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Abstract

In this thesis we study integral points of bounded height on three log Fano threefolds,
following the paper Integral Points of Bounded Height on a log Fano Threefold by
Florian Wilsch. We parametrize the integral points on the log Fano threefolds using
the universal torsor method and obtain lattice points satisfying certain (coprimality)
conditions. With the height function induced by log-anticanonical bundles on the
threefolds, we bound the integral points, leading to three counting functions. To obtain
asymptotic formulae for two of the counting functions, we apply Möbius inversion and
we replace sums by integrals. We show that this method cannot be extended in a
straightforward way to the third counting function and instead we determine an upper
bound.
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1 Introduction

For a Fano variety X over a number field k such that the set of k-rational-points is
Zarisky dense inX, and an anticanonical height functionH ∶X(k) → R≥0, Manin’s con-
jecture predicts the asymptotic behaviour of the number of rational points of bounded
height that lie in an open subvariety V of X [10]. To be precise, it predicts the asymp-
totic formula

#{x ∈ V (k) ∶ H(x) ≤ B} ∼ cB log(B)r−1,
where r is the Picard number of X and c is a positive constant. This conjecture has
been proven for specific classes of Fano varieties (see for example [2] for toric varieties),
but remains open for many Fano threefolds.

An important tool in studying k-rational points on Fano varieties is the universal
torsor method; for example, Salberger used this method to reprove Manin’s conjec-
ture for toric varieties [19]. This method introduces a second variety, the torsor, to
parametrize the k-rational points of the Fano variety. The Ok-rational points on this
torsor are lattice-points satisfying certain coprimality conditions. The height function
can be lifted to this torsor and one obtains an expression for Ok-rational points on the
torsor in terms of Ok-tuples that satisfy certain equations and an inequality coming
from the height function.

In this thesis, we study integral points as opposed to k-rational points for k a number
field, and we use the universal torsor method. There is no conjecture like Manin’s
conjecture for such points, so we study specific examples, hoping to build a foundation
for an analogous conjecture.

In particular, we study the paper Integral Points of Bounded Height on a log Fano
Threefold by Florian Wilsch [24]. In this paper, the author considers the blow-up of
P3
Q = Proj(Q[a, b, c, d]) along the smooth conic C ′ = V (a2 + bc, d), denoted

π′ ∶X ′ → P3
Q,

and the two open subsets of X ′ given by U ′1 =X ′∖π′−1(V (b)) and U ′2 =X ′∖π′−1(V (a)).
Florian Wilsch constructs integral models of X ′, U ′1 and U ′2, denoted X ′,U ′1 and U ′2,
respectively, and a log-anticanonical height function H ′ ∶X(Q) → R≥0.
Theorem 1.1. [24, Theorem 1.1] Let X ′, U ′1, U

′
2, X ′,U ′1,U ′2 and H ′ be as above. Then

there exist open subvarieties V1, V2 ⊂ X ′ such that the counting functions N1(B) =
#{x ∈ U ′1(Z) ∩ V1(Q) ∶ H ′(x) ≤ B} and N2(B) = #{x ∈ U ′2(Z) ∩ V2(Q) ∶ H ′(x) ≤ B}
satisfy the asymptotic formulae

N1(B) =
20

3ζ(2)B log(B) +O(B),

N2(B) =
20

3
∏
p

(1 − 2

p2
+ 1

p3
)B log(B) +O(B log log(B)2).
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We work through the proofs given in [24] and add many details to the proof of the
counting function N1(B), and summarize the steps taken for the counting function
N2(B).

Additionally, we consider integral points of bounded height on the blow-up of P3
Q along

the smooth conic C = V (a2 + b2 + c2, d), denoted

π ∶X → P3
Q,

and see if the method Florian Wilsch applies in Section 5 of [24] extends in a straight-
forward way to this threefold. We remark that the conics C and C ′ are not isomorphic
over Q as C(Q) = ∅ while (1 ∶ 1 ∶ −1 ∶ 0) ∈ C ′(Q), so any results obtained are new.

Analogous to Florian Wilsch in [24], we consider the open subset of X given by U =X∖
π−1(V (a)) and construct integral models of X and U , denoted X and U , respectively.
We also construct a log-anticanonical height function H ∶ X(Q) → R≥0, which gives
rise to the counting function

N(B) =#{x ∈ U(Z) ∩ V (Q) ∶ H(x) ≤ B}

for an open subvariety V ⊂ X. This counting function gives rise to the following two
results:

(1) The method applied in section 5 of [24] does not extend to the counting problem
N(B) in a straightforward way;

(2) We have the upper bound N(B) ≪ϵ B7/6+ϵ.

Outline of the thesis

In the first chapter, we introduce all the theory needed to apply the universal torsor
method to the specific schemes we consider in this thesis. Each subsection outlines a
specific topic and we introduce examples whenever possible.

The second chapter concerns the parametrization of the integral points on both blow-
ups X and X ′. We first determine the Cox rings of both schemes over Q and then
determine an explicit expression of integral points on the blow-ups as lattice points
satisfying certain conditions, using torsors and their properties. We also define ex-
plicit height functions for the integral points on both blow-ups, giving rise to the three
counting functions N1(B), N2(B) and N(B).

We study these counting functions in Chapter 3. We first work through the proofs
Florian Wilsch gives for the asymptotic formula of N1(B), adding details in many
places, and we then summarize the steps taken for the asymptotic formula of N2(B) in
[24]. We show that N(B) can be written in terms of an arithmetic function θ1(b, x, z),
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which is not multiplicative, proving that the method from Florian Wilsch in Section 5
of [24] does not extend in a straightforward way to this counting function. We end the
chapter with an upper bound for N(B).

Notation

Throughout this thesis, a k-variety is an integral scheme of finite type over the base field
k. For any integer n ∈ Z>0 and any prime number p, denote by vp(n) the p-adic order
of n; it is defined as vp(n) = max{k ∈ Z≥0 ∶ pk ∣ n}. We write f(x) = g(x) +O(e(x))
as x → ∞ if there are constants x0 > 0, C > 0 such that ∣f(x) − g(x)∣ ≤ Ce(x) for all
x ≥ x0. We write f(x) ≪ g(x) as x → ∞ if f(x) = O(g(x)) as x → ∞. For any ϵ > 0,
we write f(x) = g(x)+Oϵ(e(x, ϵ)) and f(x) ≪ϵ g(x, ϵ) if the implicit constants depend
on ϵ. We denote by i the imaginary unit in Q.
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2 Prerequisites

In this chapter, we introduce all the necessary notions to study integral points using
the universal torsor method. Each section introduces a new notion, with examples
where possible and proofs of statements when they add clarity. We first introduce the
schemes that we are studying and then move towards Cox rings, torsors and integral
models. We end this part by introducing the Weil height function and some notions
from analytic number theory.

2.1 The Proj-construction

An important construction in scheme theory is the Proj-construction. We follow the
exposition in Section II.2 of [13] to introduce the construction for graded rings and
then extend this construction to sheaves of graded algebras, following Section II.7 of
[13]. We also state a few relevant properties.

Throughout, let S be a graded ring with respect to Z≥0 and denote by Sd the d-graded
part of S for any d ∈ Z≥0. Then denote by S+ the ideal ⊕d>0 Sd ⊂ S. To define the
scheme Proj(S), we first introduce the set Proj(S) and then impose a topology on this
set. We also define the sheaf of rings on Proj(S).

Definition 2.1. Define the set Proj(S) to be the set of all homogeneous prime ideals
p that do not contain all of S+.

For homogeneous ideals a ⊂ S, define the subset

V (a) = {p ∈ Proj(S) ∶ a ⊆ p}.

It is a quick verification that these subsets satisfy the necessary conditions for being
the closed subsets of a topology ([13, Lemma II.2.4]), so we impose the topology on
Proj(S) given by taking such subsets V (a) as closed subsets.

One must also define the sheaf of rings on Proj(S). For this, consider an element
p ∈ Proj(S) and let T be the set of all homogeneous elements of S that are not in p.
This set T is multiplicative, so consider the localization T −1S. Let S(p) be the ring of
elements of degree zero in the ring T −1S. Then for any open subset U ⊆ Proj(S), define
O(U) to be the set of functions s ∶ U → ⊔S(p) such that for each p ∈ U , s(p) ∈ S(p) and
such that s is locally a quotient of elements of S. The verification that O is a presheaf
of rings with the natural restrictions is trivial. It follows from the local nature of the
construction of O that it is indeed a sheaf.

Definition 2.2. For any graded ring S, define (Proj(S),O) to be the topological space
together with the sheaf of rings as constructed above.

Proposition 2.3. Let S be a graded ring. The pair (Proj(S),O) is a scheme.
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Proof. See Proposition II.2.5 in [13].

Example 2.4. For any ring A, the polynomial ring A[x0, . . . , xn] has the natural
grading

A = ⊕
m∈Z

Am, Am = { ∑
i0,...,in∈Z≥0

axi0
0 ⋯xin

n ∶ a ∈ A, i0 + . . . + in =m}.

With this grading, we find that Proj(A[x0, . . . , xn]) = Pn
A.

Let us now assume that J is a sheaf of graded algebras over a scheme X. In the
following, we assume that X is a noetherian scheme and that J is a quasi-coherent
sheaf of OX-modules which has a structure of a sheaf of graded OX-algebras. Thus
J ≅ ⊕d≥0Jd, where Jd is the homogeneous part of degree d. Assume also that J0 = OX ,
that J1 is a coherent OX-module and that J is locally generated by J1 as an OX-
algebra.

Construction 2.5. [13, Page 160] For each open affine subset U = Spec(A) of X,
let J (U) be the graded A-algebra Γ(U,J∣U). Consider Proj(J (U)) and the natu-
ral morphism πU ∶ Proj(J (U)) → U . As J is quasi-coherent, for any f ∈ A with
Uf = Spec(Af), Proj(J (Uf)) ≅ π−1U (Uf). It follows that for any two open affine sub-
sets U and V of X, π−1U (U ∩ V ) is naturally isomorphic to π−1V (U ∩ V ). With these
isomorphisms, one can glue the schemes Proj(J (U)) to obtain the scheme Proj(J )
together with the morphism π ∶ Proj(J ) → X such that for any open affine U ⊆ X,
π−1(U) ≅ Proj(J (U)). Remark also that the sheaves O on each of the Proj(J (U))
are compatible with this glueing, and they give rise to the sheaf O on Proj(J ).
Proposition 2.6. Let X,J be as assumed and π ∶ Proj(J ) → X as in Construction
2.5 . Then π is a proper morphism.

Proof. See the proof of Proposition 7.10.(a) in [13].

2.2 Blow-ups

In this section we introduce the blow-up construction on schemes. This construction
is a fundamental tool in algebraic geometry as saying that one variety is the blow-up
of another along a given subvariety expresses a relationship that is, on the one hand,
close enough to relate the structures on the two varieties, and on the other hand, is
very flexible. We only introduce the theory on blow-ups needed for this thesis; for a
more extensive introduction, see Chapter 1 of [13], Chapter 7 of [12] and Section IV.2
of [8].

We first consider an important example of a blow-up: the blow-up of A2 at the origin
O = (0,0). In the following, let x1, x2 be the affine coordinates of A2 and let y0, y1 be
the homogeneous coordinates of P1. With this, closed subsets of A2×P1 are defined by
polynomials in x1, x2, y0, y1 that are homogeneous with respect to y0, y1.
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Define the blow-up of A2 at the point O to be
the closed subset X of A2 × P1 defined by the equa-
tion {x1y1 = x2y0} ([13, Page 28]). There is a nat-
ural morphism π ∶ X → A2 obtained by restricting
the projection morphism from the fiber product A2 ×
P1 → A2 to the closed subset. It is not hard to
draw this morphism π, see the figure on the right
(taken from Example 7.17 of [12]). It looks like a
spiral staircase with the steps extending in both direc-
tions.
One can show, following page 28 of [13], that for P ∈ A2,
P ≠ O, π−1(P ) consists of one point, and moreover, that
there is an isomorphism X ∖ π−1(O) → A2 ∖ O. One can also
show that π−1(O) ≅ P1 and that the points of π−1(O) are in
one-to-one correspondence with the set of lines through O in
A2.

In this thesis, we only consider blow-ups of schemes along closed subschemes of codi-
mension two. These blow-ups can be defined using the Proj-construction that was
introduced in the previous section.

Theorem 2.7. [8, Thm IV-23] Let X be a scheme and Y ⊂X a closed subscheme. Let
J = JY,X ⊂ OX be the ideal sheaf of Y in X. If A is the sheaf of graded OX-algebras

A =
∞
⊕
n=0
J n = OX ⊕J ⊕J 2 ⊕⋯

(where the k-th summand is taken to be the k-th graded piece of A), then the scheme
Proj(A) →X is the blow-up of X along Y .

The sheaf of graded OX-algebras A is sometimes called a Rees algebra. We call the
inverse image E = π−1(Y ) of Y under π the exceptional divisor of the blow-up, and
Y the center of the blow-up. The blow-up of a scheme X along a closed subscheme
Y is also denoted BlY (X) →X.

With Theorem 2.7, one would expect that giving an explicit expression for the blow-up
of a scheme X along a closed subscheme Y is easy. However, even when the schemes
X and Y are known explicitly, it is not always easy to write down the sheaf of graded
OX-algebras A. The following, however, gives us a specific situation in which A can
be written down explicitly easily.

Recall that a sequence x, y ∈ A is regular if and only if x ∈ A is not a zero divisor and
y ∈ A/(x) is not a zero divisor ([22, Tag 00LF]).
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Definition 2.8. [8, Definition IV-15] Let X be any scheme, Y ⊂ X a subscheme. We
say that Y is a regular subscheme if it is locally the zero locus of a regular sequence of
functions on X.

Assume that Y ⊂X is a regular subscheme of codimension two.

Proposition 2.9. [8, Proposition IV-25] Let A be a noetherian ring and x, y ∈ A; let
A be the Rees algebra

A = A[xT, yT ] ⊂ A[T ].
If x, y ∈ A is a regular sequence, then

A ≅ A[X,Y ]/(yX − xY )

via the map X ↦ xT , Y ↦ yT .

Example 2.10. Consider the scheme X = P3
Q = Proj(Q[a, b, c, d]) and the smooth

closed subscheme Y = V (a2 + b2 + c2, d). Denote by U0, U1, U2, U3 the standard affine
opens of P3

Q, then we consider the blow-up of X along Y by determining the blow-ups
of Ui along Y∣Ui

for i = 0, . . . ,3. First, observe that U3 ∩ Y = ∅ so the blow-up of U3

along Y∣U3
is again U3. In the following, denote by JY (Ui) the ideal sheaf corresponding

to Y∣Ui
for i = 0,1,2. We work out the following only for i = 0, the other computations

follow analogously.

We see that JY (U0) = (1 + ( ba)
2 + ( ca)

2
, da) and fix the notation g1 = 1 + ( ba)

2 + ( ca)
2
,

g2 = d
a . Set

A0 =
∞
⊕
n=0
JY (U0)n =

∞
⊕
n=0
(g1, g2)nT n.

For a ∈ (g1, g2)n and b ∈ (g1, g2)m, we have that aT n ⋅ bTm = abTmn ⊂ ⊕∞n=0(g1, g2)nT n =
A0, so we can write

A0 = Q [
b

a
,
c

a
,
d

a
] [g1T, g2T ],

where the grading is given by deg(T ) = 1, deg(b/a) = deg(c/a) = deg(d/a) = 0.

