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Abstract

With the uprising climate problems like the warming due to greenhouse gasses, the need for future
climate scenarios is growing fast. Many state of the art climate models exist, but they are imperfect and
give a large variaty of future scenarios. In this thesis we try to find a way to improve the predictions
of climate models by combining them. Multiple imperfect models will exchange information during the
simulations and are combined into a super-model. The idea is not only that the imperfect models can use
each others strengths, but also that synchronization between the models can occur, such that a mutual
prediction results. The objective is to find a way to let models exchange information such that the
resulting super-model gives a better prediction than any of the separate imperfect models. A learning
process is developed to objectively determine the exchange of information between the models. The
approach is tested on small chaotic dynamical systems that have similar properties as the atmosphere.
The system with standard parameter values is regarded as truth and three imperfect models are created
by perturbing these parameter values. By using the small chaotic dynamical systems we can use the
information of the truth to see how well the approach works.
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Chapter 1

Introduction

Our planet is warming due to the concentration of greenhouse gasses in the atmosphere. How much
it will warm and the effect it will have on the total climate system can only be predicted by models.
Although several good climate models have been developed, the models are not able to simulate the
historical climate exactly. The quality of the different climate models can be assessed by comparing
simulations over a historical period with the observations over that period. An example of historical
values can be seen in figure 1.1, which shows the mean error in the annual mean air surface temperature
between 1980 and 1999 [IPCC, 2007]. The figure is taken from the Fourth Assessment report of the
Intergovernmental Panel on Climate Change, a panel consisting of scientists that periodically report on
the scientific consensus regarding climate change. Error are typically 1 to 3◦C, but regionally can be as
large as 4 to 5◦C.

Another problem is that the climate models do not agree on the respons of the climate system to the
future scenarios of greenhouse gas emissions, which can be seen in figure 1.2, which was also taken from
the IPCC Fourth Assessment report. Here the temperature and precipitation change are shown in re-
spons to three different future scenarios: one with strong emissions of greenhouse gasses (upper panel),
one with moderate emissions (middle panel) and one where emissions of greenhouse gasses are reduced
immediately (lower panel) [Nakicenovic, 2000]. Man different models have calculated the respons to
these scenarions and from figure 1.2 it can be seen that the spread is very large. This shows how difficult
it is to make a prediction based on these models. As all models have some piece of information about
the truth, but none of them captures the whole truth, it is hard to decide which model is closest to the
truth. A solution to this problem is combining the different climate models to find one future prediction.
At the moment the different outcomes of climate models are already combined by taking a weighted
average [Tebaldi and Knutti, 2007], but in this way the models are combined afterwards and the models
cannot benefit from the strengths of the other models. Moreover it is not clear how the weights should
be determined.

We think that this can be improved by letting the models exchange information during the simulations
and combining them into a super-model. In this way the models can use each others strengths. The
objective is to find a combination of models for which the prediction of the truth outperforms the
prediction made by any of the separate models. We want to find this combination by using a learning
process that makes use of information of the truth to ensure an objective combination.

1.1 Supporting research

The basis of this approach is synchronization of chaotic systems. Chaotic systems can synchronize with
each other when linked through one common signal [Pecora and Carroll, 1990]. If we let the models
exchange information it is possible that they synchronize to each other. This would lead to a mutual
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1.1. Supporting research

Figure 1.1: Observed climatological annual mean sea surface temperature (SST) and, over land, surface
air temperature (labelled contours). The colours indicate the multi-model mean error in these temper-
atures, simulated minus observed. This is figure 8.2 (a) in the Fourth Assessment report of the IPCC
[IPCC, 2007].

Figure 1.2: Time series of globally averaged surface warming (surface air temperature change, ◦C) (left)
and precipitation change (%) (right) from the various global coupled models for the scenarios A2 (top),
A1B (middle) and B1 (bottom) [Nakicenovic, 2000]. Numbers in parentheses following the scenario
name represent the number of simulations shown. Values are annual means, relative to the 1980 to 1999
average from the corresponding 20th-century simulations, with any linear trends in the corresponding
control run simulations removed. Multi-model (ensemble) mean series are marked with black dots. This
is figure 10.5 from the Fourth Assessment report of the IPCC [IPCC, 2007].
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1. Introduction

prediction. The hope is that the synchronized state is closer to the truth, which would improve the pre-
dictions. Synchronization has already been applied in data assimilation [Yang et al., 2006]. Throughout
the world measurements are performed, but the measurements are not spread over the whole world and
are irregular in time. Some areas lack measurements like the oceans. Data assimilation fills these gaps
by combining measurements and models, such that the models synchronize with the measurements and
a full estimate of the atmospheric state is obtained.

Exchanging information between multiple atmospheric models has been done before by for instance
Kirtman and Shukla [Kirtman et al., 2003]. They coupled an ocean model to two atmospheric models.
One of the models provided the heat flux and the other the momentum flux to the ocean model. It
turned out that the predictions for a certain combination of these models were better for the coupled
model than for each of the models separately. This supports the idea that by exchanging information
during simulations can lead to an improved prediction.

1.2 Goal

The main goal of this thesis is to find a way of exchanging information between existing imperfect
climate models and combining them into a super-model that outperforms the individual models. A
learning proces will be developed and used to determine the exchange of information using observational
data. The approach is tested on certain small chaotic dynamical system that have similar properties as
the atmosphere. To test the quality of the resulting super-models measures will be introduced that can
give an indication of how well the super-model approximates the truth for longer periods of time.

1.3 Outline

First we will introduce the different small chaotic dynamical systems that are used to test our approach
in section 2. Then the method of letting models exchange information and the learning process are
explained in detail in chapter 3. In chapter 4 we will explain how to choose certain parameters that
are used in the learning process. To compare the quality of the super-model solutions some measures
will be introduced in chapter 5. These first four chapters will give some background information on the
article written for Earth System Dynamics [van den Berge et al., 2010] (chapter 6), that contains a much
shorter description of the approach and the main results of this thesis. Variations of the approach are
discussed in chapter 7 and some more results can be found in chapter 8. The discussions and conclusions
can be found in chapter 9 and section 6.5 respectively.
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Chapter 2

Dynamical systems

To illustrate and develop the super-modelling approach we make use of small chaotic dynamical systems.
In this thesis a dynamical system is taken to be the solution of an initial value problem as in equation
(2.1), where x ∈ R

3 is dependent on time t and f : R3 × R+ 7→ R
3 is a (non linear) function depending

on parameters α. x(t0) = x0 gives the initial condition that determines the solution [Verhulst, 2000].

~̇x = fα(~x, t), ~x(t0) = ~x0 (2.1)

The dynamical systems that are used to test the approach are all chaotic. This means that the solution
of the system is sensitively dependent on the initial conditions. Starting two solutions from two slightly
different initial conditions will cause the solutions to deviate and at some time the solutions will be
totally different. As climate models are also chaotic [Lorenz, 1984], this was an important property for
our test systems. The approach was tested on three chaotic dynamical systems, namely the Lorenz 63,
Rössler and Lorenz 84 systems that we will introduce in this section.

2.1 Lorenz 63

The Lorenz 63 system was proposed by Edward Lorenz in 1963 [Lorenz, 1963] and is given by equations
(2.2). The equations were obtained from a fluid dynamics model of the atmosphere by a Galerkin ap-
proximation, which is a very crude simplification. The Lorenz 63 system has no physical meaning left,
but is very well known because Lorenz analyzed this particular system in his article on deterministic
chaos. It is used for the most extensive testing in this study. The standard parameter values of the
Lorenz 63 system are σ = 10, ρ = 28 and β = 8

3 .

ẋ = σ(y − x)

ẏ = x(ρ − z)− y (2.2)

ż = xy − βz

The Lorenz 63 system has been studied a lot and one of the advantages is that a bifurcation analysis can
be done analytically [Doedel et al., 2006]. Bifurcation theory studies the behaviour of systems depend-
ing on values of the parameters. Changing the value of one of the parameters of the system results in
different behaviour, for instance from a fixed point to a periodic orbit [Verhulst, 2000]. In our approach
we will make use of the bifurcation theory that is known for the Lorenz 63 system. One of the features

we will be using is a subcritical Hopf bifurcation at ρH = σ(3+σ+β)
σ−β−1 as a boundary between different sorts

of behaviour. At a subcritical Hopf bifurcation two unstable periodic solution corresponding to the two
stable fixed points exist for ρ < ρH , which vanish at ρ = ρH . For ρ > ρH the two unstable fixed points
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2. Dynamical systems
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Figure 2.1: Two points of view of the Lorenz 63 attractor.

appear and a chaotic attractor arises, which is shown in figure 2.1 for the standard parameter values.
An attractor is a bounded set that attracts all solutions within its domain of attraction. This means
that any solution started from a random initial condition in its domain of attraction approaches this set
arbitrarily close.

The Lorenz 63 attractor is also called butterfly because of its shape with two ‘wings’. Each wing contains
an unstable fixed point in the middle around which the solution circles. A solution can circle around
one of the unstable fixed points for a long period before it makes a transition to the other wing. This
aperiodic behaviour is one of the main reasons that the Lorenz 63 system is so chaotic and it decreases
the predictability of the system.

2.2 Rössler

The Rössler equations were proposed by O.E. Rössler in [Rössler, 1976] to be a simplification of the
Lorenz 63 system. The attractor of the Rössler system has only one wing instead of the two wings of the
Lorenz 63 attractor. The equations are given in (2.4), where the standard parameter values are a = 0.2,
b = 0.2 and c = 5.7.

ẋ = −(y + z)

ẏ = x+ ay (2.3)

ż = b+ z(x− c)

In figure 2.2, the attractor of the Rössler system is shown with indeed only one circle instead of the two
wings visible in the Lorenz 63 system. The lack of the second wing makes this system less chaotic as the
transitions from one wing to another were one of the reasons for the very chaotic nature of the Lorenz 63
system. On the other hand the Rössler system has a very rich bifurcation diagram [Barrio et al., 2009]
and is therefore still a good test case for the approach.

2.3 Lorenz 84

The Lorenz 84 model was also proposed by E.N. Lorenz in 1984 [Lorenz, 1984] and is given by the
equations (2.4). This system has a physical meaning as x represents the intensity of the globe-encircling
westerly wind current and y and z represent a travelling large-scale wave that interacts with the westerly
wind. The standard parameter values are a = 1

4 , b = 4, F = 8 and G = 1, which gives the model
unstable chaotic behaviour corresponding to a winter [van Veen, 2002].
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2.3. Lorenz 84
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ẋ = −y2 − z2 − ax+ aF

ẏ = xy − bxz − y +G (2.4)

ż = bxy + xz − z

The attractor of the Lorenz 84 system is shown in figure 2.3. The waves spiral in the y-z plane, but move
parallel to the x axis from negative to positive values of x in the inner part of the attractor and back
again along the outside. The attractor is more complicated than the Lorenz 63 and Rössler attractors
and also has a chaotic nature, making it a good testcase for the approach too.
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Chapter 3

Method

The objective of the approach is to find a way to let imperfect models exchange information and combine
them into a super-model, such that the solution for the super model is a better approximation of the
truth than each of the imperfect models on their own. To study whether it is possible to do this we test
the approach on the small chaotic dynamical systems introduced in section 2, for which we create a truth
and imperfect models that predict it. The advantage of this is that we can calculate all information of
the truth. When applying this approach to larger climate models the information of the truth (reality)
will exist of measurements and will therefore not be as complete. The measurements are not available
everywhere and a good spread only exists for the last 50 years. Other advantages are that the attractor
of the systems can be plotted and calculations take only a short time with respect to real climate models.

In this test we have all information about the truth, so we will use this to see how good the approach
is. In the learning process we do need a small amount of information about the truth as there is no
other way to train the super-model. More about the quality of the super-model solutions can be found
in chapter 5, where the measures of quality of a resulting solution will be introduced.

In this chapter we will discuss how to let the imperfect models exchange information during simulations
and we will address the learning process that is used to determine the information exchange.

3.1 Creating truth and imperfect models

For the small chaotic dynamical systems we first need to create a truth and imperfect models that can
predict it. The truth is taken to be the dynamical system with the standard parameter values α (equation
(3.1)). The imperfect models, indexed by k, have the same equations as the truth and only differ in the
parameter values αk (equation (3.2)). These parameter values are perturbed to get different behaviour
for the imperfect models, but still the imperfect models contain information about the truth. We have
chosen to use three imperfect models throughout this thesis, but different numbers of imperfect models
can be used as well.

~̇x = fα(~x, t) (3.1)

~̇xk = fαk
(~xk, t) k = 1, 2, 3 (3.2)

3.2 Connecting imperfect models

Next the imperfect models need to exchange information during the simulations. This is done by adding
a nudging term to the equations of each of the models connecting it to the other two. For the Lorenz
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3.2. Connecting imperfect models
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Figure 3.1: The four situations that can occur with model a being closer to the truth than model b.

63 system the equations for model k are shown in equation (3.3). The nudging term is a linear term
consisting of the difference between two models (xj − xk) and a connection constant Ckj for each of
the variables and is added for both other imperfect models such that each model is connected to the
other two models. The larger the connection constant the more the nudging pulls model k to model j
in a certain variable. The connection coefficients will be determined by the learning process to get an
objective way of choosing them.

ẋk = σk(yk − xk) +
∑

j 6=k

Cx
kj(xj − xk)

ẏk = xk(ρk − zk)− yk +
∑

j 6=k

C
y
kj(yj − yk) (3.3)

żk = xkyk − βkzk +
∑

j 6=k

Cz
kj(zj − zk)

The connection coefficients should be chosen such that models that are far away from the truth are
pulled closer by the models that are already closer to the truth itselves. On the other hand the bad
models should not attract the good models, so these connection coefficients should be small. The sign of
the connection coefficients might be just as important. Taking a negative sign of a connection constant
means that we repel the solution of a model from the other model instead of attracting it. For this
reason we choose to keep the connection coefficients positive. The next illustration is used to motivate
this choice.

Assume that we have two models, a and b that are connected to each oter and let’s focus on the x

variable only. For some point in time we have that xa = x+ ǫa and xb = x+ ǫb, where x represents the
truth and the ǫi can be both positive or negative. Now assume that |ǫb| > |ǫa|, implying that xa is closer
to the truth than xb. There are four situations that agree with this, which can be found in figure 3.1.
Now we will show what happens with positive and negative connection coefficients in all four situations.
In all situations it is positive to attract model b to model a, as model a is closer to the truth. It is
different for model a. In situations 1 and 2 model a should not be attracted to model b as this would

11



3. Method

Positive connection Negative connection
Model a Model b Model a Model b

1 − + + −
2 − + + −
3 + + − −
4 + + − −

Table 3.1: For each of the four situations shown in figure 3.1 it is shown what the effect is of a positive
and a negative connection constant. A (possibly) positive effect is indicated with a + and a negative
effect with a −.

repel the model from the truth for sure. Therefore repelling model a from model b might have a positive
effect, though only if the repulsion is not too strong. For situations 3 and 4 attracting model a to model
b can have a positive effect if the attraction is not too strong as it is posible that model a will come
closer to the truth than before. Repelling model a from model b would cause model a to deviate more
from the truth and would therefore not be desirable.

