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Layman's Summary

In the following article, we investigate why the number of di�erent types of MHC
molecule is so small within an individual. MHC molecules are cell surface proteins
essential for the adaptive immune system, with the primary function of binding
antigens and presenting them to T cells. They are known for their extreme di-
versity at the population level, with the genes that encode them being the most
polymorphic found in vertebrates thus far. However, the number of di�erent MHC
molecules within an individual is limited: humans, for example, express 6 MHC
class I molecules and between 6-8 class II molecules. MHC molecules are diverse
at the population level to maximise the probability that for any pathogen, there
exists a heterozygous individual within that population that can recognise it. Why
the number of types present in an individual is limited is still under debate. While
maturing in the thymus, T cells rearrange their T cell receptor (TCR) before un-
dergoing positive and negative selection. The number of MHC types increases the
survival rate for positive selection, but decreases the survival rate for negative se-
lection, indicating that there is a number of MHC that maximises overall survival.
Here we explore the idea that MHC diversity is limited by a need to maximise T
cell survival during their development in the thymus.

The survival of a T cell during thymic selection is determined by whether it
creates a functional TCR through rearrangement. We adapt a published dynamical
model describing experimental data taken from homozygous mice to include the
feature of considering a cell's fate to be set after TCR rearrangement, which we
achieve by describing the dynamics of cells with the same fate. Using this new
model, we obtain estimates of the fraction of T cells which survive positive and
negative selection.

We then update a model linking the probability for T cells to survive selection
to the number of di�erent MHC molecules present in the individual, by including
part of the selection process it neglected to consider. Substituting our estimates for
positive and negative selection into the updated equation, we generate an estimate
for the number of MHC needed to maximise survival, which resembles the true
value seen in heterozygous mice. To test the robustness of our result, we built two
additional adjustments to the model to more accurately mimic behaviour observed
in vivo and observe if our result still holds. Under either of these changes, the
optimal number of MHC types for survival remains the same. While not a proof,
our results are consistent with the hypothesis that the number of MHC types is
limited to optimise T cell survival during thymic selection. Greater understanding
of the relationship between T cell survival and number of MHC types could provide
valuable insight why an individual's MHC diversity can di�er signi�cantly between
species of vertebrates.
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Abstract

We adapt a previous mathematical model of T cell development with the goal
of describing the dynamics of cells that have same fate during thymic selection.
The original model considers the survival of a random T cell, using averages of
experimental data taken from homozygous mice describing T cell counts at various
stages of thymic selection. In the new `clonotype' model we split the original model
into cells surviving selection, those not surviving negative selection, and those not
surviving positive selection. Solving the fractions of cells in each category from the
steady state of the original model, we obtain estimates for the fraction of clonotypes
surviving at each stage. These new estimates are input into another updated
model that links the number of MHC molecule types to T cell survival. From
this, we predict a lower and upper bound for the optimal number of MHC types
to maximise survival. The true number of MHC types observed for heterozygous
mice in vivo (≈ 12) falls comfortably in this estimated range (6.5 < M < 15). This
suggests that the total number of types of MHC molecule present in an individual
is in�uenced by a selection pressure to maximise survival of T cells during positive
and negative selection. More generally, the methods used also represent a novel
framework by which ODE models of populations may be split into a system of
equations for distinct groups with separate outcomes.
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1 Introduction

The MHC is characterised by its extreme diversity within a population. Its encod-
ing is polygenic and codominant, and MHC genes are the most polymorphic known
in vertebrates, with many loci having several hundreds -or even thousands- of al-
leles [3]. The currently accepted explanation for this diversity is that it maximises
potential recognition of pathogens in heterozygous hosts, and in hosts expressing
rare alleles [1]. However, MHC complexes are not as diverse within an individual:
heterozygous humans, for example, express 6 MHC class I molecules, and between
6-8 class II molecules [3]. There is no current consensus on why diversity of MHC
within an individual is limited, but one theory suggests that limiting the number
of MHC types improves the proportion of T cells surviving thymic selection. By
modelling the development of single positive T cells in the thymus, we aimed to
investigate the impact of MHC diversity on T cell survival, and ultimately estimate
the diversity of MHC types which maximises this survival probability.

