
Master thesis

Numerical Approximation
of the replicator equations

for the Nash bargaining game

Author:
Panagiotis Sarridis

Supervisors:
Dr. Paul Zegeling
Dr. Thijs Ruijgrok

Utrecht University

Mathematical Sciences

February 12, 2011

Abstract

There is a variety of phenomena that take place around us. A good mathematical tool to analyse
and understand the behaviour of these phenomena, is to approximate them numerically. That is,
first we model the phenomenon itself, then we computationally reproduce it, so that we can imitate
the phenomenon as many times and in any way we need. That gives us the opportunity, to check the
behaviour of the model for different parameters in order to figure out in which way, the phenomenon
is affected by them.

The phenomenon that is numerically approximated in this work, comes from the field of game
theory and it is known as the Nash bargaining game. Its mathematical model, consists of two
time dependent partial integrodifferential equations that interact with each other, also known as the
replicator equations for the Nash bargaining game.

Both fixed grid method and adaptive moving grid method, have been used to numerically approx-
imate the model. The central difference scheme, has been used to numerically approximate the 2nd
order space derivatives, while the approximation of all the integrals, has been based on the trape-
zoidal rule for both fixed and adaptive moving grid methods. For the approximation of the 1st order
time derivative, Euler forward numerical scheme has been used for the fixed grid method and Euler
backward scheme for adaptive moving grid.

The results that have been achieved during this work, show that the behaviour of the model,
depends mostly on the parameters ε1, ε2. For the case where ε1 = ε2, the initial curves are moving
towards to each other until they have the same shape and position, where they become stable and
as ε1, ε2 get closer to zero, although the curves preserve their volumes, they become steeper and
steeper. While for ε1 6= ε2, we see that the curves converge to stationary solutions, that are no longer
concentrated at the same position. In this case, the ratio r = ε1

ε2
, seems to affect the behaviour of the

model. Finally, it seems that, the initial values of the model, do not affect the result.
The algorithms that have been used are built on Matlab for the fixed grid method, while for the

adaptive moving method fortran 77 was used. The computer that was used for the runs has processor
Intel Core 2 Duo T7250 (2.0 GHz).

1

Contents

1 Introduction 3
1.1 The bargaining game: . 3
1.2 Evolutionary game theory . 4
1.3 The replicator equation for the bargaining game . 5

2 The model 6

3 Fixed grid method 6
3.1 Numerical approximation . 7
3.2 Stability . 11
3.3 Results . 14

4 Adaptive moving grid method 23
4.1 Numerical approximation . 24
4.2 Gridpoint distribution . 31
4.3 Results . 34

5 Conclusions 52

6 References 54

7 Appendices 54
7.1 Fixed grid method codes . 54
7.2 Adaptive moving grid method codes . 58

2

1 Introduction

1.1 The bargaining game:

The bargaining game was introduced by John Nash in 1950, see [5]. In this game there are two players
who can divide a unit of a certain good, possibly money. Each player submits a demand, which is the
fraction of the good they desire. If the sum of the demands equals one or less, each player gets the
demanded fraction, otherwise both players get nothing.

The players derive a certain utility from the good they receive. The corresponding utility function
is taken to be a increasing, concave function of the amount of the good. Such a function need not be
linear. Imagine, for instance, that one of the parties is a manufacturer who needs 100 widgets from the
other party for its own production process. Getting 200 widgets would be nice, but not twice as nice as
getting 100 widgets, since the extra 100 widgets are not essential for the production process. Such a firm
would be very reluctant to overask, since the gain of obtaining a lot of widgets is not balanced by the
risk of obtaining none. A common interpretation of utility functions is therefore that they indicate the
amount of risk averseness of a player. In bargaining theory, the division of the good is not the quantity
of interest, but the resulting utilities.

The bargaining game can be seen from different view points.

• Economical aspect: Since [5] was published, the bargaining game immediately grabbed the attention
of economists and a huge amount of literature has been published on the subject, see [4]. Consider
of a bargaining situation between a labor union and the management of a firm, where the good
to be divided is the yearly profit of the firm. We can imagine that both parties immediately put
down their ’final offers’. If these are compatible, everybody is happy. If not, the negotiations have
broken down and both players lose, for instance the unions decide to strike since the negotiations
were sunk.
Also, many economic transactions have a bargaining aspect. For instance, if I want to sell my house
for at least 200K euro and a buyer wants to buy it for at most 300K, then in a sense we have 100K
euro to divide.

• Philosophical aspect: The game also plays a role in philosophy, in particular in questions of ethics
and morality. An impressive list of thinkers, from Plato, Aristotle, Kant, Hume to Rawls have
discussed the question of what is good or bad in society. Is a just society one where everybody
receives the same (egalitarianism) or one where the sum of the happiness of the members of the
society is maximized (utilitarianism) or some other principle? Recently, Skyrms (1996) and Binmore
(2005), in [7] and [2] have taken the bargaining game as a starting point to investigate these
questions.

In his paper, Nash found a truly ingenious solution to the bargaining game. He assumed the existence
of a function which, given the utilities of the players, would produce the division of the good. To find this
solution-function, he formulated a number of properties that the function should have. These properties,
or axioms, were as follows:

1. The solution should divide the whole unit.

2. The solution should be symmetric in the sense that if both players have the same utility function,
then they are indistinguishable and so the division of the good should be the equal split (50-50)

3. If the scale of a utility function were changed, this would not affect the division of the good. For
instance, assume both players express their utilities in euro’s and the solution of a given problem
is 10 euro’s for player 1 and 20 for player 2. Should player 1 choose to express his utilities in cents
(in effect multiplying his utility function by 100), then the solution to this transformed problem
should be that player 1 received a utility of 1000 cents from the division.

4. The final axiom, known as Independence of Irrelevant Alternatives looks slightly more complicated.
Suppose that a certain bargaining problem, which is completely determined by the set of possible
outcomes in terms of utilities, yields as solution a certain pair of utilities called P . Now consider a
different bargaining problem, where the set of possible utility outcomes is contained in those of the
first problem, but it also contains P . Since P was the preferred solution in the ’larger’ problem, it
should also be the solution in this ’smaller’ problem. As an analogy: imagine you are in a restaurant

3

and you have the choice between gyros, moussaka and souvlaki. Assume that your choice is gyros
this is P for ’larger’ problem. If the waiter comes back and informs you that the souvlaki is not
available today, then you you are in a ’smaller’ problem, but gyros (P) is still a possible outcome.
Then this change, would not affect your choice for gyros.

Nash was able to show that from the properties listed above, which seem quite reasonable, there is
only one solution function that satisfies them. This solution is known as the Nash bargaining solution
and can be computed as follows. Let ui(x) be the utility function of player i = 1, 2. Find the value of x
that maximizes the product u1(x)u2(1− x). Then the division of the good is (x, 1− x).

The research that followed the publication of Nash’s paper focused on three aspects.

• A number of papers investigated what happens if certain axioms are changed or omitted. This line
developed, because some researchers disagreed with the naturalness or applicabilty of these axioms.

• Secondly, there are many papers on applications of Nash’s theory to actual problems, usually
economic.

• Finally, the problem was taken from the cooperative context and reformulated as a strategic game,
or as an evolutionary game.

This work is focused on the latter aspect. But what is exactly a strategic game or an evolutionary game?

1.2 Evolutionary game theory

In strategic game theory, of which John Nash is also one of the founding fathers, we define the strategic
games as the games where the players usually have opposing interests. Each player has a number of
strategies he can use and the question now becomes which strategy to use to maximize his payoff for the
game, knowing that his adversary is considering the same question. An example of a (very complicated)
strategic game is chess. An easier example is the Prisoners Dilemma. In this game two prisoners, who
are suspected of a crime they perpetrated together, each have two strategies: testify against the other or
stay silent. If both keep their mouth shut, they both receive a sentence of 1 year. If one testifies and the
other doesn’t, the talker goes free and the other receives a 7 year sentence. If both testify, both receive
a 5 year sentence.

For that kind of games the main solution concept is that of an eqilibrium (also named after Nash).
For a two-player game, we call equilibrium a pair of strategies such that neither player has an incentive
to change his strategy. For instance, in the Prisoners Dilemma it is easy to see that the pair of strategies
where both prisoners testify, is a Nash equilibrium since neither player has an incentive to change his
strategy. The reason this game is called a Dilemma, is because there exists an option in which both gain
more, namely when both stay silent, yet this is not a Nash equlibrium, since player 1 has an incentive to
change his strategy, given that player 2 stays silent.

Considered as a strategic game, the bargaining game has a large set of Nash equlibria. It is clear that
for every x ∈ [0, 1] the division (x, 1− x) is a Nash equilibrium, and there is no reason to prefer one over
the other.

The field of Game Theory enjoyed a rapid progress from the 50’s onward, both theoretical and applied,
mainly to economics. Starting from the early 70’s, biologists became interested in the subject. At first
sight, this may seem puzzling. On one hand, the actors in the economic models, that were standard at
the time, were assumed to have all information about their situation, be completely rational and have the
reasoning powers of a trained mathematician. As such, they were ideally suited to play strategic games
in the way that the theory predicted, that is the concept of homo economicus. On the other hand, fish
or other animals for that matter, can hardly be said to have any of these properties. Yet these animals
often face situations that can be described using a strategic game. A famous example is a game that
exemplifies the fight-or-flight dilemma many living creatures often encounter. When two individuals meet
in a conflict situation, they both have two strategies: fight or flight. If both choose fight, both lose, if
both choose flight the outcome is a draw and if one fights and the other flies, the fighter wins and the
flyer loses a bit. This game can be analysed by standard methods, and we can find the Nash equilibria
and so on. Of course, animals don’t do this, they simply act.

The idea of evolutionary game theory, in particular replicator dynamics is that the animals reproduce
and that their tactics (for instance fight or flight) are passed on to their offspring. Those animals with a
tactic that gives them a large payoff will have relatively more offspring, as evolutionary theory predicts.

4

Putting these ideas in to a mathematical model results in the replicator equations. In the case that there
are only a finite number of strategies, these take the form:

dxi
dt

= (πi(x)− π̄(x))xi , i = 1, . . . , n.

Here, xi is the fraction of the population who play strategy i. πi(x) is the payoff, or fitness, of strategy
i against the current distribution of strategies x and π̄(x) is the average payoff of the total population,

π̄(x) =

n∑
i=1

xiπi(x). It is easy to check that x1(t) + . . .+ xn(t) = 1, for all t.

The point of the equation is that strategies whose payoff is larger than average will grow in the
population, whereas the fraction of strategies that are doing less than average will diminish.

Soon after its introduction, economists started to become interested in evolutionary game theory. This
is because many found the concept of the homo economicus as sketched above, to be far from reality. In
practice, people making economic decisions do not have all necessary informations, nor do they always
act rationally in the textbook sense. An alternative theory, that of bounded rationality became popular.
This still doesn’t explain what evolution has to do with it. However, it turns out that the replicator
equations can be also be seen as a type of learning dynamics. i.e Let’s assume that we have a game with
a finite number of strategies and a large group of players playing against another large group, in the sense
that at each (short) time interval two players are picked from the respective groups who then play the
game against each other. At certain times, one player is picked at random. He observes the strategy of a
random other agent from his group. If the payoff of this alternative strategy is higher than his own, he
will switch to this strategy with a probability proportional to the difference in payoffs. If the payoff of
the other strategy is lower than that of his own, he will stick to his original strategy.
Taking various limits (population of the groups to infinity, time between events to zero) we, miraculously,
recover the replicator equations.

Through this learning, we see that succesfull strategies will increase, at the expense of less succesfull
ones. Note that the players do not use any of their reasoning powers, they simply use the strategy that
they have at the moment. Their rationality has become so bounded that it is actually zero. They might
as well be amoebe.

Of course, assuming that the average economic actor has the intelligence of an amoebe is also a
caricature, but perhaps this concept is closer to reality than that of the homo economicus.

1.3 The replicator equation for the bargaining game

The bargaining game has been studied in an evolutionary setting before, but the replicator equation
for this game has never been explored. In [6] of Ruijgrok this is done. Although the equations look
quite formidable, it is possible to make some analytic predictions of the outcomes. To confirm these
predictions and to solve the equations for situations where analysis does not give an answer, we need
numerical simulations.

The equations are basically in the same form as described in the previous section, but with some
adaptions.

• First, players have an infinite set of strategies to choose from, namely the interval [0, 1]. Rather than
having a finite set of variables describing the distribution of strategies in the population, we now
have a density ρi(x, t), i = 1, 2. Here, ρi(x, t)dx measures the fraction of players in the population

who play a strategy in the interval [x, x+ dx]. We want

1∫
0

ρi(x, t)dx = 1, since the measure of the

population is equal to 1.

• Secondly, we introduce the concept of mutation. Apart from occasionally learning, the agents
sometimes simply change their strategy by a small amount. In the learning interpretation of the
equations, this may be thought of as experimentation or innovation. In [6], it is shown that this

mutation term may be modelled as a diffusion: εi
∂2ρi(x, t)

∂x2
, with εi small.

• Finally, we need to provide boundary conditions. These are chosen to be reflecting, so that the
total measure of the population is preserved and equal to one.

5

The replicator equations of the previous section then become:

∂ρ1(x, t)

∂t
= ρ1(x, t)(u1(x)

∫ 1−x

0

ρ2(y, t) dy − λ1(t)) + ε1
∂2ρ1(x, t)

∂s2

∂ρ2(x, t)

∂t
= ρ2(x, t)(u2(x)

∫ 1−x

0

ρ1(y, t) dy − λ2(t)) + ε2
∂2ρ2(x, t)

∂s2
,

where

λ1(t) =

∫ 1

0

∫ 1−x

0

u1(x)ρ1(x, t)ρ2(y, t) dy dx

λ2(t) =

∫ 1

0

∫ 1−x

0

u2(x)ρ1(y, t)ρ2(x, t) dy dx

are the average payoffs to members of the two groups and u1(x), u2(x), are the utility functions of each
group. The value r = ε1

ε2
, designates the ratio of the mutations.

To complete the description of the problem, boundary conditions and an initial value are imposed:

∂ρi(0, t)

∂x
=
∂ρi(1, t)

∂x
= 0 , i = 1, 2.

ρi(x, 0) = ρ0i(x) , i = 1, 2.

2 The model

As we have shown in the introduction, the mathematical interpretation of the model is given by a system
of two time dependent partial integro-differerential equations, named the replicator equations for the
Nash bargaining game.

∂ρ1(x,t)
∂t = ε1

∂2ρ1(x,t)
∂x2 + ρ1(x, t)

[
u1(x)

∫ 1−x
0

ρ2(y, t)dy −
∫ 1

0
ρ1(x, t)u1(x)

(∫ 1−x
0

ρ2(y, t)dy
)

dx
]
,

∂ρ2(x,t)
∂t = ε2

∂2ρ2(x,t)
∂x2 + ρ2(x, t)

[
u2(x)

∫ 1−x
0

ρ1(y, t)dy −
∫ 1

0
ρ2(x, t)u2(x)

(∫ 1−x
0

ρ1(y, t)dy
)

dx
] ,

where the utility functions that we will use, are the increasing concave functions u1(x) = xa1 and
u2(x) = xa2 , for 0 6 a1, a2 6 1 and ε1, ε2 ∈ R. We want to approximate the density functions ρ1(x, t)
and ρ2(x, t), as ε1, ε2 → 0.

3 Fixed grid method

In fixed grid method, we place the spatial and time gridpoints, in such a way that the distance between
any two successive gridpoints is equal. So, suppose we have n spatial gridpoints and s time gridpoints.
We equidistribute these n spatial gridpoints into the spatial domain [0, 1]. That yields to a subdivision
of the spatial interval into N equal subintervals, as in the following picture

so we get N equal subintervals of length ∆x = xmax−xmin
N = 1

N and the spatial gridpoints are given by
xi = (i− 1)∆x for i = 1, 2, . . . , n (where n = N + 1).

Similarly we place s time gridpoints into the time domain [0, tmax]. In other words, we subdivide the
time domain into S equal subintervals.

6

so, we get S equal subintervals of length ∆t = tmax−tmin
S = tmax

S and the time gridpoints are given by
tj = (j − 1)∆t for j = 1, 2, . . . , s (where s = S + 1).

For every of these fixed time gridpoints, we calculate the values of both ρ1 and ρ2 curves, for every
fixed spatial gridpoint. So, for the 1st time gridpoint t1, which corresponds to time t = 0, we calculate
the values of ρ1 and ρ2, on every fixed gridpoint xi, i = 1, 2, . . . , n on space. Afterwards, we make a
time step of length ∆t and we reach the 2nd time gridpoint t2, which coresponds to time t = ∆t and we
calculate the values of ρ1 and ρ2, on every fixed gridpoint xi, i = 1, 2, . . . , n on space. We continue doing
that, until we reach the last time gridpoint ts, which corresponds to time t = tmax.

3.1 Numerical approximation

In this section, we will derive the formulas that will allow as calculate the values of ρ1(xi, tj) and ρ2(xi, tj)
on every fixed spatial gridpoint xi, i = 1, 2, . . . , n, for any given time gridpoint tj , j = 1, 2, . . . , s. General
information for the theory of numerical approximation of partial differential equations, can be found in
references [1] and [3].

We start by deriving the numerical approximation formulas of the second order space derivatives ∂2ρ1
∂x2 ,

∂2ρ2
∂x2 . Central Difference scheme is used here, the scheme can be easily derived by Taylor expansion on
ρ1 and ρ2 at some point xi.
Central difference scheme:

∂2ρ1

∂x2

∣∣
(xi)=((i−1)∆x) ≈ ρ1(xi+1)− 2ρ1(xi) + ρ1(xi−1)

(∆x)2
,

∂2ρ2

∂x2

∣∣
(xi)=((i−1)∆x) ≈ ρ2(xi+1)− 2ρ2(xi) + ρ2(xi−1)

(∆x)2
,

for every i = 1, 2, . . . , n.

We continue by deriving the numerical approximation formulas of the integrals F1(x) =
∫ 1−x

0
ρ2(y)dy,

F2(x) =
∫ 1−x

0
ρ1(y)dy. These integrals are functions of x, that explains the usage of Fi(x) instead of Fi.

A variety of numerical methods for the approximation of integrals can be found in §2.12.4 of reference
[1]. At this part, we will use the trapezoidal rule defined as follows, to calculate the definite integrals on
some specified spatial domain.
Trapezoidal rule:
For integrating area [a, b] ⊂ [0,∞), we have:∫ b

a

f(y)dy ≈ (b− a)
f(a) + f(b)

2
.