Through Theorem 2.7, the blow up of U0 along Y∣U0
is given by Proj(A0) → U0. Follow-

ing Corollary 3.2 of [3], the scheme Proj(A0) can be obtained by glueing the schemes
Spec((A0)(fi)), with (A0)(fi) the degree-zero-part of the localization of A0 at fi, where
the set {fi} is a collection of homogeneous elements in (A0)+ such that for any element
of (A0)+, some power of this element is in the ideal generated by the fi’s. As f1 = g1T
and f2 = g2T satisfy these conditions, Proj(A0) is obtained by glueing

Spec((A0)(g1)), Spec((A0)(g2)).

For i = 1,2, we obtain similar results, so the blow up of X along Y can be obtained by
glueing the spectra of seven rings: the six rings (Aj)(gi) for j = 0,1,2 and i = 1,2 that
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arise as described, and the ring Q [ad , b
d ,

c
d
] coming from U3.

We remark that taking the degree-zero-part of Q[a, b, c, d] localized at a yields exactly
OP3

Q
(U0), and analogously for localizing at b, c, d. Hence, set A = Q[a, b, c, d][(a2 + b2 +

c2)γ, dγ]. Then the blow up of X along Y can be obtained by glueing the spectra
of the seven rings As,t with s ∈ {a, b, c, d} and t ∈ {(a2 + b2 + c2)γ/s2, dγ/s}, with As.t

defined as follows: localize A at s and take the degree-zero-part with respect to the
usual polynomial ring grading of the ring Q[a, b, c, d]. Then localize at t, and take the
degree zero part with respect to the grading from the Rees algebra.

Lemma 2.11. Let X be the blow up of P3
Q along a smooth closed subscheme Y of

codimension two, and let X ′ be the blow up of P3
Q along a smooth closed subscheme

Y ′ of codimension two. Assume that over Q, Y and Y ′ are isomorphic schemes. Then
the schemes BlY (X) and BlY ′(X ′) are isomorphic over Q.

Proof. Let J be the ideal sheaf corresponding to Y , and J ′ be the ideal sheaf cor-
responding to Y ′. By assumption, J and J ′ are isomorphic sheaves over Q. Hence,
the corresponding Rees algebras A = ⊕∞n=0J n and A′ = ⊕∞n=0J ′n are isomorphic over
Q and by construction, the schemes BlY (X) = Proj(A) and BlY ′(X ′) = Proj(A′) are
isomorphic over Q.

2.3 Fano varieties

In this section we introduce Cartier divisors, state when they are ample and then what
it means to be a log Fano variety. Throughout this section, let X be an integral scheme.

Definition 2.12. [4, Definition 1.2] A Cartier divisor on an integral scheme X is a
global section of the sheaf K(X)×/O×X , where K(X) is the constant sheaf of rational
functions on X. In other words, a Cartier divisor is given by a collection of pairs
(Ui, fi), where (Ui)i is an affine open cover of X and fi is a non-zero rational function
on Ui such that fi/fj is a regular function on Ui ∩Uj that does not vanish at any point
of Ui ∩Uj.

Intuitively, these Cartier divisors are divisors such that, locally, they can be written as
the divisor of a non-zero rational function.

Remark 2.13. [4, Section 1.1] For X a locally factorial scheme, any divisor is locally
the divisor of a rational function. There is no distinction between Cartier and Weil
divisors.

Example 2.14. Consider the blow up of P3
Q = Proj(Q[a, b, c, d]) along the smooth

conic C = V (a2 + b2 + c2, d) and denote it by π ∶ X → P3
Q. It is known that P3

Q is
an integral scheme and as C is non-empty and closed, its corresponding ideal sheaf
is non-zero and quasicoherent. Hence, the blow up X is an integral scheme ([22, Tag
02ND]).
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From Theorem 1 of III.7 in [18] it follows that nonsingular schemes are locally factorial.
As C is a nonsingular subvariety of the nonsingular scheme P3

Q, Theorem II.8.24 of [13]
gives that the blow up X is also nonsingular, and then also locally factorial. We
conclude that on the blow up X there is no distinction between Cartier divisors and
Weil divisors.

A crucial notion to define Fano varieties is the notion of being ample. In the following,
a line bundle is an invertible sheaf.

Definition 2.15. [16, Definition 1.2.1] Let X be a proper scheme over a base field k
and L a line bundle on X.

(i) L is very ample if there exists a closed embedding X ⊆ Pn of X into some
projective space Pn such that

L = OX(1) = OPn(1)∣X

(ii) L is ample if L⊗m is very ample for some m > 0

Definition 2.16. A Cartier divisorD onX is ample or very ample if the corresponding
line bundle OX(D) is.

There are many different definitions for log Fano varieties, but for the purpose of this
thesis, we use the following definition.

Definition 2.17. Let X be a nonsingular projective variety. We say that X is a log
Fano variety if there exists a nonsingular integral closed subscheme D of codimension
one such that −(KX +D) is ample.

2.4 Cox rings

This section gives a short introduction to Cox rings and a simple example of one. Un-
less stated otherwise, the following is taken from Chapter 1.4 of [1].

We first need to define the notion of normal schemes.

Definition 2.18. [22, Tag 033I] A domain is a normal domain if it is a domain that
is integrally closed in its field of fractions. A scheme X is normal if and only if for all
x ∈X, the local ring OX,x is a normal domain.

Let k be an algebraically closed field of characteristic zero and let X be a normal
integral scheme of finite type over k with free finitely generated divisor class group
Cl(X). Fix a subgroup K ⊆ WDiv(X) such that the canonical map c ∶ K → Cl(X)
sending D ∈K to its class [D] ∈ Cl(X) is an isomorphism.

12
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Definition 2.19. Define the Cox sheaf associated to K to be

R ∶= ⊕
[D]∈Cl(X)

R[D], R[D] ∶= OX(D),

where D ∈ K represents [D] ∈ Cl(X) and the multiplication in R is defined by multi-
plying homogeneous sections in the field of rational functions k(X).

Remark 2.20. The sheaf R defined as such is a quasicoherent sheaf and up to iso-
morphism, it does not depend on the choice of the subgroup K ⊆WDiv(X).

Definition 2.21. Define the Cox ring of X as the algebra of global sections

R(X) ∶= ⊕
[D]∈Cl(X)

R[D](X), R[D](X) ∶= Γ(X,OX(D)).

Remark that R(X) is a graded ring and its grading comes from Cl(X).

Example 2.22. Consider Pn
k , of which it is known that any hyperplane H ⊆ Pn

k gen-
erates its class group. Let K ⊆WDiv(Pn

k) be the subgroup generated by H. Then the
Cox ring of Pn

k is given by

R(Pn
k) =⊕

a∈Z
Γ(Pn

k ,OPn
k
(1)⊗a)

=⊕
a∈Z
(k[x0, . . . , xn])a

= k[x0, . . . , xn]

and its grading is the standard grading on a polynomial ring.

2.5 Group schemes

In this section we introduce group schemes, for we will consider torsors under group
schemes in Section 2.7. We also discuss an important example of a group scheme.

Definition 2.23. [22, Tag 022S] Let S be a scheme. A group scheme over S is a
pair (G,m) where G is a scheme over S and m ∶ G×S G→ G is a morphism of schemes
over S with the following property: for every scheme T over S the pair (G(T ),m) is a
group.

Definition 2.24. [22, Tag 022S] A morphism φ ∶ (G,m) → (G′,m′) of group
schemes over S is a morphism φ ∶ G → G′ of schemes over S such that for every
scheme T over S the induced map φ ∶ G(T ) → G′(T ) is a homomorphism of groups.

Example 2.25. We take S = Spec(Z) as base scheme and consider G = Gm,Z =
Spec(Z[x,x−1]). Let m ∶ G ×Z G → G be the morphism corresponding to the ring
homomorphism given by x↦ x⊗ x. It follows that with this choice, (G,m) is a group
scheme: for any scheme T , G(T ) = Mor(T,G) = OT (T )×, which is the multiplicative
group of OT (T ). Hence, Gm,Z is a group scheme over Spec(Z).
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Lemma 2.26. Let S1, S2 be two group schemes over the base scheme S, then S1 ×S S2

is a group scheme over S.

Proof. Let f ∶ S1 → S and g ∶ S2 → S be the morphisms giving rise to the fiber
product and denote by m1 and m2, respectively, the morphisms of schemes over S
such that (S1(T ),m1) and (S2(T ),m2) are groups for any scheme T . Consider the
scheme S1 ×S S2 with the morphism m ∶ S1 ×S S2 ×S S1 ×S S2 → S1 ×S S2 defined by
m((s1, s2), (s′1, s′2)) = (m1(s1, s′1),m2(s2, s′2)). Canonically,

(S1 ×S S2)(T ) = {(α1, α2) ∈ S1(T ) × S2(T ) ∶ f(α1) = g(α2)}

which is a subgroup of the Cartesian product S1(T )×S2(T ) with the morphism m.

Example 2.27. The fiber product G2
m,Z = Gm,Z ×Spec(Z) Gm,Z is a group scheme over

Spec(Z).

Remark 2.28. Let G be a group scheme over the scheme S and let P be a property of
morphisms. Then we say that G has property P if the structure morphism f ∶ G → S
has property P. If P is a property of schemes, we say that G has property P if G as a
scheme has property P.

For example, a group scheme G over S is flat and locally of finite type if the structure
morphism f ∶ G→ S is flat and locally of finite type.

Example 2.29. Consider the group scheme G = G2
m,Z over S = Spec(Z) and denote

by f ∶ G → S the structure morphism. The morphism f is locally of finite type if
for every x ∈ G2

m,Z, there exist affine open neighbourhoods U = Spec(A) ⊆ G, V =
Spec(R) ⊆ S of x and f(x), respectively, such that f(U) ⊆ V and the induced ring
homomorphism R → A is of finite type. Take A = Z[x,x−1, y, y−1], R = Z and observe
that A ≅ Z[x, x̃, y, ỹ]/(xx̃−1, yỹ−1) as a Z-algebra. Hence, G is indeed locally of finite
type.
The morphism f ∶ Gm,Z → S is affine, so it is flat if and only if the ring homomorphism
Z→ Z[x,x−1, y, y−1] is flat, i.e., if Z[x,x−1, y, y−1] = Z[x, x̃, y, ỹ]/(xx̃− 1, yỹ − 1) is a flat
Z-module. As Z[x, x̃, y, ỹ] generate a prime ideal, Z[x,x−1, y, y−1] is an integral domain
and thus torsion-free. As Z is a Dedekind domain, f is flat.

2.6 The fppf topology

In this section we introduce the main ideas behind the fppf topology. For this we first
define when morphisms of schemes are flat and fppf. The goal of this section is not to
work out the details, but to give an idea of the construction.

Definition 2.30. [17, Page 7] A homomorphism f ∶ A → B of rings is flat if B is flat
as an A-module via f .

14



Definition 2.31. [17, Page 8] A morphism f ∶ X → Y of schemes is flat if, for all
points x ∈ X, the induced map OY,f(x) → OX,x is flat. Equivalently, f is flat if for any
pair V and U of open affines of X and Y , respectively, such that f(V ) ⊆ U , the map
OY (U) → OX(V ) is flat.

Definition 2.32. [17, Page 11] A morphism f ∶ X → Y of schemes is faithfully flat
if it is flat and surjective.

Definition 2.33. A morphism f ∶X → Y of schemes is fppf if it is faithfully flat and
locally of finite type.

Using these fppf-morphisms, one can construct a Grothendieck topology on schemes:
the fppf topology. The idea of the fppf topology on a scheme X is that instead of using
open subsets to define a topology, one takes an (fppf)-covering of X instead. Such an
(fppf)-covering is a family {Ui →X}i∈I of fppf morphisms of schemes for an index set
I such that X = ⋃i∈I fi(Ui). For the exact details on how this gives a Grothendieck
topology, see Section II.1 of [17], with the note that the author denotes the class of
fppf-morphisms by (fl). One can also construct such a covering for other classes of
morphisms; for example with open immersions or flat morphisms. Constructing the
Grothendieck topology with respect to open immersions returns the Zarisky topology.

To see how one can construct cohomology groups based on the fppf-topology analogous
to the cohomology groups based on the Zarisky topology, see Chapter 3 of [17]. For
the remainder of this thesis, we fix the following notation: let Hn(Xfppf ,G) be the n-th
cohomology group of the group scheme G with respect to the fppf-topology.

2.7 Torsors

In this section we introduce torsors under group schemes over arbitrary schemes. We
follow this introduction by stating some important properties of torsors. Throughout
this section, we consider only schemes endowed with the fppf-topology.

Definition 2.34. [21, Definition 2.2.1] Let X be a scheme. An X-torsor under an X-
group scheme G is defined as a scheme Y /X equipped with an action of G compatible
with the projection to X and satisfying the following equivalent properties:

(i) the morphism Y → X is fppf, and the map Y ×X G → Y ×X Y given by (y, s) ↦
(y, ys) is an isomorphism;

(ii) there exists a covering U = (Ui → X) in the flat topology such that for any i
the pair (YUi

= Y ×X Ui, the action of GUi
= G ×X Ui) is isomorphic to the pair

(GUi
, the right action of GUi

on itself).

The equivalence of the conditions (i) and (ii) is proven on page 14 of [21].
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Example 2.35. The Cox ring of P1
Q
is given by R(P1

Q
) = Q[x0, x1], which is a finitely

generated Q-algebra. By Construction I.6.3.1 of [1], we have the torsor under G1
m,Z

SpecP1
Q
( ̃Q[x0, x1]) → P1

Q,

where SpecP1
Q
( ̃Q[x0, x1]) is the global spectrum of the sheafification of Q[x0, x1] with

respect to P1
Q
(see [8, Section I.3.3]). We remark that we can write the above example

in a more familiar way: using Section I.6.3 of [1], one can show that

SpecP1
Q
( ̃Q[x0, x1]) = Spec(Q[x0, x1]) ∖ V (x0, x1) = A2

Q ∖ {(0,0)},

and the action of G1
m,Z on A2

Q
∖ {(0,0)} is the diagonal action.

We state some properties of torsors that are important in the next chapter.

Lemma 2.36. Let f ∶ X → Y be a Y -torsor under G2
m,Y . For any P ∈ Y (Z), the fiber

f−1(P ) is a G2
m,Z-torsor.

Proof. Consider the following cartesian diagram.

f−1(P ) X

Spec(Z) Y

h f

P

The morphism f is fppf, i.e., faithfully flat and of finite presentation, by assumption.
We know that being flat and being surjective are preserved under base change ([22, Tag
01U9], [18, Prop II.2.4]). Hence, h is a faithfully flat morphism. As being of finite pre-
sentation is preserved under base change ([22, Tag 01TS]), the morphism h is fppf.

By assumption, we have an isomorphism of schemes

φ ∶X ×Y G2
m,Y →X ×Y X

given by (x, s) ↦ (x,xs). Observe that per definition,

X ×Y G2
m,Y =X ×Y Gm,Z ×Z Y ×Y Gm,Z ×Z Y
=X ×Y Y ×Z G2

m,Z

=X ×Z G2
m,Z

With this, consider the diagram

X ×Z G2
m,Z X ×Y X

Y

φ

g g′
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Define the morphisms

g(x, s) = f ○ p1 ○ φ(x, s), g′(x,x′) = f ○ p1(x,x′),

with p1 ∶ X ×Y X → X the first projection morphism. As g and g′ are compositions
of morphisms of schemes, they themselves are morphisms of schemes, too. By con-
struction, the above diagram commutes. For any morphism P ∶ Spec(Z) → Y , base
changing the above diagram with respect to P gives that g−1(P ) ≅ (g′)−1(P ).

By definition, g−1(P ) = Spec(Z) ×Y X ×Z G2
m,Z = f−1(P ) ×Z G2

m,Z, and

(g′)−1(P ) = Spec(Z) ×Y X ×Y X = f−1(P ) ×Y X

= f−1(P ) ×Z Spec(Z) ×Y X = f−1(P ) ×Z f−1(P ).
As the isomorphism g−1(P ) → (g′)−1(P ) is induced by φ, it is the desired isomorphism.
Indeed, f−1(P ) is a G2

m,Z-torsor.

