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ABSTRACT

Current studies in Zero-Shot Learning for image classification use a
weak Zero-Shot condition by using curated attributes as semantics
to guide the classification of unseen images. Instead, this work as-
sumes a strict Zero-Shot condition by using the readiest at hand data
as guiding semantics, raw text from Wikipedia. The Zero-Shot con-
dition itself is solved by filling in the gap of the missing visual data
with generated data, essentially simulating what is missing in hopes
of classifying it when it comes along. The generation is done through
Zero Flow: a generative neural network architecture based on normal-
izing flows. Zero Flow matches state of the art in the CUB dataset and
surpasses the current state of the art by 12% on ImageNet.
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INTRODUCTION

Humans are exceptionally efficient at learning. We can learn to visu-
ally recognise instances of novel objects after one training example.
Even more impressive is our ability to visually identify a novel object
without prior visual cues solely using semantic information of an ob-
ject’s properties/components. This ability we possess is referred to in
machine learning as zero-shot learning (ZSL). ZSL first appeared in
machine learning in 2008 by Larochelle et al. [17] under the slightly
different name, zero-data. Nonetheless, zero-data was soon adjusted to
zero-shot in the styles of the already established one-shot and few-shot
nomenclatures.

This thesis examination of ZSL came about due to a challenge
proposed by TNO (Nederlandse Organisatie voor Toegepast Natuur-
wetenschappelijk Onderzoek), an independent research organisation
in the Netherlands focusing on applied science. The challenge arose
from the project Learning With Less Labels (LwLL). LWLL is a project
funded by DARPA (Defense Advanced Research Projects Agency), a
research and development organisation from the USA. In this project,
TNO aims to make machine learning more efficient by reducing the
number of labels for image classification. A way of reducing the num-
ber of labels is by removing them and performing classification on
examples never found at training time, also known as ZSL.

The most clear-cut example of ZSL arises from the classification of
fine-grained sets of objects and the inherent difficulty of labelling all
the different classes of objects in existence for machine learning pur-
poses. For example, when dealing with expert knowledge, such as
identifying species of spiders, there is a lack of visual data for each
species. We can leverage each species” semantic information to coun-
teract a lack of visual data. Then, when presented with an unknown
visual example, we can infer what semantic information fits better to
obtain an image classification. Semantic information is an umbrella
term for some form of description of an object. The description can
be written in natural language form or as a binary vector of attributes
indicating their presence or lack thereof.

Deconstruction of the previous sentences allows recognition of two
elements, semantic information and visual data. Solving ZSL is to
solve how these two pieces relate to each other. Although it is imprac-
tical to separate the aforementioned elements in the study of ZSL,
this separation is required to exclude confounding variables and to
limit the scope of the work ahead. Therefore, this research explores
the options available for dealing solely with semantic information.



INTRODUCTION

Specifically, this thesis explores generative neural network methods
using textual descriptions as the source of semantic information for
ZSL. At this instant, it is hard to grasp what is meant by the overall
focus of the work. Therefore, background knowledge is necessary to
have a good grasp of the thesis. Thus, available options and the exact
expertise needed for understanding the thesis are presented through
the remainder of the text.



PRELIMINARIES

This chapter lays down the basic concepts and intuitions needed to
understand the essential methods and concepts referred to through-
out the document.

2.1 DECONSTRUCTING HUMAN ZERO-SHOT LEARNING

Al (Artificial Intelligence) research and development take a signifi-
cant amount of inspiration from human beings. The original direc-
tion of Al, called AGI (Artificial General Intelligence), was to create
intelligence as we perceive it. Here, the plethora of definitions of in-
telligence is disregarded. Instead, it is more helpful to single out the
source of inspiration for Al research, us humans.

Consciously or not, most Al researchers follow this heuristic: if we,
as humans, can accomplish a task, a machine should also be able to do it [27].
We are the baselines to beat when it comes to Al development, includ-
ing in benchmarks. There is a direct connection between the origin of
zero-shot learning and our ability to perform it. As the baselines for
ZSL, we should understand the inner workings and dependencies
needed to perform human-ZSL (HZSL). A good understanding of
the ZSL literature bequests a good knowledge of what makes HZSL,
contrary to the current thought of data-driven Al empirical research.
A good comprehension of the most crucial elements of HZSL enables
the recognition of assumptions made by studies and, by extension,
what is being ignored, forgotten, or circumvented. One-to-one engi-
neering from biology to machine learning is not needed. Instead, only
an understanding of our mechanisms’ building blocks. A thoughtful
discussion of this kind could in itself be a research proposal if the do-
main was philosophy or cognitive science. To avoid an unnecessary
and lengthy discussion only the most prominent and definite parts of
HZSL are considered.

1. HZSL needs nomenclatures of visual concepts.
2. HZSL has an imaginative component.

3. HZSL is compositional and relational

4. HZSL is open-ended and context dependent.

The rest of this sub-chapter explores the previous list of HZSL
building blocks.
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Nomenclatures of Visual Concepts

A visual concept is an object or action primarily recognizable by its
visual perceptual qualities and other qualities such as purpose and
function, statically or across a temporal dimension with an accom-
panying textual label. One can still point out that an accompanying
label is not intrinsic for understanding a visual concept; hence the
expression “You would have to see it to understand it”. A concept can
be recognized and identified without a label; when this happens, it
is usually followed by “something that cannot be put into words”. This
human capacity is beyond the scope of current machine learning, and
its solution is likely to involve a better understanding of the underly-
ing unconscious processes. Nonetheless, several visual concepts are
learned during a lifetime, and the acquisition never ends. However,
someone or something labels it at one point or another, and there
seems to be no way around it. Labels gain even more importance in
machine learning, where everything needs to be quantifiable, espe-
cially for supervised classification. Therefore, HZSL requires nomencla-
tures.

Imaginative Component

Human beings can conduct counterfactual reasoning, a capacity to
reason about what could or would have been, think about hypothet-
ical scenarios and intervene on their hypothetical contents. This ca-
pacity extends itself into conjecturing visual concepts, referred to as
the imaginative component. The next thought experiment will help
in consolidating this notion.

Take a moment, focus and imagine a Downy Woodpecker, a red-
headed bird with black and white wings. In your mind’s eye, it is
possible to visualize this species of Woodpecker, now go ahead and
look at Figure 1 and identify the correct image of a Downy Wood-
pecker, being careful not to spoil the answer immediately by reading
its caption. These images were carefully selected from the CUB [34]
dataset to allow for some confounding elements, but only one of the
birds fits the description above.

This thought experiment aims to bring attention to the imagina-
tive component humans possess. Descriptions or depictions of visual
concepts often produce imagery to the listener; assumptions about
the visual characteristics act as a preview of the real thing. The pre-
view usually goes unnoticed, and it depends on the visualization ca-
pacities of the individual. The preview in the above experiment is
masked by how strong we are at performing ZSL; we often think that
we only map semantic information to what is present in our retina.
Once again, this is not true since we also map semantic information
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to imagined abstract visual characteristics. Therefore, HZSL contains an
imaginative component.

Figure 1: From left to right: Downy Woodpecker, Pileated Woodpecker and Amer-
ican Three Toed Woodpecker [34]

Compositionality

The previous thought experiment demonstrates how compositional-
ity and relationality operate in HZSL. Woodpecker, bird, wing, head,
red, black, and white provided semantic information. Redhead and
black & white wings are two of the relations. This portion of HZSL
is relatively straightforward, and it is easy to see how HZSL becomes
increasingly easy to perform with an increment of concepts and re-
lations. An increase of concepts and relations facilitates the zeroing
in on a visual concept due to increased specificity, allowing to rule
out other possibilities. Another underlying puzzle is how the rela-
tions and compositions arise and what kind of relations are possible.
Once again, the unknown and its exploration are unnecessary, only
its acknowledgement. Therefore, HZSL is compositional and relational.

