
Utrecht University
Faculty of Science

Department of Information
and Computing Sciences

Game And Media Technology
MSc Programme

Automated Playtesting on 2D
Video Games

An Agent-Based Approach on NethackClone Game
via Iv4XR Framework

Master Thesis

Author
Anastasios Latos
ICA-6309070

Supervisor
Dr. S.W.B. (Wishnu) Prasetya

Second Examiner
Dr. Sander C. J. Bakkes

February 8, 2022

CONTENTS

1 Introduction 1

1.1 Thesis Objective 2

1.2 The Game Under Testing 3

2 Preliminaries 4

2.1 A* Search Algorithm 4

2.2 Agent-oriented Programming 4

2.3 Goal-based Programming 4

2.4 Tactical Programming 4

2.5 Coverage . 5

3 Approach 5

3.1 Testing Approach 5

3.2 Research Questions 6

3.2.1 Research Question Contribution . . . 7

3.3 Evaluation Criteria 7

4 Related Work 7

4.1 Existing Testing Techniques 7

4.2 Automated Testing 8

4.3 Videogame Testing 9

4.3.1 Procedural Personas 10

4.3.2 Agent-based Approaches 10

4.3.3 Reinforcement Learning 11

4.3.4 Additional Approaches 12

4.4 Iv4XR: A Tactical BDI Agent Framework . . 13

5 Methodology & Implementation 14

5.1 Game Modification 14

5.2 Game Wrapper 15

5.3 Game Actions 16

5.4 Game Environment 16

5.5 Navigation . 17

5.6 Game State 18

5.7 Tactics & Actions 18

5.8 Goals . 20

5.9 Utilities . 22

6 Experimental Approach &
Evaluation 22

6.1 Experiment Contribution 23

6.2 Experiment Set Up 23

6.2.1 Test 1: Walk Through The First 5 Levels 23

6.2.2 Test 2: Interact With Every Entity
On The Map 24

6.2.3 Main Method 25

6.3 Data Collection 25

6.4 Evaluation . 26

6.4.1 Level Difference 26

7 Results 27

8 Discussion, Limitations & Future Work 34

8.1 Research Hypothesis 35

8.2 Research Question 1 35

8.3 Research Question 2 35

8.4 Limitations 36

8.5 Future Work 36

9 Conclusions 37

10 References 38

A Actions & Tactics 41

B Goals 42

C Algorithm - Test 2: Interact with Every Entity on the
Map 43

D Utilities 44

ABSTRACT
In the current project we present our study on automated
video game testing. For our research, we apply our ap-
proach of automated agent-based testing, on NethackClone,
a 2D, grid-based video game. Our implementation utilizes
the Iv4xr framework, a tool that is able to apply and gen-
eralize automated testing on multiple types of video games,
enabling us in that way to perform agent-based testing on
the game, by creating agents and assigning goals to them.
Alongside the testing tasks we implemented for our project,
we also perform a number of checks on the SUT, checking
whether the game behaves as intended when specific actions
take place in it. Checks are related to the interaction be-
tween the player and the main elements of the game. We
created two different tests, with 7 goals and more than 25
actions, tactics and utilities, running our experiments on a
total of 307 unique test cases (171 on Test 1, 136 for Test 2).
We evaluated our approach based on 3 main factors: cov-
erage, success ratio and time, while the time and effort the
framework needs to adapt for a new game each time is also
of interest to us. Results derived through the experiments
proved not only that our approach performs efficiently at a
considerable level, but also our system was even able to de-
tect an actual, unknown bug in the game. The functionality
and the ability of the framework to adjust and generalize for
multiple games is also promising, considering factors such as
updates and adjustments on a game, or similarities between
video games. The effort and time we devoted to the frame-
work proved out to be a one-time investment, as once the
integration of the SUT into the framework is complete, it
can be repeatedly used for creating new testing tasks, check-
ing on different assets of the game. In this way it can assist
testers save important time and effort in further, future tests
on the same SUT. However, our study also pointed out ex-
isting malfunctions in our approach, since our research was
limited in terms of time and computational power, proving
the need for extended research on a huge number of tests
and test cases, in possible future studies.

1. INTRODUCTION
Computer game development has become a popular, fast
growing Computer Science field, due to its easy accessibility
for millions of people around the world, attracting the inter-
est of both individual developers and gaming-related com-
panies. Video game industry has been active for more than
50 years, when the first game console was released, in the
early 70’s [66]. Over the last decades, this domain has seen
considerable rise, with thousands of games being released
every year. Today, it is about a multi-billion industry which
is continually expanding [48].

Considering this growth rate, it was anticipated for video
game complexity to also increase over the years. Early
computer games consisted of simplistic graphics, or even no
graphics at all and were restricted to a limited amount of
controls and interactions that could take place during game-
play. Within the next decades, these simple programs were
transformed into highly interactive systems, with realistic
graphics and a huge number of commands available for the
user to enter [47]. This increase in complexity has led to
ever more time and effort needed, in order for a company to
ensure quality when a new video game is released.

While modern video games were increasingly becoming com-
plicated in time, more and more failures present in the game
were being noticed by users and developers, resulting in neg-
atively impacting the overall experience of a gameplay ses-
sion. These failures are known as bugs or game glitches
and have been categorized depending on how long they last,
what causes them, how you can spot them and what they
can induce in a game environment, or in a gameplay experi-
ence [47]. There are cases where in order to spot a failure, a
game state must be reached repeatedly until it meets some
specific conditions (e.g. player has an exact amount of life
points, holding or obtaining a specific object, using particu-
lar tools, etc.). Therefore, developing a game is an iterative
process and a game is released when it is balanced and most
of its bugs have been eliminated [72].

In order to deal with the aforementioned failures, a new
term was integrated into the game development process in
the late 80’s, named Quality Assurance (QA). In itself, QA
is not novel, as it existed since the 1930’s, when firstly per-
formed for industrial purposes and then applied in software
development [8], but never in the video game industry until
1980’s.

Quality assurance constitutes a fundamental part of the de-
velopment process of a game [71]. QA can be performed
in various ways, using specific techniques and several tools
developed for this purpose. Yet, the simplest and most pop-
ular way to do it is by conducting playtesting sessions. As
a definition, playtesting is the process of exposing players to
a game, aiming to assess their behavior and experience with
it [74]. More specifically, during the development of a com-
puter game, a group of players experimentally interacts with
the game through playtesting sessions, in an attempt to en-
sure the game flows as expected and provides users with the
intended experiences [69]. This makes it easier for game de-
signers to gather feedback about the game and repetitively
improve it.

In the early days of video games, testing was performed by a
limited number of testers, usually no more than 3, including
the developer himself, who usually was in charge of the whole
process. There are also cases where only the programmers
could handle the entire testing part. This was due to the
limited scope of the games and their small size [3].

On the other hand, the majority of today’s, modern com-
puter games have many different levels or maps and include
various objectives, constraints, rules and options. Moreover,
additional features may take place, such as the number of
players, online gameplay, switching between human or com-
puter controlled players etc. All these assets could impor-
tantly increase the complexity of a game. Developers may
face serious challenges in order to ensure that the game is
well-behaved across the widest possible range of complicated
scenarios [71]. These challenges are mainly associated with
three key factors:

• Cost , the overall amount of money a QA process may
cost.

• Time, how quickly and/or how often a QA process is
repeated, collects and analyzes results.

1

• Effort , how difficult it can be for a developer to fully
perform a testing process in such an application and
ensure its robustness.

Although QA has become a challenging task for modern
video games, the majority of today’s video game industries
are still recruiting humans to do it, manually. Playtest-
ing with humans usually turns the procedure into a time-
consuming and costly task, limiting its application, espe-
cially for individual game designers, or smaller and inde-
pendent game companies [16]. The QA process involves hir-
ing human playtesters to play the game, report bugs and
provide feedback regarding the playability of the game [72,
83]. The process is mostly manual and therefore expensive.
Furthermore, the procedure has to be repeated for every
single modification in the game, significantly increasing in
this way the time, effort and cost for this procedure. As a
consequence, the cost for performing QA on modern video
games has risen significantly during the last few years, with
about 10-20% of a single video game’s budget to get spent
on quality assessment and testing [2].

Over the last years, the high cost of playtesting and its slow
process has led game companies and researchers to look for
new technologies, which can help in dealing with the afore-
mentioned issues related to cost, time and effort needed for
QA and playtesting. In an attempt to cut down on QA
cost, the most popular solution was to automate the whole
playtesting process, resulting in a minimal need for human
playtesters [72]. Besides the overall cost deduction, since
less human testers are needed, automation in testing could
also give a vital boost in game development.

An automated testing system uses computational power and
therefore performs computations and analyzes results much
faster than a human, being able to repeat the process for a
huge amount of times. It is also possible to focus on specific
parts of the game (e.g. locations or game states we think
are more vulnerable to bugs) and perform the testing tasks
locally. Automated agents could reduce development costs
through faster play sessions and the thorough exploration of
the game space in much shorter time [69]. This can save time
for the developers and by using the appropriate guidelines
it is possible to build a more efficient playtesting system.

Test automation ensures the robustness of the process and
makes it more efficient. It also accelerates the QA procedure
by creating multiple testing cases and investigating them
repeatedly (or even simultaneously in some cases). In this
way, representative results are delivered faster, with lesser
effort. In addition, an automated testing system can reduce
the QA costs of a company to an important level, as less
human testers are required to get hired and perform testing
tasks. Once a testing system has been completed, developers
can create various test cases and scenarios, which are adap-
tive and reusable, hence can be utilized through different
approaches [49].

All arguments presented above support automated testing
as a promising solution for big and smaller companies [25],
or even for individuals, who are willing to invest in such an
approach.

1.1 Thesis Objective
Currently, automated software and video game testing is
an emergent field for researchers and companies, aiming in
evaluating the functionality of a software or video game,
with an intent to locate possible defects or failures and find
out whether the Software Under Testing (SUT) meets the
specified requirements and the developer’s intentions [47].

There are several studies conducted on software and video
game testing that suggest various useful methods for per-
forming QA, while reducing the testing effort. Examples
of such methods are regression tests based on record/replay
segments [9], scenario testing [11, 12], UML model-based
testing [29], reinforcement learning (RL) agents [10] and
more.

Besides the aforementioned methods, there are also frame-
works and tools created for testing purposes not only on tra-
ditional software, such as TDF (Tactics Development Frame-
work)[34], CUTE or jCUTE [68], EvoSuite [35], TESTAR
[33] and more [58, 62], but also on computer games, such
as ICARUS [60], PathOS [73], Iv4XR [64]. We discuss the
aforementioned frameworks in the related section below (Sec-
tion 2).

In this project we will attempt to create an automated play
testing system for a simplified version of a 2D, grid-based
computer game, named Nethack. We decided on this spe-
cific video game because we think it is well-balanced in
terms of complexity, which makes it suitable for our research.
Nethack is definitely not a too simple game, but also not too
complicated. The fact that the player moves in 2D space, in
a game environment with simplistic graphics which need low
computational power to visualize (all graphics in the virtual
environment are represented by ASCII characters), makes
the game suitable for our purposes, as it requires less time
and computer resources for executing testing processes, as
well as for collecting and analyzing results derived through
them. Although simple, the game still represents a set of
problems which exist in various similar computer games and
need to get solved in order for the player to win or pass
through a level. These problems are related to path-finding
or navigating through a virtual map, fighting or avoiding en-
emies, surviving, collecting and using items, interacting with
game elements, etc. Therefore, a study conducted on this
game could generalize on games focusing on similar problems
and goals. In addition, Nethack can be categorized into a
wide range of video game types. Besides 2D and grid-based,
NetHack is also ASCII, top-down, survival, Roguelike, turn-
based game, thus, a research on this game could also address
games of all these classes.

For developing our testing system we intend to utilize the
Iv4xr BDI (Belief-Desire-Intention) framework mentioned
above. We aim to use specific testing methods (Agent-based
testing) and techniques (goal-based programming, tactical
programming) in order to reach our goals. We plan to eval-
uate the results derived from the testing process, focusing
on specified key points of the game, since a game consists of
multiple elements and hence, is affected by several factors.
Striving to test all game’s factors in our research at once,
would demand much more time and effort from our side.
However, our research is limited in terms of time and hence,

2

we decided to focus on specific game assets.

By the end of the project, our goal is to have created a fully-
functional testing system, as well as to prove through our
experiments and evaluation, that it is able to efficiently test
our game, with respect to some selected correctness aspects.

1.2 The Game Under Testing
At this part we present the game we decided on to use and
test for the purposes of our project. Here, we describe the
original game, its environment and goals, as well as intro-
duce its simplified version we are using.

The initial game we chose to investigate is NetHack. NetHack
is a single player dungeon exploration game written in C++,
that runs on a wide variety of computer systems, with a va-
riety of graphical and text-based interfaces, all using the
same game engine. It is considered to be one of the oldest
and most difficult computer games in history. Unlike many
other Dungeons & Dragons-inspired games, the emphasis in
NetHack is on discovering the detail of the dungeon and not
simply killing everything in sight. In fact, killing everything
in sight is a good way to die quickly [6].

As mentioned earlier, NetHack can be categorized in mul-
tiple game types. For our project, we refer to NetHack as
a 2D, survival, top-down, rogue-like, grid-based, tile game.
In NetHack, the player is able to pick the avatar’s race, role
and gender. When the game starts, the player walks around
exploring the map, since only limited parts of it are visi-
ble, depending on the avatar’s position. The game levels
are procedurally-generated, with hundreds of different game
entities and items, which makes the environment complex
enough for both humans and computers to play it. The
challenging level of game difficulty, in combination with its
ASCII-rendered graphics, makes NetHack an ideal SUT for
applying automated testing tasks, while being extremely fast
to simulate, with low needs of computational power.

A level in NetHack consists of non-walkable walls, walka-
ble corridors and rooms which are linked, enemies, objects
such as gold, weapons and portions, as well as stairs, which
lead to other maps or levels (Figure 1). During gameplay,
the player interacts with various game elements, fighting or
avoiding various kinds of enemies, picking-up and using sev-
eral weapons, collecting gold and consuming food, water and
health potions, in order to restore life points.

The game runs in an endless mode, as long as the avatar
stays alive and the player manages to reach the stairs in
order to move in another map and/or level-up. Since the
levels never end, the main goal of the game is for the player
to survive and pass through the levels for as long as possible.
Additionally, players can set their own secondary goals in
the game, depending on their playing style. For instance,
someone may focus on collecting as much gold as possible,
or kill/avoid as many monsters as possible, or solving the
levels by walking the least amount of steps possible, etc.