An important property of torsors is that they can be parametrized. Assume that G is
a group scheme that is flat and locally of finite-type.

Lemma 2.37. [21, Page 19] There is a one-to-one correspondence

{X-torsors under G up to isomorphism} ↔ the group H1(Xfppf ,G)

The cohomology group that parametrizes X-torsors under Gm can be determined more
explicitly with Hilbert’s Theorem 90. Remark that in [17], the subscript (fl) refers to
what we defined as (fppf) in Section 2.6.

Proposition 2.38. [17, Proposition III.4.9] We have H1(Xfppf,Gm) ≅ Pic(X).

2.8 Integral models

In this section we introduce integral models and discuss some of their properties.

Recall that the generic fiber of a scheme with respect to a point is defined as follows.

Definition 2.39. Let s ∈ S a point of a scheme, and let ιs ∶ Spec(κ(s)) → S be the
canonical associated morphism of schemes. Let X be a scheme over S and let Xs be
defined by the cartesian diagram

Xs Spec(κ(s))

X S

ιs

We call Xs the fiber above s.
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Definition 2.40. Let X be a scheme over Spec(Q). An integral model, or simply a
model, of X is a scheme X over Spec(Z) with generic fiber Xη =X.

We say that a model X is proper if the structure morphism X → Spec(Z) is proper.

Lemma 2.41. Let X be a scheme over Spec(Q) and let X be an integral model that
is proper over Z. Then X(Q) = X(Z).

Proof. The integral model fits in the following cartesian diagram.

X X

Spec(Q) Spec(Z)

γ

g f

φ

Let β ∈ X(Z). Then β ○ φ ∈ X(Q) as it is the composition of morphisms of schemes
and hence also a morphism of schemes. This shows one direction.

Let β ∈ X(Q), and let us consider the valuation ring R = Z(p) for a prime p, i.e., the
ring of p-adic integers intersected with Q. Its fraction field is K = Q. We know that
Spec(R) = {[(0)], [(p)]}, where [(p)] is the unique closed point. As the ring homo-
morphism Z→ Z(p) maps the zero ideal of the first ring to the zero ideal of the second
ring, we obtain the morphism of schemes φ′ ∶ Spec(Z(p)) → Spec(Z) which maps the
point [(0)] to [(0)].

Let p ∈ Z be an arbitrary prime number and consider the morphism i ∶ Spec(Q) →
Spec(Z(p)) induced by the inclusion morphism i# ∶ Z(p) → Q of Z(p) into its fraction
field. This gives the diagram

Spec(Q) X

Spec(Z(p)) Spec(Z)

β

i f

φ′

As the morphism i is induced by the inclusion of Z(p) into its fraction field, the unique
point in Spec(Q) is mapped to the point [(0)] in Spec(Z(p)) and by the above discussion
to the point [(0)] in Spec(Z). Now as both Spec(Q) and X are schemes over Z, we
know that φ = f ○ β. As φ′ ○ i = φ, this shows that the diagram commutes. Following
the valuative criterion for properness, we conclude that for all p ∈ Z, we have a unique
morphism of schemes

αp ∶ Spec(Z(p)) → X
such that the resulting triangles in the above diagram commute.
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Fix U(p) = φ′(Spec(Z(p)) = {[(0)], [(p)]} ⊂ Spec(Z), then for p and q distinct prime
numbers, U(pq) = U(p) ∩ U(q) = {[(0)]}. For any p, q distinct prime numbers, set
φ′pq = φ′∣U(pq) . With the above, we see that φ′pq = φ′qp = id, so we can glue the sets

U(p) to obtain Spec(Z).

If for p ≠ q primes in Z, αp and αq agree on the overlap Up ∩Uq, then we can glue the
αp to obtain a morphism α. From the above commuting triangle, it follows that for all
p ∈ Z, αp([(0)]) = f([(0)]). Hence, the morphisms αp agree on overlaps and glue to a
morphism α ∶ Spec(Z) → X . As all morphisms αp were unique, also α is unique, and
we obtain the second direction. This shows that we indeed have the natural bijection
X(Z) = X(Q).
Example 2.42. Let X = P1

Z and U = P1
Z ∖ {x0 = 0}. We compute

X(Q), X(Z), U(Z), U(Q),
and determine why the latter two are not equal.

First observe that U ≅ A1
Z ≅ Spec(Z[T ]), so for any ring R,

U(R) ≅Mor(Spec(R),U)
≅ Hom(Z[T ],R)
≅ R

Hence, U(Z) ≅ Z, and U(Q) ≅ Q.

We know that
X(Q) = P1

Z(Q) ≅ (Q2 ∖ {(0,0)})/ ∼,
where (a, b) ∼ (c, d) if and only if there exists an element λ ∈ Q× such that

a = λc, b = λd.
To determine X(Z), recall from Example 9.5.1 of [9] that there is a bijection

{X(Z)} ↔ { locally free rank-1 modules L over Z
with 2-tuples (a, b) ∈ Z2 such that L = aZ + bZ}

Recall that Pic(Spec(Z)) ≅ Cl(Z) = 0 and that for any ring R,

Cl(R) = {locally free rank-1
modules over R

} / ≅ .
Then up to isomorphism, there is a unique Z-module that is locally free of rank one.
Hence, we have a bijection

{X(Z)} ↔ {(a, b) ∈ Z2 such that Z = aZ + bZ} / ≅
It follows that

X(Z) = {(a, b) ∈ Z2 ∖ {(0,0} ∶ gcd(a, b) = 1}/ ∼,
for (a, b) ∼ (c, d) if and only if there exists an element λ ∈ Z× such that a = λc and
b = λd.
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2.9 Height functions

This part introduces height functions by first looking at a height function on projective
space. We then outline how one can use this height function to obtain a height function
for any other variety with a rational map to projective space.

Recall that any rational point P ∈ Pn(Q) can be written in the form

P = (x0 ∶ . . . ∶ xn)

with x0, . . . , xn ∈ Z and gcd(x0, . . . , xn) = 1.

Definition 2.43. [14, Section B.2] For any P ∈ Pn(Q) written as above, define the
Weil height function (or the multiplicative height function) on Pn(Q) as

H(P ) =max{∣x0∣, . . . , ∣xn∣}.

When considering a scheme Z with a rational map to Pn(Q), one can use the Weil
height function to determine a height function on the scheme Z. We discuss two
examples.

Example 2.44. Consider the blow-up

π ∶X ′ → P3
Q

of P3
Q = Proj(Q[a, b, c, d]) along the smooth conic C ′ = V (a2 + bc, d) and consider the

rational map f1 ∶ X ′ → P9
Q induced by the log-anticanonical sheaf ωX′(π−1(V (a)))−1.

It follows from Exercise II.8.5 of [13] that

ωX′(π−1(V (a)))−1 = (ωX′ ⊗L(D))−1 = (π∗(OP3
Q
(1)) ⊗ L(E) ⊗ L(D))−1

with D = π−1(V (a)) and E = π−1(V (a2 + bc, d)) the exceptional divisor of the blow-up.
Exercise II.8.5 of [13] also gives an isomorphism Pic(X ′) ≅ Z2 defined by sending the
pullback of any hyperplane in P3

Q under π′ to [1,0] ∈ Z2 and the exceptional divisor
to [0,1] ∈ Z2. With this isomorphism, the log-anticanonical sheaf corresponds to the
element [3,−1] ∈ Z2:

−[ωX′(D)] = −([π∗(OP3
Q
(1))] + [L(E)] + [L(D)])

= [4,0] − [0,1] − [1,0] = [3,−1].
Hence, the rational map f1 is defined by global sections on X ′ of degree [3,−1] that
generate the set of all global sections of degree [3,−1] over the global sheaf of X ′.
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With this rational map f1, the height of an element P ∈X ′(Q) is given by H(f1(P )),
with H the Weil height function.

We remark that the log-anticanonical sheaf ωX′(π−1(V (b)))−1 induces the same rational
map f1 ∶ X ′ → P9

Q: as V (a) and V (b) are both hyperplanes in P3
Q, their pull-backs

under π are in the same class of Pic(X ′). Hence, the above computations follow
through identically for this choice of log-anticanonical sheaf and the height function
one obtains on X ′ is the same height function as above.

2.10 Arithmetic functions, Möbius inversion and the Legen-
dre symbol

In this section, we introduce a few notions from analytic number theory. We first recall
four arithmetic functions and then state Möbius’ inversion theorem. We end this part
with the Legendre symbol.

We recall the following arithmetic functions.

Definition 2.45. For n ∈ Z>0,

χ(n) =
⎧⎪⎪⎨⎪⎪⎩

1 if n = 1
0 else

Definition 2.46. For n ∈ Z>0,
ω(n) = ∑

p∣n
1.

Definition 2.47. For n ∈ Z>0, define the Möbius function as

µ(n) =
⎧⎪⎪⎨⎪⎪⎩

(−1)t if n = p1⋯pt with p1, . . . , pt distinct primes

0 else

Definition 2.48. For n ∈ Z>0, define the divisor function as d(n) = ∑n′∣n 1.

We state a few properties of the divisor function.

Lemma 2.49. [23, Section I.5.3] For any n ∈ Z>0, 2ω(n) ≤ d(n).

Lemma 2.50. [23, Exercise 166] We have the identity

∞
∑
n=1

d(n)
n2
= ζ(2)2.

Lemma 2.51. [23, Corollary I.5.3] For any ϵ > 0, d(z) ≪ϵ zϵ.
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We state an important theorem and we outline how this theorem gives the identities
for Möbius inversion as we will apply it later.

Theorem 2.52. [15, Theorem 2 of Chapter 2.2] Let f be an arithmetic function.
Define F (n) ∶= ∑d∣n f(d) for n ∈ Z>0. Then

f(n) = ∑
d∣n

µ(n/d)F (d)

for n ∈ Z>0.

In Chapter 4, we apply this theorem with F the constant function giving 1, and f = χ:
set x′ = x/α and y′ = y/α and let g ∶ Z2 → R be any function. Then Theorem 2.52 gives

∑
x,y∈Z,
x≠0

χ(gcd(x, y))g(x, y) = ∑
x,y′∈Z,
x≠0

∑
α∣x

µ(α)g(x,αy′) = ∑
α>0
∑

x,y′∈Z,
x≠0

µ(α)g(αx′, αy′)

Recall that an integer a is a quadratic residue modulo a prime p if x2 ≡ a mod p is
solvable in x ∈ Z and p /∣ a, and it is not a quadratic residue if the congruence relation
is not solvable, but p /∣ a still. With this, the Legendre symbol is defined as follows.

Definition 2.53. For p > 2 a prime number and a ∈ Z,

(a
p
) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if a is a quadratic residue modulo p

−1 if a is not a quadratic residue modulo p

0 if p ∣ a
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3 Parametrizing Integral Points

In this chapter we consider the two blow-ups of P3
Q = Proj(Q[a, b, c, d]) along the

smooth conics C = V (a2 + b2 + c2, d) and C ′ = V (a2 + bc, d), denoted respectively

π ∶X → P3
Q, π′ ∶X ′ → P3

Q.

We follow the approach taken in [24] to determine for both X and X ′ a Cox ring over
Q and a torsor over Q. After constructing integral models of both the varieties X,X ′

and their torsors T,T ′ (denoted by X ,X ′,T ,T ′, respectively), we apply properties of
torsors to determine a 4-to-1 correspondence between integral points on T and X, and
between integral points on T ′ and X ′.

3.1 Isomorphic conics over Q
Lemma 3.1. There is an automorphism

P3
Q → P3

Q

such that V (a2 + b2 + c2, d) is mapped to V (a2 + bc, d), i.e., the two conics C and C ′ are
isomorphic over Q.

Proof. Observe that over Q,

a2 + b2 + c2 = a2 + (b + ic)(b − ic),

and consider the morphism
φ ∶ P3

Q → P3
Q

(a ∶ b ∶ c ∶ d) ↦ (a ∶ b + ic ∶ b − ic ∶ d).
A point P = (a ∶ b ∶ c ∶ d) ∈ V (a2 + b2 + c2, d) ⊂ P3

Q
is mapped to φ(P ) = (a ∶ b+ ic ∶ b− ic ∶

d) ∈ V (a2 + bc, d) ⊂ P3
Q
as

a2 + (b + ic)(b − ic) = a2 + b2 + c2 = 0,

so C is mapped to C ′.

Observe that φ is a linear projective transformation: it sends an element x ∈ P3
Q
to Ax,

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 i 0
0 1 −i 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Gl4(Q).

Hence, it is immediate that φ is a morphism.

We also observe that det(A) = −2i, so A is an invertible matrix. Hence, φ is bijective
for it has an inverse: sending x to A−1x. So φ is indeed an automorphism.
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Let us now determine explicitly the ring homomorphism φ# ∶ Q[a, b, c, d] → Q[a, b, c, d]
corresponding to the morphism φ defined above. Through the Proj-construction, we
know that any point

(α ∶ β ∶ γ ∶ δ) ∈ P3(Q)
corresponds to the ideal

⟨αb − βa,αc − γa,αd − δa, βc − γb, βd − δb, γd − δc⟩.

For φ# to correspond to the morphism φ as defined above, it is required that for all
α,β, γ, δ ∈ Q

(φ#)−1(⟨αb − βa,αc − γa,αd − δa, βc − γb, βd − δb, γd − δc⟩) =
⟨α(b + ic) − βa,α(b − ic) − γa,αd − δa, β(b − ic) − γ(b + ic), βd − δ(b + ic), γd − δ(b − ic)⟩.
As (φ#)−1 is a ring homomorphism, this is equivalent to asking that for all α,β, γ, δ ∈ Q

(φ#)−1(⟨αb − βa⟩) = ⟨α(b + ic) − βa⟩
(φ#)−1(⟨αc − γa⟩) = ⟨α(b − ic) − γa⟩
(φ#)−1(⟨αd − δa⟩) = ⟨αd − δa⟩
(φ#)−1(⟨βc − γb⟩) = ⟨β(b − ic) − γ(b + ic)⟩
(φ#)−1(⟨βd − δb⟩) = ⟨βd − δ(b + ic)⟩
(φ#)−1(⟨γd − δc⟩) = ⟨γd − δ(b − ic)⟩

Without loss of generality, we can then require that the inverse image under φ# of the
generator on the left equals the generator on the right. Applying φ# to both sides and
using that φ# is a ring homomorphism, it is immediate that we require

φ#(a) = a, φ#(b) = b − ic, φ#(c) = b + ic, φ#(d) = d.

As the morphism φ# is a ring isomorphism over Q and it maps the ideal sheaf corre-
sponding to C ′ to the ideal sheaf corresponding to C, the pair of morphisms (φ,φ#)
is an isomorphism of schemes over Q.

Remark 3.2. As C and C ′ are isomorphic smooth closed subschemes of codimension
two of P3

Q, by Lemma 2.11 the schemes X and X ′ are isomorphic over Q. With the
nonsingular integral subscheme D′ = π′−1V (a) ⊂X ′ of codimension one, the blow-up X ′

is a log Fano variety (below Remark 2.5 in [24]), i.e., ωX′(D′)−1 is ample. As φ leaves the
coordinate a unchanged, [D′] ∈ Pic(X ′) is sent to [D] = [π−1(V (a))] ∈ Pic(X). Hence,
the isomorphism φ induces an isomorphism of line bundles ωX′(D′)−1 ≅ ωX(D)−1. It
is then immediate that also ωX(D)−1 is ample over Q. This implies that X has the
ample line bundle ωX(D)−1 ([22, Tag 0BDC]), such that X together with the divisor
D = π−1(V (a)) is a log Fano variety.
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3.2 The Cox rings over Q
We determine the Cox rings of X and of X ′ over Q and we then lift the ring homo-
morphism from the previous section to obtain an isomorphism between the Cox rings
of X and X ′ over Q.