In table 3.1 the results are summarized, where a + indicates a (possibly) positive effect and − a negative
effect. Most plusses can be found for the positive connection and for model b, a lower quality model,
negative connections would have a negative effect in all situations. This supports the choice for positive
connection coefficients. We can argue that the learning process will choose the best strategy and will
therefore keep the connection coefficients positive anyway. However the learning process sometimes led
to negative connection coefficients. Since we do not want this to happen we will force the connection
coefficients to be positive. In addition we prefer the connection coefficients to be positive, since we want
the models to synchronize, which is less likely to happen if the models repel each other in one or several
variables.

This whole reasoning holds for a certain moment in time, but how the connection coefficients influence
the asymptotic behaviour of the connected super-model cannot be deduced on the basis of this reason-
ing. In effect connecting the models together creates a new dynamical system, that can have a very rich
bifurcation structure depending on the connection coefficients.

Keeping the connection coefficients positive can be achieved in several ways. One of these ways is not
to use the simple nudging terms, but to change equations (3.3) to equations (3.4), where the exponents
of the connection coefficients are taken, such that the nudging terms will be positive at all times. When
using this approach we found that the solution sometimes tended to infinity, causing the method to break
down, which will be further discussed in section 7. The method that is currently used is to do penalize
negative connection coefficients in the cost function, that is introduced in the learning process. More
about this can be found in section 3.4.

ẋk = σk(yk − xk) +
∑

j 6=k

exp(C1
kj)(xj − xk)

ẏk = xk(ρk − zk)− yk +
∑

j 6=k

exp(C2
kj)(yj − yk) (3.4)

żk = xkyk − βkzk +
∑

j 6=k

exp(C3
kj)(zj − zk)
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3.3. Super-model

3.3 Super-model

At this point we still have three equations for each of the three imperfect models. The imperfect models
will therefore be combined in one super-model by taking a simple mean for each of the variables, as shown
in equation (3.5), where the subscript s indicates the super-model and 1, 2 and 3 the three imperfect
models.

xs =
1

3
(x1 + x2 + x3)

ys =
1

3
(y1 + y2 + y3) (3.5)

zs =
1

3
(z1 + z2 + z3)

The super-model could also be chosen to be determined by a weighted average as shown in equation
(3.6). In that case the weights w1, w2 and w3 could be determined by the learning process as well. In
this study we take the weights equal to 1.

xs =
1

3
(w1x1 + w2x2 + w3x3)

ys =
1

3
(w1y1 + w2y2 + w3y3) (3.6)

zs =
1

3
(w1z1 + w2z2 + w3z3)

3.4 Cost function

The objective of the learning process is to find the connection coefficients that make the super-model a
good approximation of the truth on longer time scales, but as chaos plays such a large role in the small
dynamical systems and in the climate models, it needs to be taken into account in our learning process.
We have chosen to define a cost function that is a measure of the proximity of the super-model to the
truth. For climate prediction it is important to have good predictions for longer time scales, but chaos
ensures that the solutions will deviate more and more if we take longer periods of time. This means
that the cost function would be dominated by chaos instead of by the model errors, which we want to
measure. Therefore shorter trajectories of ∆ time units are taken to compare truth and super-model.

The systems we use are strongly dependent on the initial conditions. Therefore it is important that
the super-model is not trained on just one initial condition, but on multiple. Therefore the difference
between super-model and truth is measured for multiple initial conditions ti. The situation is depicted
in figure 3.2, where the grey areas are the areas that we want to minimize using the cost function.

The cost function F can be found in equation (3.7), where ~xo is (the observed state of) the truth and
~xs refers to the super-models. For each of the K initial conditions ti the difference is integrated for ∆
time units. The term 1

K∆ is a normalisation term.

F (~C) =
1

K∆

K
∑

i=1

∫ ti+∆

ti

(~xs(C, t)− ~x(t))2γtdt (3.7)

The only new term is γ that was also chosen to make sure that chaos does not dominate the cost function.
γ is chosen between 0 and 1 such that the difference between truth and super-model at later time steps
will be taken less into account than the difference in the beginning. How γ, ∆ and K are chosen is
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Figure 3.2: The situation for the learning process, where for short trajectories of ∆ time units and for
multiple initial conditions ti the difference between truth and super-model is calculated.

discussed in chapter 4.

As mentioned before we keep the connection coefficients positive by manually making negative connection
coefficients less appealing. This is done by adding an extra term to the cost function when (one of) the
connection coefficients become negative. The extra term is the absolute value of the negative connection
constant |Cx

kj |. This term is generally much larger than the values of the cost function, forcing the
minimization method to use positive connection coefficients.

3.5 Minimization methods

By minimizing the cost function introduced in the previous section we determine all 18 connection
coefficients (6 for each model). This learning process needs to be executed only once after which the
connection coefficients will not change anymore. By taking the connection coefficients to be positive this
space has been bounded from below, but is still very large. There are different minimization methods that
can be used. Two of the minimization methods that were used in this approach are the Fletcher-Reeves
conjugate gradient method and the amoeba or simplex method.

3.5.1 Conjugate gradients minimization

The Fletcher-Reeves conjugate gradient minimization starts from an initial guess and searches for a
minimum in the direction of the gradient at the initial guess [Fletcher and Reeves, 1963]. The slope is
followed downwards until an interval is found that contains a minimum. After that the exact minimum
is calculated. This minimization technique searches for a minimum of the cost function F by searching
for a new set of connection coefficients of the shape ~C + a∇F , where a is a scalar. The disadvantage of
searching only in the direction of steepest descent is that the method could fall into a local minimum
preceding a more global minimum as in figure 3.3.

14



3.5. Minimization methods

Figure 3.3: The conjugate gradients method may not succeed in finding a more global minimum of the
cost function.

3.5.2 Adding initial conditions

To find a more global minimum we minimize the cost function for an increasing number of initial condi-
tions. In this way the minimization is applied to multiple different initial conditions as well, but gradually.
This method of adding multiple initial conditions can be compared to simulated annealing [Cerny, 1985],
which is a flexible method for finding an approximate minimum. The idea behind simulated annealing
is to use thermodynamics for the optimization. Cooling a system means that the system will try to find
an equilibrium with lower energy. The idea is that cooling a system fast will give a larger chance of
staying in a local minimum of energy. If the system is cooled slowly, also called annealing the system,
the system will be able to find global minima.

The approach of adding initial conditions is similar to simulated annealing in the sense that with fewer
initial conditions the cost function contains fewer local minima, a situation that can be compared with
the initial phase of the simulated annealing method, where the large perturbations effectively smooth
the cost function. Increasing the number of initial conditions and starting the minimization from the
value of the minimum in the cost function found for fewer initial conditions enhances the probability of
finding a global minimum.

3.5.3 Amoeba minimization

In addition to using a method that only approaches minima from one side, we also used the amoeba or
simplex method [Nelder and Mead, 1965] that explores the landscape of the cost function to find a global
minimum. The amoeba is a little animal with N +1 feet that can feel the temperature (the value of the
cost function) in an N dimensional space to find a cool spot (minimum).

The amoeba effectively uses only three of its legs: the one where the function has the highest value (P ),
the second highest value (Q) and the lowest value (R). Its basic moves are expansion, reflection and
contraction as shown in figure 3.4 for N = 2, such that the amoeba has only three feet. The first step
is to reflect away from P as shown in figure 3.4(a). The reflected foot will be denoted by Pref . After
that the moves are determined on the situation that arises. If Pref has a smaller value than the coolest
foot R, then expansion is used as shown in figure 3.4(b). If Pref is still higher than Q, then we contract
away from it as shown in figure 3.4(c). If this move decreases the value Pref , then we determine which
feet at this point are the highest, second highest or lowest and start with reflecting a foot again. If
Pref increases or doesn’t change we first try the other contraction method as in figure 3.4(d), before
determining P , Q and R again. An example can be found in figure 3.5.

The advantage of using this method is that we can use it to find a more global minimum. Still it is
necessary to repeat the method a couple of times to let it converge and it seems that the minima are still
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high

(a) Reflection away from a high point

Low

(b) Expansion beyond a low point

high

(c) 1-dimensional contraction away
from high point

Low

(d) N-dimensional contraction to-
ward low point

Figure 3.4: The basic moves of the amoeba minimization in N = 2 dimensions.

(a) Reflection away from a high point (b) N-dimensional contraction toward low
point

(c) Reflection away from a high point

Figure 3.5: An example of finding a minimum with the amoeba method for N = 2. Darker colors indicate
a lower value of the function. P indicates the foot of the amoeba on the highest value, Q on the second
highest and R the one on the lowest value.
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3.5. Minimization methods

dependent on the initial conditions. Therefore the minimization method can still be improved by using
another minimization method.
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Chapter 4

Determining parameters

The cost function (equation (3.7)) that is used to determine the connection coefficients is not only depen-
dent on the connection coefficients. The cost function also depends on the choice of several parameters,
such as γ, ∆ and the set of initial conditions used. In this section we will motivate the choices we made
for the parameters. In chapter 8 some attention will be paid to the influence of the parameters on the
learning process.

4.1 Determining γ

As explained in section 3.4, γ is a constant between 0 and 1, such that in the cost function the dif-
ference between truth and model will be given less weight at later time steps. γ is chosen to prevent
that chaos dominates the cost function, such that the value of the cost function is determined mainly
by the quality of the super-model. The choice for γ should therefore depend on how chaotic the system is.

A measure of how chaotic a system is is the number of time steps in which errors double. This doubling
time T can be calculated by starting a perfect model from a slightly perturbed initial condition and
measuring at which time step this initial error is doubled. Repeating this for many different perturbed
initial conditions gives an average number of time steps for doubling errors. This information was used
in chaper 6 to find a value for γ by just prescribing a certain value (12 ) for γ

T , but the doubling time can
also be used to determine the fraction of chaos present in different time steps. γ can then be chosen to
be the fraction of the error that is not due to chaos.

To calculate the fraction of chaos present in the system, we will find an expression for the total error
growth and the error growth due to chaos in every time step. We know that the error growth due to
chaos is dependent on the previous errors. The doubling time T can be used to make up an expression
for the error growth due to chaos. For a perfect model error growth is purely due to chaos and is given by
equation (4.1), where fi is the initial error. At each multiple of the doubling time T the error is doubled,
resulting in the factor 2t/T , but as the initial error is not due to chaos we subtract it from the factor 2t/T .

fc(t) = (2t/T − 1)fi (4.1)

For an imperfect model there is also error growth due to flaws in the model. This means that the error
at each time step consists of a modelling error and an error due to chaos. For simplicity we take an
average modelling error fM in each time step, which results in equation (4.2).

fm(t) = tfM (4.2)
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4.1. Determining γ

Figure 4.1: Growth of errors due to flaws in the model fM and chaos fc.

The appearance of the modelling errors makes the error due to chaos not only dependent on the initial
error but also on the errors that arise during the other time steps. The situation can be found in figure
4.1, where the truth and the model are started from the same initial condition. At each time step a copy
of the truth can be used to find the error due to chaos, but this is just an imaginary experiment as we
can use equation (4.1) to find the size of the errors due to chaos.
We know from equation (4.1) that errors due to chaos grow with a factor of 21/T in each time step. So
let’s see what happens if we introduce a new error in each time step. Let E be the total error depending
on the number of time steps. The first error is a modelling error in time step 1. Going to the next step
we get an error due to chaos with initial error fM , so that will be (21/T − 1)fM . We also get a new
modelling error.

The third step is where it gets more interesting. Here we get two new errors due to chaos. The first one
is due to the first modelling error and the second due to the modelling error arising in time step 2. This
second error will produce the same term as we had in the equation for E(2), the other is just the next
error as in equation (4.1). In each step an extra term is added, resulting in equation (4.3) for n time
steps.

E(0) = 0

E(1) = fM

E(2) = 2fM + (21/T − 1)fM

E(3) = 3fM + (21/T − 1)fM + (22/T − 1)fM

· · ·

E(n) = nfM +
n−1
∑

i=1

(2i/T − 1)fM (4.3)
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Figure 4.2: γnh from equation (4.4) for each of the three small dynamical systems, compared to the value
of 0.005nh.

This gives us a formula for the total error and we also have the formula for the modelling error and the
error due to chaos. This results in the following equation for γnh, which is just the fraction of the error
that is due to modelling errors at time step n. h is the size of the time steps.

γnh =
nfM

nfM +
∑n−1

i=1 (2
i/T − 1)fM

=
n

n+
∑n−1

i=1 (2
i/T − 1)

(4.4)

The problem of this expression is however that the chaos grows so fast that the resulting γ is so small,
that learning process is limited to the first three time steps, which is not reasonable. This can be seen
in figure 4.2, where the γnh is plotted for the three different systems, along with the line belonging to
0.005nh (so γ = 0.005). The line for γ = 0.005 is close to the γnh for the Rössler system, but still
not steep enough for both Lorenz systems. The zoom in figure 4.1 shows even more clearly that these
calculations lead to values of γ that are too small, such that too little information is taken into account.
This was the reason that this calculation was not used in finding a value for γ.

4.2 Determining ∆

As mentioned in section 3.4, ∆ must be chosen in accordance with γ. It makes no sense to choose a small
γ and a large ∆ as γt will be (close to) zero long before the ∆ time steps are reached. However, it can
make a difference to choose ∆ small if γ is large. In that case the difference between super-model and
truth is only taken into account almost fully for a relatively short time. In this way ∆ may have a lot
more influence on the cost function than γ has. Looking again at figure 4.2 it may not be such a bad idea
to choose ∆ small, but γ relatively large, because of the large steepness in the beginning of the curves.
In this approach γ is still taken rather large compared to figure 4.2 as it is a larger than the doubling
time for each of the systems (table 4.1), which are the values based on chaos. For Lorenz 84 this turned
out not to work as too little information was included in the cost function, such that the cost function
was very flat and no minima could be found. Therefore we chose ∆ = 800, which is in agreement with
the time scales present in the Lorenz 84 system (figure 8.7 shows that significant autocorrelation values
are still present at ∆ = 800 time steps). For the larger ∆ we also chose a larger γ of 0.8.
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4.3. Determining the initial condititons

Lorenz 63 Lorenz 84 Rössler
doubling time 0.75 1.08 6.67

∆ 1 2.2 12

Table 4.1: The number of time units in which an initial error doubles and the value of ∆ for each of the
three systems.
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Figure 4.3: The spread of the initial conditions used in the learning process for each of the three systems.

4.3 Determining the initial condititons

Attention needs to be paid to determining the set of initial conditions used. To make sure that the depen-
dence on these initial conditions is minimal the number and the distance between these initial conditions
has to be chosen. Important is that the number of initial conditons is large enough to have a minimal
dependence of the cost function on the initial conditions. The distance between initial conditions will
have to be such that the attractor of the system is covered. For the climate system this is of course not
known and all available observations will have to be used.

