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Abstract

In this thesis, we studied whether self-attention networks can learn compositional seman-
tics using an arithmetic language. The goal of language aims to evaluate the meaning of nested
expressions. We find that self-attention networks can learn to evaluate these nested expres-
sions by taking shortcuts on less complex expressions or utilizing deeper layers on complex
expressions when the nested depth grows. The complexity is in whether expressions are left-
(easy) or right-branching (hard) and whether, in the case of right-branching expressions, plus
(easy) or minus (complex) operators are used. We find that increasing the number of heads
does not always help with more complex expressions, whereas the number of layers does always
help to generalize to deeper expressions. Finally, to help with the understanding of what the
self-attention networks are doing, we analyzed the attention scores and found exciting patterns
such as the numbers attending to the preceding operators and nested sub-expressions attend-
ing to preceding operators. These patterns may explain why in less complex expressions, the
self-attention networks take shortcuts, but in more complex expressions, this is not possible
by the way the self-attention networks try to solve them.
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1 Introduction
One of the main topics in artificial intelligence research is the ability of machines to learn and
understand the meaning of language. Language is everywhere, communication between humans
residing in spoken text, documents, and many more. The ability for machines to understand
language and work with it could be beneficial for all kinds of tasks, e.g., Sentiment Analysis, Ques-
tioning and Answering, Entity Recognition, and machine translation. Language can be complex
since it contains hierarchical compositional semantics, which means that the meaning of a sentence
is determined by combining the meanings of its words and sub-phrases, following a set of rules
driven by the syntactic structure. For example, “dog bites man” and “man bites dog,” which is
a combination of the meaning of the words “man, dog, bites,” and depending on the order, the
meaning changes to something that happens all the time, or something happens rarely; like “man
bites dog.”

Humans can understand these concepts well and follow along with a sentence that might contain
complex compositions of words. For example, the meaning of “It is not that it is not raining today,”
which contains a double negation about raining today, boils down to the meaning that it is indeed
raining today. Of course, such complex compositions are not in all sentences, but a machine should
be able to capture these compositions too, for example, correctly capture the sentiment of a text.

There has been much work done in the field of natural language processing (NLP), where Neural
networks have been prominent in this field for a long time. Tasks in NLP can be seen as a sequence
processing task where a sentence is a sequence of words and a word a sequence of characters. One of
the architectures to do this is the Recurrent neural network (RNN) [17] which recurrently processes
sequences, meaning given a sentence, it would process the sentence incrementally, word by word.

There are many studies done about the capability of recurrent neural network models to cap-
ture context-free languages [12] [7] [8] [22] [18] [13], and linguistic phenomena involving hierarchical
structure [14] [9]. Other more general studies about RNN models showed, assuming arbitrary pre-
cision, that RNN models are Turing-complete [19], which means that RNNs can complete any
algorithmic task formalized by Turing machines. Furthermore, studies have shown how RNNs pro-
cess hierarchical structures to expose the linguistic properties encoded in the models, using probing
and diagnostic tasks to help them visualize the internals of the models [11]. Now, most researches
in NLP do not use the RNN architecture but rather the state-of-the-art Transformer architecture
[21]. This architecture is not using recurrence to process sequences but instead processes sequences
as a whole using self-attention. This enables transformers to do most of the computations in paral-
lel and let them scale up to a larger amount of text and bigger models such as (GPT-2 [16]/GPT-3
[3] and BERT [5]). Transformers are similar to RNNs Turing complete. A study by Perez et al.
showed that Transformers could emulate Turing machines’ computation when using an unbounded
number of autoregressive decoding steps. However, when considering incremental modeling of se-
quences, then lack of recurrence might suggest the limits of its expressiveness, as this removes the
ability to process input sequentially. So it might be more challenging for Transformer models to
process hierarchical structure in text.

The Transformer architecture is state of the art, and therefore we focus in this work on this
architecture. In particular, how self-attention processes compositions structures in the text.

2 Literature overview
Studying the properties of language models has been emerging since the empirical successes of
language models such as LSTMs, RNNs, and Transformers. A particular exciting topic is testing
the ability of these models to generalize to hierarchical and compositional structures because
hierarchical and compositional structures are essential to model natural language.

