest and therefore
assumed to be infinite.

2.1.6 Data-analysis

The data needed for this simulation project is acquired in Deventer Hospital. Dur-
ing 5 working days, the necessary times were recorded at the radiology department.

L Arrivals are random with exponentially distributed inter arrival times.
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A total of 93 examinations were measured. The data analysis gives the distributions
needed to simulate the CT scan procedure. In the Appendix, a graphical review of
the data analysis is given which is performed using Minitab 15 [27].

Patient type

The data consists of 63 out-patients, 22 in-patients, 8 urgent patients. The number
of urgent patients was believed to result in an underestimation for the average num-
ber of arrivals of urgent patients. An additional data inquiry was done to determine
a better estimate for the urgent patients arrival rate. During a extra 23 days, a
total of 62 urgent were examined at the CT scan. This resulted in a mean of 2.7
urgent patients per day. For the simulation, the arrivals of these urgent patients
are assumed to follow a Poisson process with mean 2.7. This also includes emergent
patients. In Figure 2.9 a statistical overview can be seen.

N (days) |Mean StD Min Median Max
Jurgent patients/day 23 2.7 1.6 1 2 6

Figure 2.9: Statistical overview urgent patients

Punctuality

In practice, patients do not arrive precisely at their scheduled appointment times.
Patients are either too early or too late. Punctuality measures the time a patient
arrives before his appointment time. A punctuality of -5 will correspond to a sit-
uation where a patient arrives 5 minutes after his appointment time. Punctuality
influences the performance during the day. When a patient arrives at late the CT
scan may become idle. To take this into account in the simulation, out-patients’
punctuality is simulated using a 3-parameter lognormal distribution. In-patients’
punctuality was fit using the normal distribution. Since in-patients come from other
departments in the hospital, it was possible to examine the patient at an idle period
far before the scheduled appointment time. From the 22 in-patient observations,
only 19 were applicable in determining the punctuality. Due to missing values for
out-patients 59 observations were usable. The basic statistics of punctuality for both
patient types can be found in Figure 2.10. A graphical summary of the analysis is
shown by Figures 12.1 and 12.2 in the Appendix.

Variable] Measure| N| Mean| StDev Min Q1| Med Q3| Max

Time in dressing room min| 37| 1.68| 1.109 0.217| 0.817 1.4] 2.317| 4.833
Punctiuality in-patients] min (early)| 22| 16.47] 31.15] -11.2| 0.42| 4.96| 15.14[ 100
Punctiuality out-patients| min (early)| 60| 19.52| 20.31| -11.43| 4.21| 12.58| 31.09| 77.57
IV time in-/urgent patient min| 14] 1.488] 0.662| 0.717] 1.021 1.3] 2.129| 3.067
IV time out-patient min| 40| 2.76| 1.492| 1.167| 1.875| 2.392| 2.871| 7.633

Figure 2.10: Overview of individual patient data

Changing in the DR

Out-patients need to undress prior to the examination. For in-patients and urgent
patients this is not the case. During the measure phase, the entrance time of the out-
patients in the DR was recorded. Subtracting this time from the entrance time in the
SR results in an estimate for the time spent in the DR. This time is a combination
of undressing and time to go from the DR to the SR. Since patients may wait in
their DR because the previous patient is still being examined, several observations
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were left out. From the 63 out-patients still 37 observations were usable. These
were selected by comparing the departure time of the previous patient with the
entrance time of the next patient in the DR.

In Figure 12.4 in the Appendix a probability plot shows an appropriate fit when
using a Weibull distribution. The basic statistics of the time spent in the DR can
be found in Figure 2.10.

After acquiring the scan, the patient returns to his DR to get dressed.

v

Figure 2.11 shows the number of IV-patients.

No contrast |Contrast [Total
In-patient 8 14] 22
Out-patient 22 41] 63
Total 30 55] 85

Figure 2.11: Overview of contrast demand

Fisher’s exact test finds a p-value of 0.258. Therefore the patient type has no signif-
icant influence on the percentage of patients needing an examination with contrast
or not enough data was available to notice a significant difference. The number
of observations is insufficient to properly estimating percentages. When scheduling
random arrivals this flawed estimate of the true percentage could influence the sim-
ulation.

Prior to the actual admission of contrast, an IV access line had to be installed. The
possible improvement action of installing the IV line in the preparation room could
influence the time the installation takes. However, a Kruskal-Wallis test showed
that the change from pricking in the SR to pricking in the PR did not influence the
pricking time.

Using another Kruskal-Wallis test showed that patient type did influence the IV
time. The number of in-patients in the analysis was quite small as well as the
number of urgent IV-patients. Because it was not believed that the time it takes to
install an intravenous access line on an in-patient, significantly differs from the time
is takes on an urgent patient, the observations of the urgent patients and in-patients
were combined. This resulted in 16 observations. The basic statistics can be found
in Figure 2.10. For both patient groups, the lognormal distribution gave a good fit,
see Figure 12.3 in the Appendix.

The data included 7 urgent patients, from which only 2 needed IV. Since the prob-
ability of an urgent patients needing contrast has to be known for the simulation,
this is estimated at 2/7. Due to the very small sample size, this probability can be
very different in reality. This will be part of the sensitivity investigation in section
4.2,

Usage of SR

Before the start of the improvement project, the installing of the IV line was done
in the SR. Therefore most data for the SR includes this pricking time. In order to
obtain a more reliable transfer function for the time spent in the SR, the pricking
time for patients pricked in the SR was subtracted from the total time spent in the
room. Using a transfer function to determine the SR usage time for all patients
proved inappropriate. Treating the out-patients with contrast apart (still 29 pa-
tients) resulted in a nice fit for these patients as well as an appropriate transfer
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function for the other patients (see Figures 12.4, 12.5 and 12.6).

The SR usage time of out-patients who only needed contrast seemed to follow a
lognormal distribution. For the other patients the following transfer function was
obtained:

In(SR usage) = 1.88 4+ 0.786Recovery + 0.331Special exam + 0.538Diagnosis

where dummy values were used to indicate when a patient needs recovery (and thus
was pricked), a special examination or a consult from the specialist.

2.1.7 Improvement actions

In the preceding sections several improvement actions were stated. This section
shortly summarizes the improvement actions or decisions possible in the simulation
project.

Determining schedules includes making lots of decisions which clearly is an im-
provement action on its own. How can in-patients and out-patients be planned?
Are they treated in blocks by examination type or are they planned at random?
These decisions are treated in the following chapter on appointment scheduling.
Other improvement actions are shortly discussed in this section.

e The use of the PR is one of the proposed improvement actions and is incor-
porated in the simulation project.

e Patients are called in the DR and the PR after an estimation on the waiting
time in these rooms by the technicians. These estimations can vary from best
(the residual service time and dressing times are known exactly) to worse.
Different parameters can be used to simulate the accuracy of the estimation.

e The number of DRs can vary from 1 to 4.

2.1.8 Limitations
The following limitations need to be known about the simulation.

e The simulation is considered for one day only. One day is simulated several
times in order to get the desired performance measures. A change in arrival
rate from either patient type can not be simulated. The drawback of this sim-
ulation is that when capacity raises the requests for the CT scanner probably
increase [3]. The interaction between increased capacity and demand is not
part of this simulation project.

e Rare events, like patients who need a large number of scans or have other
complications that increases the time spent in the SR by a particular large
amount, can not be incorporated. When known, several slots can be reserved
for these examinations.

e Emergency patients are not treated separately since not enough data was avail-
able. Therefore these are treated as urgent patients. Although their number
is assumed small, they seriously effect a schedule. Ad hoc changes by medical
staff are possibly needed to cope with an emergent patient. This simulation
project however is unable to determine the influences of these decisions.

With this assumption document, the simulation program can be made. As input,
an appointment schedule is necessary. The next chapter gives an introduction into
appointment scheduling, as well as the advantages and disadvantages of relevant
schedules for the CT scan process.
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Chapter 3

Appointment scheduling

A way to manage the waiting times of patients and idle times of the equipment
is using appointment scheduling. This refers to a series of decisions which are of
influence on the patients’ scheduled time. In the larger part of the 20th century,
most medical practitioners used an appointment system where the patient received
just an appointment date. Patients were seen on a first-come, first-served basis
which resulted in high waiting times, but also low idle times [5]. This trade-off
between patients’ waiting times and medical staff idle times is important. The true
pioneers on this subject are Bailey and Welch who wrote a historical paper [44] in
the Lancet. After this publication, many papers followed discussing different ap-
pointment schedules. The paper of Cayirli and Veral [5] gives a literature overview
on appointment scheduling. The advantages and disadvantages of several appoint-
ment schedules are considered in this chapter and the applicability on the CT scan
case is investigated.

When designing an appointment system, several variables have to be fixed. Cayirli
and Veral call these variables the appointment variables. Combining them, results
in an appointment rule which should fit the investigated situation. In basic, the
appointment schedule is set up by three variables. The first variable determines
the size of the slots. A working day is divided in slots; the time intervals in which
patients are assumed to be served. This first variable determines how many patients
are assigned an appointment time equal to the starting time of the slot. This num-
ber can be one, resulting in individually planned patients (which is most often used
in medical environments nowadays). When the slot size is chosen greater than one,
groups of patients (or jobs, customers) are assigned the same appointment time.
This appointment variable is for example used in a blood bank where many people
can be served at the same time. On a day, the slot-size can stay constant or is
allowed to vary.

The next decision to be made is whether to include a special begin slot at the
beginning of the day. Bailey was the first to consider this possibility for scheduling
patients. Introducing a begin-slot where two patients are scheduled instead of one,
results in a lower idle time for the medical staff while it has a limited effect on the
patients’ waiting time. Schedules without a special begin block normally result in
more idle time at the beginning of a day [44].

The last appointment variable determines the interval between two successive ap-
pointment times (length of a slot). These intervals can be constant or variable.

Any combination of the three appointment variables gives a possible appointment
rule. These rules have been studied extensively, see [5] for an overview. In the
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following section some relevant appointment rules and their characteristics are dis-
cussed.

3.1 Appointment rules

Single block

This rule schedules every patient at the same time at the beginning of the day. The
advantage of this rule is that the probability of idle time for the medical staff is
very low, because all the patients are present at the beginning of the day; there
is always work. The major disadvantage of this rule is that waiting times can be
huge. Since patients are served based on first-come, first-serve, patients might be
tended to arrive very early. The WR will be on tremendous stress. Nevertheless
this appointment rule is still used sometimes, also because it requires the least
administrative effort [5].

Individual slots with a fixed interval time

A more advanced appointment rule is one which uses a slot of size 1 with a fixed
time interval. This means that every patient is assigned a different arrival time and
the time between appointments is always the same. By scheduling the patients at
different times, part of the waiting time is eliminated. The idle time might however
rise to undesirable heights. Especially in the beginning of the day there is some
idle time (assuming the interval times are balanced with the desired demand) and
at the end of the day this could result in overtime for the medical staff.

Individual slot with a variable interval time

To balance the load more equally over the day, the intervals can be adjusted. Making
the intervals at the beginning of the day more tight and loosening them at a later
time of the day could deal with the high idle times. The waiting times for the
patients is distributed more evenly over the patients since before they were much
higher for later patients. Wang derived in [42] an optimal appointment schedule for
identical independently distributed service times and uniform waiting costs where
the intervals increase towards the middle of the day and then decrease.

Individual slots with fixed interval time and a begin slot

The major drawback of fixed interval times is the higher idle time at the beginning of
the day. To decrease this idle time, a possible two, three or perhaps more patients
are scheduled at the starting of the working day. Literature shows that waiting
times are kept within reasonable bounds while the idle time of the medical staff
decreases substantially [44].

Individual slots with variable interval time and a begin slot

By allowing more patients to be scheduled at the first slot, there is a buffer to make
sure the medicals staff has enough work to keep busy. Variable interval times are
used to distribute the waiting times of the patients more evenly on the day. This
appointment rule is the most flexible of the rules, the intensive administrative effort
and workability should also be taken into consideration.
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3.1.1 Adjustments

Patient attributes have a possible influence on the appointment system. Taking
these differences into consideration can result in better appointment schedules. This
way the time intervals between appointments are more balanced which is in favor
of both the waiting and idle times.

Out-patients can be scheduled in advance while urgent patients arrive unannounced.
An urgent patient also needs to be treated within a certain time interval. For out-
patients this is not the case (however a very long waiting time is desirable). To
deal with these different patient types decisions have to be made. Do we leave slots
empty in the schedule to accommodate arrivals of non-scheduled patients? Are
urgent and emergent patients put in front of the queue? Is a patient allowed to
interrupt another patient’s treatment or has the treatment to be concluded first?
The standard ways to deal with these non-scheduled patients are reserving special
slots on the day or increasing the time interval between appointments.

There is a possibility that patients do not turn up for their appointment and time
is wasted by waiting. These patients are called no-shows. When the percentage of
no-shows is substantial and other methods, like different reminder techniques and
fees, have not reduced the number of no-shows enough, the appointment system has
to be adjusted to deal with these no-shows. Increasing the slot size of certain slots
(at times where the number of no-shows is large) or decreasing the time interval
between the appointments, should reduce the effect of no-shows.

It might also be possible to have so called walk-ins. In some medical sections, it is
possible for patients to arrive while they were not scheduled. For example, a patient
has visited his doctor and an X-photo has to be taken but it is not urgent. The
patient can go to the radiology department to see if there is of a free spot, avoiding
the necessity to return at a later time. When this occurs often, the appointment
schedule can be adjusted. Most often the occurrences of no-shows and walk-ins are
not equally spread, therefore the probability that they cancel each other out is small.

Combining all these decisions should allow the scheduler to derive an appointment
schedule for the precise situation.

3.1.2 Appointment scheduling for the CT scan

With the appointment schedules discussed above, different schedules were made for
the CT scan case.

During the data analysis it became clear that dividing the patients over several
groups would reduce the inner group variance drastically. Therefore, patients with
different characteristics are scheduled differently [9].

before scheduling, the patients are grouped in the following groups:

e out-patients without a special exam
e patients needing an IVP or colon exam
e in-patients without a special exam

In the remaining part of this chapter, schedules for the CT routine are given. These
schedules are also graphically represented in the Appendix.
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Current schedule (S¢)

First the currently used schedule is described. The working day starts with a pa-
tient scheduled at 8:15. Before the lunch break, only out-patients are scheduled
(most of the time, unless there are no out-patients scheduled due to low demand
and an in-patient is helped instead). Every morning a patient is given 15 minutes
(the interval time between two appointment times is 15 minutes with the exception
of a morning break from 10:15 to 10:30. and a block reserved for urgent patients
at 9:00). There is no distinction in different examinations. Also Colon and IVP
examinations are given 15 minutes. The lunch break is from 12:30 till 13:00. As
already noted, both technicians take a break at the same time so scanning during
these breaks is impossible. After the lunch break, the out-patients are treated which
could not be scheduled in the morning, followed by the in-patients. For an in-patient
a 20 minutes interval is reserved. On a working day, the average number of patients
helped was 15.6 out-patients (including urgent patients) and 6.1 in-patients.
Several points are remarkable about this type of scheduling. By treating every out-
patient the same way, high idle times are possible because of the high variability in
service times. Treating the out-patients with special exams differently could result
in a better appointment schedule.

Since not enough slots are available for urgent patients, there are high waiting times
for urgent patients. Increasing the number of emergency slots and distributing them
more evenly over the day should improve the system, especially for urgent patients!.
By using these emergency slots, deviations from the expected service times can be
diluted at an early time without delaying the whole schedule.

The first proposed schedule (Sp1)

In the improvement phase of the CT scan project, the team working on the project
proposed a new schedule. During the analysis, several improvement points became
clear and were incorporated into a new appointment scheduling system. The instal-
lation of the intravenous access line was moved to the PR. The day was divided in
two parts, one before the lunch and one after the lunch. From 8:15 till 12:00 there
are 24 slots of 10 minutes each (and a morning break of 15 minutes), from which
4 are reserved for urgent patients. After the break two slots for special exams are
reserved of 20 minutes each. At the end of a working day, 8 slots are reserved for
in-patients, also 20 minutes each. This way, the hospital is able to help 20 out-
patients, 2 patients who need a special exam and 8 in-patients, which results in a
total of 30 scheduled patients.

Introducing this new appointment schedule would increase the capacity from 21.7
(including urgent patients) to 30 (without urgent patients).

Schedule Sp; noFE is a slightly adjusted version of schedule Sp; with no slots re-
served for urgent patients. Instead of 5 slots and for urgent patients in the morning,
schedule Sp; noFE has four blocks of 5 slots each. The slots in a block are of the
following consecutive lengths: 10, 15, 10, 15 and 10 minutes.

The second proposed schedule (Sps3)

Another proposed schedule, for which a pilot-run is implemented at Deventer Hospi-
tal, is a schedule with 20 out-patients, 6 in-patients and 3 special exam slots. In the
morning the out-patients are scheduled and before the lunch break 3 special exams

1High access times for urgent patients was noted also in another improvement project at De-
venter Hospital.
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are scheduled. The number of blocks reserved for urgent patients in the morning is
4 and in the afternoon 2. Immediately after the lunch break, 6 blocks of 10 minutes
each are reserved for out-patients needing no special exam. At the beginning of the
day, after each emergency block and after each break, an out-patient who does not
need contrast is scheduled.