For the project purposes, we concluded that although NetHack
meets our requirements as an SUT and can be used in our
experiments, it is still a too large and complex game for our
research intentions, to such an extent that we cannot cover

Figure 1: A level in the original NetHack game. Although
the map in this case is fully provided, when the game starts
only a small part around the player is visible. While the
player explores the level, more and more parts of it are be-
coming available.

all its parts through our testing tasks. Attempting to test
such a big and complex game at once, would demand much
more time and effort for our research.

For this reason we decided to use a simplified version of
the game, keeping its main structure and goals, dismissing
parts which are too complex and unrelated to our project
goals. This version is named NethackClone and is avail-
able through GitHub [5]. Below we present some major
differences between the original NetHack and the simplified
NethackClone.

• NethackClone is written in Java.

• In contrast with NetHack, NethackClone provides no
option for the player to pick the avatar’s race, role and
gender.

• Instead of exploring the environment, NethackClone
provides access to the whole map when the game starts
(Figure 2).

• Only one enemy type is available in NethackClone.

• Only two types of weapons are available in Nethack-
Clone, sword and bow, whose attack points are ran-
domly assigned.

• There is only one way to restore life in NethackClone,
by consuming health portions.

• NethackClone is not survival, meaning that there is
no need for the avatar to consume food or water when
walking .

• NethackClone is turn-based, meaning that enemies do
not move independently, but play their move after the
avatar’s move.

• Stairs can be used only once at each level, leading to
a new map and increasing the avatar’s current level.

• Every five levels, there is a boss level.

3

Figure 2: Screenshot of NethackClone gameplay.

Figure 3: Example of the Inventory screen in NethackClone,
where all collected items are stored.

In (Figure 2) and (Figure 3) we present two more screen-
shots, this time from the simplified version of NethackClone.

Although NethackClone is a much simpler version of the
original NetHack game, we have additionally modified a few
parts of NethackClone to meet our project intentions. For
instance, we introduce the survival mode in the game, by
implementing and integrating survival aspects in it. We de-
scribe our adaptations in more detail in the relevant section
Methodology & Implementation.

2. PRELIMINARIES
2.1 A* Search Algorithm
An important asset when building autonomous systems in-
teracting with a virtual environment, is navigation through
the virtual world. In video games, this world is usually a
level or a map, whose size may vary from a small, limited
area, to a huge, completely open-world map. Hence, it is a
major challenge for developers to create an automated sys-
tem that efficiently navigates in the game.

One of the most popular algorithms for path finding in vir-
tual environments is A∗ Search. A∗ is a well known, simple
and fast algorithm to find shortest paths, which is complete
and able to lead in optimal efficiency. As it turned out, A∗

search is fast and flexible enough to find routes through vari-

ous kinds of game maps (e.g. grid-based, tiles, 3D, platform,
etc.). This feature makes it suitable for use in our project,
where most game objects have fixed positions, but enemies
can move dynamically on the map. For that reason, the
avatar needs to adapt its moves in order to reach specific
items or locations, while avoiding potential threats. Given
a destination, A∗ returns an optimal path, which is the one
with the least cost.

A∗ is considered to be a smart algorithm, as at each step
it picks the next node to move towards, based on in-game
values and parameters that may keep changing during game-
play. However, the fact that it stores all generated nodes in
memory can increase its complexity, requiring more compu-
tational power.

2.2 Agent-oriented Programming
In a brief definition, agents are just programs developed for
performing specific tasks. Agent-oriented programming is a
programming approach where the development of the soft-
ware is based on the concept of creating agents to carry out
the required tasks. When agents are programmed, they are
given specified tasks which they need to carry out. In a
virtual environment, one or more agents can synchronously
be applied, (single or multi-agent approach) and are able to
act individually or communicate with each other, acting as
a team.

2.3 Goal-based Programming
Agents usually act based on goals assigned to them, try-
ing to complete them, or get as close as possible. Rewards
inform the system whether and to what extent the agents
have reached or approached the specified goal. A reward is
assigned to the agents each time they reach their main goal.
In some cases, a minor reward may be assigned when agents
got near the goal, or performed actions which would help
them to reach their goal, even if they failed. It is also possi-
ble for agents to get charged with a penalty, for actions that
are not related or diverge from the goal. Goals and penalties
are represented by positive and negative values, respectively.
Agents focus on maximizing their collected rewards, while at
the same time avoiding penalties. In this way they are able
to learn how to act in a virtual environment, according to
the developer’s intentions. However, there are cases where
an agent may sacrifice a secondary reward, or gets exposed
to a penalty in order to reach its goals.

Goal-based programming is the programming approach where
goals, rewards and penalties are utilized in order to inform
the system about its progress and help it learn faster how
to reach the given goals. It is about an extension of linear
programming, that is capable of handling multiple and con-
flicting objectives. Goal-based programming is one of the
most popular multi-criteria decision-making techniques. We
refer to the criteria as the aforementioned goals. Goal pro-
gramming is simple, easy to use and is often used to deal
with problems related to multiple objectives, which are gen-
erally incommensurable and they often conflict with each
other.

2.4 Tactical Programming
Since an agent has been created in a system and its goals
have been defined and described properly, the agent is still

4

missing information about how to act in the virtual environ-
ment and hence, is unable to reach the desired goals. When
agents are placed in a virtual world, they need to act in a
specific way, perform exact moves and complete tasks in a
way that is acceptable for the system, following the environ-
ment’s rules and constraints. We refer to the way an agent
acts and moves in the environment as tactics.

Tactical programming is the programming approach which
allows developers to specify the agent’s behaviour imple-
mented actions, or sets of actions (so called tactics). Tac-
tical programming is essential not only for specifying how
an agent moves, acts and behaves when interacting with the
environment, but also because it provides programmers with
the ability to apply reasoning in their systems, meaning that
for each of the agents’ move, there is a backend process which
reasons why it acted in this specific way. Reasoning is highly
associated with the acts of thinking and cognition and in-
volves using one’s intellect. It is also linked with the field of
logic, where reasoning can be used to produce logically valid
arguments. Tactical programming allows for utilizing these
terms in computer science and therefore, creating a type of
artificial intelligence in systems.

2.5 Coverage
The term coverage in software testing indicates a measure
which describes the proportion of the SUT that is actually
getting tested during a testing process. Usually it is a num-
ber (percentage), pointing the ratio of the SUT that was
covered by the set of tests applied throughout testing, based
on the SUT’s source code. Thus, in most instances, software
testers and developers try to reach test coverage as close to
100% as possible. However, this is not always the case, as
there are instances where the testing interest is focused on
specific parts of the SUT, mainly due to financial and time
constraints in game companies.

Turning to video game testing, games often have higher com-
plexity than other types of software. This is because as with
simulations, the amount of possible states that can arise in
video games is huge. In very big and complex video games
with many states, it is not feasible to cover all possible states
and achieve 100% coverage.

Lastly, we need to make clear that coverage is not a testing
technique or tool. It does not help testers and developers
with finding bugs, errors, or unintended behaviours existing
in the SUT. It is mostly a metric that is used as an indicator
during the testing. However, it consists a useful measure
which can be used in every testing procedure and provide
testers with helpful information.

3. APPROACH
Focusing on our case, in the current project we use a set
of the aforementioned techniques through the Iv4XR frame-
work [63, 65], in order to perform automated testing tasks
on the simplified version of NetHack, called NethackClone.

More specifically, through our work we investigate the com-
bination of agent-based approach and goal-based program-
ming to facilitate automated playtesting in our game. By
utilizing the framework, we create playtesting agents and
assign goals to them which are related to our intended test-

ing tasks. We guide our agents reach their goals by de-
signing tactics and linking them with the goals, while for
navigating in the virtual environment, we make use of the
A∗ search algorithm. Through our research on previous re-
lated studies, it turns out that agent-based approaches are
able to efficiently create and conduct testing tasks in virtual
environments with massive amounts of possible states, like
video games. Moreover, goal-based and tactical program-
ming seem to can be combined effectively with agents in a
system, for the automation of the testing process [58], [82].

We decided on using the Iv4xr framework because it pro-
vides us access to all tools needed for our research, as well
as because we mean to investigate its utility on a different
kind of game, compared to its previous applications, mea-
suring its effectiveness on performing testing tasks and its
ability to generalize for various game styles. The potential
of implementing tactics in the framework allows us to built
our own logic for the agents, instructing them in this way
how to play and test the game, according to the needs of our
study. Although there are agent-oriented programming lan-
guages already existing, such as SARL or 2APL, Iv4xr has
been developed in Java, meaning that it provides users with
more programming freedom, offering all utilities that Java
includes. Iv4xr has already been used for testing on a num-
ber of different games and hence, it has already proved its
potential on creating and performing testing tasks. How-
ever, it is still a challenge for us to efficiently utilize the
framework for our research purposes, constructing and per-
forming automated playtesting tasks on a new type of game
that it has not been tried previously.

Finally, as part of our research, we evaluate our agents’ per-
formance in the framework by conducting experiments on
multiple game levels, measuring specific game factors and
analyzing the obtained results. By collecting and observing
data through the testing processes, our research focus is to
investigate the key-factor challenges related to the automa-
tion of the playtesting process (time, effort and cost).

3.1 Testing Approach
Turning to the game elements on which we focus through
our automated testing process, when performing automated
playtesting, one of the major challenges is to decide on which
parts of the game we intend to test, as well as in what way.

Our goal is to create a balance between an efficient auto-
mated playtesting approach, while keeping the testing tasks
in a doable, for our research, level. In this way, we focus on
carrying out an efficient playtesting process, able to bring
reliable and representative results, while at the same time
we try to limit the effort needed for our research, so it can
be conducted within the available time frame.

Based on these challenges, we concluded with two testing ap-
proaches for our case, which can be performed while playtest-
ing. More specifically, through our research project we in-
tend to :

1. Ensure that a level is solvable, focusing on testing
whether the key-locations or key-items for solving a
level are reachable.

5

2. Interact with every game entity on the map, where
the agent investigates whether objects and/or enemies
react as intended, when an interaction between them
and the player takes place, during gameplay.

Levels in NethackClone are randomly generated, therefore
we need a way to ensure that each level is playable and can
be successfully completed. This is the purpose our first test
serves. Carrying out the first test implies not only that key-
items and locations are reachable (such as stairs, which lead
to the next level), but also that there is a reasonable balance
for the entities placed on the map. For example, we need to
ensure that there are not too many monsters in a level, or
that there are enough health items which the agent can use
in order to stay alive, or even to make sure that there is at
least one weapon item in each level, so the agent can collect
and equip it, instead of attacking with its bare hands. If our
agent is able to move on at the next level, then the level can
be considered as solvable.

Note that since the game runs in endless mode, we apply our
testing approach until the avatar reaches the fifth level (first
boss). Since the game difficulty does not gradually increase
over the levels, we presume that as long as our agent is able
to pass through the fifth level and the first boss, then it will
be also able to continue playing the next levels, based on the
same goals and behaviour.

The second test aims to ensure that when an item or en-
tity is generated and randomly placed on the map, it reacts
as intended when the agent interacts with it. For example,
a monster that is unable to attack the player when there is
contact between them, or it cannot die, is an unintended be-
haviour of the game. Similarly, a health item which restores
zero, or negative amount of life points consists a malfunction
of the game. Additionally, interacting with every randomly
placed item in a level, means that the agent has to travel all
over the map in order to reach items. In this way, we ensure
the accessibility not only for every item, but also for a big
proportion of the walkable locations in a level.

Alongside to the two main test tasks we presented above,
we also perform a series of additional tests, while our agent
performs its main testing tasks. These tests are related
to the interactions between the agent and the game enti-
ties/objects. More specifically, the additional tests we per-
form are:

• Checking whether the attack damage taken from a
monster is correct, based on the monster’s attack dam-
age. Monsters attack for two (2) life points, while
bosses for five (5) life points. It is also possible more
than one monsters to attack the players at the same
time.

• Checking whether the attack damage dealt to a mon-
ster is correct, based on the attack damage of the
equipped weapon.

• Checking whether the weapons have a sensible amount
of attack damage. This means that a weapon cannot
have zero, or negative amount of attack damage.

• Checking whether the health items have a sensible
amount of restoring life points. This means that every
health item cannot restore zero, or a negative amount
of life points.

• Checking whether the amount of the collected gold is
sensible. This means that when gold is collected, its
amount cannot be zero, or a negative number.

3.2 Research Questions
Our research on similar to our project fields, as well as on
previous and related studies, informed us about the available
methods and tools in the area of automated video game test-
ing. It also indicated the absence of a testing tool which is
able to generalize for various games, game styles and envi-
ronments. In our study, we want to apply our testing ap-
proach through Iv4xr, in order to investigate whether and
to what extend the framework is capable of testing a type
of game that it has not tried before. In our experiments,
NethackClone represents this video game type.

In order to be able to form our research question, we stated
an initial hypothesis which needs to be tested first:

H1: Iv4XR framework is able to efficiently combine agent-
based approach with goal-based programming for per-
forming automated playtesting in video games.

By proving our initial hypothesis true, we ensure that our
approach for automated video game testing through the
framework is feasible and therefore, we are able to proceed
with our research.

After our initial hypothesis, we state our research question,
describing the goal of our study, which is to investigate:

RQ1: How well does the Iv4XR framework perform when
applying our approach for automatically conducting test-
ing tasks in the NethackClone game?

Since Iv4xr is a generic framework, it does not provide a
fully-implemented interface for the target SUT (this would
be impossible), which implies that developers and testers
have to initially invest some effort to build the interface be-
tween the framework and the SUT. Our need to evaluate
our system after we create it, aided us to come up with
an additional research question, as a secondary goal of our
research:

RQ2: Is the effort needed to integrate Iv4XR for automat-
ically testing NethackClone reasonable?

Answering this question implies the inspection of various
metrics in the resulting code, such as the number of code
lines, the total complexity, the adjustability of the frame-
work, its coverage on the SUT, its performance and the
amount of hours spent in building the interface.

6

3.2.1 Research Question Contribution
Through our research project, our first intention is to prove
our initial hypothesis true. In this way, we ensure that our
research is feasible and able to bring results which we can
observe and evaluate. In case that our initial hypothesis is
false, then we are not able to proceed with the research and
answer our research questions.

RQ1 will help us understand in what extend the approach
and the testing tasks we decided on were successfully per-
formed, as well as whether our system was able to bring
results which we can investigate and further evaluate in our
study. Answering RQ1 will provide us with insight not only
about the performance of the framework, but also for the
quality of the logic we implemented.

Through RQ2 we will try to investigate whether the ef-
fort and the time we invested on the framework for testing
NethackClone was worthy. As in RQ1, the evaluation of our
results also plays an important role in RQ2. However, there
are various factors we need to take into account in order
to provide a complete answer to this question. For exam-
ple, a big number of code lines may seem a negative aspect
for the system, but if this can be achieved within a small
amount of working hours, or if it provides the system with
high adjustability, then it may be worthy to invest in it.