The grading on a Cox ring of a scheme Z is induced by the Picard group of Z. For the
blow-ups X and X ′, it follows from Exercise II.8.5 of [13] that their Picard groups are
isomorphic to Z2. For X, the isomorphism outlined in the exercise is defined by sending
the pullback of any plane in P3

Q under the morphism π to the element [1,0] ∈ Z2, and
the exceptional divisor of the blow-up to to the element [0,1] ∈ Z2. For the blow-up
X ′, the isomorphism is defined by sending the pullback of any plane in P3

Q under the
morphism π′ to the element [1,0] ∈ Z2, and the exceptional divisor of the blow-up to
to the element [0,1] ∈ Z2.

Lemma 3.3. The Cox ring of X ′ over Q is

R(X ′Q) = Q[a, b, c, x, y, z]/(a
2 + bc − yz)

and its grading by Pic(X ′
Q
) = Pic(X ′) = Z2 is given by

a b c x y z
1 1 1 1 2 0
0 0 0 -1 -1 1

Proof. As X ′ is the blow up of P3
Q along a smooth conic, X ′ is in Case 30 of the

classification of Fano varieties as in Table 12.3 of [20]. The above Cox ring then follows
directly from Theorem 4.5, Case 30 of [7], where we note that there is a typo in the
degrees of y and z.

Lemma 3.4. The Cox ring of X over Q is

R(XQ) = Q[a, b, c, x, y, z]/(a2 + b2 + c2 − yz)

and its grading by Pic(XQ) = Pic(X) = Z2 is given by

a b c x y z
1 1 1 1 2 0
0 0 0 -1 -1 1

Proof. As X is the blow up of P3
Q along a smooth conic, X is in Case 30 of the

classification of Fano varieties as in Table 12.3 of [20]. The above Cox ring then follows
directly from Theorem 4.5, Case 30 of [7], where we note that there is a typo in the
degrees of y and z.
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Remark 3.5. As X and X ′ are isomorphic schemes over Q, their Cox rings over Q
are isomorphic, too. We construct an isomorphism φ̃ ∶ R(X ′

Q
) → R(XQ) as follows.

For a, b, c, remark that the isomorphism φ# from the previous section lifts to the Cox
rings, i.e., we set φ̃(a) = a, φ̃(b) = b − ic, φ̃(c) = b + ic. As an isomorphism of Cox
rings must respect the grading on the respective Cox rings, the following choices are
sensible: φ̃(x) = x, φ̃(y) = y, φ̃(z) = z. It is a straightforward verification that this
choice of ring homomorphism φ̃ indeed gives an isomorphism of rings over Q.

3.3 Torsors for the blow-ups

In this section we determine a torsor T for an integral model X of X, and a torsor T ′
for an integral model X ′ of X ′. We will determine a 4-to-1 correspondence between
integral points on T and integral points on X, and between integral points on T ′ and
integral points on X ′. Hence, one can study the integral points on these threefolds by
studying the integral points on the corresponding torsors, and as the latter are lattice-
points, this simplifies the counting problem.

Let us first determine torsors of X and X ′ over Q.

Lemma 3.6. The variety

T ′Q = Spec(R(X
′
Q)) − V (I

′
irr),

where I ′irr = (a, b, c, z)(x, y), is a torsor over X ′
Q
, and the variety

TQ = Spec(R(XQ)) − V (Iirr),

where Iirr = (a, b, c, z)(x, y), is a torsor over XQ.

Proof. For the first part, see Lemma 2.1 of [24]. As the blow-ups X and X ′ are
isomorphic over Q, the proof of Lemma 2.1 in [24] holds for the second part, too, and
we only need to determine an appropriate irrelevant ideal using the isomorphism of
Cox rings φ̃ as determined in Remark 3.5. Observing that over Q,

φ̃(I ′irr) = (a, b, c, z)(x, y)

gives the desired result.

Consider the rings

RZ(X) = Z[a, b, c, x, y, z]/(a2 + b2 + c2 − yz),

RZ(X ′) = Z[a, b, c, x, y, z]/(a2 + bc − yz)
and the ideals

Iirr,Z = (a, b, c, z)(x, y) ⊂ RZ(X),
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I ′irr,Z = (a, b, c, z)(x, y) ⊂ RZ(X ′),
Let

π ∶ X → P3
Z, π′ ∶ X ′ → P3

Z

be the two blow-ups of P3
Z along the smooth conics C = V (a2 + b2 + c2, d) and C ′ =

V (a2 + bc, d), respectively.

Lemma 3.7. The scheme T = Spec(RZ(X)) − V (Iirr,Z) is a G2
m,X -torsor over X with

the morphism
p ∶ T → X ,

and the scheme T ′ = Spec(RZ(X ′)) − V (I ′irr,Z) is a G2
m,X ′-torsor over X ′ with the

morphism
p′ ∶ T ′ → X ′.

Proof. We prove the first statement of the lemma. Observe that

V (Iirr) = V (
√
Iirr) = V (

√
(ax, bx, cx, zx, ay, by, cy))

for yz is a redundant generator for the radical of Iirr:

(yz)2 = (a2 + b2 + c2)yz = ay ⋅ az + by ⋅ bz + cy ⋅ cz ∈
√
(ax, bx, cx, zx, ay, by, cy).

Denote the remaining generators of
√
Iirr by f1, . . . , f7. Also observe, using the tables in

Lemma 3.4, that the degrees of the two factors of any of the fi form a basis of Pic(XQ).

Apply Construction 3.1 of [11] with X = X, K = Q, A = Z and Y = TQ, then indeed

Y = Spec(R(XQ)) − V (f1, . . . , f7). As the degrees of the two factors of each generator
fi form a basis for the Picard group, conditions (3.1) and (3.3) of [11] are immediately
satisfied. Hence, it follows from Theorem 3.3 of [11] that

p ∶ Spec(RZ(X)) − V (Iirr,Z) → X̃

is a G2
m,X̃

-torsor over X̃, with X̃ an integral model of X that is constructed in Con-

struction 3.1 of [11]. The construction is as follows: for i ∈ {1, . . . ,7}, let Ri be the
degree-zero part of the ring RZ(X)[f−1i ], then gluing the Spec(Ri) gives the scheme
X̃. This integral model X̃ coincides with the blow-up X , as we show below.

Consider the Rees algebra for J = (a2 + b2 + c2, d) given by

A =⊕
n≥0

Jn = Z[a, b, c, d][(a2 + b2 + c2)γ, dγ].

Observe that we can trivially embed A into Frac(A) = Q(a, b, c, d, γ), and that the map
given by x ↦ dγ, y ↦ (a2 + b2 + c2)γ and z ↦ γ−1 gives an embedding of RZ(X) into
Frac(A).
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As seen in Example 2.10, the blow-up X is obtained by gluing the spectra of the seven
rings As,t ⊂ Frac(A) that are defined as follows: Localize A at s ∈ {a, b, c, d} and take
the degree-0-part with respect to the usual grading on the polynomial ring Z[a, b, c, d].
Then localize the obtained ring in t ∈ {a2+b2+c2s2 γ, dsγ} and again take the degree-0 part,

now with respect to the grading coming from the Rees algebra A.

Observe that the ring Aa,γd/a obtained this way is equal to the ring (RZ(X)[f−11 ])
(0)

:
by the definition of localization and taking the degree-zero-part,

(RZ(X)[f−11 ])
(0) = { g

anxn
∶ n ∈ Z≥0, g ∈ RZ(X), deg(g) = n}

with the degree of g the degree of the Cox ring grading. Similarly,

A(0)a = {
h

am
∶ m ∈ Z≥0, h ∈ A, deg(h) =m}

where the degree of h is the standard degree of an element of a polynomial ring.
Localizing A(0)a with respect to γd/a gives

(A(0)a )
γd/a
= { h′am̃

(γd)m̃ ∶ h
′ ∈ A(0)a , m̃ ∈ Z≥0} .

Taking the degree-0-part of this with respect to the grading coming from the Rees
algebra gives

Aa,γd/a = {
ham̃

am(γd)m̃ ∶ m,m̃ ∈ Z≥0, h ∈ A, deg(h) =m, degr(h) = m̃}

with degr the degree function coming from the Rees algebra. We know that degr(γ) = 1
and all elements of Z[a, b, c, d] are considered of degree zero. It is now a straightfor-
ward verification that under the embedding of RZ(X) into Frac(A), the two rings

(RZ(X)[f−1i ])
(0)

and Aa,γd/a are isomorphic.

Analogous to the above, one can show that the seven rings As,t are equal to the seven

rings (RZ(X)[f−1i ])
(0)

with i = 1, . . . ,7 for (s, t) given by

(a, γd/a) , (b, γd/b) , (c, γd/c) , (d, γ) , (a, (a2 + b2 + c2)a−2γ),

(b, (a2 + b2 + c2)b−2γ), (c, (a2 + b2 + c2)c−2γ).
As the glueing morphisms commute with this isomorphism of rings, the schemes X̃
and X coincide.

The proof for the second statement follows entirely analogously.
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Throughout the remainder of this thesis, let

π̃ ∶ X → P3
Z, π̃′ ∶ X ′ → P3

Z

be the blow-ups of P3
Z = Proj(Z[a, b, c, d]) along V (a2 + b2 + c2, d) and V (a2 + bc, d),

respectively. We also fix the following notation for the remainder of this thesis.

D = V (a) ⊂ P3
Q, D = V (a) ⊂ P3

Z, U1 =X − π−1(D), U1 = X − π̃−1(D)

D′1 = V (b) ⊂ P3
Q, D′1 = V (b) ⊂ P3

Z, U ′1 =X ′ − π′−1(D′1), U ′1 = X ′ − π̃′−1(D′1)

D′2 = V (a) ⊂ P3
Q, D′2 = V (a) ⊂ P3

Z, U ′2 =X ′ − π′−1(D′2), U ′2 = X ′ − π̃′−1(D′2)

Observe that U1 is an integral model of U1, U ′1 is an integral model of U ′1 and U ′2 is an
integral model of U ′2. As torsors are stable under base change, we have the following
torsors over U1, U ′1 and U ′2, respectively.

T1 = T − p−1(π̃−1(V (a)), T ′1 = T ′ − p′−1(π̃′−1(V (b)), T ′2 = T ′ − p′−1(π̃′−1(V (a))

Lemma 3.8. The morphism p induces a 4-to-1 correspondence

T (Z) = {(a, b, c, x, y, z) ∈ Z6 ∶ a2+b2+c2−yz=0,
gcd(a,b,c,z)=gcd(x,y)=1} → X(Z)

and a 4-to-1 correspondence

T1(Z) = {(a, b, c, x, y, z) ∈ Z6 ∶ a2+b2+c2−yz=0,
a=±1, gcd(x,y)=1} → U(Z).

The morphism p′ induces a 4-to-1 correspondence

T ′(Z) = {(a, b, c, x, y, z) ∈ Z6 ∶ a2+bc−yz=0,
gcd(a,b,c,z)=gcd(x,y)=1} → X ′(Z),

a 4-to-1 correspondence

T ′1 (Z) = {(a, b, c, x, y, z) ∈ Z6 ∶ a2+bc−yz=0,
b=±1, gcd(x,y)=1} → U ′1(Z)

and a 4-to-1 correspondence

T ′2 (Z) = {(a, b, c, x, y, z) ∈ Z6 ∶ a2+bc−yz=0,
a=±1, gcd(x,y)=1} → U ′2(Z).

Proof. For any point P ∈ X(Z), its fiber p−1(P ) is a G2
m,Z-torsor. From [21, Section

2.2] we have a bijection

{G2
m,Z-torsors up to isomorphism} ↔H1

fppf(Spec(Z),G2
m,Z).

From Proposition III.4.9 of [17] we know thatH1
fppf(Spec(Z),G2

m,Z) = Pic(Spec(Z)) = 0.
Combining this, we find that all fibers p−1(P ) are isomorphic to G2

m,Z. As G2
m,Z(Z) =
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HomZ(Z[x,x−1, y, y−1],Z) and as such a ring homomorphism must send x and y to an
invertible element of Z, there are exactly four ring homomorphisms Z[x,x−1, y, y−1] →
Z. Hence,

∣G2
m,Z(Z)∣ = 4

and we have a 4-to-1 correspondence between X(Z) and T (Z).

The proof for the 4-to-1 correspondence between X ′(Z) and T ′(Z) follows entirely
analogously.

As T is a quasi-affine variety, we get a one-to-one correspondence between integral
points on T and ring homomorphisms

φ# ∶ Z[a, b, c, x, y, z]/(a2 + b2 + c2 − yz) → Z

such that φ#((a, b, c, z)(x, y)) = Z. It is immediate that this is equivalent to requiring
that gcd(a, b, c, z) = gcd(x, y) = 1, which gives the expression for T (Z) as above.

For the integral points on U , there is an added condition that φ#((a)) = Z, which
corresponds to requiring (a) = 1, or equivalently, a = ±1. This gives the expression for
T1(Z) as above.

The expressions for integral points on T ′1 and U ′1, and T ′2 and U ′2 follow entirely analo-
gously.

3.4 The height functions

In this section, we construct a height function on T , and on T1 and T2, using the Weil
height function as defined in Section 2.9.

Let us consider the rational map T → P9
Q induced by the log-anticanonical bundle

ωX(π−1(D))−1 ofX. Consider the isomorphism Pic(X) ≅ Z2 from Exercise II.8.5 of [13],
which sends the pullback of any hyperplane in P3

Q under π to [1,0] and the exceptional
divisor to [0,1]. We have seen in Example 2.44 that through this isomorphism, we
have the correspondence −[ωX(π−1(D))] = [3,−1]. Hence, the rational map T → P9

Q is
induced by the set of sections of R(XQ) of degree [3,−1] that generate all sections of
R(XQ) of degree [3,−1]. Observe that the following sections are all the monomials of
degree [3,−1] in the Cox ring:

a2x, b2x, c2x, ay, by, cy, x3z2, xyz, ax2z, bx2z, cx2z.

As xyz = (a2+b2+c2)x = a2x+b2x+c2x and there are no relations between the remaining
sections, we find the generating set

{a2x, b2x, c2x, ay, by, cy, x3z2, ax2z, bx2z, cx2z}.
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With this, we obtain for any point (a, b, c, x, y, z) ∈ T (Z) the height function

H(a, b, c, x, y, z) =max{∣a2x∣, ∣b2x∣, ∣c2x∣, ∣ay∣, ∣by∣, ∣cy∣, ∣x3z2∣, ∣ax2z∣, ∣bx2z∣, ∣cx2z∣}.

To study integral points of bounded height on the blow-up X, we actually need a height
function on X instead of on T . For this, we consider the rational map X → P9

Q using
the log-anticanonical line bundle ωX (π−1(D))−1. As this is the same line bundle we
used to construct the height function on T , we get a commuting diagram

T X P9
Q

AsX is a proper scheme, every element ofX(Q) lifts to a unique point in X(Q) = X(Z),
and we saw in the previous section that any element of X(Z) corresponds to four points
(a, b, c, x, y, z) ∈ T (Z). By the above commuting diagram, all four points map to the
same point in P3

Q(Q), so we obtain a well defined height function on X that can be
given explicitly as

H(x) =max{∣a2x∣, ∣b2x∣, ∣c2x∣, ∣ay∣, ∣by∣, ∣cy∣, ∣x3z2∣, ∣ax2z∣, ∣bx2z∣, ∣cx2z∣},

where x is the image of (a, b, c, x, y, z) ∈ T (Z) in X(Z).