A study by Tran et al. [20] tested the abilities of LSTMs, and Transformers to learn hierarchi-
cal structures. For this, they used English subject-verb agreement and evaluated logical formulas.
Their results suggested that LSTMs are better than Transformers at learning hierarchical struc-
tures. Other studies related to this worked instead with artificial languages that can represent
nested structures [4]. One set of languages that are commonly used is the Dyck-n languages [15],
which consist of well-balanced parentheses with n different types of brackets. An example sentence
of a Dyck-2 language is "(()[])[]", which contains two different types of brackets that are balanced,
namely "()", and "[]". The applications of such language are, for example, to parse expressions that
must have the correctly nested sequence of brackets, such as found in arithmetic and algebraic. In
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addition to that, it could also capture long-range and nested dependencies in English subject-verb
agreement [23]. Like subject-verb agreement in the sentence, "(laws (the lawmaker) [writes] [and
revises]) [pass]", can be captured with an dyck-2 sentence, (()[][])[] [23]. Weiss et al. [22], and
Sennhauser et al. [18] show that with the use of Dyck-n languages, that LSTMs are pretty limited
on the range of mechanisms they can learn. Nevertheless, their results suggest that LSTMs can
recognize the Dyck-1 language using a counting mechanism but showed that LSTMs could not
recognize Dyck-2 languages and beyond as it would require emulating a pushdown automaton.

Furthermore, a study by Bhattamishra et al. [2] suggests that Transformers with soft-attention
and position masking are also capable of generalizing Dyck-1 languages as LSTMs can, but show
that they are incapable of recognizing the language Dyck-n for n > 1. Also, Hahn [10] shows
that Transformers are like LSTMs limited in their ability to model the Dyck-2 language. In
addition, he proves that hard-attention Transformers cannot model Dyck-n languages and suggests
that Transformers using soft-attention cannot achieve perfect cross-entropies when the input is
sufficiently long. However, he argues that a Transformer may still be able to model such a language
with perfect accuracy when the length of expressions is n ≤ N ; where the number of heads and
layers have to increase by N. Therefore when the expressions grow in length, the model has to
increase the number of heads and layers.

On the contrary to the work by Hahn [10], the work by Bernardy et al. [1] shows that the
Transformer encoder-only model can make good predictions on longer distances and deeper nesting
of the Dyck-n language. They achieved this by using a random masking strategy and found out
that the Transformer uses a simple parenthesis counting strategy to make good predictions.

Also, Ebrahimi et al. [6] observed that an encoder-only Transformer model can generalize to
longer and deeper Dyck-n languages when a starting symbol is added to the expressions. They ob-
served that for Dyck-1, the model achieved almost perfect performance (> 98%) and no degradation
when increasing the length of the expressions. The performance on Dyck-n≥ 2 languages shows a
nearly constant performance score of (∼ 93%), although the performance dropped significantly on
longer expressions.

Furthermore, the most recent study by Yao et al. [23], which was inspired by the work of Hahn
et al. [10], and proves that an encoder-only Transformer model can actually recognize a subset of
Dyck-n languages, namely Dyck-n,D, which is any Dyck-n language, where the maximum depth
is bounded by D. Specifically, they showed that to model a Dyck-n,D language, a self-attention
network is needed consisting of D + 1 layers and only three heads.

Next to the commonly used Dyck-n languages, Hupkes et al. [11] proposed using an arithmetic
language, another artificial language consisting of nested arithmetic expressions. This study shows
that RNN’s learns to predict nested arithmetic expressions, although the performance drops when
increasing the length of the expressions.

Previously summarized works suggest that transformers and recurrent networks have compa-
rable capabilities for learning to recognize context-free languages. However, in practice, we want
to model recognition (checking well-formedness) and interpretation of the language. Hupkes et
al. analyzed trained recurrent and recursive models on the interpretation task. Characterizing
Transformers’ application to the same task is the gap that our work aims to fill.

3 Artificial language
This chapter introduces the artificial language used to analyze the Transformer models its ability
to compute embedded structures. Additionally, we describe the tasks that the Transformer models
have to compute and which strategies they could use to solve them.