Reversed proposed schedule (Sg_p)

In the proposed schedules, the out-patients (patients with a relatively short service
time and variance) are treated at the beginning of the day. The in-patients and
special exams are scheduled after the lunch break. Reversing this schedule results
in a schedule where out-patients are examined at the end of the day, while in-patients
are scheduled earlier.

Two blocks schedule (S;5)

As a reference, a schedule will be calculated consisting of two blocks, one in the
morning and one after the lunch break. Every patient is scheduled at the beginning
of a block. Of course, this is a very simplistic schedule and good performance is not
expected (for patients), but as a reference it might be informative to simulate this
schedule.

Variable interval time schedule (Sy)

The next schedule to be simulated will be using a variable interval size. When
patients are punctual and the appointment times are fixed, it is intuitive to arrange
patient arrivals in order of their service time variances [42]. It was shown that the
inter arrival times follow a dome shaped function. This shape is loosely incorporated
in a schedule to determine its performance.

Multi-block schedule (Sysuiti—5)

An effective way to minimize the idle time of important equipment is scheduling
multiple patients at the beginning of the block. The drawback of this method is an
increasing waiting time for the patients. The morning is divided into four blocks.
In each block, the patients are scheduled at the beginning. Urgent patients arriving
in a block are scheduled at the end of the block or treated as ordinary arrivals.

Urgent patient slots

The schedules discussed above are combined with two types of methods to handle
emergency patients. The first method schedules the urgent patients upon arrival in
the nearest emergency block. These blocks are reserved for emergent and urgent pa-
tients, but can also help to compensate for extensive overtime from other patients.
By doing this, the scheduled patients are less likely delayed by urgent patients, but
one has to consider the extra waiting time for urgent patients. By choosing enough
emergency slots in the schedule, an urgent patient is almost always helped within 2
hours. Shifting with these blocks can be used to determine a more suitable schedule.

Another method schedules urgent patients at their arrival time. When the call
for an examination of an urgent patient arrives, the urgent patient can be regarded
as a patient for which the appointment time is equal to the arrival time. When
there are regular patients present who were scheduled before the urgent patient’s
arrival time, these patients are served first. Regular patients who are present in
the WR with an appointment time later than the urgent patient, have to wait until
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the urgent patient is examined. This method results in lower waiting times for
the urgent patients. The expected waiting time of the regular patients however is
assumed to increase.

The schedules discussed in this chapter were simulated. Next chapter introduces
some specific modifications on these schedules and the results of the simulations.



Chapter 4

Simulation results

The schedules as discussed in the previous chapter have been simulated for 1000
runs which resembles 1000 working days. Averaging the obtained measures from a
day (a run) results in an estimation for the actual performance measure.

Every proposed schedule resulted in a series of performance measures which are
already discussed in 2.1.3. Figure 4.1 presents results for several relevant schedules.
Several additional schedules have been simulated as well; these results are shown
in Figure 12.18 in the Appendix. The additional schedules were obtained by some
adjustments on the schedules which were previously discussed. The notation in
Figures 4.1 and 12.18 is as follows:

e noE represents schedules without emergency slots. For example Sp; noFE
is schedule Sp; without emergency slots. Instead of a block with 5 slots
of 10 minutes each and an emergency slot of 10 minutes in the morning, this
schedule has blocks with slot lengths 10, 15, 10, 15 en 10 minutes. Also for the
second proposed schedule, an adjusted schedule was made with no emergency
slots. Two different schedules were constructed, one with individual slots and
one with slots of two appointments.

e Schedules with Random in the name use random scheduling of the patients.
For Spo there are two options: Random A and Random B. Since it was pro-
posed to schedule an out-patient which does not need contrast after the breaks
or emergency blocks, there has to be a distinction between keeping incorporat-
ing this assumption or not. Random A schedules do schedule an out-patient
without contrast in those slots, while Random B schedules do not. The prob-
ability for the other slots to be filled with an out-patient who does not need
contrast will decrease in Random A schedules. Only Random (no A or B)
means the same as with Random B (every slot is filled at random with the
appropriate patient attributes).

e The Spy—1 outp schedules are the same as the schedule Sps except it schedules
one out-patient less. The out-patient removed from schedule Sps was the last
out-patient scheduled in the afternoon. The slots for in-patients were adjusted
to fill the gap.

In Figure 4.1 the performance measures are shown for the most relevant schedules.
The results for the other schedules are shown in Figure 12.18 in the Appendix. For
the appointment lateness and the waiting of urgent patients the mean, variance,
and quantiles are given. With these quantiles, the mean and the variance of the
different schedules can be better investigated than by only using the mean and
variance. A mean appointment lateness of 10 minutes might sound appropriate,
but when 80% has an appointment lateness of 0 minutes and 20% of 50 minutes,
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the schedule might not be suitable after all. For urgent patients it was necessary
to be examined within 120 minutes after arrival. The percentage of urgent patients
who have to wait for more than two hours is given.
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Figure 4.1: Simulation results of several relevant schedules

Figure 4.1 in the Appendix and Figure 12.18 show that assigning patients at random
to slots results in worse performance. This is obviously because the work can not
be balanced. The resulting performance measure can be seen as an upper bound
for the actual situation when using the corresponding schedule.

Further analysis is carried out with the best schedules found in the simulations.
To determine the schedules which perform best relative to the other schedules,
the performance measures of Overtime, Appointment lateness, Morning and Lunch
break, Waiting time for urgent patients and the Percentage of urgent patients who
have to wait too long, are transformed to their respective rank. For each of the per-
formance measures, the rank gives its corresponding top 40 place. For example, the
appointment lateness for the current schedule with random arrivals was the lowest
compared with the other schedules, resulting in a rank of 1. For some performance
measures it is of course more appropriate to give a higher value a higher rank (such
as with morning break). Giving the ranks different weights for different performance
measures it is possible to give more importance to Appointment lateness than to
the Morning break. Since in practice the breaks are more flexible (easier to take a
break at a later time, separate breaks or shorter breaks), the performance measure
concerning these breaks is given a lower weight than the performance measure Wait-
ing time for urgent patients. In Figure 4.2 and Figure 12.19 in the Appendix, the
ranks for several performance measures are given. Using different weight functions
the different schedules can be compared.

Overall the schedules Spy noE 1 and 2 perform best, followed by Sp; noE and Spq
depending on which weights were chosen. Remarkable is the observation that the
current schedule is not the best. It has the best ranks in Appointment lateness and
Overtime, but when taking the breaks and urgent patients into consideration, the
current schedule performs worse.
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Figure 4.2: Simulation results in ranks of several relevant schedules

4.1 Adjustments to CT scan area

Using the results obtained in the previous section, several high potential sched-
ules are investigated more closely in this section. The schedules Spy noE 1 and
Spo noE 2 perform particularly well and Sps Random A and Sp; Random are the
proposed schedules so these are investigated with adjustments also. Since reallocat-
ing installing the intravenous access line to a PR proves to significantly increase the
system’s performance, only simulations are run with this property. Several possible
improvement actions are simulated to determine their impact. Results can be found
in Figure 12.20 in the Appendix.

Re-arranging the E-slots

In schedule Spy Random A the emergency slot from 15:20 is moved to 14:00 (sched-
ule Spy Random A (2)) to find out whether the performances for especially the
urgent patients improve. The effect of this adjustment is a decreases in the proba-
bility of waiting too long for urgent patients. Appointment lateness as well as the
probability of overtime however slightly increases.

Adjusting the number of DRs

When the DRs are the bottleneck of this process, increasing the number of DRs to
four can result in better performance. It can also be possible to close a DR when
this does not influence the performance significantly. This DR could then be used
for other purposes.

Removing increased the appointment lateness. Whenever two patients are in service
(for example one in the SR and another getting dressed) it is not possible for a third
to enter a DR. This results in additional idle time for the SR. Adding a DR has
practically no influence.
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Improving the estimation on residual examination time

Before a patient goes to the DR or the PR, the medical staff makes an estimate on
the waiting time in the relevant room. Improving the capability of the medical staff
to determine this waiting time might result in patients being sent to the relevant
room at a more appropriate time. This could result in less idle time of the scanner.
The simulations done previously used A/(0, 1) to simulate the medical stafls estimate
of the residual service time. This distribution is altered in the constant 0 and
N(0,4). Being able to accurately estimate the residual service times showed to
influence the performance.

4.2 Sensitivity analysis

Assumptions are needed to model the process in simulations. The effect of a change
in these assumptions has to be tested. For example it is possible that the system is
highly sensitive for the arrival rate of urgent patients. If this is the case, adjustments
have to be made to sustain equal performance. Sensitivity analysis is also important
for finding bottlenecks. A minor change in service times resulted in significantly
different performance which probably means that the SR acts like a bottleneck in
the system. Knowing this, additional adjustments might be possible to improve the
system. The schedules Spy noE 1, Sps noE 2, Sps Random A, Sps Random A2
and Sp; Random resulted in the most promising results, therefore these schedules
are chosen for the sensitivity investigation. Results can be found in Figure 12.20 in
the Appendix.

Adjusting the service times

By adding another random variable to the SR usage time, the effect a slight increase
or decrease in the SR usage time has on the overall performance can be investigated.
For the schedules, the SR usage time is adjusted by the following distributions:

e N(-1,0.5)
e N(1,0.5)

Only a slight adjustment in SR usage time showed to severely affect the performance
of the system. This suggests that the SR is still the bottleneck of the system.
Continuous improvements are necessary to achieve better performance.

Adjusting patients’ punctuality

Patients’ punctuality is believed to have a high impact on the system [3]. To
simulate the situation where patients arrive almost always before the appointment
time, patients’ punctuality can be taken equal to, for example, 10 minutes. This also
gives enough time to get undressed before being scanned. Taking this punctuality
results in a better performing system, it might be recommended that more effort is
being put to make sure patients arrive on time. As a reference, the schedules where
the patients arrive precisely on time are also simulated. Comparing a punctuality of
0 (arrival on appointment time) and 10 (arrival 10 minutes before appointment time)
showed a big difference. When patients arrive precisely on the appointment time,
they still have to undress (in the out-patient case), which results in appointment
lateness.
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Adjusting arrival rate of urgent patients

The arrival rate of the urgent and emergent patients was assumed to follow a Poisson
process with mean 2.7. In reality, sometimes the arrival rate is higher or lower.
By varying this arrival rate the effect of more or less unscheduled arrivals can
be simulated. Adjusting this arrival rate seemed to have no major influence on the
schedule. This is relevant since the system is quite able to handle fluctuating arrival
rates of urgent patients. Also, the expected waiting time for these urgent patients
did not show a remarkable difference.

Adjustments in percentage of contrast needing patients

The percentage of IV-patients was estimated by the arrival rate of contrast needing
patients and is adjusted by plus or minus 20%. Especially for appiontment lateness,
an increase in contrast needing patients showed to affect the performance negatively.
This has a close relation with adjusting the time spent in the SR. Contrast needing
patients also need more time in the SR (for recovery).

The results are summarized in Figure 4.3. The average change in terms of per-
centage of the performance measures mean appointment lateness, mean overtime,
morning and lunch break, and mean waiting time urgent patients is given for the
five investigated schedules.

Sensitivity analysis

Mean appointment ~ Mean overtime ~ Morning break ~ Lunchbreak  Mean waiting time
lateness U-pat

m#DR=2

400 8 #DR=4

30,0 Resid=0
Resid=N(0,4)
B Scan+N(-1,0.5)
= Scan+N(1,0.5)
B Punc=10

& Punc=0

8 E-rate +20%

Change in terms of percentage

®| E-rate -20%

-30,0 & V-rate +20%

& IV-rate -20%

Figure 4.3: Sensitivity analysis overview
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Chapter 5

Discussion of simulation
results

In the above, different schedules have been simulated. What stands out is the impact
of reallocating the installing of the intravenous access line procedure to a PR. Also,
there is a difference between predefined schedules and the random schedules. This
can have three possible reasons:

e The fixed schedules do not represent the used attribute distributions for pa-
tients in a good way.

e The arrivals are not balanced (random requests for scheduling).

e The patients are assumed to arrive at random, with high probability the
number of more difficult patients is relative large.

The first situation was not the case since the same probabilities were used to con-
struct the fixed schedules. The second and third situation can be compensated
during scheduling patients. In practice it is for example possible to schedule an
IV-patient on another day if the first day already has a lot of these slightly more
difficult patients. Sensitivity analysis also showed significant different performances
when arrival rate of contrast needing patients increases. Therefore these random
schedules should really be treated as a way to estimate upper bounds for the per-
formance measures.

The proposed schedules performed particularly well compared to the current sched-
ule. Only a slight increase in appointment time and overtime seemed to be the
result. For urgent patients the performance improved.

Overall the system seems capable of examining 29 scheduled patients on a working
day. Currently an average of 21.7 patients (including urgent and emergent patients)
are examined on a day. Subtracting the expected 2.7 patients from the emergency
department, results in an average of 19 scheduled patients. Incorporating several
improvement actions and using a new schedule increases capacity with about 50%.

The sensitivity analysis showed the effect of changes in the assumptions. The effect
of changes in SR usage time are particularly of influence on the performance. This
suggest the SR is the bottleneck in this process. Adding one minute to the average
time spent in the SR, resulted in an average change of 42% in the appointment
lateness. An average decrease of 1 minuted could lower the appointment lateness
with 21%.
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Changes in patients’ punctuality resulted in changes of -33% and 35% in appoint-
ment lateness when patients arrived resp. 10 minutes or 0 minutes before their
appointment time. Making sure patients arrive on time is therefore of great inter-
est.

An increase of 20% in urgent patients arrival rate resulted in an average increase of
12% for the appointment lateness. Since the appointment lateness when the urgent
patients arrival rate is at its normal level is about 7 minutes, an increase of 12% is
not very much.

In reality it is also possible for the medical staff to take the breaks separately.
Working with only one technologist decreases performance at that time, but when
delays are foreseen, it might restore the flow in the process. Currently this adjust-
ment is not an option, but when the need is high there is no choice to be more
flexible.

In the next chapter, the quality improvement methodologies Lean Six Sigma and
Theory of Constraints are shortly clarified. Since the CT scan project was con-
ducted using the Lean Six Sigma methodology, Theory of Constraints is used to
search for additional improvement actions.



Chapter 6

Improving the CT scan area
with LSS and TOC

At Deventer Hospital the Lean Six Sigma (LSS) methodology was adopted to im-
prove capacity. LSS is a combination of the methodologies Lean and Six Sigma. Six
Sigma is an organizational and methodological framework originally developed by
Motorola to derive continuous improvements in a organization. It uses a structured
approach to improve business processes (which can be anything from manufacturing
cell phones to handling insurance requests) with the use of improvement projects.
Following the DMAIC steps (Define Measure Analyze Improve Control), the Green
or Black belt (employee who has been educated in Six Sigma) tries to locate influence
factors which prevent the process to function at its highest standards. By control-
ling these influence factors or limiting their impact, the variability in the process
is minimized and causes of defects are removed. During the project several quality
management tools were used, for example Project Charter, STIPOC, CTQ Flow-
down, Gauge R&R, Pareto Chart, ANOVA, DOE and the Control Chart. These
tools help the Green or Black belt to visualize the search for improvements. More
information about Six Sigma can be found in the literature; [7] provides a Dutch
introduction into this methodology and [17] gives the basics in English.

Lean or also called Lean Manufacturing is a slight adaption of the Toyota Produc-
tion System. Toyota designed a production system based on low inventory, speed
and flexibility. Processes have to be fast and disturbances should be removed. The
customer is the main focus, non-value-adding work has to be eliminated. Other
forms of waste like transportation, waiting, defects and overproduction should be
removed. A Value Stream Map (VSM) is a tool to analyze the flow of for example
raw materials or orders to the customer. By using a VSM waste can be visualized.
Solutions like 5S (Sorting, Straighting, Sweeping, Standardizing and Sustaining),
Poka-yoke (mistake proofing, preventing mistakes to occur) and JIT (Just-In-Time)
are used to improve quality, eliminate waste, reduce cycle times and, the desired
consequence, reduce costs.

Lean Six Sigma is the combination of both methodologies. It inherits the analyze
and diagnostic approach as well as the organizational framework for continuous im-
provements from Six Sigma. The spirit of Lean Manufacturing is incorporated to
get the mind set on eliminating waste as well as the sound tools to handle process
flows. The reader is referred to the Dutch [8] and the English [12] for more infor-
mation. In [26] the authors explain Lean Six Sigma in particular for service and
health care.
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During the Lean Six Sigma project at the radiology department, the different phases
(DMAIC) were followed. By using the VSM it was evident that installing the in-
travenous access line could be removed from the SR. This resulted in an instant
decrease of the time needed in the SR. It also became clear that the process was
functioning under less stress than it could handle. The data showed that many
more patients could be examined. Proving this by using data analysis is vital for a
project to succeed.

Another quality improvement methodology is Theory of Constraints (TOC) [13].
Introduced by Dr. E.M. Goldratt, this theory suggests that in any system the flow
is limited by a small number of constraints. These constraints are called the bottle-
necks of the process. A process can be seen as several tubes through which a liquid
flows. The smallest tube determines the overall speed and thus is the one limiting
the throughput. The first step to improve the process is to locate these bottlenecks.
Changes are made to make sure the bottleneck is removed (the tunnel is broaden).
Then the next bottleneck is part of investigation, repeating this several times to
improve the process.