Unbounded

We can classify anything if we know what it is; this is to say we recog-
nize something stored in our memory banks. A regular classification
task focuses more on recognizing and classifying and less on infer-
ring: our knowledge of the world bounds classification tasks, similar
to how supervised classification is limited to the labels it is trained
on. On the contrary, HZSL needs more inferential reasoning based
on current knowledge; new knowledge is added through the sum of
recognizable parts: hence, HZSL is also bound by what can be recog-
nized, similar to a ZSL task. We explore a space of seemingly infinite
visual concepts through the combination of different kinds of seman-
tic information. HZSL is not bounded and is also context-dependent.
For example, if the thought experiment from Figure 1 contained a
second redheaded Woodpecker with black and white wings but with

5
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a different pattern, it would be impossible to guess which of the first
two was the Downy Woodpecker. Therefore, HZSL is unbounded and
context depended.

2.2 ZERO-SHOT LEARNING

Any field of science divides itself into many branches and leaves re-
sembling a tree. This type of taxonomy helps researchers navigate
a field’s literature swiftly. ZSL’s taxonomy can be divided into four
sections of operation: the paradigm, data restriction, methods, and se-
mantic information source. Figure 2 contains the current taxonomy of
the field of ZSL [25]. Sections highlighted in green fall under the the-
sis’s scope. In the remainder of the text, highlights in bold also signal
the scope of the thesis. Generally, the choice’s motivation is to make
the overall research as applicable to real ZSL problems as possible.

Combining elements from each section conditions what is possible
by defining a research boundary. Before explaining each operation
section, it is necessary to introduce some notation and basic ZSL prin-
ciples. In ZSL, there are three main ingredients; semantic information,
S, visual data, X, and the corresponding labels, Y. In turn, these ingre-
dients follow a seen ° and unseen “ dichotomy. Methods are usually
developed with S§%, X%, and Y® and tested on X", V!, and Y"; this sep-
aration depends on the type of data restriction. The main objective is
then f,s1 : X — Y.

i Data
Paradigm ta
e Restriction Method

I A

1 1

[ CZSL )— Transductive Semantic)—{ Generative ZSL ) IS !
\

1

1

:Manually Defined Attributes

[ GZSL )— Transductive )— ‘NS

( OZSL )— Inductive )— .[ Embedding ZSL j H E Sources of Semantinc Information

Thesis Scope

Figure 2: Diagram of ZSL taxonomy

2.2.1  Paradigm

The first section of operation paradigms reflects which sets of data
can be expected at testing time. CZSL (classic-ZSL) was the first paradigm
to show up, followed by GZSL (generalized-ZSL) and now recently
followed by OZSL (open-ZSL). Research realized under CZSL assumes
that training classes are not present during tests, fc,s1 : X — Y.
GZSL came along to break the previous separation assumption; there-
fore, at test time, both train and test classes are expected, fg 51 : X —
Y*JY5. OZSL [19] breaks down the last assumption that considered
ZSL a closed set classification, fo,s1 : X — Y*JY*|JY°, where Y°
signifies every class not in Y* |JY* . Part of what makes HZSL is its
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open-ended state, and in the same vein as HZSL, this last paradigm
shifts to an open set. In this thesis, GZSL was chosen as it does not
rely on unrealistic assumptions of CZSL, and possesses more matu-
rity than the most recent more complex OZSL paradigm.

2.2.2  Data Restriction

Beyond the three base paradigms, three ways of using data are al-
lowed for the experiment to be considered ZSL. The inductive ap-
proach is the most restrictive; it assumes that visual and semantic
data from the training classes will not be present in subsequent tests;
it uses X* and S* for training. Transductive semantic is the approach
that most resembles HZSL; it permits visual and semantic data from
training classes in addition to semantic information from test classes;
for training, it uses X%, S%, and S*“. Transductive, not to be confused
with transductive semantic, is the less restrictive of the three; it per-
mits visual and semantic data from test classes and training classes,
using X%, §%, %, and X". At first glance, it would appear that a full
transductive restriction would violate the ZSL condition, but it breaks
the HZSL condition instead. Studies only use unseen visual data to
finetune network backbones responsible for visual feature extraction
to avoid violating the ZSL condition.

Nonetheless, it breaks the HZSL condition, and it can be under-
stood by realizing that unseen visual data is being used. The meaning
of unseen changes to "unlabelled visual data" from "not seen". Transduc-
tive semantic is the data restriction of choice due to the need for S“
set. A requisite comes from using generative neural networks; the ne-
cessity for S* is more apparent after explaining the methods under
ZSL.

2.2.3 ZSL Methods

The next point in this exploration of ZSL’s taxonomy is its methods,
also among the primary points of this research. Two main methods
of executing ZSL mark its literature. The first, most present in early
work, usually involves; visual mapping features to a semantic space,
from semantic space to visual or visual and semantic to a common
latent space [25], referred to as embedding ZSL. The second method
uses primarily generative neural networks referred to as generative
ZSL not to be confused with generalized-ZSL aka GZSL. Generative
ZSL works by training a generative model to generate X* conditioned
on the corresponding sets of S°. After training, a generative model
is primed to generate X* conditioned on S“. With both X5 and X
the ZSL task becomes a supervised classification task. This choice’s
motivation is based on the results of GZSL techniques obtained in
ZSL benchmarks plus natively incorporating the imaginative compo-
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nent of HZSL. Section 3.1 contains a more thorough analysis of the
current state-of-the-art techniques and neural network architectures
regarding generative neural networks in ZSL.

2.2.4 Sources of Semantic Information

The last section of operation is the sources of semantic information,
also one of the primary points of this research. Sources of semantic
information are grouped into manually defined attributes and tex-
tual descriptions, used at different scales, image-level or class-level.
Manually defined attributes used at the image-level have a Big O la-
belling time complexity of O(n¥), where n is the number of images
and k the list of possible attributes for the dataset. Manually defined
attributes used at the class level have a complexity of O(k - ¢), where
c are the number of classes. Textual descriptions have a complexity
of O(c). The choice to use textual descriptions comes from taking a
practical standpoint concerning a real-world ZSL task. A real-world
problem enters a ZSL setting when for some reason, it is unfeasible
to obtain the needed missing data: in the example of image classifi-
cation, not being able to do supervised learning due to not having
visual samples or their labels. Still, due to the principle defined in
subsection 2.1, some form of labelling is required, and the one with
the least amount of complexity is textual descriptions.

2.3 NORMALIZING FLOWS

Generative models are referenced in the title and the previous sub-
chapter; Normalizing Flows (NF) are a specific type of generative

models that broadly correspond to modelling a probability distri-
bution over a random variable. Using machine learning terms the

probability distribution is learned from a set of observed data, x,
with a probability density, px(x), parameterized by weights, 6. With

a learned probability distribution, it is possible to use the distribu-
tion properties, px(x), to generate data points and evaluate the den-
sity of new data points. Different setups and learning objectives lead

to different types of generative models, such as the variational auto-
encoders (VAEs) [15] and generative adversarial networks (GANs) [11].
Each family of generative models contains one or more defining traits,
which allow for their denomination.