Plotting the cost function for different sets of initial conditions can indicate whether enough initial condi-
tions are used. If enough initial conditions are used the dependence on the set of initial conditions should
be small, implying that the cost function should look similar for a different set of initial conditions. This
was used in chapter 6 to show that enough initial conditions were used. We could even argue whether
too many initial conditions are used as the connection coefficients usually don’t change anymore after
we’ve minimized the cost function for about 50 to 100 initial conditions.

The spread of initial conditions can be seen in figure 4.3 for each of the three systems. The attractors
are clearly covered by the initial conditions, which indicates that the initial conditions are chosen well.
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Chapter 5

Measures

With the small dynamical systems that are used in this study, the solution of super-model and truth
can be compared to check how realistic a certain solution is. This is however not possible for larger
climate models for which this approach will be used eventually. Therefore some measures are introduced
from which the quality of the solution can be detemined, that are also applicable to larger climate models.

There are two different sorts of measures in meteorology: measures for weather predictions and measures
for climate predictions. For weather it is important that the prediction is close to the truth, but it can
only be close for a short time as chaos will cause the model to deviate from the truth. Therefore weather
measures determine the proximity of the model to the truth for shorter time scales. An example of
these measures is the cost function. Climate predictions are made for much longer times. For these time
scales it is impossible for the model to stay close to the truth due to error growth. Therefore climate
measures determine how similar the statistical behaviour of the model is to the truth. An example of
this is comparing the attractor for truth and model. As our approach will be used on climate models,
the second sort of measures will be used to determine the quality of the super-model.

5.1 Attractor

One of the simplest measures used is visually comparing the attractors of super-model and truth. If the
attractors (nearly) coincide this implies that the solutions for the long term are in the same regime. If
an attractor is different the behaviour is less similar and therefore the super-model has a lower quality.
For higher dimensional systems like climate models, a visual comparison of the attractor is impossible,
so we need a computational measure that characterizes the attractor as introduced in the next section.

5.2 Mean, standard deviation and covariance

The mean, standard deviation and covariance are statistical measures, that can be used on systems of
arbitrary size. They are therefore usable in larger systems too. The standard deviation σ (equation
(5.2)) will give the spread of the solution with respect to the mean µ (equation (5.1)). The covariance
(equation (5.3)) measures the linear dependency between the variables.

µ(x) =
1

n

n
∑

i=1

x(i) (5.1)

σ(x) =

√

√

√

√

1

n

n
∑

i=1

(x(i)− µ(x))2 (5.2)
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5.3. Autocorrelation

cov(x, y) =
1

n

n
∑

i=1

(x(i) − µ(x))(y(i) − µ(y)) (5.3)

As the mean, standard deviation and covariance are properties of an attractor, this again shows the
behaviour on large time scales. Not only for this reason, but also to get a lower error it is important
to calculate the values for a long period of time, 5.000 time units. An error indication is calculated by
repeating the experiment a large number of times (500), giving an average value, and measuring the
spread of with respect to this average by taking the standard deviation. The error estimation is equal
to twice the standard deviation, which gives the range in which approximately 95% of all outcomes are
situated if we assume a normal distribution. This error estimation can indicate that the errors are large,
in which case the comparison of the values can only be done roughly, but if it is small the comparison
can be more precise.

5.3 Autocorrelation

The autocorrelation is again a statistical measure, similar to the covariance. The autocorrelation is the
correlation between a function and the function itself at a later point in time. Therefore the autocor-
relation is a function of the difference between the two points in time, also called the delay time τ in
equation (5.4). For a periodic function taking the delay time equal to a period gives a correlation of 1
as all points shifted a period in time give the same values. The autocorrelation will be lower for delay
times that are not a multiple of a period. For our systems we expect that the autocorrelation function
converges to 0 for larger delay times due to chaos.

ac(x, τ) =
1

nσ(x)2

n
∑

i=1

(x(i) − µ(x))(x(i + τ)− µ(x)) (5.4)

5.4 Synchronization

The third measure is the use of synchronization. Chaotic systems can synchronize if they are linked with
a common signal [Pecora and Carroll, 1990], which is one of the reasons that we expect that the approach
works (section 1.1). In figure 5.1 a super-model is shown that synchronizes with the truth. This means
that the super-model is at all times close to the truth, but is not necessarily equal.

Synchronization can take place between chaotic systems by using simple nudging terms as in the con-
nection of models in section 3.2, but this time not all variables will be connected. For the Lorenz 63
system for instance only the y variable is connected to the truth, for which the equations are shown in
equation (5.5). This simple nudging term gives model k information about the truth, which is needed
for synchronization. How easily a model can synchronize, for instance with a low value of the nudging
strength n (section 5.4.1) or in a short time (section 5.4.2), indicates how much information the super-
model itself contains about the truth. Therefore the super-model is a better approximation of the truth
if it more easily synchronizes with the truth.

ẋk = σk(yk − xk) +
∑

j 6=k

Cx
kj(xj − xk)

ẏk = xk(ρk − zk)− yk +
∑

j 6=k

C
y
kj(yj − yk) + n(yo − yk) (5.5)

żk = xkyk − βkzk +
∑

j 6=k

Cz
kj(zj − zk)
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Figure 5.1: Synchronization of the super-model to the truth.

A definition of when a model is synchronized with the truth is definition 1. Synchronization depends on
two tolerances δ and ǫ and the number of time units T that the super-model should be close to the truth.
It means that the solutions of super-model and truth at some point should be closer together than δ and
should stay closer than ǫ from that point onwards.

Definition 1 A model is synchronized with the truth if the difference between the model state and ob-
served true state at t = t0 is smaller than δ and remains smaller than ǫ for t → ∞.

The two tolerances were chosen since the difference between super-model and truth can be a little larger
for a short time at some points, but the solutions remain synchronized. This can be seen for example
in figure 5.1 at t = 280, where the distance temporarily is a little larger. To take this into account the
second tolerance ǫ, which is larger than δ, was introduced. This kind of definition for synchronization
resembles, but is different from, the definition of Lyapunov stability (definition 2) [Arnold, 1989], which is
a type of stability where a mapping stays close to a fixed point forever, but not necessarily as close as at
the beginning. The important thing in Lyapunov stability is that the mapping stays in the proximity of
the fixed point for ever, which is also the case for synchronization. The difference is that in the definition
of synchronization there is a lower bound to the value of ǫ, for which the definition holds.

Definition 2 A fixed point x0 of the map A is Lyapunov stable if ∀ǫ > 0, ∃δ > 0, such that if |x−x0| < δ,
then |Anx−Anx0| < ǫ for all 0 < n < ∞ [Arnold, 1989]

Whether a model is synchronized or not with a certain nudging strength n depends on the two tolerances
δ and ǫ and the time T that the model must stay synchronized. In all experiments T is chosen to be
1000 time units. The dependence on δ is not strong as well. It should not be chosen so small that
the tolerance is never reached, but changing it otherwise does not have much effect on synchronization.
Synchronization does depend strongly on ǫ. It turns out that there is a certain threshold for ǫ for which
the system synchronizes more easily. If ǫ is below this threshold the model will need much higher nudging
strength than when ǫ is above this threshold.

Choosing the parameters is not straight forward, but it can be done by using the information about the
truth. In this case we know the truth very well, so we can do this, but it may be hard to do this for
larger climate models. The parameters should at least be chosen such that a copy of the truth is able
to synchronize with a low nudging strength. Still it may be necessary to increase the tolerances if the
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models do not synchronize at all. As said there are two ways of using synchronization as a measure and
we will address both in the next two sections.

5.4.1 Calculating nudging strength

The first way of measuring the quality of a super-model using synchronization is to find the lowest nudg-
ing strength that leads to synchronization with the truth with just one particular variable nudged for a
particular choice of ǫ and δ. This nudging strength can be found by increasing the value of the nudging
strength untill synchronization takes place. For each nudging strength 500.000 time steps are used to
check synchronization. Usually a model that is able to synchronize, synchronizes much earlier implying
that this is a good choice. We chose only integer nudging strengths are taken in this approach, but also
decimal numbers can be used.

The sensitive dependence on initial conditions is decreased by repeating the experiment many times. We
should also take into account which variable is nudged. For the Lorenz 63 model synchronization was
found not to work for the z variable, but it did work well for both x and y [Yang et al., 2006]. This
implies that the synchronization may also depend on which variable is nudged, so for comparison the
variable that is nudged is taken to be the same.

The nudging strength that is needed can be compared with that of other models and the truth. The
lower the nudging strength the better the model is. When a model has a nudging strength close to that
of the truth, this indicates that the model is a good approximation. The lowest nudging strength needed
can also be used for measuring of the average number of time steps that are needed for synchronization
as described in the next section.

5.4.2 Calculating the average number of time steps

How fast a model synchronizes with the truth can be a measure of quality as well. As with measuring
the lowest nudging strength needed for synchronization, the number of time steps is dependent on the
variables that are nudged and even more so on the initial conditions. This leads to a large spread in the
number of time steps needed for synchronization. There is also an additional dependence on the nudging
strength, making this measure less precise than measuring the nudging strength. To use this measure,
the nudging strength should at least be high enough for the model to reach synchronization.

5.5 cost function

In the introduction of this chapter we already mentioned that the cost function is a measure for weather
predictions. As we are interested in climate predictions, using this measure in the learning process seems
to be an odd choice. Especially since a good weather prediction is not necessarily a good climate pre-
diction. So why do we use such a measure to try and predict the climate and wouldn’t it be better to
use a different measure in the learning process?

The reason that a measure for weather predictions is used instead of a measure for climate predictions
has to do with chaos. As explained in section 3.4 the trajectories are chosen short to keep the influence
of chaos on the cost function small. Another advantage is that only a small amount of measurements are
needed. If we would use a cost function that would measure the quality for climate predictions the solu-
tions should be compared for a larger period of time and for this many more measurements are needed.
For the small chaotic dynamical systems this is no problem, but it is when applying the approach to
larger climate models were measurements would be used. There are measurements available, but we have
measurements with a good cover over the globe for only the last 50 years. This is enough to train for
weather predictions, that range only over 10 days or so, but probably too short for climate predictions.
By using data assimilation as described above, we can produce a more global coverage from data from
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5. Measures

longer than 50 years ago. But the question remains if we have enough data to use in the learning process
if we take a different cost function.

The results show that the cost function is indeed a good measure for climate predictions as well, as can
be seen in chapter 6. It also seems that the other measures give better values for super-models that
have lower values for the cost function than the super-models with higher values for the cost function,
suggesting that the use of the cost function in the learning process enables to predict the long term
statistics of the system.
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Chapter 6

A multi-model ensemble method

that combines imperfect models

through learning

By L.A. van den Berge1, F.M. Selten1, W. Wiegerinck2 and G.S. Duane3

1Royal Netherlands Meteorological Institute, Wilhelminalaan 10, 3732 GK, De Bilt, The Netherlands
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21, 6525 EZ Nijmegen, The Netherlands
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ABSTRACT In the current multi-model ensemble approach climate model simulations are combined
a posteriori. In the method of this study the models in the ensemble exchange information during simu-
lations and learn from historical observations to combine their strengths into a best representation of the
observed climate. The method is developed and tested in the context of small chaotic dynamical systems,
like the Lorenz 63 system. Imperfect models are created by perturbing the standard parameter values.
Three imperfect models are combined into one super-model, through the introduction of connections
between the model equations. The connection coefficients are learned from data from the unperturbed
model, that is regarded as the truth.

The main result of this study is that after learning the super-model is a very good approximation to the
truth, much better than each imperfect model separately. These illustrative examples suggest that the
super-modeling approach is a promising strategy to improve climate simulations.

6.1 Introduction

There is a broad scientific consensus that our climate is warming due to anthropogenic emissions of
greenhouse gasses [IPCC, 2007]. Due to the large impacts of climate change on society there is a growing
need to widely sample and assess the possible climate change related to the plausible scenarios for future
emissions. At about a dozen climate institutes around the world complex climate models have been
developed over the past decades. Despite the improvements in the quality of the model simulations,
the models are still far from perfect. For instance a temperature bias of several degrees in annual mean
temperatures in large regions of the globe is not uncommon in the simulations of the present climate
[IPCC, 2007].

27



6. Combining imperfect models through learning

Nevertheless these models are used to simulate the response of the climate system to future emission
scenarios of greenhouse gasses. It turns out that the models differ substantially in their simulation of the
response: the global mean temperature rise varies by as much as a factor of 2 and on regional scales the
response can be reversed, e.g. decreased precipitation instead of an increase. It is not clear how to com-
bine these outcomes to obtain the most realistic response. The standard approach is to take some form
of a weighted average of the individual outcomes [Tebaldi and Knutti, 2007], but is this the best strategy?

We think we can do better by letting the models exchange information during the simulation instead
of combining the results of the individual models afterwards. We propose to combine the individual
models into one super-model by prescribing connections between the model equations. The connection
coefficients are learned from historical observations. This way the super-model learns to combine the
strengths of the individual models in order to optimally reproduce the historical climate. Is this approach
feasible?

An example of combining models successfully is found in the study by Kirtman et al. [2003]. They
constructed what they called an interactive ensemble in which they coupled two different atmospheric
models to one ocean model. It turned out that the most realistic simulation in terms of the annual
mean, annual cycle and interannual variability of sea surface temperatures over the tropical pacific was
obtained by coupling the momentum fluxes from one model and the heat and fresh water fluxes from
the other to the ocean model.

Another indication that this approach might be feasible is found in the practice of data assimilation
[Compo, Whitaker, and Sardeshmukh, 2006]. It turns out that with a limited amount of information,
the complete state of the atmosphere can be recovered. Synchronization in chaotic systems provides an
explanation why this is at all possible, since linking chaotic systems with a signal from one system to
the other is known to lead to synchronization of their states [Pecora and Carroll, 1990, Duane et al.,
2006]. Therefore we expect that in the super-modeling approach only limited information needs to be
exchanged to effectively influence the combined behaviour of the imperfect models.

In this paper we use simple chaotic systems to develop and demonstrate the super-modeling approach.
We regard the model with standard parameter values as ground truth and create imperfect models by
perturbing the parameter values. Three imperfect models are connected and combined into a super-
model. The strength of the connections are determined from data from the ground truth through a
learning process. The learning process takes the form of the minimization of a cost function that mea-
sures the difference between the truth and the super-model during short integrations.

In section 6.2 the form of the connections is introduced, followed by the introduction of the cost func-
tion and the minimisation method. The super-modeling approach is applied to the Lorenz 63, Rössler
and Lorenz 84 systems in section 6.3 and 6.4. Discussion and conclusion of the method and ideas for
improvement can be found in section 6.5.