On T ′1 and T ′2 one can construct height functions H̃(a, b, c, x, y, z) with respect to D′1
and D′2 entirely analogously. As [D′1] = [D′2] in Pic(X ′), both log-anticanonical bun-
dles ωX′(D′1)−1 and ωX′(D′2)−1 correspond to degree [3,−1] through the isomorphism
Pic(X ′) ≅ Z2. Going through the above computations again, one finds that on T ′1 and
T ′2 , the height function is defined as

H̃(a, b, c, x, y, z) =max{∣a2x∣, ∣b2x∣, ∣c2x∣, ∣ay∣, ∣by∣, ∣cy∣, ∣x3z2∣, ∣ax2z∣, ∣bx2z∣, ∣cx2z∣}.

To construct a height function on X ′, one obtains an analogous commuting diagram,
giving rise to a well-defined height function on X ′. Explicitly, it can be given by

H(x) =max{∣a2x∣, ∣b2x∣, ∣c2x∣, ∣ay∣, ∣by∣, ∣cy∣, ∣x3z2∣, ∣ax2z∣, ∣bx2z∣, ∣cx2z∣}

where x is the image of (a, b, c, x, y, z) ∈ T ′(Z) in X ′(Z).

3.5 The counting problems

In this section we combine the parametrizations of integral points on U , U ′1 and U ′2
from section 3.3 with the height functions determined in section 3.4 to obtain explicit
counting functions.

First consider U ⊆X. Let N(B) be the counting function

N(B) =#{x ∈ U(Z) ∩ V (Q) ∶ H(x) ≤ B}
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that counts the integral points of bounded height on U = X −π̃−1(V (a)) that, as rational
points, are in the complement V of V (abcxz). Using the four-to-one correspondence
obtained earlier and observing the symmetry in a = ±1, this counting function becomes

N(B) = 1

2
#{(b, c, x, y, z) ∈ Z5 ∶

1+b2+c2−yz=0, gcd(x,y)=1,
H(1,b,c,x,y,z)≤B,

b,c,x,z≠0
} .

Consider U ′1 ⊂X ′. The counting function

N1(B) =#{x ∈ U ′1(Z) ∩ V (Q) ∶ H(x) ≤ B}

counts the integral points of bounded height on U ′1 = X ′ − π̃′−1(V (b)) that, as rational
points, are in the complement V of V (abxz). With the four-to-one correspondence
above and because of the symmetry in b = ±1, this counting function becomes

N1(B) =
1

2
#{(a, c, x, y, z) ∈ Z5 ∶

a2+c−yz=0, gcd(x,y)=1,
H(a,1,c,x,y,z)≤B,

a,x,z≠0
} .

Now consider U ′2 ⊂X ′. The counting function

N2(B) =#{x ∈ U ′2(Z) ∩ V (Q) ∶ H(x) ≤ B}

counts the integral points of bounded height on U ′2 = X ′ − π̃′−1(V (a)) that, as rational
points, are in the complement V of V (abcxz). With the four-to-one correspondence
above and because of the symmetry in a = ±1, this counting function becomes

N2(B) =
1

2
#{(b, c, x, y, z) ∈ Z5 ∶

1+bc−yz=0, gcd(x,y)=1,
H(1,b,c,x,y,z)≤B,

b,c,x,z≠0
} .

In all three counting functions, the height function is defined as

H(a, b, c, x, y, z) =max{∣a2x∣, ∣b2x∣, ∣c2x∣, ∣z2x3∣, ∣ay∣, ∣by∣, ∣cy∣, ∣ax2z∣, ∣bx2z∣, ∣cx2z∣}.

However, as (ax2z)2 = a2x ⋅ x3z2, the condition ∣ax2z∣ ≤ B is redundant in the counting
problems. Analogously, the conditions ∣bx2z∣ ≤ B and ∣cx2z∣ ≤ B are redundant. Hence,
without loss of generality, we can use the height function

H(a, b, c, x, y, z) =max{∣a2x∣, ∣b2x∣, ∣c2x∣, ∣z2x3∣, ∣ay∣, ∣by∣, ∣cy∣}

for all three counting functions.
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4 Counting Integral Points

In this chapter we study the counting functions N(B), N1(B) and N2(B) defined in the
previous chapter. The first section outlines the steps Florian Wilsch takes in Section
4 of [24] to determine an asymptotic expression for N1(B). In the second section we
study the counting function N2(B) and summarize the steps taken in Section 5 of
[24]. In the third section we determine the obstruction to applying the techniques from
section 5 in [24] to the counting function N(B), and we determine an upper bound for
N(B) in section 4.

4.1 The counting function N1(B)
In this section, we consider the counting function

N1(B) =
1

2
#{(a, c, x, y, z) ∈ Z5 ∶ a2+c−yz=0, gcd(x,y)=1,

H(a,1,c,x,y,z)≤B, a,x,z≠0},

with H(a,1, c, x, y, z) =max{∣a2x∣, ∣x∣, ∣c2x∣, ∣z2x3∣, ∣ay∣, ∣y∣, ∣cy∣}.

Setting c = yz − a2 simplifies the counting function to

N1(B) =
1

2
#{(a, x, y, z) ∈ Z4 ∶ gcd(x,y)=1,H̃1(a,x,y,z)≤B,

a,x,z≠0 },

with H̃1(a, x, y, z) =H(a,1, yz − a2, x, y, z).

Lemma 4.1. We have

N1(B) =
1

2
∑
α>0

µ(α)
α

∑
x′,z∈Z≠0

∫ ∣a2αx′∣,∣c2αx′∣,
∣a(a2+c)z−1∣,∣c(a2+c)z−1∣,
∣α2x′3z2∣≤B,∣a∣≥1

1

∣z∣dadc +O(B).

Proof. First apply Möbius inversion as seen in Section 2.10 to get rid of the gcd-
condition and obtain

N1(B) =
1

2
∑
α>0

µ(α) ∑
a,x′,z∈Z≠0

#{y′ ∈ Z ∶ H̃1(a,αx′, αy′, z) ≤ B},

with x′ = x/α and y′ = y/α. Observe that

#{y′ ∈ Z ∶ H̃1(a,αx′, αy′, z) ≤ B} = ∫
H̃1(a,αx′,αy′,z)≤B

1dy′ +O(1),

and set
V1(α, a, x′, z;B) = ∫

H̃1(a,αx′,αy′,z)≤B
1dy′.
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Taking the error term O(1) out of the sums over α, a, x′, z and forgetting all but two
conditions coming from the height condition gives an error term bounded by

∑
α>0, a,x′,z∈Z≠0,
∣a2αx′∣,∣α3z2x′3∣≤B

1. (1)

In Equation (1), the sum over a is bounded by

≪ ∫
1≤∣a∣≤⌈B1/2∣αx′∣−1/2⌉

1da≪ B1/2α−1/2∣x′∣−1/2

and the sum over z is bounded by

≪ ∫
1≤∣z∣≤⌈B1/2∣αx′∣−3/2⌉

1dz ≪ B1/2α−3/2∣x′∣−3/2

giving the following upper bound for the error term in equation (1)

≪ B ∑
α>0, x′∈Z≠0

1

∣αx′∣2 .

Here, the sum over x′ is bounded by

≪ 1 + ∫
∞

x′=1
x′−2dx′ = 2

and the sum over α is bounded by

≪ 1 + ∫
∞

α=1
α−2dα = 2

such that the error term in Equation (1) is bounded by O(B).

The counting function is then given by

N1(B) =
1

2
∑
α>0

µ(α) ∑
a,x′,z∈Z≠0

V1(α, a, x′, z;B) +O(B).

To change the sum over a into an integral over a, we apply Lemma 3.6 of [6] with
t = a, x = y′, y = (α,x′, z),M = {(α,x′, z, a, y′) ∈ R5 ∶ H̃1(a,αx′, αy′, z) ≤ B} and
f ∶M → R, (α,x′, z, a, y′) ↦ 1. As M is defined by a finite number of inequalities, it is
a semi-algebraic set. The graph of the function f is given by {(α,x′, z, a, y′,1) ∈ R6 ∶
H̃1(a,αx′, αy′, z) ≤ B}, which is again a semi-algebraic set as it is defined by a finite
number of inequalities. As f(y, t, ⋅) is a constant function on My,t = {x ∈ R ∶ (y, t,x) ∈
M}, it is integrable. Then Lemma 3.6 of [6] gives that there exists a constant C ∈ Z>0
such that for all y ∈ R3, there exists a partition of R into at most C intervals I on
whose interior Vy(t) = ∫x∈My,t

fdx is continuously differentiable and monotonic.
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Remark that with our choices, Vy(t) = V1(α, a, x′, z;B). On each interval I, the dif-
ference between ∑a∈I V1(α, a, x′, z;B) and ∫a∈I V1(α, a, x′, z;B)da can be bounded by
2 supa∈Z≠0 V1(α, a, x′, z;B). Hence,

∣ ∑
a∈Z≠0

V1(α, a, x′, z;B) − ∫
a∈Z≠0

V1(α, a, x′, z;B)da∣ ≤ C sup
a∈Z≠0

V1(α, a, x′, z;B),

where C is the constant from Lemma 3.6 of [6]. Hence, we have

∑
a∈Z≠0

V1(α, a, x′, z;B) = ∫
a∈Z≠0

V1(α, a, x′, z;B)da +O( sup
a∈Z≠0

V1(α, a, x′, z;B)).

We take the error term O(supa∈Z≠0 V1(α, a, x′, z;B)) out of the sum over α,x′, z and see
that it can be bounded by

≪ ∑
α>0,x′,z∈Z≠0,
∣α3x′3z2∣≤B

sup
a∈Z≠0

V1(α, a, x′, z;B). (2)

To determine the supremum of V1(α, a, x′, z;B) with respect to a, we only consider
the condition ∣(αy′z − a2)2αx′∣ ≤ B coming from the height condition. For z > 0, this
condition is equivalent to

( −B
1/2

α1/2∣x′∣1/2 + a
2) z−1α−1 ≤ y′ ≤ ( B1/2

α1/2∣x′∣1/2 + a
2) z−1α−1,

with which V1(α, a, x′, z;B) can be bounded by

≪ 2B1/2

α1/2∣x′∣1/2α
−1∣z∣−1.

For z < 0, one obtains analogously the equivalent condition

( −B
1/2

α1/2∣x′∣1/2 + a
2) z−1α−1 ≥ y′ ≥ ( B1/2

α1/2∣x′∣1/2 + a
2) z−1α−1,

with which V1(α, a, x′, z;B) can be bounded by

≪ −2B1/2

α1/2∣x′∣1/2α
−1z−1 = 2B1/2

α1/2∣x′∣1/2α
−1∣z∣−1.

Hence,

V1(α, a, x′, z;B) ≪
2B1/2

α1/2∣x′∣1/2α
−1∣z∣−1.

As this bound is independent of the variable a,

sup
a∈Z≠0

V1(α, a, x′, z;B) ≪
B1/2

α3/2∣x′∣1/2∣z∣1 ≪
B1/2

α1/2∣x′∣1/2∣z∣
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where the last inequality is justified as α ≥ 1. Hence, the error term in Equation (2)
can be bounded by

≪ ∑
α>0,x′,z∈Z≠0,
∣α3x′3z2∣≤B

B1/2

α1/2∣x′∣1/2∣z∣ . (3)

These sums in Equation (3) can be bounded analogously to the sums following Equation
(1) and we obtain that the sum over x′ can be bounded by

≪ B1/2

α1/2∣z∣B
1/6∣z∣−1/3α−1/2.

The sum over z can be bounded by

≪ ∑
z∈Z≠0, ∣α3z2∣≤B

∣z∣−4/3 ≪ 1 + ∫
B1/2α−3/2

1
z−4/3dz ≪ 4 − 3B−1/6 ≪ 4,

with which the sum over α can be bounded by

≪ ∑
α>0

α−3/2 ≪ 1 + ∫
B1/3

1
α−3/2dα≪ 2 − 2B−1/6 ≪ 2.

Combining this, the error term in Equation (2) can be bounded by O(B2/3), with which
we obtain

N1(B) =
1

2
∑
α>0

µ(α) ∑
x′,z∈Z≠0

∫
∣a∣≥1

V1(α, a, x′, z;B)da +O(B).

Set V2(α,x′, z;B) = ∫∣a∣≥1 V1(α, a, x′, z;B)da. Setting c = αy′∣z∣ − a2 and applying the
chain rule gives the expression

V2(α,x′, z;B) = ∫ ∣a2αx′∣,∣αx′∣,∣c2αx′∣,
∣a(a2+c)z−1∣,∣(a2+c)z−1∣,∣c(a2+c)z−1∣,

∣α2x′3z2∣≤B,∣a∣≥1

1

α∣z∣dadc.

Observing that the conditions ∣αx′∣ ≤ B and ∣(a2 + c)z−1∣ ≤ B are redundant gives the
desired expression.

Lemma 4.2. We have

N1(B) =
1

2
∑
α>0

µ(α)
α2 ∫∣a2x∣,∣a3z−1∣,∣c2x∣,

∣a2cz−1∣,∣x3z2∣≤B
∣a∣,∣z∣≥1,∣x∣≥α

1

∣z∣dadcdxdz +O(B).

Proof. We first move the factor α−1 out of V2(α,x′, z;B). We replace the conditions
∣a(a2 + c)z−1∣ ≤ B and ∣c(a2 + c)z−1∣ ≤ B in the integral by ∣a3z−1∣ ≤ B and ∣ca2z−1∣ ≤ B,
i.e., we replace a2 + c by a2, which gives the new integral

V ′2(α,x′, z;B) = ∫ ∣a2αx′∣,∣c2αx′∣,
∣a3z−1∣,∣ca2z−1∣,
∣α2x′3z2∣≤B,∣a∣≥1

1

∣z∣dadc.
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However, both of these replacements introduce an error term. Consider first the error
term introduced by replacing ∣a(a2 + c)z−1∣ ≤ B by ∣a3z−1∣ ≤ B. This error term can be
bounded by

≪ ∫ ∣a2αx′∣,∣c2αx′∣,
∣a3z−1∣,∣c(a2+c)z−1∣,
∣α2x′3z2∣≤B,∣a∣≥1,

∣a3z−1+caz−1∣>B, ∣a3z−1∣≤B

1

∣z∣dadc. (4)

The inequalities ∣a3z−1+caz−1∣ > B, ∣a3z−1∣ ≤ B are equivalent to B−∣acz ∣ ≤ ∣a
3

z ∣ ≤ B+∣acz ∣,
which in turn is equivalent to ∣a2 − B∣z∣

∣a∣ ∣ ≤ ∣c∣. By setting a′ = a2 − B∣z∣∣a∣−1, this last

inequality reduces to ∣a′∣ ≤ ∣c∣ and we have that ∣da′da
∣ = 2∣a∣ + B∣z∣

∣a∣2 ≤
√
∣a′∣. Hence, we can

bound the error term in Equation (4) by

≪ ∫ ∣a′∣≤∣c∣,
∣a2αx′∣,∣c2αx′∣,∣c(a2+c)z−1∣,

∣α3x′3z2∣≤B,∣a∣≥1

1√
∣a′∣∣z∣

da′dc. (5)

To write N1(B) with V ′2(α,x′, z;B) instead of V2(α,x′, z;B), we take the bound in
Equation (5) out of the sums over α,x′, z to obtain an error term bounded by

≪ ∑
α>0

1

α
∑

x′,z∈Z≠0
∫ ∣a′∣≤∣c∣,
∣αx′c2∣,∣α3x′3z2∣≤B

1√
∣a′∣∣z∣

da′dc. (6)

As the integral over a′ can be bonded by ≪ 4
√
∣c∣, and the integral over c can be

bounded by ≪ B
3
4 ∣x′∣− 3

4α−
3
4 , the expression in Equation (6) can be bounded by

≪ B
3
4 ∑
α>0

1

α
7
4

∑
x′,z∈Z≠0,
∣α3x′3z2∣≤B

∣x′∣− 3
4 ∣z∣−1. (7)

Analogous to the computations following Equation (1), we can bound the sum over x′

in Equation (7) by

≪ 1 + ∫
⌈B

1
3 α−1∣z∣−

2
3 ⌉

1
x′−

3
4dx′ ≪ B

1
12α−

1
4 ∣z∣− 1

6

and the sum over z by

≪ 1 + ∫
⌈B1/2α−3/2⌉

0
z−7/6dz ≪ 14 − 12B−1/12α1/4 ≪ 14.