In the CT scan case, the bottleneck was clearly the SR. This phase was the slowest
(compared with checking-in, undressing, getting dressed) and therefore determined
the throughput. A closer look at the uise of the SR results in several possible
improvement actions. As already described, at first a scout is made to determine
the position of the scan. One could argue that this is unnecessary when in some
way it is possible to position the patient or just scan a wider area (but this has
unwanted consequences). When contrast needs to be administered, this is pumped
through the intravenous access line after the scout. Perhaps this is not necessary
anymore when the contrast is taken for example orally before proceeding to the SR.
For several in-patients it was necessary to get an opinion of a specialist if another
scan needed to be made. If somehow this procedure can be diverted, just making
the extra scan or invest in extra training for the technologists to make this deci-
sion by themselves, valuable time can be saved. Close proximity of a specialist and
clear regulations can otherwise perhaps decrease the necessary time. Using multiple
technologists might reduce the time needed in the SR because multiple tasks can
be performed in parallel. For example while one technologist helps the previous
patient back to his DR, the other prepares the scanner for the next patient.

It was shown that with minor adjustments the CT scan is perfectly capable to han-
dle the demand. The way of planning the patients however determines also the
throughput. Thus increasing the number of patients scheduled on a day should also
be part of the investigation. TOC does not have the tools to handle this properly, it
merely guides into the direction of improvements. Even when a schedule is obtained
which is capable to let the SR run optimally, it is still possible that the demand is the
bottleneck. If simply not enough patients need to be examined, the throughput can
not be increased. Demand has to be increased by ways outside the scope of this the-
sis. But increased capacity probably also increases the demand for examinations [3].

The discussed improvement methods help to find improvement actions. Many pro-
cesses can not be improved by queuing theory or simulations only. When the opti-
mal layout of the system is known, queuing theory and simulations help the process
manager to make the right decisions. Optimizing an already sub-optimal process is
a waste of time, but much time has to be put in generating an appropriate model.
Therefore it is advised to combine these calculation intensive techniques with the
quality management methodologies to obtain a more efficient process while main-
taining or improving quality.



Part 11

Queues with a restriction on
overtaking
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Introduction of Part 11

During the analysis of the CT scan routine as described in Part I of the thesis,
an interesting property was found: patients are not allowed to overtake each other
in the dressing room. Until now, queuing models allow overtaking and although a
situation where overtaking in a CT scan routine could occur is unlikely, a model
with overtaking could be seriously biased if overtaking is not desirable. The CT
scan routine is not the only situation where this property is of interest. In data lines
where packages are sent over several different lines, it is possible that a follow-up
server needs to receive the packages in the same order as they were sent.

Queuing theory is a part of mathematics which analyzes queues. For example jobs,
customers, orders, patients, or phone calls arrive in a system waiting to be served.
For the remaining chapters of the thesis, the objects in the queuing systems are
referred to as jobs. With the use of queuing theory one is able to calculate waiting
times, job’s time spent in the system and the optimal number of servers to meet
certain requirements. These systems can be small, comprised of only one server
like a small kiosk with only one cashier. The system can also be more complex.
An example is checking in at an airport where several stages have to be proceeded
(checking in, security check, boarding) with multiple servers and group arrivals.

Prior to analyzing queues where overtaking is prohibited, some basic queuing prin-
ciples are presented in chapter 7. Then, a literature review is used to establish
credibility for this research in chapter 8. Queuing systems with one or two stages
and a non-overtaking property, are introduced in chapter 9. In the next chapter, the
steady state probabilities are determined in a less complex case, for exponentially
distributed arrival times and service times. Simulation methods are used to derive
more general conclusions in chapter 10.
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Chapter 7

Queuing theory framework

The very beginning of queuing theory is said to be an article by Erlang published in
1909 [10]. At this time Erlang worked for the telephone company in Copenhagen.
His most important publication was one in 1917 [11], where he presents a formula to
determine the probability a job finding a saturated system upon its arrival (Erlang’s
loss formula) and a formula to calculate the expected waiting time.

During the first years of queuing theory there was no uniform way to characterize
a system. In 1953 Kendall introduced a notation to solve this problem [22]. The
notation consists of three positions A/B/C.

e Position A: the arrival distribution. These arrivals follow a Poisson process
(A = M), which represents random arrivals. The M stands for Markovian,
referring to the underlying Markov process (a process in which the next situ-
ation depends only on the current situation). Other possibilities for the first
entry in Kendall’s notation are G (denoting a general arrival distribution),
D (a deterministic arrival distribution, arrivals at fixed times) and Ej (an
Erlang distribution with parameter k, which is used to model jobs consisting
of multiple tasks).

e Position B: the service distribution. When the service times are exponentially
distributed, this second entry will be an M, when deterministic a D and when
generally distributed a G.

e Position C: the number of servers in the system. For example, C' = 2 resem-
bles a system with two servers in parallel.

Properties such as a finite waiting room, the population size (population where ar-
rivals come from, which can affect the arrival rate) and queue discipline are mostly
denoted by expanding Kendall’s notation with additional parameters. For exam-
ple, an M/M/2/3 system resembles a system with Poisson arrivals, exponentially
distributed service times, two parallel servers and a finite waiting room with space
for at most 3 jobs. Jobs arriving when 3 jobs are already waiting leave the system
upon arrival (these jobs are not served).

In [24], Little introduced a formula describing a relation between the arrival rate
(average number of jobs arriving during a specified time period, denoted with \),
average number of jobs in the system (E[L]) and the average total time spent in the
system (E[S]). This relation is given by E[L] = AE[S].

Wolff popularized and gave the first rigorous prove that Poisson arrivals see time
averages (PASTA). This property states that in an M/./. system the fraction of
time the system is in a specific situation (called a state), is equal to the fraction of
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jobs finding the system in that situation. With the PASTA property performance
measures can be obtained.

This chapter introduces notations and theorems for queuing theory which are needed
to investigate more complex queuing systems. The standard tandem queue is in-
troduced in the next section and is used to show some basic calculations.

7.1 The tandem queue

A type of queue one often encounters in practice is the tandem queue. This queue
is a representation of a system with multiple servers placed in series. In the tandem
queue, as depicted in 7.1, jobs arrive according to a certain distribution. A job is
served in stage 1 by a server Sy. If on arrival, this server is busy and thus the job
can’t be served directly, it takes place in the first queue (Q1). The job waits for
server S; to finish the service of all jobs which arrived earlier. A total waiting time
of Wy (> 0) is needed before the job can be served. The service time in the first
stage is defined by Bj, which is distributed by a given non-negative distribution.
After completing its service in stage 1, the job proceeds to the next stage. If the
server in stage 2 is empty it can be served immediately, otherwise it joins the queue
Q2 where it stays a waiting time of W5. The service time B is needed to finish
the service of the job after which it leaves the system. The total time the job is in
the system: Wy + By + Ws + Bs, is denoted by S and is called the sojourn time
(or throughput time). For the standard case, the service times are assumed to be
independent.

Arrival Stage 1 Stage 2 Departure
— ! : F— q, B : —
S w, G B, S W, G B,

Figure 7.1: The standard tandem queue with two stages

To follow the notation used by Pinedo and Wolff [31], this system can be described
by M/M/1—M/1. Stages are separated by arrows and the service situation in each
stage is characterized by Kendall’s notation. The second stage has only two po-
sitions since the arrival distribution is fixed by the departure distribution of the
previous stage. Some calculations for the case where the arrivals are a Poisson
process with arrival rate A and the service times at both servers are exponential
distributed with mean % will be shown.

The system can be seen as a collection of states (situations) between which the
system alternates over time. In this tandem queue case, a state consists of two
entries (ni,ns2); n1 denotes the number of jobs in stage 1 and ng the number of
jobs in stage 2. State (3,1) is therefore the situation in which there are three
jobs in stage 1 (two in the queue )1 and one job in service at server S7) and
one in stage 2 (in service at server Sp). The state space can be described by
N = {(nl,ng)\nl :0,1,...,00, no :0,1,...,00}.

In queuing theory, exact calculations or simulations are used to determine the limit-
ing behavior of a system, since even in the simple M/M/1 case the time-dependent
behavior leads to very difficult state probabilities (see [1] p.101). This suggest that
explicit solutions for more general situations (that is, time dependent) are often
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impossible to obtain.
In order to introduce Markov characteristics in popular queuing models, some the-
orems from Markov chains theory are introduced in the next section.

7.2 Markov theory

Let the state space, defined by N, be an infinite or countable set containing the
possible states. Consider a continuous time stochastic process {X (¢), ¢ > 0} which
takes values form N. This stochastic process is called a continuous time Markov
chain if for all ¢,s > 0 and states (i,j) € N it has the following equality:

P(X(t+s)=4X(s) =1,X(u) =2(u),0 <u<s)=PX({t+s)=jX(s)=1).

This equality is called the Markovian property and it states that the conditional
distribution of the future state at time t + s, given the present state (at time s)
and the states before time s, depends only on the present state. In the special case
where the distribution is also independent of s, the Markov chain is said to have
stationary homogeneous transition probabilities. In that case, the probability of
going from one state i to a state j does not change over time. This type of Markov
chains will be considered further on.

The states in the state space can have several characteristics. States ¢ and j are said
to communicate if it is possible to reach the other state (possibly by passing states
other than 7 and 7). If all the states communicate with each other, the Markov chain
is called irreducible. A state is called transient if the probability of ever returning
to this state equals one. If this is not the case, the state is called recurrent. If the
expected time of returning to state 4 is finite, state ¢ is positive recurrent. If this is
not the case the state is said to be null recurrent.

The transition behavior in a continuous Markov chain is captured in the matrix
Q. The entry g;; in Q, denotes the transition rate from departing state ¢ to state j.
In state ¢ a transition takes place after an exponential time with parameter i Qij-
The system makes a transition from i to j with probability pi; = gi;/ > j; Gik- By
defining ¢;; = — > i Qi the rate out of ¢, the matrix Q is called the generator of
the continuous time Markov chain.

Under certain conditions, the generator Q can be used to derive a limiting distri-
bution (stationary). This distribution determines the average time the system is in
a specific situation. The limiting distribution is used to calculate the performance
measures. An important theorem from Markov chain theory proves the existence
of a unique stationary distribution.

Theorem 7.2.1 If the following conditions are met
e the Markov chain is irreducible
e the Markov chain is positive recurrent,

there exists a unique stationary distribution .
Proof See pl175-177 in [35].

The probability that the system is in state ¢ converges to m; when ¢t — oo and
the conditions of Theorem 7.2.1 are fulfilled. These limiting probabilities can be
calculated using the balance equations. Balance equations balance the number of
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transitions into a state and out of a state. The transitions from state i to state
J occur at rate ¢;; and therefore the number of transitions from ¢ to j per time
unit equals m;q;;. The number of transitions out of state i per time unit equals
e Zj;ﬁi, ¢ij- The number of transitions per time unit into state ¢ equals Zj# Qs
for 7,5 € I. These equations can be simplified to the equality 0 = 7Q. Using
normalization to acquire the limiting probabilities results in a unique stationary
distribution. More information about Markov chains can be found in the literature
[1], [30] and [35].

Exponentially distributed arrival times and service times are needed to have con-
stant transition rates. Since the exponential distribution has the memoryless prop-
erty, the rate of going from state ¢ to state j does not change overtime. If this
rate would change over time (which occurs with other arrival time and service time
distributions), it is impossible to derive equations which balance the flow into and
out states (the balance equations). In equilibrium (steady state), the flow out of a
state equals the flow into the state. For some distribution, a change in state space
description is possible to obtain constant transition rates. For the Erlang distri-
bution it is possible to divide the service time in several phases. Instead of using
the number of jobs in the system, the state space uses the number of phases (a
job consists of several phases) in the system. Because the Erlang distribution is the
sum of several exponential distributions, the service time of a phase is exponentially
distributed and constant transition rates are obtained. Unfortunately, for almost
every other distribution, such a change in state space is impossible.

The next section shows how to use the balance equations to derive a unique sta-
tionary distribution for the tandem queue.

7.3 Steady state probabilities

In order to obtain the balance equations, the transition rates between the states need
to be derived. Assuming the system is in state (0,0), the only possible transition is
an arrival of a job (since there are no jobs in the system it is impossible for the next
event to be a service completion). These arrivals follow a Poisson process with rate
A and therefore g(g,0)(1,00 = A- The only way the system can return to state (0,0) is
by going through state (0,1). The rate at which this transition occurs is equal to u
(the service rate). For state (0,0) the balance equation

Ap(o,o) = HP(0,1)

is acquired. For the other states balance equations are obtained in a similar way.
Resulting in the following system of equations:

AP0,0) = HP(0,1)
A+ )Pmi,0) = AP(ny—1,0) + UP(ny,1) 11 >0
A+ )P0,y = HPAna—1) T HPOma+1) T2 >0
A+ p+ 1)P(nyme) = APna—1m2) T EP(ny+1,n2) T HP(ny mat1) N1,M2 >0
Z Pning) = L.
n1<0,n2<0

Since the corresponding Markov chain is irreducible (every state can be reached
from any other) and positive recurrent, assuming the occupancy is less than one
(demand is less than, otherwise the number of patients in the system will go to
infinity, theorem 7.2.1 proves the existence of a unique solution to these equations.
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Solving these equations eventually leads to the following formula:

)\ ni+ne )\ 2
= (3) - (-3)

With the steady state probabilities, the mean performance characteristics can easily
be found. The arrivals follow a Poisson process, the PASTA property applies. The
stationary distribution gives therefore the probability of a job arriving in a specific
state. In the next section, several performance measures are determined for the
standard tandem queue.

7.4 Steady state performance measures

The number of jobs in the system can be obtained from the steady state prob-
abilities when there is a clear correspondence between the states and the num-
ber of jobs in the system. The expected number of jobs in the system can then
be calculated by multiplying the number of jobs in the system with its corre-
sponding probability. In case of the standard tandem queue, this is just E[L] =

2
PO poa) (AT o
n1,n2=0 m m p=A"

Using Little’s formula (AE[S] = E[L]), the expected waiting time is calculated. For
the standard tandem queue, the expected time in the system equals % When
the sojourn time in the queue is known, the expected waiting time is calculated
easily. The total time spent in the system equals the sum of the expected waiting
time in the queue and the expected service time. For the standard tandem queue
this is just %, so the expected waiting time in the queue equals uéﬁ_—/\k)' Applying
Little’s formula in the queue (the waiting line) the expected number of customers
in the queue can be calculated (E[L,] = AE[W]). Other performance measures are

derived in similar ways.

The following chapters focus on a specific situation in which jobs are not allowed
to overtake each other in the system. A non-overtaking property is introduced and
its effect is investigated.
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Chapter 8

Non-overtaking queues in
literature

In literature, overtaking in queues has been investigated [4], [41], [45]. Overtaking is
said to occur when a job A arrives before a job B, but job B departs first [45]. This
property is only treated in queuing networks (such as the network shown in 8.1). In
a single server queue with the FCFS discipline, overtaking is impossible. A queuing
network consists of several queues with the FCFS discipline. If each sub-system
(a queue and a server) has the FCFS discipline, exponentially distributed service
times, Poisson arrivals, possible job departures after each service (when a job is
served, with a certain probability it leaves the system, otherwise it joins another
sub-system), and the occupancy is below 1, the network is said to be a Jackson
network [21]. In these networks it might be possible to overtake.

.
L mo—Tmo--

Figure 8.1: Example of a queuing network where overtaking is possible

It has been shown that the more overtaking takes place, the more correlated the
sojourn times are [45]. Walrand and Varaiya [41] show that in any open Jacksonian
network, the sojourn times of jobs at the various nodes of a non-overtaking path are
all mutually independent. The sojourn time distribution at these nodes is known
and therefore it is easy to calculate the sojourn time of jobs on these non-overtaking
paths.

Literature which introduces non-overtaking as a queue property has not been found.
This property is introduced in the next chapter.
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Chapter 9

Queues with overtaking
restrictions

Before investigating queuing systems with overtaking restrictions, a formal defini-
tion to determine non-overtaking is introduced.

Definition Let T; be the time job ¢ commences service and let B; be its service
time. If 35 € Ny such that T; + B; > Tj4; + B;yj, job i + j blocks the server until
jobs i, ..., i+7j—1 have finished service, the system is said to have the non-overtaking

property.

Note that in this definition, every single server queuing system has the non-overtaking
property. For systems with multiple servers (or processor sharing servers) this is
interesting.

Whenever a job has to wait in a stage (due to no room in the next stage or the
non-overtaking property) is gets delayed.

Definition Let T; be the time job i commences service, B; the service time and Y;
the time job i departs from the stage. The delay that job i (D;) obtains is given
by: D; = max(0,Y; — T; — B;).

The definition of overtaking is different from the definition used in queuing networks.
It can be said that the overtaking definition proposed in this thesis is a inner-queue
property, while the definition used in queuing networks is a inner-network property.
Since jobs can not overtake other jobs by taking a different route (which was possible
in the Jackson network, the dynamics will probably be quite different. The property
is investigated for a wide variety of queuing systems, starting with a single stage
queue in the next section.