6.2 The super-modeling approach

To introduce the super-modeling approach we use the Lorenz 63 system [Lorenz, 1963]. The Lorenz
63 system is often used as a metaphore for the atmosphere, because of its abrupt regime changes and
unstable nature. The equations for the Lorenz 63 system are

ẋ = σ(y − x)

ẏ = x(ρ − z)− y (6.1)

ż = xy − βz.

28



6.2. The super-modeling approach

The standard parameter values are σ = 10, β = 8
3 and ρ = 28. Numerical solutions are obtained by a

fourth order Runge-Kutta time stepping scheme, with a time step of 0.01.

6.2.1 Connecting imperfect models

Imperfect models are created by taking three copies of the Lorenz 63 system with perturbed parameter
values. A super-model is created by the introduction of linear connection terms

ẋk = σk(yk − xk) +
∑

j 6=k

Cx
kj(xj − xk)

ẏk = xk(ρk − zk)− yk +
∑

j 6=k

C
y
kj(yj − yk) (6.2)

żk = xkyk − βkzk +
∑

j 6=k

Cz
kj(zj − zk), k = 1, 2, 3,

where k indexes the three imperfect models with perturbed parameter values σk, βk and ρk and Cx
kj ,

C
y
kj and Cz

kj are referred to as connection coefficients.

Each variable of each model is connected to the other two models. This gives two connection coefficients
for each of the variables and a total number of 2×3×3 = 18 connection coefficients. These 18 coefficients
will be learned from data that sample the truth. The solution of the super-model, denoted by subscript
s, is taken to be the average of the imperfect models

xs =
1

3
(x1 + x2 + x3)

ys =
1

3
(y1 + y2 + y3) (6.3)

zs =
1

3
(z1 + z2 + z3).

6.2.2 Cost function

We assume that we have a long time series of observations of the truth ~xo. We pick initial conditions
~xo(ti) from this long time series at K times ti, i = 1, · · · ,K, separated by fixed distances d. Short
integrations of length ∆ are performed with the super-model starting from these K initializations (see
figure 6.1). To measure the ability of the super-model to follow the truth we introduce the following cost
function F , that depends on the vector of connection coefficients C.

F (C) =
1

K∆

K
∑

i=1

∫ ti+∆

ti

|~xs(C, t)− ~xo(t)|
2γtdt (6.4)

The cost function is normalized by 1
K∆ , so that it represents the time averaged mean squared error. The

factor γt with 0 < γ ≤ 1 is introduced to give stronger weight to the errors close to the initial conditions.
The idea behind this is that the Lorenz 63 system displays sensitive dependence on initial conditions.
Trajectories diverge not only due to model imperfections, but also due to internal error growth: even
a perfect model deviates from the truth if started from slightly different initial conditions and leads
to a non-zero cost function due to chaos. This implies that the cost function measures a mixture of
model errors and internal error growth . Model errors dominate the inital divergence between model
and truth, but at later times internal error growth dominates. Since we wish to measure the model er-
rors, the factor γt discounts the errors at later times to decrease the contribution of internal error growth.
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6. Combining imperfect models through learning

Figure 6.1: The cost function is based on short integrations of the super-model starting from observed
initial conditions of the truth at times ti and measures the mean-squared difference between the short
evolutions of the super-model and the truth as indicated by the shaded areas. The short integrations
span a time interval ∆ and d denotes the fixed time interval between the initial conditions ti.

We base the choice of γ on the doubling time of errors. From a large number of runs (107) from randomly
perturbed initial conditions we estimate the average doubling time τ of the initial error. We choose γ

such that γτ = 1
2 , so at time τ the weight is reduced to 1

2 . For the Lorenz 63 system τ = 0.75, which
gives γ = 0.4. The length of the short integrations is taken to be ∆ = 1, which is a little bit longer than
the doubling time. By comparison the average time for one rotation in the Lorenz 63 system is 0.8. The
separation d between the initializations is 0.2 time units.

6.2.3 Minimisation

For a fixed choice of the number of initializations K the cost function solely depends on the connection
coefficients C in equation (6.4). The super-model can be determined by finding a minimum in the cost
function in the 18 dimensional space of C. For this we employ the Fletcher-Reeves-Polak-Ribiere Conju-
gate Gradient method [Fletcher and Reeves, 1963]. It uses the gradient of the cost function to approach
minima and stops when the gradient is (close to) zero.

We found it advantageous to make use of the dependence of the cost function on the number of initial-
izations K to avoid shallow local minima. We minimize the cost function first for a small number of
initializations. Subsequently we take this solution as the initial guess of the minimum for an increased
number of initializations to find the minimum for this set. This process is repeated until we found that
the minimum did not change any longer by increasing the number of initializations. This issue is dis-
cussed further in section 6.3.

To avoid negative solutions for the connection coefficients we added an extra term in the cost function
in case one of the coefficients becomes negative. This term is just the absolute value of the negative
connection coefficient, which easily dominates the value of the cost function.

6.3 Results Lorenz 63

Three imperfect models are created by perturbing the standard parameter values as displayed in table
6.1. The perturbed values differ from the standard values by 30% to 40% and in each imperfect model
parameter values have been increased as well as decreased. With these perturbations the imperfect
models behave quite differently from the truth as can be seen in figure 6.3. Both model 1 and 2 are
attracted to a point, whereas model 3 has a chaotic solution that resembles the truth, but the attractor is
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6.3. Results Lorenz 63

σ ρ β

Truth 10 28 8
3

Model 1 13.25 (32%) 19 (32%) 3.5 (31%)
Model 2 7 (30%) 18 (36%) 3.7 (39%)
Model 3 6.5 (35%) 38 (36%) 1.7 (36%)

Table 6.1: Standard and perturbed parameters for the Lorenz 63 system.
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Figure 6.2: Trajectories for the three unconnected imperfect models (black) and the standard Lorenz 63
system (grey). The trajectory for the imperfect models includes the transient evolution from the initial
condition towards the attractor.

displaced and larger. All models were initiated from the same state and the transient evolution towards
the attractor is plotted as well.

By using bifurcation methods, it can be analytically shown that there exists a Hopf bifurcation for the

Lorenz 63 system at ρH = σ(3+σ+β)
σ−1−β . This bifurcation marks different kinds of dynamical behaviour.

Both model 1 and 2 have values for ρ below the Hopf bifurcation, whereas model 3 has a value for ρ that
lies far above the Hopf bifurcation. For the truth the value of ρ lies above the Hopf bifurcation as well,
which is why model 3 and the truth have similar behaviour.

The minimization procedure outlined above successfully identified a minimum of the cost function with
a value of 0.02. By comparison the value of the cost function for an arbitrary choice of all connection
coefficients equal to unity is 0.5. With the connection coefficients of this minimum we performed a long
integration with the super-model and plotted the trajectory in figure 6.3. The attractor of the super-
model is very close to the true attractor. While integrating the super-model, the imperfect models fall
into an approximate synchronous behaviour due to the connections. The improvement in the behaviour
of the connected imperfect model solutions as depicted in figure 6.4 (to be compared with figure 6.3) is a
clear indication of the feasibility of super-modeling in the context of this low-dimensional chaotic system.

In addition to this minimum, we found that by choosing different initial values for the connection coeffi-
cients in the minimization procedure different local minima in the cost function are obtained with values
of the cost function that are of comparable magnitude. In the remainder of this section we will test the
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Figure 6.3: Trajectories for the super-model (black) and the standard Lorenz 63 system (grey) from two
different points of view.
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Figure 6.4: Trajectories for the three connected imperfect models with connections determined by the
learning process (black) and the standard Lorenz 63 system (grey).
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Figure 6.5: Cross section of the cost function for the super-model of the Lorenz 63 system calculated
for different subsets of the original training set that was based on K = 200 initializations. The subsets
vary in the number of initializations, i.e. K = 20, 50, 100, 150. A cross sections is created by changing
connection coefficients Cy

23 in (a) and Cz
21 in (b) and keeping the other coefficients fixed at the values of

the minimum found by the learning process using the training set.

robustness of the learning process, research the issue of local minima and develop measures to determine
the quality of the different super-model solutions.

6.3.1 Robustness

The minimum of the cost function is determined on a limited period of observations of length (K−1)·d+∆
that we refer to as the training set. We have chosen K = 200 to determine the minimum and subse-
quently evaluate the cost function using the C values of this minimum for subsets of the training set of
length corresponding to K = 20, 50, 100, 150. Cross sections of the cost function around the minimum
can be created by changing one connection coefficient and keeping the others fixed at the values of the
minimum. The cross sections for the different subsets are plotted in figure 6.3.1 for connection coefficients
C

y
23 and Cz

21, since these are typical examples.
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Figure 6.6: As in figure 6.3.1, except that the cost function is calculated for the training set with K = 200
initializations (thick line) and 9 additional independent sets of observations of the same length (thin lines)
that were taken from a consecutive longer integration of the truth.
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6. Combining imperfect models through learning

Super-model 1 Super-model 2 Difference
Cx

12 -0.01 1.52 1.53
Cx

13 4.81 0.03 -4.78
Cx

21 5.69 13.28 7.59
Cx

23 13.75 14.99 1.24
Cx

31 17.64 21.51 3.87
Cx

32 -0.01 1.09 1.10
C

y
12 7.67 3.53 -4.14

C
y
13 18.14 27.36 9.22

C
y
21 3.64 0.00 -3.64

C
y
23 10.06 6.50 -3.56

C
y
31 2.71 3.89 1.18

C
y
32 9.79 6.93 -2.86

Cz
12 5.47 3.95 -1.52

Cz
13 4.03 12.24 8.21

Cz
21 10.72 3.50 -7.22

Cz
23 13.54 2.20 -11.34

Cz
31 8.70 2.89 -5.81

Cz
32 1.50 3.85 2.35

Table 6.2: The connection coefficients of two super-model solutions of the Lorenz 63 system and their
differences.

In figure 6.5(a) the cost function for K = 200 displays one well defined minimum C
y
23 = 10.1. The

position of the minimum does not change much when the cost function is calculated using the different
subsets. The minimum becomes more pronounced as the training set is enlarged. The values of the cost
function monotonically converge and K = 200 seems a reasonable size of the training set. Figure 6.5(b)
does not show a well defined minimum for any K. Note that the scale is smaller than in figure 6.5(a).
The values of the cost function do not change much in the different subsets and the slopes are very flat.
Changing connection coefficient Cz

21 apparently does not change the quality of the solutions much. A
family of super models of similar quality can be found by changing connection coefficient Cz

21 between 8
and 14.

Ideally the super-model found by the learning process is not dependent on the training set. To test
whether K = 200 is large enough for this to be true the cost function is plotted in figure 6.6 for different
periods of observations: the training set and independent sets of the same size that were obtained from a
longer consecutive integration of the truth. Again the cross sections for connection coefficients Cy

23 and
Cz

21 are shown (figure 6.6). In figure 6.6(a) the position and value of the minimum remain close to that
of the training set. In figure 6.6(b) the cost function is flat for all sets of observations. We conclude that
with K = 200 the cost function verifies rather well on independent data, so K = 200 seems a reasonable
size of the training set.

6.3.2 Local minima

In the previous section we noted that there is a large family of super-model solutions with similar values
of the cost function connected to the minimum found by the minimizationncd c. The minimization was
repeated starting from random values for the connection coefficients between [0, 10] that were drawn
from a uniform probability distribution. In this way we found other minima that are distinct in many
more connection coefficients. For one of these minima, the connection coefficients are shown in table
6.2, together with the values for the first minimum. In the fourth column the difference between the
connection coefficients of minima 1 and 2 indicates that the minima are clearly distinct and do not belong
to the same family of solutions.

34



6.3. Results Lorenz 63

Model 1 Model 2 Model 3
Mean x ±7.94 ±7.93 0.003 (0.002)
Mean y ±7.94 ±7.93 0.003 (0.010)
Mean z 18.00 17.00 34.23 (0.030)
SD x 0 0 7.628 (0.002)
SD y 0 0 9.416 (0.010)
SD z 0 0 8.765 (0.030)

Cov. xy 0 0 58.19 (0.036)
Cov. xz 0 0 0.007 (0.44)
Cov. yz 0 0 0.012 (0.68)

Table 6.3: Mean, standard deviation (SD) and covariance for the three unconnected imperfect models
of the Lorenz 63 system. The values for the first two models are calculated analytically. Statistics for
model 3 are based on 500 runs of 5.000 time units. Between brackets the 95% error estimation is given.

A plot of the attractor of the second super-model solution in its phase space (not shown) looks almost
exactly the same as the plots of the first super-model solution in figures 6.3 and 6.4. The value of the
cost function for the second solution is slightly lower (0.003 instead of 0.02) and is a first indication that
the second solution might be better. In the next section we will use various measures to evaluate the
quality of these two super-model solutions.

6.3.3 Quality measures

The cost function is a measure of the quality of the short term behaviour of the super-model in which
the initial conditions play a role as is the case in weather predictions. To evaluate the quality of the
super-model beyond the range that is influenced by the initial conditions, different measures can be used
as in climate simulations.

The most straightforward measures are the different moments of the probability density function of the
states in phase space, such as the mean, variance and covariance of the state variables. Since these do
not take into account the temporal evolution through phase space, we will also evaluate the ability of
the super-model to reproduce the autocorrelation functions of the state variables. As a final measure we
will check the ability of the super-model to synchronize with the truth at the end of this section.

Mean, standard deviation and covariance

The calculation of these statistics is based on 500 runs of 5.000 time units of the truth, the imperfect
models and both super-models. An error estimation of these quantities is based on the spread of the 500
estimates of each quantity. The results for the imperfect models are given in table 6.3 and for the truth
and both super-models in table 6.4.

For the parameter values of model 1 and 2 the attractor reduces to two stable point attractors. The x, y
and z values of these fixed points can be calculated analytically from equation (6.1) by setting the time
derivatives to zero. Since the system settles in one of these point attractors depending on the initial
condition, the mean values are equal to these values. The statistics of the chaotic solution of model 3 (see
table 6.3) differ substantially from the truth (see table 6.4), especially the mean value of z is much larger.

Both super-models (see table 6.4) have statistics that are close to that of the truth with the largest
differences of order 5% in the covariance between x and y. The second super-model is somewhat closer
to the truth, especially in the covariance of x and y.
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Truth Super-model 1 Super-model 2
Mean x -0.006 (0.22) 0.007 (0.21) -0.000 (0.25)
Mean y -0.006 (0.22) 0.007 (0.21) -0.000 (0.25)
Mean z 23.549 (0.02) 22.93 (0.02) 23.19 (0.03)
SD x 7.924 (0.005) 7.717 (0.003) 7.812 (0.005)
SD y 9.011 (0.008) 8.791 (0.009) 8.723 (0.009)
SD z 8.623 (0.025) 8.596 (0.016) 8.549 (0.032)

Cov. xy 62.786 (0.07) 58.952 (0.05) 60.6416 (0.08)
Cov. xz -0.020 (0.76) 0.023 (0.74) 0.000 (0.88)
Cov. yz -0.016 (0.61) 0.021 (0.65) -0.001 (0.69)

Table 6.4: Mean, standard deviation (SD) and covariance for the truth and for the two super-models of
the Lorenz 63 system. Statistics are based on 500 runs of 5.000 time units. Between brackets the 95%
error estimation is given.