Hence, for any [x1, xn] ⊂ [0,∞), we have:∫ xn

x1

f(y)dy ≈ ∆x

2
[f(x1) + 2f(x2) + . . . ,+2f(xn−1) + f(xn)]

=
∆x

2

[
f(x1) + f(xn) + 2

n−1∑
q=2

f(xq)

]
.

The rest formulas that will be derived from now on, are based on the latter definition.
For integrating area [a, xi], where xi can be any spatial gridpoint, we have:∫ xi

a

f(y)dy =

∫ xi

x1

f(y)dy

≈ ∆x

2
[f(x1) + 2f(x2) + . . . ,+2f(xi−1) + f(xi)]

=
∆x

2

[
f(x1) + f(xi) + 2

i−1∑
q=2

f(xq)

]
.

For integrating area [a, b− xi], where xi can be any spatial gridpoint, we have:∫ b−xi

a

f(y)dy =

∫ b−xi

x1

f(y)dy =

7

Note that we have b − xi = (n − 1)∆x − (i − 1)∆x ⇒ b − xi = (n − 1 − i + 1)∆x = (n − i)∆x =
((n− i+ 1)− 1)∆x = xn−i+1, where xn−i+1 is also some spatial gridpoint. So,∫ xn−i+1

x1

f(y)dy ≈ ∆x

2
[f(x1) + 2f(x2) + . . . ,+2f(xn−i) + f(xn−i+1)]

=
∆x

2

[
f(x1) + f(xn−i+1) + 2

n−i∑
q=2

f(xq)

]
.

Hence, the numerical approximation formula of F1(x) =
∫ 1−x

0
ρ2(y)dy, in every spatial gridpoint xi,

i = 1, 2, . . . , n is:

F1(xi) =

∫ 1−xi

0

ρ2(y)dy =

∫ xn−i+1

0

ρ2(y)dy

≈ ∆x

2

[
ρ2(x1) + ρ2(xn−i+1) + 2

n−i∑
q=2

ρ2(xq)

]
.

Similarly, for F2(x) =
∫ 1−x

0
ρ1(y)dy, we have:

F2(xi) =

∫ 1−xi

0

ρ1(y)dy =

∫ xn−i+1

0

ρ1(y)dy

≈ ∆x

2

[
ρ1(x1) + ρ1(xn−i+1) + 2

n−i∑
q=2

ρ1(xq)

]
,

for every xi, i = 1, 2, . . . , n.
Other integrals that are part of the model and need to be approximated, are the definite integrals

P1 =
∫ 1

0
ρ1(x)u1(x)

(∫ 1−x
0

ρ2(y)dy
)

dx, P2 =
∫ 1

0
ρ2(x)u2(x)

(∫ 1−x
0

ρ1(y)dy
)

dx.

The values F1(x) =
∫ 1−x

0
ρ2(y)dy and F2(x) =

∫ 1−x
0

ρ1(y)dy, are part of P1 and P2 respectivelly and
have been already approximated by some formulas, so we have:

P1 =

∫ 1

0

ρ1(x)u1(x)

(∫ 1−x

0

ρ2(y)dy

)
dx =

∫ 1

0

ρ1(x)u1(x)F1(x)dx,

P2 =

∫ 1

0

ρ2(x)u2(x)

(∫ 1−x

0

ρ1(y)dy

)
dx =

∫ 1

0

ρ2(x)u2(x)F2(x)dx.

Since these are definite integrals, the results will be just numbers independent of x. That explains
the usage of Pi instead of Pi(x). Let f1(x) = ρ1(x)u1(x)F1(x), then we have that

P1 =

∫ 1

0

ρ1(x)u1(x)F1(x)dx =

∫ 1

0

f1(x)dx =

∫ xn

x1

f1(x)dx

and by the definition of trapezoidal rule we get the formula

≈ ∆x

2
[f1(x1) + 2f1(x2) + . . .+ 2f1(xn−1) + f1(xn)]

=
∆x

2

[
f1(x1) + f1(xn) + 2

n−1∑
q=2

f1(xq)

]

=
∆x

2

[
ρ1(x1)u1(x1)F1(x1) + ρ1(xn)u1(xn)F1(xn) + 2

n−1∑
q=2

ρ1(xq)u1(xq)F1(xq)

]
.

This is the approximation formula of the value P1. Note that in order to calculate the value P1, we
must first have calculated all the values F1(x1), F1(x2), . . . , F1(xn). Algorithically speaking, the value
P1, will have to be calculated only once at the beginning of each time iteration.

8

Similarly, we derive the approximation formula of the value P2.

P2 =

∫ 1

0

ρ2(x)u2(x)F2(x)dx =

∫ xn

x1

ρ2(x)u2(x)F2(x)dx

≈ ∆x

2

[
ρ2(x1)u2(x1)F2(x1) + ρ2(xn)u2(xn)F2(xn) + 2

n−1∑
q=2

ρ2(xq)u2(xq)F2(xq)

]
.

As for P1, first we must have calculated all the values F2(x1), F2(x2), . . . , F2(xn), in order to be able
to calculate P2. The value P2, will have to be calculated only once at the beginning of each time iteration.

Consider the initial model
∂ρ1
∂t = ε1

∂2ρ1
∂x2 + ρ1(x)

[
u1(x)

∫ 1−x
0

ρ2(y)dy −
∫ 1

0
ρ1(x)u1(x)

(∫ 1−x
0

ρ2(y)dy
)

dx
]
,

∂ρ2
∂t = ε2

∂2ρ2
∂x2 + ρ2(x)

[
u2(x)

∫ 1−x
0

ρ1(y)dy −
∫ 1

0
ρ2(x)u2(x)

(∫ 1−x
0

ρ1(y)dy
)

dx
] ,

⇔


∂ρ1
∂t = ε1

∂2ρ1
∂x2 + ρ1(x) [u1(x)F1(x)− P1] ,

∂ρ2
∂t = ε2

∂2ρ2
∂x2 + ρ2(x) [u2(x)F2(x)− P2]

.

The right side of both equations of the model, have been fully approximated by numerical formulas.
Consider the first equation of the latter model.

∂ρ1

∂t
= ε1

∂2ρ1

∂x2
+ ρ1(x) [u1(x)F1(x)− P1] ,

for some x = xi, we have:

∂ρ1

∂t

∣∣
(xi) = ε1

∂2ρ1

∂x2

∣∣
(xi) + ρ1(xi) [u1(xi)F1(xi)− P1]

≈ ε1
ρ1(xi+1)− 2ρ1(xi) + ρ1(xi−1)

(∆x)2
+ ρ1(xi) [u1(xi)F1(xi)− P1] ,

where everything have been numerically approximated.
Now consider the second part of the latter model.

∂ρ2

∂t
= ε2

∂2ρ2

∂x2
+ ρ2(x) [u2(x)F2(x)− P2] ,

for some x = xi, we have:

∂ρ2

∂t

∣∣
(xi) = ε2

∂2ρ2

∂x2

∣∣
(xi) + ρ2(xi) [u2(xi)F2(xi)− P2]

≈ ε2
ρ2(xi+1)− 2ρ2(xi) + ρ2(xi−1)

(∆x)2
+ ρ2(xi) [u2(xi)F2(xi)− P2] ,

where everything have been numerically approximated.
Hence, the last part that remains to be approximated, is the left side of the equations in the model,

which is consisted by 1st order time derivatives ∂ρ1
∂t , ∂ρ2

∂t . Up until now, time was not considered at all.
The time gridpoints, were not mentioned in any of the previous formulas. That is because until now, we
were considering time to be constant since it does not effect the right side of the model. But now time
is essential for the numerical approximation of the time derivatives.

For this approximations, we will use another classic method known as Euler forward method. It is
derived as follows.
Euler forward method:
Given the definition of the derivative

∂f

∂t
(x, t) = lim

∆t→0

f(x, t+ ∆t)− f(x, t)

∆t
,

9

for some spatial gridpoint x = xi and some time gridpoint t = tj we have

∂f

∂t

∣∣
(xi,tj) ≈ f(xi, tj + ∆t)− f(xi, tj)

∆t
,

where the value tj + ∆t = (j − 1)∆t+ ∆t = j∆t = ((j + 1)− 1)∆t = tj+1, corresponds to the next time
gridpoint. So,

∂f

∂t

∣∣
(xi,tj) ≈ f(xi, tj+1)− f(xi, tj)

∆t
.

By applying this method to the time derivatives of our model, we get:

∂ρ1

∂t

∣∣
(xi,tj) ≈ ρ1(xi, tj+1)− ρ1(xi, tj)

∆t
,

∂ρ2

∂t

∣∣
(xi,tj) ≈ ρ2(xi, tj+1)− ρ2(xi, tj)

∆t
.

Now we are ready to derive the final formulas that are able to numeriacally approximate the values
of the curves ρ1 and ρ2. By pluging in all the previous approximations into the initial model, the first
equation of the model takes the form:

∂ρ1

∂t
(x, t) = ε1

∂2ρ1

∂x2
(x, t) + ρ1(x, t) [u1(x)F1(x, t)− P1] ,

and for some time gridpoint tj , j = 1, 2, . . . , s and any spatial gridpoint x = xi, i = 1, 2, . . . , n, we have:

∂ρ1

∂t

∣∣
(xi,tj) = ε1

∂2ρ1

∂x2

∣∣
(xi,tj) + +ρ1(xi, tj) [u1(xi)F1(xi, tj)− P1]

⇒ ρ1(xi, tj+1)− ρ1(xi, tj)

∆t
= ε1

ρ1(xi+1, tj)− 2ρ1(xi, tj) + ρ1(xi−1, tj)

(∆x)2

+ρ1(xi, tj) [u1(xi)F1(xi, tj)− P1]

⇒ ρ1(xi, tj+1) = ∆tε1
ρ1(xi+1, tj)− 2ρ1(xi, tj) + ρ1(xi−1, tj)

(∆x)2

+∆tρ1(xi, tj) [u1(xi)F1(xi, tj)− P1] + ρ1(xi, tj),

where

F1(xi, tj) =
∆x

2

[
ρ2(x1, tj) + ρ2(xn−i+1, tj) + 2

n−i∑
q=2

ρ2(xq, tj)

]
,

P1 =
∆x

2
[ρ1(x1, tj)u1(x1)F1(x1, tj) + ρ1(xn, tj)u1(xn)F1(xn, tj)

+ 2

n−1∑
q=2

ρ1(xq, tj)u1(xq)F1(xq, tj)

]
.

Computationally, for each and every j = 1, 2, . . . , s, we first need to compute F1(xi, tj) ∀i = 1, . . . , n
and save in a vector F1 = [F1(x1, tj), F1(x2, tj), . . . , F1(xn, tj)] with dimension 1 × n, and then, we will
be able to calculate P1, which will be a single value.

Similarly, the second equation of the model takes the form:

∂ρ2

∂t
(x, t) = ε2

∂2ρ2

∂x2
(x, t) + ρ2(x, t) [u2(x)F2(x, t)− P2] ,

and for some time gridpoint t = tj , j = 1, 2, . . . , s and any spatial gridpoint x = xi, i = 1, 2, . . . , n, we
have:

∂ρ2

∂t

∣∣
(xi,tj) = ε2

∂2ρ2

∂x2

∣∣
(xi,tj) + ρ2(xi, tj) [u2(xi)F2(xi, tj)− P2]

⇒ ρ2(xi, tj+1)− ρ2(xi, tj)

∆t
= ε2

ρ2(xi+1, tj)− 2ρ2(xi, tj) + ρ2(xi−1, tj)

(∆x)2

+ρ2(xi, tj) [u2(xi)F2(xi, tj)− P2]

⇒ ρ2(xi, tj+1) = ∆tε2
ρ2(xi+1, tj)− 2ρ2(xi, tj) + ρ2(xi−1, tj)

(∆x)2

+∆tρ2(xi, tj) [u2(xi)F2(xi, tj)− P2] + ρ2(xi, tj),

10

where

F2(xi, tj) =
∆x

2

[
ρ1(x1, tj) + ρ1(xn−i+1, tj) + 2

n−i∑
q=2

ρ1(xq, tj)

]
,

P2 =
∆x

2
[ρ2(x1, tj)u2(x1)F2(x1, tj) + ρ2(xn, tj)u2(xn)F2(xn, tj)

+ 2

n−1∑
q=2

ρ2(xq, tj)u2(xq)F2(xq, tj)

]
.

Computationally, also here, we first need to compute F2(xi, tj) ∀i = 1, . . . , n and save in a vector
F2 = [F2(x1, tj), F2(x2, tj), . . . , F2(xn, tj)] with dimension 1× n, then we are able to calculate P2, which
will be a single value.

By the latter two numerical formulas, we can see that we can approximate the values of both
ρ1(xi, tj+1) and ρ2(xi, tj+1), for every spatial gridpoint xi, i = 1, 2, . . . , n at a given time gridpoint
tj+1, by just using the values of ρ1(xi, tj) and ρ2(xi, tj) of the previous time gridpoint tj . Finally, the
above numerical formulas give a fully discrete solution for all the gridpoints (xi, tj) ∀i = 1, . . . , n for any
given time gridpoint tj , j = 1, 2, . . . , s.

3.2 Stability

In order to use the numerical scheme, that we derived in the previous section, we first need to investigate
its stability. That is to find some restriction, for the values that the scheme’s parameters can take, such
that, when the restriction is fulfilled, the scheme will be stable.

Since the equations of the scheme, are difficult to be analyzed, a theoretical approach is not an option.
So, we used a more practical way to do that. The parameters were quite a few, so we had to choose some
specific cases and focus on them. Several numerical experiments have been done, in order to acquire some
relationship among the parameters of the scheme, for which the scheme is stable. In order to check for
what values the above scheme is stable, we followed the following procedure.

We fixed the parameters a1, a2, ε1, ε2 and tmax. Once the scheme is free of these parameters, we
give a number of spatial gridpoints n, and find the minimum possible number of time gridpoints s, for
which the scheme is stable. This procedure was repeated several times, each time for a different number
of spatial gridpoints.

The figures below, show the results for several cases. Leften figures, correspond to the relation between
the number of spatial gridpoints n and the number of time gridpoints s and right figures, correspond to
the relation between ∆x and ∆t.

In order to see what happens as tmax is changing, we doubled the value of tmax and followed the
same procedure.

Hence figures below correspond to the following cases:

Case a1 = a2 ε1 = ε2 tmax
1 0, 5 10−4 100
2 0, 5 10−4 200
3 0, 5 10−5 100
4 0, 5 10−5 200
5 0, 5 10−7 100
6 0, 5 10−7 200

11

For ε1 = ε2 = 10−4 and tmax = 100

0 100 200 300 400 500 600 700 800
0

2000

4000

6000

8000

10000

12000

14000

space gridpoints n

ti
m

e
 g

ri
d

p
o

in
ts

 s
Stability

 a1, a2, c, e1, e2, tmax
0.5
0.5

0.041
0.0001
0.0001

100

UNSTABLE

STABLE

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.2

0.4

0.6

0.8

1

1.2

1.4

∆x

∆
t

Stability
 a1, a2, c, e1, e2, tmax

0.5
0.5

0.041
0.0001
0.0001

100

UNSTABLE

STABLE

We can see from the left figure that, as the number of spatial gridpoints is increasing, the number of
time gridpoints must be increased even more.

For ε1 = ε2 = 10−4 and tmax = 200

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3
x 10

4

space gridpoints n

ti
m

e
 g

ri
d

p
o

in
ts

 s

Stability
 a1, a2, c, e1, e2, tmax

0.5
0.5

0.041
0.0001
0.0001

200

UNSTABLE

STABLE

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.2

0.4

0.6

0.8

1

1.2

1.4

∆x

∆
t

Stability
 a1, a2, c, e1, e2, tmax

0.5
0.5

0.041
0.0001
0.0001

200

UNSTABLE

STABLE

By comparing the first figure, with the respective one in the previous case, we see that, when tmax is
doubled, the number of time gridpoints that we need to use, in order to keep the scheme stable, is almost
doubled. In the previous case, for n = 500, we would need s > 5000 in order for the scheme to be stable,
while in this case we need s > 10000.

Another thing that we observe, is that in both cases, the right figures which correspond to the relation
between ∆x and ∆t, are the same.

For ε1 = ε2 = 10−5 and tmax = 100

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

space gridpoints n

ti
m

e
 g

ri
d

p
o

in
ts

 s

Stability
 a1, a2, c, e1, e2, tmax

0.5
0.5

0.041
1e−05
1e−05

100

UNSTABLE

STABLE

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.5

1

1.5

2

2.5

∆x

∆
t

Stability
 a1, a2, c, e1, e2, tmax

0.5
0.5

0.041
1e−05
1e−05

100

UNSTABLE

STABLE

12

Here we can see that, as ε1, ε2 are getting closer to 0, we need less time gridpoints. Even though, the
pattern among n and s, has the same properties. So, also here, an increase of n, yields a larger increase
of s.

For ε1 = ε2 = 10−5 and tmax = 200

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

space gridpoints n

ti
m

e
 g

ri
d

p
o

in
ts

 s

Stability
 a1, a2, c, e1, e2, tmax

0.5
0.5

0.041
1e−05
1e−05

200

UNSTABLE

STABLE

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.5

1

1.5

2

2.5

∆x

∆
t

Stability
 a1, a2, c, e1, e2, tmax

0.5
0.5

0.041
1e−05
1e−05

200

UNSTABLE

STABLE

When tmax is doubled the number of time gridpoints must also be doubled in order for the scheme
to be stable.

Also here, the pattern of the curve in the right figure, is the same as for the one in the previous case.
So, although time tmax is double here, the pattern between ∆x and ∆t remains the same.

For ε1 = ε2 = 10−7 and tmax = 100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
40

50

60

70

80

90

100

110

space gridpoints n

ti
m

e
 g

ri
d

p
o

in
ts

 s

Stability
 a1, a2, c, e1, e2, tmax

0.5
0.5

0.041
1e−07
1e−07

100

UNSTABLE

STABLE

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.5

1

1.5

2

2.5

∆x

∆
t

Stability
 a1, a2, c, e1, e2, tmax

0.5
0.5

0.041
1e−07
1e−07

100

STABLE

UNSTABLE

For ε1 = ε2 = 10−7 and tmax = 200

0 200 400 600 800 1000 1200 1400 1600 1800 2000
50

100

150

200

250

space gridpoints n

ti
m

e
 g

ri
d

p
o

in
ts

 s

Stability
 a1, a2, c, e1, e2, tmax

0.5
0.5

0.041
1e−07
1e−07

200

UNSTABLE

STABLE

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.5

1

1.5

2

2.5

3

∆x

∆
t

Stability
 a1, a2, c, e1, e2, tmax

0.5
0.5

0.041
1e−07
1e−07

200

UNSTABLE

STABLE

13

The same properties as in the previous cases, hold also for the case where ε1, ε2 = 10−7.
In this section, we found where the scheme is stable and where not. In general, the fact that for any

value ε = ε1 = ε2, the pattern of the relation between ∆x and ∆t is the same for both tmax = 100 and
tmax = 200, gives a general feeling of stability of the numerical scheme.