3.1 Arithmetic language
The arithmetic language was first proposed by Hupkes et al. [11]. This language consists of embed-
ded arithmetic expressions with a vocabulary that consists of integers in the range of {−10, ..., 10},
the operators plus(+) and minus(-), and parentheses ( and ). All these expressions evaluate to an
integer between the same range, that is, below or equal 10, and above or equal -10. The expressions
are split into subsets by the number of numerals they contain (see Table 1 for a formal description).
For example L4L4L4 contains expressions with exactly 4 numerals, such as (2 + (3 − (1 + 2))). Other
examples can be found in Table 2.
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Sentences meanings
L1 {−10,−9, ..., 9, 10} {−10,−9, ..., 9, 10}
Lm+n {(lm op ln) | lm ∈ LM , ln ∈ Ln, op ∈ {+,−}} 〈lm〉 op 〈lm〉

Table 1: Formal description of the arithmetic language.

L1L1L1 -4, 1, 5
L2L2L2 (-4 + 1), (1 - 5), (5 + 2)
L3L3L3 (-4 + (1+1)), (1 - (5 + 2)), ((5-2) + 2)
L4L4L4 ((-4-2) + (1+1)), (1 - (5 + (2-1)))

Table 2: Examples of arithmetic expressions with different levels of nested expressions.

3.1.1 Strategies

There are many ways a Transformer could compute an arithmetic expression. Therefore we stated
two different strategies on how we think a Transformer evaluates nested expressions.

Recursive strategy The first strategy we propose is by recursively evaluating the nested ex-
pressions from innermost to outermost, which will compute the evaluation of the whole expression.
Each token attends to the subsequent five tokens in the sequence to find an expression that can
be evaluated. This flow is visualized in Figure 1, whereby for layer one, the attention is visualized.
Each layer will update the first token to the evaluation of the sub-expression. This is seen in Figure
1 after the FNN step.

For a Transformer to evaluate an expression it needs at least L layers, where Ld−1Ld−1Ld−1 ≤ L.
Therefore the example in Figure 1 needs at least four layers to evaluate the L5L5L5 expression.

Figure 1: The flow of the recurrent strategy wherein the most nested opening parentheses
attends with five heads to all the tokens in the most nested expression so that that expression can
be evaluated.

Minus counting strategy The second strategy takes advantage of the fact that we can count
the number of nested minus operators before each token and transform the tokens accordingly.
This is possible because when we subtract a minus it becomes a positive, therefore, an expression
like (2− (1− 1)) is the same as (2− 1 + 1) or (2 + (−1 + 1)). This strategy focuses primarily on
right-branching expressions since nested minus operators only occur in right-branching expressions.
The idea is that in each layer, one depth level is processed by attending to all its nested minus
operators. That is, given an expression like (1− (2− (6− 8))), the first layer will evaluate token 2,
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by counting how many minus operators are nested. In this case, there is only one minus operator
nested. Thus it becomes −2 The overall flow of this is visualized in Figure 2, whereby layer three
is further visualized. For this strategy to work, we need at least as many layers as maximum
expression depth.

Figure 2: At each layer, the model attends with one head to the next numeral in the sequence and
the rest to the nested minuses for that numeral.

3.1.2 Predictions

The two strategies that we proposed differ on how the expressions are evaluated. For example,
the recursive strategy will not allow evaluations on expression with a higher level of depth than
the number of layers in a model since the number of layers bounds it. Furthermore, we predict
that when following the minus counting strategy the models need more layers and heads only
whenever an expression is right-branching and includes minus operators. In this case, the models
could take shortcuts whenever the expressions are left-branching or contain plus operators. There-
fore we predict that a transformer following the Minus counting strategy might compute longer
expressions with a low number of heads and layers when evaluating expressions with plus operators
or strictly left-branching expressions.