6.3.4 Autocorrelation

The autocorrelation is a statistical measure of the temporal evolution. It gives an indication of the
memory and time scales present in a system. The plots in figure 6.7 are based on 100 runs of 3.000 time
units and the shading corresponds to the 95% error range of the autocorrelation of the truth.

Both super-models capture the fast decorrelation of x and y and the slow decorrelation of z well, but the
second super-model is closer to the truth. It also better represents the dominant time scale which is most
apparent in the autocorrelation of z. After 9 oscillations super-model 1 is lagging the truth somewhat,
whereas super-model 2 is still in phase.

6.3.5 Synchronization with the truth

Pecora and Carroll [1990] have shown that limited information exchange between two identical Lorenz
systems can lead to synchronization of the model states even when the systems are initialized from very
different initial conditions and differ slightly in parameter values. The ability to synchronize with the
truth is another measure of the quality of a model. In this section we will compare how well the super-
models compare to a perfect model in this respect.

Yang et al. [2006] extended the study of synchronized Lorenz systems, re-interpreted in the context of
data assimilation. Following Yang et al. [2006] we add a so-called simple nudging term to the equations
of the y variable for each of the three connected imperfect models (equation (6.5). This term ‘nudges’
the actual values of yk to the observed value yo and the value of parameter n determines the strength of
the nudging.

ẋk = σk(yk − xk) +
∑

j 6=k

Cx
kj(xj − xk) (6.5)

ẏk = xk(ρk − zk)− yk +
∑

j 6=k

C
y
kj(yj − yk) + n(yo − yk)

żk = xkyk − βkzk +
∑

j 6=k

Cz
kj(zj − zk) k = 1, 2, 3

We take the following definition of synchronization:

Definition 3 A model is synchronized with the truth if the RMS difference between the model state and
observed true state at t = t0 is smaller than δ and remains smaller than ǫ for t → ∞.
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Figure 6.7: Autocorrelation as a function of delay time for x, y and z for the standard Lorenz 63 system
and both super-models. The shaded area indicates the 95% error band for the autocorrelation of the
truth, based on 100 runs of 3.000 time units.

ǫ is chosen larger than δ, since synchronized systems often deviate somewhat during short extreme excur-
sions of the trajectory, but remain synchronized. As a measure of synchronization we use the minimum
strength of the nudging n for which synchronization is accomplished independent of the initial condition,
for integer n. For practical purposes we choose a time interval of T = 1000 time units during which the
models must remain within ǫ distance of each other.

How quickly systems synchronize very much depends on the initial conditions [Yang, Baker, Li, Cordes,
Huff, Nagpal, Okereke, Villafañe, Kalnay, and Duane, 2006], therefore we check synchronization for 100
restarts from different initial conditions. By trial and error we found that two identical Lorenz systems
with standard parameter values (what we call the truth) synchronize using n = 3, δ = 2 and ǫ = 4.

To compare the two super-model solutions the same set of 100 initial conditions are used. The first
super-model needs a nudging strength of n = 11 in order to synchronize with the truth. The second
super-model needs a somewhat larger value n = 13. Both super-models need a stronger nudging than
the perfect model. In this measure, the first super-model is closer to the truth, despite the fact that
the temporal evolution, as measured by the autocorrelation, is more faithfully captured by the second
super-model. However, if we reduce the time interval T during which the models must remain synchro-
nized to 100 time units, we find that the second supermodel sometimes remains synchronized with a
nudging strength of only n = 4, whereas the first super-model always needs at least n = 5 to remain
synchronized during 100 time units. We conclude that the second super-model needs larger nudging to
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a b c

Truth 0.2 0.2 5.7
Model 1 0.26 (30%) 0.14 (30%) 7.5 (32%)
Model 2 0.12 (40%) 0.28 (40%) 7.4 (30%)
Model 3 0.27 (35%) 0.12 (40%) 4. (30%)

Table 6.5: Standard and perturbed parameters for the Rössler system.

remain synchronized over larger time periods due to the existence of particular trajectories of the truth
for which the simulation errors of super-model 2 are larger than the simulation errors of super-model 1
and super-model 2 is needs larger nudging to remain synchronized during these trajectories than super-
model 1. The probability of occurence of these trajectories in arbitrary time intervals of 100 time units
is below 1, but it is 1 for 1000 time units.

Almost all measures indicate that the second super-model is closer to the truth than the first. It seems
that the value of the cost function is indeed a good indication of quality of the solution and that the
approach of minimizing the cost function is a fruitful strategy.

6.4 Results Rössler and Lorenz 84

In this section the super-modeling approach is applied to the Rössler and the Lorenz 84 systems. Both
display chaotic behaviour for standard parameter settings, but the attractors are quite different.

6.4.1 Rössler

The Lorenz 63 attractor is also called a butterfly, because of its shape. As a simplification of this example
of chaos to one where the attractor only has one ‘wing’, the Rössler equations were proposed [Rössler,
1976]. The time evolution is less chaotic than in the Lorenz 63 system, since it lacks the irregular
transitions between two unstable points. The equations are

ẋ = −(y + z)

ẏ = x+ ay (6.6)

ż = b + z(x− c).

The parameter values for the truth are Rösslers values: a = 0.2, b = 0.2 and c = 5.7. The values for
the parameters for the three imperfect models can be found in table 6.5. The parameter perturbations
applied are again of the order 30% to 40% and in each of the imperfect models parameters have been
decreased as well as increased.

With these parameter perturbations marked changes occur in the attractor as can be seen in figure 6.8.
The attractor of imperfect model 1 is still chaotic and has a similar shape but the amplitude of the
irregular oscillations is larger. Imperfect model 2 and 3 have a periodic attractor of different shapes.

To determine the super-model we first need to choose values for the different parameters in the cost
function. For the Rössler system the time it takes for initial errors to double is on average 6.7. Following
the same procedure as for the Lorenz 63 system we set γ = 0.9 and ∆ = 12 time units. The number of
initializations in this case is K = 300.

We minimized the cost function by varying the connection coefficients of the super-model. This mini-
mum is plotted in figure 6.9 in a cross section along Cx

23. The value at the minimum is approximately
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Figure 6.8: Trajectories for the three unconnected imperfect models (black) and the standard Rössler
system (grey). Note the different scales on the axes. The truth is the same in all three plots.
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Figure 6.10: Trajectories for the three connected imperfect models with connections determined by the
learning process (black) and the standard Rössler system (grey).

0.0001, which is much lower than a typical value of the cost function (0.004 for all connection coefficients
equal to 1). To check the robustness of this minimum with respect to the limited size of training set,
we calculated the cost function for 9 additional sets of 300 initializations, that were taken from a longer
simulation of the truth. The figure shows that 300 initializations are enough to reliably estimate the cost
function. This minimum is not unique. By changing the initial values of the connection coefficients in
the minimization procedure, we found different minima with similar values of the cost function as was
the case for the Lorenz 63 system. Here we evaluate the quality of this minimum only.

With the connection coefficients of this minimum, we integrated the super-model and plotted the trajec-
tory of the three connected imperfect models in figure 6.10. The three models fall into an approximate
synchronous behaviour, but especially the amplitudes of the excursion in the z direction are different
with model 3 making the largest excursions. The super-model solution, which is defined as the average
of the three imperfect models, is plotted in figure 6.11 for two points of view. Visually the attractor of
the super model is very similar to the true attractor. We will apply the same measures as for the Lorenz
63 system to check the quality of the super-model.

First we compare the means, standard deviations and covariances for the unconnected imperfect models
in table 6.6 and for the super-model and the truth in table 6.7. The super-model turns out to be closer
to the truth than the best imperfect model (model 3). Its statistics almost fall within the 95% error
bounds of the true values.
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Figure 6.11: Trajectories for the super-model (black) and the standard Rössler system (grey) for two
different points of view.

Model 1 Model 2 Model 3
Mean x 0.417 (0.082) 0.085 (0.0009) 0.34 (0.0009)
Mean y -1.603 (0.099) -0.710 (0.0009) -1.26 (0.0009)
Mean z 1.603 (0.230) 0.710 (0.0015) 1.26 (0.0022)
SD x 6.759 (0.082) 6.659 (0.0009) 4.463 (0.0008)
SD y 6.567 (0.099) 6.400 (0.0009) 4.080 (0.0009)
SD z 6.853 (0.229) 1.787 (0.0015) 3.896 (0.0022)

Covariance xy -11.21 (0.33) -4.492 (0.005) -4.49 (0.004)
Covariance xz 11.21 (0.33) 4.916 (0.006) 4.49 (0.004)
Covariance yz -0.35 (0.39) 2.784 (0.004) 2.06 (0.003)

Table 6.6: Mean, standard deviation (SD) and covariance for the three unconnected imperfect models
of the Rössler system. The 95% error estimation based on 500 runs of 5.000 time units is given between
brackets.

Truth Super-model
Mean x 0.177 (0.003) 0.175 (0.003)
Mean y -0.886 (0.009) -0.878 (0.009)
Mean z 0.886 (0.009) 0.874 (0.009)
SD x 5.16 (0.04) 5.10 (0.03)
SD y 4.84 (0.03) 4.82 (0.02)
SD z 2.84 (0.04) 2.95 (0.03)

Covariance xy -4.693 (0.05) -4.702 (0.04)
Covariance xz 4.693 (0.05) 4.644 (0.04)
Covariance yz 2.183 (0.12) 2.025 (0.19)

Table 6.7: Mean, standard deviation (SD) and covariance for the truth and super-model of the Rössler
system. The 95% error estimation based on 500 runs of 5.000 time units is given between brackets.
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Figure 6.12: Autocorrelation for the super-model (black) and the standard Rössler system (white). The
shaded area corresponds to the 95% error band for the truth, based on 100 runs of 3.000 time units.

To compare the temporal behaviour we calculated the autocorrelation functions as plotted in figure 6.12
for the truth and the super-model. They indicate a strongly periodic behaviour with a long decorrelation
time scale. For all three variables the autocorrelation function is close to and sometimes within the 95%
error band, again indicating that the super-model is a very good approximation of the truth.

Finally we look at the minimum nudging strength needed to enable synchronization with the truth. We
use the same definition of synchronization as for the Lorenz 63 model with the following values for the
parameters δ = 0.05, ǫ = 0.4 and T = 100 time units. When the nudging term is applied to the y variable
only, we find that the standard Rössler system synchronizes with a copy of itself for a nudging strength
equal to n = 1. The super-model also synchronizes when nudging only the y variable, but it needs a
stronger nudging of n = 2. It outperforms model 3 in this measure; even by replacing the y variable with
the true value (which corresponds effectively to an infinitely large nudging strength), synchronization
does not occur.

To conclude, also in the case of the Rössler system, super-model solutions can be found by combining
imperfect models that give a very good approximation to the truth. This may not be surprising since
the Rössler system is less chaotic than the Lorenz 63 system (note the long autocorrelation time-scale in
figure 6.12) and more regular behaviour is presumeable easier to reproduce. On the other hand, a more
chaotic system has richer dynamics (more time-scales, instabilities etc) thus the connected models have
more degrees of freedom to mimick the truth. Beforehand it is hard to predict whether more chaos helps
or hurts, so we test the super-modeling approach also on the more chaotic Lorenz 84 system.
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a b F G

Truth 0.25 4 8 1
Model 1 0.33 (32%) 5.2 (30%) 10.4 (30%) 0.7 (30%)
Model 2 0.18 (28%) 5.2 (30%) 5.6 (30%) 1.3 (30%)
Model 3 0.18 (28%) 2.7 (33%) 10.4 (30%) 1.3 (30%)

Table 6.8: Standard and perturbed parameters for the Lorenz 84 system.

6.4.2 Lorenz 84

The Lorenz 84 system was proposed by Lorenz as a toy model for the general atmospheric circulation at
midlatitudes [Lorenz, 1984]. The model equations are

ẋ = −y2 − z2 − ax+ aF

ẏ = xy − bxz − y +G (6.7)

ż = bxy + xz − z.

The x variable represents the intensity of the globe-encircling westerly winds and y and z represent a
travelling large-scale wave that interacts with the westerly wind. Parameters F and G are forcing terms
representing the average north-south temperature contrast and the east-west asymmetries due to the
land-sea distribution respectively.

The standard parameter values for the truth are a = 1
4 , b = 4, F = 8 and G = 1, for which the model

displays chaotic behaviour [van Veen, 2002]. In table 6.8 the perturbed parameter values of the imperfect
models are given. The perturbations are again about 30% and in each imperfect model parameters have
been decreased as well as increased.

With these parameter perturbations the attractor of the imperfect models differ substantially from the
truth (see figure 6.13). Both model 1 and 3 have periodic attractors, whereas model 2 has a point attrac-
tor (the transient evolution towards the point attractor is shown for model 2). The periodic behaviour
corresponds to the wave traveling periodically around the hemisphere.

Following the same procedure as before to find the parameters used in the cost function we found γ = 0.5
and ∆ = 2.2 time units, based on the average time it takes for initial errors to double (on average 1.1
time units). However with these values the minimization algorithm did not produce a well defined min-
imum of the cost function. The high value of the autocorrelation function of x (0.6 at 8 time units,
see figure 6.16) indicates that the initial conditions still have an impact on the evolution after 8 time
units. Therefore we decided to increase ∆ to 8 and γ to 0.8. In addition it turned out that it was easier
to find good minima using the amoeba minimization algorithm [Nelder and Mead, 1965] instead of the
conjugate gradients minimization. The amoeba method does not need gradient information and is less
susceptible to getting stuck in local minima. The training set is based on K = 200 initializations, each
0.2 time units apart selected from a long simulation of the truth.

Starting from different initial values for the connection coefficients we found different minima of the cost
function. A cross section through the best minimum that we found is shown in figure 6.14. The value
at this minimum is approximately 0.0003, which is again much lower than the value of the costfunction
for all connection coefficients equal to 1 (0.08). To check the robustness the cost function is evaluated
on 9 additional independent sets of 200 initializations. In all 9 sets the minimum is reproduced around
the same value of the connection coefficient. The same is true for cross sections of the other connection
coefficients (not shown).
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Figure 6.13: Trajectories for the three unconnected imperfect models (black) and the standard Lorenz
84 system (grey).
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Figure 6.14: Cross section of the cost function for the super-model of the Lorenz 84 system for the
training set (thick line) with length corresponding to K = 200 and 9 additional independent sets of
the same length (thin lines). Cross sections are created by changing the connection coefficient Cy

32 and
keeping the others fixed.
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Figure 6.15: Trajectories for the super-model (black) and the standard Lorenz 84 system(grey) for two
points of view.