9.1 Single stage queues

Single stage queues can consist of multiple servers in parallel. Normally, it is possible
to overtake a previous job in parallel systems. Figure 9.1 gives an example of
two queuing systems, one with the possibility of overtaking and one without this
possibility.

Two jobs are considered, job 1 arrives at time 0 and has a service time of 4, job
2 arrives at time 1 and has a service time of 1. In the standard M/M/2 queue,
job 1 is served upon arrival at time 0, job 2 starts service at the second server at
time 1. At time 3, job 2 has finished its service and leaves the system while job 1
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is still in service at the other server. Job 1 departs at time 4 (after completing its
service requirement of 4 time units). In the non-overtaking M/M/2 queue, when
job 2 has completed its service at time 3, it is not allowed to leave the system.
The non-overtaking property makes sure that job 1 leaves the system before job
2. Therefore, job 2 has to occupy the second server for one time unit job 1 has
completed its service. Both jobs leave the system at time 4.

Jobs Ji ] J2 Standard M|M|2 queue Non-overtaking M|M|2 queue
Arrival time 0 1 S, Jq Jq Jq Jq Sy Jq Jq Jq Jp
Service time | 4 2 S, Ja Jo S, Jy Jz LR
Time 0 1 2 3 Time 0 1 2 3
R: Job is ready (server blocked)
Bee T (o [ @0 | @0 | @n

Figure 9.1: Example of a system where overtaking is allowed and one with the
non-overtaking property

The first non-overtaking system of interest is one with two servers placed in parallel
and no queue in front of them (see Figure 9.2). Jobs which arrive while the system
is fully occupied are blocked. Starting with this system gives more insight in the
performance of non-overtaking systems.

Removing the queue results in a system which has a finite state space. Otherwise it
is possible to have an arbitrary large number of jobs in the queue. Limitations on
the queue size results in less complex calculations for the steady state probabilities.
When investigating these systems with a different maximum number of jobs wait-
ing (different queue sizes), the performance of the queuing system with an infinite
waiting room can be approximated.

Figure 9.2: Single stage, two server queue with blocking

In this situation, the order of arrivals needs to be incorporated. A job can only
depart from a system when all previous jobs departed before it. The state space of
this system can be defined by N = {(n,r)|n = {0,1,2} r = {0,1}}, where n equals
the number of jobs in the system (0, 1 or 2 because more jobs are impossible due to
blocking) and r equals 1 if the last job is being delayed (and 0 when this is not the
case). The balance equations result in linear equations which can be solved easily:

APo,o = HPp1,0 t pp2r
A+ wpro = Apo,o+ up2o
2up20 = Ap1o

up21 = Up20-
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Solving these equations results in the following steady state probabilities:

_ 1A+ 2p)
Poo = 2 B
3L+ 202 42X
_ 21
PLo = it 22 + 22
)\2
P20 = 3N 22§ 2a2
)\2
P21 =

3\ + 212 + 2227

Given the steady state probabilities above, the performance measures can be ob-
tained. In equilibrium the fraction of time the system is in state (0,0), equals the
corresponding steady state probability (PASTA). Taking the arrival rate arbitrary
equal to one!, the following formulas for the performance characteristics are found:

2

P(job blocked on arrival) = P(arrival in pa g or pa1) = 22 +3.+2

p2 + 3p

3+2
Aadjusted = A(1 — P(job blocked on arrival)) = M
2u% 4+ 3p+2

g = 2W+2)
(3 + 2p)

The probability for an arbitrary job being blocked equals the probability of a job-
arrival in a situation where it can not be served directly. This situation corresponds
to the states (2,0) and (2,1). By using the PASTA property, the probability of
being blocked (and thus leaving the system upon arrival) equals p(2,0) + P(2,0-
Since some jobs are blocked, these do not effect the system and servers do not see
these jobs arriving. Therefore, the arrival rate of jobs which are served (Augjusted)
is less than the actual arrival rate and can be calculated by multiplying the actual ar-
rival rate (\) with the probability of entering the system (1—P(job blocked on arrival)).
The expected number of jobs in the system is calculated as in section 7.4. Applying
Little’s formula with the adjusted arrival rate and expected number of jobs in the
system, results in the expected sojourn time.

In the standard M/M/2/0 queue (the zero notation suggest the absence of a queue)
jobs never have to wait. Whenever a job arrives and the system is fully occupied
(both servers are non-idle), the job leaves immediately. Therefore the expected so-
journ time is simply equal to the expected service time, i In the system with the

2u+4
2u+3

restriction on overtaking the expected sojourn time is times larger then the

standard case.

The same calculations have been done for systems with room for of 2, 4, 10 or
20 waiting jobs. When the number of jobs allowed to wait increases, the expected
sojourn time seems to converge, see Figure 9.3.

IWhen the actual arrival rate equals 60 jobs per hour and the service rate equals 90 jobs per
hour, a change in timescale from hours to minutes is used to obtain an arrival rate of 1 and a
service rate of 1.5 per minute. By adjusting the time scale, it is always possible to obtain an arrival
rate of 1.
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Expected sojourn time versus service rate
T

14 T T T

T T
Standard M|M|2|0 queue

— — — Non-overtaking M|M|2|0 queue

+ Non-overtaking M|M|2|2 queue

— = Non-overtaking M|M|2|4 queue

Non-overtaking M|M|2|10 queue|

W — — — Non-overtaking M|M|2|20 queue|
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Figure 9.3: Expected sojourn time for different queue sizes.

In the next section, the multistage queue with a possible infinite queue length is
estimated. Other performance measures are obtained from that queuing system.

9.2 Two server parallel queue without overtaking

When the blocking property is removed from the parallel server queue investi-
gated in the previous section, the state space can be written as N = {(n,r)|n =
{0,1,2...}, » = {0,1}} with n the number of jobs in the system and r = 0 when
no job has to wait on a previous job due to the non-overtaking property. If a job is
delayed, r will equal 1. The balance equations are stated below.

APoo = [P1,0 + HP2,1
A+ wpio = Apoo+ up2o+ upsa
(A +2u)pio = Api—1,0 + 1Pit1,0 + Pit2,1 (1> 2)
A+ p)p21 = pp2o
A+ wpir = Api—1,1+ppio (i > 3)

At first, these equations seem not to be very complex. But the interaction between
the two recursive balance equations makes sure that to calculate steady state prob-
ability the previous steady state probabilities need to be known. Using substitution
seemed useless since no terms cancel out. In order to solve the balance equations,
an iterative method (the Gauss-Seidel method) is used as in [16].

The Gauss-Seidel method is used to approximate the steady state probabilities.
This method is an iterative method to solve linear systems of equations and is a
special case of the successive over-relaxation iterative method [39]. the steady state
probabilities can be calculated quite accurately, despite the fact that the Gauss-
Seidel method solves a finite set of linear equations, by allowing a huge number
of jobs waiting in the queue. To use the Gauss-Seidel method, each steady state
equation was divided by the coefficients (in terms of A and u) on the left hand side.
The probability on the left hand side is called p™¢*. At the beginning, starting val-
ues for the probabilities are chosen (not equal to zero). At each iteration, the new
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steady state probabilities are calculated. When using only the old probabilities, the
iterative method is called the Jacobi method. When calculating the new probabil-
ities with the previous calculated probabilities and the old probabilities (for those
states of which no new probability has been calculated yet), the method is called the
Gauss-Seidel method. Using the new probabilities to calculate other new probabili-
ties, the method will converge faster to the steady state probabilities. The intuitive
explanation for this improvement in convergence rate, is the fact that the new prob-
abilities are closer to the steady state probabilities than the old probabilities. A
convergence criterion is used to determine whether approximated probabilities have
converged sufficiently. In Procedure 1, the algorithm is presented.

Procedure 1 : Approximation of the steady state probabilities

Step 1: Assigning values to pffjd

SETpgld =05
p3 = 0.5
SET maxN = 10000 (max number of jobs in system)
FOR 1< j<maxN
SET pjo=0.5%p;_1,0
FOR 3 < j <maxN
SET pj1=05%p;j_1.1
SET ¢ = 10™® tolerance value
SET toll =10
SET tol2 =1

Step 2: Calculate p}'$" using the most recently calculated probabilities

WHILE(toll > tol2)

Peo” = (upSg + upsit) /A

PrG” = (gs + upda + ups) /(A + )
FOR 4 <j<mazN —1

PeY = DI o + mpfih o + o)/ (A + 2p)
a7’ = (upso")/ (N + p)

FOR 3 < j<maxzN —2

P = W5 1 + s o) /(A + )

Step 3: Check stopping criterion

i=mazN,j=1

o new old
toll = E |pi,j —DPi
i=0,j=2

i=maxzN,j=1

tol2 = € x Z pye” |

i=0,j=2
IF toll < tol2
STOP WHILE LOOP

ELSE p' = pjs®
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Step 4: Normalize the p™©" values
new
new __ pﬂj
bij = Zi:maaﬁN,j:l new
i=0,j=0 i

The arrival rate is set arbitrary to one. With the iterative method, the steady state
probabilities are obtained for different service rates. In Figure 9.4, the expected
sojourn time which were obtained by investigating the system with blocking, sim-
ulations and the Gauss-Seidel iterative method are shown. The expected sojourn
times are represented as percentages of the lowest value (this value is set to 100%).
Percentual differences are of more importance than the actual values when compar-
ing estimated performance measueres for different methods. For different service
rates, the expected sojourn time is estimated using the blocked queuing system,
simulations, and the Gauss-Seidel method (iterative method). At low service rates
(corresponding with high occupancy), the approximations from the simulation and
iterative method are about 10% higher than the approximation from the blocked
queuing system. This is probabily caused by a higher probability of being blocked,
which results in less jobs being served. The expected sojourn time is therefore
underestimated. When the service rate increases, the differences decrease. This
suggest that for low occupancy systems, the blocked queuing system with atmost
20 jobs in the queue, results in reliable approximation. For this system with block-
ing, the performance characteristics can be calculated exactly, however, these are
too complex to be usable or to be presented in the thesis.

Expected sojourn time (as % of lowest value)

Service rate = 0.8 |Service rate = 1 [Service rate = 1.5 Jservice rate = 2 Joervice rate = 4
Approximation with blocking  [100% 100% 100,74373% 100,02103% 100%
Simulation 109,13364% 101,35961% 100% 100% 100,18820%
Iterative method 109,65616% 100,21284% 100,74388% 100,02103% 100,00000%

Figure 9.4: Estimation of the expected sojourn time using different methods

The approximation of the blocked queuing system is close too the other methods
and this suggests that using the calculated formulas of the performance measures
in the case of at most 20 waiting jobs, would be a good approximation when the
occupancy is not too high. These formulas however are too complex to be usable
or to be presented in the thesis.

For different service rates, the expected sojourn time is estimated. Since the arrival
rate was chosen equal to one, the expected sojourn time equals the expected number
of jobs in the system (Little’s law).
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Expected sojourn time versus senvice rate

60

Standard M|M|2 queue
—— — Non-owertaking M|M|2 queue

E[S]

25 3 3.5 4 4.5 5

Figure 9.5: Expected sojourn time versus service rate (M/M/2 queuing systems)

In Figure 9.5, the difference is shown between the normal two server queue and
the non-overtaking two server queue. For high service rates (u), corresponding to
a low occupancy, the expected sojourn times for the different queues do not devi-
ate much. In fact, when the occupancy decreases, the expected sojourn time of the
non-overtaking queue converges to the expected sojourn time of the standard queue.
This convergence is due to the decrease in possible delay. Jobs are are less likely to
arrive in a system which is already serving another job. Therefore, the probability
a job is delayed is smaller. When the service rates increase, the probability for a job
to be delayed due to the non-overtaking property decrease. Therefore, the expected
delay for a job decreases to zero, resulting in equal sojourn times for both queues.

Figure 9.5 shows a much higher sojourn time at low service rates for the non-
overtaking queue. When the probability a job finds another job in the system
increases, the probability of delay also increases. This result in a higher expected
sojourn time, especially at low service rates (high occupancy). The graph might
suggest the same relation between occupancy and expected sojourn time for both
systems, this would mean that when the occupancies are equal, the expected so-
journ times would be equal. However, graph 9.6 shows that this is not the case.
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Expected sojourn time versus occupancy

Standard M|M|2 queue
Non-overtaking M|M|2 queue I

Figure 9.6: Expected sojourn time versus occupancy (M/M/2 queuing systems)

The occupancy can be calculated when the expected service time, the number of
servers and the service rate are known. The expected sojourn time and the expected
waiting time are obtained using the steady state probabilities by applying Little’s
formula on the expected number of jobs in the system and queue length. The time
a job spends in service equals its actual service requirement plus a possible delay.
This expected service time equals the expected sojourn time minus the expected
waiting time. Since the arrival rate is known, the occupancy of the non-overtaking
system equals A(E[S] — E[W])/2. The occupancy in the standard M/M/2 queue
is equal to A\/2u(= AE[B]/2). Figure 9.7 shows the occupancy of the systems for
different service rates.

Occupancy versus senice rate
T T

T T T T T T
Standard MMJ2 queue
Non-overtaking MIM|2 queue

Figure 9.7: Occupancy versus service rate (M/M/2 queuing systems)

The probability a job needs to wait upon arrival is a commonly used performance
measure. In call centers for example, the waiting probability is used to find the ap-
propriate number of servers if a condition like ’80% of the calls need to be answered
immediately’ needs to be satisfied. By calculating this probability for systems with
different numbers of servers, the optimal number can be found. The waiting prob-
ability equals the probabilty of a job arriving in a state in which it has to wait.
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My =1 —p(o,0) — P(1,0)

Waiting probability versus senvice rate
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T T T
Standard M|MJ2 queue
Non-overtaking MIM|2 queue | |

Figure 9.8: Waiting probability (M/M/2 queuing systems)

Figure 9.8 shows the waiting probability for different u’s for both systems.

The expected delay an arbitrary job obtains can be calculated by subtracting the
service requirement (1/u) and the expected waiting time from the expected sojourn
time. Figure 9.9 shows the expected delay for different service rates. It is seen that
in a system with two servers, both serving with rate 1 job per hour and an arrival
rate of also 1 job per hour, the expected delay of a job is about 15 minutes. In
the standard M/M/2 queue, this would not occur. Therefore, in systems with the
overtaking restriction, the impact of this restriction should not be underestimated.

Expected delay wersus senvice rate

0.25

E[Delay]

T T T T
Non-overtaking MIM[2 queue

Figure 9.9: Expected delay versus service rate (M/M/2
system)

non-overtaking queuing

In this section, the non-overtaking property has been analyzed for single stage
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queuing systems. In the next section, a special tandem queue is also investigated
with the non-overtaking property.

9.3 Tandem queue with non-overtaking and block-
ing

The tandem queue with two identical servers in the first stage, only one server in
the second stage and no queues in front of the servers (blocking) is extended with
the non-overtaking restriction (see Figure 9.10 for a graphical representation of the
queue). Jobs are still served according the FCFS principle and overtaking is pro-
hibited. Arrivals are distributed according to a Poisson process with rate A and the
service times are exponentially distributed with parameter pu.

Figure 9.10: Graphical representation of the tandem queue

The state space can be defined by N = {(i,5,k)|i = {0,1,r}, j = {0,1,r}, k =
{0,1}}. Where i and j resemble the situation at the first server and second server
in stage one. The third entry, k, resembles the situation at the server in the second
stage. If 7, j or k equals 0, the relevant server is idle and if ¢, j or k equals 1, the
server is busy. If ¢ equals r, a job in the first stage is delayed because the second
server is still busy. If j equals 7, a job in the first stage is delayed due to another
job in the first stage (a job arriving first in stage 1 is still in service). This state
space uses a different notation as the state space used in the single stage queue. It is
impossible to use a description for the number of jobs in the first stage (n1), second
stage (n2) and jobs being delayed (r). For example, in state (n1,r,n2) = (2,1,1)
there are three jobs, one in stage 2 (job A) and two in stage 1 (B and C). One
of the jobs in stage 1 has already finished service, but this state description can
not distinguish which job (B or C) started service first. This is of interest, because
when job B arrived before job C, job B needs to start service at the second stage
before job C (due to the non-overtaking restriction).

This system has the advantage that it has a finite state space. The states clearly
communicate with each other (it is possible to reach any state in a number of steps
from any other state), the system is irreducible. Since the expected time to return
to a state is clearly finite, the system is positive recurrent. This results in the exis-
tence of a unique stationary distribution by Theorem 7.2.1.

Writing out the balance equations and normalizing eventually leads to the following
steady-state probabilities:
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(17N +22 X204+ 16 A2 +8p2) A+ p)

The probability a job is blocked equals according to PASTA, the probability that it
arrives when the system is in state (1,1,0), (1,1,1), (1,r,0), (r,1,1), (1,r,1) or (r,r,1).
This equals

o (17X + 8 1) A2
P(job is blocked) = 170 + 22020 + 16 A2 + 83

The arrival rate has to be adjusted for the possibility of blocking jobs, the servers
see less jobs than there really were. The overall arrival rate equals A but with
P(job is blocked) an arriving job is blocked [39]. Therefore the arrival rate the
system sees equals

L. A (TAZ + 8\ + 4 12
o =A% (1= Pljob o blocked)) = 32735 +(22 A2p1 416 A2 +?%u3'

The number of jobs in the system is calculated by multiplying a number of jobs in
the system and its steady state probability.