Immature T cells undergo a complex process of selection in the thymus; there
is extensive literature on the topic but we here provide a brief overview of the
consensus understanding. Upon entering the thymus, CD4−CD8− T cells (double
negative, DN) must successfully rearrange their T cell receptor (TCR). A TCR is
composed of two linking chains, α and β, which rearrange separately beginning
with TCRβ. After TCRβ rearranges, it is paired with a non-rearranged preTα
chain to form a pre-TCR; T cells which fail to form a pre-TCR are killed by
apoptosis (β-selection). Those that succeed then attempt to rearrange the TCRα
chain to form a complete TCR, and become CD4+CD8+ (double positive, DN).
CD8 and CD4 are the coreceptors for TCRs to bond to either MHC Class I or
Class II, respectively, thus giving double positive cells the opportunity to bind to
either MHC class. However, it is likely that their TCR will be non-functional, as
many rearrangements are not capable of appropriately bonding to MHC. There-
fore, during positive and negative selection, the binding a�nities between TCR
and MHC complexes are assessed. In the thymic cortex, T cells are presented
with epithelial cells expressing Class I or II MHC along with self-peptides; T cells
capable of binding with suitable a�nity will receive a survival signal and di�er-
entiate into CD4−CD8+ or CD4+CD8− cells, while those which fail to bond die
of neglect (positive selection) [14]. The single positive survivors migrate to the
thymic medulla, where they are again presented with epithelial cells expressing
MHC carrying self-antigens. Importantly, medullary epithelial cells are capable of
expressing genes otherwise only seen in speci�c, peripheral tissues, meaning that T
cells are exposed to a sample of self-antigens from around the body [7]. T cells (in
either the cortex or medulla) which react with a binding a�nity above a certain
threshold are killed through induced apoptosis (negative selection). Finally, the
surviving T cells are allowed to join the functional repertoire.
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Positive selection chooses T cells that can successfully bond to the MHC of
their host, which is imperative for their function, while negative selection removes
those that may potentially cause autoimmunity. A higher diversity in MHC types
improves the likelihood of TCR to bind to MHC, improving the probability of sur-
viving positive selection, but also decreasing the probability of surviving negative
selection (since TCR more commonly bind with an a�nity above the tolerable
threshold). This implies the possibility of an optimal number of MHC types such
that the overall survival rate of the combined processes of positive and negative
selection is maximised. If this hypothetical optimum resembles the true number of
MHC types present in an individual organism, that would give an indication that
an individual's MHC diversity is in�uenced by a need to maximise the survival
probability of T cells maturing.

2 Approach

2.1 Estimating Selection

To estimate the optimal number of MHC for T cells to survive selection, we �rst
need accurate estimates for positive and negative selection. Experimental data
generally estimates the overall survival rate of thymic education to be between
2-5% [14], but accurate estimates for the independent survival rates of positive
or negative selection have been harder to �nd. A 2014 article by Sawicka et al.
[11] built a dynamic model describing T-cell maturation in mice by parameter
�tting a proposed three-dimensional ODE with experimental data in mice [12].
They assumed that DN cells become pre-selection DP cells at a constant �ux
(cells/day), and that proliferation was su�ciently low before the SP stage as to be
excluded. The three dimensions of their model are then the number of T cells in
pre-DP (n1), post-DP (n2) and SP (n3) stages, leading to the following system of
ODEs:

dn1

dt
= ϕ− ϕ1n1 − µ1n1 ,

dn2

dt
= ϕ1n1 − ϕ2n2 − µ2n2 ,

dn3

dt
= ϕ2n2 + λ3n3 − ξ3n3 − µ3n3 . (1)

Parameters are given in Table 1, along with estimates for the probability of a
random cell to survive positive (s1) and negative (s2, s3) selection. These estimates
are calculated using the probability of death in compartment i, pi, as the rate
of death µi divided by the sum of rates of all actions a cell could take in that
compartment. The probability of surviving is then 1 − pi, giving s1 = ϕ1

ϕ1+µ1
,

s2 =
ϕ1

ϕ1+µ1
and s3 =

ξ3+λ3

ξ3+µ3+λ3
.
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Table 1: Fitted parameters and survival probabilities found by Sawicka et al.

Parameter Value Description Unit

ϕ 35.350× 106 initial �ux of DN cells into n1 (cells/day)

ϕ1 0.137 di�erentiation of cells from n1 into n2 (day−1)

ϕ2 0.124 di�erentiation of cells from n2 into n3 (day−1)

ξ3 0.151 n3 cells exiting the thymus (day−1)

µ1 0.263 n1 cell death by neglect (day−1)

µ2 1.370 n2 cell death by strong TCR signal (day−1)

µ3 0.099 n3 cell death by strong TCR signal (day−1)

λ3 0.183 cell division in n3 (day−1)

s1 34.2 n1 survival probability %

s2 8.3 n2 survival probability %

s3 77.1 n3 survival probability %

In practise, the TCR rearrangement splits the T cell repertoire into genetically
distinct `clonotypes' that can be classi�ed into 3 or 4 fates: clones dying during
positive selection, during negative selection(with two steps), and those surviving
selection, so survival is largely predetermined by which clonotype a T cell belongs
to. Since a given MHC will react to cells in the same clonotype in the same way,
we thought it important when investigating MHC diversity's impact to mimic this
behaviour, and thus adapted Equation 1 into a `clonotype-based' model. This was
done by separating the system of di�erential equations with multiple potential
outcomes into a set of smaller separate systems, each with a unique, distinct out-
come (e.g. all cells will survive until double-positive before dying). Every potential
outcome of the original system is represented by its own, independent system of
ODEs, thus simulating the predetermined fates of the di�erent clonotypes. The
sum of states of the new equations must be equal to the previous model, as must
all �uxes in and out of each compartment. The probability of survival is then
the percentage of the initial repertoire that enters the system of cells which is
guaranteed to survive.