Also, the left figures, for all cases, lead to the fact that, in order for the scheme to be stable, by
increasing the number of spatial gridpoints n, we need to increase the number of time gridpoints s even
more. That conclution, becomes even stronger, when we already have some large number of spatial
gridpoints.

At last, another thing that we need to mention, is that, by the figures above, we can understand
that for some number of spatial gridpoints n, by doubling the time tmax, we need to at least double the
number of time gridpoints s.

Now we are ready to use the numerical scheme we derived, to approximate the curves ρ1 and ρ2.

3.3 Results

In this section, we use the numerical scheme we derived in §3.1, to approximate the values of ρ1 and ρ2

of the initial model. Below, we present the results.
There are two main goals. First one, is to investigate the behaviour of the model, as ε1 and ε2, are

getting closer to zero. Then, we want to see what happens in the case where ε1 6= ε2.
The results that are presented here, correspond to the following cases:

Case a1 = a2 ε1 ε2 tmax
1 0, 5 10−3 10−3 600
2 0, 5 10−4 10−4 1000
3 0, 5 10−5 10−5 10000
4 0, 5 1, 2 ∗ 10−5 10−5 10000
5 0, 5 1, 4 ∗ 10−5 10−5 10000
6 0, 5 1, 6 ∗ 10−5 10−5 10000
7 0, 5 1, 8 ∗ 10−5 10−5 10000
8 0, 5 2 ∗ 10−5 10−5 10000

In all cases we present here, we have used Gaussian functions as initial conditions. The volume of the
Gaussians, is taken to be equal to 1. So, at time t = 0, the curves ρ1 and ρ2 are given in the following
figure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time equal to:
0

(Initial Conditions)
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
0.001
0.001
600

0.00166667
0.00126263

601
475201

The curve ρ1 (red), has its peak on x = 1/4, while ρ2 (green), has its peak on x = 3/4.
In every case, the first figure, gives the approximation of the model for some intermediate times, while

the second figure, gives the approximation of the model at time t = tmax. Furthermore, the third figure
gives a 3D representation of the model for 0 ≤ x ≤ 1 and 0 ≤ t ≤ tmax. At last, the fourth figure, gives
the volume of both ρ1 and ρ2, for every time 0 ≤ t ≤ tmax. That is done by integrating ρ1 and ρ2 on
the interval [0, 1]. Trapezoidal rule was used for the integration.

14

For ε1 = ε2 = 10−3 and tmax = 600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)
Several Times

a1, a2, c, e1, e2, tmax, Dx, Dt, n, s
0.5
0.5

0.041
0.001
0.001
600

0.00166667
0.00126263

601
475201

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time equal to:
599.991

Final curves
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
0.001
0.001
600

0.00166667
0.00126263

601
475201

0 100 200 300 400 500 600
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Integrals of p1,p2 for every timestep
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
0.001
0.001
600

0.00166667
0.00126263

601
475201

From the first figure, we can see that both curves are moving towards the same position.
Initially, for time t = 0, we have two Gaussian functions, with height almost equal to 10. From the

first time steps, we see that both curves are morphologically changing. Both ρ1 and ρ2, are becoming
shorter while both are gaining width. The morphological change, is taking place until both curves reach
height equal to something more than 3. Afterwards, the curves do not change their shape any further,
but they continue moving until they reach the same position.

The fusion is clearer in the second figure, where we can easily see that at time t = tmax = 600, ρ1

and ρ2, have the same position and shape.
The next figure shows a 3D representation of the curves. We can see that, they converge to the equal

curves at around time t = 300. Ever since, the curves remain stable.
One thing that we have to mention, is that, in the third figure, we can see that the curve ρ1, initially

is moving away from ρ2. That happens for a very small time interval, at the very beggining. But soon,
it changes its direction.

In the last figure, we can see that, although the curves are changing their shape and moving on space,
their volume remains equal to 1 at all times.

For ε1 = ε2 = 10−3, we used n = 601 spatial gridpoints and s = 475201 time gridpoints.

15

For ε1 = ε2 = 10−4 and tmax = 1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Several Times
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
0.0001
0.0001
1000

0.00142857
0.00952381

701
105001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

space x

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Time equal to:
999.99

Final curves
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
0.0001
0.0001
1000

0.00142857
0.00952381

701
105001

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Integrals of p1,p2 for every timestep
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
0.0001
0.0001
1000

0.00142857
0.00952381

701
105001

From the first figure here, we can see that, both ρ1 and ρ2, are morphologically changing. As in the
previous case, both the curves are losing height while gain width. We observe that, in the current case,
the curves do not lose that much height and do not gain that much width, as they did in the previous
case. Here the curves reach height close to 7,2, until they stop changing their shape.

In the second figure, we can see that ρ1 and ρ2, share the same position and shape. This is taking
place at around time t = 1000.

In the 3D figure, the phenomenon where ρ1 is initially moving backwards until it change direction, is
more obvious. The following figure, shows a zoom in the part that this phenomenon occurs.

The same phenomenon can be observed in the first figure also.

16

From the fourth figure, the volumes of both ρ1, ρ2, are always equal to 1.
In the current case n = 701 spatial gridpoints were used and s = 105001 time gridpoints.

For ε1 = ε2 = 10−5 and tmax = 10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Several Times
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1e−05
1e−05
10000

0.00142857
0.0909091

701
110001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

space x
p

1
 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time equal to:
9999.91

Final curves
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1e−05
1e−05
10000

0.00142857
0.0909091

701
110001

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Integrals of p1,p2 for every timestep
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1e−05
1e−05
10000

0.00142857
0.0909091

701
110001

The same properties hold also in this case, where ε1 = ε2 = 10−5 are closer to 0. The curves are
moving towards the same position, until as it is obvious from the second figure, they converge to equal
curves. This is taking place at around time t = 7000.

We see that this time, the curves are gaining height and loosing width. Initially the height is close to
10 while a little time later, it reaches 16.

For the approximation of the model here, we used n = 701 spatial gridpoints and s = 110001 time
gridpoints.

Some conclutions could be drawn from the results up until now. Firstly, for ε1 = ε2, the curves ρ1 and
ρ2, are moving towards the same position, until some time point where they reach that position. Then,
they become stable. As ε1, ε2 become smaller, the curves are moving slower, hence they reach the same
position at a later time.

The curves are changing not only their position in space, but also their shape. We observed that, as
ε1, ε2 become smaller, the curves become steeper. Here, we should also mention that, for ε1 = ε2, the
morphological changes are the same for both the curves, even the height becomes the same for both ρ1

and ρ2 as time grows. Even though the curves are changing, their volume remains always equal to 1.
Now we continue with the cases where ε1 6= ε2, in order to reach the second goal. So, we keep the rest

of the parameters more or less fixed.

17

For ε1 = 1, 2 ∗ 10−5, ε2 = 10−5 and tmax = 10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Several Times
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.2e−05
1e−05
10000

0.00142857
0.0666667

701
150001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time equal to:
9999.67

Final curves
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.2e−05
1e−05
10000

0.00142857
0.0666667

701
150001

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Integrals of p1,p2 for every timestep
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.2e−05
1e−05
10000

0.00142857
0.0666667

701
150001

From the first figure here, we can see that, the general behaviour of the model is the same also
for ε1 6= ε2. That is, both curves are moving close to each other. Even more, apart from the moving
behaviour, we also have the morphological change of the curves. As in the case where ε1 = ε2 = 10−5, ρ1

and ρ2 become steeper as time grows.
A main difference is that, here, ρ1 does not gain the same height as ρ2. We observe that, since ε2 is

closer to 0 than ε1, ρ2 is getting steeper than ρ1. As in the previous cases the morphological change, is
happening only at some early time interval. Afterwards, the curves are only moving in space.

By the 3D representation, we can see another main difference. Here, the X phenomenon is taking
place. The curves are moving towards the same position, but when they have converged to a stationary
solution, we see that they do not share the same position or shape. . The X phenomenon is taking place
at around time t = 3000.

From the second figure, we can see the shape and the position of both ρ1 and ρ2 after they have
become stable. Another thing that is more obvious here, is the skeweness of ρ1.

Finally, even though the curves are changing in a different way, the volumes are always equal to 1.

18

For ε1 = 1, 4 ∗ 10−5, ε2 = 10−5 and tmax = 10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Several Times
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.4e−05
1e−05
10000

0.00142857
0.0666667

701
150001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time equal to:
9999.67

Final curves
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.4e−05
1e−05
10000

0.00142857
0.0666667

701
150001

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Integrals of p1,p2 for every timestep
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.4e−05
1e−05
10000

0.00142857
0.0666667

701
150001

As we expected, since ε1 is even larger than the previous case, ρ1 is even shorter. On the other hand,
since ε2 has the same value as before, we see that ρ2 is becoming as high as in the previous case.

By looking at the third figure, we see that for ε1 = 1, 4 ∗ 10−5 and ε2 = 10−5, the X phenomenon is
taking place at around time t = 2500. Furthermore, after they have converged to a stationary solution,
we see that the distance between their positions is larger compared to the previous case. The distance
between the curves, is more obvious in the second figure.

For ε1 = 1, 6 ∗ 10−5, ε2 = 10−5 and tmax = 10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Several Times
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.6e−05
1e−05
10000

0.00142857
0.0588235

701
170001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time equal to:
9999.47

Final curves
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.6e−05
1e−05
10000

0.00142857
0.0588235

701
170001

19

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Integrals of p1,p2 for every timestep
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.6e−05
1e−05
10000

0.00142857
0.0588235

701
170001

Here ρ1, is shorter since ε1 is greater than the previous cases, at the same time, ρ2 is the same since
ε2 is not changed.

The X-phenomenon, happens even sooner than in any of the previous cases, at around time t = 2000.
Furthermore, the distance between ρ1 and ρ2, is also greater than in all the previous cases.

In the second figure, the skeweness of ρ1 is observed.

For ε1 = 1, 8 ∗ 10−5, ε2 = 10−5 and tmax = 10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Several Times
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.8e−05
1e−05
10000

0.00142857
0.0526316

701
190001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time equal to:
9999.63

Final curves
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.8e−05
1e−05
10000

0.00142857
0.0526316

701
190001

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Integrals of p1,p2 for every timestep
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.8e−05
1e−05
10000

0.00142857
0.0526316

701
190001

Same behaviour can be observed here as well.

20

For ε1 = 2 ∗ 10−5, ε2 = 10−5 and tmax = 10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Several Times
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
2e−05
1e−05
10000

0.00142857
0.05
701

200001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time equal to:
9999.7

Final curves
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
2e−05
1e−05
10000

0.00142857
0.05
701

200001

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Integrals of p1,p2 for every timestep
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
2e−05
1e−05
10000

0.00142857
0.05
701

200001

For ε1 = 2 ∗ 10−5 and ε2 = 10−5, we can see that, ρ2 is gaining much more height compared to ρ1.
The X-phenomenon, is happening in a much earlier time and the distance between the curves, after they
have become stable, is larger than all the previous cases.

By looking at the second figure, we can observe, the skewness of ρ1.
To conclude, we gather all the results we can draw up until now for the case where ε1 6= ε2. We

have observed that, the height that each curve ρi is gaining as time grows, depends on the value of the
corresponding εi. More precise, for a value εi closer to zero, we will have a higher curve ρi. At the same
time, since the volume of the curves is equal to 1 for all times, a higher curve results also to a steeper
one.

Another conclusion we can draw, has to do with the time that the X phenomenon is taking place. We
have observed that, as the difference between ε1 and ε2 is growing, the X phenomenon is taking place at
a sooner time level.

At last, the distance between the peaks of ρ1 and ρ2, after the curves have become stable, is getting
larger as the difference between ε1 and ε2 is growing.

In order to study a little bit more the latter phenomenon, where at the last cases the distance between
the curves ρ1 and ρ2 is growing with respect to the values of ε1 and ε2, we tried to answer the following
question.

Let x1 be the location of the peak of ρ1 and x2 the location of the peak of ρ2, for every value of time
t. We wanted to see if the sequence

(
x1
x2

)
t
, converges to r0.25, where r = ε1

ε2
, as time t increases.

In the following figures, the value x1
x2 corresponds to the blue line and the value r0.25 corresponds to

the cyan line.

21

For ε1 = 1, 2 ∗ 10−5, ε2 = 10−5 For ε1 = 1, 4 ∗ 10−5, ε2 = 10−5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time t

r0
.2

5
 i
s
 c

y
a

n
,

x
1

/x
2

 i
s
 b

lu
e

Ikasia
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.2e−05
1e−05
10000

0.00142857
0.0666667

701
150001

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time t

r0
.2

5
 i
s
 c

y
a

n
,

x
1

/x
2

 i
s
 b

lu
e

Ikasia
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.4e−05
1e−05
10000

0.00142857
0.0666667

701
150001

For ε1 = 1, 2 ∗ 10−5, ε2 = 10−5, we have r = ε1
ε2

= 1, 2. The location of the peak of ρ1, converges to
x1 = 0, 48142857142871 and of ρ2, to x2 = 0, 464285714285714.

For ε1 = 1, 4 ∗ 10−5, ε2 = 10−5, we have r = ε1
ε2

= 1, 4. The location of the peak of ρ1, converges to
x1 = 0, 487142857142857 and of ρ2, to x2 = 0, 455714285714286.

For ε1 = 1, 6 ∗ 10−5, ε2 = 10−5 For ε1 = 1, 8 ∗ 10−5, ε2 = 10−5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time t

r0
.2

5
 i
s
 c

y
a

n
,

x
1

/x
2

 i
s
 b

lu
e

Ikasia
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.6e−05
1e−05
10000

0.00142857
0.0588235

701
170001

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time t

r0
.2

5
 i
s
 c

y
a

n
,

x
1

/x
2

 i
s
 b

lu
e

Ikasia
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
1.8e−05
1e−05
10000

0.00142857
0.0526316

701
190001

For ε1 = 1, 6 ∗ 10−5, ε2 = 10−5, we have r = ε1
ε2

= 1, 6. The location of the peak of ρ1, converges to
x1 = 0, 492857142857143 and of ρ2, to x2 = 0, 448571428571429.

For ε1 = 1, 8 ∗ 10−5, ε2 = 10−5, we have r = ε1
ε2

= 1, 8. The location of the peak of ρ1, converges to
x1 = 0, 498571428571429 and of ρ2, to x2 = 0, 442857142857143.

22

For ε1 = 2 ∗ 10−5, ε2 = 10−5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time t

r0
.2

5
 i
s
 c

y
a

n
,

x
1

/x
2

 i
s
 b

lu
e

Ikasia
a1, a2, c, e1, e2, tmax, Dx, Dt, n, s

0.5
0.5

0.041
2e−05
1e−05
10000

0.00142857
0.05
701

200001

For ε1 = 2 ∗ 10−5, ε2 = 10−5, we have r = ε1
ε2

= 2. The location of the peak of ρ1, converges to
x1 = 0, 501428571428571 and of ρ2, to x2 = 0, 438571428571429.

We gather all the values in the following table.

r x1 x2 x1− x2 x1/x2 m

1,2 0,48142857142871 0,464285714285714 0,0171 1,0369 0,1989
1,4 0,487142857142857 0,455714285714286 0,0314 1,0690 0,1982
1,6 0,492857142857143 0,448571428571429 0,0443 1,0987 0.2003
1,8 0,498571428571429 0,442857142857143 0,0557 1,1258 0.2016
2 0,501428571428571 0,438571428571429 0,0629 1,1433 0,1932

where r = ε1
ε2

, x1 is the peak of ρ1 at the stable state of the solution, similarly x2 for ρ2, the value

x1− x2 gives the distance of the peaks in each case and m comes from x1
x2 = rm.

The locations of the peaks of ρ1 and ρ2, are converging to some value since both the curves become
stable after some time level. The location of the peaks, for each value of r, are given in the second and
third column of the table.

From the fourth column, we can see something we have already noticed, the distance between the
peaks of ρ1 and ρ2 is growing for larger values of r.

In the figures above, we can see the behaviour of the sequence
(
x1
x2

)
t
, as time grows. The values that

the sequence converges for all r, is given in the fifth column of the table.
At last we wanted to see, if the sequence

(
x1
x2

)
t
, converges to r0.25 as time grows. In the last column

of the table, we give the value m, that is x1
x2 = rm, for all values of r. Unfortunatelly, m, does not seem

to be equal to 0,25 as we were hoping, but is close to 0,2.
It would be important to see, if the sequence (x1

x2)t converges to r0.25, for ε1, ε2 closer to zero. But
we observed that as ε1, ε2 are getting smaller, the curves are becoming steeper. That has the following
consequence, in order for the result to have some accuracy, we will need to increase the number of spatial
gridpoints. As we have already seen from the stability analysis, if we increase the number of spatial
gridpoints by some factor, then we will also have to increase the number of time gridpoints several times
more, in order for the scheme to be stable. Unfortunatelly, giving large values of gridpoints makes the
scheme time consuming.

So, if we want to approximate the model for smaller ε1, ε2, we need to find a more efficient method.

4 Adaptive moving grid method

We need a method that will give the best possible accuracy, by using only a small number of gridpoints.
There are intervals in space or time, in which the curves have peaks, or even more, the curves are steep.
In order to have a good approximation in these intervals, we need more gridpoints. At the same time
there are intervals, where the curves have no peaks or their slope is not large. Hence, we can approximate
the curves in these intervals by using less gridpoints.

23

So, we need a numerical approximation method, that can distribute both spatial and time gridpoints,
in such a way that, a large amount of gridpoints is concentrated only to intervals that the curve is steep,
so we can have the best possible accuracy, while less gridpoints are distributed, to approximate the curves,
in intervals where the curves are less steep or their slope is almost zero.

Adaptive moving grid method, is the method that can do exactly that. The method, adapts the
gridpoints in space and time, by distributing them in the way we explained. In every time step, the
gridpoints are reallocated, under the same philosophy, by moving wherever they are necessary. The
crusial decision, for the reallocation of the spatial gridpoints, is done by the so called monitor function.