As α ≥ 1, α−1/4 ≤ 1 and can be forgotten to obtain a larger bound. Hence, the expression
in Equation (7) can be bounded by

≪ B
5
6 ∑
α>0

α−
7
4 .
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Here, the sum over α can be bounded by

≪ 1 + ∫
∞

1
α−

7
4dα≪ 7

4
,

with which we obtain that the error term in Equation (6) can be bounded by O(B5/6).

The computations for replacing ∣c(a2 + c)z−1∣ ≤ B by ∣ca2z−1∣ ≤ B can be done analo-
gously to show that the error term introduced by this replacement is also bounded by
O(B5/6). Combining this, we obtain

N1(B) =
1

2
∑
α>0

µ(α) ∑
x′,z∈Z≠0

V ′2(α,x′, z;B) +O(B). (8)

We now change the sum over z into an integral over z, for which we apply Lemma 3.6

of [6] with t = z, x = (a, c), y = (α,x′),M = {(α,x′, z, a, c) ∈ Z5 ∶
∣a2αx′∣,∣a3z−1∣,
∣c2αx′∣,∣ca2z−1∣,
∣α3x′3z2∣≤B, ∣a∣≥1

} and

f ∶M → R, (α,x′, z, a, c) ↦ 1
∣z∣ . As M is defined by a finite number of inequalities, it is

a semi-algebraic set. The graph of the function f is given by {(α,x′, z, a, c, 1
∣z∣) ∈ R6 ∶

H̃1(a,αx′, αy′, z) ≤ B}, which is again a semi-algebraic set as it is defined by a finite
number of inequalities. As f(y, t, ⋅) is a constant function on My,t = {x ∈ R ∶ (y, t,x) ∈
M}, it is integrable. Hence, Lemma 3.6 of [6] gives that there exists a constant C ∈ Z>0
such that for all y ∈ R2, there exists a partition of R into at most C intervals I on
whose interior Vy(t) = ∫x∈My,t

fdx is continuously differentiable and monotonic.

Remark that Vy(t) = V ′2(α,x′, z;B). On each such interval I, the difference between

∑z∈I V
′
2(α,x′, z;B) and ∫z∈I V ′2(α,x′, z;B) can be bounded by 2 supz∈Z≠0 V

′
2(α,x′, z;B).

Hence,

∣ ∑
z∈Z≠0

V ′2(α,x′, z;B) − ∫
z∈Z≠0

V ′2(α,x′, z;B)dz∣ ≤ C sup
z∈Z≠0

V ′2(α,x′, z;B),

where C is the constant from Lemma 3.6 of [6]. Hence, we have

∑
z∈Z≠0

V ′2(α,x′, z;B) = ∫
z∈Z≠0

V ′2(α,x′, z;B)dz +O( sup
z∈Z≠0

V ′2(α,x′, z;B)).

Observe that the function V ′2(α,x′, z;B) can be bounded by

≪ ∫∣a3z−1∣,∣c2αx′∣≤B,
∣a∣≥1

1

∣z∣dadc≪ B5/6α−1/2∣x′∣−1/2∣z∣−2/3.

It is clear that this bound is largest when ∣z∣ is smallest, i.e., when ∣z∣ = 1, with which

sup
z∈Z≠0

V ′2(α,x′, z;B) ≪ B5/6α−1/2∣x′∣−1/2.
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Taking the error term supz∈Z≠0 V
′
2(α,x′, z;B) out of the sums over α and x′ in Equation

(8), the total error term can be bounded by

≪ ∑
α>0

α−3/2 ∑
1≤∣x′∣≤B1/3

B5/6

∣x′∣1/2 . (9)

Analogous to the computations following Equation (1), the sum over x′ can be bounded
by

≪ 1 + ∫
⌈B1/3⌉

1
x′−1/2dx′ ≪ B1/6

and the sum over α can be bounded by

≪ 1 + ∫
∞

1
α−3/2dα≪ 1,

with which we can bound the expression in Equation (9) by O(B). We obtain the
expression

N1(B) =
1

2
∑
α>0

µ(α) ∑
x′∈Z≠0

∫
∣z∣≥1

V ′2(α,x′, z;B)dz +O(B). (10)

Let us now fix the notation

V3(α,x′;B) = ∫
∣z∣≥1

V ′2(α,x′, z;B)dz.

To now replace the sum over x′ by an integral over x′, we apply Lemma 3.6 of

[6] with t = x′, x = (a, c, z), y = α,M = {(α,x′, a, c, z) ∈ Z5 ∶
∣a2αx′∣,∣a3z−1∣,
∣c2αx′∣,∣ca2z−1∣,

∣α3x′3z2∣≤B, ∣a∣,∣z∣≥1
} and

f ∶ M → R, (α,x′, a, c, z) ↦ 1
∣z∣ . As M is defined by a finite number of inequalities,

it is a semi-algebraic set. The graph of the function f is given by {(α,x′, a, c, z, 1
∣z∣) ∈

R6 ∶ H̃1(a,αx′, αy′, z) ≤ B}, which is again a semi-algebraic set as it is defined by a
finite number of inequalities. As f(y, t, ⋅) is a constant function on My,t = {x ∈ R ∶
(y, t,x) ∈ M}, it is integrable, so we know that there exists a constant C ∈ Z>0 such
that for all y ∈ R, there exists a partition of R into at most C intervals I on whose
interior Vy(t) = ∫x∈My,t

fdx is continuously differentiable and monotonic.

Remark that Vy(t) = V3(α,x′;B). On each such interval I, the difference between

∑x′∈I V3(α,x′;B) and ∫x′∈I V3(α,x′;B) can be bounded by 2 supx′∈Z≠0 V3(α,x′;B). Hence,

∣ ∑
x′∈Z≠0

V3(α,x′;B) − ∫
x′∈Z≠0

V3(α,x′;B)dx′∣ ≤ C sup
x′∈Z≠0

V3(α,x′;B),

where C is the constant from Lemma 3.6 of [6]. Hence, we have

∑
x′∈Z≠0

V3(α,x′;B) = ∫
x′∈Z≠0

V3(α,x′;B)dx′ +O( sup
x′∈Z≠0

V3(α,x′;B)).
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Using the upper bound we found earlier for V ′2(α,x′, z;B), we see that

V3(α,x′ ∶ B) ≪ ∫
∣α3x′3z2∣≤B

B5/6

α1/2∣x′∣1/2∣z∣2/3dz ≪ Bα−1∣x′∣−1.

This bound is largest when ∣x′∣ is smallest, i.e., when ∣x′∣ = 1, which gives

sup
x′∈Z≠0

V3(α,x′ ∶ B) ≪ Bα−1.

Taking the error term O(supx′∈Z≠0 V3(α,x′ ∶ B)) out of the sum over α in Equation (10)
gives that we can bound the total error term by

B∑
α>0

µ(α)α−2 ≪ B (1 + ∫
∞

1
α−2dα) ≪ B.

This combines to the expression

N1(B) =
1

2
∑
α>0

µ(α)α−1V3(α,x′;B) +O(B).

Changing the variable αx′ to x and using the chain rule (i.e., dx = αdx′) then gives the
desired expression:

N1(B) =
1

2
∑
α>0

µ(α)
α2 ∫∣a2x∣,∣a3z−1∣,∣c2x∣,

∣a2cz−1∣,∣x3z2∣≤B
∣a∣,∣z∣≥1,∣x∣≥α

1

∣z∣dadcdxdz+O(B).

Proposition 4.3. The number of integral points of bounded height on U1 satisfies the
asymptotic formula

N1(B) =
20

3ζ(2)B log(B) +O(B).

Proof. First, we omit the condition that ∣a∣ ≥ 1, which only adds the case a = 0. This
introduces an error term bounded by

≪ ∑
α>0

µ(α)
α2 ∫∣c2x∣,∣x3z2∣≤B,

∣z∣≥1,∣x∣≥α

1

∣z∣dcdxdz, (11)

which we obtained by setting a = 0 in the integral from the previous lemma. As ∣z∣ ≥ 1,
we can bound the above integral by the integral of 1. Computing the integrals over c,
then z and then x gives that the error term in Equation (11) can be bounded by

≪ ∑
α>0

Bα−3.

With

∑
α>0

α−3 ≪ 1 + ∫
∞

1
α−3dα≪ 3

2
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the error term in Equation (11) can be bounded by O(B).

We now change variables: set a′ = az−1/3B−1/2, c′ = cz−1/3B−1/3 and x′ = xz2/3B−1/3.
With this,

da′ = daz−1/3B−1/2, dc′ = dcz−1/3B−1/3, dx′ = dxz2/3B−1/3

and hence, da′dc′dx′ = B−1dadcdx.

With this, we find the expression

N1(B) =
1

2
∑
α>0

µ(α)
α2 ∫ ∣a′2x′∣,∣c′2x′∣,∣a′∣,

∣a′2c′∣,∣x′∣≤1,
1≤∣z∣≤∣x′∣3/2B1/2α−3/2

B

∣z∣da
′dc′dx′dz +O(B).

For the remainder of this section, we fix the notation a = a′, c = c′ and x = x′, with
which the expression for N1(B) becomes

N1(B) =
1

2
∑
α>0

µ(α)
α2 ∫ ∣a2x∣,∣c2x∣,∣a∣,

∣a2c∣,∣x∣≤1,
1≤∣z∣≤∣x∣3/2B1/2α−3/2

B

∣z∣dadcdxdz +O(B).

Computing the integral with respect to z gives

N1(B) =
1

2
∑
α>0

µ(α)
α2 ∫ ∣a2x∣,∣c2x∣,∣a∣,

∣a2c∣,∣x∣≤1,
1≤∣x∣3/2B1/2α−3/2

B log(∣x∣3Bα−3)dadcdx +O(B).

We then want to omit the condition 1 ≤ ∣x∣3/2B1/2α−3/2, which introduces an error term
that in absolute value is bounded by

≪

RRRRRRRRRRRRRRRRRR

∑
α>0

µ(α)
α2 ∫ ∣a2x∣,∣c2x∣,∣a∣,

∣a2c∣,∣x∣≤1,
1≥∣x∣3/2B1/2α−3/2

B log(∣x∣3Bα−3)dadcdx

RRRRRRRRRRRRRRRRRR
≪ ∑

α>0

1

α2 ∫ ∣c2x∣,∣a∣≤1,
∣x∣3/2B1/2α−3/2≤1

∣B log(∣x∣3Bα−3)∣dadcdx. (12)

Computing the integral over a and c in Equation (12) gives the upper bound

≪ ∑
α>0

1

α2 ∫∣x∣3/2B1/2α−3/2≤1
∣B log(∣x∣3Bα−3)∣ ⋅ ∣x∣−1/2dx

Here, we compute the integral over x and we find that Equation (12) can be bounded
by

≪ ∑
α>0

1

α2
α1/2B5/6,
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which in turn can be bounded by

≪ B5/6 (1 + ∫
∞

1
α−3/2dα) ≪ B5/6.

We conclude that

N1(B) =
1

2
∑
α>0

µ(α)
α2 ∫∣a2x∣,∣c2x∣,∣a∣,

∣a2c∣,∣x∣≤1

(B log(∣x∣3Bα−3))dadcdx +O(B).

Writing log(Bα−3∣x∣3) = log(B) + log(α−3∣x∣3) and splitting the expression for N1(B)
accordingly gives

N1(B) =
1

2
∑
α>0

µ(α)
α2 ∫∣a2x∣,∣c2x∣,∣a∣,

∣a2c∣,∣x∣≤1

(B log(B))dadcdx +R2(B) +O(B)

with

R2(B) =
1

2
∑
α>0

µ(α)
α2 ∫∣a2x∣,∣c2x∣,∣a∣,

∣a2c∣,∣x∣≤1

(B log(∣x∣3α−3))dadcdx.

In absolute values, R2(B) can be bounded by

∑
α>0

B

α2 ∫∣c2x∣,∣a∣,∣x∣≤1
(log(∣x∣α−1))dadcdx. (13)

Computing the integrals over a and then c in Equation (13) gives the upper bound of
Equation (13)

≪ ∑
α>0

B

α2 ∫∣x∣≤1 log(∣x∣α
−1)∣x∣−1/2dx.

We compute the integral over x in the above expression as

∫
∣x∣≤1

log(∣x∣α−1)∣x∣−1/2dx = ∫
∣x∣≤1

log(∣x∣)∣x∣−1/2dx − ∫
∣x∣≤1

log(α)∣x∣−1/2dx

≪ 2 + log(α),

with which we can bound ∣R2(B)∣ by

≪ ∑
α>0

B

α2
(2 + log(α)) ≪ B∑

α>0

1

α2
+B (1 + ∫

∞

1
log(α)α−2dα) ≪ B.

Combining it all gives the expression

N1(B) =
1

2
∑
α>0

µ(α)
α2 ∫∣a2x∣,∣c2x∣,∣a∣,

∣a2c∣,∣x∣≤1

(B log(B))dadcdx +O(B). (14)

We first consider only the integral of the above expression. Computing the integral
over x gives

1

2 ∫∣a2x∣,∣c2x∣,∣a∣,
∣a2c∣,∣x∣≤1

1dadcdx = ∫ ∣a∣,
∣a2c∣≤1

1

max{1, ∣a∣2, ∣c∣2}dadc.
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As ∣a∣ ≤ 1, max{1, ∣a∣2, ∣c∣2} = max{1, ∣c∣2}. Again as ∣a∣ ≤ 1, ∣a2c∣ ≤ 1 imposes no
restriction on c, so we distinguish two cases: ∣c∣ > 1 and ∣c∣ ≤ 1. With this,

∫ ∣a∣,
∣a2c∣≤1

1

max{1, ∣a∣2, ∣c∣2}dadc = ∫∣c∣≤1∫∣a∣≤1 1dadc + ∫∣c∣>1∫∣a2c∣≤1
1

∣c∣2dadc.

Computing these integral separately gives

∫
∣c∣≤1
∫
∣a∣≤1

1dadc + ∫
∣c∣>1
∫
∣a2c∣≤1

1

∣c∣2dadc = 4 + 4∫
∞

1
c−5/2dc

= 20

3
.

Combining these computations with Equation (14) gives

N1(B) =
20

3
B log(B) ∑

α>0

µ(α)
α2

.

As ∑α>0
µ(α)
α2 = ζ(2)−1 (Equation (3.9) of Chapter 1 in [23]), we obtain the desired

asymptotic for N1(B).

4.2 The counting function N2(B)
In this section we consider the counting function

N2(B) =
1

2
#{(b, c, x, y, z) ∈ Z5 ∶

1+bc−yz=0, gcd(x,y)=1,
H(1,b,c,x,y,z)≤B,

b,c,x,z≠0
}

with
H(1, b, c, x, y, z) =max{∣x∣, ∣b2x∣, ∣c2x∣, ∣z2x3∣, ∣y∣, ∣by∣, ∣cy∣}.