A method of building this system is demonstrated below, using a simpler two
dimensional example. Consider a single population that passes through a single
stage of selection (with no replication):

dn1

dt
= ϕ− ϕ1n1 − µ1n1 and

dn2

dt
= ϕ1n1 − µ2n2 , (2)

where on a daily basis ϕ cells enter the pathway. This has a steady state (n̄1, n̄2)
at n̄1 = ϕ

ϕ1+µ1
and n̄2 = ϕ1n1

µ2
. Cells in n1 can either pass on to n2 at rate ϕ1, or

die at rate µ1. Thus, the fraction of n1 cells not dying at step 1 is s1 =
ϕ1

ϕ1+µ1
, the

survival probability.

6



Our aim is to de�ne two cell types, those that always survive, and those that
always die. We then want to �nd the relative proportion of these two cell types.
A trick is to �rst rewrite the model with an explicit non-dimensional survival
parameter, and de�ne a di�erentiation rate r1, by de�ning ϕ1 = s1r1, i.e. r1 =
ϕ1+µ1. This can be thought of as splitting the survival rate ϕ1 into the probability
a cell is chosen to survive, multiplied by the rate it takes to make that decision.
Applying this trick, we see:

dn1

dt
= ϕ− s1r1n1 − (1− s1)r1n1 and

dn2

dt
= s1r1n1 − µ2n2 ; (3)

with the same number of parameters, only s1 and r1 instead of ϕ1 and µ1. Now
we can split the model into survivors and non-survivors, N and M , by arti�cially
setting s1 = 1 or 0, for N and M respectively:

dN1

dt
= fϕ− r1N1 ,

dN2

dt
= r1N1 − µ2N2

dM1

dt
= (1− f)ϕ− r1M1 ; (4)

where the s1 parameter is replaced by the fraction, f , of cells that survive the n1

stage.

Figure 1: A diagram showing the split of a system of equations with two potential outcomes (LHS, Equation
2) into a set of systems with one potential outcome each (RHS, Equation 4). By requiring the same steady
state of both models, i.e., the same total cell number in each subpopulation, and the same total �ux between
compartments (for example µ1n̄1 = r1M̄1), we can solve the fraction, f , of initial cells fated to survive.
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In fact, if f = s1, this model has the same steady state as the one above, i.e.
(N̄1 + M̄1, N̄2) = (n̄1, n̄2) (see Appendix 5.1). Cells in N1 do not die; since they
move to N2 with rate r1 = ϕ1 + µ1, this can be thought of as `all cells that would
have died instead become N2', while in M1 (where death rate is also r1) `all cells
that would have survived instead die'.

We have thus achieved our goal of splitting an original system where cells
have two possible outcomes (to die in n1 or n2) into a set of two systems with
predetermined, discrete outcomes (see Figure 1). We now look to apply to a
model that includes replication. Once again consider a simple two dimensional
ODE, but this time including cell division in n1:

dn1

dt
= ϕ+ λ1n1 − ϕ1n1 − µ1n1 and

dn2

dt
= ϕ1n1 − µ2n2 . (5)

Considering propagation with rate λ1 as a third possible cell action in n1 (alongside
survival ϕ1 and death µ1), the fraction of cells dying over time is µ1

ϕ1+λ1+µ1
and

hence the overall survival in this random cell model (according to the de�nition of
Sawicka et al.[11]) is s1 = ϕ1+λ1

ϕ1+λ1+µ1
. Note that here the division rate contributes

to the survival probability, i.e., s1 increases with both ϕ1 and λ1. While this
propagation may matter to survival for a random cell, it does not when taking
the perspective of the clonotype as a whole, since all o�spring should have the
potential to die (with exactly the same rate as parents). In addition, since there
is no limit to how many times a cell may reproduce in n1 before leaving, the path
it will take is ambiguous; this makes it di�cult to separate the system into a set
of systems with discrete outcomes that encompass all possibly outcomes of the
original model.

Thus when constructing a clonotype model with reproduction, it was �rst nec-
essary to separate the processes of selection (leaving/dying) and reproduction. We
do this by considering dying/leaving as the only �nal outcomes for a clonotype,
with reproduction then considered similarly to the �ux into a compartment. With
this, we can once again split into survivors and non-survivors, N and M .

dN1

dt
= fϕ− r1N1 + λ1N1 ,

dN2

dt
= r1N1 − µ2N2

dM1

dt
= (1− f)ϕ− γ1M1 . (6)

Note that because of the steady state of N1, r1 > λ1. Since we know M1 are
guaranteed to die at step 1, we simplify the overall change as a net value: γ1 =
r1 − λ1 (where λ is necessary to match steady states to Sawicka's model). Setting
f = ϕ1

ϕ1+µ1
, as before, gives the same steady states (Appendix 5.1). However, note

that f is now di�erent from the survival probability given in Sawicka paper, as it
no longer includes λ.
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3 Results

3.1 An Undi�erentiated Model

3.1.1 A Clonotype Model in 3 Dimensions

Using the formation of a `clonotype-based' model, we built a set of systems of
ODEs based on Equation 1. Since it has four potential outcomes, four systems
of ODEs are necessary: survivors N, and non-survivors K, L and M that die at
steps 1, 2 and 3 respectively. In addition, three fi and ri are required, one for
each selection step (Appendix 5.2). As before, fi =