4 Method
We introduced the arithmetic language in the previous chapter, consisting of different expressions
with different lengths and depths. Furthermore, we proposed three strategies on how and what is
needed in a Transformer to solve these expressions. Therefore, this chapter introduces the specifics
of the Transformer architecture that we use to run the experiments and the parameters we used
while training the Transformer models. Furthermore, we describe in this chapter how we build the
dataset and evaluate the experiments.
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4.1 Transformer architecture
Encoder-only model The Transformer model we consider is the encoder-only model from the
original seq-to-seq architecture [21]. The encoder consists of multiple layers containing two blocks:
a self-attention block and a feed-forward network (FFN). The model takes as input a sequence
of symbol representations s1, s2..., sn ∈ Σ and generates a sequence of output vectors y1, y2..., yn.
First are these input symbol representations converted to a embedding vector using the function
fe : Σ −→ Rdmodel and optionally a positional encoding. The position encoding proposed in the
original paper uses sine and cosine functions of different frequencies, defined as:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

)
where pos is the position and i the dimension. Another more straightforward method of keeping
track of word positions is to embed the positions as words. A drawback is that the model needs to
see sequences of every length instead of position encodings, which should also process sequences
longer than those seen during training. So, for example, to embed the first word, we add a positional
embedding that represents position one to the embedding of the first word. The final input vector
where the embedding vectors and positional encoding or positional embedding are combined is
denoted as a sequence XXX = (xxx1,xxx2...,xxxn).

Self-attention Let XXXi := (xxx1, ...,xxxi) for i ≥ 1. The input vectors in XXX will undergo linear
transformations Q(·),K(·), and V (·) inside of the self-attention block. These linear transformations
will create query, key and value vectors respectively. The self-attention mechanism will take as
input a query vector Q(xxxi), key vectors K(XXXi), and value vectors V (XXXi). For 1 ≤ i ≤ n, the
output of the self-attention block is a vector:

aaai = Att(Q(xxxi),K(XXXi), V (XXXi)) + xxxi

Where the subscript inXXXi indicates the positional masking. The output of the self-attention block
denoted by zi is computed by zi = O(aaai) + aaai where O(·) is usually defined as a FFN with ReLU
activation. The operations +xxxi and +aaai are the residual connections. To make the complete L-
layer, we repeat this block above, which produces a vector zzzLi . The final output is obtained by
applying a projection layer with normalization or an FNN over the vectors zzzLi . The final output
is denoted by yyyi = F (zzzLi ).

4.2 Experimental setup
4.2.1 Transformer implementation

For implementing the transformer, we consider the encoder-only model of the original seq-to-seq
architecture [21]. This type of model is usually used for classification tasks. In total, we train 56
different Transformer models with different parameters. That is models with 2 to 8 layers that
have 1 to 8 heads. Although the word embedding size is between 160 and 640, we have chosen to
multiply the number of heads by 80 for the word embedding. Furthermore, we decided on simple
position embedding for the positional encoding schemes because we work with fixed expression
lengths. The rest of the parameters we present in Table 3.

4.2.2 Data selection

We arbitrarily sample sets of unique expressions from the arithmetic language introduced in the
previous chapter for data selection. We do this in the range of expression lengths from L1L1L1 to
L9L9L9. For the subsets of lengths L1− L3L1− L3L1− L3 we are limited by the possible unique expression we can
generate. Therefore we only selected for L1L1L1, L2L2L2, and L3L3L3, 21 expressions, 662 expressions, and
15911 expressions, respectively. Furthermore, for the rest of the expression lengths, we select each
16.800 expressions. The result is a dataset of 117.361 expressions. After this selection, we split the
dataset into training, testing, and validation dataset, with 60% for training, 20% for the test, and
20% for the validation- set.
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Number of layers in the encoder 2-8
Number of heads in the encoder 1-8
Word embedding size 160-640
Number of epochs 90-100
Vocab size 27
Batch size 16

Adam optimizer
β1 = 0.9
β2 = 0.999
ε =1e-08

Max pooling True
Learning rate 0.0001
Warm-up steps 10.000
Max prediction length 66

Table 3: Parameters we chose for training the Transformer models.

4.2.3 Evaluation

For evaluating the performance during training, we use the Log-Loss method, which is one of the
most crucial classification metrics based on probabilities. It is based on the likelihood function,
which measures the likelihood of the observed outcome.