The defining trait of NFs is the use of the change of variables for-
mula 1, where f(x) is an invertible and differentiable function, det
stands for the determinant of a matrix, and J is the Jacobian of the
partial derivatives of f(x).

px(x) = pz(f(x))ldet Jf(x]| (1)
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The formula above relates the change in the density distribution of
a random variable x into the density distribution of a random vari-
able z when x is passed through the invertible function f(x). The
random variable z, can follow any probabilistic distribution, the stan-
dard choice is a Gaussian, z ~ N(0, 1). Hence the name normaliz-
ing flow, the original arbitrarily complex distribution, p(x) is trans-
formed into a normal Gaussian, p,(z), the flow is the name given
to the invertible and differentiable function f(x). A flow needs to be
dimension preserving due to the invertibility requirement. The pa-
rameters of f(x), the flow, can be learned using max log-likelihood
of the equation 1 leading to equation 2; 0 stands for the weights that
parameterize the transformation given a x.

N K
mgX; log p-((x:1)) +]; log |det Jfi(x:10)] (2)

The sums present in Equation 2 represent the summation of flows
chained together. Flows are chained together to build more complex
transformations that can transform one distribution into another. The
max log-likelihood uses the forward pass of a normalizing flow to
learn its parameters. After learning the parameters for the normaliz-
ing flows, generating new data points is done first through sampling
from the distribution p.(z) and then computing the inverse of the
sampled point, x = f~1(z), also called the backward pass. A flow’s
inverse function and Jacobian determinant should also be efficiently
computable for practical effects. To alleviate the previous issue the
modus operandi of most state-of-the-art architectures is to use coupling
flows.

Coupling flows work by splitting a vector x = [x1,x2] in half from
an initial arbitrarily complex probability distribution. The first half,
x1, is concatenated with a transformation of x, conditioned on x;.
This transformation can be any complex non-linear function. Figure 3
contains a diagram of affine coupling [7], a popular type of coupling
flow. The transformation is affine and parameterized by s(-) and t(-),
which can take the form of any random neural network.

S @ g

(a) Forward propagation (b) Inverse propagation

Figure 3: Affine Coupling Block [7]
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The splitting present in coupling flows makes it so that only the
second half of the vector is operated on. Therefore, permutation of
the vector in between chained flows is needed to ensure all data is
used.

2.4 ENCODING IMAGES & TEXT

For this thesis, encoding signifies the changing of data from its origi-
nal space and or format into some N-dimensional vector space. Not-
ing that, the term encoding is used interchangeably with embedding
or vector throughout the remainder of the document. For example,
images predominantly follow the RGB colour model, having a 3-
dimensional axis of arbitrary k size, I € R3**. The conventionality
of the format plus the advent of agile development of deep learning
python libraries, such as timm [35], makes the encoding straightfor-
ward, I — X™.

Encoding text is not as straightforward as encoding images. Lan-
guage suffers from inconsistencies and edge cases, and the text it-
self can have different lengths and formats, such as a book, an arti-
cle, an e-mail, or a tweet. Even with the advent of python libraries
such as HuggingFace plug-and-play transformers [36] and sentence-
transformers [26] there is still much room for assumptions and inter-
pretations in obtaining a more holistic representation of documents
or representations of documents relative to other documents.

A hindrance of current text encoding technology is the size of the
textual input. For example, suppose a need for a holistic encoding of
a twenty thousand words document and a transformer with an input
window of one thousand words that outputs a 512-dimensional vec-
tor. The original text must be split with or without an overlapping
window between splits; considering no overlapping window; we ob-
tain 20 pieces of text individually fed to a transformer for encoding.
After encoding each split, there are twenty 512-dimensional vectors.
Any shared information or context is lost in the splitting process. To
obtain a holistic representation of the original text the twenty vectors
have to be combined. This holistic representation can be done in many
ways, through averaging, summing, concatenating, or even using an
MLP (multilayer perceptron). Mentions of holistic representations are
a single class descriptor computed from a set of embeddings of a text
derived through splitting as in the above case.

10



LITERATURE REVIEW

This section explores the relevant and surrounding literature of the
following topics; generative ZSL, semantic information, normalizing
flows in ZSL.

3.1 GENERATIVE ZSL

Generative models and generative neural networks (GNNs) learn prob-
ability distributions of a set of data to generate similar data. In the

event of the absence of visual data, as in the case of ZSL, genera-

tive models give the means to generate the missing visual data based

on the learned correlation between semantic information and corre-

sponding visual examples. Then, the conjunction of existing visual

data with generated data is used in a supervised learning fashion.

When it comes to the available machine learning methods for ZSL,

GNNs have been the overall leaders on benchmarks of GZSL since

introduced to the task [38].

In the following paper, BMCoGAN [29], the authors use a bidirec-
tional GANs architecture for the generation of features, Figure 4. The
bidirectionality comes from the generation of visual features, X, using
semantic attributes, a, and the subsequent reconstruction of seman-
tic attributes, a, using x. The data restriction is of the transductive
semantic type as it usually is when generative methods are in play.

The first key element is ensuring the consistency of generated vi-
sual features using bidirectional mapping. The second key element
is using a discriminator, D, to separate the generated visual features
from the real ones. The second key element aims at addressing the do-
main shift problem [25]. This problem arises when mappings of unseen
features are a function of seen features without any adaptation caus-
ing a bias for the classification of unseen classes as seen; the ablation
study further reinforces the previous point. The removal of D makes
the accuracy between unseen and seen classes imbalanced towards
the seen classes.

11
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Figure 4: BMCoGAN architecture [29]

In TF-VAEGAN [21], the authors used cycle consistent VAEGAN ar-
chitecture for feature generation, an architecture that combines VAEs
with GANSs. The data restriction can either be transductive or trans-
ductive semantic, Figure 5. The transductive setting adds another dis-
criminator module, D [38]. The cycle-consistency is similar to the bidi-
rectionality of BMCoGAN. The semantic embedding decoder module,
Dec, transforms visual features into a latent vector h. The feedback
module, F, transforms h to X' to be used by the Generator, G.

This approach’s critical element is the use of Dec and Feedback mod-
ules to ensure semantic consistency in the feature generation.

oo D
i
N [ -
T
<%
._,\ _Dec
. S .
Blue Jay Backbone | L) P -:-D—q' - >LR
a a -
s Cat O B
i D:Discriminator  F':Feedback  G':Generator | <
3 FE :Encoder Dec: Semantic Embedding Decoder E UL

Figure 5: TF-VAEGAN architecture [21]

3.2 NORMALIZING FLOWS VS GANS & VAES

The biggest eye-catcher of Normalizing Flows is the ability to estimate
exact probability density. Compared with other generative neural net-
works, NFs solve inherent problems of GANs (with which using ZSL
regularization is complex due to the inability to perform probability
density estimation) and VAEs (limited to approximate the probability
density through ELBO).

12
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The latest methods of solving ZSL using generative networks try
to achieve a sort of cyclicity. The cyclicity can be found in genera-
tive models by continuous refinement of the generated visual data
into generated semantic data and then into visual data. Normalizing
Flows unlike GANs and VAEs, are inherently cyclic. No other net-
works are required to ensure cyclicity between semantic and visual
information when using NFs. Achieving cyclicity with GANs and
VAEs requires stacking GANs and VAEs modules. E.g., BMcoGAN
requires three heads of discriminator modules to acquire cycle consis-
tency, and TF-VAEGAN requires using a VAEGAN architecture with
a complex interplay of different modules. The engineering complexity
of the previous generative methods falls back to one single invertible
function in Normalizing Flows.