E(L) = 0% p(0,0,0) + 1 * (P(1,0,0) + P(0,0,1)) +
2% (p(1,1,0) + P(1,0,1)) + P(1,r,0) + Pro,1)) +
3% (P11 + P11 T P + Pirr))

2(24)\2+23>\,u+8u2)/\

E(L) =
(L) 17TA3 + 22220 + 16 A2 + 8
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Using Little’s formula, E(S) is obtained:

1 24 N2 + 23 A\ + 8 2
—E(L) = .
Nadj (T2 +8Au+4u?)

E(S) =

In this system it is impossible for a job to have a waiting time since jobs leave
on arrival when they are not directly served. Therefore, the sojourn time of a job
consists of its service times in the two stages and its delay (D) between stage 1
and 2. The expected service time of a job equals 2 * 1/u, subtracting this from the
sojourn time results in the expected delay.

E(D) = E(S—Bi—B2)=E(S)—E(B1) — E(B)

A(L0N + 7 )
w(TAZ4+ 8 u+4pu2)

In the next section, the blocking property is removed. This allows jobs to wait when
the first stage is fully occupied. Computationally, this situation is more complex.
Other methods are necessary to estimate the system’s performance.

9.4 Tandem queue with non-overtaking

Tandem queues with multiple servers in a stage or different paths for jobs can be
subjected to overtaking. The next queue is a tandem queue with two identical
servers in parallel in stage one, with one queue with no restriction on the number
of jobs in the queue. The second stage contains an individual server with no prior
queue. A graphical representation as seen in most queuing theory related articles
and textbooks is shown in Figure 9.11. The possibility of overtaking is not allowed
and therefore earlier arrivals lead to earlier departures.

Figure 9.11: Graphical representation of the tandem queue

Let B! denote the service time of job i in stage 1 and B} the service time of job
1 in stage 2. Define the total time spent in service T; of job i by the time the job
stays in the stages 1 and 2. This includes the possible delay which occurs if a job
has finished the service needed in stage 1 but a previous job still occupies the server
in stage 2. Let D! be the delay for job ¢ in this situation. The total time spent in
service can be written as:

T' = B} + D' + BS.

The service times in every server are exponentially distributed with parameter p
(resulting in a mean service time at a server of 1/u) and the arrivals follow a Poisson
process with arrival rate A. A job which initiates a busy period finds an empty sys-
tem and therefore will not be interrupted by another job. The total service time is
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Erlang-2() distributed because it passes two stages with exponentially distributed
service times and no possibility of being delayed (overtaking is prohibited).

Other jobs however will be subjected to a differently distributed total service time
due to the possibility of delay.

Writing the system in Kendall’s adjusted notation gives us the queue M/G/2 —
M/1/0 where the G stands for an arbitrary distribution because of the adaptation
of the exponential distribution due to delays.

The state space can be defined by N = {(¢,4,k,0)|i = {0,1,r}, j = {0,1,r}, k =
{0,1}, 1 ={0,1,2,...}}. The state space is identical to the state space which was
used in the case with blocking, with the extension of a fourth variable indicating
the number of jobs in the queue.

The corresponding balance equations are stated below.

Ap(o 0,0,0)

(A =+ 1)P(1,0,0,0)
(A +21)p1,1,0,0)
(A + 1)P(0,0,1,0)
(A +2u)p,0,1,0)
(A +31)p@a.1,1,0)
(A + 1)P1,r,0,0)
(A + )P r0.1,0)
(A+20)p(r,1,1,0)
(A +20)p@,r1,0)
(A + 1)P(rr,1,0)
and for ¢ > 1 :
(A +20)p(1,1,0,0)
(A +3u)p
(A+pp
(A +20)p(r1,1,4)
(A +21)p(1,r1.4)
(A4 )P 1,0)

P(1,1,1,4)

1r0z

HP(0,0,1,0)

AP(0,0,0,0) T 1P(1,0,1,0)

AP(1,0,0,0) t 1P(1,1,1,0)

1P(1,0,0,0) T KP(r,0,1,0)

AP(0,0,1,0) T HP(1,1,0,0) T HP(r,1,1,0)
AP(1,0,1,0) T 1P(1,1,0,1) + HP(r,1,1,1)
MP(1,1,0,0) T HP(1,r,1,0)

1P(1,0,1,0) T K#P(1,,0,0) T HD(rr,1,0)
HDP(,
HP(1,1,1,0)

HP(r,1,1,0) + UP(1,r,1,0)

AP(1,1,0,i—1) + HP(1,1,1,4)
AP(1,1,1,i—1) T BP(1,1,0,i+1) T HP(r,1,1,i41)
AP(1,r,0,i—1) T BP(1,1,0,i) T BP(1,r,1,4)

AP(r,1,1,i—1) T BP(1,r,0,i41) T UP(rr 1,i+1) T HP(1,1,1,4)

AP(1,r,1,i—1) T BP(1,1,1,4)
AP(rr1,i—1) T HP(r,1,1,0) T HP(1,r1,4)

1,1,0) T 1P,r,0,1) T AP(r,0,1,0) T HP(rr,1,1)
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The iterative equations can be written as follows:

A\ i+l u i+l it2—k
P(1,1,0,i+1) = <>\ n 2#) P(1,1,0,0) + Y Z (A n 2#) D@,1,1,k)
k=1
3 i+2 \ i+3—k
Pa,1,1,i41) = N) P,1,1,0) + % Z ()\ n 3#) (P1,1,0,6) + P(r1,1,k))
k=2

z+1 i+2—k
p(l 7,0,0) )\ Z ()\ n M) (Pa1,0.k) T P(1r1,k))

z+1 A\ i+t2—k
2,u> Pr1,1,00 T 1 h Z <)\ n 2/1) D@a,1,1,k)

i+2 i+3—k
HZ A (Pa,r0.k) + Plrrk))
)\ 315Uy 3Ly

>/
>,+>/+

Pra1,i+1) =

Pa,r0,i+1) = (

>
+

+ — A+ 2u
)\ 1+1 M 41 )\ i+2—k
Pty = </\ T 2u> P@,r1,0) t 5y Z <)\ + QM) P(1,1,1,k)
k=1
A i+1 “ i+1 A i+2—k
P(rr1,i+1) = <)\+M) P(r,r,1,0) + X Z <)\+M> (P(T',1,1,k) +p(1,r,1,k))-
k=1

Solving these equations analytically seemed to be too complex. Again, the iterative
Gauss-Seidel method (introduced in section 9.2) is used to approximate the steady
state probabilities. The program follows the same steps as the program used for
the single stage queue and is therefore omitted from the thesis.

The expected waiting time, sojourn time and delay are calculated using the steady
state probabilities. Figure 9.12 shows these performance measures for this queuing
system.

Expected sojourn time and waiting time versus senvce rate Mean delay versus senvice rate

25

E[S] and E[W]
= N
o o
E[Delay]
o o
=) ©

o
IS

o
N

Figure 9.12: Performance measures for the two stage tandem queue without over-
taking

The restriction on overtaking and no queue in front of the second stage results in
some jobs being delayed. The possibility for a job to be delayed can be calculated by
summing all steady state probabilities corresponding to a state containing a delayed
job (PASTA). Figure 9.13 shows this probability for different service rates. For low
service rates, the probability of delay can be very high.
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Probability of a job being delayed versus senice rate
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Figure 9.13: Probability of delay for the two stage tandem queue without overtaking

The amount of delay a job obtains in different situations can be calculated when
conditioning on the situation in which the system is when the job arrives. The first
job which initiates a busy period is not subjected to delay. Jobs which arrive during
a busy period however, can arrive in a situation in which they have to wait on a job
in front of them. There are four situations in which a job can start service when it
is not the first in a busy period.

e Situation 1: (1,0,0, %), a job starts service when only one server in stage 1 is
serving another job.

e Situation 2: (0,0,1,0), a job starts service when one job is in service in stage
2.

e Situation 3: (1,0, 1, k), a job starts service when one job is in service in stage
1 and one job is in service in stage 2.

e Situation 4: (r,0,1,k), a job starts service when one job is ready in server 1
(but blocks the server) and one job is in service in stage 2.

The job starting service is the job in front of the queue. Situation 2 can not have a
queue since the two servers in stage 1 are both idle and any job in the queue would
already be in service (the system would then be in situation 1, 3 or 4). Delay of a
job arriving in situation 1:

D' = max(0, R + B! — Bi) £ max(0, B~ + B! — Bi).

Where Ri_l is the residual service time of job ¢ — 1 at stage 1 and the equality
is valid because of the memoryless property of the exponential distributed service
times.

The delay of a job arriving in situation 2:

D' = max(0, Ry! — B) 4 max(0, Bi~! — BY).
The delay of a job arriving in situation 3:
d

D' = max(0, R\ '+ D'+ BL '~ Bi) = max(0, Ry ' 4+max(0, Ry >~ R 1)+ B —Bi)

max(0, Bifl -+ max(0, B?Q — Bifl) + B?l - BY).
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The delay of a job arriving in situation 4:
i_ i—2 i—1 iy 4 i—2 i—1 i
D' =max(0, Ry 4+ By~ — B}) = max(0,B5 “+ By — Bj).

Conditioning on the service times and using the law of total probability results in
closed forms for the expected delays.

E[D?|arrival in situation 1] = E[E[E[max(0, B~ '4+Bi ' —Bi)|Bi = z]|Bi™! = y]] =
0o oo B;_i_l-i-y ) . ‘
/ / / (By ' +y — 2)pue™ " dx pe™ dy pe""> - dBy =
o Jo Jo
o0 oo ) 1 . - .
/ / ((Bé_l er) - (1 _ efu(B2 1+y))> uefuy dy IuejLBQ 1 dBé_l _
o Jo i

> . 1 1 e mB’ i-1 . 5
Byl — 4~ ———— | pe P2 dBy = —
/0 < oopop 2 2 4

Where integration by parts is used several times.

E[D?|arrival in situation 2] = E[E[max(0, BS~* — B})|Bi = z]] =

o B;_l ) i1 )
/ / (Bé_1 — 2)pe M dxpe M Bz dBé_1 =
o Jo

jo%s) - Bifl o )
/ Bi ! — 1 + e e 1Bz 1dBéfl _ b
0 1% p 2u

Similar calculations result in the expected delay for a job arriving in situation 3.
E[D’|arrival in situation 3] =

E[E[E[E[max(0, By ' +max(0, By =By~ ')+B;_,~B1)|Bi = «]|B]"' = y||BL_, = 2] =

) oo B;72 y+maX(O,Bé,72—y)+z )
/ / / / (y +max(0, By 2 —y) + 2 — x))
0 0 0 0

pe M dr pe™ M dy pe H* dz uef“B;QdB;_Q =

oo oo . 1 i i i .
/ / <<B;—2+z><1e”<32 2*”)) (1—e™#B5) e dz pe#P2 " dBY 2+
0 0 2

o0 o' ) i 7u(z+23372 i )
0 0

o0 . 1 1 _HBé72 i— i— .
/ <(B§2 -—+—+ 67)(1 — e 1B 2)) e P de;Q-i—
0

B 2
0o —uBi~? 4 . —2uBi~? -~ '
/ (e Mz T T S 4; )ue“Bz "By
0
5 5 5
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A job arriving in situation 4 has the same expected delay as a job arriving in
situation 1, because not only the service times at servers in stage 1 and the server
in stage 2 are equally distributed, but also the other job in stage 1 has already
completed its service and can proceed immediately to server 2 if this server becomes
empty. Therefore the residual delay of the job in stage 1 equals the residual service
time of the job in server 2.

. 5
E[D’|arrival in situation 4] = —
n

With these expressions for the expected delay in certain situations, the expected
service time for these jobs can be derived very easily. The expected total time in
service (E[T]) consists of the service time in stage 1, the delay in stage 1 and the
service time in stage 2.

. 1 5 1 13
E[T"|arrival in situation 1] = —+ —+ — = —
w4 o Ap
. 5
E[T"|arrival in situation 2] = —
2p
T . 11
E[T*|arrival in situation 3] = —
3
e 4 e . 13
E[T"|arrival in situation 4] = ™"
"

A job finding one job in stage 1 and one in stage 2 (situation 3) has therefore an
expected total service time of 11/3p of which only 2/p is its actual service time.

For jobs starting service in the system, the expected time in service and the ex-
pected delay were calculated. For arbitrary jobs, the expected delay and time spent
in the system were approximated using the Gauss-Seidel iterative method. In the
next section, these expressions are calculated for a server with different service rates
between the stages.

9.4.1 Different service times between stages

In practice the assumption of the same mean service time is one which often can
not be justified (nor are the Poisson process or exponentially distributed service
times but to make it analytical doable one needs to make concessions). Therefore
the same set up is considered as in the previous section, but with different service
rates between the two stages. The service rate of the servers in stage 1 is p; and
the service rate in stage 2 is po.

The resulting balance equations are more complicated. By adjusting the previous
iterative program to calculate the steady state probabilities, the performance mea-
sures are calculated.

Figure 9.14 shows the expected delay of an arbitrary job for different service rates.
A decrease in service rate will increase the expected delay. Graphs for the expected
sojourn time, expected waiting time and probability of delay are given in Figure
12.21 in the Appendix.
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SBurface Plot: Expected delay versus service rates

Contour Plot: Expected delay versus service rates

Figure 9.14: Expected delay of an arbitrary job for different service rates

Following the same steps as in section 9.4, the formulas for the expected delays in
the given situations (1, 2, 3 or 4 as stated in the previous section) are obtained.

E[D?|arrival in situation 1]
E[D‘|arrival in situation 2|
E[D?|arrival in situation 3]

E[D?|arrival in situation 4]

201 (1 + o) + 113
2ppa(pa + pi2)
oM
pape(pa + p2)
pi1 (8 (pa + p) + 3p3) + i
2u1p2(pn + pr2)(2p1 + p2)
pa (201 + 3p2)
po(p1 + p2)?

Taking the same value for p; and po results in the previously obtained formulas.
Since the service times in the two stages are not equally distributed anymore, the
expected time a job is in service also changes.

E[T"|arrival in situation 1]
E[T"|arrival in situation 2]
E[T"|arrival in situation 3]

E[T"|arrival in situation 4]

In the next chapter, more complex
simulation.

2011 (201 + 3p) + 3u3

2p1pa2 (1 + p2)
pa (31 + 4pz) + 243

2papz (1 + p2)
pi1 (601 (2001 + 3p2) + 11p3) + 313

2u1p2(pn + p2)(2p1 + p2)
3pa (pa(pa + 2p2) + pi2) + 3

2
pa (11 + p2)”

systems are investigated using discrete event



Chapter 10

Discrete event simulation

In this chapter, the single stage queue and the tandem queue investigated in the
previous chapter are investigated more thoroughly. Performance characteristics are
obtained for cases with different service time distributions and different numbers
of servers in the stages. The restriction of only two stages is still maintained, but
more stages could of course be incorporated in the design of the program.

For a variety of distributions, bounds are needed to make the theory applicable in
practice. The goal is to acquire an overview of the characteristics of these particular
queuing systems in order to facilitate in approximating expected delays, waiting
times, throughput times and delay probabilities.

10.1 Model description

A model to investigate the particular queue has been made in Matlab 7. At the
beginning the model is initialized. An end time and a start time are defined, the
distributions for the service times and arrival times as well as the number of servers
in stage 1 and 2 are chosen. The program works roughly as follows: after each event,
the times for all possible next events are calculated and the minimum is taken to
be the next event (an arrival or service completion).

As a result, the program is able to generate a matrix which is as stated in Figure
10.1.

Start service | End servie in | Start service
Job number Arrival in stage 1 stage 1 stage 2 Departure

Figure 10.1: Output matrix from discrete event simulation.

From this matrix the performance of the queue can be easily derived since it con-
tains all relevant data. The program for the single stage tandem queue with the
non-overtaking property is obtained by removing one stage from the tandem queue
program.

10.2 Warm-up period in discrete event simulations

When using discrete event simulation, the problem of reaching steady state needs to
be noticed. A simulation program normally does not start in steady state, but in an

7
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empty state or some other specific state. However when one is interested in steady
state behavior, which is most often the case in simulating theoretical queues, this
can seriously disrupt estimating performance characteristics. The problem which
arises is called initialization bias, warm-up period, start up or initial transient.

A commonly used method to determine the length of the warm-up period is us-
ing the Marginal Standard Error Rule (MSER) [25]. The MSER rule calculates the
variance of the estimated characteristic for different subsets of the whole simulation.
It starts with the complete set and removes the first observation, the variance of the
remaining observations is then calculated. This procedure repeats itself for about
half the total number of observations. The point at which this variance is minimal
is taken as the truncation point. The idea behind this procedure is that this will
result in tighter confidence intervals for the estimated performance measure since
the variance is minimal. After determining the truncation point, the performance
measure (in this case the mean sojourn time) is estimated.

10.3 Single stage queue

The first queue which is examined is a single stage queue consisting of n servers
in parallel and with the property that overtaking is prohibited (note that when n
equals 1, the ordinary M/G/1 queue is obtained which is not influenced by the
restriction on overtaking). The time a job is in the system, the sojourn time, is
the main interest for further research. Knowing this performance measure is one
most relevant in practice. For most jobs the time in the system is the property one
usually wants to minimize, since the longer a job stays in the system, the higher for
example the costs are.