In the adaptive moving grid method, the subdivision of the spatial and time domain, are not fixed
anymore. The gridpoints are distributed in space, according to the monitor function. Suppose we have n
spatial gridpoints. That yields, to a subdivision of the spatial interval [0, 1], into N non equal subintervals,
as in the following picture.

so, we get N subintervals of length ∆xi = xi+1 − xi for i = 1, 2, . . . , n− 1 and the spatial gridpoints are
given by xi = ∆x1 + ∆x2 + . . .+ ∆xi−1 for all i = 1, 2, . . . , n (where n = N + 1).

Suppose we also have s time gridpoints. The time domain is subdivided into S nonequal subintervals,
in the same way as the spatial domain.

For every of these time gridpoints, we let the monitor function allocate the spatial gridpoints in the
interval [0, 1], then we calculate the value of both ρ1 and ρ2 for every spatial gridpoint.

4.1 Numerical approximation

From now on, we set our focus on the dimension of space.
In this section, we will derive the numerical approximation scheme, that will allow us calculate the

values of ρ1(xi) and ρ2(xi), for any spatial gridpoint xi, i = 1, 2, . . . , n.
We follow the same format as in section §3.1. So, we start by deriving the numerical approximation

formulas for the second order space derivatives ∂2ρ1
∂x2 , ∂2ρ2

∂x2 . Central difference scheme is also used here.
Central Difference Scheme:
Consider of a real function f . The Taylor expansion of f on some point xi+1 is

f(xi+1) ≈ f(xi) +
1

1!

∂f

∂x
(xi)(xi+1 − xi) +

1

2!

∂2f

∂x2
(xi)(xi+1 − xi)2 + . . .

= f(xi) +
∂f

∂x
(xi)∆xi +

1

2

∂2f

∂x2
(xi)(∆xi)

2 + . . .

Similarly, the Taylor expansion of f on some point xi−1 is

f(xi−1) ≈ f(xi) +
1

1!

∂f

∂x
(xi)(xi−1 − xi) +

1

2!

∂2f

∂x2
(xi)(xi−1 − xi)2 + . . .

= f(xi) +
∂f

∂x
(xi)(−(xi − xi−1)) +

1

2

∂2f

∂x2
(xi)(−(xi − xi−1))2 + . . .

= f(xi) +
∂f

∂x
(xi)(−∆xi−1) +

1

2

∂2f

∂x2
(xi)(−∆xi−1)2 + . . .

24

According to the central difference scheme, we must have:

∂2f

∂x2
(xi) ≈ Af(xi+1) +Bf(xi) + Cf(xi−1)

= Af(xi) +A
∂f

∂x
(xi)∆xi +A

1

2

∂2f

∂x2
(xi)(∆xi)

2

+Bf(xi)

+Cf(xi) + C
∂f

∂x
(xi)(−∆xi−1) + C

1

2

∂2f

∂x2
(xi)(−∆xi−1)2

= (A+B + C)f(xi) + (A∆xi + 0− C∆xi−1)
∂f

∂x
(xi)

+(
A

2
(∆xi)

2 + 0 +
C

2
(∆xi−1)2)

∂2f

∂x2
(xi).

Since ∂2f
∂x2 (xi) = 0· f(xi) + 0· ∂f∂x (xi) + 1· ∂

2f
∂x2 (xi), we end up with the following system.

A+B + C = 0,

A∆xi − C∆xi−1 = 0,

A(∆xi)
2

2
+
C(∆xi−1)2

2
= 1.

Its solution, determines the values A,B and C.

A =
2

∆xi(∆xi + ∆xi−1)
,

B = − 2

∆xi∆xi−1
,

C =
2

∆xi−1(∆xi + ∆xi−1)
.

We plug in the values A,B,C, into the following equation, to get the numerical approximation formula,
of the second spatial derivative of function f .

∂2f

∂x2

∣∣
(xi) ≈ Af(xi+1) +Bf(xi) + Cf(xi−1)

= 2
∆xi−1f(xi+1)− (∆xi + ∆xi−1)f(xi) + ∆xif(xi−1)

∆xi∆xi−1(∆xi + ∆xi−1)
.

So, for f = ρ1, we have:

∂2ρ1

∂x2

∣∣
(xi) ≈ 2

∆xi−1ρ1(xi+1)− (∆xi + ∆xi−1)ρ1(xi) + ∆xiρ1(xi−1)

∆xi∆xi−1(∆xi + ∆xi−1)
,

for every i = 1, 2, . . . , n. Similarly, for f = ρ2, we have:

∂2ρ2

∂x2

∣∣
(xi) ≈ 2

∆xi−1ρ2(xi+1)− (∆xi + ∆xi−1)ρ2(xi) + ∆xiρ2(xi−1)

∆xi∆xi−1(∆xi + ∆xi−1)
,

for every i = 1, 2, . . . , n.

Next, we focus on the numerical approximation of the integrals F1(x) =
∫ 1−x

0
ρ2(y)dy, F2(x) =∫ 1−x

0
ρ1(y)dy. We will use the trapezoidal rule for the approximation, as is defined below.

Trapezoidal Rule:

25

For integrating area [a, b] = [x1, xn], we have:∫ b

a

f(y)dy =

∫ xn

x1

f(y)dy

=

∫ x2

x1

f(y)dy +

∫ x3

x2

f(y)dy + . . .+

∫ xn−1

xn−2

f(y)dy +

∫ xn

xn−1

f(y)dy

≈ (x2 − x1)
f(x1) + f(x2)

2
+ (x3 − x2)

f(x2) + f(x3)

2
+ . . .

. . .+ (xn−1 − xn−2)
f(xn−2) + f(xn−1)

2
+ (xn − xn−1)

f(xn−1) + f(xn)

2

=
∆x1

2
(f(x1) + f(x2)) +

∆x2

2
(f(x2) + f(x3)) + . . .

. . .+
∆xn−2

2
(f(xn−2) + f(xn−1)) +

∆xn−1

2
(f(xn−1) + f(xn))

=
∆x1

2
f(x1) +

∆x1 + ∆x2

2
f(x2) +

∆x2 + ∆x3

2
f(x3) . . .

. . .+
∆xn−3 + ∆xn−2

2
f(xn−2) +

∆xn−2 + ∆xn−1

2
f(xn−1) +

∆xn−1

2
f(xn)

=
∆x1

2
f(x1) +

∆xn−1

2
f(xn) +

1

2

n−1∑
q=2

(∆xq−1 + ∆xq)f(xq)

=
1

2

[
∆x1f(x1) + ∆xn−1f(xn) +

n−1∑
q=2

(∆xq−1 + ∆xq)f(xq)

]
.

This is the definition of the trapezoidal rule, for nonequal space subintervals. The formulas that will be
derived later on, are based on the latter definition. For integrating area [a, xi], we have:∫ xi

a

f(y)dy =

∫ xi

x1

f(y)dy

≈ 1

2

[
∆x1f(x1) + ∆xi−1f(xi) +

i−1∑
q=2

(∆xq−1 + ∆xq)f(xq)

]
.

For integrating area [a, b− xi], we have:∫ b−xi

a

f(y)dy =

∫ b−xi

x1

f(y)dy

Note that we have b− xi = xn − xi = (∆x1 + ∆x2 + . . .+ ∆xn−1)− (∆x1 + ∆x2 + . . .+ ∆xi−1)
= ∆xi + ∆xi+1 + . . .+ ∆xn−2 + ∆xn−1.

In §3.1, we saw that, for the fixed grid method, ∀i = 1, 2, . . . , n, b − xi is always equal to some
gridpoint xj , j = 1, 2, . . . , n. Unfortunatelly, this not the case in the adaptive moving grid method, since
the spatial intervals are not of the same size.

Consider that the spatial gridpoints are distributed in the interval [0, 1], as in the following figure.

Let z = b − xi = ∆xi + ∆xi+1 + . . . + ∆xn−2 + ∆xn−1. In general, as we said, we will have z 6= xj ,
∀j = 1, 2, . . . , n, since ∆xi’s are not equal. So, suppose that z ∈ [xk, xs], where xk, xs are the closest
gridpoints such that xk 6 z 6 xs.

26

The integral that we want to approximate, can be written as follows:∫ b−xi

x1

f(y)dy =

∫ z

x1

f(y)dy =

∫ xk

x1

f(y)dy +

∫ z

xk

f(y)dy,

the summation of two integrals.
In order to calculate the first intergral, we can simply use the definition of the trapezoidal rule, which

yields: ∫ xk

x1

f(y)dy =
1

2

[
∆x1f(x1) + ∆xk−1f(xk) +

k−1∑
q=2

(∆xq−1 + ∆xq)f(xq)

]
.

On the other hand, in order to calculate the second integral, we need to calculate the value of f on
point z. Then we will be able to use the trapezoidal rule. Suppose the next figure, shows the function f
on the subinterval [xk, xs],

since f is numerically approximated, then the approximation in the given interval, will look like in the
figure below.

Generally, the numerical approximation of f , in the domain [xk, xs], where xk, xs can be any successive
spatial gridpoints, is either strictly increasing, or strictly decreasing or stable, with either some positive,
or negative or equal to zero slope. So, the slope of f in the interval [xk, xs], is the same for every point
z ∈ [xk, xs], since in that domain, f is strictly monotonic. Hence, the slope is

f(xs)− f(xk)

xs − xk
=
f(z)− f(xk)

z − xk
,∀z ∈ [xk, xs]

⇒ f(z) = (z − xk)
f(xs)− f(xk)

xs − xk
+ f(xk),∀z ∈ [xk, xs],

where everything is known. The latter equation, gives the value of f on any point z ∈ [xk, xs].
So, now we can approximate the second integral, by combining the trapezoidal rule and the latter

27

equation for f(z). That is:∫ z

xk

f(y)dy = (z − xk)
f(z) + f(xk)

2

=
(z − xk)

2
f(xk) +

z − xk
2

f(z)

=
(z − xk)

2
f(xk) +

z − xk
2

[
(z − xk)

f(xs)− f(xk)

xs − xk
+ f(xk)

]
=

(z − xk)

2
f(xk) +

(z − xk)2

2

f(xs)− f(xk)

xs − xk
+

(z − xk)

2
f(xk)

= (z − xk)f(xk) +
(z − xk)2

2(xs − xk)
(f(xs)− f(xk))

= (z − xk)f(xk) +
(z − xk)2

2∆xk
(f(xs)− f(xk)).

To conclude, in order to calculate the integral
∫ b−xi

a
f(y)dy, we first have to compute the value

z = b− xi, then we find the closest successive gridpoints xk, xs, such that xk 6 z 6 xs. And finally, we
have ∫ b−xi

a

f(y)dy =

∫ z

x1

f(y)dy =

∫ xk

x1

f(y)dy +

∫ z

xk

f(y)dy

≈ 1

2

[
∆x1f(x1) + ∆xk−1f(xk) +

k−1∑
q=2

(∆xq−1 + ∆xq)f(xq)

]

+(z − xk)f(xk) +
(z − xk)2

2∆xk
(f(xs)− f(xk)).

Hence, the integral F1(x) =
∫ 1−x

0
ρ2(y)dy, can be numerically approximated, by the following proce-

dure.
For a spatial gridpoint xi, i = 1, 2, . . . , n, we have to calculate

F1(xi) =

∫ 1−xi

0

ρ2(y)dy.

To do that, first, we calculate z = b− xi = 1− xi, then we find the closest successive gridpoints xk, xs,
such that z ∈ [xk, xs]. Finally, we use the following numerical formula.

F1(xi) =

∫ 1−xi

0

ρ2(y)dy ≈ 1

2

[
∆x1ρ2(x1) + ∆xk−1ρ2(xk) +

k−1∑
q=2

(∆xq−1 + ∆xq)ρ2(xq)

]

+(z − xk)ρ2(xk) +
(z − xk)2

2∆xk
(ρ2(xs)− ρ2(xk)).

Similarly, for F2(x) =
∫ 1−x

0
ρ1(y)dy, we have

F2(xi) =

∫ 1−xi

0

ρ1(y)dy.

First, we calculate z = b − xi = 1 − xi, then we find the closest successive gridpoints xk, xs, such that
z ∈ [xk, xs]. Finally, we use the formula below.

F2(xi) =

∫ 1−xi

0

ρ1(y)dy ≈ 1

2

[
∆x1ρ1(x1) + ∆xk−1ρ1(xk) +

k−1∑
q=2

(∆xq−1 + ∆xq)ρ1(xq)

]

+(z − xk)ρ1(xk) +
(z − xk)2

2∆xk
(ρ1(xs)− ρ1(xk)).

28

The last part, that we need to approximate, are the defined integrals

P1 =
∫ 1

0
ρ1(x)u1(x)

(∫ 1−x
0

ρ2(y)dy
)

dx =
∫ 1

0
ρ1(x)u1(x)F1(x)dx,

P2 =
∫ 1

0
ρ2(x)u2(x)

(∫ 1−x
0

ρ1(y)dy
)

dx =
∫ 1

0
ρ2(x)u2(x)F2(x)dx.

Let f1(x) = ρ1(x)u1(x)F1(x), then we have

P1 =

∫ 1

0

ρ1(x)u1(x)F1(x)dx =

∫ 1

0

f1(x)dx =

∫ xn

x1

f1(x)dx

and by definition of the trapezoidal rule, we derive the following numerical formula

≈ 1

2

[
∆x1f1(x1) + ∆xn−1f1(xn) +

n−1∑
q=2

(∆xq−1 + ∆xq)f1(xq)

]

=
1

2
[∆x1ρ1(x1)u1(x1)F1(x1) + ∆xn−1ρ1(xn)u1(xn)F1(xn)

+

n−1∑
q=2

(∆xq−1 + ∆xq)ρ1(xq)u1(xq)F1(xq)

]
.

We can see that, in order to calculate the value P1, we must first have calculated all the values
F1(x1), F1(x2), . . . , F1(xn). The value P1, will have to be calculated only once at the beginning of each
time iteration.

Similarly, we derive the numerical formula for P2.

P2 =

∫ 1

0

ρ2(x)u2(x)F2(x)dx =

∫ xn

x1

ρ2(x)u2(x)F2(x)dx

≈ 1

2
[∆x1ρ2(x1)u2(x1)F2(x1) + ∆xn−1ρ2(xn)u2(xn)F2(xn)

+

n−1∑
q=2

(∆xq−1 + ∆xq)ρ2(xq)u2(xq)F2(xq)

]

As for P1, we must first calculate all the values F2(x1), F2(x2), . . . , F2(xn), in order to be able to
calculate P2. The value P2, will have to be calculated only once at the beginning of each time iteration.

Finally, we apply all formulas to the initial model. The initial model can be written as:
∂ρ1
∂t = ε1

∂2ρ1
∂x2 + ρ1(x) [u1(x)F1(x)− P1] ,

∂ρ2
∂t = ε2

∂2ρ2
∂x2 + ρ2(x) [u2(x)F2(x)− P2]

.

Consider the first equation of the latter model,

∂ρ1

∂t
= ε1

∂2ρ1

∂x2
+ ρ1(x) [u1(x)F1(x)− P1] ,

for some x = xi, we have:

∂ρ1

∂t

∣∣
(xi) = ε1

∂2ρ1

∂x2

∣∣
(xi) + ρ1(xi) [u1(xi)F1(xi)− P1]

= 2ε1
∆xi−1ρ1(xi+1)− (∆xi + ∆xi−1)ρ1(xi) + ∆xiρ1(xi−1)

∆xi∆xi−1(∆xi + ∆xi−1)

+ρ1(xi) [u1(xi)F1(xi)− P1] ,

where z = 1− xi and xk, xs are the closest successive gridpoints such that z ∈ [xk, xs],

F1(xi) =
1

2

[
∆x1ρ2(x1) + ∆xk−1ρ2(xk) +

k−1∑
q=2

(∆xq−1 + ∆xq)ρ2(xq)

]

+(z − xk)ρ2(xk) +
(z − xk)2

2∆xk
(ρ2(xs)− ρ2(xk)),

29

and

P1 =
1

2
[∆x1ρ1(x1)u1(x1)F1(x1) + ∆xn−1ρ1(xn)u1(xn)F1(xn)

+

n−1∑
q=2

(∆xq−1 + ∆xq)ρ1(xq)u1(xq)F1(xq)

]
.

Computationally, for each time gridpoint, we first need to compute F1(xi) ∀i = 1, . . . , n and save in a
vector F1 = [F1(x1), F1(x2), . . . , F1(xn)] with dimension 1× n, and then we will be able to calculate P1,
which will be a single value.

Similarly, the second equation of the latter model,

∂ρ2

∂t
= ε2

∂2ρ2

∂x2
+ ρ2(x) [u2(x)F2(x)− P2] ,

for some x = xi, takes the form:

∂ρ2

∂t

∣∣
(xi) = ε2

∂2ρ2

∂x2

∣∣
(xi) + ρ2(xi) [u2(xi)F2(xi)− P2]

= 2ε2
∆xi−1ρ2(xi+1)− (∆xi + ∆xi−1)ρ2(xi) + ∆xiρ2(xi−1)

∆xi∆xi−1(∆xi + ∆xi−1)

+ρ2(xi) [u2(xi)F2(xi)− P2] ,

where z = 1− xi and xk, xs are the closest successive gridpoints such that z ∈ [xk, xs],

F2(xi) =
1

2

[
∆x1ρ1(x1) + ∆xk−1ρ1(xk) +

k−1∑
q=2

(∆xq−1 + ∆xq)ρ1(xq)

]

+(z − xk)ρ1(xk) +
(z − xk)2

2∆xk
(ρ1(xs)− ρ1(xk)),

and

P2 =
1

2
[∆x1ρ2(x1)u2(x1)F2(x1) + ∆xn−1ρ2(xn)u2(xn)F2(xn)

+

n−1∑
q=2

(∆xq−1 + ∆xq)ρ2(xq)u2(xq)F2(xq)

]
.

Computationally, for each time gridpoint, we first need to compute F2(xi) ∀i = 1, . . . , n and save in a
vector F2 = [F2(x1), F2(x2), . . . , F2(xn)] with dimension 1× n, and then we will be able to calculate P2

which will be a single value.
The above scheme, is a fully discrete solution for all the gridpoints xi ∀i = 1, . . . , n.

Consider the dimention of time. The system is in a form that allow us to use the code DASSL. The
code DASSL, is using backward difference schemes to numerically approximate the time derivatives of
order from 1 to 5. In our case, the time derivatives are of order 1. Hence the code approximates them
by using backward Euler scheme. That is

∂ρ1

∂t
(x, tj) =

ρ1(x, tj)− ρ1(x, tj−1)

tj − tj−1
,

∂ρ2

∂t
(x, tj) =

ρ2(x, tj)− ρ2(x, tj−1)

tj − tj−1
.