3.3 NORMALIZING FLOWS IN ZSL

Normalizing flows based models are not well explored under ZSL; at
the time of writing, there are three studies on them [28, 12, 6].

IZF [28] is the first study in ZSL that makes sole use of normaliz-
ing flows. IZF uses generative flow-based models in a transductive
semantic data restriction setting. Like the former studies, one of the
key elements is the cyclic approach to ensure a good generation of
visual features. This cyclicity is inherent in normalizing flows; no ex-
tra module is required. From an initial visual sample v, a semantic
factor ¢ and non-semantic factor z' are factored out through the us-
age of invertible functions in the permutation-coupling block. Figure 6
describes the architecture of IZF. Since the permutation-coupling block
is invertible a semantic factor ¢ and random non-semantic factor z*
can be fed to generate a v.

1ZF Forward Pass ‘Semantic Space € Coupling Layer Forward Pass
o

ging Semantic

JEL
0ol

Non-Semantic Latent Space 2/

T

1ZF Revér;é Pass Coupling Layer Reverse Pass

(a) The schematic of IZF (b) Coupling Layer Structure

Figure 6: IZF architecture [28]

GSMF [6] is the most recent study in ZSL that uses normalizing
flows. GSMF overall architecture is identical to IZF, and the main
difference is in the conditioning of the visual data. IZF does so im-
plicitly through its loss, and GSMF does it explicitly through the con-
ditional affine coupling layers. The most relevant point is implement-

13



3.4 ENCODING TEXTUAL SEMANTIC INFORMATION

ing what the authors name relative positioning. Relative positioning
works by continuously recreating the semantic embeddings during
training and by adjusting their dimensions, this is further explored in
Sub-chapter 4.2.6.

Backbone Conditional affine coupling layers

Perturbation Original Relative Global — — » Inference
Image noise semantics positioning semantics = = + Generation

Figure 7: GSMF architecture [6] Errata: inference arrow should not be dotted

3.4 ENCODING TEXTUAL SEMANTIC INFORMATION

Sub-chapter 2.2.4 describes how the use of manual attributes does not
translate to a real-world ZSL scenario. An alternative source of seman-
tic information is class-level descriptions mined from websites such
as Wikipedia. This alternative presupposes a naive assumption that
the needed class information is present on Wikipedia. Notwithstand-
ing, the assumption requiring semantic information to be present on
Wikipedia holds for all the studies in the field.

The main question to address is how to obtain the class level encod-
ings of textual descriptions. Elhoseiny et al. [8] is the first encounter
of textual descriptions used in ZSL. The process of feature extraction
is done firstly by extracting textual features through the use of TF-IDF
and subsequently performs dimensionality reduction using CLSI [40]
for noise reduction: CLSI is a method that does rank reduction on
documents term-frequency matrices. The recipe of using TF-IDF for
initial feature extraction followed by some form of dimensionality re-
duction is a common approach. It can be found in [10, 41, 5, 23, 9,
39].

Instead of using TF-IDF, Le et al. [18] uses three alternative ap-
proaches with word embeddings to get feature representation of the
noisy text descriptions. The first naive approach averages all the em-
beddings in the definition of a word to form a description representa-
tion. The second and third approaches seek to give weights to words
by giving less weight to noise and bigger weights to more informative
words. Visualness, the second approach, is based on the assumption
that more visual words have a consistent visual feature representation,
e.g., stripes, green and wrinkly. The last approach uses the second
approach’s visualness score to learn an attention model and predict
visualness from word embeddings. The word embeddings used are
Wordavec [20] and Glove [24].

14



3.4 ENCODING TEXTUAL SEMANTIC INFORMATION

Sub-chapter 2.4 alludes to some of the challenges of encoding text,
with transformers. Precisely what is done in the work of Bujwid et
al. [3]. Through the use of more recent text encoding technology like
ALBERT [16] text is encoded in splits with or without an overlap-
ping window. The text in question is part of ImageNet-Wiki. This
dataset contains one or more textual descriptions per class, adding
to the overall issue of obtaining a holistic vector for a class. For the
case of more than one text description per class, the authors exper-
imented with summing and averaging after obtaining embeddings
for each document. Besides using transformers, holistic embeddings
were obtained through the sum and averaging of word embeddings
from GloVe and Word2Vec. Overall this last method surpassed results
obtained with transformers.
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METHODOLOGY

This chapter outlines the methods used through the thesis and how
these work.

4.1 TEXT ENCODING

Text encoding is one of the focus points of this research, to obtain a

single N-dimensional embedding from a natural language piece of

text through TF-IDF (Term Frequency-Inverse Document Frequency),

word embeddings and transformers. The term holistic vector is used

interchangeably with semantic vector or semantic embedding through-
out the remainder of the chapter. Long texts have to be split into

chunks to encode them. The term holistic vector helps to keep in

mind that it is the result of an aggregation of vectors, from different

encodes.

4.1.1 TF-IDF

TF-IDF is a staple tool of natural language processing. It allows find-
ing the relevant information from a piece of text in relation to a cor-
pus. TF-IDF makes a vocabulary list of all different words across a
corpus and gives uncommon words more weight and more common
words less weight on a document-by-document basis. TF-IDF works
by looking at the count of a word w in a document d divided by how
many documents word w appears.

TF-IDF is used on all textual descriptions of a dataset to obtain a
TF-IDF vector representation of each document. Documents are con-
catenated in the case of a class having one or more.

4.1.2  Word Embeddings

Word embeddings are essentially dictionaries whose entries or keys
are words, and their corresponding definition or value is a vector.
Word embeddings are pre-trained on a large corpus of text to obtain a
vector representation for each word. This research used GloVe [24], a
word embedding algorithm that encodes a form of global context doc-
uments into its embeddings through the use of a global co-occurrence
matrix calculating the probability that a given word co-occurs with
others. The conversion from textual description to N-dimensional vec-
tor is as follows: dictionary search of each word for its corresponding

16



4.2 MODEL ARCHITECTURE

GloVe vector representation followed by aggregation of the obtained
vectors either through sum or average.

Transformers are a revolutionary force in NLP, allowing for large
unsupervised training of models through masking or next token pre-
diction. Unlike word embeddings, transformers act on the sentence
level. Their usage for encoding long texts is not as straightforward
as word embeddings, largely due to the input size’s limiting factor.
The former limitation was already introduced and discussed in Sec-
tions 2.4 and 3.4. For this work, the transformer used was "all-mpnet-
base-v2" from sentence-transformers to encode all sequences of text
during experimentation.

4.1.3  Querall View of Methods

The methods outlined in the previous sub-sections are often utilized
in combination; what follows is a list of the different methods used.
To summarise the encoders used are: mpnet, GloVe and TF-IDF

1. Encoding of the sentences of a text with mpnet and followed
by aggregation through sum or averaging;

2. Encoding of the words of a text with, mpnet or GloVe, and
followed by aggregation through sum or averaging;

3. Use TF-IDF on the set of all texts of a dataset to find the words of
each document with the highest value followed by the encoding
of the top n words with mpnet multiplied by their correspond-
ing TF-IDF weight; aggregation is done through summation or
averaging;

4. Concatenates the top n words according to TF-IDF and encode
it with mpnet;

5. Use the TF-IDF raw vector or a concatenated version of it.

4.2 MODEL ARCHITECTURE

Figure 8 contains the structure of Zero Flow, the model architecture
used to conduct generative ZSL. Sub-chapters 2.2 and 3.1 explain how
to go from a ZSL setting to a supervised one using generative models.
Zero Flow is a novel generative architecture that combines elements
from IZF [28], GSMF [6] and Glow [14], two losses (IZF and cen-
tralizing), relative positioning and act norm plus 1 x 1 convolutions
respectively.
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Figure 8: Model architecture: forward pass (—), backward pass (-----»),
multivariate Gaussian (), embeddings (")) and functions
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4.2.1  Act Norm

Act Norm’'s [14] (activation normalisation) functions similarly to Batch
Norm [13] by normalising features in between layers of a network,
a type of data-dependent initialisation, in this case, present before
permuting. Act Norms acts on the data through an affine transfor-
mation, scaling and translating. The first input of an Act Norm layer
initialises its weights and ensures a post Act Norm output of zero
mean and unit variance. Post initialisation Act Norm becomes data
agnostic, and its scaling and translating parameters are learnable.