Many problems emerge in the analysis of real-life systems. As shown in the previous
chapters, it is often difficult to derive exact formulas for the performance character-
istics. When this problem occurs, an appropriate solution could be using bounds
instead. The system of interest could be bounded by two systems for which exact
solutions are known.

The expected sojourn time in the non-overtaking queue consists of a waiting time
before entering service, a service time and an expected delay due to the restriction
on overtaking. In the normal M/G/n queue without the non-overtaking property,
the expected service time is the same but the expected delay equals zero because
overtaking in a stage is allowed and a job leaves the system when finishing its ser-
vice. A decrease in service occupancy also results in a lower expected waiting time
for the normal M/G/n queue. Therefore, the M/G/n queue and its lower occu-
pancy, can be used to calculate a lower bound for the expected sojourn time.

To obtain a rough upper bound, the servers in the first stage are put in series.
By letting every job go through the same number of servers in series as there are
servers in the first stage, the worst case scenario for a job is obtained. It resem-
bles the situation in which an arriving job finds a system with in the first stage all
servers busy except for one. All jobs in front of the arriving job are still in service
and complete their services in consecutive order (first job 1 completes service, then
2, etc.). If the arriving job finishes service first, it has to wait for n — 1 service
completions. Including its own service requirement, a total of n service completions
are needed before being able to depart from the system. This resulting series system
behaves as an M/G/1 queue where the service distribution is the convolution (sum
of distributions) of n times the service distribution of the non-overtaking queue.
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Using the Pollaczek-Khinchin formula an estimate on the sojourn time is obtained
[39].

E(Sy) = E(By) + E(W) = E(%HM
BSy = (145 L) B (By)

10.3.1 The M/M/n non-overtaking queue

The case where arrival and service times are homogeneous distributed according
to an exponential distribution is simulated. For different numbers of servers, the
performance measures are estimated. A single simulation run ends when 10.000
jobs have past the system. Repeating the simulation run 10 times, more accurate
estimates for the performance measures are obtained. Every estimation will there-
fore use the information of 100.000 jobs minus the jobs discarded due to truncation
(to determine steady state performance).

As stated before, the M/M/n queue is used to derive a lower bound on the ex-
HWL+n(1—pL)

— can be used to calculate a
np(l—pr)

pected sojourn time. the formula E(Sy) =
lower bound [39]:

E(S,) = E(Wy) +E(B) = Iy, i + E(L‘z)niu +E(B)

where Iy, = (npL)" <(1 _ PL)ni (WZ"L)Z n (an)n>
i=0

i n!
E(L) = w; g prL
1
+n(l—-p
thus E(SL) = W;M(l - pL) -

Taking the load (pr) equal to 1/nu, which is smaller than the load in the non-
overtaking queue with the same arrival and service rate (due to delays), a lower
bound of (u(Iy, + 1) —1)/(u(n — 1)) is calculated. The Poisson distribution is
used to calculate the waiting probability. This can be done easily since many soft-
ware packages are capable of calculating Poisson probabilities.

The service time distribution needed for the upper bound queue is given by the n-
convolution of the exponential distribution. This results in an Erlang-n distribution
with mean n/p and variance n/u?. Substituting these in the formula for the mean
sojourn time given above results in an upper bound. In obtaining an upper bound,
the occupancy has to be estimated. Using the true occupancy of the system is a
possibility, but since this information is not a priori known, also this measure has
to be estimated.

The analysis is carried out for three servers. Other systems are discussed only
briefly before results are given.

The occupancy is tried to be estimated using only the service rate. The occupancy
of the system is regarded as one of the key performance indicators. The estimated
occupancy can be used to determine an upper bound for the expected sojourn time.
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In figure 10.2, the fit of a third degree polynomial is presented. Instead of plotting
the occupancy versus the service rate, 10.2 shows the occupancy versus the inversed
service rate. This is done because in the transfer function the 1/u is used (since it
equals the expected service time) instead of p.

Fitted Line Plot
Occupancy = 0.01333 +0.9047 1/mu
- 0.2891 1/mu”2 +0.04386 1/mu”3

1,04 0,0022087

;Sq 100,0%
0,99 RSq(adi)  100,0%
0,84
0,74
0,64
0,5
0,44
0,34
0,29

0'17 T T T T T
0,0 0,5 1,0 1,5 2,0
1/mu

Occupancy

number of servers = 3

Figure 10.2: A polynomial of degree three fit for the occupancy versus the inverse
service rate

It is advised to fit polynomials of the smallest degree which still represent the data
in a fair way. A polynomial of higher order will give a more precise fit, but for
practical reasons this is not recommended. Note that when using transfer functions
(the function that resembles the correspondence between the independent variable,
the x, and the dependent variable, the y as in y=f(x) for some function f) only
estimations are allowed within the investigated range. Extrapolating is not advised
since the behavior outside the investigated region is not known.

For systems with different numbers of servers the transfer functions are given in
Figure 10.3.

#servers| const a b c

0.00662 [0.934 [-0.245]0.0416
0.01332[0.905 [-0.289 10.0439
0.0143 ]0.906 |-0.316 |0.0471
0.0155 [0.902 [-0.321]0.0459
0.0176 [0.894 [-0.317 ]0.0438
0.0204 [0.883 [-0.308 |0.0406
0.0211 ]0.881[-0.307 ]0.0397
0.0204 0.883-0.307 |0.0391
0.0228 0.873]-0.299]0.0371

[le] [e] BN] Fep] [4,] B (V] | N}

o

Figure 10.3: Occupancy = const+a/u+b/u?+c/u?

In Figure 10.4, the simulated expected sojourn time for the single stage queue with
3 servers without overtaking and the calculated lower- and upper bounds are shown
for different values of p. The lower bound seems to be a good estimate for the ex-
pected sojourn time when the service rate increases. But when service rates are low
(corresponding with a higher occupancy) the expected sojourn time differs largely
from the lower bound as well as from the two proposed upper bounds. When dealing
with high load systems this might cause problems. But despite the bad performance
of the lower bound as an estimate for the mean sojourn time in high load systems,
it still performs better than the upper bound.
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Scatterplot: Expected sojourn time with lower and upper bounds
Number of servers = 3
Variable
I‘ —e—E[s]
4 —&— lower bound for E[S]
200 —-@- - upper bound E[S] (actual occupancy )

, —& - upper bound E[S] (estimated occupancy )
N4

9 150 I

k-] i

c I

3 I

3 i

= /

2 100 f

©

G |

g £

50 £
-‘—/Jf
0< - = na
T T T T T
0,0 0,5 1,0 1,5 2,0
1/mu

Figure 10.4: Expected sojourn time and calculated bounds

In Figure 10.5, the influence of the number of servers on the difference between the
expected sojourn time and its bounds can be seen. Where the lower bound performs
worse when the number of servers is low, the upper bounds perform worse when
the number of servers is high.

To obtain a transfer function for the expected mean sojourn time one can use
these bounds. As stated before, in highly occupied systems, both bounds fail to
give an applicable estimate on the mean sojourn time. Therefore a transfer function
with a bound as well as 1/u might be suitable. The option of taking an upper or
lower bound presents itself. Since the lower bound is more difficult to calculate,
one might prefer using the upper bound, which depends on the system’s occupancy,
the number of servers and the service rate. The actual system’s occupancy can be
taken equal to the simulated occupancy, but as stated before it is more realistic to
estimate this measure first. Figure 10.6 shows the transfer function for the expected
sojourn time for three servers. In Figure 10.7 the coefficients of the transfer function
E[S] = const + a * /% + b* E[Sy] are given.

3D Scatterplot: Difference between E[S] and lowerbound 3D Scatterplot: Difference between upperbound and E[S]
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Figure 10.5: Differences between simulated expected sojourn time and bounds
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Scatterplot: E[S] and regression fit for E[S] versus 1/mu
number of servers = 3
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Figure 10.6: Expected sojourn time and its regression fit for a system with 3 servers
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Figure 10.7: E[S] = const + a * % +b* E[Sy]

The expected delay seems to be equal to 1/u for the case of two servers, see Figure
10.8. When the number of servers increases, the average delay tends to deviate
more from a linear relation with 1/p.

Scatterplot: Expected delay in the system
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Figure 10.8: Scatterplot of the delay versus 1/u in a system of 2 servers

For the system with two parallel servers the expected delay can be calculated an-
alytically. By defining W5 as the waiting time of a job to start service while the
first server is busy, R; as the residual service time of the job in service and B;i1



10.3. SINGLE STAGE QUEUE 83

as the service time of the commencing job, the equality Ws = max(0, R; — B;41) is
valid. Using the same integration techniques as before, the expected value of Wo
can be shown to be equal to 1/2u. This expectation however also considers jobs
which do not have to wait. When looking at the jobs which actually get delayed
(this percentage is 50% of all jobs arriving in a busy period due to the memoryless
property), their expected delay is twice as big which results in 1/ pu.

Transfer functions of expected delay and the probability of delay are presented
for the different systems in Figure 10.9. The probability of delay is fitted using a
polynomial of degree three (P(Delay) = const + a * %L + b ﬁ + cx* ﬂ%) and the
expected delay a job obtains (if it is delayed) is fitted using a polynomial of degree
2 (E(Delay) = const + a * i +bx 712) Figure 10.10 shows the polynomial fit for the
probability of delay when the system has three servers.

Prob(Delay) E[Delay]

#servers| const a b c #servers| const a b
2 0.0124 10.385-0.172]0.0388 2 0 1 0
3 0.0069 10.461 [-0.168 |0.0292 3 -0.0064 |1.04 [0.060
4 0.00255 |0.487 [-0.161]0.0243 4 -0.0104 |1.05 [0.094
5 0.00404 10.479 [-0.142]0.0188 5 -0.0063 |1.03 [0.125
6 0.00389 |0.478 [-0.135]0.0167 6 0 1.00 [0.151
7 0.00524 10.472 |-0.126 {0.0144 7 0 1.01 10.154
8 0.0047210.474 [-0.126 |0.0144 8 0 1.01_[0.155
9 0.00388 |0.479 [-0.129 |0.0146 9 0 0.99 10.161
10 ]0.00559 |0.471 [-0.121]0.0129 10 o 1.02 [0.155

Figure 10.9: Transfer functions for the average probability of delay and expected
delay
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Figure 10.10: Probability of being delayed fitted by a polynomial of degree 3

In the next section, the queue with three parallel servers is subjected to differently
distributed service and arrival times.

10.3.2 The G/G/3 non-overtaking queue

In the previous section, the inter arrival times and service times were homogeneous
exponentially distributed. This section investigates what happens when the arrival
and service times have other homogeneous distributions.

A measure to determine the dispersion of a distribution is the squared coefficient
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of variation (scv).

o2
scv = —
2
1
= standard deviation
[ = mean

For the exponential distribution, the scv equals 1 (mean and variance and standard
deviation are the same). A phase-type distribution is used to obtain the service
time distribution with different scv’s. Phase-type distributions are dense in the
field of all positive-valued distributions, this means that any distributions which
can only obtain positive values can be represented by a phase-type distribution.
For distributions with an scv < 1, an Erlang distribution is used, if scv > 1 a
hyper-exponential distribution is used.

In this section only systems are investigated consisting of three servers with ser-
vice and arrival distributions with scv larger then 1.

Overall can be seen that increasing the squared coefficient of variation results in
worse performance of the system (assuming longer sojourn times and higher delays
are not desirable). Figure 10.11 shows the expected sojourn time and expected
delay, other similar graphs are omitted.

Scatterplot: Expected sojourn time and delay for different scv
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Figure 10.11: Simulation procedure

In the following sections, discrete event simulation is used to investigate the perfor-
mance of the tandem queue when overtaking is prohibited.

10.4 Two stage queue, homogeneous case

The mean sojourn time is the point of interest under different occupancy rates
and scv’s. The arrival distribution is an exponential distribution with parameter 1
to resemble random arrivals with a standardized arrival rate. The difficulty which
arises in this queue is that distributional parameters of the service times in the queue
are not determined completely by the occupancy rate. Therefore, the occupancy in
the second stage is being fixed for every systems occupancy. The parameter for the
second stage for distributions with different scv’s is then chosen in such a way that
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for every distribution the load in the second stage is identical. With the occupancy
in the second stage being equal to a given value, the parameter for the first stage
can be estimated using trial runs.

The steps necessary to complete one simulation run are graphically presented in
flow diagram 10.12.

choose choose generate
system load stage 2 load trial runs
determine enerate determine determine estimate
servicerate ¥ 9 —» service rate | run simulation | . . performance
trial runs truncation point L
stage 2 stage 1 characteristics

Figure 10.12: Simulation procedure

10.4.1 Tandem queue with occupancy = 0.9

The first queue which is analyzed, is the queue comprised of two stages with in the
first stage 2 servers and in the second stage 1 server (see figure 9.11). Choosing
2/3 for the occupancy in the second stage, the service rates were determined and
eventually for every scv 50 simulation runs are performed. Each time the simulation
is stopped when the system successfully served 20000 jobs. The results are given in
Figure (10.13).

SCV__ [iab mut mu2 m_thot _m_soj[Enar[S]]_|m_wait_1 [var_wait_1[m_wait_1 ]var_wait_1]m_delay |var_delay |P_delay |
0.5 1 2.33] 3 0829 — 3837 0247017 _ 1.705 . . . 0.938] 0482 0.647|
1 1 138 15 0.839 . 0. aoﬁ 16.401]  2.784] 0.802] 1191 0.927] 0673
1.25 1 148 15 0.837 5. 483 0.375 22 712 3. 287 0. 854 1.217] 0683
5] 1 158 15 0.831 1497] 06687
1.75| 1 1.62 15[ 0.835, 1801 0.692]
2 1 1.65 15 0.842 : 2159 0.697
2.25| 1 1.67] 15[ 0.851 . . 2.476] __ 0.704]
2.5 1 1.7_0‘ 15 0.852 ) ) ) 2811 0.707]
2.75 1 169 15| 0.863] 0665  0.910] 10.189 7.891
3] 1 1.70 15[ 0.866] 0643  0.912 . 118.761] _ 8.679)
35 1 175 15[ 0.871] 0665 0914 12943 177.670] _10.617,
4 1 179 15 0.874] 0.667] 0915 14.176] 25639 209.588|

Figure 10.13: Simulation results (n =2, m =1, p = 0.9, p2 =~ 2/3)
When plotting the expected sojourn time against the standard coefficient of vari-
ance, a relation can be seen (see figure 10.14). Using regression techniques, a

quadratic model is used to fit the expected sojourn time. The transfer function
is given by E[S] = 2.79 4 1.70scv + 0.313scv?

Scatterplot: E[S] versus scv
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Figure 10.14: Scatterplot E[S] versus scv (n =2, m =1, p = 0.9, pa =~ 2/3)
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Boxplot: E[S] versus scv
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Figure 10.15: Boxplot of E[S] for different values of scv

During the analysis of the simulation data, it became clear that the influence of the
scv was considerable on the expected sojourn time’s standard deviation (see Figure
10.15). Analysis made clear that the 50 observations of the expected sojourn time
were normally distributed (which is evidently by the central limit theorem) with a
standard deviation increasing with the scv.

For other performance characteristics transfer functions were made too (see table
10.16).

Transfer function R2 (%)
E[S] 2.79+1.70 SCV + 0.313 SCV"2 99.2
E[Var[S]] | 13.5 SCV*2 98.9
E[WA1] 0.692+1.62 SCV +0.318 SCV/2 99.2
E[W2] 0.499+0.314SCV-0.0411SCVA2 98.2
E[D] 0.808+0.395 SCV-0.0546 SCVA2 97.5
E[P_D] 0.632+0.0436SCV-0.0052 SCV*2 98.7

Figure 10.16: Transfer functions for performance characteristics (n = 2, m = 1,
p =09, ps ~2/3)

10.4.2 Tandem queue with occupancy = 0.6

Previous simulations were conducted using an occupancy of 0.9. This occupancy
rate is however quite high, especially in environments other than industry. There-
fore the same analysis is done with an average occupancy rate of 0.6.

Again the system is simulated for different service time distributions. The occu-
pancy of the server in the second stage is chosen in such a way that the occupancy
of the second server is as close to 0.5 as possible. By adjusting the service rate of
the first server an overall system’s occupancy of around 0.6 can be obtained. Again
a total of 50 runs are used to estimate the appropriate performance measures where
a single run is completed when 20000 customers are served.