Truth Minimum
Mean x 1.015 (0.008) 1.013 (0.008)
Mean y 0.060 (0.018) 0.058 (0.017)
Mean z 0.271 (0.005) 0.272 (0.004)
SD x 0.589 (0.014) 0.596 (0.014)
SD y 0.919 (0.002) 0.920 (0.002)
SD z 0.908 (0.002) 0.906 (0.002)

Covariance xy -0.053 (0.018) -0.050 (0.022)
Covariance xz -0.038 (0.004) -0.039 (0.003)
Covariance yz -0.075 (0.006) -0.063 (0.005)

Table 6.9: Mean, standard deviation (SD) and covariance for the super-model and the standard Lorenz
84 system. The 95% error estimation based on 500 runs of 5.000 time units is given between brackets.

With the connection coefficients for this minimum, we integrated the super-model and plotted the trajec-
tory in figure 6.15. A visual comparison with the truth indicates a very good agreement. In this case the
three imperfect models are almost perfectly synchronized (not shown). The synchronization is stronger
in this case as compared to the other two systems. The reason for this might be found in the high value of
several connection coefficients (for instance Cx

32 = 115, Cy
23 = 147 and Cz

31 = 169). Such high values make
synchronization easier since these connection terms in the equations bring the model solutions closer to-
gether. Maximum values of the connection coefficients in the other two systems are a factor of 10 smaller.

Again we use the same measures to evaluate the quality of the super-model solution. The mean, standard
deviation and covariance for the truth and the super-model are presented in table 6.9. These statistics
are in excellent agreement.

In order to evaluate the temporal behaviour we compare the autocorrelation functions in figure 6.16. Up
to a delay time of 14 time units the autocorrelation functions of the truth are well reproduced by the
super model both in shape as well as in periodicity.

The Lorenz 84 system with standard parameter values synchronizes with the truth for a strength of
the nudging term n = 1 in the y variable only, using δ = 0.1, ǫ = 0.5 and T = 100 in definition 3.
The super-model also synchronizes with the truth, but it needs a larger nudging of n = 4. None of the
imperfect models is able to synchronize with the truth, when the nudging is in the y variable only.
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Figure 6.16: Autocorrelation for the super-model (black) and the standard Lorenz 84 system (white)
The shaded area corresponds to the 95% error band for the truth based on 100 runs of 3.000 time units.

Concluding this section, super-model solutions can be found that reproduce the true system very well
and outperform the individual imperfect models for the Lorenz 84 system as well. For this system, the
minimization process was found to be more sensitive to the length of the short integrations ∆ and the
discount parameter γ, requiring the use of the more robust amoeba minimization procedure.

6.5 Conclusion and Discussion

In this study we developed and tested a novel multi model ensemble approach in which imperfect models
of an observable system are combined into a single super-model by letting the models exchange informa-
tion during the simulation. The information exchange takes the form of linear connections with weights
that are learned from past data such that the super-model minimizes the mean squared errors in short
simulations initialized from past observed states. The main result of this study is that it is possible to
construct super-models in the context of simple low-dimensional chaotic systems that outperform the
constituent imperfect models.

This result motivates an alternative strategy to the weather and climate prediction problem. Current
practice is that existing imperfect models of the climate system are integrated independently of one
another, starting from observed initial conditions to provide forecasts for the future. To gauge model
uncertainty, the outcomes of the different models are combined into a single estimate of the probability
density function of climate variables. This study indicates that better estimates of the true probability
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function can be obtained if the models are taught, using past observations, to combine the strengths of
each into a single forecast of the probability density function.

A large gap exists between the simple, chaotic systems of this study and the complex, state-of-the-art
climate models. Many questions need to be addressed in order to apply the same approach to these
models. There is the practical limitation of computer capacity to enable the parallel execution of an
ensemble of state-of-the-art models that need to exchange information at every time step. In the inter-
active ensemble of Kirtman et al. [2003] two atmospheric models were coupled to one ocean model so
in principle it should be feasible to couple several atmospheric models to several ocean models. Com-
putational grids in the various climate models differ, so regridding should be part of the information
exchange. Regridding is standard practice in the information exchange between the atmosphere and
ocean components of climate models. An important issue is the choice of state variables for the connec-
tions and the number of connections. In this study all state variables were connected and had similar
dynamics. In the climate models the different state variables are driven by different physical processes
and display distinct dynamical behaviour at various time scales. It is not clear a priori which state
variables should be connected. In addition the number of connections that can be learned on the basis of
historical data is limited and therefore careful choices for the connections need to be made. One possible
approach would be to not connect the state variables, but the various parametrized physical processes
that contribute to the tendency of the state variables. Most of the model uncertainty resides in these
parametrized processes, so it makes sense to direct the learning to these processes.

A hierarchy of earth system models of intermediate complexity (EMICs) could be used to address these
various issues. The EMIC’s resemble the state-of-the-art climate models in their structure, but differ in
that the parameterization schemes for the physical processes are much less elaborate, fewer processes are
explicitly modeled and the spatial resolution is much coarser. It has already been demonstrated that two
different quasi-geostrophic channel models will synchronize with only limited connections [Duane and
Tribbia, 2001, 2004]. A fruitful strategy might be to start from a relatively simple climate model and
add to the complexity in small steps and address a specific issue at each step. In a similar fashion as in
this study a ground truth model is assumed at each time step and an ensemble of imperfect models is
created by perturbing parameters and/or using different formulations for unresolved processes.

An additional complicating factor for the learning phase is the difference in time-scale between atmo-
sphere and ocean. Adjustments in the atmosphere have a short time scale, but the ocean adapts to these
changes on a much longer time-scale. Through its influence on the atmosphere, the ocean introduces
longer time scales in the atmosphere as well. So short integrations during the learning phase do not
probe these effects. This might hamper the learning. On the other hand, there are indications that fast
atmospheric processes are the primary cause of model systematic errors [Rodwell and Jung, 2008].

An alternative learning strategy that is explicitly based on synchronization is outlined in the study by
Duane et al. [2007]. In this strategy the super-model equations contain nudging terms to the truth as in
our equation (6.5) and additional evolution equations are formulated for the parameters. If the super-
model synchronizes with the truth the parameters stop updating. This alternative learning strategy leads
to a particularly simple learning law that would be useful in the implementation of the super-model ap-
proach using more complex models. The strategy has been demonstrated with Lorenz systems [Duane
et al., 2009].

A main result of this study is that super-model solutions are not unique. However, the different super-
models have similar quality and therefore this does not pose a severe problem and makes finding a
suitable super-model solution easier. The existence of quite distinct super-model solutions of good qual-
ity remains a bit of a mystery.

The main caveat is that the super-model is trained on historical data and in a climate prediction problem
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is subsequently applied to simulate the response of the system to an external forcing. It is therefore not
guaranteed that the super-model will also simulate this response more realistically. The problem is not
peculiar to the super-modeling approach, but arises with climate models generally, since they are ẗunedön
historical data and are used to predict the climate response to a change in greenhouse gas concentrations.
In the super-modeling approach the issue can be addressed in the perfect model setting using climate
models of various complexity.
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Chapter 7

Variations in the method

The final method described in the previous chapter turned out to work quite well. Earlier variations of
the method that we will discuss in this chapter had some problems.

7.1 Procedure

Two different variations will be compared to the final approach. The first variation is changing the con-
nection coefficients to the exponents of the connection coefficients as in section 3.2. As the connections
will stay positive due to the exponents, the extra term in the cost function (section 3.4) is omitted. The
second variation is different from the final approach in that during the minimization the cost function is
not minimized for an increasing number of initial conditions, but for all initial conditions at once, which
is basically the last step of the final approach.

To test the methods 100 minimizations of the cost function are initialized from random sets of initial
connection coefficients in the range of 4 to 10. For a fair comparison the same set of initial connection
coefficients is used for all experiments. To take into account the exponents in the first variation, the
natural logaritm of the initial connection coefficients is taken as initial connection coefficients for this
variation. For each of these initial conditions the program will try to find a super-model. If the solution
gets too large (larger than 1025) the program breaks the loop and counts a floating point exception,
which is an error that arises when the numbers get too large (tend to infinity). The value 1025 is much
larger than a solution for the Lorenz 63 system, as the x and y variables vary typically between -25 and
25 and the z variable between 0 and 45. This means that a floating point exception cannot be avoided
if the solution gets this large.

Super-model solutions will be easier to find if model imperfections are small. Therefore we consider
different magnitudes of the parameter perturbations in the imperfect models, as detailed in the next
section.

7.2 Different perturbations

The three sets of perturbed parameters are given in table 7.1. The first set of parameters have pertur-
bations between 1.5 and 2 %, the second set has perturbations of 9 to 10 % and the third set up to
20%. The individual imperfect models can be found in figure 7.1. The figure shows that for the small
perturbations of up to 2%, the attractor is still very similar to that of the truth, but for perturbations
of 10% the differences are clearer and for a 20% perturbation the solutions are even less comparable to
that of the truth. This supports the idea that for larger perturbations of the parameter values, it will
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7. Variations in the method

σ ρ β

Truth 10 28 8
3

Model 1 10.2 (2%) 27.44 (2%) 2.71 (1.5%)
Model 2 9.8 (2%) 28.42 (1.5%) 2.83 (2%)
Model 3 10.15 (1.5%) 28.56 (2%) 2.61 (2%)
Model 1 11 (10%) 25.2 (10%) 2.91 (9%)
Model 2 9 (10%) 30.52 (9%) 2.93 (10%)
Model 3 10.9 (9%) 30.8 (10%) 2.4 (10%)
Model 1 12 (20%) 22.4 (20%) 3.17 (19%)
Model 2 8 (20%) 33.32 (19%) 3.2 (20%)
Model 3 11.9 (19%) 33.6 (20%) 2.13 (20%)

Table 7.1: Three sets of perturbed parameters for the three imperfect models for the Lorenz 63 system.
The sets of perturbations are about 2%, 10% and 20%.

Final method Variation 1 Variation 2
1 to 2% 100 89 99
9 to 10% 100 92 98
19 to 20% 100 55 85

Table 7.2: The number of runs that give a solution for the three different minimization methods for three
different sets of imperfect models shown in table 7.1. A total number of 100 runs was calculated.

be harder to find a good set of connection coefficient.

In table 7.2 the number of times that a minimum is found in the cost function is shown for all three
minimization methods and for all three sets of perturbed parameter values. All solutions found for each
of the three methods and each of the parameter sets were good solutions, judged on the basis of looking
at the attractor. For both variations the number of found minima decreases with increasing size of
perturbation of the parameter values, which is not the case for the final method. This suggests that the
final method is the best method of the three. Variation 1 that makes use of the exponents, encounters
most floating point exceptions of all methods, especially for the larger perturbations.

We also checked whether the minima that were found were unique. This was done by checking whether
the difference between all connection coefficients was less than a certain tolerance. The results for dif-
ferent tolerances can be found in table 7.3, which contains the percentage of unique super-models.

The final method and variation 2 were able to find all different minima, whereas variation 1 found a
smaller range of minima. This may indicate an advantage of using variation 1, since apparently the
method finds the same minimum for different initial conditions. The chance that this is a more global
minimum is larger than for the other two methods.

Final method Variation 1 Variation 2
Tolerance 0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5
1 to 2% 100% 100% 100% 98% 46% 12% 100% 100% 84%
9 to 10% 100% 100% 100% 95% 55% 18% 100% 100% 100%
19 to 20% 100% 100% 100% 100% 76% 25% 100% 100% 100%

Table 7.3: The percentage of the runs that resulted in a unique super-model. Unique means in this
context that at least one of the connection coefficients has a distance of more than the tolerance to any
of the other minima. The results are shown for different tolerances, namely 0.1, 0.25 and 0.5.
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Figure 7.1: Solution for the three perturbed unconnected models (black) and the truth (grey) for the
Lorenz 63 system for different imperfect models from table 7.1.
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Chapter 8

Results

Some results are already shown in chapter 6, but in this section we include some extra results. First we
will study the influence of the choice of parameters on the learning process. The second topic deals with
a model for which we expect certain values for the connection coefficients to work well. Do these values
indeed work well and are they the values found by the learning process? In the last topic we will study
the connection of three models that are similarly wrong. Can these models be connected such that the
solution is still a good approximation of the truth?

8.1 The influence of parameters

Chapter 4 was devoted on how we should choose the parameters γ, ∆ and the initial conditions. Do
these parameters have as much influence on the learning process as we might think, or does the choice of
parameters have little effect on the learning process? To answer these questions we varied the different
parameters and tried to find an effect on the learning process (mainly on the cost function) and on the
super-models found for each of the three small chaotic dynamical systems.

8.1.1 Varying γ and ∆

γ and ∆ are used to limit the influence of chaos. In this section we will study the influence of γ and ∆ on
the learning process and thus on the found super-models. The values for γ and ∆ are given in table 8.1
for the Lorenz 63 system. We roughly tested 5 situations to see what the effect on the learning process
is. All these situations were tested for the same set of 10 different initial connection coefficients and in
all situations 10 unique minima were found. In all these situations the cost function is evaluated on the
same set of K = 150 initial conditions.

A γ and ∆ large

B γ small and ∆ large

C γ large and ∆ small

D γ and ∆ small

E the standard γ and ∆
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(b) B: γ = 0.16, ∆ = 300
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(c) C: γ = 0.81, ∆ = 50
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(d) D: γ = 0.16, ∆ = 50
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(e) E: γ = 0.4, ∆ = 100

Figure 8.1: The cost function for all 5 combinations of γ and ∆ for 10 different sets of initial connection
coefficients during the learning process.

Situation γ ∆
A 0.81 300
B 0.16 300
C 0.81 50
D 0.16 50
E 0.4 100

Table 8.1: 5 different combinations, A to E, of γ and ∆ used in the Lorenz 63 system.

In figure 8.1 the value of the found minimum of the cost function is plotted during the learning process
for all 5 situations. The figures for all situations do not differ much. The shapes are similar, since the
same sets of initial connection coeficients are used for each of the situations. Most of the lines stay
low, and seem to converge to a certain value almost immediately, while only 2 or 3 have a higher value
and show more variations, though convergence is found in these cases as well. Notice that for situation
D the values for the cost function are much lower than for the other minima. As we haven’t placed a
normalisation term for γ, this could cause these small values, but comparing to situation B, where the
value of γ is just as small and ∆ is even larger, the cost function is much smaller than the higher lines
shown, indicating that these higher lines must represent local minima that may not be very good.

Some of the minima were found with different values for γ and ∆ just by starting from the same initial
connection coefficients. This only happened when the connection coefficients barely changed from the
initial conditions. For initial connection coefficients that did lead to a large change in the learning pro-
cess, the different values of γ and ∆ gave different minima. This shows that using different parameters
does have an effect on the learning process.

Looking at the solutions of the resulting super-models (not shown), we found that the differences are
quite small, though in some cases the solutions are visually of less quality. For the smaller value of
γ = 0.16 in combination with ∆ = 50 for instance, we found for example a solution with a point attrac-
tor (figure 8.2). Also one or two other solutions for γ = 0.16 had a lower quality, suggesting that taking
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Figure 8.2: The solution for one of the super-models found with γ = 0.16 and ∆ = 50, which converges
to a point.

a small γ and a small ∆ does not give enough information.