ϕi

ϕi+µi
and ri = ϕi + µi (for n3,

ϕ3 was called ξ3 to emphasise that those cells are leaving the thymus). We again
use the simpli�cation γ3 = r3 − λ3, to highlight that M3 is a compartment where
death is guaranteed.

dN1

dt
= f1f2f3ϕ− r1N1 ,

dN2

dt
= r1N1 − r2N2,

dN3

dt
= r2N2 − r3N3 + λ3N3 ;

dM1

dt
= f1f2(1− f3)ϕ− r1M1 ,

dM2

dt
= r1M1 − r2M2,

dM3

dt
= r2M2 − γ3M3 ;

dL1

dt
= f1(1− f2)ϕ− r1L1 ,

dL2

dt
= r1L1 − r2L2 ;

dK1

dt
= (1− f1)ϕ− r1K1 . (7)

As before, we require the same steady state as the Sawicka model, as well as the
same output, but it di�ers in reported survival probability. Since it is split into
groups based on outcome instead of a random cell, overall survival probability
is given based on what proportion of the initial repertoire will inevitably survive
(f1f2f3). As there is no propagation in n1 or n2, survival for the �rst two steps
doesn't change (i.e. f1 = 0.342 = s1 and f2 = 0.083 = s2). However, we see a
di�erence for the last value: f3 = 0.604 ̸= s3.

3.1.2 Estimating Impact of MHC

With these fi, we have the best possible estimates for overall positive and negative
selection. However, to estimate the impact of the number of MHC on positive and
negative selection, we require the probability of being positively or negatively
selected for one MHC, such that we can then change the number of MHC types
and see how overall survival changes. To do this, we use an update of the model
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by Borghans et al.[2], extending the model by preceding it with the probability of
rearranging a functional α-chain (Equation 8). β-selection will not be included,
as the experimental data for our models begins at the late double negative stage,
where TCRβ has already been rearranged. T cells have a one in three chance to
successfully rearrange an α-chain, and if the �rst attempt is nonfunctional they
gain a second opportunity to re-arrange on the other chromosome. Therefore, the
probability of a functional α-chain rearrangement overall is pα = 1

3
+(1− 1

3
)× 1

3
≈

0.55 [6]. Since experimental data begins at the late double negative stage and there
is a time period between rearranging TCRα and becoming double posive, whether
or not TCRα rearrangements have taken place is also uncertain. The probability
pα ≈ 0.55 thus represents a lower bound (where all cells had yet to rearranged
TCRα), with an upper bound (all cells have already rearranged TCRα) at pα = 1.

With this addition, the model continues as described by Borghans et al. As-
sume p and n for the probability a T cell is positively or negatively selected for a
single MHC, respectively. A T-cell must successfully undergo positive selection for
at least 1 MHC, but avoid negative selection for all MHC, meaning the number of
clones in functional repertoire R from initial repertoire R0 can be expressed as

ρ =
R

R0

= pα((1− n)M − (1− p)M) . (8)

The total fraction of cells surviving pre-DP (n1) is f1 = α = 0.342. Note this
is not equivalent to p, the chance of being positively selected, as α includes the
chance of surviving TCRα rearrangement, and hence α = pα(1 − (1 − p)M). We
write the fraction of cells dying of negative selection as β = 1− f2f3 = 0.950. The
overall survival is thus ρ = α(1 − β) = R/R0. Using these observations to solve
Equation 8 leads to:

p = 1− M

√
1− ρ

pα(1− β)
and n = 1− M

√
1− ρβ

pα(1− β)
(9)

As we know the number of MHC in inbred mice to be M = 6, we solve to �nd �nd
p = 0.147 and n = 0.137. The di�erence between these estimates is surprisingly
small, ≈ 0.01. If this is accurate, it indicates the threshold within which a cell is
positively selected but not negatively selected is very narrow. With these estimates
of the true values, we can now re-examine Equation 8 as a function of M (Figure
2).
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Figure 2: A graph of T cell
survival `rho' as a function of
MHC diversity `M' (Equation 8),
for pα = 0.55 (red) and pα =
1 (black) showing an upper and
lower bound for the optimum
value of M at 6.5 < M < 15. The
true value for heterozygous mice is
12.

3.2 Extensions

3.2.1 Di�erentiating Between CD4+ and CD8+

Sawicka et al. also construct a second, more complex model that includes di�er-
entiation into CD4+ or CD8+ SP cells [11]. Cells in the second compartment n2

have a chance to either become CD4+ with rate ϕ4 or CD8
+ with rate ϕ8, splitting

the previous undi�erentiated n3 compartment into n4 and n8:

dn1

dt
= ϕ− ϕ1n1 − µ1n1 ,

dn2

dt
= ϕ1n1 − (ϕ4 + ϕ8)n2 − µ2n2,

dn4

dt
= ϕ4n2 + λ4n4 − ξ4n4 − µ4n4 ,

dn8

dt
= ϕ8n2 + λ8n8 − ξ8n8 − µ8n8(10)