The results are presented in the same way as before in Figure 10.17 and 10.18.
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SCV [Lambda [Mul [Mu2 [rhol [rho2 o2 |E[S] |SWIE[S]] [E[VarS]] JEIW_1] [E[VarW_1]] [EW_2] [E[VanW_2]] [E[D] |E[Var(D]] [E[P_D]
0.5 1|9 4] 0.382 0.500] 0.605] 1.126] _ 0.013] _ 0.551] 0.097] 0.126]_0.306 0.204] 0.609] _ 0.221] 0502
1 1] 4.63] 2| 0.409] 0.499] 0.605] 1.268] __0.023] __1.079] _0.175] 0.315] _0.378 0.353] 0.746] __0.421] 0507
1.5] 1] 481] 2] 0.422] 0.499] 0.605] 1.420] _ 0.036] _ 1.899] 0.282 0.729] _0.430 0.545] 0.843] __0.720] 0510
2] 1| 4.98] 2| 0.432] 0.499] 0.605| 1.563] _ 0.045] _ 2.856] 0.395] 1.280] _0.468) 0747 0.915] __1.050] 0512
25 1] 5.13] 2| 0.440] 0.499] 0.604] 1.718] __0.058] _ 4.093] 0522 2.072] 0501 0.966] 0.971] __1.415] 0.51]
3] 1] 5.57] 2| 0.439] 0.501] 0.599] 1.855] _ 0.075] _ 5.440] 0.648) 2.986] _0.528 1.183] 1.019] __1.783] 0.518
3.5 1] 5.72] 2| 0.442] 0.499] 0.597] 1.963] _ 0.094] _ 6.607| 0.745] 3.808] _0.544 1382] 1.050] __ 2.135] 0.518
4] 1] 5.98] 2| 0.444] 0.501] 0.596] 2.115] __ 0.112] _ 8.485] 0.883] 5.195] _0.564 1.634] 1.085] _ 2.577] 0.520)

Figure 10.17: Simulation results (n =2, m =1, p = 0.6, p2 = 1/2)

Transfer function Re (%)
E[S] 0.965+0.316 SCV -0.0074 SCV"2 99.9
E[var(s]] | 0.720 +0.495 SCVr2 99.4
E[W1] - 0.0445 +0.228 SCV 99.7
E[W2] 0242 +0.147 SCV - 0.0170 SCV*2 99.6
ED] 0.491 +0.276 SCV - 0.0326 SCV*2 99.6
E[P_D] | 0497 +0.0100 SCV - 0.00111 SCV*2 99.1

Figure 10.18: Transfer functions for performance characteristics (n = 2, m = 1,
p=0.6, p2 = 1/2)

Several remarks have to be made about this analysis. First of all, the transfer func-
tions are based on a small number of observations only. This means that it results
in rough estimates. For practical means however, it does show the correspondence
between the scv and the performance measures. Since the fits were quite reason-
able, it is expected that the value of the performance measures for intermediate
scv’s can be estimated by these functions. This suggests the second remark, the
transfer functions are only applicable (as usual) for values in the investigated range.
When one wants to obtain an estimate on a performance measure when the scv is
far out of the investigated range, the result can be highly biased.

It is obvious that the mean sojourn time in these less occupied systems is lower
than the expected sojourn times earlier found.
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Chapter 11

Discussion and conclusion on
non-overtaking queues

In this second part of the thesis, the effect of the restriction of overtaking has been
studied for parallel multiple server queues and a special type of tandem queues. The
restriction on overtaking showed an expected increase in sojourn time. Especially
for high occupancies, the effect of the non-overtaking property is substantial. Delays
obtained due to the restriction have two negative effects.

e Waiting times: Jobs are being delayed due to the non-overtaking restriction.
This means waiting time at a server for a delayed job and since the system has
a higher occupancy, jobs receive longer waiting times before entering service.

e Idle times: When a job is delayed, it occupies a server without actually being
served. This is idle time for the server.

The M/M/2 queue with the non-overtaking property has been investigated exten-
sively, with the help of three methods (blocking, an iterative method, and simula-
tions). Performance measures are obtained to determine the impact of overtaking.
Queuing systems with blocking are used to derive performance measures when the
number of jobs allowed to wait is low. For low occupancy systems, these measures
are believed to approximate the performance well.

For an arbitrary large number of jobs which are allowed to wait, an iterative method
(the Gauss-Siedel method) was used to solve the system of balance equations.

To determine the effect of multiple servers in a system, discrete event simulations
was used. Also, using this method, a two stage tandem queue has been investigated
more thoroughly. Regression analysis was done for various performance measures
to estimate performance for other situations. An increase in variability (increasing
scv) showed worse performance.

Problems with overtaking occur in practice. The CT scan case was an example
where queuing theory was unable to capture non-overtaking with the current tools.
Even dough the non-overtaking property has not been found in literature, this prop-
erty has a substantial impact on the performance of relevant systems.
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Epilogue

In the thesis, two problems are investigated using simulation and queuing theory.
Queuing theory was unable to provide solutions for both problems because of their
complexity. Recalling Figure 1 from the introduction, the steps can now be clarified.

3b. Estimated performance measures Non-OVertaking

Simulations
property
% &
2 Y &0
2 0‘7@/, o .
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2. WY %, 58
E N %, =3
& 3 S
8 & 6/7641.
B /q9
cT Queuing
scan case 1a. Queuing theory theory
problems to be solved

Figure 1: Graphical description of reasoning behind the thesis

e la: The CT scan case is a scheduling problem for a stochastic system. Queuing
theory can be used to model such systems. The assumptions necessary to use
analytical methods only, however, are not suitable to find practical solutions.

e 2a: Discrete event simulation is much more flexible for calculating these mod-
els. Since every distribution is possible to use without making the program
more complex, discrete event simulations are used to calculate the perfor-
mance measures for the different schedules.

e 3a: The simulation output is used to determine a more appropriate schedule.

e 4: Patients are not allowed to overtake each other in the dressing room. When
using simulations, this problem is easily avoided. Queuing theory is, however,
unable to capture this behavior. The non-overtaking property is introduced
in queuing theory.

e 1b: Simple systems with a very limited number of jobs allowed to wait are
investigated with queuing theory techniques.

e 2b: When the models become more complex, other methods have to be sought.
The Gauss-Seidel iterative method is used to estimate models with a very large
number of jobs allowed to wait. Making this number of jobs arbitrary large,
the performance measures are easily estimated. Discrete event simulations is
used to estimate the same measures for systems when balance equations are
impossible to obtain or too complex.
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e 3b: The iterative method and simulations generate performance measures for
queues with the non-overtaking property. The effects of this property are
shown in graphs.
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Chapter 12

Appendix

Notation in CT scan simulation
Notation: decision variables
e npday = number of patients scheduled for the working day.
® tgqr¢ = start time of the working day, CT scan is available from this time.
e {.,q = end time of the working day, it is possible to exceed this time (overtime).
e schedule = working day schedule.
e nDR = number of dressing rooms.
e T; = scheduled time of patient 1.

e outp; = indicator variable for patient type of patient ¢ (1 if patient is an
out-patient, 0 otherwise).

e [Vp; = indicator variable for the need of contrast of patient ¢ (1 if patient
needs contrast, 0 otherwise).

e cxamp; = indicator variable whether patient i needs a special exam (1 if
patient needs an IVP or colon exam, 0 otherwise).

e diagp; = indicator variable whether patient ¢ needs a direct diagnosis (1 if
patient needs a direct diagnosis, 0 otherwise).

e 2ndscanp; = indicator variable whether patient i needs a second scan (1 if
patient needs a second scan, 0 otherwise)

e ave_wDR = average waiting time allowed in dressing room.

e ave_wPR = average waiting time allowed in preparation room.

e ave_rscan = bias of the medical staff’s estimation on residual scanning time.
e var_rscan = variance of residual waiting time estimation by medial staff.

e FEpat_rate = rate of urgent patient arrivals.
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Notation: stochastic variables

® PUNCoutp ~ 3-par-lognormal(3.528,0.5017, —19.09) = Out-patients’ punctual-
ity in minutes to early.

® PUNCnp ~ 3-par-lognormal(3.104,0.7742, —14.05) = In-patients’ punctuality
in minutes to early.

e aWWR = arrival time in waiting room.

e aDR = arrival time in dressing room.

e aPR = arrival time in preparation room.

e aSR = arrival time in scan room.

e dSR = departure time from scan room.

e aDR2 = arrival time in dressing room after scanning.

e dDR2 = departure time from dressing room after getting dressed.

® DRoytp ~ lognormal(0.3466, 0.9102)= time between entrance in dressing room
and entrance in scan room for an out-patient.

o IVyuip ~ lognormal(0.9044,0.4560) = time it takes to install the IV on an
out-patient.

o [Vinp ~ lognormal(0.3148,0.4142) = time it takes to install the IV on an
in-patient.

e dDR = departure time from DR after getting dressed, patient leaves th radi-
ology department .
Notation: measures
o Wy r =aDR — aW R waiting time of patient in the waiting room.

e Wpr = min(aPR,aSR) — aDR — c_t waiting time of patient in the dressing
room.

e Wpr =aR — aPR — IV _t waiting time of patient in the preparation room.

e other measures are described in 2.1.3.

12.1 Graphical review data analysis

Histogram: Out-patients' punctuality Pr ility Plot: Out-pati
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Figure 12.1: Data analysis of out-patients’ punctuality
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GRAPHICAL REVIEW DATA ANALYSIS
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Figure 12.2: Data analysis of in-patients’ punctuality
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Figure 12.3: Data analysis of injection time

Histogram: Time in dressing room
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Figure 12.4: Data analysis of time spent in dressing room by out-patients

99



100 CHAPTER 12. APPENDIX

Regression Analysis: Ln{(SR_usage) versus recovery_0, colonlivp_0, diag_0

The regression equation is
Ln(5R_usage) 0 = 1.88 + 0.786 recovery 0 + 0.331 colon/ivp 0 + 0.53% diag 0

Predictor Coef  SE Coef T P
Constant 1.87801 0.06648 28.25 0.000
recovery 0 0.7862 0.1127 6.97 0.000
colon/ivp 0 0.3312 0.1820 2.04 0.046
diag 0 0, 5350 0,1130 4,76 0.000

§ = 0.368218 R-3q = 65.8% R-Sqladj) = 63.9%

Analysis of Variamce

Source DF 33 s F P
Regression 3 14.5837 4.8612 35.85 0.000
Residual Error 56 7.5927 0.1356

Total 59 22.1764

Source DF  Seq 53

recovery 0 1 11.1710
colon/ivp 0 1 0.33%2
diag_0 1 3.0735

Unusual Observations

Obs recovery 0 Ln(SR usage) 0 Fit SE Fit Residual 5t Resid
19 0.00 2.7663 1.5780 0.0665  0.8883 Z. 45K
39 1.00 2.4307 3.2022 0.1261 -0.7715 -2.23R
44 0.00 3.2523 2.4160 0.1048  0.8363 2.37R

E denotes an observation with a large standardized residual.

Figure 12.5: Regression for Ln(time spent in scan room)
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Figure 12.6: Probability plot for scan room usage of IV out-patients and residual
analysis of Ln(Scan room usage) other patients

12.2 Schedules for the CT scan case

Appointment time | 8:15| 8:30] 8:45[ 9:00] 9:15] 9:30] 9:45[ 10:00] 10:15] 10:30( 10:45[ 11:00] 11:15] 11:30( 11:45|
patient type 1 1 1 1 1 1 1 1 1 1 1 1 1
contrast 0 1 1 m 1 0 0 o 1 1 0 1 0 1
#scans 1 1 1 (ID 2 1 1 1 8 1 2 1 1 1 1
special exam 0 0 0 o 0 0 0 of ® 0 0 0 0 0 [0)
diagnose 0 0| 0] ~ 0| 0| 0 0] X 0 0 0 0| 0 0
Appointment time | 12:00 12.15] 12:30] 13:00] 13:15] 13:30] 13:45] 14.00] 14:20] 14.40] 15:00] 15:20] 15:40] 1600
patient type 1 1 1 1 0 0| 0 0 0 0|

contrast |'I|'| |'I|'| w 1 1 1 1 1 1 0 1 0 0 |'I|'|
#scans 2 1 1 1 2 1 1 1 1 1

special exam % %’ 8 1 1 0 0 0 0 0 0 0 0 %
diagnose — —~ -~ 0 0| 0 0 0 0| 0 1 1 0] =~

Figure 12.7: Current schedule (S¢)



12.2. SCHEDULES FOR THE CT SCAN CASE

101

®

5 [ 8:35 ] 8

o
©|
=1
o
©|

[Appointment time

5 110:05/10:15[10:30] 10:40] 10:50

11:00]11:10

11:20

|patient type

contrast

#scans

special exam

olo|=|o|=] %
olo|=|=|=|&
olo|=|=]=]v
olo|=|=]=]w
olo|=|=]|=]x&
olo|=|o|-]u
olo|n|=]=
olo|=|o-
olo|=|=[-

-3
1
1
2
0
0

olo|=|=]-l2
olo|=|=[=]5

diagnose

olo|=|o]-]
IS[S] B EN AN

101s-3

N[¥oIS-3

N
N
=]
Nl
|
=]
=]
Eq
N
I=)

Appointment time | 11:30( 11:40{ 11:50] 12:00{ 12:10 13:00] 13:20] 13:40] 14:00] 1

14:5015:10 15:30

15:50/16:10

o)
IN
=]

patient type

contrast

#scans

special exam

olo|n|~lo|E]1018-3
NEEY

o|o
olo|=|of-l
o|o
olo|=|of-l
o|o
10I1S-3
of=|=]of-l
alof=]=]e
[=] [=] B B (=)
101S-3
[=] [=] B B (=)
o|o|=|o|o
NS EN N 1Y

diagnose

=lo]=|ole
ofo|=|eo|e

10IS-3

Figure 12.8: Proposed schedule 1 (Spq)

Appointment time | 8:15[ 8:25] 8:35] 8:45| 8:55

©|

:05[ 9:15] 9:25] 9:35[ 9:45] 9:55] 10:05 10:15] 10:35] 10:45

10:55[ 11:05

|patient type

contrast

#scans

special exam

jois-3

olo|a|=]=
olo|a|=]=

=) =] BN =
olo|a|=]=
=) =] N =1
=) =] BN (=1 Y
= =] N N
=) =] BN =1
olo|a|=]=

diagnose

5]301S-3
yeaig

=)
kS
IS
=)
o
=
S|

[Appointment time | 11:35] 11:55| 12:15| 12:30] 13:00] 1 15:20

@

13:20] 13:30{ 13:40] 13:50] 14:00{ 1

15:30[ 15:50

patient type

contrast

#scans

special exam

[=] =N N N =)
=) BN N PN BN
10S-3

yealg

(=] [=] E= =]
olo|=|=|=
(=] [=] L] o
(=] [=] E= =]
[= [=1 BN I N
olo|=|=|o
= [=1 =N N [=)
jo1s-3

diagnose

=) (=] N N (=)
olo|-=|olo

Figure 12.9: Proposed schedule 2 (Sp3)
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Figure 12.10: Reversed proposed schedule 1 (Sg—_p)

Appointment time | 8:15| 8:15] 8:15[ 8:15| 8:15| 8:15] 8:15] 8:15] 8:15| 8:15 8:15] 8:15] 8:15| 8:15[ 8:15
patient type 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
contrast 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1
#scans 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1
special exam 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
diagnose 0 0| 0 0 0| 0| 0 0 0| 0 0 0 0| 0 0
Appointment time | 8:15] 8:15] 8:15] 8:15] 8:15] 13:00] 13:00{ 13:00] 13:00] 13:00{ 13:00{ 13:00] 13:00] 13:00( 13:00
patient type 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
contrast 1 0 1 0 1 1 0 1 1 1 1 0 1 0 0
#scans 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1
special exam 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
diagnose 0 0| 0 0 0| 0| 0 1 0| 0 0 0 1 1 0
Figure 12.11: 2 Block schedule (S2p)
Appointment time | 8:15| 8:25] 8:40[ 8:50] 9:05| 9:15] 9:25[ 9:40] 9:50| 10:05( 10:30{ 10:40] 10:55] 11:05( 11:20
patient type 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
contrast 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1
#scans 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1
special exam 0 0| 0 0 0 0| 0 0 0 0 0 0 0| 0 0
diagnose 0 0| 0 0 0| 0| 0 0 0| 0 0 0 0| 0 0
Appointment time | 11:30] 11:40] 11:55] 12:05] 12:20] 13:00] 13:20 13:40] 14:00] 14:20( 14:40{ 15:00] 15:20] 15:40( 16:00]
patient type 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
contrast 1 0| 1 0 1 1 0 1 1 1 1 0 1 0 0
#scans 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
special exam 0 0| 0 0 0 2| 1 0 0 0 0 0 0| 0 0
diagnose 0 0| 0 0 0| 0| 0 1 0| 0 0 0 1 1 0

Figure 12.12: No emergency block schedule (Spy noE)
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Figure 12.13: Variable interval lengths (Sy )
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Figure 12.14: Multiple

number of patients per slot (Sps)

[Appointment time | 8:15 8:25] 8:35] 8:45] 8:55] 9.05] 9:15] 9:25] 9:35] 9:45] 9:55] 10:05] 10:15] 10:35] 10:45] 10:55] 11:05] 11:15,
|patient type 1 1 1 1 1

contrast 0 0 m 0 0 m w 0

#scans 1 1 (ID 1 1 (I/) T 1

special exam 0 0 0 0 0 Y 0 0 0 0 0 Y O 0 0 0 0
diagnose 0 0 0 0 0] ~ 0 0 0 0 0] —~ ~ 0 0 0 0
Appointment time | 11:35] 11:55] 12:15[ 12:30( 13:00] 13:10] 13:20( 13:30] 13:40] 13:50 14:10| 14:30| 14:50] 15:10{ 15:20| 15:40] 16:00
|patient type 1 1 0 0| 0 0 0 0
contrast m w 0 0 0 1 1 0 |-I|-| 1 0 |-I|-|
#scans ! = 1 2 1 1 1 1 1 1 1
special exam %) 8 0| 0 0 0| 0 0 0| 0 0 %) 0 0 %)
diagnose —_ =~ 0| 0 0 0| 0 1 0| 1 =3 0 of =~