As we can find different super-models by just changing parameters, the cost function should look different
for different combinations of γ and ∆. In figure 8.3 a cross section of the cost function is shown for one of
the minima found from the same initial connection coefficients for each of the 5 situations. The figure is
only for a cross section through Cz

31, but all other cross sections look similar. Notice that the thick black
line representing the cost function for the training set is smooth in most situations. For ∆ = 50 and for
the standard parameter values this smoothness can also be found in the cost function for different sets
of initial conditions, but this is not the case for ∆ = 300, where there are many local minima and the
cost function for different sets of initial conditions differ substantially. We expect that this is primarily
caused by chaos being more dominant in the cost function. The figure for situation C and D also show
that the learning process was not able to find a true minimum, as it stopped on the way to it. Note that
for situation A, B and E the minimum is found. The reason that the minimum is not found in situation
C and D may be because the slope of the cost function is so flat.

This experiment indicates that the choice of γ and ∆ is not very important for the learning process for
the Lorenz 63 system, though it seems that ∆ should not be chosen too large, as this causes the number
of local minima to grow and that the normalisation term should be altered in case of low values of ∆.
For the Rössler system choosing γ and ∆ is even less important than for the Lorenz 63 system. This
can be expected as the attractor of the Rössler system is much simpler and less chaotic than that of the
Lorenz 63 system. It turns out that for the Lorenz 84 system, the choice of γ and ∆ is more important,
which is probably due to the fact that the attractor has a more complicated shape.

The problem with the Lorenz 84 system is that the connection coefficients for many combinations of γ
and ∆ do not change during the learning process, when we take the conjugate gradient method described
in section 3.5.1 and 3.5.2. Therefore the amoeba method was used (section 3.5.3). The cost function,
which was very small, was not the cause of this, as it was in the case of Lorenz 63. It seems that
for the Lorenz 84 system something else is going on. Still it is striking that solutions for some of the
super-models for which no actual minimum is found behave so well, like the super-model solution shown
in figure 8.4, for which also the statistical measures show good results.

What seems to happen in the Lorenz 84 system is that the learning process is not able to change the
connection coefficients for some combinations of γ and ∆. For these values the learning process proba-
bly gets too little information, which can be explained by the more complicated shape of the attractor.
Maybe the shape of this attractor should be taken into account when choosing γ and more importantly
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(b) B: γ = 0.16, ∆ = 300
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(c) C: γ = 0.81, ∆ = 50
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(d) D: γ = 0.16, ∆ = 50
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Figure 8.3: The cost function for connection constant Cz
31 for all 5 combinations of γ and ∆ for 10

different sets of initial conditions. The darkest line represents the cost function of the training set, the
thinner lines represent different sets of initial conditions.
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have a minimum.
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Figure 8.5: The cost function for connection constant Cz
32. Left for the value found by the learning process

and right the changed value, such that the cost function has an actual minimum for this connection
constant.

∆. The Lorenz 63 system needs approximately 0.7 to 0.8 time units to circle around one of the wings.
For the Rössler system one circle is approximately 5 time units. These values are comparable to the
values chosen for ∆ and it might therefore help to choose ∆ comparable in size to one circle on the
Lorenz 84 system as well, which is about 5 time units. Therefore the value for ∆ will be chosen to be
8 time units, instead of the 2 time units, which was apparently too small. Also γ is taken larger to get
more information into the cost function (γ = 0.8). The autocorrelation function also indicates that there
is still information of the initial condition left at τ = 8 time units.

For these values the Lorenz 84 system was able to find a good minimum and therefore it seems that
choosing γ and ∆ just based on chaos might not be the best strategy in all situations. The properties of
the attractor need to be taken into account too. Overall it seems that small values of the cost function
make it more difficult to find minima for the conjugate gradients method, but in some cases this can
be solved by changing the minimization term. In other cases the amoeba method might be a solution,
which was able to find a minimum for the Lorenz 84 system.

8.1.2 Manually changing connection coefficients

For the Lorenz 84 system it seeemed clear that in many cases no minimum of the cost function was
found. Therefore we decided to check what happens to the solution if we manually change one of the
connection coefficients towards a minimum. The results for this on the cost function are shown in figure
8.5, where the minimum is situated in the middle of the figure. On the left the situation is shown for
the ‘minimum’ found by the process for Cz

32 = 3.47. This sort of figures were found for most connection
coefficients. On the right we have manually changed Cz

32 to 5.9.

In figure 8.6 the solutions for the two super-models are shown. By eye it seems that the changed super-
model is not as good as the original, but it still is a rather good approximation of the truth. By using
the different measures we will find out whether the solutions are equally good or whether one of them is
better.

Mean, standard deviation and covariance

The mean standard deviation and covariance can be found in table 8.1.2 for the originally found super-
model and the changed super-model. The values for the original super-model are closer to the truth for
all variables, which we might have expected from the shape of the attractor. Still this seems to be an
odd result as the value of the cost function is lower for the changed super-model. Notice however that
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Figure 8.6: The solutions for the super-model found by the learning process and the super-model that
was created by changing the connection constant Cz

32, such that the cost function has a minimum for it
as shown in figure 8.5.

Truth Found by process Changed
Mean x 1.015 (0.008) 0.959 (0.012) 0.912 (0.015)
Mean y 0.063 (0.018) 0.058 (0.024) 0.153 (0.032)
Mean z 0.271 (0.005) 0.231 (0.007) 0.180 (0.014)
SD x 0.589 (0.014) 0.569 (0.021) 0.647 (0.022)
SD y 0.919 (0.002) 0.903 (0.002) 0.916 (0.004)
SD z 0.908 (0.002) 0.855 (0.002) 0.865 (0.004)
Cov xy -0.053 (0.018) -0.058 (0.022) -0.142 (0.027)
Cov xz -0.038 (0.003) -0.009 (0.004) 0.028 (0.009)
Cov yz -0.075 (0.006) -0.049 (0.005) -0.074 (0.007)

Table 8.2: Mean, standard deviation (SD) and covariance (Cov) for the originally found set of connection
coefficients (Found by process) and the set with one of the connection coefficients changed (Changed)
for the Lorenz 84 system. Between brackets the 95% error estimation is indicated.

the values of the changed super-model are close to the truth as well, so it is still a good approximation,
but it may not be better than the original super-model.

Autocorrelation function

The autocorrelation for both the changed and original super-models are plotted in figure 8.7. It seems
that the autocorrelation is a good approximation for both sets as well, but again the original super-model
is closer for all variables. The changed minimum is still quite good, but it is clearly not as good as the
original.

Synchronization

For synchronization with the truth we found for the default values of the tolerances (tol = 0.1 and
tol2 = 0.5) that both super-models were not able to synchronize with the truth for nudgings under 30.
Even increasing tol2 up to 1 (which is already quite large), did not help the synchronization. Therefor
this measure could not be used for comparison in this case and we can only use the other measures to
compare the solutions. Still as both models were unable to synchronize the quality of the two super-
models is similar in this measure as well.
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Figure 8.7: The autocorrelation functions of the two super-models and the truth. The grey shaded area
indicates the 95% error band.

From the measures it seems that changing the connection constant to a minimum is not necessarily
better, but the differences in quality are small. This suggests that changing the connection coefficients
to a minimum will not very much improve the quality of the super-model as apparently all super-models
in that range are reasonably good. This can also be explained by the flat slopes of the minima, suggesting
that any value for the connection constant gives a low value for the cost function.

8.1.3 The set of initial conditions

Another important parameter is the training set. The number of initial conditions in the training set
is large enough as it seems that adding more initial conditions for both Lorenz 63 and Rössler are not
changing if we add more initial conditions (figure 8.8). This cannot be checked in this way for the Lorenz
84 system as it is not obtained by adding initial conditions, but plots of the cost function for different
sets of initial conditions (figure 8.9) show that the dependence on the training set is small. This implies
that also for the Lorenz 84 system enough initial conditions are used.

Changing the number of initial conditions will have little effect on the solutions, but can taking different
sets of initial conditions change the learning process? The initial conditions are now nicely spread over
the attractor (figure 4.3), but judging by the small amount of initial conditions needed to actually change
the connection coefficients, the spread of the initial conditions may have little influence as well. To test
whether this is indeed the case we took new sets of initial conditions for the Lorenz 63, Rössler and
Lorenz 84 systems, such that the initial conditions are accumulated in a small part of the attractor.

The new spread is shown in figure 8.10. For the Lorenz 63 system all initial condtiions are positioned on
the tip of the right wing. For the Rössler system the initial conditions are positioned on a line that does
not cross the top of the attractor and for the Lorenz 84 attractor we have chosen all initial conditions in
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Figure 8.8: The values of the connection coefficients for the Lorenz 63 and Rössler systems for the
standard values for γ, ∆ and K during the learning process.
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Figure 8.10: The new spread of the initial conditions for the Lorenz 63, Rössler and Lorenz 84 attractors.

the inner circles of the attractor.

It turns out that taking a different spread of initial conditions indeed has a low influence on the systems.
Especially the Lorenz 63 and 84 systems have by visually inspecting the attractors equally good solutions.
The learning process is also able to find these for the new spread. Also for the Rössler system it seems
that the difference in the spread does not even help that much as for equal initial connection coefficients
the minima are really close together. Apparently the dependence on the spread of initial conditions is
not large for the small dynamical systems.

We did find that in some cases low values of the cost function were found for periodic orbits. These
orbits run over the whole attractor and therefore give a low value of the cost function. This can happen
even for an evenly spread set of initial conditions and is therefore hard to recognize. It can however be
seen in the autocorrelation functions that result in a periodic function as well. It seems however difficult
to use the spread to avoid these periodic orbits.

8.2 Expected outcomes

The current way of combining models is by just taking combinations of the outcomes of imperfect models,
determined by how good the resulting solution is, but also by taking a higher weight for the models that
we think work well. In this section we want to find out whether it is possible to do a similar thing with
the connection coefficients. A combination of models is introduced that have one parameter in common
with the truth. For this combination an expected value is introduced.
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8.2. Expected outcomes

σ ρ β

Truth 10 28 8
3

Model 1 10 25.2 (-10%) 2.93 (+10%)
Model 2 11 (+10%) 28 2.4 (-10%)
Model 3 9 (-10%) 30.8 (+10%) 8

3

Model 1 10 22.4 (-20%) 3.2 (+20%)
Model 2 12 (+20%) 28 2.13 (-20%)
Model 3 8 (-20%) 33.6 (+20%) 8

3

Model 1 10 19.6 (-30%) 3.47 (+30%)
Model 2 13 (+30%) 28 1.87 (-30%)
Model 3 7 (-30%) 36.4 (+30%) 8

3

Table 8.3: Three sets of perturbed parameters for the three imperfect models for the Lorenz 63 system.
All imperfect models have exactly one parameter in common with the truth. The other parameters are
perturbed for respectively 10, 20 and 30 %.

x y z

C12 0 large ?
C13 0 ? large
C21 large 0 ?
C23 ? 0 large
C31 large ? 0
C32 ? large 0

Table 8.4: The expected size of the connection coefficients belonging to the combination of models in
table 8.3.

8.2.1 Random initial conditions

We tested with the combination of models given in table 8.3 for the Lorenz 63 system. Here each of the
models has exactly one parameter in common with the truth and the other two are perturbed with the
same value, but with different signs. As each parameter appears for precisely one variable, we expect
that the model might have more skills when it comes to predicting the course of this variable. This is a
very crude statement as the variables are all dependent on each other, so the situation is probably more
complicated. Therefore the expected values might not be good at all.

With the above reasoning we arrive at expected values shown in table 8.4. The information of the models
that have the correct parameter for a certain variable should be valued high. Model 1 has for instance
the correct value for σ and should therefore perform better on the x variable. Therefore the information
from model 1 should be high valued in models 2 and 3, whereas the influence of model 2 and 3 on model
1 for the x variable should be close to zero. Nothing can be said however for the connection between
models 1 and 2 as they have an identical perturbation.

We now choose a random set of connection coefficients in the range of 0 to 10, for which the resulting
connection coefficients after minimization are shown in table 8.5. The sets of connection coefficients do
have some similarities, caused by the fact that the perturbations in the sets of models only differ in size,
but some large differences exist as well, indicating that the models do not behave similar due to larger
perturbations in parameters.

A comparison with the expected values shows that the size of some of the connection coefficients is as
expected, but most of the connection coefficients are not comparable with the expected values. In some
cases the coefficients that we expected to be large and the ones that we expected to be close to zero are
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8. Results

10% 20% 30% Expected
C1

12 8.7 8.1 4.9 0
C1

13 5.8 6.5 4.2 0
C1

21 5.8 3.8 1.5 large
C1

23 8.9 8.2 7.1 ?
C1

31 4.1 4.4 4.5 large
C1

32 12.7 12.1 8.8 ?
C2

12 7.4 4.3 9.7 large
C2

13 0.9 6.0 9.3 ?
C2

21 4.7 5.1 8.1 0
C2

23 9.6 4.2 8.0 0
C2

31 6.2 4.7 7.4 ?
C2

32 5.5 5.5 10.9 large
C3

12 3.7 1.9 1.4 ?
C3

13 0.8 3.2 1.2 large
C3

21 16.7 18.6 12.5 ?
C3

23 9.8 9.3 7.9 large
C3

31 0.0 4.9 0.0 0
C3

32 3.3 6.8 3.8 0

Table 8.5: The value of the connection coefficients found by the learning process started from ran-
dom initial connection coefficients and the expected size of the connection coefficients belonging to the
combination of models in table 8.3.

even approximately of the same size. It can be that the learning process found a different minimum,
than the minimum that we expected. The chance of this happening is rather large as many different
minima exist. Therefore in the next section we will not take random initial connection coefficients, but
coefficients that are already close to the values we would expect to give a good super-model.

8.2.2 An expected minimum as initial condition

Looking at the ranges of the found minimum in table 8.5 we chose the initial connection coefficients
to be as in table 8.6. The expected values are just used as initial connection coefficients and not as a
super-model as the problem is rather complicated and it is not exactly clear how large we should choose
the connection coefficients. By starting with the expected values we can however be quite sure to find
a minimum close to the expected values. The resulting connection coefficients are shown in table 8.6 as
well. Indeed most of the connection coefficients are still close to the expected value, but there are some
exceptions, for instance C

y
23 and C3

31. To see whether the expected values give an equally good or even
better super-model, we will use the measures introduced in chapter 5 again.

8.2.3 Comparing super-models

In figure 8.11 the solutions of the resulting super-models are plotted. This figure shows that the attrac-
tors of the solutions for the super-models with the expected values are shifted to above and are therefore
less close to the truth than the other solutions. This suggests that the solutions for expected values are
not as good as those for the random values. The values for the cost function give a similar result as
the values for the unexpected values are 0.0002, 0.001 and 0.017 for a perturbation of 10, 20 or 30%
respectively, but for the expected values this was 0.03, 0.11 and 0.11 respectively.