Code DASSL is using a variation of Newton’s method to solve the resulting system. For further informa-
tion on code DASSL and the details on the methods it uses, look [13] and [14]

30

4.2 Gridpoint distribution

In general there are two kinds of adaptive techniques for time-dependent PDEs. The first one is the
h-refinement technique, where new grids are added to places that are necessary, both in space and time
dimentions, hence the number of gridpoints is changing with respect to our needs. The second one is
the r-refinement technique, where the number of grids is constant and we distribute them with the best
possible way. The method we used here, is an r-refinement technique.

Suppose we are given n spatial gridpoints. A “monitor function“ M decides the way that these n
gridpoints are distributed in space. The equidistribution principle is used, plus some extra concepts to
make the movement of the gridpoints more smooth. More details can be found in [10]. In general in
every time level, the spatial gridpoints are calculated with repect to the following formulas:

• Gridpoint x1: ẋ1 = 0.

• Gridpoint x2: ẋ1 − 2ẋ2 + ẋ3 = 0.

• Gridpoints xi for any given i = 3, 4, . . . , n− 2:
Let the coordinate transformation x = x(θ, ρ), t = θ with Jacobian J = xρ. In order to obtain a
smooth grid distribution and smooth grid trajectories in the time direction, we let the tranformation
x = x(θ, ρ) satisfy the following PDE:

τ [JθM]ρ + [S(κ)(J)M]ρ = 0,

where τ : temporal smoothing constant which is small enough to capture rapid solution changes in
the time direction (≈ 10−3).
S(κ): spatial smoothing operator and κ: spatial smoothing constant (κ > 0).
M : the monitor function.

• Gridpoint xn−1: ẋn−2 − 2ẋn−1 + ẋn = 0.

• Gridpoint xn: ẋn = 0.

Note that the 1st and the last gridpoints, never change. That is x1 = 0 and xn = 1 for every time step.
The second gridpoint x2, is reallocated with respect to the gridpoints x1, x3. Similarly for the semilast
gridpoint xn−1 which is reallocated with respect to the gridpoints xn−2, xn. This allows the gridpoints
x2 and xn−1 to move in more smooth manner. At last in order to reallocate the rest of the gridpoints,
we evaluate the solution of the previous time level. Hence we are able to see where the approximated
solution has some large slope and where not. Then the monitor function M decides how to distribute
the gridpoints in a smooth way. For more details see [12] and [15].

Monitor functions and accuracy
As we have already mentioned before, the main concept of adaptive moving grid method, is the clever
way to distribute the available gridpoints.

The distribution of the gridpoints, is done dynamically, in every time step, the gridpoints are dis-
tributed according to the current data. The most efficient way to do that, is to spend a larger number of
gridpoints for intervals, where it is hard to accuratelly approximate the curves due to steepness. While,
at the same time we need less gridpoints for places, where the slope of the curves is not large and hence,
an accurate approximation, can be accomplished with a smaller number of gridpoints.

That crusial decision, is done by the monitor function. A backround theory can be found in [10]
A variety of monitor functions can be found in [11]. In this work, we have used two different monitor
functions.

The first one known as the arc-length monitor function, is given by:

M =

√
1 +

(
∂ρ1

∂x
+
∂ρ2

∂x

)2

.

31

An example for the case where a1 = a2 = 0, 5, ε1 = ε2 = 10−4, is illustrated in the figure below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

0.0001
0.0001
1000
201
100

Space

T
im

e

There were used only n = 201 spatial gridpoints and s = 100 time gridpoints.
Initially, for time t = 0, the gridpoints are equedistributed, as in the fixed grid method. In the next

time step, where time t = ∆t, the monitor function is gathering most of the spatial gridpoints around
the curves ρ1 and ρ2, leaving only a few spatial gridpoints at the intervals where ρ1 = ρ2 = 0.

Further, as time grows, we have seen that, the curves are approaching each other, until they become
equal, then they become stable. From the figure above, we can see that the gridpoints follow this behavior.
So, for time t > 600, the position of both curves ρ1, ρ2, is almost the same and they are both nonzero,
only at the neighborhood of x = 0, 45. From the figure, it is obvious that almost all the spatial gripoints
are gathered there.

Further informations for the monitor function can be found in references [9] and [11].
The second monitor function we used, is given by:

M =

∫ 1

0

(∣∣∣∣∂ρ1

∂x

∣∣∣∣+

∣∣∣∣∂ρ2

∂x

∣∣∣∣)dx+

∣∣∣∣∂ρ1

∂x

∣∣∣∣+

∣∣∣∣∂ρ2

∂x

∣∣∣∣ .
We implement the latter monitor function, for the same example as for the first monitor function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

0.0001
0.0001
1000
201
100

Space

T
im

e

There were used n = 201 spatial gridpoints and s = 100 time gridpoints.
Further informations for the monitor function can be found in references [8] and [12].
We can see that the second monitor function, is also working in the same way. By comparing the

two monitor functions, it is obvious that, the first one is distributing the spatial gridpoints in a much
more efficient way, since it gathers almost all the spatial gridpoints, to the area that are needed. While
the second monitor function, is gathering at the same area most of the gridpoints, yet leaves at the rest
space also a lot gridpoints, which are not necessary since at the rest space ρ1 and ρ2 are equal to zero.

32

Unfortunatelly, we faced some accuracy problems, for both the monitor functions.
For a1 = a2, ε1 = 2· 10−7 and ε1 = 10−7, we used n = 101 spatial gridpoints and s = 100 time

gridpoints for both monitor functions, and we got the following results respectivelly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

x 10
4

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

2e−07
1e−07
200000

101
100

Space
T

im
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

x 10
4

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

2e−07
1e−07
100000

101
100

Space

T
im

e

We can see that, both functions lead to some accuracy problems for n = 101. By increasing the
number of spatial gridpoints to n = 201, we got:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

x 10
4

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

2e−07
1e−07
200000

201
100

Space

T
im

e

33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

x 10
4

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

2e−07
1e−07
100000

201
100

Space

T
im

e

From the first two figures, we can see that for n = 201 spatial gridpoints, the first monitor function
gives the same accuracy problem. On the other hand, it seems that for n = 201, the second monitor
function returns better results.

In the results that will be presented in the next section, we will use the first monitor function since it
yields more accurate results. We will also use the second monitor function, which is also a good choise,
only for the cases where the first monitor function, leads to problems similar to the one we discribed
above.

For the dimension of time, suppose we have s time gridpoints. Code DASSL chooses the time step
size ∆tj , j = 1, 2, . . . , s−1 on every step according to the behaviour of the solution. So, suppose we have
an approximation of the solution at the time level t = tj and we want to approximate the solution at the
next time level t = tj+1.

DASSL uses a ”predictor polynomial” that interpolates the solution during the last time steps. By
evaluating the predictor polynomial and its derivative at time level t = tj+1, we get a guess for the
solution and its derivatives at that time level.

The approximation to the solution at time level t = tj+1 which is finally accepted by DASSL is the
solution to the “corrector formula”. The solution to the corrector formula, is the vector yj+1 such that
the corrector polynomial and its derivative satisfy the differential algebraic equations of the model at
time level t = tj+1.

Now DASSL is able to see the rate of change of the solution between the two time levels, and decide
if smaller or larger time step size is needed. For further details look [13].

4.3 Results

In this section, we use the numerical scheme we derived in section §4.1, to approximate the values of ρ1

and ρ2 of the initial model. Below, we present the results.
Since with the adaptive moving grid method, we can derive more accurate results than with the fixed

grid method, we can see what happens as the values ε1 and ε2, are getting even closer to zero. So, as
in section §3.3, we will investigate both the cases where ε1 = ε2 and ε1 6= ε2, for smaller values of ε1, ε2.
Further, we will also try to see what happens for different kind of initial values.

Hence, the results that are presented here, correspond to the following cases:

Initial values: Gaussian function for ρ1 and Gaussian function for ρ2.

34

Case a1 = a2 ε1 ε2 tmax
1 0, 5 10−5 10−5 10000
2 0, 5 10−6 10−6 50000
3 0, 5 10−7 10−7 150000
4 0, 5 1, 2 ∗ 10−7 10−7 100000
5 0, 5 1, 4 ∗ 10−7 10−7 100000
6 0, 5 1, 6 ∗ 10−7 10−7 100000
7 0, 5 1, 8 ∗ 10−7 10−7 100000
8 0, 5 2 ∗ 10−7 10−7 100000
9 0, 5 0 0 500
10 1 10−6 10−6 50000

Initial values: Gaussian function for ρ1 and sine function for ρ2.

Case a1 = a2 ε1 ε2 tmax
11 0, 5 10−5 10−5 10000

Initial values: sine function for ρ1 and the same sine function for ρ2.

Case a1 = a2 ε1 ε2 tmax
12 0, 5 10−5 10−5 10000

Initial values: sine function for ρ1 and shifted sine function for ρ2.

Case a1 = a2 ε1 ε2 tmax
13 0, 5 10−5 10−5 10000

For the first part of the results, we have Gaussian functions as initial values for both ρ1 and ρ2. The
volume of the Gaussians is taken to be equal to 1. So, at time t = 0, the curves ρ1 and ρ2 are given in
the following figure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 0
(Initial Conditions)

a1, a2, e1, e2, tmax, N, S
0.5
0.5

0.0001
0.0001
2000
201
100

The curve ρ1 (red), has its peak on x = 1/4, while ρ2 (green), has its peak on x = 3/4.
In every case, the first figure, gives the approximation of the model for some intermediate times, while

the second figure, gives the approximation of the model at time t = tmax. Furthermore, the third figure
gives a 3D representation of the model for 0 ≤ x ≤ 1 and 0 ≤ t ≤ tmax. The fourth figure, shows how
the spatial gridpoints are distributed in the interval [0, 1], for every time step. At last, the fifth figure,
gives the volume of both ρ1 and ρ2, for every time 0 ≤ t ≤ tmax. That is done by integrating ρ1 and ρ2

on the interval [0, 1]. Trapezoidal rule was used for the integration.

35

For a1 = a2 = 0, 5, ε1 = ε2 = 10−5 and tmax = 10000

The same case is also given in section §3.3 for the fixed grid method. We quote this case also here, in
order to compare the results of the two different methods.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05
10000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

18

space x
p

1
 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1e−05
1e−05
10000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05
10000

201
100

Space

T
im

e

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05
10000

201
100

By comparing the figures, above with the corresponding ones in section §3.3, we can see that the
results are exactly the same, as they should be. Hence, the model is well approximted also with the
adaptive moving grid method.

We mention that for the fixed grid method, in order to get the same results, we used n = 701 spatial
gridpoints and s = 110001 time gridpoints, while for the adaptive moving grid method, we used only
n = 201 and s = 100.

We continue with cases where ε1, ε2, are smaller.

36

For a1 = a2 = 0, 5, ε1 = ε2 = 10−6 and tmax = 50000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−06
1e−06
50000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1e−06
1e−06
50000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−06
1e−06
50000

201
100

Space

T
im

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−06
1e−06
50000

201
100

From the first figure, it is obvious that both curves are moving towards the same position, until they
converge to equal curves and become stable ever since. In the second figure, we can clearly see the
position where the curves have converged to.

Morphologically, the curves are becoming very high and thin. So, initially for time t = 0, we have
two Gaussians with height almost equal to 10, and after some timesteps, both ρ1 and ρ2, have reached
height 35.

We also have to observe that in the second figure, both ρ1 and ρ2 are skewed.

37

From the 3D representation of the curves, we can see that the curves become equal at around time
t = 30000. Eversince, the curves remain stable.

The gridpoints are moving along with the curves as time grows, as we can observe in the fourth figure,
while in the last figure, we can see that the volume of both the curves remains equal to 1 at all times.

For ε1 = ε2 = 10−6, we used n = 201 spatial gridpoints and s = 100 time gridpoints.

For a1 = a2 = 0, 5, ε1 = ε2 = 10−7 and tmax = 200000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

80

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−07
1e−07
200000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1e−07
1e−07
200000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

x 10
4

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−07
1e−07
200000

201
100

Space

T
im

e

0 2 4 6 8 10 12 14 16 18

x 10
4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−07
1e−07
200000

201
100

As we expected, for ε1 = ε2 = 10−7, the curves are becoming even higher. They reach height almost
equal to 80. From the 3D representation, we observe that the curves are moving slower, hence they reach

38

the stationary position at a later time compared to the previous case, at around time t = 130000.
From the fourth figure, we can see that, initially the spatial gridpoints, are concentrating around the

curves and move along with them. At time t = 130000, the curves have converged. Ever since, the curves
are nonzero only in the interval [0.45, 0.55]. We can see that, the gridpoints are also concentrated to that
interval. So, we have that out of 201 gridpoints that were used, about 183 of them are concentrated in
the interval [0.45, 0.55], while only about 18 spatial gridpoints are used to cover the rest of the space,
where ρ1 = ρ2 = 0. Here, we have to mention that, in the fixed grid method, if we used n = 701
spatial gridpoints, only about 70 of them would be distributed in the interval [0.45, 0.55], while about
631 gridpoints would be spend to cover the rest space where ρ1 = ρ2 = 0. In other words, in order to get
the same accuracy with fixed grid method, we should use about n = 1830 spatial gridpoints, which by
the stability analysis in section §3.2, yields that we should also use at least s = 140000 time gridpoints.

From the last figure, the volumes of both ρ1, ρ2 is always equal to 1.
Hence, up until now, we cement the results we had derived in section §3.3 about the behaviour of the

model for ε1 = ε2 as ε1, ε2 are getting closer to zero.
Now we continue with the cases where ε1 6= ε2.

For a1 = a2 = 0, 5, ε1 = 1, 2 ∗ 10−7, ε2 = 10−7 and tmax = 100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

80

90

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1.2e−07
1e−07
100000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

80

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1.2e−07
1e−07
100000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

x 10
4

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1.2e−07
1e−07
100000

201
100

Space

T
im

e

39

0 1 2 3 4 5 6 7 8 9

x 10
4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1.2e−07
1e−07
100000

201
100

For a1 = a2 = 0, 5, ε1 = 1, 4 ∗ 10−7, ε2 = 10−7 and tmax = 100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

80

90

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1.4e−07
1e−07
100000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

80

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1.4e−07
1e−07
100000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

x 10
4

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1.4e−07
1e−07
100000

201
100

Space

T
im

e

40

0 1 2 3 4 5 6 7 8 9

x 10
4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1.4e−07
1e−07
100000

201
100

For a1 = a2 = 0, 5, ε1 = 1, 6 ∗ 10−7, ε2 = 10−7 and tmax = 100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

80

90

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1.6e−07
1e−07
100000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

80

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1.6e−07
1e−07
100000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

x 10
4

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1.6e−07
1e−07
100000

201
100

Space

T
im

e

41

0 1 2 3 4 5 6 7 8 9

x 10
4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1.6e−07
1e−07
100000

201
100

For a1 = a2 = 0, 5, ε1 = 1, 8 ∗ 10−7, ε2 = 10−7 and tmax = 100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

80

90

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1.8e−07
1e−07
100000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

80

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1.8e−07
1e−07
100000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

x 10
4

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1.8e−07
1e−07
100000

201
100

Space

T
im

e

42

0 1 2 3 4 5 6 7 8 9

x 10
4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1.8e−07
1e−07
100000

201
100

For a1 = a2 = 0, 5, ε1 = 2 ∗ 10−7, ε2 = 10−7 and tmax = 100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

80

90

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

0.5
0.5

2e−07
1e−07
100000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

80

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
0.5
0.5

2e−07
1e−07
100000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

x 10
4

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

2e−07
1e−07
100000

201
100

Space

T
im

e

43

0 1 2 3 4 5 6 7 8 9

x 10
4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

0.5
0.5

2e−07
1e−07
100000

201
100

As we expected, since ε1 is getting larger from case to case, ρ1 is getting shorter. On the other hand,
since ε2 has the same value for all the cases, we see that ρ2 is becoming as high as in all the cases.

By looking at the third figure of each one of the previous cases, we see that as the difference between
ε1 and ε2 is growing, the X phenomenon is taking place at a sooner time level. Furthermore, the distance
between the peaks of ρ1 and ρ2, after the curves have become stable, is getting larger as the difference
between ε1 and ε2 is growing.. The distance between the curves, is more obvious in the second figure for
all cases.

By looking at the second figure, we can observe, the skewness of both ρ1 and ρ2.
The last figure, shows that the volume of the curves is constantly equal to 1.
We will do the same work as in §3.3, in order to study the phenomenon, where at the last cases the

curves ρ1 and ρ2, were getting apart from each other with respect to the values of ε1 and ε2.
Let x1 be the location of the peak of ρ1 and x2 the location of the peak of ρ2 for every value of time

t. We wanted to see if the sequence
(
x1
x2

)
t
, converges to r0.25, where r = ε1

ε2
, as time t increases.

In the following figures, the value x1
x2 corresponds to the blue line and the value r0.25 corresponds to

the cyan line.

For ε1 = 1, 2 ∗ 10−7, ε2 = 10−7 For ε1 = 1, 4 ∗ 10−7, ε2 = 10−7

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time t

r0
.2

5
 i
s
 c

y
a

n
,

x
1

/x
2

 i
s
 b

lu
e

Ikasia
a1, a2, e1, e2, tmax, N, S, r

0.5
0.5

1.2e−07
1e−07
100000

201
100
1.2

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time t

r0
.2

5
 i
s
 c

y
a

n
,

x
1

/x
2

 i
s
 b

lu
e

Ikasia
a1, a2, e1, e2, tmax, N, S, r

0.5
0.5

1.4e−07
1e−07
100000

201
100
1.4

For ε1 = 1, 2 ∗ 10−7, ε2 = 10−7, we have r = ε1
ε2

= 1, 2. The location of the peak of ρ1, converges to
x1 = 0, 5072 and of ρ2, to x2 = 0, 4797.

For ε1 = 1, 4 ∗ 10−7, ε2 = 10−7, we have r = ε1
ε2

= 1, 4. The location of the peak of ρ1, converges to
x1 = 0, 5181 and of ρ2, to x2 = 0, 4690.