As before, they used linear regression and �t parameters to the same set of ex-
perimental data of T cell counts taken from homozygous mice. The rate of cells
escaping n2 should be the same between models, ϕ4 + ϕ8 = ϕ2. The model now
has six potential outcomes: surviving as CD4+ (N4), surviving as CD8+ (N8),
dying as CD4+ (M4), dying as CD8+ (M8), and dying post or pre-DP (L and K,
respectively). Otherwise, the model looks much the same as Equation 7. We here
show only the two groups of survivors, CD4+ (N4) and CD8+ (N8), for simplicity:

dN4
1

dt
= f1f

4
2 f

4
3ϕ− r1N

4
1 ,

dN4
2

dt
= r1N

4
1 − r2N

4
2 ,

dN4
3

dt
= r2N

4
2 − r4N

4
3 + λ4N

4
3 ;

dN8
1

dt
= f1f

8
2 f

8
3ϕ− r1N

8
1 ,

dN8
2

dt
= r1N

8
1 − r2N

8
2 ,

dN8
3

dt
= r2N

8
2 − r8N

8
3 + λ8N

8
3 . (11)
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Like before, the f parameters represent the fraction of cells that survive at each
step. As di�erentiation occurs in the second compartment n2, there are now two
paths to survival from step 2 onwards: for example f 4

2 represent the fraction of
cells in n2 that move to n4 and f 4

3 represents the fraction that leaves n4 to join the
functional repertoire as CD4+. Note that r2 = ϕ4+ϕ8+µ2 is identical to before in
Equation 7, since ϕ2 = ϕ4 + ϕ8. and thus f 4

2 + f 8
2 = f2. L and K are unchanged.

Using this model, we again look to investigate the optimal MHC diversity. Since
CD4+ and CD8+ are only a�ected by MHC Class II or MHC Class I, respectively,
the analysis of section 3.1.2 can be performed for CD4+ and CD8+ independently.
Estimating α4 and β4 for this model from f1, f

4
2 and f 4

3 give positive and negative
selection values of p4 = 0.273 and n4 = 0.258; doing the same for CD8+ gives
p8 = 0.273 and n8 = 0.265. As before, the di�erence between positive and negative
selection is small, with a di�erence of≈ 0.01 for both, mirroring the previous result.
This narrow threshold was again surprising, and will require further investigation.
Using these values for positive and negative selection in Equation 8 allows us to
once again graph the e�ect of number of MHC on survival, this time for CD4+

and CD8+ independently (Figure 3).

(a) CD4+ (b) CD8+

Figure 3: Function graphs of the e�ect of number of MHC on the proportion of initial repertoire surviving for
Class I and Class II MHC, independently. pα = 0.55 (red) and pα = 1 (black) represent a lower and upper bound
considering α-rearrangement.

We see that the optimal number of MHC peaks at a value of approximately
3.25 < M < 7.25 for both CD4 and CD8, a range which again includes the M = 6
for Class I and II observed in vivo in heterozygous mice (and summing to our
result in section 3.1.2).

3.2.2 Exiting After Propagation

In our models, we used the same construction for propagation in the last compart-
ment as was considered in the original Sawicka model. However, it is known that
rather than having a random chance to propagate or leave at any point, T cells
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leaving the thymus must go through a set number of propagations �rst, before they
are allowed to leave[10]. We wanted to investigate whether we could add a simple
version of this behaviour to the model, in the form of a required propagation before
being allowed to escape. This corresponds to:

dN3

dt
= r2N2 − r3N3 + λ3N3 =


dN30

dt
= r2N2 − λ3N30

dN31

dt
= 2λ3N30 − r31N31 + λ3N31

(12)

Here, the left hand side represents the previous model, and the right hand side
represents the new model with 2 generations: N3i, i = 0, 1. The cascade has a
rate of propagation λ3, which is assumed to be the same for each generation. Only
after generation 2 (the �rst generation of o�spring, N31) are T cells allowed to
leave the thymus, with rate r31. Naturally, this rate should be higher than the
previous leaving rate r3, since clearly N31 < N3. Solving to match steady states
to Sawicka's original model gives r31 = 0.394 (method shown in Appendix 5.3).
As Sawicka et al.'s model was built with continuous propagation, propagation
in the N31 compartment is necessary for the two models to match. In addition,
it was desired to have more than 2 generations, since the expected number is 4
[10], but due to the form of Sawicka et al's model, matching steady states to a
cascade with more than two generations proved mathematically impossible (5.3).
Nevertheless, equation 12 still represents a functioning model with single positive
T cells forced to reproduce before leaving, and since it can only be constructed
without changing the values of fi, this results in the same estimates for positive
and negative selection, and the same result as in section 3.1.2.