In table 8.7 the mean, standard deviation and covariance can be found. Due to the large errors it is not
possible to use all results to a full extend, but for instance the standard deviations and the covariance for
x and y have smaller errors and can therefore be used to compare the solutions. The values are all quite
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8.2. Expected outcomes

Initial 10% 20% 30% Expected
C1

12 0 0.3 0.4 1.0 0
C1

13 0 0.2 0.3 1.4 0
C1

21 10 9.8 9.6 9.3 large
C1

23 2 2.0 2.0 2.1 ?
C1

31 10 9.9 9.7 9.2 large
C1

32 2 2.0 1.8 2.0 ?
C2

12 10 4.3 7.2 5.7 large
C2

13 2 6.0 9.8 8.2 ?
C2

21 0 1.6 1.1 1.5 0
C2

23 0 9.9 10.0 9.6 0
C2

31 2 2.9 2.5 3.5 ?
C2

32 10 10.6 10.5 11.2 large
C3

12 2 0 0 0 ?
C3

13 10 8.1 8.2 8.7 large
C3

21 2 2.1 2.5 2.7 ?
C3

23 10 10.0 10.1 10.5 large
C3

31 0 2.4 3.2 3.4 0
C3

32 0 0.2 0.8 0.2 0

Table 8.6: The value found of the connection coefficients found by the learning process started from
the values in the column ‘Initial’ and the expected size of the connection coefficients belonging to the
combination of models in table 8.3.

10% 20% 30%
Truth Random Expected Random Expected Random Expected

Mean x 0 0.006 (0.22) -0.003 (0.15) -0.0003 (0.21) 0.003 (0.15) 0.0005 (0.19) -0.003 (0.10)
Mean y 0 0.006 (0.22) -0.003 (0.16) -0.0003 (0.21) 0.003 (0.16) 0.0005 (0.19) -0.003 (0.11)
Mean z 23.55 23.58 (0.02) 23.94 (0.008) 23.64 (0.02) 24.72 (0.04) 23.56 (0.001) 24.64 (0.007)
SD x 7.92 7.96 (0.004) 7.65 (0.001) 7.93 (0.003) 7.55 (0.002) 7.87 (0.002) 7.36 (0.003)
SD y 9.01 9.03 (0.008) 9.01 (0.007) 9.05 (0.008) 9.10 (0.007) 9.13 (0.007) 9.16 (0.006)
SD z 7.62 8.65 (0.022) 8.82 (0.009) 8.72 (0.021) 9.11 (0.005) 8.95 (0.014) 9.65 (0.005)
Cov xy 62.79 63.17 (0.07) 60.67 (0.02) 63.07 (0.06) 60.27 (0.02) 62.96 (0.04) 58.80 (0.04)
Cov xz 0 0.02 (0.75) -0.008 (0.50) -0.001 (0.72) 0.01 (0.49) 0.002 (0.68) -0.01 (0.35)
Cov yz 0 0.02 (0.61) -0.009 (0.52) -0.002 (0.60) 0.01 (0.56) 0.002 (0.60) -0.01 (0.46)

Table 8.7: The mean, standard deviation (SD) and covariance (Cov) for the two super-models for each of
the perturbations. The values between brackets indicate the 95% error estimation. The first super-model
was found from a random set of initial connections (Random), whereas the second was found by starting
with an expected minimum of the cost function (Expected).
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Figure 8.11: Solution for the three perturbed models without connection (black) and the truth (grey)
for the Lorenz 63 system.
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Figure 8.12: The autocorrelation functions for the two super-models and the truth, including a 95% error
band around the truth in grey, for all three perturbations for the x variable. Similar results were found
for y and z.

close to that of the truth, but the values for the first super-models are closer than that of the expected
super-models. Also for the autocorrelation, shown for x in figure 8.12, shows that the expected models
give solutions that are much further away from the truth than that of the randomly found super-models.

For synchronization, however we find completely different results. The randomly found super-models
need a nudging strength of 10, 13 and 15 for 10, 20 and 30% perturbations respectively, whereas the
expected super-models need strengths of 12, 8 and 9. The tolerances were chosen equal in each of the
experiments (tol = 0.2 and tol2 = 0.4), as well as the initial conditions. Therefore it seems that for
synchronization the expected values do work well. Still notice that only for the larger perturbations this
is the case. Why the results for these attractors are so different is not clear, but it might just be that,
while the attractors do not match, the trajectories are not that far off. Still synchronization in most
cases agrees with the other measures and this is just an exception.

It is clear from the other measures that the expected values for the connection coefficients do not result
in a super-model that has comparable skills to the super-models found with random initial connection
coefficients. It may be possible to find different expected values for this that do result in a better super-
model, but this experiment shows that we ought to be carefull with expected values. It also indicates
that the learning process to find a good super-model in an objective way, plays an important role.
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(a) Lorenz 63

σ ρ β

Truth 10 28 8
3

Model 1 11 (+10%) 25.48 (-9%) 2.88 (+8%)
Model 2 10.9 (+9%) 25.76 (-8%) 2.93 (+10%)
Model 3 10.8 (+8%) 25.2 (-10%) 2.91 (+9%)

(b) Lorenz 84

a b F G

Truth 0.25 4 8 1
Model 1 0.23 (-8%) 3.64 (-9%) 7.2 (-10%) 0.89 (-11%)
Model 2 0.2275 (-9%) 3.6 (-10%) 7.12 (-11%) 0.92 (-8%)
Model 3 0.225 (-10%) 3.56 (-11%) 7.36 (-8%) 0.91 (-9%)

(c) Rössler

a b c

Truth 0.2 0.2 5.7
Model 1 0.216 (+8%) 0.218 (+9%) 6.27 (+10%)
Model 2 0.218 (+9%) 0.22 (+10%) 6.156 (+8%)
Model 3 0.22 (+10%) 0.216 (+8%) 6.213 (+9%)

Table 8.8: The sets of perturbed parameters for the Lorenz 63, Lorenz 84 and Rössler systems. The
models all have perturbations with the same sign and are perturbed up to 11%.

8.3 Three similarly wrong imperfect models

One of the advantages of using multiple imperfect models to find a solution, is that the strengths of the
different models can be exploited to find a better solution. But there are models that have similar flaws
and strengths. In that case the exchange of information might not add value, as all models already have
(a large part of) the information that can be provided by the other models. To see if this is true we
created similarly wrong imperfect models by perturbing the parameters with similar size and equal sign
and tried to find a good combination for a super-model. This experiment is done for all three systems,
for which the parameter values are given in table 8.8.

As the perturbations for each parameter have the same sign, the imperfect models are approximately
equal too. In figure 8.13 one of the models without connections to the other models and the super-model
are shown for each of the three systems. The attractors of super-model and the unconnected model are
very similar, indicating that there has not been much improvement. Also with different initial connection
coefficients, the solution did not improve.

These results show that our hypothesis was right. If the models that are combined have the same
strengths, this can not produce a much better super-model. This clearly indicates that choosing a set
of models may be more important than choosing for instance the parameters for the systems. This also
shows that the strengths of the different models can be exploited by combining imperfect models by
information exchange, as with models with different strengths we are able to improve the simulations. It
even suggests that including a model that we know to be unrealistic in some sense, but that is different
in its imperfection from the other models, can improve the performance of the super-model.
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Figure 8.13: The solutions for the unconnected imperfect model 1 on the left and the resulting super-
models on the right. For each of the three systems one imperfect model is shown, since the other models
look (almost) identical.
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Chapter 9

Discussion

9.1 Multiple solutions

We have found that we can find multiple good minima by just starting from different initial connection
coefficients. This is good news as finding a combination will not be hard, but on the other hand it
does make it harder to find a deeper minimum as the method is very likely to find a local instead
of a global minimum. Trying a method like the amoeba method, that explores the landscape of the
cost function, might help to find such a global minimum, but still the method depends on the initial
conditions, indicating that it is not able to find the global minimum.

9.2 Measures

There are six measures that can be used for larger models as well, namely: mean, standard deviation
covariance, autocorrelation, the value of the cost function and synchronization. Especially the cost func-
tion is an important measure, as it is used in the learning process. The cost function is dependent on
the different parameters γ, ∆ and K, that are on their turn dependent on the system, as described in
section 8.1. Therefore these parameters have to be chosen well, which will be harder since the truth will
in practice only consist of measurements. Due to the larger time to calculate solutions, a trial and error
approach will not work either. Therefore it is encouraging to know that the learning process is not too
dependent on the parameters in all cases.

The statistical measures can definitely be calculated in practice. There is enough knowledge of the truth
to calculate the values for the truth as well and compare the super-models to the truth. Still this will
be based on historical values and the values might be much different in the future, but this problem will
exist for all climate models available.

Also for synchronization measurements of the truth are needed to nudge the model towards the truth.
In the study for data assimilation [Yang et al., 2006] the nudging didn’t necessarily take place at each
time step. Synchronization could also take place if the system was nudged every 8 or even 25 time steps.
This did result in higher nudging strength, but it does mean that not that many observations in time
are needed for the nudging. From the daily practice of data assimilation for weather forecasting we
know that enough observations are available to obtain a realistic estimate of the complete state of the
atmosphere, which suggests that the observational network is dense enough for synchronization to occur.

Allthough synchronization might have potential, there are also some difficulties with it, which were also
mentioned briefly in section 5.4. Synchronization is strongly dependent on the tolerances used in the
definition. Especially changing the ǫ has a rather drastic effect. When a certain treshold for ǫ is reached,
the nudging strength needed for synchronization will be much smaller. For different supermodels this
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9.3. Application to climate models

treshold is different, which causes super-models that are comparable in quality to need very different
nudging strengths. We even saw in section 8.2.3 that sometimes the synchronization does not agree with
the other measures and although this is not very common we cannot check how good synchronization
works for climate models and it may therefore be a complicated measure to use.

It seems that it may be necessary to introduce different measures or to adapt the existing measures to
the larger climate models to be able to say anything about the quality of the solutions. Especially in
synchronization it might be necessary to do some testing. Furthermore it seems to be important to use
multiple measures to compare the quality of super-models.

9.3 Application to climate models

As discussed in the previous two sections as well as in section 6.5 the application of the approach to
larger climate models may be difficult. This is mainly caused by the fact that the information about
the truth will consist of measurements and it is not clear if enough measurements are available for the
learning process. As shown in section 8.2 it may be hard to find combinations that work well based on
what we expect to work. Still the low dependence of the learning process on the spread of the initial
conditions and the low number of initial conditions that is actually needed (section 8.1.3) suggest that
not much information of the truth is needed.

Another important issue is whether all variables need to be connected. As the climate models have a
much larger number of variables it may be necessary to choose a couple of them to connect. As syn-
chronization can work with only one variable connected this can work as well. In that case it should be
studied which variables should be connected to get a good solution. Also it is important to use climate
models that do not have the same strengths, but that can contribute to a better solution (section 8.3).

Climate models make use of grids to do simulations. These grids consist of multiple points that are
situated at a certain distance from each other. This distance and the spread of the grid points can be
different for various models. Regridding should be applied to the models before the information exchange
can take place. Regridding is a standard procedure in climate modeling, so this will probably not pose
a problem.

The problem of predicting the future is that we cannot be sure how well models will make simulations
of the future in advance. As mentioned in the introduction climate models are trained on historical
measurements, but as the climate is changing it is not true that the models will perform well on future
climate if they do well on historical climate simulations. This is a general problem in climate modeling.
This problem can be addressed in the setting of the small chaotic dynamical systems for which the truth
is already known.
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Chapter 10

Conclusion

The goal of this study was to find a way of connecting imperfect models and combining them into a
super-model such that the super-model solutions can outperform the separate imperfect models. We were
successful in finding these connections in all three small chaotic dynamical systems for many different
imperfect models by using a learning process to objectively determine these connections. Many different
combinations of connection coefficients were capable of improving the simulations, which makes it easy
to find a good super-model.

The measures that were introduced showed that the super-models were indeed good approximations
of the truth and they can be used to compare different super-models. The measures agree with each
other and with the image of the attractor that could be used to monitor the measures. Also the cost
function seems to be a good quality measure to use in the learning process as it was generally true that
super-models with low values for the cost function were a good approximation of the truth.

The method needs models with a variety of strengths to improve the simulations, which was shown in
section 8.3 so the choice of which models to connect is important. It is also of some importance to
choose the parameters needed in the learning process, but the dependence on them for the small chaotic
dynamical systems is not very large in all cases (section 8.1).

The approach as we have implemented it is able to find good super-model solutions for almost all initial
connection coefficients. Finding a global minimum, however, is hard, even for the amoeba method, due
to the large 18-dimensional space of connection coefficients. On the other hand most super-models found
have a high enough quality to use and it may therefore not be necessary to look for a global minimum
at all.
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Chapter 11

Commonly used terms

Term Definition Section

Amoeba minimization A minimization method that explores the landscape
of a function to find a global minimum

3.5.3

Attractor A bounded set that attracts the solutions of a dy-
namical system

2.1

Autocorrelation function The similarity of a function to itself at two different
points in time

5.3

Bifurcation theory The study of studying the behaviour of a dynam-
ical system when the values of the parameters are
changed.

2.1

Chaos Sensitive dependence on initial conditions 2
Conjugate gradients A minimization method 3.5.1
Connection coefficients Determine the information exchange between models 3.2
cost function A function that indicates the difference between

truth and model
3.4

Covariance Similarity between two variables in a system 5.2
Dynamical system The flow of an initial value problem (in this study) 2
Error estimation An indication of how large the errors in the data are 5.2
Floating point exception An errror that arises when the numbers in a com-

puter program get too large (tend to infinity)
7.1

Global minimum The lowest minimum of a function 3.5.1
Hopf bifurcation A transition for periodic solutions to fixed points 2.1
IPCC Intergovernmental Panel on Climate Change 1
Local minimum A minimum of a function that is not the lowest 3.5.1
Lorenz 63 Small chaotic dynamical system used for testing 2.1
Lorenz 84 Small chaotic dynamical system used for testing 2.3
Lyapunov stability A stability criterium for fixed points of maps 5.4
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11. Commonly used terms

Term Definition Section

Monte Carlo approach Repeating an experiment many times for random ini-
tial conditions

3.5.2

Nudging Trying to push a model in the direction of another
model

3.2

Robustness The dependence of the approach on which initial con-
ditions are used and the ability to find a minimum
from any initial condition

6.3.1, 7

Rössler Small chaotic dynamical system used for testing 2.2
Simulated annealing A strategy of slowly coming to a global minimum 3.5.2
Standard deviation Spread of a data set with respect to the mean value 5.2
Super-model Combination of multiple imperfect models 3.3
Synchronization Linking chaotic systems can lead to synchronization. 1.1, 5.4
Training set The set of initial conditions used in the learning pro-

cess
6.3.1

Truth A small chaotic dynamical system with certain pa-
rameter values that is used as reality

3.1
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