44

For ε1 = 1, 6 ∗ 10−7, ε2 = 10−7 For ε1 = 1, 8 ∗ 10−7, ε2 = 10−7

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time t

r0
.2

5
 i
s
 c

y
a

n
,

x
1

/x
2

 i
s
 b

lu
e

Ikasia
a1, a2, e1, e2, tmax, N, S, r

0.5
0.5

1.6e−07
1e−07
100000

201
100
1.6

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time t

r0
.2

5
 i
s
 c

y
a

n
,

x
1

/x
2

 i
s
 b

lu
e

Ikasia
a1, a2, e1, e2, tmax, N, S, r

0.5
0.5

1.8e−07
1e−07
100000

201
100
1.8

For ε1 = 1, 6 ∗ 10−7, ε2 = 10−7, we have r = ε1
ε2

= 1, 6. The location of the peak of ρ1, converges to
x1 = 0, 5275 and of ρ2, to x2 = 0, 4585.

For ε1 = 1, 8 ∗ 10−7, ε2 = 10−7, we have r = ε1
ε2

= 1, 8. The location of the peak of ρ1, converges to
x1 = 0, 5362 and of ρ2, to x2 = 0, 4495.

For ε1 = 2 ∗ 10−7, ε2 = 10−7

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time t

r0
.2

5
 i
s
 c

y
a

n
,

x
1

/x
2

 i
s
 b

lu
e

Ikasia
a1, a2, e1, e2, tmax, N, S, r

0.5
0.5

2e−07
1e−07
100000

201
100

2

For ε1 = 2 ∗ 10−7, ε2 = 10−7, we have r = ε1
ε2

= 2. The location of the peak of ρ1, converges to
x1 = 0, 5440 and of ρ2, to x2 = 0, 4422.

We gather all the values in the following table.

r x1 x2 x1− x2 x1/x2 m

1,2 0,5072 0,4797 0,0276 1,0575 0,3066
1,4 0,5181 0,4690 0,0491 1,1046 0,2956
1,6 0,5275 0,4585 0,0690 1,1506 0.2985
1,8 0,5362 0,4495 0,0867 1,1928 0.3
2 0,5440 0,4422 0,1018 1,2303 0,2990

where r = ε1
ε2

, x1 is the peak of ρ1 after it is stabilized, similarly x2 for ρ2, the value x1 − x2 gives

the distance of the peaks in each case and m comes from x1
x2 = rm.

So, once again, from the fourth column, we can conclude that the distance between the peaks of ρ1

and ρ2 is growing for larger values of r.
In the figures above, we can see the behaviour of the ratio x1

x2 , as time grows. It is obvious that, the
sequence

(
x1
x2

)
t
, converges to some value for all r. These values are given in the fifth column of the table.

45

At last we wanted to see, if the sequence
(
x1
x2

)
t
, converges to r0.25 as time grows. In the last column

of the table, we give the value m, that is x1
x2 = rm, for all values of r. Unfortunatelly, m, does not seem

to be equal to 0,25 as we were hoping, but is close to 0, 3.
For the case where ε1 = ε2 = 0, we have the following results.

For a1 = a2 = 0, 5, ε1 = ε2 = 0 and tmax = 500

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−20

0

20

40

60

80

100

120

140

160

180

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

0.5
0.5
0
0

500
201
100

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−20

0

20

40

60

80

100

120

140

160

180

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
0.5
0.5
0
0

500
201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

500

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5
0
0

500
201
100

Space

T
im

e

0 50 100 150 200 250 300 350 400 450 500
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

0.5
0.5
0
0

500
201
100

It is obvious that in this case the curves ρ1 and ρ2 are not moving in space, which is expected since
for ε1 = ε2 = 0 the diffution term of the model is deleted. Even more, the curves become extremelly
steep compared to any of the previous cases. In the second figure we can see that they converge to delta
functions.

46

From the first two figures, we also observe that curve ρ2 is shorter than ρ1. Here skewness is also very
obvious for both the curves.

At last the fifth figure shows that the volumes of both the curves are preserved at all time.
Further, we give the results that correspont to the case a1 = a2 = 1, that is u1(x) = xa1 = x and

u2(x) = xa2 = x.

For a1 = a2 = 1, ε1 = ε2 = 10−6 and tmax = 50000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

1
1

1e−06
1e−06
50000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
1
1

1e−06
1e−06
50000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Gridpoints
a1, a2, e1, e2, tmax, N, S

1
1

1e−06
1e−06
50000

201
100

Space

T
im

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

1
1

1e−06
1e−06
50000

201
100

By comparing the case where ε1 = ε2 = 10−6 and a1 = a2 = 0, 5 with the latter one where a1 = a2 = 1,
we observe that, for a1 = a2 = 0, 5, the curves concentrate at the same position at around time t = 30000,
while for a1 = a2 = 1, at around time t = 25000.

47

Further, for a1 = a2 = 0, 5, ρ1 and ρ2 reach height around 35 and then they mostly change their
position in space. On the other hand, for a1 = a2 = 1, we see that ρ1 reaches height around 37 and
keeps gaining more until it becomes stable. ρ2 reaches height around 40 and until it becomes stable loses
a little bit. In the end after both curves have converged, they are equal so, both share the same height
around 38.

At last, we will give the results that correspond to different initial values. So, for Gaussian function
as initial value of ρ1 and sine function for ρ2, we have that for time t = 0, we have:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 0
(Initial Conditions)

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1e−05
1e−05
10000

201
100

For a1 = a2 = 0, 5, ε1 = ε2 = 10−5 and tmax = 10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05
10000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1e−05
1e−05
10000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05
10000

201
100

Space

T
im

e

48

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05
10000

201
100

As we can see from the first figure, although ρ2 initially is some sine function, it changes morpholog-
ically from the start. The curve becomes a Gaussian function very fast. Since it also becomes Gaussian,
the behaviour of the model is similar to the previous cases. By comparing the latter case with the
corresponding one with Gaussian initial functions for both ρ1, ρ2, we observe that the evolution is the
same.

For sine function as initial value of ρ1 and the same sine function for ρ2, we have that for time t = 0,
we have:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 0
(Initial Conditions)

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1e−05
1e−05
10000

201
100

For a1 = a2 = 0, 5, ε1 = ε2 = 10−5 and tmax = 10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05
10000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1e−05
1e−05
10000

201
100

49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05
10000

201
100

Space

T
im

e

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05
10000

201
100

In this case ρ1 = ρ2 for time t = 0. As we can see from the figures, ρ1 is equal to ρ2 for all times t.
As in the previous case, both curves are rising and very soon they become Gaussians. Below, the figure
is a zoom in time, that shows the morphological change of the curves. Initially they are sine functions
and after a small time interval they are Gaussians.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

For time gridpoints: 10...30
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05

500
201
50

space x

p
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

space x

p
2

We observe that, although initially there are 3 peaks, the volume of the outer peaks is decreasing
while the middle peak is gaining volume and height. At the end, we see that the outer peaks do not exist
anymore, while the peak in the middle has become a Gaussian.

We have to mention that, by comparing the second figure of the current case with the coresponding
figure of the case where a1 = a2 = 0, 5, ε1 = ε2 = 10−5 and the initial values are Gaussian functions for

50

both ρ1 and ρ2, we see that although the curves are starting from different initial values, at the end they
converge to the same stationary solution.

The last case we will consider, is for sine function as initial value of ρ1 and shifted sine function for
ρ2, so for time t = 0, we have:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 0
(Initial Conditions)

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1e−05
1e−05
10000

201
100

For a1 = a2 = 0, 5, ε1 = ε2 = 10−5 and tmax = 10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to : 0,10,...,90,100
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05
10000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

18

space x

p
1

 i
s
 (

re
d

),
 p

2
 i
s
 (

g
re

e
n

)

Time gridpoint equal to: 100
Final curves

a1, a2, e1, e2, tmax, N, S
0.5
0.5

1e−05
1e−05
10000

201
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05
10000

201
100

Space

T
im

e

51

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time t

p
1
 i
s
 (

re
d
),

 p
2
 i
s
 (

g
re

e
n
)

Integrals of p1,p2 for every timestep
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05
10000

201
100

From the first figure, we can see that the curves are rising pretty fast as in the previous case. Soon
enough they have become Gaussian functions. In contrast to the previous case, here we have ρ1 6= ρ2 for
time t = 0 and the Gaussians that are formed, have peaks with different positions. So, we see that after
the curves have become Gaussians, they move towards the same position.

In the last figure, we can see that initially the volume of ρ1 is 1, while the volume of ρ2 is 1,38. But
by the time that the curves are transformed to Gaussian functions, the volume of ρ2 becomes also equal
to 1 ever since.

The next figure, is a zoom in time, that shows the steps the curves followed until they become
Gaussians.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

For all time gridpoints
a1, a2, e1, e2, tmax, N, S

0.5
0.5

1e−05
1e−05

500
201
50

space x

p
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

space x

p
2

To conclude. From the last three cases where different initial values were used, we saw that no matter
what the initial values will be, the curves will become Gaussian functions very soon. Ever since the
behaviour of the solution is similar to the previous cases where we had Gaussian functions as initial
conditions for both ρ1 and ρ2. We also saw that, no matter what the initial values are, ρ1, ρ2, will
converge to identical curves, for every case. Hence, we may assume that, taking for initial values always
Gaussian functions for both ρ1 and ρ2, is enough for studying the model.

5 Conclusions

In this work, we numerically approximated the replicator equations of the Nash bargaining game. In
sections §3.3 and §4.3, we derived some results. We gather all these results here.

1. In general, for ε1 = ε2 6= 0, the curves ρ1 and ρ2, are moving towards the same position. After some
time, both curves have converged to identical curves.

52

As the parameters ε1, ε2 are getting closer to zero, the curves are becoming steeper, they converge
to a delta distribution. Evenmore, the movement is slower for smaller ε1, ε2, hence, the curves
converge to the same position at a much later time point.

For ε1 = ε2, we also saw that the morphological change of both ρ1 and ρ2, is similar.

2. For ε1 6= ε2, the curves ρ1 and ρ2, are moving towards to the same position. Here we observed
the X-phenomenon and we saw that the curves converge to stationary solutions, that are no longer
concentrated at the same position. As the parameters ε1, ε2 → 0, the curves converge to delta
distributions. Even more, the curve ρi with the smallest parameter εi is steeper than the other.

As the difference ε1 − ε2, is getting larger, we observed that, the X phenomenon is taking place at
a sooner time point.

We observe that, as the ratio r = ε1
ε2

is growing, the distance between the positions of the peaks of
ρ1 and ρ2, after the curves have become stable, is growing.

3. For ε1 = ε2 = 0, the curves ρ1 and ρ2, are not moving in space. Instead as time grows they become
steeper converging to delta functions. In contrast to the case ε1 = ε2 6= 0, for ε1 = ε2 = 0 the curves
do not have the same morphological behaviour. Curve ρ1 is gaining height faster than ρ2.

4. For every case, we observed that, although the curves ρ1 and ρ2 are moving in space and at the
same time they change morphologically, their volumes are always equal to 1, for all times, as we
wanted them to be.

5. The statinary solution of the equations is not affected by the initial values.

6. At last, we need to mention that the curves become skewed.

The basic results above, do agree with the theoretical analysis of the replicator equations for the Nash
bargaining game that has been done in [6].

The difference between the fixed grid and adaptive moving grid methods, is the accuracy that each
one can offer. We saw that, as ε1, ε2 are getting closer to zero, the curves ρ1 and ρ2 are becoming steeper.
That makes our job harder. If we insist on using the fixed grid method, then we have to use a large
number of spatial gridpoints and hence due to stability, we also have to use a lot more time gridpoints. Of
course that is possible and indeed will result to more accurate approximations, but makes the fixed grid
method time consuming. On the other hand, with adaptive moving grid method, it is easier to increase
the accuracy level by using less spatial and time gridpoints. Of course, adaptive moving grid method is a
heavier method and hence it takes quite some time to finish its calculations. Even though, if the curves
ρ1 and ρ2 become steep enough, then adaptive moving grid method, needs less run time in order to give
some accurate results, compared to the corresponding fixed grid method that would provide the same
accuracy. The difference between the two methods, can be seen also in the introduction of [10].

To conclude, for large ε1 and ε2, the curves that are to be approximated, are not very steep and hence
fixed grid method, would be the best method to use. On the other hand, for ε1 and ε2 close to zero it
would be better to switch to adaptive moving grid method, since fixed grid method would need longer
run times.

53

6 References

[1] Uri M. Ascher. Numerical Methods for Evolutionary Differential Equations. SIAM.

[2] Binmore. Natural Justice. Oxford University Press, 2005.

[3] W.Hundsdorfer and J.G. Verwer. Numerical Solution of Time-Dependent Advection-Diffusion-
Reaction Equations. Springer, 1st edition, 2003.

[4] A. Muthoo. Bargaining Theory with Applications. Cambridge University Press, 1999.

[5] J.F, Nash. The bargaining problem. Econometrica, Vol. 18 (no. 2): pp. 155-162, 1950.

[6] M. Ruijgrok. Replicator dynamics for the Nash bargaining game. To appear 2011.

[7] B. Skyrms. Evolution of the Social Contract. Cambridge University Press, 1996.

[8] A. van Dam and P.A. Zegeling. A robust moving mesh finite volume method applied to 1d hyperbolic
conservation laws from magnetohydrodynamics. J. Comput. Phys., (216):526-546, 2006.

[9] P.A. Zegeling. Moving-grid methods for time-dependent partial differential equations. CWI-track
No.94, Centre for Mathematics and Computer Science, Amsterdam,1993.

[10] P.A. Zegeling. Theory and Application of Adaptive Moving Grid Methods. Chapter 7 in Adaptive
Computations: Theory and Algorithms, T. Tang, J. Xu, 2007.

[11] P.A. Zegeling. Moving grid techniques. Chapter 37 in Handbook of Grid Generation, Eds. Joe F.
Thompson, Bharat K. Soni, Nigel P. Weatherill, CRC Press LLC, 1999.

[12] P.A. Zegeling, I. Lagzi, and F. Izsak. Transition of Liesegang precipitation systems: simulations with
an adaptive grid PDE method. to appear in Communications in Computational Physics, 2011.

[13] K.E. Brenan, S.L. Campbell, L.R. Petzold. Numerical solution of initial-value problems in
differential-algebraic equations. Chapter 5 SIAM. 1996.

[14] L. Petzold. DASSL code. http://pitagora.dm.uniba.it/ testset/solvers/dassl.php.

[15] F. Doster, P.A. Zegeling, R. Hilfer. Numerical Solutions of a Generalized Theory for Macroscopic
Capillarity. Physical Review E81, 1, 2010.

7 Appendices

7.1 Fixed grid method codes

The code that is given in this senction, corresponds to the fixed grid method. The code is builted on
Matlab.

c l e a r a l l

% D e f i n i t i o n s
tmax = input (’Tmax= : ’) ;
N = input (’ Number o f s p a t i a l s u b i n t e r v a l s : ’) ;
S = input (’ Number o f time s u b i n t e r v a l s : ’) ;
time1 = cputime ;
xmin = 0 ;
xmax = 1 ;
tmin = 0 ;
Dx = (xmax − xmin)/N;
Dt = (tmax − tmin)/S ;
n = N+1;
s = S+1;
x = ze ro s (1 , n) ; % (1 xn)− space g r i d p o i n t s
t = ze ro s (1 , s) ; % (1 xs)−time g r i d p o i n t s

54

p1 = ze ro s (1 , n) ; % va lue s o f p1 (i)=p1 (x (i))
p2 = ze ro s (1 , n) ; % va lue s o f p2 (i)=p2 (x (i))
p1new = ze ro s (1 , n) ;
p2new = ze ro s (1 , n) ;
F1 = ze ro s (1 , n) ;
F2 = ze ro s (1 , n) ;
e1 = 10ˆ(−7); % parameter e1=e p s i l o n 1 from the model
e2 = 10ˆ(−7); % parameter e2=e p s i l o n 2 from the model
a1 = 0 . 5 ; % t h i s i s used in func t i on u1 (x , a1)
a2 = 0 . 5 ; % t h i s i s used in func t i on u2 (x , a2)
% Function u1 i s de f ined in the path c a l l the func t i on u1 (x , a1)
% Function u2 i s de f ined in the path c a l l the func t i on u2 (x , a2)
f i g s = ze ro s (1 , 4) ;

i f n∗ s>10000000 % maximum matrix s i z e matlab can take
maxs = f l o o r (10000000/n) ;
bhma = f l o o r (s /maxs)+1;
s s = f l o o r (s /bhma)+1;

e l s e
bhma = 1 ;
s s = s ;

end

p11 = ze ro s (ss , n) ; % a l l data f o r f i g u r e s
p22 = ze ro s (ss , n) ; % a l l data f o r f i g u r e s
I n t e g r a l s p 1 = ze ro s (1 , s s) ;
I n t e g r a l s p 2 = ze ro s (1 , s s) ;
t1 = ze ro s (1 , s s) ; % time a x i s f o r the f i g u r e s

% Create the g r i d p o i n t s f o r space and time

f o r i =1:n
x (i)=(i −1)∗Dx;

end
f o r j =1: s

t (j)=(j −1)∗Dt ;
end

% I n i t i a l c o n d i t i o n s (t=0 −> j =1)

b1=1/4; % g i v e s the cente r o f the b e l l
b2=3/4;
c =0.041; %0.0064; % g i v e s the width o f the b e l l
alpha =1/(c∗ s q r t (2∗ pi)) ; % g i v e s the he ight o f

% the b e l l w. r . t . c
% such that the i n t e g r a l o f
% the gauss ian from (− i n f , i n f)
% i s equal to one 1 .

f o r i =1:n
p1 (i)=alpha ∗gaussmf (x (i) , [c b1]) ; % p1 f o r t=0
p2 (i)=alpha ∗gaussmf (x (i) , [c b2]) ; % p2 f o r t=0

end
j =1;
j j =1;

55

p11 (j j , :)= p1 ;
p22 (j j , :)= p2 ;
t1 (j j)=t (j) ;
% Give the f i r s t 2D f i g u r e 1 f o r t=0=tmin (i n i t i a l c o n d i t i o n s)
f i g u r e (1)
p l o t (x , p1 , ’ r ’ , x , p2 , ’ g ’)
x l a b e l (’ space x ’)
y l a b e l (’ p1 i s (red) , p2 i s (green) , gauss funct ion ’)
g r id on
t i t l e ({ ’ Time equal to : ’ (j −1)∗Dt ’ (I n i t i a l Condit ions) ’ ’ a1 , a2 ,
>>>>c , e1 , e2 , tmax , Dx, Dt , N, S ’ a1 a2 c e1 e2 tmax Dx Dt N S})
f i g s (1)= f i g u r e (1) ;
s e t (gcf , ’ V i s i b l e ’ , ’ o f f ’)