Figure 12.15: Second proposed schedule with 1 out-patient less (Spa — 1 outp)

Appointment time | 8:15] 8:25[ 8:40( 8:50] 9:05] 9:15] 9:25| 9:40| 9:50] 10:05] 10:15f 10:35[ 10:45 11:00( 11:10] 11:25
patient type 1 1 1 1 1 1

contrast 0 0 0 1 0 w 0

#scans 1 1 1 2 1 a 1 2
special exam 0 0 o) 0 0 0 0 1) o) 0 0 1
diagnose 0 0 0 0| 0 0| 0 0 0 0| X 0 0 0 0 0
Appointment time | 11:45] 12:10] 12:30] 13:00f 13:10{ 13:20] 13:30( 13:45] 13:55] 14:05] 14:25] 14:50] 15:10] 15:25] 15:50]
patient type 0| 1 1 1 1 0 0 0 0| 0 0
contrast [os) 0 1 0 1 0 0 0 0 1 0
#scans ?D 1 2 1 1 1 1 1 1 1 1
special exam ) 0 0 0 0 0 o) 0 o) 0 0 0 )
diagnose 0 0| X 0| 0 0| 0 0 0 1 0 1 1 0 0

Figure 12.16:
(SPQ NoFE 1)

Second proposed schedule with no emergency slots version 1
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Figure 12.17: Second proposed schedule with no emergency slots version 2
(Spa NoE 2)
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S_P2 -1 outp 19[ 6] 3| 5]|Yes 2.68 0.74| 3.8E-03] 0.10 10.53| 7.72E+01 6.14 8.00E+01 1.64 12.00] 0.95[ 0.85 37.16] 1.42E+03 27.09 63.86 4.40
S_P2 -1 outp Random 19 6] 3| 5|No | 2.765 0.87| 4.6E-03] 0.44 30.53] 6.89E+02 14.39 2.95E+02 9.72 24.50] 0.70] 0.72 71.71] 2.91E+03 60.64] 120.42 20.22
S_P2 -1 outp Random 19[ 6] 3| 5|Yes | 2.682 0.81] 4.8E-03] 0.29 20.67| 3.53E+02 8.58| 1.37E+02 4.17 15.71]__0.90] 0.78 48.87| 2.00E+03 36.93 81.87 8.84
S_P2 Multi slot 20| 6] 3| O|No | 2.682 0.84| 3.3E-03] 0.22 19.56] 2.84E+02 11.71 1.85E+02 8.17 20.43]_0.92] 0.84 63.02] 2.58E+03 50.25| 108.83 15.96
S_P2 Multi slot 20 6] 3| O]Yes | 2.749 0.76] 3.5E-03| 0.15 13.68| 1.50E+02 6.97 8.59E+01 3.16 13.41] 096 0.87 40.01] 1.51E+03 29.46 69.41 4.66
S_P2noE 1 20| 6] 3| O|No | 2.648 0.83] 3.3E-03] 0.25 19.39] 3.55E+02 11.51 2.54E+02 5.76 20.28] 0.84] 0.77 22.15| 3.77E+02 17.49 34.35 0.11
S_P2 noE 1 20| 6] 3| O]Yes | 2.641 0.77| 3.5E-03] 0.13 13.09] 1.44E+02 6.96 1.14E+02 1.57 13.20] 0.91 0.81 16.00{ 1.93E+02 13.47 24.42 0.00
S_P2noE 1RandomA | 20[ 6| 3| O[No [ 2.646 0.88] 2.9E-03 0.60 3.35| 6.85E+02 15.52] 3.91E+02 9.06 26.55] 0.67| 0.76 28.80| 5.47E+02 22.28 44.96 0.42
S_P2 noE 1 Random A | 20] 6] 3| 0|Yes | 2.725] 0.82| 4.2E-03| 0.47 4.05] 4.41E+02 9.57 1.95E+02 3.60 17.56] 0.84] 0.80 20.90| 3.02E+02 16.80 32.89 0.11
S_P2noE 1 RandomB | 20| 6| 3| O|No 2.69 0.88| 3.1E-03| 0.63 3.72| 7.36E+02 16.94 4.26E+02 10.31 29.40] 0.69] 0.73 29.52| 5.37E+02 23.05 45.45 0.30
S_P2noE 1RandomB | 20| 6] 3| OfYes | 2.694 0.82| 3.9E-03| 0.43 23.01] 4.35E+02 9.60 1.90E+02 4.23 17.30] 0.86] 0.78 20.23| 2.84E+02 16.24 30.98 0.00
S_P2 noE 2 20 6] 3| OJ|No | 2.692 0.83] 3.4E-03] 0.24 16.05| 2.82E+02 12.50 2.65E+02 7.25 21.88] _0.84] 0.78 23.15| 3.92E+02 18.60 35.55 0.19
S_P2noE 2 20| 6] 3| OfYes | 2.683 0.76] 3.3E-03 0.15 13.01] 1.71E+02 7.64 1.20E+02 253 14.58] 0.94] 0.84 16.29[ 2.06E+02 13.73 25.75 0.00
S_P2noE 2RandomA | 20| 6 3| O|No [ 2.641 0.88] 2.8E-03 0.66 37.47] 8.59E+02 18.80 5.09E+02 11.80 32.34]_0.68] 0.77 33.58| 7.46E+02 2541 51.11 1.44
S_P2noE2RandomA | 20| 6] 3| OfYes | 2.725 0.82] 3.8E-03 0.48 24.27| 4.67E+02 11.61 2.45E+02 5.91 20.70] 0.86] 0.84 23.07| 3.87E+02 18.14 35.42 0.07
S_P2noE2RandomB | 20| 6] 3| OfNo | 2.677 0.88] 3.3E-03 0.62 33.12] 7.02E+02 18.27 4.47E+02 12.15 31.43]_0.69] 0.75 31.32| 6.00E+02 2512 48.71 0.34
S_P2 noE 2 Random B | 20 3] OfYes [ 2.694] 0.82| 4.1E-03] 0.44 22.78| 4.20E+02 11.08 2.14E+02 5.94 20.11] 0.87] 0.81 21.39] 3.20E+02 17.12 33.03 0.15
S_P2 Random A 20 3] 5[No | 2.701 0.86] 3.6E-03 0.48 27.07] 5.46E+02 12.89 2.50E+02 8.56 22.11] _0.78] 0.77 71.80| 2.92E+03 61.26] 118.66 19.55
S_P2 Random A 20 3| 5|Yes [ 2.687] 0.79] 4.1E-03| 0.30 20.48| 3.81E+02 7.09 1.06E+02 243 13.38] 0.92[ 0.83 45.50| 1.81E+03 33.39 78.49 7.26
S_P2 Random B 20 3] 5[No [ 2.629 0.86| 4.5E-03 0.44 25.30] 5.46E+02 12.71 2.41E+02 8.25 22.03] 0.78] 0.74 67.45| 2.77E+03 56.83] 112.54 17.50
S_P2 Random B 20| 6] 3| 5|Yes | 2.844 0.80] 4.7E-03| 0.33 8.78| 3.23E+02 7.40 1.07E+02 2.98 14.21] 092 0.81 44.40 .75E+03 33.53 76.42 6.75
S_R-P 20 2| 6[No [ 2.728| 0.81] 3.3E-03] 0.39 8.49| 2.88E+02 9.28 1.49E+02 4.87 17.14] _0.88[ 0.90 40.86 .13E+03 35.49 69.94 2.38
S_R-P 20 2| 6lYes | 2.659 0.76] 3.1E-03 0.19 4.11] 1.64E+02 6.45 9.25E+0 143 12.55] 0.88] 0.95 30.97 .64E+02 23.24 54.40 1.24
S_V 20 3] 7[No [ 2.672] 0.84| 3.5E-03] 0.18 15.63| 2.56E+02 12.07 2.08E+02 8.46 20.29] 0.56] 0.75 45.64 .18E+03 40.26 7243 3.14
S_V 20 3| 7|Yes 2.67' 0.77| 3.4E-03| 0.11 9.13| 7.28E+01 7.07 8.74E+01 3.37 13.38] 0.83[ 0.87 29.51 .84E+02 24.09 49.91 0.45
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12.3. SIMULATION RESULTS OF THE CT SCAN CASE
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S 2B 20] 8] 2| O[No | 11] 40| 39] 9] 40[ 40] 35] 36] 39

S 2B 20] 8] 2| o|ves| 4|39 39| 32]37]39] 38 37| 40

S C 15] 6] 2| 3[No | 6] 4| 3| 35| 23] 28| 17[ 13[ 10

S C 15[ 6| 2| 3[Yes| 1| 3| 1] 39| 14[ 20| 10] 9] 6

S_C Random 15| 6] 2| 3[No | 18] 2[ 4[36] 19] 24| 19] 15[ 11

S_C Random 15[ 6| 2| 3[Yes| 15| 1| 2| 37| 11| 22| 11| 10] 4

S _P1 20] 8] 2| 6[No | 26| 22| 24| 34] 26] 19] 30] 30| 28

S_P1 20| 8] 2| 6|Yes|21] 6| 4| 3[12[11] 5] 6] 3

S_P1noE 20] 8| 2| o[No | 19| 27[29] 38] 5| 1] 24| 25[ 29

S_P1 noE 20| 8] 2| o|ves|14]13[12] 6] 1] 1] 3] 3] 5

S_P1 Random 20] 8| 2| 6|No | 40| 29| 30] 40] 32| 25| 40[ 40[ 38

S_P1 Random 20| 8| 2| 6|Yes| 39| 14| 12| 20] 21] 18] 24| 26| 13

S P2 20] 6] 3] 5|No | 22| 24| 16] 8] 35[36] 8] 7|24

S P2 20] 6] 3| 5|ves| 7| 8| 8| 14]27[31]26[24] 8

S_P2 -1 out-pat 19] 6] 3] 5[No | 10] 20[ 17 18] 33| 33| 21 17[ 22

S_P2 -1 out-pat 19] 6] 3| 5[ves| 2| 5] 7| 7[22[26] 4] 4] 7

S_P2 -1 out-pat Random | 19] 6] 3| 5|No | 31| 34| 33| 33| 38| 38| 39] 39| 37

S_P2 -1 out-pat Random | 19] 6| 3| 5|Yes | 23] 17| 17] 21] 31| 32| 28] 28] 26

S_P2 Multi slot 20] 6] 3| o[No | 16] 28] 12| 11] 34| 34| 23] 22| 27

S_P2 Multi slot 20] 6] 3| o[ves| 8| 10| 6| 4| 24[27] 6] 5] 9

S_P2 noE 1 20] 6] 3| o[No | 20| 25| 25| 26] 8| 8] 11| 12| 20

S_P2 noE 1 20] 6] 3| ofYes| 5| o[ 15[ 15[ 2[ 1| 1| 1| 1

S P2 noE 1 Random A___ | 20] 6] 3| O[No | 35| 35| 37] 27| 13| 14] 33] 33[ 32

S P2 noE 1 Random A___ | 20] 6] 3| 0[Yes |32 19 25[ 19| 6| 7| 15] 18] 18

S P2 noE 1 RandomB___ | 20] 6] 3| O[No | 37| 36] 35| 31] 16| 12| 32| 31] 31

S P2 noE 1 RandomB___ | 20] 6] 3| 0|Yes | 28] 21] 23[ 23] 4] 1] 14] 16[ 16

S_P2 nokE 2 20] 6] 3] o[No | 17| 31| 27| 22] 10[ 10] 13] 14| 23

S_P2 nokE 2 20] 6] 3| o[ves| 9| 16] o[ 12| 3] 1| 1| 2] 2

S P2noE 2Random A | 20] 6] 3| O[No | 38| 38| 36] 24 20| 17| 34| 34] 34

S P2noE 2Random A | 20] 6] 3| 0[Yes| 34| 26 22[ 10[ 9| 6| 18] 23] 25

S P2noE 2RandomB___ | 20| 6] 3| O|No | 36| 37| 34| 29[ 18] 13| 31| 32[ 33

S P2noE 2RandomB___| 20| 6] 3| O[Yes| 30| 23] 21[ 16] 7| 9| 15| 18] 21

S_P2 Random A 20| 6] 3| 5|No | 33| 33| 31| 24] 39] 37] 37| 38| 36

S_P2 Random A 20| 6] 3| 5|Yes| 24| 12] 11| 13] 29[ 30] 27| 26| 17

S_P2 Random B 20] 6] 3| 5[No | 29| 32| 32| 30] 36] 35] 36| 35| 35

S_P2 Random B 20| 6] 3| 5|Yes| 25| 15| 10| 17] 28] 29] 22| 20] 15

S R-P 20] 8] 2| 6[No | 27| 18] 19| 2] 25] 21| 19[ 21| 18

S R-P 20] 8] 2| e6|ves| 13| 7[20] 1[17[16] o[ 11] 12

S V 20] 8] 3] 7[No | 12| 30] 38] 28] 30[ 23] 29] 29] 30

SV 20] 8| 3| 7|Yes| 3| 11[ 28] 4| 15[ 15| 7| 8|14
Figure 12.19: Simulation results in ranks
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106 CHAPTER 12. APPENDIX

[Occupancy _JOvertime (min) [Appointment lateness (min) [Break___[Wailing time urgent patients (min)
=
S
g
H o & s x ® § §
s 3| 5| gl = ol g <] 3
g B = § S g < e H L
2] 2l s 2 8 s & 5 2 g 5 8
2 | 8| = @ 5] 2 = 3l 3 = 2
[s_P1 Random 20 [Yes [ 2.704] A 291 ,49] 9,36E+02]
5[S_P2 Random A 20 Yes | 2.687] 81E+02 5] 2.43) 50] 1.81E+03] 0,94]
5[S_P2noE 1 20| Yes | 2,641 44E+02] m ,54] 7| 00| 1,93E+02]
S[S_P2noE2 20| [Yes | 2,683] 43| .29 2,06E+02]
5
%|s_P2 Random A (2) Yes ,30E+03)
[S_PT Random Yes  53E+02
s_P2 Random A Yes (81E+03
fs pz noE1 Yes |85E+02
zls [Yes  A1E+02)
Sls P2 Randoml-\ (2) Yes 51E+03
[S_PT Random Yes 91E+02
[S_P2 Random A [Yes L71E+03
~fsP2noE 1 es (94E+02
& |s_P2noE 2 es. \94E+02
S[s_P2 Random A (2) ‘es |37E+03)
[S_P1 Random es  55E+02
[S_P2 Random A es \70E+03
2ls_P2noE 1 es \91E+02
Z[s_P2noE 2 ‘es ,04E+02
&|S_P2 Random A (2) ‘es 44E+03)
<[S_PT Random ‘es 77| 1,04E+03]
Sls_P2 Random A es ; ,81] 50.17] 2.06E+03]
ZlsP2noE 1 es |_2. X 88] 1. . 6] 2, X 6,54] 1.94E+02]
2[s_P2noE 2 Yes 7,85] 2.42E+02] ¥ X
&|s_P2 Random A (2) [Yes L46E+03) 36,41|_74,94] 5,08]
©[S_PT Random Yes 21.24] 48,58
*[s”P2 Random A Yes
Z[s_P2noE 1 es
§|s_P2noE 2 es
3|s_P2 Random A (2) es
[S_P1 Random o5
2|s_P2 Random A ‘es.
Z[s_P2noE 1 es.
£ls_P2noE2 os
&|S_P2 Random A (2) ‘es
[S_PT Random es
[s_P2 Random A es
Sls_P2noE 1 es
2|s_P2noE 2 Yes
£ |S_P2 Random A (2) Yes
[S_PT Random Yes
s_P2 Random A Yes
ols_P2noE 1 Yes
2[s_P2 noE 2 Yes
2|s_P2 Random A (2) Yes
[S_PT Random Yes
&[s_P2 Random A Yes
T8 P2noE 1 es
F[s_P2noE 2 es
u|s P2 Random A (2) es
[S_P1 Random o5
2|s_P2 Random A ‘es
: [S_P2 noE 1 es.
S[s P2 noE 2 os
u|s P2 Random A (2) es
1 Random
_P2 Random A S 2,64] 0.8:
P2 Random A (2) [T20] 6] 3] _5|Yes | _2.73]
g
S [s_P1 Random 20 6] 2,0
§SP2RandomA 20 6] [ 5]ves | 78 5] 16,58] 2,70E+02] 13,10] 0.92] 0,83] 43,13] 1.67E+03] 0,95] 31.84] 72, 92)
=[s P2 RandomA (2) [720] 6] 3| 5|Yes | 21, oo 0.78] 455 03] 0.27] 15.20] 2,04E+02] 6,67] .42E+01] 1.46] 1.89] 15.04] 0,04] 0.80] 37.19] 1.23E+03] 0.94] 27.80] 66.17] 3.04

Figure 12.20: Simulations results for adjustments and sensitivity analysis



12.4. QUEUES WITH NON-OVERTAKING 107

12.4 Queues with non-overtaking

Surface Plot: Expected sojourn time versus service rates Contour Plot: Expected sojourn time versus service rates
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Figure 12.21: Performance measures for the non-overtaking M/M/2—M/1 queue
with different service rates
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