3.3 Evaluation Criteria
Besides the information our agent provides us with, the over-
all performance of the system is measured based on a few
additional factors. This happens because the correctness of
an agent’s feedback does not ensure that the system is able
to test the game functionality. For example, an indication
that an agent is unable to solve a level, does not mean that
the level itself is unsolvable. There might be cases where
our playtesting logic is wrong and a human player would be
able to easily solve the level where our agent failed. For this
reason, we aim to evaluate our system based on the following
criteria:

• The execution time of the test cases. Through this we
can investigate both total and average time each test
needs to complete.

• The success goal ratio our agent achieved. This implies
out of the total executions of test cases, how many
times the agent was able to successfully reach the as-
signed goals and complete the level, without dying or
getting stuck.

• The ratio of correct verdicts provided by the agent.
This means out of the total number of the executed
tests, how many reported an actual (absence of) issue
in the SUT.

• The total coverage our system performed on the SUT
during the testing process. This is usually a number
(proportion), indicating out of the whole SUT, how
many (and which) parts of it we were able to test
through the testing tasks we performed.

In addition to the evaluation criteria, we are also planning
to partly take into account the game statistics, when we ob-

serve interesting facts, for specific testing tasks. The health
levels through the time, or the number of steps performed,
would be interesting stats when our agent tries to solve a
level, or a sequence of levels, which can be helpful for the
evaluation of the system’s performance. For instance, an
agent which is able to complete a task in a level with only 10
steps, is probably more efficient than one who needs 50 steps
for the same task, in the same level. There are game stats
though, which are not informative for our research scope
and we are not planning to use them at all (e.g. the gold
collected during gameplay).

4. RELATED WORK
In this section we focus on previous work and related lit-
erature in the field of automated software and video game
testing. Various testing methods and tools are presented in
this part, as well as the framework we intend to use for our
research. But before we dig into these studies, we first need
to discuss the most essential testing methods mentioned in
the literature. We will briefly describe each of these before
we move on to their applications in testing processes.

4.1 Existing Testing Techniques
White/Black Box Testing: The terms do not refer to a
specific testing technique, but rather to two broad classes of
testing, which include several processes.

White box testing is a software testing class, which focuses
on how the software under test (SUT) works internally [14].
The tester chooses inputs for the SUT and determines the
expected outputs. In this category, the tester has direct
access to the source code of the SUT, so is able to create
and test specific cases by altering the software parameters.
White box testing can be a complex method, but also can
thoroughly test a software by covering various control paths
in the source code.

Black box testing is a method where the source code of the
SUT is unknown for the tester [14]. In this category, the
tester is only able to observe the outputs of the SUT, in re-
sponse to the selected inputs and adjustments through the
software UI. In order for a tester to create a test case through
black box testing, the SUT must be clearly specified, other-
wise this task can be extremely difficult.

For a finer testing process, it is important for the tester to
combine both of these techniques. This combination is often
called gray box testing.

Random Testing is a testing technique which uses random
generated inputs to test the SUT [62]. In order to confirm
or reject a failure in the SUT, output results are compared
against the software specifications [27]. Random testing is
a pretty fast method, able to generate a big amount of test
cases in just a few seconds [37]. This technique works well for
simple programs. However, there may be inputs that have
relatively low probability to be generated and are often not
covered [50].

Search-based Testing is a technique which transforms the
testing task into a search, or even an optimization problem,
e.g. to maximize coverage with least amount of test cases.
It applies meta-heuristic searching techniques, usually a ge-

7

netic algorithm, in order to solve the problem [17]. Search
based testing can belong in both white and black box test-
ing classes. In software testing, it is mostly used for finding
bugs in programs through automated test case generation,
minimization and prioritization.

Model-based Testing is a method for automatically gener-
ating test cases through model artifacts, expressed typically
as labeled transition systems [29]. The automation of this
approach depends on three key elements: (i) a model, which
is used to describe the behavior of the SUT, (ii) a test gen-
eration algorithm which is able to specify the testing crite-
ria and (iii) a tool that provides a suitable framework for
performing the tests [31]. Models in this method are also
used to represent the testing strategies and the testing en-
vironment [43]. Model based testing is a black box testing
method, since test suites are derived from the designed mod-
els and not from the SUT’s source code. The main difficulty
of applying this technique is the need to construct and main-
tain a model, which is costly. In addition, there are more
difficulties when using model-based testing, since it needs
prior knowledge in order to apply it, such as the modeling
language, the coverage criteria, the output format, etc.

Combinatorial Testing refers to the technique which aims
in designing test cases for a SUT, by combining input pa-
rameters [79]. For each parameter x, a set Ix of input values
representing it is chosen. A vector of input values such that
each parameter x has exactly one value from its Ix assigned
to it, represents a test case. All generated test cases form
a test suite for the SUT. What makes combinatorial testing
effective is that it can balance between eagerly combining
parameters and creating diversity among the possible com-
binations, which can dramatically reduce the total number
of combinations, while covering a big proportion of possible
failures in the system.

Scenario-based Testing makes use of hypothetical scenar-
ios, which focus on principal objectives and requirements
of the SUT, enabling the user to test the system based on
them. Results derived from scenario based testing are usu-
ally stored as pairs of scenario-outcomes, so they can be eval-
uated in an efficient way. Scenarios do not correspond to tra-
ditional test cases, since the latter are single steps whereas
scenarios cover a set of steps.

Agent-based Testing: In computer science, the term agent
describes a wide range of programs created to act for a user
or another program in a virtual environment, in a relation-
ship of agency, which means to provide services [13]. During
this process, an agent has the authority to make decisions
related to its moves and actions in the environment.

Goal-based agents act depending on goals, which the de-
veloper makes clear for them in advance, as well as tac-
tics, which is a set of actions an agent performs to reach a
goal. Agents are able to evaluate their performance based
on rewards or penalties they collect during their action. In
most cases, an agent is trying to maximise the collected re-
ward during a session, by performing appropriate actions
and avoiding “bad” moves which lead to penalties. However,
this is not always the case, since an agent may choose to
‘sacrifice’ one reward in order to reach another, higher one.

Agent based testing is defined as the application of agents
(e.g., software agents, intelligent agents, autonomous agents,
multi-agent systems) to software testing problems by tack-
ling and automating complex testing tasks [13].

Agent based testing is fast and seems to work properly in
cases where the goals and tactics have been defined properly
during the programming phase. During playtesting, agents
can be controlled by users or be completely autonomous.
Moreover, multiple agents are able to exist in the same en-
vironment, having the same goals and addressing the same
problem. In this case, they are able to interact with each
other, or even exchange information when needed. Hence,
agents are capable of playtesting a game, collecting data and
providing feedback in a few minutes. They can also try to
mimic the same decisions multiple times in order to generate
statistically significant results. This task would take days to
complete by a human tester.

Regression Testing is not an independent testing tech-
nique, but it represents a sub-level of testing. This ap-
proach is performed after each modification in the SUT’s
components or parameters, in order to ensure that the ad-
justments did not introduce any additional failures in the
system, or unintended behaviours [49]. During this process,
there are no new testing cases created. Already existed test
cases are stored in a database and are selected, prioritized
and executed every time regression testing is applied.

4.2 Automated Testing
Testing has become an essential part of modern software
development, addressing the challenge of ensuring the ro-
bustness of a program before it is released on the market, or
used for professional purposes in a company. Automating
the testing process saves important time and money for the
company, as well as a lot of effort for the software developers
and testers.

In 1999, E. Dusting et al. [32] published a book in an at-
tempt to introduce the automated software testing task to
the public. In their book, they try to answer “What is Auto-
mated Testing?”by describing the background in automating
the testing processes and how automation was created and
evolved through the past years, in software testing. They
also focus on why automated testing has become necessary
for modern software and presented some tools for perform-
ing automated testing and try to evaluate their performance.
Furthermore, they described the way automated testing is
integrated into a project and the challenges of this task, end-
ing with reviewing the test execution processes they referred
to. 17 years later, another book written by P. Ammann et
al. [18] addressed the same subject of software testing, this
time from a more modern scope, as a practical engineering
activity. In their work, they define software testing as “the
process of applying a few well-defined, general-purpose test
criteria to a structure or model of the software”. The book
tries to describe the coverage criteria of a testing process as
well as their application in practice.

N. Alshahwan et al. [17] introduced 3 algorithms and a tool
named SWAT, which applies Search based testing for auto-
mated web application testing. Their algorithms enhanced
the traditional search based techniques by 54% in terms of

8

branch coverage and succeeded in 30% reduction in testing
effort. They applied their tool on 6 real world web appli-
cations and evaluated them as separate empirical studies.
The results derived from the evaluation provide evidence to
support the claim that each enhancement improved branch
coverage for all of the 6 applications under test. P. McMinn
conducted a survey on search based software testing for both
black and white box approaches [50]. His paper surveyed
the application of meta-heuristic search techniques for soft-
ware test data generation, by conducting experiments on
real world examples drawn from industry. Results showed
that this method does not seem to work and this area is still
facing serious problems.

Another systematic review performed by A.C. Dias Neto et
al. [31] on model based testing approaches. In their survey,
they focus on 78 technical papers related to model based
testing (MBT), showing in which cases MBT is applied,
its main characteristics and limitations. The comparison
between the approaches was performed on various criteria,
such as level of automation, testing coverage, complexity,
support tools etc. Their results revealed the most impor-
tant issues on automation of MBT.

Besides agents, another technique which seems to gain at-
tention recently in testing, is reinforcement learning. A.
I. Esparcia-Alcazar et al. [33] present TESTAR, an open
source tool for automated software testing, using Q-learning
strategies. Q-learning is a reinforcement learning algorithm
that does not require a model of the environment. It handles
problems with stochastic transitions and rewards, without
requiring adaptations. TESTAR generates test sequences
while running, based only on information derived from the
system’s GUI (Graphical User Interface). Due to Q-learning,
TESTAR has a unique way to automatically select which
actions to test by finding the most suitable algorithm for
each task. In their research, authors evaluate Q-learning
as a meta-heuristic for action selection, by conducting ex-
periments and comparing it with random selection which is
used as baseline. For their experiments, they tested 2 appli-
cations; MS Powerpoint, a desktop application and Odoo, a
web-based application. Results proved that efficient action
selection though Q-learning can only be achieved provided
that key parameters of the algorithm have been properly
selected in advance.

There are additional tools available, developed to automate
the testing process for object-oriented software. EvoSuite
[35], is a tool that automatically generates test cases for
classes written in Java code. A novel, hybrid approach has
been applied to this tool, which generates and optimizes test
suites, aiming to satisfy a predefined coverage criterion. It
supports branch coverage and mutation testing as test ob-
jectives, while it performs higher structural coverage and an
efficient selection of assertions. One more testing tool cre-
ated to test java classes is T3. This tool is mostly random
based, which makes it fast, able to generate up to thou-
sands of test sequences on the fly, in just a few seconds. For
the study in [62], T3 was adapted to become budget aware,
meaning that a time limit is set for testing a given target
class. When given a target, the tool splits it into multiple
test goals and tries to divide the given time budget over
these goals. Evaluation on this tool proved that T3 can de-

liver decent coverage on real life target classes and perform
even better by customizing it to its given target class. Last,
CUTE and jCUTE [68] are 2 similar testing tools, for sys-
tematically and automatically testing software developed in
C and Java, respectively. Both tools utilize concolic testing,
a hybrid technique which performs symbolic and concrete
execution at the same time. CUTE is meant for sequential
C programs including pointers, while jCUTE for concurrent
Java programs. The tools were tested on 2 case studies and
were able to successfully spot failures in the systems.

4.3 Videogame Testing
While video games were becoming more and more popu-
lar through the years, the software testing procedure was
adapted for video games, too. Today, game testing is a ma-
jor part of game development, with a primary goal to detect
and document any possible defects or issues related to the
functionality, performance, compatibility, consistency, com-
pleteness and will reveal potential programming bugs [49,
47].

There have been studies conducted in the past, trying to
investigate games in more depth, propose a complete defini-
tion and describe the main features a game consists of [78].
Similar studies have tried to analyze and collect information
about games, by studying the games themselves. A related
research discusses seven strategies for extracting informa-
tion from games [55]. The study proved that information
derived through these strategies relates to playtest metrics,
however it differs. A chapter in the book about game de-
sign workshop [36] talks about the importance of playtest-
ing in modern games, how to perform it properly, its chal-
lenges and contribution in game development. Moving to
automated testing, C. Buhl and F. Gareeboo, by describing
their work on developing a game, explained why automat-
ing the game testing procedure was a significantly assisted
video game development [25]. In their document, besides
the game development process, they also describe how they
implemented automated testing and present positive results
after evaluating their work on key metrics.

However game testing is not a trivial task. There are various
factors that can affect the process and turn it into a complex
and demanding endeavour. These often include the kind of
the game which is under test, the world or level, the game
mode etc. Another major challenge of automated game test-
ing is the navigation in the virtual environment. The ma-
jority of the video games require an entity to move in the
virtual world, explore and interact with the game elements.
M. H. Overmars presents a technique that can efficiently
deal with path planning for games in highly complicated
scenes [57]. This technique combines automatic prepossess-
ing on the static part of the scene and adaptation to dynamic
changes during path execution. P. Yap focuses on grid-based
path-finding and discusses alternative representations of the
grid, depending on the vertices and the edges of the grid
tiles [80]. He talks about normal tiles, octicles and hexag-
onal tiles and introduces a new approach, the tex grid (a
tiled hex). I.S.W.B. Prasetya et al. conducted a study on
Navigation and Exploration in 3D-Game Automated Play
Testing [66]. In their research, they focus on the part of
automated testing algorithms that deals with navigation in
the virtual world. The paper discusses geometry and graph-

9

based path finding concepts, as well as how these concepts
can be integrated in game testing in order to deal with the
automated navigation problem. Finally, in their paper, au-
thors explain the implementation of the proposed approach.

4.3.1 Procedural Personas
Turning to the automated game testing approaches, a pop-
ular method for performing automated playtesting is by
creating player personas and letting them evolve through
playing. More specifically, through this technique, an auto-
mated playtesting algorithm is created, which tries to imi-
tate human behaviour, play-styles and reactions, based on
real human data. Behaviours may vary between different
algorithms, depending on the target behaviour, the data the
algorithm was trained on, the kind of the game, the goals,
etc. We refer to this technique as Procedural Personas or
Imitation learning. L. Mugrai developed different proce-
dural personas for Match-3, a matching tile game, aiming
to approximate various human play-styles to create an au-
tomated testing system [53]. In addition, C.Holmgard et
al. used agents to explore how procedural personas evolve
through priory defined objectives, in order to create decision
making styles [40]. They tried the created agents on playing
a test-bed game and compared them to agents trained via
Q-learning as well as a number of baseline agents. They con-
cluded that their agents can express human decision mak-
ing styles, being more generalizable and versatile than Q-
learning and hand-crafted agents.