Logloss = − 1

N

N∑
i=1

M∑
j=1

yij log(pij)

Where N is the number of samples, M the number of classes, and yij is the predicted result of the
classification.

After training the models, we use accuracy and MSE to analyze the performance on different
lengths of expressions. Using the following metrics, we can calculate the accuracy of the models
that measure the ratio of correctly predicted expressions. That is True positive (TP), True negative
(TN), False positive (FP), and False negative (FN).

Accuracy =
TP + TN

TP + FP + FN + TN
.

5 Results
This chapter will describe the results we got after conducting the experiments. We provide results of
the 56 different Transformer models that we trained. First, we start with the overall performance
of each model on the validation set. Next, we compare the differences between left- and right-
branching expressions. Lastly, we dive deeper into the most challenging expressions, the right-
branching expressions with only minus operators.

5.1 Validation set
This first section presents the results using the validation data-set described in Chapter 3. We
start with the visualization of the accuracy scores. Each heatmap represents a different number of
layers, with on the x-axis the number of heads and the y-axis the expression nesting depth. This
is seen in Figure 3.

When looking at these heatmaps, we notice that the performance of the models with only two
layers performs noticeably worse than models with three or more layers. Furthermore, we do not
notice any significant differences as the layers or numbers of heads increases after two layers.

Left-branching We begin with the left-branching expressions, where we test the performance
on expressions with a certain total nested depth and within some left-branching depth that is
part of the whole expression. Each of the plots in Figures 4, and 5 represents a heatmap with
a number of total nested depth, with on the y-axis the number of left-branching depth that fit
the expression, and on the x-axis represents either the number of layers or the number of heads.
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Figure 3: Each heatmap represents the accuracy scores of a given number of layers, with on the
y-axis the expression depth and the x-axis the number of heads.

As a result, we notice that the models can easily evaluate expressions with a high left-branching
depth, but whenever the expressions are mostly right-branching or mixed-branching, the models
show that they perform noticeably worse. In addition, this is the case in both the heatmaps with
different layers and different heads. Therefore show that mostly left-branching expressions are
easier than right-branching expressions.

Figure 4: This heatmap shows the average accuracy scores given a number of layer depth, length
of expression and embeddedness of that expression.

Figure 5: This heatmap shows the average accuracy scores given a number of model heads, length
of expression and embeddedness of that expression.

Right-branching Opposite results are seen in the right-branching expressions, whereby the
level of right-branching depth in expressions grows, the accuracy drops. This can be seen in the
Figures 6, and 7. On the contrary, with the results on the left-branching expressions, we notice
that the models have a harder time when the expressions are mostly right-branching.

Figure 6: This heatmap shows the average accuracy scores given a number of layer depth, length
of expression and embeddedness of that expression.

5.1.1 left- and right-branching expressions

To summarize, we notice left-, and right-branching expressions differ in difficulty, whereas left-
branching expressions are much easier to solve than right-branching expressions. Therefore, we
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Figure 7: This heatmap shows the average accuracy scores given a number of model heads, length
of expression and embeddedness of that expression.

continue on the right-branching expressions since we found that these expressions expose the limits
of the models.

5.2 Right-branching
In this section, we go deeper into the performance of the models on right-branching expressions.
However, the validation set we used to test the models only contained a small amount of right-
branching expressions, especially on longer expressions. Therefore, we made a new data set con-
taining only right-branching expressions to analyze the model performance.

We start with right-branching arithmetic expressions that randomly contain plus and minus
operators. The visualization of the results is visible in Figure 8, where each plot shows the accuracy
score of the right-branching depth level and with the corresponding number of heads given the
number of layers. For example, the first plot shows the performance of a Transformer model with
two layers and 1 to 8 heads. In this figure, we notice that the models have a more challenging
time generalizing on higher levels of right-branching depth. However, it does not show a specific
indication of how the number of heads and layers play a role here. We see that models with minimal
two heads and three layers tend to generalize better on higher levels of right-branching depth, but
it is not clear how the expression depth level affects the models’ performance.