4.2.2  Affine Coupling

Affine Coupling [7] is a type of coupling flow, which explicitly uses
affine transformations, scale and translation. Affine Coupling original
paper used the exponential function for scaling. This scaling led to
instability while training, so it was replaced by a sigmoid function
whose output was bounden between [0.5,1] according to Behrmann
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4.2 MODEL ARCHITECTURE

et al. [1], which improves stability and decreases exploding gradients:
a sudden increase in value that causes Nan and Inf.

4.2.3 Permuter

Sub-chapter 2.3 gives an introduction to NFs, stating the problem and
the reason why only half of a vector is used for transformations at a
time. Therefore, permutation of the dimensions of a vector in between
flows layers is needed. In the break-through paper for NFs [7] per-
mutations are fixed, a type of inductive bias which was removed by
introducing 1 x 1 convolutions [14]: a generalization of permutations.
1 x 1 convolutions are learnable parameters, initialized as a random
rotation matrix. Instead of having fixed permutations, the permuta-
tions are learned during the training process to improve training.

4.2.4 IZF Loss

Zero Flow learns the distribution of a set of visual embeddings with
the forward pass by training on seen classes and their respective
class semantic embeddings through the IZF loss equation 3. The
explicit loss defined in IZF [28] separates semantic information and
non-semantic information from a visual embedding v. After v goes
through N flow steps, ¥ is obtained and split in half, a semantic half
and a non-semantic half. A standard multivariate Gaussian represents
the non-semantic half. The semantic half is represented by C multi-
variate Gaussians, where C corresponds to the number of classes of
the used dataset. Each semantic Gaussian is centred at the semantic
vector of each corresponding class and has a standard variance.

Equation 3 describes the IZF loss, given an embedding v the prob-
ability of it being classified as y. The former probability is given by
the summation of the semantic term, logp., (¢ | y), with the non-
semantic term p,(27). Both terms are then summed by the accumu-
lated sum of the determinant of the Jacobian of partial derivatives f
given a v across N chain of flows. Z and ¢ are the vectors obtained
from the splitting of the output embedding ¥.

N
Lizr =logpepy (e |y) +logp=(21) + ) logldet]Jf(v)| (3)
i=1
For the splitting of ¥ into non-semantic and semantic the following
needs to be respected; for a set of semantic vectors with dimensions
c € RE*IXl and a set visual features with dimensions v € RVl
x| <yl
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4.2.5 Centralising Loss

Centralising Loss works with the backwards pass, using generated
samples in its equation. Equation 4 describes centralising loss, where
c® represents the semantic vector of each seen class, *, while v* de-
scribes the mean vector of class °.

Le=[f7"([0,c%]) =2 (4)

Generation works by sampling from p.(z) obtaining a vector, 2,
sampling from pc(c | y) obtaining ¢ followed by concatenating both
vectors ¥ = [£,¢] and then performing the backward pass to obtain
a generated V. In the case of centralizing loss the first half of ¥ is
replaced by zeros. The generated results from the concatenation of
the semantic vectors of all seen classes with the non-semantic side left
as zeros are subtracted from the mean visual vector of each class. The
centralizing loss guides the output of the transformations to converge
into the mean of the target semantic Gaussians.

4.2.6  Relative Positioning

Figure 9: Relative Positioning

Relative Positioning acts on the set of semantic vectors of a dataset;
it redimensions and readjusts the set of semantic vectors before and
during training. Relative Positioning starts before training, calculat-
ing a similarity matrix of the set of semantic vectors. Three semantic
anchors are calculated amin Gmed @max, corresponding to the lowest,
median and highest sum similarities to all other vectors. Relative Po-
sitioning is then initiated with three linear layers that correspond to
Nmin, Rmed and hmax, with the corresponding offset that subtracts
from input as depicted in Figure 9. The output of all layers is summed
and used as a new semantic vector. Relative Positioning is part of the
training, and semantic vectors are continuously adjusted. Changing
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the dimension output of each linear layer makes it possible to adjust
the dimensions to semantic vectors to any desired value.



EVALUATION

This chapter displays the results of employing the different methods
detailed in the previous Chapter 4. The results are averaged across
five random runs for a fair comparison, with the highest result of
each table bolded and underlined.

5.1 DATASETS & BENCHMARKS

Currently there are three datasets available for ZSL that use text de-
scriptions; CUB [34], NAB [30] and more recently ImageNet-Wiki [3].
This work only used CUB and ImageNet-Wiki due to their being
more they are more distant in content than the NAB dataset. Im-
ages of objects with corresponding semantic information and labels
comprise these datasets. CUB has one text description per class, com-
posed of 200 classes of bird species and their corresponding Wikipedia
textual description constituting a total of 11,788 images. ImageNet-
Wiki has one or more text descriptions per class. The length of each
text description is variable. The recent addition of ImageNet-Wiki to
ZSL benchmarks solidifies text as an alternative to manual attributes.
ImageNet-Wiki extends the ImageNet dataset where textual descrip-
tions were added to its classes. Overall, the former dataset has 1.3
million images; manually labelling the attributes at the image level
would be extremely expensive. The ImageNet-Wiki dataset creators
also point out the need for expert knowledge depending on the data
to be annotated, another disadvantage of using manual attributes.

5.1.1 Data Splits

Data splitting is a conventional procedure in machine learning re-
search to evaluate the performance of models. Data splitting in ZSL
serves the same evaluation purpose but adds another dimension if
the paradigm is CZSL; the way data is split produces harder or eas-
ier sets for classification. The task becomes more challenging when
less semantic information is shared between train and test datasets.
In the example of the CUB dataset, if different species of albatross
are present in both the train and test sets, then its classification be-
comes easier, a Super-Category-Shared (SCS) [10]. Having all differ-
ent species of an albatross only present in the test split, it becomes a
Super-Category-Exclusive (SCE). The former denominations are de-
pendent on the super categories of a dataset; in CUB, the Super-
Category is the genus.
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The splits used for CUB are: for CZSL the hard-split [10](SCE) with
160 classes for training and 4o for testing, the easy-split [10](SCS)
with 150 classes for training and 50 classes for testing and the more
recent proposed split for GZSL [37] with 150 training and 50 test
classeshere [4]. For ImageNet the split used was the mp5o0 [3] with
1000 classes for training and validation and 500 classes for measuring
performance.

5.1.2 Image Encoding

Image encoding, as defined on Section 2.4, was done through the
usage of timm [35] and solely for the CUB dataset due to time con-
straints in encoding ImageNet’s dataset. The specific model from the
available selection was resenet5od, the transforms used were; Resize(256)
and CenterCrop(224,224).

5.2 RESULTS

This section contains the results covering CUB and ImageNet, the
significance of the results obtained are at the end of this section sepa-
rated by dataset.