I. Borovikov et al. attempted to train artificial agents using
imitation learning in an open-world video game [22]. They
proved that by treating the game as a POMDP (Partially
Observed Markov Decision Process) with low-dimensional
observations provides important advantages in training sim-
pler Markov models. They tested their approach on a propri-
etary open-world first person shooter game, which resulted
in an agent behaving similarly to a human player with min-
imal training costs. In addition, J. Ortega et al. conducted
a study where they describe a method for generating game
character controllers that mimic particular human playing
styles [56]. Similarity in playing style was measured through
an evaluation framework that compares play traces between
human and AI players. The method is based on neuroevolu-
tion. For their study, they used the Super Mario Bros plat-
form game, however they stated that the method generalizes
for games with character movement in space. Similarly, C.
Holmgard et al. described a method for generative player
modeling through procedural personas and its application
to the automatic game testing. Procedural personas were
implemented using a variation of Monte Carlo Tree Search
(MCTS), developing the node criteria using evolutionary
computation [39]. They tested their work on MiniDungeons
2 game. Experiments in their paper showed that personas
are capable of pointing different interaction patterns in re-
sponse to game content and can help map out the play-space
afforded by game levels as those are being designed.

A recent research from J. Pfau et al. describes an attempt
for balancing the options available to players in a game via
deep player behaviour modeling [59]. The human player
data were collected from the MMORPG Aion game. Results
derived from the research indicated significant balance differ-
ences in opposing enemy encounters and showed how these

can be regulated. Additional studies on imitation learning
have been conducted, with C. Thurau et al. to present their
idea on applying a Bayesian formulation to create a math-
ematical model of imitation learning [75]. They used this
model in order to deal with the problem of programming
realistic, human-like games characters. Results proved the
model working decently.

J. Harmer et al. [38], presented a deep reinforcement learn-
ing architecture which allows multiple actions to be selected
at every time-step in an efficient manner (multi-action poli-
cies). They used both imitation learning and temporal dif-
ference (TD) reinforcement learning (RL) for their approach.
Their work led to 4x improvement in training time, 2.5x im-
provement in performance over single action selection, while
the agent quickly learned to surpass the capabilities of an
expert. Finally, D. Anghileri presented a thesis describing 2
approaches for improving automated game testing via player
modeling, aiming to the use of the developed player models
for predicting useful metrics of newly created game content
[19]. The approaches were tested on the Match-3 puzzle
game. Results proved that the approaches can more accu-
rately predict the level difficulty. Moreover, both approaches
improved the mean absolute error by 13% and the mean
squared error by approximately 23% when predicting with
linear regression models.

4.3.2 Agent-based Approaches
The studies above make clear that in many cases, agents are
preferred to assist, or carry out the testing process. This
part presents more agent-based approaches related to the
automation of the game testing procedure.

Supporting the autonomous systems, J. J. Meyer et al. [51]
present an overview of BDI (Beliefs, Desires, Intentions)
logics, in an attempt to explain how BDI can be utilized for
practical reasoning. In their paper, authors are describing
DBI’s major challenges and how to choose the appropriate
BDI logic when developing agent-based systems. BDI has
significantly contributed to the improvement of agent devel-
opment, making clear the way tactics work and how we can
build a system based on intelligent agents by implementing
BDI logics. In BDI systems, goals are typically used to rep-
resents desire. S. Paydar et al. in 2010, introduced an agent
based approach of a framework designed for automated test-
ing on web-based systems [58]. For their purposes, they im-
plemented a prototype of a novel, multi-agent framework.
Different agents were designed with specified roles and they
collaborated with each other to perform tests. The goal was
to create an effective and flexible system, able to support
various types of tests and utilize several information sources
related to SUT. The prototype was exposed to a number
of experiments in order to be evaluated, with the results to
be promising, proving the implementation successful. An-
other study from D. Kung in 2004, proposes a testing frame-
work which is based on the BDI model [45]. The framework
employs intelligent, autonomous agents in order to perform
automated testing on web applications.

S. Ariyurek et al. [20] make use of tester agents to automate
video game testing and find defects in a game. Two agent
types are used for this research, synthetic and human-like.
Agents are derived from reinforcement learning and MCTS

10

(Monte Carlo Tree Search). For their research, they com-
pared the success of human-like and synthetic agents in bug
finding and then evaluated the similarity between human-
like agents and human testers. Experiments revealed that
human-like and synthetic agents are able to perform equally
as human testers in bug finding performances, in most cases.
Moreover, by using the proposed multiple greedy-policy in-
verse reinforcement learning (MGP-IRL) algorithm, the hu-
man likeness of agents was increased and the bug finding
performance as well.

Y. Zhao et al. tried to build agents with human-like be-
haviour, aiming to help with game evaluation and balancing
[82]. They measure the human-likeness of agents using skill
and style as metrics and report 4 case studies for creating
agents (2 for game testing and 2 for game playing), revealing
the challenges of transferring the learning potential from the
benchmark environments to target ones. I. Borovikov et al.
experimented on NPC (Non-Player Character) behaviours
creation by training an agent in the target environment us-
ing imitation learning with a human in the loop [24]. F.D.M.
Silva et al. present an approach using automated agents to
explore the game space and answer questions posed by the
designers [69]. Instead of interacting with the actual game,
their agent recreates the bare bone mechanics of the game
as a separate system and acts in it. The created agent per-
forms significantly faster than human testers. The approach
was tested on Sims Mobile game and results indicated design
changes that resulted in improved player experience.

Another study from I. Borovikov et al. presented a novel ap-
proach, which is able to scale up AI NPCs in modern open-
world multiplayer games, based on imitation learning [23].
In order to define the NPC behaviour, they trained a deep
neural network. They embed the implicit knowledge of the
basic gameplay rules which are hard to learn via self-play or
infer from a few demonstrations, but are straightforward to
capture with simple programmed logic. Finally, they proved
that the method is computationally fast and delivers promis-
ing results in a game production cycle. S. Stahlke et al. [73]
present a framework they developed in order to help the au-
tomation of the playtesting task. Their approach is agent-
based and is intended to perform simulated testing sessions
with agents driven by artificial intelligence (AI). They try to
imitate the navigation of human players and adopt features
such as wander, explore, become lost, etc. The goal of this
study is to create agents who are able to identify basic is-
sues with a game’s world and level design, enabling informed
iteration earlier in the development process.

N. Tziortziotis et al. conducted research on the Ms. Pac-
Man game, presenting their approach to face the problem of
using reinforcement learning for designing intelligent agents
in highly dynamic environments [77]. They focus their re-
search on the space description, which seems to be a key-
element for designing efficient RL agents. The created agent
was evaluated through some experiments, demonstrating the
ability and the robustness of the agent to reach optimal so-
lutions in an efficient and rapid way. Last, a master thesis
project from C. Huchler [42] describes the implementation
of a MCTS agent for the Ticket to Ride game. Through her
study, the researcher concludes that Monte-Carlo methods
seem to work adequately in Ticket to Ride, as well as that

progressive bias, progressive non-pruning and the combina-
tion of both can enhance MCTS.

4.3.3 Reinforcement Learning
Alongside agents, another common approach for automated
playtesting in video games is to combine Reinforcement learn-
ing with agent-based methods. Reinforcement learning (RL)
seems to perform well in playing video games, as it is able to
learn and adapt its behaviour during gameplay, improving
its performance through the iterations of the game sessions.

A research from I. Zarembo in 2019, attempted to investi-
gate various AI applications for automated video game test-
ing [81]. The study serves as a reference for starters in the
field of automated game testing through AI. The paper ex-
plores the most promising and up-to-date research on AI
application for this area. However, video game playtesting
technique performance and efficiency was out of scope of the
paper.

In 2009, an AI competition was run on a version of Super
Mario Bros game [76]. The main objective of the compe-
tition was to develop controllers that could play the game.
Without regarding points, participants focused on complet-
ing as many levels as possible, as fast as possible. Among
other participants, the winner of the competition used RL
methods in combination with the A∗ algorithm, turning the
problem into a path optimization problem.

A master thesis from V. Sriram [72] presents a way for auto-
mated playtesting in 2D platformer levels by combining re-
inforcement learning and curriculum learning. This method
aims at QA and game balancing. For this project, an AI
agent was trained on various platformer levels following a
curriculum and then is used to playtest newly-created lev-
els. The study delivered a reliable APT (Automated Play-
Testing) tool which is able to identify areas of the level that
need design improvements and further gameplay balancing.

S. Agarwal et al. tried to address the challenge of analyzing
and collecting data, while playtesting through AI [16]. Their
research was focused on 2D side-scrolling games. Their ap-
proach proposed to visually analyze the playtesting data, in
order for the insights about the game’s level design to derive
through visualizations. For the purposes of the study, com-
puter agents were developed and trained through AI. Next,
agents called to play the Sonic the Hedgehog 2 video game
and their in-game trajectories were saved, illustrated. Fi-
nally, the navigation behavior of the agents across training
iterations was studied through aggregated trajectory visual-
ization.

Another paper from J. G. Kormelink investigates explo-
ration methods in the game Bomberman [44]. The main
focus here is to find out which exploration method yields
the best performance. The paper introduces two novel ex-
ploration strategies: Error-Driven-ε and Interval-Q. Both
approaches base their behaviour on the temporal difference
error of Q-learning. The methods’ performance was com-
pared to performances of five existing methods. Results
proved that methods which combine exploration with ex-
ploitation perform much better than methods which only se-
lect exploration or exploitation actions. Moreover, outcomes

11

showed that Max-Boltzmann exploration performs the best,
while the Error-Driven-ε exploration strategy also performs
very well, but suffers from an unstable learning behavior.

A research conducted by Deepmind in 2013, presented a
completely novel model, that uses reinforcement learning in
order to successfully learn control policies directly from high-
dimensional sensory input [52]. It is about a CNN (Convolu-
tional Neural Network), trained with a variant of Q-learning.
The model gets raw pixels as input and its output is a value
function estimating future rewards. The model was applied
to seven Atari 2600 games from the Arcade Learning Envi-
ronment, with no adjustment of the architecture or learn-
ing algorithm. Results were promising, indicating that the
model was able to outperform all previous approaches on six
of the games and surpasses a human expert on three of them.
G. Cuccu et al. [28] also attempted to play Atari games
by using reinforcement learning. They proposed a method
for learning policies and compact state representations sepa-
rately, but simultaneously for policy approximation in rein-
forcement learning. In their approach, small neural networks
of about 6 to 18 neurons were evolved to decide actions based
on the encoded observations. Their system was tested on a
selection of Atari games, being able to achieve high scores in
Qbert, one of the hardest games for its requirement of strate-
gic planning. Overall, results on each game differ depending
on the hyperparameter setup, with the system performing
better in some of them and worse in others. However, deep
reinforcement learning has proved to be prone to overfitting,
with traditional benchmarks, such as Atari 2600 to be able
to exacerbate this problem. J. Booth presents PPO Dash,
an improvement of the PPO (Proximal Policy Optimization)
algorithm, aiming to create an algorithm which generalizes
for various games [21]. The algorithm was tested through
the Obstacle Tower Challenge, a competition which uses a
special version of the Obstacle Tower Environment, where
participants were able to apply and test their trained algo-
rithms. The goal of the challenge was the trained algorithm
to reach the highest possible level. Results proved that PPO
Dash performs well on tasks without specifically addressing
sparse reward, being a successful improvement of PPO al-
gorithm.

J. Pfau et al. introduced ICARUS, a framework for au-
tonomous video game playing, testing and bug reporting,
for adventure games [60]. Through their paper, they de-
scribe its design, practical implementation and its use in
game development industry projects. The tool is based on a
reinforcement learning approach, combining volatile short-
term memory and persistent long-term memory that spans
across distinct game iterations. The system also makes use
of heuristics that reduce the search space and the possibility
to employ pre-defined situation-dependent action choices.
The tool proved to be able to outperform professional hu-
man testers in terms of time.

Board games is another gaming field on which reinforcement
learning has been applied for automatically play testing in
it. F. D. M. Silva et al. present two papers on board games,
where they first tried to create four different game-playing
agents that embody different playing styles and used them
to analyze the Ticket to Ride board game, automatically
[30]. The automated analysis revealed two classes of failure

states, where the agents and states were not covered by the
game rules. We can refer to this situation as ”finding bugs
in the rules”. In the second paper, authors explore how AI
can be useful in the game design and development process of
a modern board game [30]. They use the same board game
for their research, employing an AI algorithm to play a huge
amount of matches, collect data and analyze several features
of the gameplay and the game board. Results also revealed
loopholes in the game’s rules and pointed towards trends in
how the game is played.

4.3.4 Additional Approaches
Moving to additional game testing-related studies, A. M.
Smith et al. present BIPED, a system for supporting game
designers through game-sketching [70]. The tool is able to
give designers access to insight derived from both human
and machine play testing. When a game is being developed
using BIPED, a designer specifies the game’s mechanics and
maps them to a set of boardgame-like primitives. The tools
can interactively play the created games on a computer, as
well as automatically analyze them, giving designers two
complementary sources of design backtalk.

Another approach proposed by B. Chan et al. [26], uses
evolutionary learning of behavior to improve testing of com-
mercial computer games. This method develops measures
on how near a sequence of game states comes to the un-
wanted behavior. Measures are used within the fitness func-
tion, allowing to find action sequences that produce possi-
ble unwanted behaviors. The method was tested on FIFA-
99 game, where it succeeded in detecting an unwanted be-
haviour of scoring a goal, proving that it is able to find such
action sequences, allowing for an easy reproduction of criti-
cal situations and improvements to the tested game.

S. Iftikhar et al. attempted to face the challenge of auto-
mated black box functional testing of platform games, using
the model-based testing approach [43]. In their study, au-
thors describe their methodology, as well as they provide
guidelines for modeling testable platform games. The game
structure is represented through domain modeling, while for
the behavioral modeling UML state machines were used.
The approach was evaluated on two case studies, one for an
open source implementation of the Mario Bros and one for
an endless runner game. The system was able to identify
major faults in the Mario Bros implementation. Results in-
dicated that the proposed approach is practical and can be
applied successfully on industrial games.

An additional study from A. Zool et al., present how active
learning techniques can formalize and automate a subset of
playtesting goals, aiming in automating the testing process
and reducing its cost [83]. The main focus of the research
is on the low-level parameter tuning required to balance a
game once the mechanics have been chosen. The approach
was applied in a case study on a shooting game, proving the
efficacy of active learning to reduce the amount of playtest-
ing needed to choose the optimal set of game parameters.