% Ca lcu la te the volume o f p1 , p2 in [0 , 1] to s ee i f i t s c l o s e to one
Summa1=(Dx/2)∗ (2∗ (sum(p1)−p1(1)−p1 (n))+p1(1)+p1 (n)) ;
f p r i n t f (’ For time t = 0 , the i n t e g r a l o f the func t i on p1 (x) from 0 to
>>>>1 i s equal to : %f . \n ’ , Summa1) ;
I n t e g r a l s p 1 (j j) = Summa1 ;
Summa2=(Dx/2)∗ (2∗ (sum(p2)−p2(1)−p2 (n))+p2(1)+p2 (n)) ;
f p r i n t f (’ For time t = 0 , the i n t e g r a l o f the func t i on p2 (x) from 0 to
>>>>1 i s equal to : %f . \n ’ , Summa2) ;
I n t e g r a l s p 2 (j j) = Summa2 ;
% The i n t e g r a l in [0 , 1] o f the i n i t i a l cond i t i on must be equal to 1

% Main loop

f o r j =2: s

% Calcu la te F1 , F2 with prev ious time l e v e l data
f o r i =1:(n−1)
% u n t i l (n−1) s i n c e F1(n)= i n t (0 ,1− x n) f (x)= i n t (0 ,1−1)= i n t (0 ,0)=0 always

F1(i) = (Dx/2)∗ (p2(1)+p2 (n−i +1)+2∗SUMF1(p2 , n , i)) ;
F2(i) = (Dx/2)∗ (p1(1)+p1 (n−i +1)+2∗SUMF2(p1 , n , i)) ;

end
% Calcu la te P1 , P2 with prev ious time l e v e l data
P1=(Dx/2)∗ (p1 (1)∗ u1 (x (1) , a1)∗F1(1)+p1 (n)∗u1 (x (n) , a1)∗F1(n)
>>>> +2∗SUMP1(p1 , x , F1 , n , a1)) ;
P2=(Dx/2)∗ (p2 (1)∗ u2 (x (1) , a2)∗F2(1)+p2 (n)∗u2 (x (n) , a2)∗F2(n)
>>>> +2∗SUMP2(p2 , x , F2 , n , a2)) ;

% Boundary c o n d i t i o n s o f p1 , p2 f o r x=0, x=1
p1new (1)=0;
p1new (n)=0;
p2new (1)=0;
p2new (n)=0;
% the new va lue s o f p1 , p2
f o r i =2:(n−1)

p1new (i)=((Dt∗ e1)/ (Dx)ˆ2)∗ (p1 (i +1)−2∗p1 (i)+p1 (i −1))
>>>> +Dt∗p1 (i)∗ (u1 (x (i) , a1)∗F1(i)−P1)+p1 (i) ;

p2new (i)=((Dt∗ e2)/ (Dx)ˆ2)∗ (p2 (i +1)−2∗p2 (i)+p2 (i −1))
>>>> +Dt∗p2 (i)∗ (u2 (x (i) , a2)∗F2(i)−P2)+p2 (i) ;
end
p1=p1new ;
p2=p2new ;

56

i f j /bhma == f l o o r (j /bhma) % mod(j /bhma , 1) == 0
j j=j j +1;
p11 (j j , :)= p1 ;
p22 (j j , :)= p2 ;
t1 (j j)=t (j) ;

end

% Calcu la te the volume o f p1 , p2 in [0 , 1] to s ee i f i t s c l o s e to one
% Trapezo ida l Rule :
Summa1=(Dx/2)∗ (2∗ (sum(p1)−p1(1)−p1 (n))+p1(1)+p1 (n)) ;
f p r i n t f (’ For time t = %f , the i n t e g r a l o f the func t i on p1 (x)
>>>>from 0 to 1 i s equal to : %f . \n ’ , (j −1)∗Dt , Summa1) ;
i f j /bhma == f l o o r (j /bhma) % mod(j /bhma , 1) == 0

I n t e g r a l s p 1 (j j) = Summa1 ;
end
Summa2=(Dx/2)∗ (2∗ (sum(p2)−p2(1)−p2 (n))+p2(1)+p2 (n)) ;
f p r i n t f (’ For time t = %f , the i n t e g r a l o f the func t i on p2 (x)
>>>>from 0 to 1 i s equal to : %f . \n ’ , (j −1)∗Dt , Summa2) ;
i f j /bhma == f l o o r (j /bhma) % mod(j /bhma , 1) == 0

I n t e g r a l s p 2 (j j) = Summa2 ;
end
% The i n t e g r a l in [0 , 1] o f the i n i t i a l cond i t i on must be equal to 1

end
time2 = cputime ;
time=time2−time1 ;
f p r i n t f (’ The CPU time e lapsed i s : %f . \n ’ , time) ;

i f n∗ s>10000000 % maximum matrix s i z e matlab can take
f p r i n t f (’ Too many data , so the number o f the data w i l l be changed

>>>>to f i t the f i g u r e s . \n ’) ;
end

% Give the l a s t 2D f i g u r e 2 f o r (t=n∗Dt=tmax)
f i g u r e (2)
p l o t (x , p1 , ’ r ’ , x , p2 , ’ g ’)
x l a b e l (’ space x ’)
y l a b e l (’ p1 i s (red) , p2 i s (green) ’)
t i t l e ({ ’ Time equal to : ’ (s−1)∗Dt ’ a1 , a2 , c , e1 , e2 , tmax ,
>>>>Dx, Dt , N, S ’ a1 a2 c e1 e2 tmax Dx Dt N S})
g r id on
f i g s (2)= f i g u r e (2) ;

% s e t (gcf , ’ V i s i b l e ’ , ’ o f f ’)

save (’/ home/ students /3402266/ R e s u l t s I k a s i a /c =0 ,041 e1=r ∗ e2 e2=1e−7 r=0
>>>>Tmax=300000 N=2000 data . mat ’ , ’ r ’ , ’Dt ’ , ’Dx’ , ’ In t eg ra l sp1 ’ ,
>>>>’ I n t eg ra l sp2 ’ ,
>>>>’N’ , ’ S ’ , ’ a1 ’ , ’ a2 ’ , ’ alpha ’ , ’ b1 ’ , ’ b2 ’ , ’ bhma ’ , ’ c ’ , ’ e1 ’ , ’ e2 ’ , ’ n ’ , ’ p11 ’ ,
>>>>’p22 ’ , ’ s ’ , ’ ss ’ , ’ t ’ , ’ t1 ’ , ’ time ’ , ’ tmax ’ , ’ tmin ’ , ’ x ’ , ’ xmax ’ , ’ xmin ’)

where the functions that are used in the code are given below:

func t i on [FF1]=SUMF1(p2 , n , i)
FF1=0;
f o r l =2:(n−i)

FF1=FF1+p2 (l) ;

57

end

func t i on [FF2]=SUMF2(p1 , n , i)
FF2=0;
f o r q=2:(n−i)

FF2=FF2+p1 (q) ;
end

func t i on [PP1]=SUMP1(p1 , x , F1 , n , a1)
PP1=0;
f o r l l =2:(n−1)

PP1=PP1+p1 (l l)∗u1 (x (l l) , a1)∗F1(l l) ;
end

func t i on [PP2]=SUMP2(p2 , x , F2 , n , a2)
PP2=0;
f o r qq =2:(n−1)

PP2=PP2+p2 (qq)∗u2 (x (qq) , a2)∗F2(qq) ;
end

func t i on [output] = u1 (x , a1)
output = x . ˆ a1 ;
end

func t i on [output] = u2 (x , a2)
output = x . ˆ a2 ;
end

7.2 Adaptive moving grid method codes

The code that is given in this senction, corresponds to the adaptive moving grid method. The code is
builted on Fortran77 and is a basic subroutine of a larger code lib.f that was used in this work. lib.f, is
using the code DASSL, look [13, 14]. The code that is presented here, gives the part where the spatial
gridpoints are reallocated in each time level and the formulas that were derived in this work for the
numerical approximation of the functions ρ1 and ρ2. The time gridpoints, are reallocated in lib.f file.

program my
parameter (npts =201 ,neq=3∗npts)

c s o l v i n g my system u1t=u1x+f (u2) u2t=u2x+f (u1) on i n t e r v a l [xl , xr]
c i m p l i c i t us ing DDASSL

dimension y (neq) , ydot (neq) , i n f o (15) , iwork (100000)
dimension x (npts)
dimension t p r i n t (9)

double p r e c i s i o n u , x , xdot , y , ydot
double p r e c i s i o n length , alpha , dt , t , tout , v , d
double p r e c i s i o n x l e f t , xr ight , u l e f t , u r i gh t
double p r e c i s i o n em, xl , xr , rp i , dd , rk , uexact
double p r e c i s i o n r t o l , a to l , rpar , rwork (100000)

CCC my v a r i a b l e s
double p r e c i s i o n b , c , aa , pi , b1 , b2
double p r e c i s i o n In t eg ra l 1 , In t eg ra l 2 , Integ1 , Integ2

charac t e r ∗10 xuname , uplnm
charac t e r ∗12 outname

58

common /needed/ alpha , dt , beta , k , gamma
common /werk/ rwork

e x t e r n a l r e s id , ddas s l

c−−−
c input o f v a r i a b l e s

∗∗ wr i t e (∗ , ’ (’ ’ Give name o f output f i l e : ’ ’ , $) ’)
∗∗ read (∗ ,∗) outname

outname=’UPLOTn. dat ’
wr i t e (∗ , ’ (’ ’ Give Tend : ’ ’ , $) ’)
read (∗ ,∗) tend
dt = tend /100.0 d0

∗ wr i t e (∗ , ’ (’ ’ Give number o f time s t ep s : ’ ’ , $) ’)
∗ read (∗ ,∗) nts

nts =100

c−−−

c i n i t i a l i s a t i o n

c i n i t i a l i s a t i o n f o r ddas s l
∗ wr i t e (∗ , ’ (’ ’ Give t o l : ’ ’ , $) ’)
∗ read (∗ ,∗) t o l

t o l = 0.0001 d0
a t o l=t o l
r t o l=t o l
l iw=20+neq

∗∗∗∗∗ l rw=40+(maxord+4)∗neq+neq∗∗2

do 10 i =1,neq
ydot (i)=0.0 d0

10 cont inue
do 20 i =1 ,15

i n f o (i)=0
20 cont inue
∗∗∗∗∗ bandstructure :

i n f o (6)=1
∗ l e t op : 6de a f g e l e i d e n in d i t model !

iwork (1)=12
mu=iwork (1)
iwork (2)=12
ml=iwork (2)

∗ i n f o (3) = 1
i n f o (11)=0

C maxord i s n i e t standaard =5:
i n f o (9)=1

C maxord i s wel=iwork (3) = . . . :
iwork (3)=5
maxord=iwork (3)

∗ bandmatrix :
lrw=40+(maxord+4)∗neq+(2∗ml+mu+1)∗neq+2∗(neq /(ml+mu+1)+1)

l ength=1
open (un i t =18, f i l e =’ te . dat ’)

59

wr i t e (18 ,∗) tend
c l o s e (un i t =18)
open (un i t =19, f i l e =’npt . dat ’)
wr i t e (19 ,∗) npts
open (un i t =20, f i l e =’ nts . dat ’)
wr i t e (20 ,∗) nts

r p i =4.0d0∗atan (1 .)
x l = 0 .0 d0
xr = 1 .0 d0
open (un i t =28, f i l e =’xr . dat ’)
wr i t e (28 ,∗) xr
open (un i t =29, f i l e =’ x l . dat ’)
wr i t e (29 ,∗) x l

do 49 i =1, npts
x (i)= x l+r e a l (i −1.)∗(xr−x l)/ (npts −1.)

49 cont inue

C PRINT ∗ , ’ space g r i d p o i n t s f o r time−g r i d p o i n t=0 are ca l cu l a t ed ’
C PRINT ∗ , x

c INITIAL CONDITIONS

r p i =4.∗ atan (1 .)
b1=0.250d0
b2=0.750d0
do i =1, npts
y (3∗ i)=x (i)
enddo

do 50 i =1, npts
C Gaussian i n i t i a l c ond i t i on f o r u1 :
C y (3∗ i −2) = uexact (x (i) , b1 , 0 . 0 d0)
C Sine−f unc t i on i n i t i a l c ond i t i on f o r u1 :

y (3∗ i −2) = uexact1 (x , y , npts , i)
C Gaussian i n i t i a l c ond i t i on f o r u2 :
C y (3∗ i −1) = uexact (x (i) , b2 , 0 . 0 d0)
C Sine−f unc t i on i n i t i a l c ond i t i on f o r u2 :

y (3∗ i −1) = uexact2 (x , y , npts , i)
y (3∗ i)=x (i)

50 cont inue

C PRINT ∗ , ’ i n i t i a l va lue s u1 , u2 f o r time−g r i d p o i n t=0 are ca l cu l a t ed ’
C PRINT ∗ , y

PRINT ∗ , ’ Time Gridpont i s = 0 ’

xuname=’UPLOT0. dat ’
open (un i t =37, f i l e=xuname)
do 601 i =1, npts

wr i t e (37 ,∗) sng l (x (i)) , sng l (y (3∗ i −2)) , sng l (y (3∗ i −1))
601 cont inue

c l o s e (un i t =37)

open (un i t =16, f i l e =’Grid . dat ’)

c wr i t e g r id po in t s to f i l e

60

do 88 i =1, npts
∗∗∗ a l s n i e t dt in p l a a t j e .m wi l aanpassen , dan k−>k∗dt en in
∗∗∗ p l a a t j e .m n∗dt−>n

wr i t e (16 ,∗) i , k , sng l (y (3∗ i)) , sng l (y (3∗ i −2)) , sng l (y (3∗ i −1))
88 cont inue

C Ca l cu la t i on o f I n t e g r a l s
open (un i t =54, f i l e =’ I n t e g r a l s . dat ’)

Integ1 =0.50d0 ∗(y (6)∗ y (1)+(1 .0 d0−y (3∗ npts −3))∗y (3∗ npts−2)
> +I n t e g r a l 1 (y , npts))

Integ2 =0.50d0 ∗(y (6)∗ y (2)+(1 .0 d0−y (3∗ npts −3))∗y (3∗ npts−1)
> +I n t e g r a l 2 (y , npts))

wr i t e (54 ,∗) k , sng l (Integ1) , sng l (Integ2)
c−−
c MAIN LOOP

c c a l c u l a t i n g new x− and u−va lue s
npr int = 9
do 499 k=1, nprint , 1

499 t p r i n t (k) = k∗ tend /(npr int +1)
kk = 1
do 500 k=1, nts

t=(k−1)∗dt
tout=k∗dt

PRINT ∗ , ’ Time Gridpont i s = ’ , k

c a l l ddas s l (r e s id , neq , t , y , ydot , tout , in fo , r t o l , a to l ,
> id id , rwork , lrw , iwork , l iw , rpar , ipar , j a c)

i f (kk . gt . 9) goto 501
i f ((abs (t p r i n t (kk)− tout))/ tout . l e . 1 . e−3) then

wr i t e (uplnm , ’ (a , i1 , a) ’) ’UPLOT’ , kk , ’ . dat ’
OPEN (UNIT= 13 , FILE=uplnm)

c p l o t x , u−va lue s :
do 165 i =1, npts
wr i t e (13 ,∗) sng l (y (3∗ i)) , sng l (y (3∗ i −2)) , sng l (y (3∗ i −1))

165 cont inue
CLOSE(13)
kk = kk + 1

e n d i f

c wr i t e g r id po in t s to f i l e
501 do 450 i =1, npts

wr i t e (16 ,∗) i , k , sng l (y (3∗ i)) , sng l (y (3∗ i −2)) , sng l (y (3∗ i −1))
450 cont inue

C wr i t e I n t e g r a l s to f i l e
Integ1 =0.50d0 ∗(y (6)∗ y (1)+(1 .0 d0−y (3∗ npts −3))∗y (3∗ npts−2)

> +I n t e g r a l 1 (y , npts))
Integ2 =0.50d0 ∗(y (6)∗ y (2)+(1 .0 d0−y (3∗ npts −3))∗y (3∗ npts−1)

> +I n t e g r a l 2 (y , npts))
wr i t e (54 ,∗) k , sng l (Integ1) , sng l (Integ2)

c next time step

61

500 cont inue
c l o s e (un i t =54)
c l o s e (un i t =16)

c−−

c wr i t e output to f i l e
open (un i t =17, f i l e=outname)
do 600 i =1, npts

wr i t e (17 ,∗) sng l (y (3∗ i)) , sng l (y (3∗ i −2)) , sng l (y (3∗ i −1))
600 cont inue

c l o s e (un i t =17)

C wr i t e g r id po in t s to f i l e
do 452 i =1, npts

∗ pr in t ∗ , tout , y (3∗ i) , y (3∗ i −2) ,y (3∗ i −1)
wr i t e (16 ,∗) i , k , sng l (y (3∗ i)) , sng l (y (3∗ i −2)) , sng l (y (3∗ i −1))

452 cont inue

C wr i t e I n t e g r a l s to f i l e
Integ1 =0.50d0 ∗(y (6)∗ y (1)+(1 .0 d0−y (3∗ npts −3))∗y (3∗ npts−2)

> +I n t e g r a l 1 (y , npts))
Integ2 =0.50d0 ∗(y (6)∗ y (2)+(1 .0 d0−y (3∗ npts −3))∗y (3∗ npts−1)

> +I n t e g r a l 2 (y , npts))
wr i t e (54 ,∗) k , sng l (Integ1) , sng l (Integ2)

c l o s e (un i t =54)
C
Cc ∗∗∗∗ next time step
C500 cont inue
C

c l o s e (un i t =16)

end

C Extra f u n c t i o n s

double p r e c i s i o n func t i on I n t e g r a l 1 (y , npts)
double p r e c i s i o n y (3∗ npts) , In1
In1=0
do v=2,npts−1
In1=In1+(y (3∗v+3)−y (3∗v−3))∗y (3∗v−2)
enddo
I n t e g r a l 1=In1
return
end

double p r e c i s i o n func t i on I n t e g r a l 2 (y , npts)
double p r e c i s i o n y (3∗ npts) , In2
In2=0
do vv=2,npts−1
In2=In2+(y (3∗vv+3)−y (3∗vv−3))∗y (3∗vv−1)
enddo
I n t e g r a l 2=In2
return
end