5.2.1 CUB2o011 + WikiDescriptions

There are four sources of data used to evaluate Zero Flow on the
"CUB2o011 + WikiDescriptions" benchmark, two for the visual features
and two for the text features.

The first source for visual features is the CIZSL [9] study data
which consists of a concatenation of seven 512D vectors extracted
from the fully connected layer of a part-based convolutional neu-
ral network (1.head, 2.back, 3.belly, 4.breast, 5.leg, 6.wing and 7.tail),
leading to a full vector representation of 3684D for each image. The
second visual feature source is the outputs extracted from the last
pooling layer of the resnetsod model found on timm [35] library.

The first source of textual features is from the CIZSL study, which
consists of a 7551D vector representation for each CUB class obtained
from running TF-IDF Porter stemmed WikiDescriptions. The second
source corresponds to the text features extracted from WikiDescrip-
tions with the methods delineated in Section 4.

The evaluation is initiated by fixing the parameters of Zero Flow
and its training procedure, the base parameters for the initial trials
are found here [31]. The evaluation starts with fixed parameters using
the resnetsod visual features to evaluate the several text encoding
methods across the easy split (Tables 1 ,3) and hard split (Tables 5 ,7).
To assure a fair validation of the text methods the visual features of
CIZSL are also used: easy split (Tables 2, 4) and hard split (Tables 6, 8).
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5.2 RESULTS

Preprocessing, signalled by *, is done by lower-casing all text and
removing all stopwords.

5.2.1.1 Easy ZSL Split

All following tables contain the Unseen Accuracy averaged across five
random trials, random seeds, with the standard deviation in paren-
thesis. Table 1 and Table 2 diverge only in the visual encode used
and share the text encoding; the same applies to Table 5 and Table 6.
Summing was only done over a small number of vectors, namely the
top 1024 sorted by TF-IDF weights; summing over a large number of
vectors led to numerical issues and abysmal results. The "k" next to a
TF-IDF result indicates the limitation of vocabulary respective to the
top "k" results, e.g., 5k stands for top 5000 TF-IDF terms. Sentence
1024 weighed is similar to sentence 1024; the difference lies in the
former being weighted by its corresponding TF-IDF value.

Text Encoding Sum Average Text Encoding Sum Average
GloVe * - 29.1 (0.6) GloVe* - 29.1 (0.4)
GloVe - 24.0 (0.4) GloVe - 24.3 (0.9)
Sentence * - 32.1 (0.5) Sentence * - 33.2 (0.3)
Sentence - 34.0 (0.4) Sentence - 33.2 (0.7)
Sentence 1024* 18.1 (1.5) 18.5(1.0) Sentence 1024* 18.6 (1.4) 18.9 (1.4)

Sentence 1024 143 (1.0) 9.1 (0.7) Sentence 1024 14.5 (0.8) 9.7 (0.6)

Table 1: Visual Features: resnet50d Table 2: Visual Features: CIZSL

2048D MinMax Normal- 3583D Zero-Mean Stan-
ized dard Unit Normalized
Text Encoding Pre-processed Not Pre-processed
Sentence 1024 Weigthed 5.8 (0.7) 5.3 (0.5)
TE-IDF 5k 38.0 (0.6) 38.0 (0.2)
TE-IDF 7k 37.5(0.3) 37.4 (0.5)
TF-IDF 8k 38.1 (0.3) 37.8 (0.3)
TF-IDF Full 37.6 (0.4) 37.6 (0.6)

Table 3: Visual Features: resnet50d 2048D MinMax Normalized
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Text Encoding

Pre-processed Not Pre-processed

Sentence 1024 Weigthed
TF-IDF 5k
TF-IDF 7k
TF-IDF 8k

TF-IDF Full

Table 4: Visual Features: 3583D Zero Mean Standard Unit Normalized

5.2.1.2 Hard ZSL Split

This CUB split follow the standards delineated in Sub-Section 5.2.1.1
but done with the hard-split version of the CUB dataset.

Text Encoding  Sum  Average Text Encoding  Sum  Average
GloVe* - 9.1 (0.6) GloVe* - 9.3 (0.3)
GloVe - 9.0 (0.3) GloVe - 9.0 (0.4)

Sentence * - 8.0 (2.3) Sentence * - 7.7 (0.2)
Sentence - 7.3 (0.6) Sentence - 7.5 (0.5)
Sentence 1024* 6.6 (0.2) 6.3 (0.8) Sentence 1024* 7.7 (0.8) 6.6 (0.9)
Sentence 1024 6.2 (0.6) 5.5 (0.4) Sentence 1024 6.0 (0.4) 5.7 (0.7)
Table 5: Visual Features: resnet50d Table 6: Visual Features: CZISL

2048D MinMax Normal-

3582D Zero Mean Stan-

ized dard Unit Normalized
Text Encoding Pre-processed Not Pre-processed
Sentence 1024 Weigthed 5.3 (0.6) 5.6 (0.3)
TFE-IDF 5k 11.3 (0.2) 10.92 (0.2)
TF-IDF 7k 11.2 (0.4) 10.7(0.1)
TF-IDF 8k 11.0(0.3) 10.8 (0.2)
TF-IDF 10.8 (0.1) 10.2 (0.3)

Table 7: Visual Features:

resnet50d 2048D MinMax Normalized
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Text Encoding Pre-processed Not Pre-processed
Sentence 1024 Weigthed 5.5 (0.3) 5.4 (0.6)
TE-IDF 5k 11.6 (0.6) 11.3 (0.2)
TE-IDF 7k 11.1 (0.2) 11.8 (0.6)
TE-IDF 8k 11.2 (0.1) 11.2 (0.3)
TF-IDF 11.4 (0.3) 11.5 (0.6)

Table 8: Visual Features: 3583D Zero Mean Standard Unit Normalized

5.2.1.3 Optimizing Parameters

After obtaining initial results, a hyper-parameter search is carried out
on Zero Flow architecture and its training parameters. The hyper-
parameter search is Bayesian in nature and done with the use of
Weigths&Bias [2] with a total of 55 random seed runs.

The parameter searched are the following: the number of hidden
layers of the affine coupling network, number of samples for training
a classifier, number of affine coupling blocks, and the weight decay
value of the optimizer. The parameters that carry the most significant
importance are organized from the top (most important) to bottom
(least significant) on Figure 10, and the overall results displayed in
Figure 11: each line represents a training instance which is colour-
coded according to the last column. These results and diagrams are
available online and are free to consult and interact with here [32].

Config parameter Importance @ ¥ Correlation
number_sample
block_size

hidden_dims
weight_decay.value_le-2
weight_decay.value_le-5

weight_decay.value_le-3

weight_decay.value_le-4

Figure 10: Hyper-Parameters correlation with unseen accuracy; red implies
a negative correlation, green implies a positive correlation
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weight_decay hidden_dims block_size number_sample Accuracy Unseen.max
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Figure 11: Results of hyper-parameters search CUB

After the search the parameters were fixed such as: “number_samples”
was fixed at 300, the block_size, was fixed at 5, the number of "hid-
den_dims” was fixed at two, and the "weight_decay” fixed at 1e-3.

Before the search the parameters were fixed such as: “number_samples”

was fixed at 2000, the block_size, was fixed at 5, the number of "hid-
den_dims” was fixed at two, and the "weight_decay” fixed at 1e-5.

Table 9, contains the final CUB results on both the hard and on
the easy split, using CIZSL data and the text encodings delineated
in earlier sections. Zero Mean Standard Unit was the normalization
used on this experiment to remove the confounding element of using
MinMax and Zero Mean Standard Unit normalization from previous
experiments Table 2-8.