Furthermore, H. Hu et al. present a solution for execut-
ing automatic functional testing of Unity games in Android
platform [41]. This approach explores the coordinate sys-
tems of the Android platform and Unity, aiming to address

12

the component-based testing with less manual cost.

Last, F. Southey et al. present a semi-automated method for
gameplay analysis in an attempt to support game designers.
Their approach collects and summarizes gameplay informa-
tion from the game engine, so designers can quickly evaluate
the behaviour to make decisions [71]. The study introduces a
reusable tool, SAGA-ML (Semi-Automated Gameplay Anal-
ysis by Machine Learning), that can repeatedly choose sce-
narios to examine, run them through the game engine and
then construct concise and informative summaries of the en-
gine’s behaviour for designers. New scenarios are chosen
based on the past scenarios aiming to verify uncertain con-
clusions and improve the analysis. Human judgement is es-
sential for this semi-automatic approach, since they need to
examine the summaries produced by the analyzer. SAGA-
ML is based on active learning and has been used to evalu-
ate Electronic Arts’ FIFA’99 soccer game and FIFA 2004,
with only minor adjustments. The tool was able to uncover
interesting anomalies in gameplay. A semi-automated ap-
proach was also introduced by E. J. Powley et al. [61],
this time focusing on level design for mobile games. In
this study, Gamika iOS application is described, which can
give feedback on the playability of levels, through automated
playtesting. The tool is also able to auto fine-tune the pa-
rameters of the tested games. Evaluation performed on the
tool, showed that Gamika performs differently, depending
on which game is under testing. However it has potential
in assisting semi-automated game design, where it can fine-
tune game mechanics in order to find suitable modifications
of levels, while human playtesters test the levels.

4.4 Iv4XR: A Tactical BDI Agent Framework
Iv4XR is a framework developed for testing purposes, aim-
ing to face the need of performing automated testing in
Extended Reality (XR) systems. The name Iv4XR stands
for “Intelligent Verification/Validation for Extended Reality
Based Systems”. Extended reality systems are advanced in-
teractive systems such as Virtual Reality (VR) and Aug-
mented Reality (AR) systems.

The framework is designed for programming intelligent, au-
tonomous agents which are controlled through tactical pro-
gramming and is meant for performing testing tasks in video
games. An agent-based testing approach offers an alterna-
tive, as agents’ goal driven planning, adaptability and rea-
soning ability, can provide an extra edge towards effective
navigation in complex interaction space [64, 67]. Given a
game, one or more test agents can be deployed through the
framework to test it. This means that multi-agency is also
supported by the framework. Any agent implemented with
the framework needs a state to be attached to it. To control
a game, the agent interacts with it through a proxy: an ab-
stract interface called Environment [67]. Environment is es-
sential to make Iv4xr independent from the technology used
by the game. For each new game under testing, program-
mers will have to implement a new instance of Environment
for it. However, the effort needed for this task is nominal and
once the environment is implemented, it is reusable and easy
to access. Through the framework, agents are able to control
in-game player characters in the environment. This requires
from the environment to provide at least one method for an
agent to send a command to the character it controls, as well

as another one to obtain information on what this character
currently observes [67]. An illustrated example of a typical
agent deployment through Iv4xr is presented in Figure 1.

Another feature of the framework is that along with agents,
it also supports goal-based programming. In order to act
properly, an agent needs a goal to be given. A goal G is a
predicate over some domain, for example, U. When given a
goal, the agent will seek to find a proposal

x ∈ U

that satisfies G. If such an x is found, the goal is solved and
is detached from the agent.

During a testing process, an agent can be given a set of
goals. The framework iterates over sense-reason-act cycles
until it has no goal left to achieve, or it runs out of com-
puting budget. Budget is a parameter specifying “how long
the agent should persist on pursuing its current goal” [63].
Executing a tactic consumes some budget. Consequently, a
goal will automatically fail when the budget variable reaches
0. Budget is essential in cases when an agent deals with a
goal structure including multiple goals and needs to decide
how to divide the budget over different goals.

When created, agents are completely inactive; they have no
behavior, so they do not know how to reach even a simple
goal. When giving a goal to an agent, it is required to be
accompanied by a “tactic” that acts as a solver. To reach
a specified goal, the agent performs actions, (e.g. to move
the agent’s in-game character to a certain direction, or to
make the character interact with another entity). At each
cycle one action is selected for execution [64]. Rather than
using a single action, the framework supports the implemen-
tation of tactics. A tactic is a hierarchical set of ‘actions’,
where action is “an effectual and guarded function over the
agent state” [63]. Tactics are also structured hierarchically
to define a goal-achieving strategy. When a new goal is de-
clared, programmers need to implement the tactics on their
own. However, the framework settles the underlying infras-
tructure, such as tactic execution and supports inter-agent
communication by itself, so developers do not have to worry
about that.

When an agent works on a goal g, a tactic T will commit
to it. The agent will apply T repeatedly over multiple ex-
ecution cycles, until goal g is achieved, or the budget set
for g exceeds. Thus, we can say that Iv4XR agents exe-
cute their tactics in cycles. At each cycle, the agent obtains
an observation of the game’s state, reasons about it in or-
der to decide which action will bring it closer to its current
goal and performs the chosen action next. An agent exe-
cutes only one action per cycle, so it can be responsive to
changes in the environment’s state. The game itself runs
autonomously. Nevertheless, it may have in-game entities
that independently influence the game state during a cycle
[67].

Therefore, a deliberation cycle in Ix4XR, consists of the
following steps:

• Sensing , where the agent senses its environment

13

Figure 4: Deployment of agents through the Iv4xr frame-
work. Ai are agents, controlling the game under test (Real
Environment) through an interface called Environment. A
communication node allows information exchange between
connected agents. Reprinted from [63].

• Reasoning , where it reasons which is the best action
to perform next

• Execution and Resolution , where it performs the
decided action and solves, or gets closer to the assigned
goal

Tactical programming is a novel asset of the framework, pro-
viding users with a robust, abstract way to control agents’
behavior. This supports the reasoning-based behaviour of
the agents that makes the framework suitable for develop-
ing testing tasks. Iv4XR provides a Prolog backend, namely
tuprolog, that an agent can use to do reasoning [64].

The framework features BDI (Belief-Desire-Intention) log-
ics on its agents, while it provides the fluency of a Domain
Specific Language (DSL) [67]. An agent’s belief is the infor-
mation it has in its own state, which includes information
on what it believes to be the current state of the real en-
vironment [63]. Its desire is defined as the goal structure
given to it. In contrast with goal structures used in other
goal-based languages, (e.g. 2APL or GOAL), a goal here is
richly structured, with different nodes expressing different
ways of how a goal could be achieved through its subgoals.

Iv4XR is developed in Java, hence, most of its concepts are
implemented as objects, which can be structured hierarchi-
cally. Compared to dedicated BDI agent-oriented languages,
(e.g. SARL, JASON, 2APL, GOAL), the embedded DSL ap-
proach in Iv4XR means that programmers may be limited
by Java syntax, however, they have access in all advantages
Java offers: rich language features (object orientation, static
type checking, λ-expression, libraries, etc), a whole array of
development tools, integration with other technologies, large
community, etc. [64, 67, 63].

Finally, Iv4XR supports navigation in the virtual world,
hence agents are able to guide themselves towards given lo-
cations. Navigation makes use of the A∗ search algorithm,
for path-finding in the environment. As a proof of concept,
the framework was tested on the Lab Recruits game, a 3D

game intended for testing AI [4]. The case study proved that
even a simple test agent that can navigate within a closed
terrain is able to introduce automation in the field, a feature
that was previously not possible [64].

5. METHODOLOGY & IMPLEMENTATION
The studies described in the previous section indicated that
although the automation of the testing process in video
games is a relatively new domain, there is a lot of inter-
est in this field from companies, researchers, as well as for
individual developers. However, it turns out that this area
lacks an existing, fully-functional, autonomous testing tool,
which can be applied in various video game types and pro-
vide testers with the ability to build and manage their own
testing processes, by using specific testing techniques and
focusing on specified testing goals.

This is what we try to investigate through our research.
By applying our methodology on Iv4XR, we will attempt to
show that the framework is able to generalize the automation
of the testing processes for a category of games that has
never been tried before.

The implementation of our study consists of three separate
projects, that we will attempt to link. The first one is the
Iv4XR project, which is framework we mainly use. Second
one is the NethackClone game, which is the SUT in our
research. The last one is the project we created, namely
NethackCloneTester, which is the main template used for
testing NethackClone through the Iv4xr framework. In this
way, we are able to create or adjust classes for our purposes,
utilizing the library according to our needs, without applying
changes on the actual framework. The three projects were
imported as Maven Projects and were linked through their
Dependencies, so we can convey information and use classes
or methods between projects.

In this section, we introduce our methodology and we thor-
oughly describe the implementation of our system.

5.1 Game Modification
We started the implementation part by focusing on the game
under testing. Before integrating the framework to the game,
we need to adjust specific parts of the game in order to fit
our research needs. Therefore, several modifications were
applied on the initial version of NethackClone, with the most
important ones to be listed below:

• We control the game’s randomness by using a single,
unique seed number for every random generation in the
game. In this way, we are able to recreate the exact
same level by using the same seed number, in order to
compare our results more accurately.

• For each generated level in the game, we store its map
in a 2D array, in order to have access in information
related to the map, anytime during gameplay (Figure
6).

• We included a survival aspect into the game, by de-
ducting one life point when the avatar performs a fixed
amount of moves (-1 life point for every 16 steps).

14

• We added two additional life restoring objects, food
and water, supporting the survival mode.

• We added three counters for collected gold, highest reached
level and number of steps performed respectively, using
them as game statistics (Figure 5).

• We added the option of instant restarting the game,
after game over.

Figure 5: Screenshot of NetHack Clone. Game statistics are
shown when player dies.

Figure 6: Example of a map stored in a 2D array, for a
random level. Symbols represent the game objects, as in
the actual game.

In the current version of NethackClone we use for our study,
we list all items which can be found in a level, accompanied
by their representing character:

Player (@), Stairs (>), Monster (a), Bow (’)’), Sword (/),
Health Potion (+), Food (*), Water (˜), Gold($). When the
player reaches a boss level, the only enemy in the level is the
Boss Monster (B).

The player is the main avatar the user controls, stairs is
the way to the next level and monsters are the main en-
emies in the game, receiving and dealing damage from/to
the player. The player can attack monsters by using one of
the two weapons, bow or sword, for attacking from distance
or at close range, respectively. The attack damage for each
weapon is randomly assigned when is picked up. There are
three ways for the player to restore life, using health potion,

food, or water objects (each one restores different amount of
life points). Finally, gold can be collected during gameplay,
but there is no further use of this item in the game.

Player and stairs are unique objects in a level, while the
amount of the other game elements is random and differs
between levels. Bosses are also unique in their levels. Later
in our research, we provide extensive statistics about the
amount of randomly generated items, for 10 random lev-
els, in our investigation on the similarity between generated
levels.

The adjustments mentioned above, helped us turn Nethack-
Clone into a more complete, for our research intentions, test-
ing environment. Nevertheless, finding a way to efficiently
transfer each element from the actual game to the frame-
work and create a link between them, was still a challenge
to us.

Every existing element in NethackClone, both unique (the
player, the stairs) and similar ones (health items, weapons,
etc.) had to be matched and linked with corresponding ob-
jects in the framework. In this way, we can implement and
run our tests through the framework, interacting with the
objects placed there, without adjusting the original game
each time.

Looking for a solutions to this challenge, we altered Nethack-
Clone in one more way, by creating a random ID generator at
every class representing game objects in the game. Thus, for
every element created in the game, besides its main features
defined by its class, a unique ID string was also assigned to
it. This allows us to have access to any item in the game
we want, anytime we need it. By assigning unique ID’s to
the objects, we are able to match all game elements with
the framework. Furthermore we can adjust (add, remove or
change), access, or refer to desired items by using the proper
ID. For instance, all monsters in a level may be similar, but
using a monster’s ID allows us to retrieve information about
a specific monster between monsters, such as its exact posi-
tion, current life, attacking damage, etc.

The unique ID’s consist our main way to access every object
in the game, quick and effectively. We talk in more detail
about the possible uses of the objects through their ID’s in
our implementation, later in this section.

5.2 Game Wrapper
After finishing the modifications on NethackClone, we now
have our SUT ready for testing. Next step is to build our
template up by utilizing Iv4xr framework and integrate our
SUT into it, so we can interact with the game through it.

Integration started by creating a wrapper of the actual game,
containing the same objects and interacting in the exact
same way as in the game. The wrapper provides a higher
level interface to observe and control the NethackClone game.
The methodology of creating the wrapper works as follows.

When the game runs for first time, a new level is randomly
generated (based on a few predetermined level generation
rules, such as the creation of walls, rooms, corridors, etc.).
Afterwards, all game elements in the level are generated and

15

placed into it, also randomly. Game wrapper helps us get
each one of these elements by using their ID and create their
representation in the framework.

Iv4xr has a set of main elements which are essential for
the framework and therefore, we need to implement first.
These elements are the agentId, its position and a times-
tamp. Agent Id represents the player as the main character
of the game, playing the role of the testing agent in our
study. Because Iv4xr supports testing in various kinds of
games, it requires 3 dimensional position input. Since our
SUT is a 2D game, we only provide the framework with po-
sition information on x and y axis, while we keep the z-axis
stable at 0. In this way we are able to handle 2D games in
the framework. NethackClone is not a time-depended game,
so there was any kind of time information we could provide
the framework with. For this reason, in our project, the
number of steps our agent performs, plays the role of the
timestamp.

Besides the aforementioned main elements, Iv4xr provides
its users with complete freedom to include in the represen-
tation any additional object existing in the SUT, along with
any possible properties this object may have (objects’ prop-
erties are defined by their class). Thus, we were able to
add in the game wrapper all game elements with their fea-
tures. Each game object added in the framework is referred
as WorldEntity, while its features are the Properties of
the entity. When a WorldEntity is created, it can be added
in the representation as an Element.

Similarly, we also created world entities for the dynamic
structures of the game, which can change during gameplay.
These can be all items that are still on the floor, or the
player’s inventory, where all collected items are stored.

Table 1 below sums up all world entities and their proper-
ties in our representation. Properties’ values can be of any
kind (int, boolean, etc.), depending on what they describe.
ItemTile represents the items placed on the floor of a level.
We notice that ItemTile and Inventory world entities have
no properties, since each item they include is being handled
according to its type. However, as every object placed on the
floor, all items in ItemTile have a position. All weapons are
being handled in the same way no matter their type (Bow
or Sword).