62

double p r e c i s i o n func t i on a l f a a 1 (y , npts)
double p r e c i s i o n y (3∗ npts) , a l f 1
a l f 1=0
do f =2,npts−1
a l f 1=a l f 1 +(y (3∗ f +3)−y (3∗ f −3))∗ abs (y (3∗ (f +1)−2)−y (3∗ f −2))
enddo
a l f a a 1=a l f 1
re turn
end

double p r e c i s i o n func t i on a l f a a 2 (y , npts)
double p r e c i s i o n y (3∗ npts) , a l f 2
a l f 2=0
do f f =2,npts−1
a l f 2=a l f 2 +(y (3∗ f f +3)−y (3∗ f f −3))∗ abs (y (3∗ (f f +1)−1)−y (3∗ f f −1))
enddo
a l f a a 2=a l f 2
re turn
end

double p r e c i s i o n func t i on uexact (x , b , t)
double p r e c i s i o n x , t , rp i , b , c , pi , aa
r p i = 4 .0 d0∗atan (1 .)
p i =3.1415926535897932384626430 d0
c =0.0410d0
aa=1.0d0 /(c∗ s q r t (2 . 0 d0∗ pi))
uexact = aa∗exp ((−(x−b)∗ (x−b))/ (2∗ c∗c))
re turn
end

double p r e c i s i o n func t i on uexact1 (x , y , npts , i)
double p r e c i s i o n p i
double p r e c i s i o n y (3∗ npts) , x (npts) , I n t e g r a l 1
i n t e g e r i
p i =3.1415926535897932384626430 d0
do i i i =1, npts
i f ((x (i i i) . l e . 0 . 1 5) .OR. (x (i i i) . ge . 0 . 8 5 2)) then

y (3∗ i i i −2)=0.0d0
e l s e

y (3∗ i i i −2)=s i n (8∗ pi ∗x (i i i)+1.50 d0)+1.40 d0
C y (3∗ i i i −2)=s i n (8∗ pi ∗x (i i i)+1.50 d0 +0.30d0)+1.40 d0
C PRINT ∗ , ’ exact1 ’

e n d i f
enddo
Integ1 =0.50d0 ∗(y (6)∗ y (1)+(1 .0 d0−y (3∗ npts −3))∗y (3∗ npts−2)

> +I n t e g r a l 1 (y , npts))
do i i i =1, npts
y (3∗ i i i −2)=y (3∗ i i i −2)/ Integ1
enddo
uexact1=y (3∗ i −2)
re turn
end

double p r e c i s i o n func t i on uexact2 (x , y , npts , i)
double p r e c i s i o n p i
double p r e c i s i o n y (3∗ npts) , x (npts) , I n t e g r a l 2
i n t e g e r i

63

pi =3.1415926535897932384626430 d0
do i i =1, npts
i f ((x (i i) . l e . 0 . 0 2) .OR. (x (i i) . ge . 0 . 9 8)) then

y (3∗ i i −1)=0.0d0
e l s e

C y (3∗ i i −1)=s i n (8∗ pi ∗x (i i)+1.50 d0)+1.40 d0
y (3∗ i i −1)=s i n (8∗ pi ∗x (i i)+1.50 d0+pi)+1.40 d0

C PRINT ∗ , ’ exact2 ’
e n d i f
enddo
Integ2 =0.50d0 ∗(y (6)∗ y (2)+(1 .0 d0−y (3∗ npts −3))∗y (3∗ npts−1)

> +I n t e g r a l 2 (y , npts))
do i i =1, npts
y (3∗ i i −1)=y (3∗ i i −1)/ Integ2
enddo
uexact2=y (3∗ i −1)
re turn
end

double p r e c i s i o n func t i on SUMF1(y , zz , dx , npts)
double p r e c i s i o n y (3∗ npts) ,FF1
r e a l dx (npts−1)
i n t e g e r zz
FF1=0
do 998 , l =2,zz−1
FF1=FF1+(dx (l−1)+dx (l))∗ y (3∗ l −1)

998 cont inue
SUMF1=FF1
return
end

double p r e c i s i o n func t i on SUMF2(y , zzz , dx , npts)
double p r e c i s i o n y (3∗ npts) ,FF2
r e a l dx (npts−1)
i n t e g e r zzz
FF2=0
do 997 , l l =2, zzz−1
FF2=FF2+(dx (l l −1)+dx (l l))∗ y (3∗ l l −2)

997 cont inue
SUMF2=FF2
return
end

double p r e c i s i o n func t i on SUMP1(y , dx , F1 , npts , a1)
double p r e c i s i o n y (3∗ npts) , a1 , F1(npts) ,PP1
r e a l dx (npts−1)
PP1=0
do 996 , q=2,npts−1
PP1=PP1+(dx (q−1)+dx (q))∗ y (3∗q−2)∗v (y (3∗q) , a1)∗F1(q)

996 cont inue
SUMP1=PP1
return
end

double p r e c i s i o n func t i on SUMP2(y , dx , F2 , npts , a2)
double p r e c i s i o n y (3∗ npts) , a2 , F2(npts) ,PP2
r e a l dx (npts−1)

64

PP2=0
do 995 , qq=2,npts−1
PP2=PP2+(dx (qq−1)+dx (qq))∗ y (3∗qq−1)∗v (y (3∗qq) , a2)∗F2(qq)

995 cont inue
SUMP2=PP2
return
end

double p r e c i s i o n func t i on v (xx , aa)
double p r e c i s i o n xx , aa
i f (xx . l t . 0 . 0 d0) then
v=abs (xx)∗∗ aa
e l s e
v=xx∗∗aa
e n d i f
r e turn
end

subrout ine r e s i d (t , y , ydot , r , i r e s , rpar , i pa r)
parameter (npts =201)
i n t e g e r n
dimension y (3∗ npts) , ydot (3∗ npts) , r (3∗ npts)
dimension dx (npts −1) ,up (npts) , u2p (npts)
dimension upr (npts , 5) , wee (npts , 3)
double p r e c i s i o n t , y , ydot , r , rpar , upr , wee
double p r e c i s i o n x , u , ux , uxx , uxxxx , ux6
double p r e c i s i o n a l f ax , taux , rkappax , rmux , rohx , s igx , betax
double p r e c i s i o n emm, ef , es , uexact
double p r e c i s i o n rwork (100000) , f a c to r , f f a c t o r
double p r e c i s i o n a l f , bet , gam , de l t , dd , rk , xsca l e , r p i
double p r e c i s i o n hi , him1 , hip1 , hip2 , de l ta1 , e p s i l 1
double p r e c i s i o n a l f a2 , beta2 , gamma2 , de l ta2 , e p s i l 2

CCC my v a r i a b l e s
r e a l dx
double p r e c i s i o n a l f a11 , beta11 , gamma11 , a l f a12 , beta12 , gamma12
double p r e c i s i o n ux1 , ux2 , utwo1 , utwo2
double p r e c i s i o n duim11x , duim12x , duix1 , duix2
double p r e c i s i o n e1 , e2 , e , a1 , a2 , z
i n t e g e r mm, kkk , s
dimension F1(npts) , F2(npts)
double p r e c i s i o n F1 , F2 , P1 , P2
double p r e c i s i o n aF , aaF1 , aaF2
double p r e c i s i o n v ,SUMF1,SUMF2,SUMP1,SUMP2

common /needed/ alpha , dt , beta , k , gamma
common /werk/ rwork

r p i =4.0d0∗atan (1 .)

r (3) = ydot (3) − 0 .0 d0
cc s p e c i a l treatment f o r second x :

r (6) = 0 .0 d0+ydot (3)−2.0 d0∗ydot (6)+ ydot (9)

C REALLOCATION OF SPATIAL GRIDPOINTS + MONITOR FUNCTION
C Use a l f a x as monitor func t i on :

65

C (f o r f i x e d g r id method s e t a l f a x =0.0d0)
a l f a x = 1 .0 d0

C Use a l f a x 2 as monitor func t i on :
C a l f a x = 0.50 d0 ∗(y (6)∗ abs (y(4)−y (1))
C > +(1.0d0−y (3∗ npts −3))∗ abs (y (3∗ npts−2))+ a l f a a 1 (y , npts)
C > +y (6)∗ abs (y(5)−y (2))
C > +(1.0d0−y (3∗ npts −3))∗ abs (y (3∗ npts−1))+ a l f a a 2 (y , npts))

taux = 0.001 d0
rkappax = 2 .0 d0
rmux = rkappax ∗(rkappax +1.0d0)
rohx = taux∗rmux
s i g x = taux ∗ (1 . 0 d0+2.0d0∗rmux)

cc gene ra l gr id−equat ions (” xdot ” !) :
do 312 i =9 ,3∗npts−6,3

dxim2x=y (i−3)−y (i −6)
dxim1x=y (i)−y (i −3)
dxix=y (i +3)−y (i)
dxip1x=y (i +6)−y (i +3)
duim11x=y (i−2)−y (i −5)
duix1=y (i +1)−y (i −2)
duim12x=y (i−1)−y (i −4)
duix2=y (i +2)−y (i −1)

C i f use a l f a x as monitor func t i on then a l s o t h i s i s needed :
emim1x=s q r t (1 . 0 d0+a l f a x ∗ ((((duim11x+duim12x) /2 . 0 d0)/ dxim1x)∗∗2))
emix=s q r t (1 . 0 d0+a l f a x ∗ ((((duix1+duix2) / 2 . 0 d0)/ dxix)∗∗2))

C i f use a l f a x 2 as monitor func t i on then a l s o t h i s i s needed :
C emim1x=a l f a x+abs (y (i−2)−y (i −5))+abs (y (i−1)−y (i −4))
C emix=a l f a x+abs (y (i +1)−y (i −2))+abs (y (i +2)−y (i −1))

a1x=rohx /(emim1x∗dxim2x ∗∗2)
a2x=rohx /(emix∗dxim1x ∗∗2)
a3x=rohx /(emim1x∗dxix ∗∗2)

c NB a4=a2
a5x=rohx /(emix∗dxip1x ∗∗2)
b1x=s i g x /(emim1x∗dxim1x ∗∗2)
b2x=s i g x /(emix∗dxix ∗∗2)
ens l im1x=−rmux/ dxix +(1.0 d0+2.0d0∗rmux)/ dxim1x−rmux/dxim2x
e n s l i x=−rmux/ dxip1x +(1.0 d0+2.0d0∗rmux)/ dxix−rmux/dxim1x

312 r (i)= e n s l i x /emix−ens l im1x /emim1x+a1x∗ydot (i−6)−
> (a2x+b1x+a1x)∗ ydot (i −3)+(a3x+b1x+b2x+a2x)∗ ydot (i)−
> (a3x+b2x+a5x)∗ ydot (i +3)+a5x∗ydot (i +6)

∗ 312 r (i)=ydot (i)−0.0d0

cc s p e c i a l treatment f o r lastminusone x :
r (3∗ npts−3) = 0 .0 d0+ydot (3∗ npts−6)−2.0d0∗ydot (3∗ npts−3)+

> ydot (3∗ npts)
r (3∗ npts) = ydot (3∗ npts) − 0 .0 d0

C PRINT ∗ , ’ x (i) f o r new time g r i d p o i n t are ca l cu l a t ed ’
C PRINT ∗ , y

do i =2, npts
i f (y (3∗ i) . l t . 0 . 0 d0) then
PRINT ∗ , ’ x (’ , i , ’)= ’ , y (3∗ i)

C Pause
e n d i f
enddo
do i =1,npts−1

66

i f (y (3∗ i) . gt . 1 . 0 d0) then
PRINT ∗ , ’ x (’ , i , ’)= ’ , y (3∗ i)

C Pause
e n d i f
enddo

dx(1)=y (6)
do i =2,npts−2
dx (i)=y(3∗ i +3)−y (3∗ i)
enddo
dx (npts−1)=1.0d0−y (3∗ npts−3)

C PRINT ∗ , ’ dx (i) s f o r new time g r i d p o i n t are ca l cu l a t ed ’
C PRINT ∗ , dx

a1 =0.50d0
a2 =0.50d0
e1 =1.0d0 /(10 . 0 d0 ∗∗5 .0 d0)
e2 =1.0d0 /(10 . 0 d0 ∗∗5 .0 d0)
e=min (e1 , e2)
open (un i t =50, f i l e =’ a l f a 1 . dat ’)
wr i t e (50 ,∗) a1
c l o s e (un i t =50)
open (un i t =51, f i l e =’ a l f a 2 . dat ’)
wr i t e (51 ,∗) a2
c l o s e (un i t =51)
open (un i t =52, f i l e =’ e p s i l o n 1 . dat ’)
wr i t e (52 ,∗) e1
c l o s e (un i t =52)
open (un i t =53, f i l e =’ e p s i l o n 2 . dat ’)
wr i t e (53 ,∗) e2
c l o s e (un i t =53)

do j =1, npts
F1(j)=0.0 d0
F2(j)=0.0 d0
enddo
F1(1)=1.0 d0
F2(1)=1.0 d0
F1(npts)=0.0 d0
F2(npts)=0.0 d0

do 994 , j =2,npts−1
CCC Ca l cu la t i on o f g r i d p o i n t s z in [xk , xs]

z =1.0d0−y (3∗ j)
mm=1

999 i f (z . gt . y (3∗mm)) then
mm=mm+1
goto 999
e n d i f
s=mm
kkk=mm−1

C PRINT ∗ , ’ z = ’ , z , ’ s = ’ , s , ’ kkk= ’ ,kkk , ’ y (3∗kkk)= ’ ,
C > y (3∗kkk) , ’ y (3∗ s)= ’ , y (3∗ s)

CCC Ca l cu la t i on o f va lue s F1 and F2 :

67

i f (z . eq . y (3∗ s)) then
C PRINT ∗ , ’ z=y (3∗ s) ’

F1(j)=0.50 d0 ∗(dx (1)∗ y(2)+dx (s−1)∗y (3∗ s−1)
> +SUMF1(y , s , dx , npts))

F2(j)=0.50 d0 ∗(dx (1)∗ y(1)+dx (s−1)∗y (3∗ s−2)
> +SUMF2(y , s , dx , npts))

e l s e
i f (kkk . eq . 1) then

C PRINT ∗ , ’ z i s in (y (3∗kkk) , y (3∗ s)) ’
aF=((z−0.0d0)∗ (z−0.0d0)) / (2 . 0 d0∗dx (kkk))
aaF1=(z−0.0d0)∗y (3∗kkk−1)+aF∗(y (3∗ s−1)−y (3∗kkk−1))
aaF2=(z−0.0d0)∗y (3∗kkk−2)+aF∗(y (3∗ s−2)−y (3∗kkk−2))
F1(j)=aaF1
F2(j)=aaF2
e l s e

C PRINT ∗ , ’ z i s in (y (3∗kkk) , y (3∗ s)) ’
aF=((z−y (3∗kkk))∗ (z−y (3∗kkk))) / (2 . 0 d0∗dx (kkk))
aaF1=(z−y (3∗kkk))∗ y (3∗kkk−1)+aF∗(y (3∗ s−1)−y (3∗kkk−1))
aaF2=(z−y (3∗kkk))∗ y (3∗kkk−2)+aF∗(y (3∗ s−2)−y (3∗kkk−2))
F1(j)=0.50 d0 ∗(dx (1)∗ y(2)+dx (kkk−1)∗y (3∗kkk−1)

> +SUMF1(y , kkk , dx , npts))+aaF1
F2(j)=0.50 d0 ∗(dx (1)∗ y(1)+dx (kkk−1)∗y (3∗kkk−2)

> +SUMF2(y , kkk , dx , npts))+aaF2
e n d i f
e n d i f

994 cont inue

C PRINT ∗ , ’ F1 and F2 f o r new time g r i d p o i n t are ca l cu l a t ed ’
C PRINT ∗ , ’F1 ’ , F1
C PRINT ∗ , ’F2 ’ , F2

CCC Ca l cu la t i on o f va lue s P1 and P2 :
P1=0.50d0 ∗(dx (1)∗ y (1)∗ v (y (3) , a1)∗F1 (1)

> +dx (npts−1)∗y (3∗ npts−2)∗v (y (3∗ npts) , a1)∗F1(npts)
> +SUMP1(y , dx , F1 , npts , a1))

P2=0.50d0 ∗(dx (1)∗ y (2)∗ v (y (3) , a2)∗F2 (1)
> +dx (npts−1)∗y (3∗ npts−1)∗v (y (3∗ npts) , a2)∗F2(npts)
> +SUMP2(y , dx , F2 , npts , a2))

C PRINT ∗ , ’P1 and P2 f o r new time g r i d p o i n t are ca l cu l a t ed ’ , P1 , P2

do 300 , i =2,npts−1
CCC Ca l cu la t i on o f va lue s u1xx and u2xx and more :

ux1=(y (3∗ i +1)−y (3∗ i −5))/(y (3∗ i +3)−y (3∗ i −3))
a l f a 1 1=dx (i)+dx (i −1)
beta11=dx (i −1)∗y (3∗ i +1)−a l f a 1 1 ∗y (3∗ i−2)+dx (i)∗y (3∗ i −5)
gamma11=dx (i)∗dx (i −1)∗(dx (i)+dx (i −1))
utwo1=2∗(beta11 /gamma11)

ux2=(y (3∗ i +2)−y (3∗ i −4))/(y (3∗ i +3)−y (3∗ i −3))
a l f a 1 2=dx (i)+dx (i −1)
beta12=dx (i −1)∗y (3∗ i +2)−a l f a 1 2 ∗y (3∗ i−1)+dx (i)∗y (3∗ i −4)
gamma12=dx (i)∗dx (i −1)∗(dx (i)+dx (i −1))
utwo2=2∗(beta12 /gamma12)

r (3∗ i−2)=ydot (3∗ i−2)−ux1∗ydot (3∗ i)−(e1/e)∗utwo1
> −(1.0d0/e)∗y (3∗ i −2)∗(v (y (3∗ i) , a1)∗F1(i)−P1)

68

r (3∗ i−1)=ydot (3∗ i−1)−ux2∗ydot (3∗ i)−(e2/e)∗utwo2
> −(1.0d0/e)∗y (3∗ i −1)∗(v (y (3∗ i) , a2)∗F2(i)−P2)

300 cont inue

CC hom . D i r i . /Neum . :
r (1) = y (1) − 0 .0 d0
r (2) = y (2) − 0 .0 d0

CC hom . D i r i . /Neum . :
r (3∗ npts−2) = y (3∗ npts−2) − 0 .0 d0
r (3∗ npts−1) = y (3∗ npts−1) − 0 .0 d0

C PRINT ∗ , ’ r (i) f o r new time g r i d p o i n t are ca l cu l a t ed ’

r e turn
end

69