Lemma 4.4. We have

N2(B) = ∑
b,x,z∈Z≠0

θ1(b, x, z)V1(b, x, z;B) +O(B),

where

V1(b, x, z;B) =
1

2 ∫H̃2(b,c,x,z)≤B,
∣b∣,∣c∣,∣x∣,∣z∣≥1

1

∣z∣dc

with
H̃2(b, c, x, z) =H(1, b, c, x, (1 + bc)z−1, z)

and θ1(b, x, z) = ∏p θ
(p)
1 (b, x, z) with

θ
(p)
1 (b, x, z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if p ∣ b, p ∣ z,
1 − 1

p if p /∣ b, p ∣ x,
1 else.
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Proof. Applying Möbius inversion as seen in Section 2.10 and setting y′ = y/α gives

N2(B) =
1

2
∑

b,x,z∈Z≠0
∑
α∣x

µ(α)Ñ2(B) (15)

with

Ñ2(B) =#{(c, y′) ∈ Z2 ∶ c≠0, 1+bc−αy′z=0,
H(1,b,c,x,αy′,z)≤B}

=#{c ∈ Z≠0 ∶ bc≡−1 mod α∣z∣,
H(1,b,c,x,(1+bc)z−1,z)≤B} .

For given b,α, z, the congruence relation bc ≡ −1 mod α∣z∣ has exactly one solution if
gcd(b,αz) = 1 and no solutions otherwise. Hence, in the latter case, Ñ2(B) = 0. In the
first case, we can estimate Ñ2(B) as follows. The solutions to the congruence relation
are of the form c = β + k∣αz∣, where β denotes the unique solution in {1, . . . , α∣z∣ − 1}
and k ∈ Z. We remark that β ∈ Z≠0 for we have the condition c ∈ Z≠0. With this, we
obtain

Ñ2(B) = ∑
c∈Z≠0,

H̃2(b,c,x,z)≤B,
bc≡−1 mod αz

1

= ∑
k∈Z,

H̃2(b,β+k∣αz∣,x,z)≤B

1

= ∫ k∈Z,
H̃2(b,β+k∣αz∣,x,z)≤B

1dk +O(1)

= ∫H̃2(b,c,x,z)≤B,
∣c∣≥1

1

α∣z∣dc +O(1).

By taking the error term O(1) out of the sums over b, x, z, α in Equation (15) we can
bound the error term by

≪ ∑
b,x,z∈Z≠0,
∣b2x∣,∣z2x3∣≤B

∑
α∣x
∣µ(α)∣. (16)

As ∑α∣x ∣µ(α)∣ = 2ω(∣x∣), we bound Equation (16) by

≪ ∑
x∈Z≠0

2ω(x) ∑
b∈Z≠0,
∣b2x∣≤B

∑
z∈Z≠0,
∣z2x3∣≤B

1.

Analogous to the computations following Equation (1), the sum over z can be bounded
by ≪ B1/2∣x∣−3/2 and the sum over b can be bounded by ≪ B1/2∣x∣−1/2. Using that for
all x ∈ Z>0, 2ω(x) ≤ d(x) (Lemma 2.49) and that ∑∞x=1 d(x)x−2 = ζ(2)2 (Lemma 2.50),
the sum over x can be bounded by

≪ B
∞
∑
x=1

d(x)x−2 ≪ Bζ(2)2 ≪ B.
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Combining all the above gives

N2(B) =
1

2
∑

b,x,z∈Z≠0
∑
α∣x,

gcd(b,αz)=1

µ(α)
α ∫H̃2(b,c,x,z)≤B,

∣b∣,∣c∣,∣x∣,∣z∣≥1

1

∣z∣dc +O(B).

As gcd(b,αz) and µ(α) are multiplicative in α, we have

∑
α∣x,

gcd(b,αz)=1

µ(α)
α
=∏

p

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if p ∣ b, p ∣ z,
1 − 1

p if p /∣ b, p ∣ x,
1 else.

This gives the desired expression for N2(B).

Lemma 4.5. We have

N2(B) = ∑
b,x∈Z≠0

θ2(x, z)V2(x, z;B) +O(B(log log(B))2),

where

V2(x, z;B) =
1

2 ∫H̃2(b,c,x,z)≤B,
∣b∣,∣c∣,∣x∣,∣z∣≥1

1

∣z∣dbdc

and θ2(x, z) = ∏p θ2(p)(x, z) with

θ
(p)
2 (x, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − 1
p)

2
if p ∣ x, z,

1 − 1
p + 1

p2 if p ∣ x, p /∣ z,
1 − 1

p if p /∣ x, p ∣ z,
1 if p /∣ x, z

Idea of proof. Using the conditions ∣c2x∣ ≤ B and ∣b(1 + bc)z−1∣ ≤ B coming from the
height condition, the integral V1(b, x, z;B) can be bounded by

≪ 1

∣z∣ min{B1/2∣x∣−1/2,B∣z∣∣b∣−2} ≪ 1

∣z∣ (
B1/2

∣x∣1/2)
2/3

(B∣z∣∣b∣2 )
1/3

. (17)

To apply Proposition 3.9 of [5], we first check that V1(b, x, z;B) satisfies the conditions
above Lemma 3.6 in [5]. Setting

r = 0, s = 2, η0 = b, η1 = x, η2 = z, a1 = a2 = 1/6

k01 = 2, k02 = 0, k11 = 1, k12 = 3, k22 = 2,
the above bound for V1(b, x, z;B) implies that V1(b, x, z;B) indeed satisfies the condi-
tions above Lemma 3.6 in [5].
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To apply Proposition 3.9 of [5], we must have θ1(b, x, z) ∈ Θ1,3(C,x) for some constant
C ∈ R≥0. Using Corollary 7.9 of [5], it is enough to show that θ1(b, x, z) ∈ Θ′4,3(C,x). It
is a straightforward verification that indeed θ1(b, x, z) ∈ Θ′4,3(C,x), using Definition 7.8
of [5]. Then applying Proposition 3.9 of [5] gives the desired result. We remark that it
is crucial for the application of [5] that θ1(b, x, z) is multiplicative.

Lemma 4.6. We have

N2(B) =
1

2
∏
p

(1 − 2

p2
+ 1

p3
)∫H̃2(b,c,x,z)≤B,

∣b∣,∣c∣,∣x∣,∣z∣≥1

1

∣z∣dbdcdxdz +O(B(log logB)
2).

Idea of proof. Using the bound in Equation (17), and using the height condition
∣b2x∣ ≤ B, we can bound V2(x, z;B) by

≪ B2/3∣x∣−1/3∣z∣−2/3∫
1≤∣b∣≤B1/2∣x∣−1/2

∣b∣−2/3db.

We can bound the integral over b by ≪ B1/6∣x∣−1/6, with which we obtain the upper
bound for V2(x, z;B) given by

≪ B

∣xz∣ (
B

∣x∣3∣z∣2)
−1/6

. (18)

To apply Proposition 4.3 of [5], we first check that V2(x, z;B) satisfies the conditions
above Lemma 4.1 in [5]. Setting r = s = 1, a1 = 1

6 , k1,1 = 3 and k2,1 = 2, the above bound
for V2(x, z;B) implies that V2(x, z;B) indeed satisfies the conditions above Lemma 4.1
in [5].

To apply Proposition 4.3 of [5], we must have θ2(x, z) ∈ Θ2,2(C) for some constant
C ∈ R≥0. Using Definition 4.2 of [5], this is a straightforward computation. Then
applying Proposition 4.3 of [5] gives the desired result.

Proposition 4.7. We have

N2(B) = cB log(B) +O(B log log(B)2),

where

c = 20

3
∏
p

(1 − 2

p2
+ 1

p3
) .

Proof. Let us fix the notation

V3(B) = ∫H̃2(b,c,x,z)≤B,
∣b∣,∣c∣,∣x∣,∣z∣≥1

1

∣z∣dbdcdxdz.

Remark that the condition ∣(1+ bc)z−1∣ ≤ B coming from the height condition is redun-
dant, so we can omit it. We replace the conditions ∣(1+bc)bz−1∣ ≤ B and ∣(1+bc)cz−1∣ ≤ B
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in the integral V3(B) by ∣b2cz−1∣ ≤ B and ∣bc2z−1∣ ≤ B, i.e., we replace 1+bc by bc, which
gives the new integral

V ′3(B) = ∫ ∣b2x∣,∣c2x∣,∣x3z2∣,
∣b2cz−1∣,∣bc2z−1∣≤B,
∣b∣,∣c∣,∣x∣,∣z∣≥1

∣z∣−1dbdcdxdz.

However, both of those replacements introduce an error term. Consider first the error
term introduced by replacing ∣(1+ bc)bz−1∣ ≤ B by ∣b2cz−1∣ ≤ B. Analogous to the proof
of Lemma 4.2, this error term can be bounded by

≪ ∫ ∣c∣,∣b∣,∣x∣,∣z∣≥1,
∣Bz
b2
∣− 1
∣b∣≤∣c∣≤∣

Bz
b2
∣+ 1
∣b∣ ,

∣b2x∣,∣x3z2∣≤B

1

∣z∣dcdbdxdz (19)

In this equation, the integral over c can be bounded by ≪ ∣b∣−1, and the integral over x
can be bounded by ≪ min{B∣b∣−2,B1/3∣z∣−2/3} ≪ B1/3∣z∣−2/3, with which we can bound
Equation (19) by

≪ ∫ ∣b∣,∣z∣≥1,
1≤∣Bz

b2
∣+ 1
∣b∣

1

∣bz∣B
1/3∣z∣−2/3dbdz. (20)

Remark that 1 ≤ ∣Bz
b2
∣ + 1

∣b∣ ≤ 2max{∣Bz
b2
∣ , 1
∣b∣}. As ∣b2x∣ ≤ B, we know that ∣b∣ ≤ B, with

which

∣Bz

b2
∣ = ∣B

b
∣ ⋅ ∣z

b
∣ ≥ ∣z

b
∣ ≥ 1

∣b∣ .

Hence, we obtain the inequality 1 ≤ 2 ∣Bz
b2
∣, which is equivalent to

∣z∣−1 ≪ B∣b∣−2.

Then also ∣z∣−1/3 ≪ B1/3∣b∣−2/3, with which the integral in Equation (20) can be bounded
by

≪ ∫
∣b∣,∣z∣≥1

B2/3∣z∣−4/3∣b∣−5/3dbdz. (21)

Computing the integrals over b and z gives

∫
∣b∣≥1
∣b∣−5/3db≪ 3

2
,

∫ ∣z∣ ≥ 1∣z∣−4/3dz ≪ 3,

with which we can bound the error term in Equation (19) by O(B2/3).

The computations for replacing ∣(1 + bc)cz−1∣ ≤ B by ∣bc2z−1∣ ≤ B can be done analo-
gously to show that the error term introduced by this replacement is also bounded by
O(B2/3). Combining this, we obtain

N2(B) =
1

2
∏
p

(1 − 2

p2
+ 1

p3
)V ′3(B) +O(B(log logB)2).
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Analogous to the first step in the proof of Lemma 4.3, we now forget the condition
∣b∣ ≥ 1, which only adds the case b = 0. We introduce an error term bounded by

≪ ∫∣c2x∣,∣z2x3∣≤B,
∣c∣,∣x∣,∣z∣≥1

1

∣z∣dcdxdz (22)

In here, the integral over c can be bounded by ≪ ∫
B1/2∣x∣−1/2
1 1dc ≪ B1/2∣x∣−1/2. The

integral over x can then be bounded by ≪ 1 + ∫
B1/3∣z∣−2/3
1 x−1/2dx ≪ B1/6∣z∣−1/3, with

which we can bound the integral over z by ≪ ∫∣z∣≥1 ∣z∣−4/3dz ≪ 3. Hence, the error term

in Equation (22) is bounded by O(B2/3).

Omitting the condition ∣c∣ ≥ 1 gives analogous computations and the error term intro-
duced can again be bounded by ≪ O(B2/3). Hence, we find

N2(B) =
1

2
∏
p

(1 − 2

p2
+ 1

p3
)V ′′3 (B) +O(B(log logB)2)

with
V ′′3 (B) = ∫ ∣b2x∣,∣c2x∣,∣x3z2∣,

∣b2cz−1∣,∣bc2z−1∣≤B,
∣x∣,∣z∣≥1

∣z∣−1dbdcdxdz.

Analogous to the proof of Proposition 4.3, we now change variables: set b′ = B−1/3bz−1/3,
c′ = B−1/3cz−1/3 and x′ = B−1/3xz2/3. With this,

N2(B) =
1

2
∏
p

(1 − 2

p2
+ 1

p3
)∫∣b′2x′∣,∣c′2x′∣,∣x′∣,

∣b′2c′∣,∣b′c′2∣≤1,
1≤∣z∣≤B1/2∣x′∣3/2

B

∣z∣db
′dc′dx′dz +O(B(log logB)2).

For the remainder of this section, we fix the notation b = b′, c = c′ and x = x′, with
which the expression for N2(B) becomes

N2(B) =
1

2
∏
p

(1 − 2

p2
+ 1

p3
)V ′′3 (B) +O(B(log logB)2),

with

V ′′3 (B) = ∫ ∣b2x∣,∣c2x∣,∣x∣,
∣b2c∣,∣bc2∣≤1,

1≤∣z∣≤B1/2∣x∣3/2

B

∣z∣dbdcdxdz +O(B(log logB)
2).

We compute the integral over z in V ′′3 (B) and obtain

V ′′3 (B) = 2B ∫∣b2x∣,∣c2x∣,∣x∣,
∣b2c∣,∣bc2∣≤1,
1≤B1/2∣x∣3/2

log(B1/2∣x∣3/2)dbdcdx.
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The remainder of this proof is analogous to the proof of Proposition 4.3. We omit
the condition 1 ≤ B1/2∣x∣3/2, which introduces an error term that in absolute value is
bounded by

≪ B ∫ ∣x∣≤B−1/3,
∣b2c∣,∣bc2∣≤1

∣log(B1/2∣x∣3/2)∣dbdcdx. (23)

In here, we can bound the integral over x by ≪ B−1/3, with which Equation (23) can
be bounded by ≪ B ∫∣b2c∣,∣bc2∣≤1B−1/3dbdc. We compute the integral over b to obtain the

bound for Equation (23)

≪ B2/3∫
∣b∣≤∣c∣−2, ∣b∣≤∣c∣−1/2

1dbdc≪ B2/3 (∫
∣c∣≤1
∣c∣−1/2dc + ∫

∣c∣>1
∣c∣−2dc) (24)

We compute both of the integrals over c and obtain their sum equals 2 + 1, such that
Equation (23) is bounded by O(B2/3). Hence,

V ′′3 (B) = 2B ∫∣b2x∣,∣c2x∣,∣x∣,
∣b2c∣,∣bc2∣≤1

log(B1/2∣x∣3/2)dbdcdx +O(B2/3).

Writing log(B1/2∣x∣3/2) = 1
2 log(B) + log(∣x∣3/2) and splitting the integrals over b, c, x

accordingly, we obtain

V ′′3 (B) = B log(B)∫∣b2x∣,∣c2x∣,∣x∣,
∣b2c∣,∣bc2∣≤1

1dbdcdx +O(B2/3) +R4(B),

where
∣R4(B)∣ ≪ B ∫∣b2x∣,∣c2x∣,∣x∣,

∣b2c∣,∣bc2∣≤1

log(∣x∣3/2)dbdcdx. (25)

In Equation (25), we bound the integral over x by

∫
1

−1
log(∣x∣3/2)dx≪ 3

2
(2 − iπ),

which is a constant. We repeat the computations for Equation (24) to conclude that
∣R4(B)∣ ≪ B, such that

V ′′3 (B) = B log(B)∫∣b2x∣,∣c2x∣,∣x∣,
∣b2c∣,∣bc2∣≤1

1dbdcdx +O(B).