After we created the world entities and added their proper-
ties, we saved the whole representation into a World Object
Model, which in our project we call as wom. We can access
the current wom with all information it includes, anytime,
via the Observe() method, which updates the current wom
and returns it. Iv4xr also has the ability to keep the previ-
ous wom (PreviousWom) stored, in case we need to retrieve
and/or compare information between the current and the
previous state of the game.

5.3 Game Actions
Another very important part of the implementation is mak-
ing the agent interact with the virtual environment, so it
can playtest the SUT. For this purpose, we constructed all
possible actions which can take place in a game play.

WorldEntity Properties

Monster
position, health, attackDamage,
alive, seenPlayer, waitTurn

PlayerStatus

equippedWeaponName, equipped-
WeaponDamage, currentLevel,
health, maxHealth, isAlive, aiming-
WithBow, seedNumber

Stairs position

Weapon
weaponName, attackDamage,
amount

HealthPotion restoreAmount, amount
Food restoreAmount, amount
Water restoreAmount, amount
Gold amount
ItemTile -
Inventory -

Table 1: All WorldEntities created in NethackClone Wrap-
per, along with their assigned Properties.

Since our game under testing can be played by users through
the keyboard, we created all actions by utilizing KeyEvent.
Key event allows us to virtually construct and call any key
that can be pressed through the keyboard, making the game
act as the key was actually pressed. After contracting a
key event, we can send the related command by calling the
keyPressed() method of the game.

In this way, we were able to instruct the agent how to start
a new game when the game runs and how to close or restart
the game when it dies. Additionally, we implemented all
gameplay actions, such as the movement (up, down, right,
left), do nothing, meaning that the agent waits for one round,
open/close inventory, navigate in the inventory (up, down),
select an item from the inventory, aim with the bow, pick up
an item and fire/attack.

We also need to note that key events represent just keys
pressed via the keyboard. Therefore, a single key event may
be associated with more than one actions, depending on the
agent’s current state, its position, or the combination of key
events used in a single move. For instance, pressing the Up
key in a level, makes the agent move toward that direction,
but if the same key follows another key event, e.g. aim with
the bow (shift key), then it will make the agent fire an arrow
towards this direction, instead of moving. Similarly, in cases
where the inventory of the player has been accessed (i key),
up key event would navigate up in the inventory. Another
example is the Enter key, which can start the game (if we
are in the starting screen), it can make the agent pick up
an item, if it stands on it (agent and item have the same
position), or it can select an item from the inventory to use
(when the inventory screen is open).

5.4 Game Environment
As we mentioned earlier, we do not want our agent to in-
teract directly with the NethackClone game, but rather we
want to use the representation we created for this purpose.
Iv4xr supports that through the W3DEnvironment class. In
our case, this class is the MyEnv class, providing the inter-
face between Iv4xr test agents and the NethackClone game

16

(meaning a simplified Java-clone of the original Nethack-
Clone game).

Instead of directly interacting with the original game, class
MyEnv interacts with it through the game wrapper (Nethack-
Wrapper) we created earlier. The wrapper provides a set of
methods for performing interactions, that also return obser-
vations in terms of World Models.

The primal method for MyEnv class is the sendCommand.
This method is the one that sends all commands to the
SUT and reports back the game state, after each interac-
tion. Utilizing sendCommand allows us to execute the ac-
tions we have created. In this way we created commands
for observing the current state of the game, starting a new
game, restarting the game, moving in the game and interact-
ing with it (interacting consists a wide command category,
including all the rest of the actions we constructed through
key events).

In order for sendCommand to effectively interact with the
intended in-game entity, we need to create a command by
focusing on five parameters which we need to include when
we call it. These are the invokerId and targetId, strings
implying the id’s of our agent and our target respectively,
command, also a string, stating the type of command for
the agent, args, a single object that is the parameter of the
command and expectedTypeOfResult, a class which in our
case is always WorldModel.

Depending on the type of command we intend to send, it
is possible for one or more parameters to be set as null, in
case we do not need them. For example, moving in a level
does not involve any specific target we aim to, thus targetId
can be set as null. However, picking up an item requires the
item’s ID and therefore, we need to pass this information
through the method.

5.5 Navigation
By implementing the game environment, as well as all the
basic actions of the game, the next crucial part of our study
is to make our agent move autonomously in the levels. Since
the moving actions have already been constructed, we now
need to focus on the navigation of the agent.

We started by constructing the Navigation Graph (Nav-
Graph) for every new level loaded in the game wrapper. To
accomplish that, we first separated the walkable tiles from
the non-walkable tiles existing in a level. In NethackClone,
we consider as walkable the tiles which are ’empty’ and the
tiles on where game items are placed, as well. On the other
hand, the player is not able to reach and walk through the
wall tiles and the tiles where monsters stand on.

The next step is about the creation of the Edges. In grid
based games, grids (usually squares), are represented by
nodes in the navigation graph. In our case, the nodes of the
NavGraph are the walkable tiles we marked earlier. How-
ever, the player is not able to travel from a walkable tile to
another one, anywhere in the level. A route in a level re-
quires from the agent to move from the current walkable tile
to a neighbour one, until it reaches the desired destination.
Neighbours in the NavGraph are the edges. The edges of a

tile are considered the neighbouring tiles where the player
can directly travel to. NethackClone supports four-direction
movement in the grid (up, down, left, right) and therefore,
each node has four edges. This means that diagonal tiles are
not considered as neighbours, since the agent cannot travel
directly to them.

Since we managed to create the nodes and the edges of a
given level, the framework provides us with the navigation
algorithm which we can apply on the NavGraph we con-
structed. Iv4xr makes use of the A∗ Navigation Algorithm,
one of the most efficient algorithms for path finding in vir-
tual worlds.

For calculating the distance between a starting point and
a destination, we decided on using the Manhattan distance.
We ended up on this distance, because Manhattan is more
suitable for tile-based worlds where moving diagonally is not
possible. However, when we invoke a path planner for cal-
culating a path between a starting point and a destination,
it is likely more than one paths to be available at the same
time, between these two points. In order to decide which
path to follow, instead of calculating the path lengths based
on their straight-line distance, or by summing the distances
between the route nodes, we invoke the A∗ path planner.
In this case, A∗ will decide which is the best available path
to follow, by calculating and comparing the lengths of the
available paths, looking for the most efficient one. For the
calculation of the path lengths, A∗ takes into account the to-
tal heuristic distance of each path, looking for the shortest
route.

An additional issue we were called to face during the navi-
gation part, is that although the StairTile is a walkable tile,
when the player steps on in, it instantly solves the current
level and moves in a new one which is then loaded. For that
reason, we do not want the stair tile to be part of any path,
but rather we want it to be the agent’s last location in the
level. To deal with this problem, we treat the stair tile as an
obstacle for the biggest part of the execution. We created an
invisible area around the stair tile, like a square with length
1 and we set this area as non-walkable, with the ability to
enable/disable this area depending on our intentions in the
level. In our experiments, that non-walkable area is always
enabled, unless we want to reach the stairs and complete the
level. In a similar way we solved another issue, regarding the
monsters in the game. In contrast with the wall tiles, which
are non-walkable static tiles in a level, monsters are mov-
ing dynamically in the level, following the player. Thus, we
treat every monster in a level as an obstacle, unless we want
to reach and fight it. We also created a square non-walkable
area around the monsters, with the ability to change its di-
mensions, by using a parameter when we run the game. So,
we are able to avoid the monsters anywhere in a level, in a
fixed avoiding distance on which we can decide and set in
advance. However, a too big avoiding distance may be risky
and limit the available paths in the level, or even lead to the
crash of the system, due to the absence of available paths.
In our case, we set the monster avoiding distance to 2.

In this way we completed the implementation of the naviga-
tion part in our project. Now our system is able to create
a NavGraph for every level and calculate paths to any des-

17

tination. Each path has the agent’s current position (x,y)
as a starting point, while the last node is the destination
we want to reach (usually the position of a specific game
element). The position of every entity in the game can be
retrieved by using its ID.

5.6 Game State
At this point, we have constructed all vital classes and meth-
ods needed for our framework to communicate with Nethack-
Clone, control it and exchange information with it, as well.
However, this information can be of any kind and can de-
rive from any part of the framework, or the original game.
Therefore, we need to create a structure where all this infor-
mation can be stored, updated and retrieved anytime during
a playtesting session.

This is the purpose of MyAgentState, a class that enables
the agent to track and retrieve any kind of information ex-
isting in the domain it needs. In a nutshell, MyAgentState
contains the whole SUT’s current and previous state. The
class contains the semantic part of an agent’s state, meaning
all the important information which is relevant for solving
the agent’s goals.

When the game is launched, the game environment (MyEnv)
is being attached to the game state (MyAgentState). This
allows us to initialize the first world model (wom) of the
SUT and construct the navigation graph (NavGraph). It
is possible to update the state anytime during playtesting.
The information which is stored in MyAgentState is:

• The current and the previous wom, containing all in-
formation stored in wom through the game wrapper,
before and after the last update of the state. The first
time the game runs, previous wom is null by default.

• A list, containing the current path to follow, that was
set by the navigation graph, representing the path that
the agent intents to follow towards a destination. The
last element in the list is the destination, while the
first one is the next tile the agent should move to. On
each step of the agent, the first element of the list is
removed, since the agent has already been there.

On each update of the state, the current wom becomes the
previous wom, while a new wom is constructed which be-
comes the current one. When a new level is loaded, the
information included in the state is set to null. Then, the
new environment of the level is attached on the state and a
new wom and navigation graph are initialized. As a conse-
quence, a new path is set according to the agent’s current
goal. However, the new path is constructed based on the
NavGraph created from the last loaded level.

5.7 Tactics & Actions
The in-game actions we implemented earlier allow our agent
to move and interact with the game through the framework.
Moreover, due to the navigation graph and the pathfinder,
the agent can travel to any reachable (non-surrounded by
walls) destination on the map. The next step of our imple-
mentation involves the construction of tactics and actions.

Tactics consist an essential tool for the framework, instruct-
ing the agent how to act in a specific way and under pre-
specified conditions, during the playtesting process. A tac-
tic is a set of actions, invoked in a certain order, making the
agent act in a desired way, in order to bring the intended
outcome. When invoked by an agent, a tactic will perform
the commands it consists of. A tactic can be either always
enabled, or it can get enabled due to a ”switch”, which turns
on according to particular conditions we can set in advance.
These conditions concern the SUT and its current state. The
switch is continuously checking whether the conditions are
met or not and it will set the tactic on when they do.

Besides tactics, we can also use Actions in order to make
our agent act in a specific way. Actions and tactics are
related terms. Actions are the building blocks to construct
a tactic. Therefore, an action is the simplest form of a tactic.
Multiple actions can be combined to form a more complex
strategy, which we refer to as a tactic. Tactics are used by
agents in order to solve goals. When a tactic is given to an
agent, then it is bound to the agent.

Formula 1 below illustrates a simple example of constructing
an action α in Iv4xr framework. The action has an Id and
executes the action α1 when the condition θ1 is met. Both
α1 and θ1 are functions in the system. α1 represents the
function which instructs our agent how to act in a specific
way, while θ1 is the ”Guard” which enables the action when
the condition is true.

var α = action(Id).do(α1).on(θ1) (1)

Along these lines, we created tactics for making the agent
perform various actions while playtesting the SUT. We at-
tempted to create a logic behind most our actions and tac-
tics, so our agent to act and perform as a human player
would do in most cases. All actions and tactics which con-
sider monsters, items or locations, are using the equivalent
object’s ID.

At this point of the document we present a part of the main
actions and tactics we constructed in our project. However,
we do not provide the full list of these methods here. The
rest actions and tactics we implemented for our project can
be found in the corresponding Appendix section (Appendix
A: Actions & Tactics).

A few of the most important actions and tactics we con-
structed for our project are listed bellow:

• TravelTo(ID) (action). This action leads the agent to
a game entity. It requires the ID of the entity or its
(x,y) position, as well as an integer to be set as the
monster avoiding distance. Since between the entity’s
ID and its position only one variable is necessary, we
can set the other one to null. The action first checks
whether the entity exists and if so, it creates a path to
this destination and returns it. Otherwise, it returns
null. In cases where the initial path cannot be used,
it can also re-plan a new path. For instance, there
might be cases where a path is given to an agent to
follow, but while travelling, a monster can block the

18

route of the given path. In such cases, the monster
avoiding distance determines whether the agent will
fight or avoid the monster (for monster avoiding dis-
tance = 0 the agent will fight the monster, otherwise
it will try to avoid it.). When the monster needs to
be avoided, a new path has to be re-planned. Algo-
rithm 4 describes how travelTo action works, creating
a path to the desired destination and driving the agent
to that location.

• CollectHealthItemsIfNeeded (tactic). This tactic con-
stantly checks the number of the available health items
in the inventory and if it is lower than 3, it looks for the
closest health item on the map. When it locates it, it
creates a new goal for the agent, to visit this item and
pick it up. The new goal is assigned to the agent, just
before its current goal. In this way we create a kind
of priority between goals (e.g. ”First collect the health
item and then go and solve your main goal.”). The
purpose of this tactic is for the player to always have
available health items stored in the inventory, which
can use in order to survive and reach its goals (as long
as there are health items in the level). In Algorithm 1
we present the way we implemented the CollectHealth-
ItemsIfNeeded tactic.

• UseHealthToSurvive (tactic). We created this tactic
in order to make our agent survive while playtesting
the SUT. Again, we attempted to implement a human
logic, where a health item should be used when the
player’s life points are low. The tactic continuously
checks the agent’s life and if it is equal or lower than 4
(out of 10) points, then it looks for a health item in the
inventory and uses it (by utilizing the item’s ID). The
tactic helps our agent to keep its health points in high
levels, so it cannot die by a single attack. Algorithm
2 provides the main implementation of the UseHealth-
ToSurvive tactic.

• BowAttack (action). We constructed this action for
the same reasons as the previous one, but this time
we focused on ranged weapons (bow). The action is
continuously checking whether the player’s position is
aligned (horizontally or vertically) with the position of
any of the monsters (bow is able to shoot arrows which
can travel only in straight lines). If yes, then it checks
whether there are wall tiles between the player and
the chosen monster (arrows cannot penetrate walls).
If the path is clear, the agent shoots an arrow in the
direction of the monster and attacks it.