4 Discussion

We adapted a mathematical compartment model of T cell development[11] into
a clonotype-based system that allowed us to separate the initial �ux of DN cells
into separate groups based on outcome. By de�ning the survival probability as the
proportion of this initial �ux that went into the group guaranteed to survive, we
built estimates for surviving positive and negative selection from the perspective of
a clonotype. Upon these estimates, we updated a previous model [2] investigating
the impact of MHC diversity on T cell survival in the thymus, which indicated
that the optimal number of MHC types was 6.5 < M < 15, resembling the true
value observed in heterozygous mice. While not a proof, this gives some suggestion
that MHC diversity within an individual could be limited by a need to maximise T
cell survival during thymic selection, as hypothesised. In addition, we considered
extensions of the model in the form of T cell di�erentiation and a reproductive
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cascade, to see if incorporating these potentially more realistic models would a�ect
our results. When incorporating di�erentiation into CD4+ or CD8+ into the model,
the result still holds, as well as when only allowing T cells to escape the thymus
after at least one division.

In the data used to parametrise Sawicka et al.'s models, T cell totals di�ered
signi�cantly between individual mice (as can be reasonably expected), and hence
linear regression �tting procedures were used instead of parametrising directly
from means of the T cell counts. In practise, this has resulted in the di�erentiated
and undi�erentiated models of Sawicka et al. having di�erent outputs, but these
are still well within their calculated standard deviations, and thus could both
reasonably represent the counts observed in an individual. As such, conclusions
drawn from the two models are still relevant. Because of the structure of Sawicka's
original model, converting to a cascade in section 3.2.2 required some sweeping
simpli�cations which likely do not accurately represent the true behaviour: T
cells are allowed to leave after only one generation of division, it was necessary to
consider division in compartment N31 and the rate of division is still a constant
λ3. With more experimental data of compartment times and the generational
behaviour expected, a new model could be built with more generations of cell
division before being allowed to leave, as well as potentially removing cell division
for the �nal generation at the end of the cascade.

Previous attempts to investigate whether the number of MHC types optimises
survival probability have come to opposing conclusions. Nowak et al.[8] found
the optimum to lie close to the observed value, but an oversight in their model
allowed cells to be negatively selected on MHC they were not positively selected
on. Correcting for this mistake, Borghans et al.[2] then found the optimal MHC
to be much higher than that observed in vivo, but their model did not consider
the selection due to TCRα rearrangements (which were also neglected by Nowak).
By preceding Borghans' model with the probability of a functional TCRα rear-
rangement, pα = 0.55[6], this article represents a continuation and update of the
line of investigation in modelling T cell selection to investigate optimal MHC. Ma-
jor di�erences between our work and Borghans' estimate is due to more accurate
experimental data describing positive and negative selection.

The results of our research were built on experimental data from homozygous
mice (M=6), but can project T cell survival rates for heterozygous mice (M=12).
Experimental data of the true survival rates of T cells during thymic selection in
heterozygous mice could be used to verify these projections and test the robustness
of our result. Further lines of investigation could also be to continue including
more realistic behaviour into the model to see if the result still holds. One such
extension would be to consider T cells with two rearranged α-chains in their TCR.
Sometimes the α-chain on the second chromosome of a T cell rearranges before
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the functionality of the �rst rearrangement has been veri�ed, resulting in a T
cell with two rearranged TCRα. Research suggests as many as 25% of T cells in
the functional repertoire in our repertoire possess this trait[5]. The presence of
this extra TCRα slightly increases the probability of binding to a MHC, and thus
could a�ect the observed optimum. Since ordinary di�erential equations on this
topic tend to resemble the Sawicka model[10], the methods of splitting a system
of equations into a set of smaller systems described in this article could likely be
adapted to investigate other models of T cell development.

Code

All analyses were performed in R[9], using the tidyverse package[13] and Grind[4],
an R-script built for phase plane analysis. Code used for analyses can be found at
https://github.com/Jeroenioeni/MHC in R markdown format.
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5 Appendix

5.1 Matching Steady States

We look to show that for the simplest case, steady states match if f = ϕ1

ϕ1+µ1
. Take

the simple model without replication seen in Equation 2 and its separated form
shown in Equation 4:

dn1

dt
= ϕ− ϕ1n1 − µ1n1 and

dn2

dt
= ϕ1n1 − µ2n2 ; (2)

dN1

dt
= fϕ− r1N1 ,

dN2

dt
= r1N1 − µ2N2

dM1

dt
= (1− f)ϕ− r1M1 . (4)

Equation 2 has steady state n̄1 =
ϕ

ϕ1+µ1
and n̄2 =

ϕ1n̄1

µ2
= ϕ1ϕ

µ2(ϕ1+µ1)
, and Equation

4 has steady state N̄1 =
fϕ
r1
, N̄2 =

r1N̄1

µ2
= fϕ

µ2
and M̄1 =

(1−f)ϕ
r1

.

We now attempt to match these steady states. Since r1 = ϕ1+µ1, N̄1+M̄1 = n̄1

for any f . N̄2 = n̄2 i�. f = ϕ1

ϕ1+µ1
, which was to be demonstrated.

5.2 General Framework

We here show a general framework of a three-dimensional ODE allowed to propa-
gate at every step with rate λi:

dn1

dt
= ϕ+ λ1n1 − ϕ1n1 − µ1n1,

dn2

dt
= ϕ1n1 + λ2n2 − ϕ2n2 − µ2n2,

dn3

dt
= ϕ2n2 + λ3n3 − ϕ3n3 − µ3n3. (13)

This has steady states n̄1 =
ϕ

ϕ1+µ1−λ1
, n̄2 =

ϕ1n1

ϕ2+µ2−λ2
and n̄3 =

ϕ2n2

ϕ3+µ2−λ3
.