Methods Visual Features Text Features Hard Split Easy Split
resnet50d CIZSL 114 (05) 378 (0.2)
Jero Flow resnet50d TFIDF5k 104 (0.2)  39.9 (0.4)
CIZSL TFIDF5k 157 (04)  45.0 (0.4)
CIZSL CIZSL 15.7 (0.7)  47.2(0.2)
State of The Art Methods
GAZSL + CIZSL-v1 CIZSL CIZSL 14.4 46.6
CIZSL-v2+5eGC CIZSL CIZSL 164 424

Table 9: Increased Unseen Accuracy results after hyper-parameter search.
TF-IDF 5k was solely used due to it being a smaller vector and
because the performances between TF-IDF sizes was not significant.
Results also show state-of-the-art is beaten on the easy split and in
range of the standard variation of the hard split

5.2.1.4 Proposed Split

The trials with the proposed split were run with the resnet50d vi-
sual encodings and the TF-IDF 5k text encodings with the values of
some hyper-parameters decided based on the search. There are no
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other methods to the best of my knowledge making use of the GZSL
proposed split on CUB.

CUB
Method (Encodings) Ag Ay H

Zero Flow (resnet50d+ TF-IDF 5k) 16.1 (0.3) 16.8(0.7) 16.6(0.1)

Table 10: Ag stands for seen accuracy, Ay stands for unseen accuracy and
H stands for the harmonic mean of Ag and Ay

5.2.2 ImageNet + ImageWiki

The evaluation of the benchmark of ImageNet + ImageWiki is done in a
similar fashion to CUB2011. There are two sources of text encodings
and one source of visual encodings. The first source of text encodings
comes from the authors of the ImageWiki dataset [3], and the second
source from the text encoding methods delineated on Sub-Section 4.1.
The source of visual embeddings for this benchmark comes from Xian
et al.[37]. This evaluation starts with several text encodings and ends
by doing a hyper-parameter search. The evaluation is only carried out
with the ZSL paradigm.

5.2.2.1 Proposed Split

The proposed split experiments were run entirely with the text meth-
ods defined on Sub-chapter 4.1 except for ALBERT pre-encoded weights
provided by the authors of ImageWiki, the first result on Table 11.

SOTA ‘ ALBERT TF-IDF Full TEF-IDF 20k Sentence Mean Glove

22.27 ‘ 17.89 3252 /2846 34.15/30.08 21.95/1138 1951 /731

Table 11: Results before hyper-parameter search on mpsoo split. The left
side of the "/" corresponds to pre-processed text in cells contain-
ing two values. The value under SOTA indicates the current state
of the art result on the mps00 ImageNet+ImageWiki split

This table show that to the best of my knowledge the state-of-the-
art was beaten by 12.88% [3]. The previous state-of-the-art was ob-
tained using a simpler generative neural network when compared
with Zero Flow, which could explain the disparity in values.

5.2.2.2  Optimizing Parameters

After obtaining initial results, a hyper-parameter search on Zero Flow
architecture and some of its training parameters is carried out. The
hyper-parameter search is done using Weights&Bias [2], in the same
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fashion as Sub-chapter 5.2.1.3, therefore a Bayesian search with a total
of 42 random seed runs.

The parameters searched are the following: the batch size of Zero
Flow, number of hidden layers of the affine coupling network, num-
ber of samples generated for training a classifier and the number of
affine coupling blocks. The parameters that carry the biggest impor-
tance are organized from top (most important) to bottom (least im-
portant) on Figure 12 and the overall results can be seen on Figure 13.
These results and diagrams are available online and are free to con-
sult and interact with here [33].

Config parameter Importance @ ¥ Correlation
batchsize N |
number_sample - -
hidden_dims e a

block_size | a

Figure 12: Hyper-Parameters correlation with unseen accuracy; red implies
a negative correlation, green implies a positive correlation

block_size hidden_dims number_sample batchsize Accuracy Unseen
10.0

Figure 13: Results of hyper-parameters search ImageNet

There were no other experiments carried out after running running
hyper-parameter optimization which suggests better accuracies are
available.

5.2.3 Qualitative Assement

There are two prevalent generalisations across all datasets and splits;
pre-processing overall indicates a better accuracy performance, this
effect is more pronounced in Table 11 and less pronounced on Ta-
bles 5-8. TF-IDF outperforms all text encoding methods across the
board regardless off the size of vocabulary restriction. A discussion
of why this happens is present on Section 6.1.
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5.2.3.1 CUB2011

On the easy split, TF-IDF performs the best, GloVe coming in second,
followed by sentence embedding of the top 1024, and lastly, the sen-
tence embedding weighted by TF-IDF corresponding weights. GloVe
outperforms sentence transformers on the hard split, with the remain-
ing text encoders following the same hierarchy as in the easy split.
There are no other comparison studies on the proposed split using
text descriptions.

The hyper-parameter analysis starts by looking at Figure 10, the pa-
rameter that correlates the most with Unseen Accuracy is the “num-
ber_samples”, the number of samples generated per class to train the
classifier, the negative correlation indicates that a higher number of
samples sizes leads to worse results. Figure 11 confirms the claim
where yellow lines are predominantly present on a lower number of
samples. The block_size, the number of flow steps is the second most
important parameter, and the visual analysis of Figure 11 indicated
that five number of blocks is the average optimum choice. Regarding
"hidden_dims”, the number of hidden dimensions in an affine cou-
pling network seem to best at two or four layers deep; the number of
layers was fixed at two to minimize memory constraints.

Table 9, contains the final results of CUB on both hard and easy
split after hyper-optimization. This table helps exclude the normal-
ization technique of visual features as a confounding variable from
the previous trials. It also shows permutations of the sources of vi-
sual and textual encodings. The worst performance happens with the
combinations of encodes present in the first row. Using CIZSL visual
features, there is a 4% increase in accuracy as seen on the fifth row;
possibly due to CIZSL visual features higher dimensionality allowing
better separation of semantic and non-semantic by ZeroFlow. The dif-
ference between CIZSL text features and TF-IDF 5k is less significant.
Using CIZSL text data produced state-of-the-art results in the easy
split. The hard split does not reach or surpass state-of-the-art due to
it being analysed for five runs, an individual run did reach state-of-
the-art as can be seen by analysing the standard deviation of 0.7. To
the best of my knowledge, there are no studies on text encodings on
the proposed split; the results obtained serve as a new benchmark.

5.2.3.2 ImageNet

The results of ImageNet, Table 11, reveal the importance of pre-processing

text, most noticeable when using GloVe, showing a 12% increase,
plausibly due to the aggregation working at the word level. Sentence
mean has an 8% increase, not as significant, plausibly because this
holistic encoding works at the sentence level. The baseline of Sentence
is higher, which could be attributed to transformers more robustness
to noise being pre-trained with natural, unprocessed language. AL-
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5.2 RESULTS

BERT encoded the unprocessed text with an overlapping window on
split sentences. Although the overlapping window may be helpful
to ensure more shared information between encodings, it could also
amplify the noise, leading to worse performance.

The hyper-parameter analysis starts by looking at Figure 12, the pa-
rameter with the biggest importance is “batchsize”; it correlates neg-
atively with Unseen Accuracy. The negative correlation implied that
bigger batch sizes lead to worse accuracy, visually confirmed by look-
ing at Figure 13. The best value for batch size for ImageNet appears
to be 128.