Alongside with the aforementioned actions and tactics, we
also implemented a number of secondary, simpler tactics,
which they do not affect the agent’s behaviour in the SUT,
but have an impact in the framework so it performs in the
intended way. These tactics are presented below:

• AbortIfDead. This tactic continuously inspects whether
the agent is still alive or not. In case that the agent

Algorithm 1 Tactic: CollectHealthItemsIfNeeded

Data: wom // World Object Model

Post-Condition: Health Items in Inventory > χmin

/* The post-condition describes the state we want

to reach by executing the tactic. χmin is

a variable indicating the minimum number of

health items we want to always have stored in

the inventory. In our case, χmin = 3. */

if (Current level is not a boss level) then
/* There are no health items in boss levels,

therefore it would make no sense to search

for them. */

Count all health items in the inventory
if (Number of health items in inventory ≤ χmin) then

/* We set χmin = 3 in our case. */

Find the closest health item in the map, according to
the agent’s current position.

Add a new goal structure G for visiting and picking
up the closest health item.

Set the G’s priority to higher than the agent’s current
goal.
/* Changing the goal structure priority to

higher means that the agent will attempt

to solve the goal structure G before

proceeding to the current goal. More de-

tails regarding priority between goals

will be given in Section 5.8: Goals */

end

end
if (Health item collected) then

Update agent’s state.
end

Algorithm 2 Tactic: UseHealthToSurvive

Data: wom // World Object Model

Post-Condition: Agent’s life > χmin

/* The post-condition describes the state we want

to reach by executing the tactic. χmin is a

variable indicating the minimum health points

we want our agent to reach before it uses a

health item. In our case, χmin = 4 */

if (Agent’s current health ≤ χmin & Agent is alive) then
/* We set χmin = 4 in our case. */

/* There is no reason to enable the tactic if

the agent is dead. */

Search for health items in the inventory.
if (Health item found) then

Call an interact action to use the this health item
from the inventory.

end

end
if (Health item used) then

Update agent’s state.
end

is dead, it aborts all goals and terminates the whole
execution of the SUT.

• CheckIfEntityNoLongerExists. During gameplay, a goal
may be assigned to an agent, which requires to reach
and interact with a specific game element placed on
the map. However, it is possible for the entity to no

19

longer exist until the agent reaches its position. For in-
stance, the agent may attempt to travel to a monster,
but kill the monster with an arrow before it reaches
next to it. For this reason, we need a tactic to investi-
gate whether an entity still exists and abort all goals
or tactics related to it, when it does not.

• LoadNewLevel. When the player levels up in the game,
a new map is loaded. In this case, we are no longer
interested in the old map. However, we need to keep
the agents statistics (life, steps, items in inventory)
through all levels. For this reason we created this
tactic, which is enabled when a new level is loaded,
re-initializing the agent’s state and attaching the new
environment to it.

• KillBossFirst. When a player enters a boss level, the
boss monster is the only entity on the map. The player
has to kill the boss, in order to access the stairs tile,
which leads to the next level. Therefore, when there is
a boss in a level, the agent has to kill it first, even if
this is not the main goal (there are cases where the goal
is just to reach the stairs). This tactic implements this
behaviour when a boss exists in the level, by creating
a goal about killing the boss and set its priority higher
than any other goals. Although killing the boss is a
high priority goal, it does not override the tactics. For
instance, during a boss fight, the agent will be still
using health items when its life is low.

5.8 Goals
Besides the actions and tactics described above, another ma-
jor part of the project considers the creation of Goal Struc-
tures. A goal represents a specific state in the SUT that
an agent tries to reach. Goals utilize tactics in order to in-
struct the agent how to reach the desired state. Thus, every
goal includes at least one tactic. When a goal is defined, we
should also report on the tactics we want to use. Tactics
assigned on a goal are executed in a priority order, depend-
ing on the order they were assigned. An example can be
seen in formula 2. When we set a goal ”Kill a monster”,
we utilize the monster’s ”id” in order to specify the exact
monster we want to attack. In this case, we first want our
agent to check whether the target monster still exists, then
to navigate next to it and finally attacking it. A different
order on these tactics would not make sense and the goal
could not be achieved.

Goal KillAMonster = goal(”Monsterid is dead”)

toSolve(Monsterid != Alive)

.withTactic(FIRSTof(

.checkIfEntityNoLongerExists(id),

.travelNextToMonster(id),

attackMonster(id))
(2)

Formula 3 presents a more general example of creating a
simple goal and link tactics on in. Goal g is identified by
an Id, while cg represents the goal condition, describing the
state we need our agent to reach in order for the goal to
be successfully resolved. We can link tactics on our goal
through withTactic method, while we use specific methods

to structure our tactics, called combinators. The combinator
we used in the example above is FIRSTof, indicating the
priority between the available tactics. FIRSTof executes
the first tactic in the sequence (t1, t2, t3) that is enabled in
the current agent state.

Goal g = goal(Id)

toSolve(cg)

.withTactic(FIRSTof(

t1,

t2,

t3)

(3)

In addition to FIRSTof, there are more combinators we can
utilize to compose tactics in a goal, depending on the way we
prefer to be executed. SEQ(t1, t2, t3) is a combinator which
will execute the whole sequence of tactics in the exact order
t1, t2, t3. Last, ANYof(t1, t2, t3) combinator will randomly
decide on one between the enabled tactics and execute it.

We can also create tactics by directly converting actions or
goals, using lift function of Iv4xr. If α is an action, then
α.lift() is a tactic. Turning an action into a tactic, allows
us to utilize and combine it when we create a goal.

For more complex tasks, it is also possible to create goal
structures, by structurally stacking multiple goals. In this
case, the goals will be executed in the exact order they
were stacked, by utilizing the SEQ() combinator, for stack-
ing goals. Formula 4 illustrates an example similar to the
one presented in (2), about killing a monster, this time by
utilizing goals instead of tactics. Once again, the monster’s
id is used to specify the monster we want to attack and re-
trieve its position, in order to approach it. We stack the
goals in the order we want them to be executed, approach-
ing the monster first, and then attacking it. Therefore, a
goal structure is a hierarchically structured set of goals.

GoalStructure KillAMonster = SEQ(

travelNextToMonster(id),

attackMonster(id))
(4)

Combinators can also be used in Goal Structures, control-
ling the execution in a sequence of goals. Therefore, we can
execute a whole sequence of goals by using SEQ(g1, g2, g3),
or execute the subgoals in sequence, up to the one that suc-
ceeds, via FIRSTof(g1, g2, g3), where g1, g2, g3 are different
subgoals.

For instance, formula 5 will create a goal structure which
will execute a whole sequence of three different subgoals g1,
g2, g3.

GoalStructure G = SEQ(g1, g2, g3) (5)

We can also create iterative and conditional goal structures
by implementing ”WHILE” and ”IF... ELSE” statements,

20

using WHILEDO(θ, g) and IFELFE(θ, g1, g2), respectively.

WHILEDO will check whether the condition θ is true and
if so, it will execute the goal g. The loop will keep running
until θ is false, or goal g is solved.

IFELSE will check whether the condition θ holds and exe-
cute g1 in case it does. Otherwise, it will execute g2.

Finally, we can manually set the status of a goal through
SUCCESS and FAIL, which will immediately turn the status
of a goal into success or fail, correspondingly.

It is also possible to combine the aforementioned methods, in
order to create more complex goal structures. For instance,
formula 6 embodies a more complex goal structure G, where
we create a FIRSTof combinator and we put a sequence
(SEQ) of goals in it. First goal executed in the sequence is
g1 and then we create an IFELSE statement which checks
the condition θ1. If θ1 is true, g2 will be executed, otherwise
SUCCESS will set the whole goal structure G as solved.

GoalStructure G = FIRSTof (

SEQ(

g1,

IFELSE(θ1, g2, SUCCESS()

))

(6)

After we create a goal or a goal structure and define the tac-
tics we want to include in it, them we can use it repeatedly
to solve various instances. These goal structures are called
”parameterized”. In order to assign a goal to an agent, the
setGoal method can be utilized. In a same way, we can also
remove an assigned goal from our agent, through remove
method. If agent A is a test agent, then we can assign a goal
g1 to it through Formula 7 :

A.setGoal(g1) (7)

Similarly, Formula 8 describes the way we can remove a goal
g1 from an agent A, by:

A.remove(g1) (8)

For more complex testing scenarios, we might need to con-
trol the priority between goals. This can occur in special
cases, where under pre-specified conditions, we need to add
a subgoal right before the agent’s main goal, or add a second
goal after the current main goal has been dismissed (succeed
or failed). For this purpose we use a pair of methods, namely
addBefore and addAfter.

If agent A is a test agent with a goal g assigned to it, then we
can utilize Formula 9 in order to set a goal g1 right before
g through:

A.addBefore(g1) (9)

Similarly, we can instruct our agent A to add a goal g1 right
after a previous goal g has been reached, by utilizing For-
mula 10 :

A.addAfter(g1) (10)

In both cases, the main goal of the agent is goal g. However,
addBefore and addAfter methods help us to assign goals
or subgoals to our agent, right before or after their current
main goal g.

The process of creating a goal can be similar to the process of
creating a tactic. However, these two notions should not be
confused. When a tactic is executed successfully, means that
it was included in a goal structure and the system will still
keep trying to reach the defined goal. On the other hand,
when a goal is reached, the system will move on to the next
goal, if it exists, otherwise it will terminate the execution.
For example, we can create both a tactic and a goal, leading
an agent to ”use a heal item from the inventory”. The tactic
will make the agent use the item and continue pursuing the
main goal (assuming that the tactic is included in a goal).
However, the goal will make the agent use the item and
then will terminate the system, since the goal was reached
(assuming that just this single goal was assigned to the agent
and not a more complex structure with multiple goals).

For the purposes of our study, we implemented a number
of goals which we assign to our agents during the testing
process. Below, we present some of the goals we have cre-
ated for our project, describing the way they function in
the system. We also refer to the tactics we utilized in these
goals, in order to make our agents behave properly. Most
of the goals listed below are being used in goal structures
which may include multiple goals. The rest of the goals we
constructed for the needs of our project can be found in the
corresponding Appendix section Appendix B: Goals.

• EntityVisited(ID). This goal was made in order to nav-
igate the agent towards an entity which we need to
specify in advance. The goal makes use of the ID of
the target entity, which we need to pass as a param-
eter. With this goal, we are able to drive our agent
to any entity placed on the map. The goal is reached
when the agent reaches the desired entity.

• LocationVisited(x,y). Similarly to entityVisited, this
goal will attempt to guide the agent to a fixed location
that we need to define beforehand. The main differ-
ence with the previous goal is that LocationVisited re-
quires the location’s position in (x, y, z) coordinates.
In most cases, entityVisited and locationVisited are re-
lated, since entityVisited uses the entity’s ID in order
to find the entity’s position and then it calls location-
Visited to perform the navigation. Once again, this
goal is reached when the target destination has been
reached. The tactics included in this goal are: abor-
tIfDead, checkIfEntityNoLongerExists, loadNewLevel,
collectHealthItemsIfNeeded, useHealthToSurvive, collect-
BowWeapon, equipBestAvailableWeapon, bowAttack,
meleeAttack, killBossFirst, travelTo.

21

We notice that tactic travelTo is the last assigned on
the goal. We can explain this because travelling to the
desired location should be the last action the agent will
perform. When this action is finished, the goal has
been reached and the system will terminate (assuming
that it is the only goal). By placing this action first
in the hierarchy, the agent would attempt to reach the
location without performing any other actions. This
can be risky since the agent could die, for example,
because it did not use any health items (useHealthTo-
Survive tactic would be placed later in the hierarchy
and therefore, would not be reached at all).

• CloseToAMonster. This goal was created in order in-
struct the agent how to attack on monsters. It will
first check whether the selected monster is alive and
then, it will drive the agent right next to it. The goal
is reached when the agent reaches next to the mon-
ster, or if the monster is not alive anymore. The tac-
tics included in this goal are: abortIfDead, checkIfEn-
tityNoLongerExists, loadNewLevel, collectHealthItem-
sIfNeeded, useHealthToSurvive,
equipBestAvailableWeapon, bowAttack, meleeAttack, kill-
BossFirst, travelTo.

As in the previous goal, we notice again that travelTo
tactic, which is the one that will navigate the agent
next to the monster, is the last tactic assigned to the
goal. The reason is the same as in the previous goal.

Algorithm 3 explains how a goal is created in the system.
We notice that we construct the goal by only setting the
condition that will set the goal success and by including
the tactics we want to be used for solving it. Therefore,
all agent’s actions leading to the solution of the goal are
deriving through the tactics we included. The first tactics
concern the system’s and the agent’s behaviour during the
playtesting process, while travelTo tactic will drive the agent
to the desired destination and solve the goal. The use of
FIRSTof combinator explains why travelTo tactic is placed
at the end of the tactic sequence. Finally, the last tactic,
ABORT(), will drop the goal in case that it is not reachable,
preventing in this way the system from running endlessly.

5.9 Utilities
By the end of the goals implementation, our system is almost
ready to use. Now we are able to construct goals and tactics
for our agents, which will interact with the SUT trying to
solve them and reach the desired game states. The last part
of the implementation concerns a set of utilities we created
in order to control the system’s behaviour and assist our
agents to perform tests and measurements in it.

The utilities we implemented are mainly methods which fa-
cilitate the testing processes by performing calculations and
returning results which can be used for further calculations
and measurements. The full list containing all utilities we
implemented for the needs of our project can be found in
the corresponding section in the Appendix (Appendix D -
Utilities).

Algorithm 3 Goal: LocationVisited

Data: wom // World Object Model

Post-Condition: Agent is at the destination d
/* Destination d is a location on the grid de-

scribed by (x, y) coordinates. Destination

might be an empty tile, or a tile with an en-

tity or an object placed on it */

/* Destination should be a walkable tile, other-

wise the agent will not be able to travel on it

*/

Goal g = goal(Id)
Initialize entityId.
/* In case that there is an entity or object on

the destination’s location, entityId will be

the ID of the entity / object. Otherwise it

will be null */

Initialize destination.

Create a world entity e.
Look in wom for an entity with the same entityId.
Assign the entity found in wom to the world entity e.
if (World entity e != null) then

return true
/* In case that the target-entity does not ex-

ist, we consider the goal to be solved */

end
destination = position of e
return Agent’s position = destination
/* This is the condition for the goal to be

solved. If agent’s position = destination,

then our agent has successfully travelled to

the destination */

Include tactics in goal g with a FIRSTof combinator:

.withTactic(FIRSTof (
abortIfDead(),
checkIfEntityNoLongerExists(entityId),
collectHealthItemsIfNeeded().lift(),
useHealthToSurvive().lift(),
equipBestAvailableWeapon().lift(),
bowAttack().lift(),
meleeAttack().lift(),
travelTo(entityId,destination,monsterAvoidDistance).lift(),
ABORT()))

return g

6. EXPERIMENTAL APPROACH &
EVALUATION

This section describes the experimental, as well as the eval-
uation part of the project. First, we introduce the purpose
of the experiments we constructed for the needs of the study
and then we present an implementation plan, explaining the
way we deploy our agents and instruct them how to perform
the testing tasks through the framework. Finally, we talk
about the results we expect to derive through the testing
tasks and how we evaluate the overall performance of the
system.