We split into K, L, M and N, the survivors of di�erent stages, with N as the only
group that survives to leave the system.
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dN1

dt
= f1f2f3ϕ− r1N1 + λ1N1 ,

dN2

dt
= r1N1 − r2N2 + λ2N2,

dN3

dt
= r2N2 − r3N3 + λ3N3 ;

dM1

dt
= f1f2(1− f3)ϕ− r1M1 + λ1M1 ,

dM2

dt
= r1M1 − r2M2 + λ2M2,

dM3

dt
= r2M2 − γ3M3 ;

dL1

dt
= f1(1− f2)ϕ− r1L1 + λ1L1 ,

dL2

dt
= r1L1 − γ2M2 ;

dK1

dt
= (1− f1)ϕ− γ1K1. (14)

For simpli�cation, (ϕi + µi) has been replaced by ri and for compartments with
guaranteed death, ri − λi has been replaced by net change, γi. We require several
fractions fi, one for each selection step: f1, f2 and f3. Choosing fi = ϕi/(ϕi + µi),
the survival probability in the absence of replication, results in the steady states
matching to the full model above. This can be trivially shown using the same
technique as Appendix 5.1. Thus, in contrast to the cell-based model, the λi drop
out from the survival probabilities.

5.3 Parametrising the Cascade

We look to �nd parameters for λ3x and r33 such that for Equation 12, the left
hand side is equal to the sum of the right hand side. Since totals are the same,
N3 =

∑
N3i, and so dN3/dt =

∑
dN3i/dt:

r2N2 − r3N3 + λ3N3 = r2N2 − λ3N30 +

2λ3N30 − r31N31 + λ3N31

= r2N2 + λ3(N30 +N31)− r31N31

(15)

Since N3 =
∑

N3i, this simpli�es to r3N3 = r31N31. This, in fact, is also one of the
required properties from the beginning: that the outputs should match. Using the
steady states N̄3 = r2N̄2

r3−λ3
and N̄31 = 2λ3N̄30

r31−λ3
= 2r2N̄2

r31−λ3
, we solve r3N̄3 = r31N̄31, an

equation with only one unknown, to �nd r31 ≈ 0.394. Note that this only changes
r31, and not the survival parameters fi.
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We now investigate whether it is possible to build a cascade with more than
one division step. Consider a cascade with n divisions:

dN30

dt
= r2N2 − λ3N30

dN3i

dt
= 2λ3N3(i−1) − λ3N3i

dN3n

dt
= 2λ3N3(n−1) − r3nN3n + λ3N3n;

i ∈ {1, (n− 1)} (16)

By the same process as Equation 15, this simpli�es to r3N3 = r3nN3n. The steady
state of N3n is N̄3n = 2nr2N2

r3n−λ3
. For n > 1, solving r3N̄3 = r3nN̄3n results in a

negative value for r3n, which is impossible. Therefore, it is not possible to build a
cascade in this form from Sawicka's model for more than one division step.

5.4 Preliminary Project

We began investigating the formation of T cell functional repertoires and the pa-
rameters guiding thymic selection in an earlier project involving the `mini�sh',
genus Paedocypris. Due to the �sh's tiny size, it has very few lymphocytes, and it
was expected that this would result in a need for a novel solution to the problem
of how to develop a su�ciently speci�c adaptive immune system. Our �ndings in-
dicated that instead, even for this extreme example, a su�ciently speci�c adaptive
immune system is possible to construct using the same simple toy models made to
apply to humans and mice. The resulting report is attached below.
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Response probabilities of the adaptive immune
system in a small vertebrate
Abstract
A recent study used one of the smallest known vertebrates, Paedocypris sp.”Singkep”, as a
model organism due to its low lymphocyte count. Their estimates of lymphocyte count and
proteome size are used here to investigate the claim that smaller vertebrates should
possess less reactive adaptive immune systems due to smaller lymphocyte repertoires. A
probabilistic model shows instead that even for the smallest known vertebrates, the adaptive
immune system is sufficiently reactive, especially towards larger proteins that present more
epitopes.

Introduction
Antigen receptor repertoires are the foundation of the adaptive immune system, but their
form, structure and constraints are still not fully understood. The sheer size of most
vertebrate repertoires makes it impractical to sequence a large proportion of an individual’s
total lymphocyte population, and high heterogeneity between lymphocyte clonotypes makes
it challenging to represent an individual’s total repertoire based on a partial sample. Giorgetti
et al.1 aimed to circumvent this sampling problem by studying one of the smallest known
vertebrates: a cyprinid ‘minifish’, Paedocypris sp. “Singkep”. They estimated the fish to
possess ~37,000 T cells in a mature adult, hence making it feasible to sequence the majority
of clonotypes in an individual and gain a representative sample.