Figure 8: Each heatmap represents the accuracy scores of a given number of layers, with on the
y-axis the expression depth and the x-axis the number of heads.

5.3 Right-branching expressions plus / minus operators
In the previous section, we used right-branching expressions with randomly mixed plus and minus
operators to test the performance. To further analyze the performance of the different models, we
split the right-branching expressions into two separate data sets, one with only plus operators and
the second with only minus operators. We do this to see the exact effects on the models using
different operators in an expression. Figures 9, and 10, show the accuracy scores of the expression
with only plus and minus operators, respectively. When comparing these two figures, we observe
a big difference between the performance of expressions with plus operators and minus operators.
It is visible that the expressions with only plus operators are much easier than the expressions
with only minus operators. The heatmaps of expressions with plus operators show that it only
takes a model with three layers to evaluate these expressions. On the contrary, the heatmaps of
expressions with minus operators show that increasing the number of layers and heads is crucial
to evaluate a higher level of nested depth.

5.4 Right-branching expressions with minus operators
We highlighted in the previous section that the right-branching expressions with only minus oper-
ators are much more complex than expressions with plus operators. Therefore, we continue with
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Figure 9: Visualisation of the performance on right branching expressions that only contain plus
operators. Each plot shows the number of layer, and the different number of heads.

Figure 10: Visualisation of the performance on right branching expressions that only contain minus
operators. Each plot shows the number of layer, and the different number of heads.

the right-branching expressions containing only minus operators and then precisely determine the
effects of increasing the number of heads and layers. We begin with the performance scores when
we increase the number of heads. Then, from these scores, we create two plots, one, the average of
all the head-layer combinations and, second, the best performing head-layer combination for each
number of heads, which are visualized in Figures 11A, and 11A, respectively. From these plots,
we notice that until five heads, the performance increases but decreases when the number of heads
surpasses five.

Furthermore, we did the exact visualization of the effects when we increased the layers. Like-
wise, as in the previous Figures, we take each layer’s average and best performing head combina-
tions. This is visualised in Figure 12A, and 12B. From these plots, we find that increasing the
number of layers allows the models to generalize to a higher level of expression depth.

(a) Results of evaluation on right branching
expressions with only minus operators, and averaged

on the number of heads.

(b) Results of the best performing models based on
the number of heads with the number of layers inside

the heatmap.

Figure 11: Results of averages and best performing models side by side.

5.5 Results summarise
To summarise, the performance of self-attention models attending to arithmetic expressions differ
in performance between left- and right-branching expressions. Left branching expressions are
relatively easier than the right-branching expressions, especially when we consider expressions
with only minus operators, and this difference is again visualized in Figure 13. Furthermore, we
see that models with at least three layers can evaluate deeper nested left-branching expressions.
However, in the case of right-branching expressions, we need to increase the number of layers to
evaluate more complex nested expressions. Also, the number of heads plays a role here, although
after the number of heads surpasses five, we see a performance drop. Therefore, five heads might
be the best parameter for these tasks.
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(a) Results of evaluation on right branching
expressions with only minus operators, and averaged

on the amount of layers.

(b) Results of the best performing models based on
the amount of layers with the number of heads inside

of the heatmap.

Figure 12: Results of averages and best performing models on right-branching expressions side by
side.

(a) Results of left branching expressions. (b) Results of right branching expressions.

Figure 13: It shows two plots of accuracy scores from left-branching and right-branching expres-
sions.

6 Discussion
In the previous section, we present the results of the performance of the models. In addition to
those results, we present an analysis of the connection to the theoretical part. Furthermore, we
present an analysis of the attention head activation of one of these models. We do this because
previous work suggests that analyzing the attention scores could give some insight into the internal
dynamics of self-attention models. So then, our goal is to find some patterns in the attention head
activation that correlate with the strategies we described earlier.