Repeating the computations following Equation (14), we see that

V ′′3 (B) = B log(B)20
3
+O(B),

as desired.
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4.3 Obstruction to an asymptotic for N(B)
In this section, we follow the first steps taken in Section 5 of [24] and we highlight
where this method breaks down for the counting function N(B).

Recall the counting function N(B), which can be expressed explicitly as

N(B) = 1

2
#{(b, c, x, y, z) ∈ Z5 ∶

1+b2+c2−yz=0,
H(1,b,c,x,y,z)≤B,

gcd(x,y)=1, b,c,x,z≠0
} .

We apply Möbius inversion as seen in Section 2.10 and set y′ = y
α to obtain

N(B) = 1

2
∑

b,x,z∈Z≠0
∑
α∣x

µ(α)Ñ(B)

with
Ñ(B) =#{(c, y′) ∈ Z2 ∶ c≠0,1+b2+c2−αy′z=0,

H(1,b,c,x,αy′,z)≤B } .

Set g = gcd(αz,−1−b2), let g′ be the unique positive integer such that vp(g′) = ⌈vp(g)/2⌉
for all primes p. It is immediate that g′ ∣ g and g ∣ (g′)2, which justifies setting g′′ = (g

′)2
g .

Lemma 4.8. We have

N(B) = ∑
b,x,z∈Z≠0

θ1(b, x, z)V1(b, x, z;B) +Oϵ(B5/6+ϵ)

where

V1(b, x, z;B) =
1

2 ∫H̃(b,c,x,z)≤B,
∣b∣,∣c∣,∣x∣,∣z∣≥1

1

∣z∣dc

with

H̃(b, c, x, z) =H(1, b, c, x, (1 + b2 + c2)z−1, z)
=max{∣x∣, ∣b2x∣, ∣c2x∣, ∣z2x3∣, ∣(1 + b2 + c2)z−1∣, ∣(1 + b2 + c2)bz−1∣, ∣(1 + b2 + c2)cz−1∣}

and
θ1(b, x, z) = ∑

α∣x
µ(α)α−1 g

g′
η(q; b′g′′),

with η(q; b′g′′) multiplicative in q and for every prime p and k ∈ Z>0

η(pk; b′g′′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + ( b′g′′p ) if p /∣ 2b′g′′

1 if p = 2, k = 1, b′g′′ ≡ 1 mod 2

2 if p = 2, k = 2, b′g′′ ≡ 1 mod 4

4 if p = 2, k ≥ 3, b′g′′ ≡ 1 mod 8

0 else
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Proof. We observe that the expression for Ñ(B) above is equal to

Ñ(B) =#{c ∈ Z≠0 ∶ c2≡−1−b2 mod α∣z∣,
H(1,b,c,x,(1+b2+c2)z−1,z)≤B} .

We want to study the number of solutions to the congruence relation c2 ≡ −1 − b2
mod α∣z∣. As gcd(−1− b2, αz) need not be equal to one, we first modify the congruence
relation. Observe that any solution c ∈ Z≠0 to c2 ≡ −1 − b2 mod α∣z∣ must be divisible

by g′. Hence, setting c′ = c
g′ is sensible. Also set b′ = −1−b2g and q = α∣z∣

g . With this,

Ñ(B) =#{c′ ∈ Z≠0 ∶ g′′(c′)2≡b′ mod q,

H(1,b,g′c′,x,(1+b2+(g′c′)2)z−1,z)≤B} .

We claim that gcd(q, g′′) = 1. Indeed, let p be a prime that divides both q and g′′.
Then it follows from the congruence relation that p must also divide b′, which cannot
be for gcd(b′, q) = 1 by construction.

As gcd(q, g′′) = 1, there exists g′′ ∈ Z/qZ such that g′′g′′ ≡ 1 mod q. Hence,

Ñ(B) =#{c′ ∈ Z≠0 ∶ (c′)2≡b′g′′(g′′)2 mod q,

H(1,b,g′c′,x,(1+b2+(g′c′)2)z−1,z)≤B}

= ∑
1≤ρ≤q,

gcd(ρ,q)=1,
ρ2≡b′g′′ mod q

#{c′ ∈ Z≠0 ∶ c′≡ρg′′ mod q,
H(1,b,g′c′,x,(1+b2+(g′c′)2)z−1,z)≤B} .

It follows that

#{c′ ∈ Z≠0 ∶ c′≡ρg′′ mod q,
H(1,b,g′c′,x,(1+b2+(g′c′)2)z−1,z)≤B}

= ∑
k∈Z,

H(1,b,g′(ρg′′+kq),x,(1+b2+(g′)2(ρg′′+kq)2)z−1,z)≤B

1

= ∫ k∈R,
H(1,b,g′(ρg′′+kq),x,(1+b2+(g′)2(ρg′′+kq)2)z−1,z)≤B

1dk +O(1)

= ∫ ∣c′∣≥1,
H(1,b,g′c′,x,(1+b2+(g′c′)2)z−1,z)≤B

1

q
dc′ +O(1)

= ∫ ∣c∣≥1,
H(1,b,c,x,(1+b2+c2)z−1,z)≤B

1

g′q
dc +O(1)

= g

g′α ∫ ∣c∣≥1,
H(1,b,c,x,(1+b2+c2)z−1,z)≤B

1

∣z∣dc +O(1)

Set V1(b, x, z;B) = ∫ ∣c∣≥1,
H(1,b,c,x,1+b2+c2)z−1,z)≤B

1
∣z∣dc. Then combining all of the above,

N(B) = 1

2
∑

b,x,z∈Z≠0,
∣x∣,∣b2x∣,∣x3z2∣,

∣(b2+2)z−1∣,∣(b2+2)bz−1∣≤B

∑
α∣x

µ(α)α−1 g
g′

∑
1≤ρ≤q,

gcd(ρ,q)=1,
ρ2≡b′g′′ mod q

(V1(b, x, z;B) +O(1)) .
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We first take the error term O(1) out of the sums over b, x, z, α, ρ and obtain that the
error is bounded by

≪ ∑
b,x,z∈Z≠0,

∣x3z2∣,∣(b2+2)bz−1∣≤B

∑
α∣x

µ(α) ∑
1≤ρ≤q,

gcd(ρ,q)=1,
ρ2≡b′g′′ mod q

1 (26)

Set η(q; b′g′′) = ∑ 1≤ρ≤q,
gcd(ρ,q)=1,

ρ2≡b′g′′ mod q

1. By the Chinese Remainder theorem, this function is

multiplicative in q and we know for every prime p and for every k ∈ Z>0

η(pk; b′g′′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + ( b′g′′p ) if p /∣ 2b′g′′

1 if p = 2, k = 1, b′g′′ ≡ 1 mod 2

2 if p = 2, k = 2, b′g′′ ≡ 1 mod 4

4 if p = 2, k ≥ 3, b′g′′ ≡ 1 mod 8

0 else

following from Hensel’s lemma and using the Legendre symbol.

It then follows that η(q; b′g′′) ≤ 2ω(α∣z∣)+1 ≤ 2ω(α)+ω(∣z∣)+1. As µ(α)2ω(α) is multiplicative
in α, we obtain

∑
α∣x

µ(α)α−12ω(α) =∏
p

⎧⎪⎪⎨⎪⎪⎩

1 − 2
p if p ∣ x

1 else
≤ 1.

This combines to the upper bound for Equation (26)

≪ ∑
b,x,z∈Z≠0,

∣x3z2∣,∣(b2+2)bz−1∣≤B

2ω(∣z∣). (27)

In here, the sum over x can be bounded as follows.

∑
x∈Z≠0,

∣x∣≤B1/3∣z∣−2/3

1≪ ∫
⌈B1/3∣z∣−2/3⌉

1
1dx

≪ B1/3∣z∣−2/3

With this and using Lemma 2.51, the sum over z in Equation (27) can be bounded by

∑
z∈Z≠0,
∣z∣≤B1/2

2ω(∣z∣)∣z∣−2/3 ≪ϵ ∑
z∈Z≠0,
∣z∣≤B1/2

∣z∣−2/3+ϵ

≪ϵ B
1/6+ϵ/2.
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The sum over b in Equation (27) can be bounded by ≪ B1/3, with which the expression
in Equation (27) can be bounded by

≪ϵ B
5/6+ϵ/2.

Hence, we obtain

N(B) = 1

2
∑

b,x,z∈Z≠0
∑
α∣x

µ(α)α−1 g
g′

∑
1≤ρ≤q,

gcd(ρ,q)=1,
ρ2≡b′g′′ mod q

V1(b, x, z;B) +Oϵ(B5/6+ϵ)

It is now immediate that

θ1(b, x, z) = ∑
α∣x

µ(α)α−1 g
g′

∑
1≤ρ≤q,

gcd(ρ,q)=1,
ρ2≡b′g′′ mod q

1 = ∑
α∣x

µ(α)α−1 g
g′
η(q; b′g′′),

which is indeed as required.

In the previous section, we have seen that θ1(b, x, z) being multiplicative is crucial in
order to apply the paper [5] as Florian Wilsch does in Section 5 of [24]. The following
lemma shows that θ1(b, x, z) is not multiplicative, which is why the method of Section
5 in [24] does not extend in a straightforward way to the counting function N(B).

Lemma 4.9. The function θ1(b, x, z) is not multiplicative in x.

Proof. It suffices to show that for distinct prime numbers p1, p2,

θ1(b, p1, z)θ1(b, p2, z) ≠ θ1(b, p1p2, z).

As multiplicativity in x must hold for all choices of b, z ∈ Z≠ 0, we can fix them such
that

- for all p such that vp(z) ≠ 0, vp(−1 − b2) ≥ vp(z) + 1

- for all p such that vp(z) ≠ 0, vp(z) is even

With these assumptions on b, z ∈ Z≠0,

q = α∣z∣
g
=∏

p

pvp(αz)−min{vp(αz),vp(−1−b2)} = 1

for vp(α) ≤ 1 as α can be assumed to be square-free. Then independent of the variable
x, η(q; b′g′′) = 1. Observe that

g

g′
=∏

p

pmin{vp(αz),vp(−1−b2)}−⌈min{vp(αz),vp(−1−b2)}/2}⌉ =∏
p

pvp(αz)/2,
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then it follows directly that

θ1(b, p1, z) =∏
p

pvp(z)/2 − ∏
p≠p1

pvp(z)/2 ⋅ pvp1(z)/2−11 .

and that

θ1(b, p1p2, z) =∏
p

pvp(z)/2 − ∏
p≠p1

pvp(z)/2 ⋅ pvp1(z)/2−11 − ∏
p≠p2

pvp(z)/2 ⋅ pvp2(z)/2−12

+ ∏
p≠p1,p2

pvp(z)/2 ⋅ pvp1(z)/2−11 ⋅ pvp2(z)/2−12 .

It is easy to see then that

θ1(b, p1, z)θ1(b, p2, z) =∏
p

pvp(z)/2θ1(b, p1p2, z),

showing that θ1(b, x, z) indeed is not multiplicative in x.

4.4 An upper bound for N(B)
As the method of Section 5 in [24] does not extend in a straightforward way to the
counting function N(B), we determine an upper bound for N(B).

Proposition 4.10. Let N(B) be the counting function

N(B) = 1

2
∑

b,x,z∈Z≠0
#{(c, y) ∈ Z2 ∶ c≠0,1+b2+c2−yz=0,(x,y)=1,

H(1,b,c,x,y,z)≤B }.

Then for all B ∈ R>0,
N(B) ≪ϵ B

7/6+ϵ.

Proof. As forgetting conditions enlarges the set of points that N(B) counts, one can
bound N(B) by

≪ ∑
b,x,z∈Z≠0

#{(c, y) ∈ Z2 ∶ c≠0,1+b2+c2−yz=0,
H(1,b,c,x,y,z)≤B }

As in the proof of Lemma 4.8, set g = gcd(−1 − b2, z), q = ∣z∣g , b′ = −1−b
2

g , g′ to be the

unique integer such that vp(g′) = ⌈vp(g)/2⌉ and g′′ = g′
g . Then we can write

#{(c, y) ∈ Z2 ∶ c≠0,1+b2+c2−yz=0,
H(1,b,c,x,y,z)≤B } =

g

g′
η(q; b′g′′)V1(b, x, z;B),

with

V1(b, x, z;B) = ∫H̃(b,c,x,z)≤B,
∣b∣,∣c∣,∣x∣,∣z∣≥1

1

∣z∣dc
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with

H̃(b, c, x, z) =H(1, b, c, x, (1 + b2 + c2)z−1, z)
=max{∣x∣, ∣b2x∣, ∣c2x∣, ∣z2x3∣, ∣(1 + b2 + c2)z−1∣, ∣(1 + b2 + c2)bz−1∣, ∣(1 + b2 + c2)cz−1∣}

and with η(q; b′g′′) multiplicative in q and for every prime p and k ∈ Z>0, η(pk; b′g′′) as
given in Lemma 4.8.

It follows from the expression for η(pk; b′g′′) that η(q; b′g′′) ≤ 2ω(q)+1 ≤ 2ω(∣z∣)+1. As

( g
g′)

2
≤ g ≤min{∣z∣,1 + b2}, and as 1 + b2 ≤ 2b2 for b ≠ 0, we obtain

g

g′
≪min{

√
∣z∣, ∣b∣} ≪

√
∣z∣.

Lastly, using the height conditions ∣c2x∣ ≤ B and ∣(1 + b2 + c2)bz−1∣ ≤ B,

V1(b, x, z;B) ≪ ∣z∣−1∫
1≤∣c∣≤min{B1/2∣x∣−1/2,B1/2∣z∣1/2∣b∣−1/2}

1dc

≪ ∣z∣−1min{B1/2∣x∣−1/2,B1/2∣z∣1/2∣b∣−1/2}
≪ ∣z∣−1B1/2∣z∣1/2∣b∣−1/2

Combining all the above, and forgetting all height conditions but ∣x3z2∣ ≤ B and ∣(1 +
b2 + c2)bz−1∣ ≤ B, we can bound N(B) by

≪ B1/2 ∑
1≤∣b∣≤B1/3

∣b∣−1/2 ∑
1≤∣z∣≤B1/2

2ω(∣z∣) ∑
1≤∣x∣≤B1/3∣z∣−2/3

1. (28)

Here, the sum over x can be bounded by

≪ ⌈B1/3∣z∣−2/3⌉ − 1≪ B1/3∣z∣−2/3.
With this, we find the upper bound for the sum over z in Equation (28)

≪ ∑
z∈Z≠0,
∣z∣≤B1/2

2ω(∣z∣)∣z∣−2/3 ≪ ∑
1≤∣z∣≤B1/2

d(z)z−2/3 ≪ϵ ∑
1≤∣z∣≤B1/2

z−2/3+ϵ

≪ϵ 1 + ∫
⌈B1/2⌉

1
z−2/3+ϵdz ≪ϵ ⌈B1/6+ϵ/2⌉ ≪ϵ B

1/6+ϵ/2

where we used Lemma 2.51 and Lemma 2.49. Lastly, the sum over b is bounded by

∑
b∈Z≠0,
∣b∣≤B1/3

∣b∣−1/2 ≪ ∑
1≤∣b∣≤B1/3

b−1/2 ≪ B1/6.

Combining all these bounds gives indeed

N(B) ≪ϵ B
7/6+ϵ/2.

We note that at every step, we threw away information. This makes for a sub-optimal
upper bound. It is possible that playing around with the order of summation or taking
different upper bounds for g/g′ and V1(b, x, z) gives a tighter upper bound.
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