However, the low lymphocyte count of Paedocypris raised a fundamental question about
how its immune system functions. The adaptive immune system trains itself to not react to
self-proteins by a process known as self-tolerance: lymphocytes held in lymphoid organs are
introduced to self-proteins, and destroyed if they bind with strength above a tolerable
threshold2. Since it is reasonable to assume an upper bound on the total number of
lymphocytes an organism can produce, the number of self-proteins constrains the probability
of an individual lymphocyte reacting to an epitope (also known as its specificity), as with
more self-proteins there are more responses to avoid. Paedocypris produces approximately
12,000 self-proteins, almost as many as larger vertebrates like humans (which produce
~20,000). Under similar constraints, it can be reasoned that the specificity per lymphocyte of
Paedocypris should also be roughly the same to avoid autoimmunity. Because the specificity
per lymphocyte must be similar, but the size of the repertoire is several orders of magnitude
smaller (4x1011 in humans3 vs 4x104 in Paedocypris1 )), we hypothesize that a simple
probabilistic model of Paedocypris’s immune system would estimate a very low probability to
react to a foreign epitope, therefore requiring a more complex explanation. We used the data
of Giorgetti et al. to make a toy model and investigate this claim.



Model and Results
The model below4 describes the formation of a functional repertoire (Eq. 1) and its probability
to react to a given epitope (Eq. 2). In (1), an initial repertoire of size R0 is introduced to S self
epitopes. Lymphocytes react with specificity p and self tolerance kills reacting lymphocytes
to leave a functional repertoire of size R. In (2), we see the recognition probability Pi : the
probability a functional repertoire of size R and specificity p recognises a given epitope i.

(1)        𝑅 = 𝑅
0

(1 − 𝑝)𝑆 (2)        𝑃
𝑖

= 1 − (1 − 𝑝)𝑅

Since the specificity is significantly smaller than 1, an exponential approximation can be

used : . Incorporating this into the formulae above and differentiating with(1 − 𝑝)𝑛 ≃ 𝑒−𝑝𝑛

respect to specificity, we find that the recognition probability is optimised at specificity p̂=1/S.
Note that this has been done without referencing any particular species. Across all
vertebrates, this simple model indicates that the optimal specificity will be inversely
proportional to the number of self epitopes (as had been intuitively expected).

For the optimum specificity, we can estimate all the parameters to model the immune
system of Paedocypris. As Paedocypris has ~12,000 self-proteins, similar to humans, we
assume that as in humans S is roughly 105, and thus the optimal p is p̂=10-5. R is ~37,000,
the recorded number of T cells. Using this value of R and p results in a recognition
probability per epitope of Pi = 0.30.

Using the same model on humans or mice gives a recognition probability per epitope of
close to 1 (see Fig.1 comparing humans to Paedocypris). Is Pi = 0.30 high enough for an
immune system to function? If a foreign pathogen presents 10 epitopes, a recognition
probability of Pi = 0.30 means the chance of recognising such a pathogen is greater than
97% (1-0.710).

Figure 1
A plot showing the response probability (Pi)
against specificity (p, in a logarithmic scale)
for H. sapiens (black) and Paedocypris (blue),
with a fixed initial repertoire size.. Note both
have optimal regions around p=10-5 (though
the range possible for H. sapiens is
significantly larger).



Discussion
Known pathogens present several epitopes5. The genome of HIV, one of the smallest known
viruses, encodes for 15 viral proteins6. Even if each protein was just 1 epitope, HIV would
present 15 epitopes as a whole. Our hypothetical pathogen with 10 epitopes thus represents
a lower bound. In the simple model, any pathogen presenting over 10 epitopes will be
recognised with a probability of above 97%, which is sufficient for a functional immune
system. While this would drop sharply for a hypothetical pathogen that only presents a
couple of epitopes, such a pathogen is currently unknown.

The result that an organism has a functional immune system may seem somewhat
obvious, but it is not trivial. Paedocypris lies at the extreme of what is possible for
vertebrates, being a very small organism with a relatively large proteome, so the result
should hold across all vertebrates. If a recognition probability per epitope of 30% is sufficient,
is the ~100% recognition of humans and mice something that has been positively selected
for, or is it a byproduct of a system maximising against other constraints? We would argue
the latter.

Having a larger body may necessitate a higher recognition probability due to the time it
takes for a lymphocyte to come into contact with an epitope. Lower recognition probabilities
could increase the time taken for a system coming into contact with an epitope to recognise
it. This would make a more significant difference in a large organism compared to something
small like Paedocypris. However, experiments in mice have indicated newly introduced
epitopes are brought to primary lymphoid organs like the thymus relatively quickly7; there are
mechanisms in place to ensure that a new epitope is presented to different lymphocyte
clonotypes as quickly as possible8. Therefore, while this is something to consider, it is
unlikely to be a main constraint.

It has previously been argued, with reference to humans and mice, that the structure of
the adaptive immune system is more focused on avoiding autoimmunity than maximising
probability to respond to epitopes4. This result supports that claim, as it shows that a
specificity constrained by the number of self-epitopes can provide a sufficient immune
response even in this extreme case. If that is true, this should hold for all vertebrates, so the
adaptive immune system can always be constructed to avoid autoimmunity without needing
to greatly compromise the recognition probability.
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