6.1 Trained models
Almost all 56 trained models seemed to perform well on the validation set. However, the models
with less than three layers or only one head performed noticeably worse. At the same time, the
rest of the models could generalize well on nine numerals’ expression lengths and eight’s depth
levels. The high performance was primarily because many of the expressions in the validation
set consisted of either mostly left-branching expressions or right-branching expressions with plus
operators, which are less complex. It looks like that the transformer models learn to take shortcuts
to solve the whole expression, like we proposed in (Minus counting strategy), where we said that
expressions consisting of plus operators and left-branching expressions would be the easiest for the
model to solve due to the lack of semantic depth in these expressions and therefore complexity. In
addition to that, the Recurrent strategy would not match the outcome of the performance of the
models. That is because models with fewer layers could still solve expressions with higher nested
depth and might be taking shortcuts to solve the expressions, which the Recurrent strategy
does not allow. Furthermore, expressions that the model could not take shortcuts on are the
expressions that are strictly right-branching with minus operators, and the results show that the
models need to have equal or more layers than the expression depth was, thus when evaluating on
deeper expression depth, the model will require a higher number of layers to do so.
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6.2 Analysis attention head activation
We start by considering the model with three heads and five layers since the small number of heads
and layers will allow us to get a clear idea about what patterns in the head activation present.

Attention heat-maps left-branching The left-branching expressions were the easiest for the
model to process. We observed from the results that the models could process longer expressions
without increasing the number of layers or heads. In addition, when visualizing the attention-heat-
maps, we notice a clear pattern of numbers attending to its appropriate operator sign to allow the
number to transform according to which operator it is attending. Furthermore, the models do
not have difficulty evaluating long expressions because the transformed numbers can essentially be
summed up for left-branching expressions. For example, Figure 14 shows the heatmap of layer one,
head two, of left-branching expressions consisting of minus operators. Here we see four different
heatmaps with different expression lengths showing the same pattern, wherein they show that the
numerals attend to the appropriate operator symbol. Likewise, left-branching expressions contain-
ing plus or mixed operators show the same pattern as seen in Figure 15. According to this pattern,
the transformer model can efficiently process longer expressions without increasing the number of
layers or heads.

Figure 14: Heatmaps of four different right-branching expression lengths with only minus operators,
the numerals attend to the designated operator signs.

Figure 15: Heatmaps of 2 different right-branching expression lengths, wherein the numerals attend
to the designated operator signs, one with mixed operators, and the other consists of only plus
operators.

Attention heat-maps right-branching The right-branching expressions caused the greatest
difficulties for the models, especially those containing only minus operators. Therefore we discuss
only the right-branching expressions that contain minus operators. We observed an interesting
pattern in 41 of the 56 models when analyzing the attention heatmaps on these expressions. It
shows how the expression should be solved to get the correct answer, whereby each part of the
expression gets transformed by the minus operator in front of it. Figure 16 represents two heatmaps
of two different models that visualize this pattern. We see that the first nested numeral and
operator pair (10 and -) attends to the first minus operator. Furthermore, in the most nested
expression, we see that only the first numeral and minus symbol attends to the previous minus
operator, and the second numeral attends to the minus operator in front of it. The same pattern
occurs in more complex expressions, as seen in Figure 17, although these heatmaps are messier
than on less complex expressions, they still show the same pattern. In addition, we noticed that
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this pattern only occurs in either the first or second layer of the models. Looking at this pattern,
we know that transforming those sub-parts with a minus symbol at once will not directly solve the
expression but instead needs to be done sequentially. The first nested numeral and minus operator
must be transformed by the first minus operator, transforming into -10 and a plus operator,
respectively. After the transformation, the most nested expression transforms according to the
new plus operator, which results in 9 and -. Lastly, the remaining -1 attends to the minus operator
that stayed the same, creating 1. This pattern might indicate that the model knows what steps
to take to solve the expression in the upper layers and uses the remaining layers to process that
evaluation. Although, the attention heatmaps in the latter layers do not show a pattern that
describes how this execution would process and, therefore, stays unknown.

(a) Attention heatmap of a model
with three heads and seven layers.

(b) Attention heatmap of a model with
three heads and eight layers.

Figure 16: There are two different attention score heatmaps of the evaluation on right-branching
expressions of nested depth of four. It shows that the numbers and operators in sub-expressions
attend to the preceding operator symbol.

(a) Attention heatmap of a
model with six heads and

five layers.