Similarly to CUB the second most important parameter is the num-
ber of samples generated for training the classifier; a larger amount
of samples leads to lower unseen accuracy; the best value seems to
reside between 3000 and 4000.

Both hidden_dims and "block_size” are harder to understand as their
importance is being overpowered by the batch size. Still, the positive
correlation indicates that a bigger number on both parameters is ben-
eficial to reach higher accuracies.

In the end, the state-of-the-art was achieved surpassing the latest
method by 12%.
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DISCUSSION

This chapter discusses salient points that have been hinted at during
the previous chapters.

6.1 PEERING INTO TF-IDF

TF-IDF outperforms all other encoding methods, which is surpris-
ing considering the current state of NLP, where the cycles of break-
throughs are getting increasingly smaller due to the advent of deep
learning. Looking into some of the TF-IDF vectors gives a clue as to
why their performance is so good.

Looking at the pre-processed TF-IDF 5k top 10 terms of the first
three class vectors from CUB we see:

¢ blackfooted albatross: [albatross, blackfooted, islands, chick, con-
vertkglbabbron, atoll, laysan, floating, pair, fishing]

* laysan albatross: [albatross, laysan, immutabilis, converttokglbab-
bron, underwing, hawaiian, mantle, rump, islands, dark]

* sooty albatross: [albatross, sooty, darkmantled, procellariiformes,
nasal, sides,ocean, subantarctic, sulcus, shading]

Looking at the pre-processed ImageWiki top 10 terms of three cho-
sen at random class vectors from ImageNet we see:

* mountain tent: [tents, tent, poles, ft, guy, pole, ropes, bullet,
groundsheet, camping, "fabric]

¢ guacamole: [avocado, guacamole, sauce, avocados, dip, mexi-
can, de, dishes, mexico, pronounced]

* jellyfish: [jellyfish, polyp, tentacles, bell, species, medusae, medusa,
tish, gfp, blooms]

The TF-IDF vectors obtained are constituted by continuous values
that indicate the presence of a term; in our case, they resemble a type
of weighted vector of binary values that correspond to that class’s
names, as clearly demonstrated by Figure 14. It appears that TF-IDF
vectors give more weight to terms that are close to the class name or
are semantic relevant. In the specific case of CUB, the top terms end
up being the actual class name, likely due to the scientific tendency of
the nature of Wikipedia text. It also explains the 30% drop-in unseen
accuracy from the easy split to the hard split; the super-category, the
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6.2 CLASS LEVEL VS IMAGE LEVEL SEMANTIC REPRESENTATIONS

genus, such as albatross, is no longer shared between seen and unseen
sets, making it harder to find relations.

However, quality depends on the source, such as a standardized
form of description like Wikipedia, which TF-IDF can capture.

x 5k
o 0 00 00

blackfooted

g | albatros
= | laysan

sooty albatros 0

laysan albatros |o.65|0.47
blackfooted albatros |0:54 | 0.1

0.07

o || g | sooty

0.34

Figure 14: TF-IDF Values of first two terms from first three CUB classes; on
top terms, on the left class names

6.2 CLASS LEVEL VS IMAGE LEVEL SEMANTIC REPRESENTATIONS

Sub-chapter 2.2.4 contextualized the motivation behind the use of tex-
tual descriptions but did not present an explicit discussion on the ad-
vantages and disadvantages of both sources of semantic information.

The first advantage of text descriptions is the dramatic decrease of
labelling complexity illustrated by Figure 15.

Image Level Class Level
® Labelling Complexity O(n¥) Labelling Complexity O(c) o
® More Descriminative Less Descriminative ®
e Hard to Obtain Easier to Obtain e

Figure 15: Spectrum of semantic information labelling complexity

The scrapping of largely unsupervised descriptions discards the
need for expert knowledge to define manual attributes. The spectrum
is colour coded to imply that image level attributes are worse than
class level, but one could quickly invert the colours. The spectrum’s
dichotomy depends on the observer; manual-level attributes also pos-
sess many advantages over text descriptions. Text descriptions are
inherently more challenging to use than manual labels since they act
at the class level, plus a loss in discrimination power is exhibited by
the contrasts made in Table 12. Using semantic features at the image
level is easier than using discriminatory features at the class level,
mainly due to the granularity of discrimination gained by acting at
the image level.

The perspective of an observer decision is marked by the rigid-
ity of the ZSL condition of a real-world problem. The rigidity itself
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63 NORMALIZING FLOWS AND ZERO-SHOT LEARNING

Text Descriptions Image Level Attributes

One semantic vector per class One semantic vector per image

No access to components Access to components
No intra-class variation Intra-class variation
Lower inter-class variation Inter-class variation
Noisy No noise

Table 12: Disadvantages of text descriptions over image level attributes

is dictated by the supply of resources available to obtain semantic
representations to reach a goal (e.g. image classification accuracy), in
other words, the feasibility of obtaining the missing data. Assuming a
hard limit on the sourcing of semantic information, meaning a setting
where it is complicated to gather missing data, one has to turn to the
least complex form of gathering, which for now stands as class-based
semantics.

63 NORMALIZING FLOWS AND ZERO-SHOT LEARNING

Zero Flow started by borrowing the structural details of IZF, which af-
ter being coded, was not stable. Still, after a lot of work following the
IZF 1ZF’s manuscript, which lacked essential details, it was impossi-
ble to approximate the results they claimed with their toy dataset
example. Most of the add-ons and borrowed elements from other
Normalizing Flow’s papers helped stabilize the network and made
it usable for ZSL, starting by obtaining the same results as IZF on its
toy dataset. The changes that had the most significance in stabilizing
Normalizing Flows from most consequential to least are: changing
the scaling function from exponential to bounded sigmoid, 1x1 con-
volutions, relative positioning, and act norm.

Normalizing Flows are still under-researched compared to GANs
and VAEs, but the work carried out in these theses proves they match
the state-of-the-art research on the CUB dataset with highly engi-
neered and optimized solutions such as the work of Elhoseiny et
al. [9] who's been conducting work with generative ZSL on the CUB
dataset since 2017 [10].
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CONCLUSION & FUTURE WORK

7.1 CONCLUSION

On the CUB dataset, Zero Flow matches the current state of the art
in the hard split, off by 0.7% and achieves state-of-the-art on the
easy split an increase of 0.6%, respectively found on sub-sub-sections
5.2.1.2 and 5.2.1.1. On ImageNet, the state of the art was improved
by 12%, result is present on sub-sub-section 5.2.2.1. These results
are were obtained with two distinct types of datasets and Zero Flow
should generalize as a method to other similar uses cases. The best
performing text encoding method was TF-IDF with very discrete vec-
tor representations of the classes. Overall Normalizing Flows work
for generative purposes and therefore for generative ZSL, but they
require a lot of work as they are still a young topic in terms of total
research.

7.2 FUTURE WORK

The current methods of averaging and summing separate vectors to
obtain a holistic representation are crude and should be improved.
Future work should focus on developing better class-level semantic
representations to deal with the hard ZSL setting straight on instead
of optimizing generative architectures and their losses with diminish-
ing returns—a prime example was the work needed to make Zero
Flow stable. Following the idea of a least resistant path, the focus
should also shift to unsupervised methods such as the massive-scale
pairing of text and image recently made by OpenAl’s CLIP [22].

Solving ZSL is to unravel how semantic information relates to vi-
sual stimuli. Language is the only clue we have to access meaning,
and therefore we derive that it must contain what we see. In machine
learning terms, we assume text acts as an encoding of visual fields
and learned concepts. Future work should also look into the possibil-
ities for developing semantic sources free of text.
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