(b) Attention heatmap a model
with two heads and six layers.

(c) Attention heatmap of a
model with seven heads and

seven layers.

Figure 17: There are three different attention score heatmaps of the evaluation on right-branching
expressions of nested depth of four, five, and six, respectively. It shows that the numbers and
operators in sub-expressions attend to the preceding operator symbol.

Summarize To summarize, we have seen that the left-branching expressions are easy to solve
and explainable by the pattern in the attention heatmaps. Furthermore, show that they do not
need more layers or heads to generalize to more prolonged expressions. Finally, as observed, the
numbers attend to the according plus-or-minus operator to see if the operator is minus or plus.
Furthermore, on right-branching expressions with only minus operators, we saw that the models
need more layers to generalize to longer expression lengths. Although it is not exactly known how
the models evaluate these expressions, but we found patterns that might indicate that the nested
expressions attend to the operator in front of it but cannot transform each directly and thereby
needs to do that sequentially, which shows the need for more layers in order to do transform each
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nested expression accordingly.

7 Conclusion
In this work, we studied whether self-attention networks can learn compositionality using an arith-
metic language, a simple language that allowed us to construct precise compositional structures
and test the networks on these.

To understand how self-attention networks can learn the arithmetic language, we hypothesized
two strategies beforehand that we believed a transformer could follow to evaluate the meaning of
an arithmetic expression:

• The recursive strategy would allow a transformer to evaluate what is inside the innermost
set of parentheses, replace that with the result, and repeat this until there is nothing to
evaluate. We hypothesized that a transformer needs as many layers as nested expression
depth.

• The minus counting strategy would allow a transformer to evaluate expressions by count-
ing how many minuses are nested before each numeral, transforming the numeral according
to an even or uneven count of minus operators, and summing everything together. Never-
theless, the Transformer needs at least as many layers as maximum expression depth for this
strategy to work.

Furthermore, we demonstrated that self-attention networks with a low number of heads and
layers could easily evaluate arithmetic expressions of any tested lengths. However, we highlighted
that the high performance was due to simple expressions and showed that the performance drops
when the arithmetic expressions become more complex, that is, right-branching expressions with
only minus operators. To allow a transformer to generalize on more complex expressions, we
showed that it needs to increase the number of layers as the expression depth grows.

When analyzing the attention heatmaps, we found patterns that explain the Transformer’s
strategies that it follows to evaluate arithmetic expressions. For example, numbers in left-branching
expressions attend to the preceding operator. Therefore, when transforming these numbers by the
preceding operator, it could sum the numbers together to get the result. Summing the numbers
is possible due to the lack of complexity in the left-branching expressions and correlates with the
need for a relatively low number of layers to evaluate these expressions. Therefore, it shows that
the Transformer takes shortcuts to achieve its goal.

Simultaneously, when evaluating right-branching expressions, we found a pattern where the
nested sub-expressions attend to the preceding operator. As a result, the Transformer cannot sum
the sub-expressions directly together but instead needs to transform each sub-expression sequen-
tially, which explains the need for more layers when the nesting of expressions grows. Therefore,
it shows that Transformers simultaneously learn to take shortcuts and a more complete strategy.

When we compare the hypothesized strategies and the findings, we see that the Transform-
ers take shortcuts whenever there is a lack of minus operators or the expressions are mostly
left-branching. However, it is not solving these expressions recursively as we proposed in The
recursive strategy but rather in one step. However, we see similarities in the learned strategy
and the recursive strategy when evaluating right-branching expressions, but instead of evalu-
ating the sub-expressions, it shows that it is transforming the numbers and operators according
to the preceding operator. However, it is unclear whether the trained models follow the recursive
strategy in the deeper layers, especially since they did not show any pattern to validate this.

The analysis allowed us to explore the limitations of a self-attention network. In particular,
we find that the network takes shortcuts on less complex nested expressions but requires deeper
networks on more complex nested expressions.
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A Appendix

Figure 18: Full visualisation of the attention scores.
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Figure 19: Full visualisation of the attention scores.
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Figure 20: Full visualisation of the attention scores.
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Figure 21: Full visualisation of the attention scores.
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