6.1 Experiment Contribution

22

Algorithm 4 Action: travelTo

Data: entityId, destination, monsterAvoidDistance
Result: A path which drives the agent to the destination d
/* Path is a list with all steps (positions) the

agent needs to follow in order to reach the

destination. */

Initialize agent’s current position.
Initialize destination.
if (Agent is dead) then

return null
end
if (entityId != null) then

Create a world entity e.
Look in wom for an entity with the same entityId.
Assign the entity found in wom to the world entity e.
if (World entity e = null) then

Throw Exception
return null

end
destination = position of e

end
Create a list with the path to follow and name it as path.

if ((path = null) || (path is empty) || (last node of the path
!= destination location)) then

Plan a new path.
Take into account the monsterAvoidDistance for the
path planning.

end
if (entityId != Stairs) then

Set path to avoid the stairs.
/* We do not want the stair tile to be included

in the path, unless the main goal is to

reach the stairs */

end
Get the final path.
For each move performed by the agent, remove the first el-
ement of the path list.
/* The first element will always be the the

agent’s current position. Removing this po-

sition will keep making the path shorter and

shorter while the agent is getting closer to

the destination */

Check which move is the best to perform next, in order to
reach the destination.

if (best next move = Up) then
Call the Up Movement through the implemented actions.

end
if (best next move = Down) then

Call the Down Movement through the implemented ac-
tions.

end
if (best next move = Left) then

Call the Left Movement through the implemented ac-
tions.

end
if (best next move = Right) then

Call the Right Movement through the implemented ac-
tions.

end
At the end of each move, update agent’s state.

In order to investigate our initial hypothesis, answer our
research questions and efficiently evaluate our system, we
created two types of experiments, each one of them con-
ducted several times on different game levels. For changing
the levels between the experiments we utilized the seed num-
ber NethackClone uses for generating maps, creating in this
way various test cases to try our agents on.

For the first test, ensuring that a level is solvable, we con-
structed a testing task where the agent tries to solve and
walk through a sequence of levels. The concept of the ex-
periment is that since the game difficulty does not gradually
increased through the levels, if our system manages to solve
a number of random levels in a row, for multiple test cases,
then we can consider the levels as solvable. Additionally, by
proving the levels solvable, we confirm the functionality of
the system we created and consequently, of our approach.

The second experiment focuses on interacting with every en-
tity existing in a level, investigating in this way whether the
items and the enemies placed on the map respond as in-
tended when the agent attempts an interaction with them.
We expect from each object to respond differently on in-
teraction, depending on its type. For instance, interacting
with a monster and stepping on the stair tile are two differ-
ent actions in the game and hence, the response of these two
objects on contact must differ. However, all objects should
be on a reachable position on the map, so the agent can
reach them.

6.2 Experiment Set Up
By completing the implementation part, we have created
a fully-functional system, able to deploy agents and create
goals which can be assigned to them. Now we can start
building the goal structures needed for our study and let
the agents autonomously playtest the game.

In order to assist our system to reach the goals, we ad-
justed the default settings of the game which are related
to the player, in two ways. At the beginning of the game,
we provide our agent with a health potion of six restoring
life points. In this way, we attempted to make our agent
survive for a longer time period before it starts collecting
health items by its own and equip a stronger weapon. Sim-
ilarly, instead of using its bare hands (attacking for 1 life
point), we provided our agent with an initial sword weapon
(attacking for 3 life points). We decided on this adjustment
because we want the agent to be able to fight with monsters
(if needed) when the game starts, until it picks up a more
powerful weapon.

6.2.1 Test 1: Walk Through The First 5 Levels
For the first test we instruct our agent to walk through the
first five levels of the game. The way of solving a level and
move on to the next one in NethackClone is straightforward,
by reaching the stair tile, which will instantly cause the cre-
ation of a new map and put the agent in it. Therefore, the
goal in this case is pretty clear; to repeatedly command the
agent to reach the stair tile for a sequence of five times, until
it reaches the sixth level (meaning that the first five levels
have been completed successfully).

The goal of travelling to the stairs contains a set of tactics,

23

which help the agent reach the goal. Without the tactics,
our agent would not be able to survive and pass through the
levels. Thus, before the agent moves towards the stairs, it
seeks and collects health items, as it should have at least
3 health items stored in the inventory. Additionally, the
agent looks for a bow weapon which is stronger than its
currently equipped weapon, since the initial sword is a mod-
erate weapon that may help our agent survive at first, but
later in the game a more powerful weapon will be needed.
The agent also has to fight with, or avoid monsters which
stand on its way to the stairs.

In the fifth level (last one in the sequence), the agent faces a
Boss. Bosses are much more powerful than normal monsters,
attack for five life points and are able to deal damage to the
player from longer distance. Bosses cannot be avoided or
skipped. Instead, the agent has to kill the boss first, in
order to get access to the stair tile and solve the level. This
is where another tactic takes place, KillBossFirst tactic (see
the related subsection 5.7). By following this tactic, a new
goal of killing the boss is assigned on the agent and is placed
before the main goal, which is to reach the stairs. When the
agent kills the boss, it moves towards the stairs and solves
the level.

When the agent solves the fifth level, the goal is considered
to have been achieved and the system terminates the current
testing process. In Algorithm 5 we provide a rough represen-
tation of the algorithmic steps we followed for constructing
the first test Test1: Walk Through the First 5 Levels.

6.2.2 Test 2: Interact With Every Entity On The Map
The second test focuses on the interaction between the player
and the game elements. The current test concerns only one
level per test case. We implemented this test by instruct-
ing the agent to visit every object or monster placed on the
map, before it travels to the stairs. The agent interacts with
each object, according to its type. For example, weapons,
health items and gold, need to be picked up, while monsters
need to be killed. When there is no entity left in a level,
then our agent moves towards the stair tile, completing the
level. In this way, our agent investigates whether all objects
and monsters are placed on a reachable position.

The way we constructed this test is the following: We create
a big loop where we iterate over all entities placed on the
map. For every entity, excluding the stairs, we investigate
its position and we calculate how far it is from the agent’s
current position. This is because we want our agent to visit
the closest item each time, instead of walking unnecessary
routes back and forward (that would be inefficient and risky
for the agent’s survival). Since we have detected the clos-
est entity, it can be of two types:monster or item (weapon,
health item, gold). In case of monster, we create a goal to
get close and kill the monster. In case of item, we create
a goal structure, first to visit the item’s location and if the
item still exists, then pick it up. We check whether the item
still exist because it is possible (for instance, if it is about
a health item) for the agent to has already picked up the
item through a tactic included in the goal. In this case, the
system would crash or get stuck trying to pick up an item

Algorithm 5 Walk Through the First 5 Levels

Data: wom // World Object Model

Post-Condition: (Agent is at the Stair tile position) & (Cur-
rent Level = χ)
/* χ is a variable indicating the number of levels

we want reach. In our case, χ=5 */

Initialize Time.
Launch the Game.
Initialize agent and attach a clean state & environment to
it.

Create a data collector.
Construct a Goal Structure g1 for travelling to the stairs.
Include base Tactics in the goal structure g1.
/* Base tactics: abortIfDead, useHealthToSurvive,

equipBestAvailableWeapon, bowAttack, meleeAt-

tack, travelTo */

Include extended Tactics in the goal structure g1.
/* Extended tactics: loadNewLevel, collectHealth-

ItemsIfNeeded, collectBowWeapon, killBossFirst

*/

Assign goal structure g1 to the agent.
while (Goal Status is In Progress) do

if (Agent is Dead) || (steps > maxSteps) then
/* maxSteps indicates the maximum number of

steps we need our agent to perform, so

it will not run forever in cases where

it cannot solve the goal. We set this

variable to 1000 steps in our case */

break
/* Terminate the testing process */

end
Perform additional checks in the SUT.
/* Additional Checks: Weapons’ attack damage,

Health Items’ restore points, collected Gold

amount, Damage received/dealt from/to the

monsters */

Save information related to the testing process in CSV
file.
/* Information Saved: Seed Number, X, Y Po-

sition, Level, Health, Seconds, Steps, New

Tests, New Passes, New Fails */

end
if (Testing process has been terminated) then

Save goal status in CSV file.
/* Possible Goal Status: Success, Failed, In

Progress */

end

which does not exist.

By interacting with all game elements, we are able to test
whether the entities/objects are placed on a reachable po-
sition, as well as to perform additional checks related to
the values of the items we described in the Utilities section
(subsection 5.9). According to this subsection, all weapons
must have a positive amount of attacking damage, collected
gold should be of a positive amount and the health items
should recover a positive amount of health points. Interac-
tion with monsters allows us to check whether the damage
received/dealt from/to the monsters is the correct amount,
according to the monster’s/equipped weapon’s attack dam-
age, respectively.

24

After interacting with all game elements, the agent moves to
the stairs. Stairs is the last entity for the agent to interact
with, because stepping on the stair tile will generate and
move the player to a new level. After moving to a new level,
there is no way back, meaning that all items left behind
cannot be reached and tested anymore. Since the agent
reaches the stairs, the level is solved, the goal is successfully
reached and the testing case terminates.

Algorithm 6 in the Appendix section, embodies our imple-
mentation on the second test of our project. The algorithm
can be found in Appendix C section, Algorithm - Test 2:
Interact with Every Entity on the Map.

6.2.3 Main Method
Until this point, we run our experiments as JUnit Tests,
which can run independently. In order to create sequences
of many test cases, we created another class (MyClass) with
a main Method, where we included both our tests. In the
main method, we first state which tests we intend to perform
(only the first/second one, or both). Then, we create a for
loop, where we call the tests sequentially, changing each time
the seed number of the test case. Finally, we run the tests
for several random sequences, each one including between
5-15 seed numbers. Seed numbers were chosen completely
randomly.

When a goals is reached successfully, the goal status is marked
as succeed and the system terminates. Each time the agent
moves in the grid, that counts for one move. The agent up-
dates its state every one move. In case that the agent dies,
the system terminates and the goal is marked as failed. In
cases where the system gets stuck, for instance when the
agent is not able to find a path to follow, we set a limit
of one thousand steps, which when is exceeded, the system
terminates and the goal is marked as in progress.

6.3 Data Collection
After developing functional agents, able to navigate and
interact with the environment as intended and trying to
reach their assigned goals, our conclusions about their accu-
racy are mainly based on the feedback they provide us. In
our case, we consider as feedback every type of information
agents report back to us, during, or after performing the
testing tasks.

Each report is related to the current testing task the agent
performs. Depending on the testing approach we focus on,
we expect different information to derive, so as to analyse
it accordingly. However, no matter the testing task which
is performed, in every case the seed number of the gener-
ated level should be included in the verdicts, as well as an
indication when an agent dies during gameplay.

In the case where we check whether a game level is solvable,
we expect from our agent to solve the current level and move
to the next one. When an agent manages to successfully
solve a specified sequence of levels, we consider the goal to
has been reached and the agent to has succeed in the testing
task. Level sequences includes five levels in a row, where
the first four levels are ordinary levels, while the fifth level
is always a boss level. In cases where the agent fails, that
means either that the agent got stuck at a specific part of

the game, being unable to reach a potential key-item or key-
location for solving the level, or that the agent died while
trying to solve the level.

When the agent tries to interact with every game element in
a level, we first need to indicate what is a proper reaction of
each object type when interacting with the player and then
test it in practice. In this case, agents inform us whether the
object reacted as expected on each interaction. For every el-
ement on the map, we want to confirm that it is on a reach-
able position and can be picked-up. When the agent inter-
acts with monsters, we want to make sure that monsters are
able to deal and receive damage, according to their attack-
ing damage and the attack damage of the agent’s equipped
weapon, correspondingly. In cases of weapon items, we want
to investigate whether the amount of the attacking damage
is an acceptable value (as we stated in previous sections, an
acceptable value is a positive number). Similarly, for gold
and health items we also want to ensure that their values
(amount of gold and health restoration points) are also pos-
itive numbers. In cases of using health items, the agent’s
restored amount of life should match the restoring amount
of the used item, since the game includes three health items
(Food, Water, Health Potion), with different life restoration
amounts (five, eight and six life points, respectively).

At the end of each test we create a CSV file, where we
store all feedback the system provided us with, during the
playtesting process. Hence, important information derived
from the tests must be saved in this CSV file, otherwise we
are unable to spot and use it for further purposes. For this
reason we create one CSV file for each test case, which in-
cludes all essential verdicts obtained from the system. More-
over, the CSV file can include any additional information we
may need for our research.

During the testing process, each time a new test is per-
formed, the system returns a boolean which indicates whether
the test was passed or failed. All data delivered from the
system is saved in the CSV in name-value pairs, indicating
the name of the variable we need to save, accompanied by its
value (column name - column value in the CSV). Therefore,
for each test we performed, we saved information related to:

• The Seed Number of the current test case.

• The Current Time in seconds. Since this value always
increases gradually, the last line of the CSV file con-
tains the total execution time of the test case.

• The current Steps the agent has performed. Similarly
to the time, we can find the total number of steps
performed during the whole execution, at the end of
the CSV file.

• The X position of the player.

• The Y position of the player.

• The current Level of the agent.

• The amount of agent’s Health Points.

• The New Tests performed at the current timestamp.

25

• The New Passes derived from the tests. This means
the new tests which confirmed that the SUT functions
properly.

• The New Fails derived from the tests. That means the
part of the new tests which indicated a malfunction in
the SUT.

• The Goal Status, indicating whether the test was ex-
ecuted successfully. A test is considered to has been
completed successfully when the goal is marked as suc-
cess. In cases of failed or in progress, the test was not
completed successfully and the execution has been ter-
minated unexpectedly.

Additionally, when a test is completed, a last check is per-
formed on all the items stored in player’s inventory, which
have not been used. Inventory may contain gold, health
items and weapons which have not been checked, but it is
possible to have incorrect values. For instance, there might
be a weapon with a negative amount of attacking damage,
which our agent never used, so it was never checked. The
verdicts derived from the inventory checks are added in the
CSV file as new tests (new passes/fails).

6.4 Evaluation
As we described above, at the end of the execution of each
test case, the system creates and saves a CSV file with all im-
portant information about the testing process we may need.
For evaluating the system and form conclusions related to
our study, we focus on the collected CSV files.

The data analysis will be based on the evaluation criteria
we described in section 3.3 Evaluation Criteria. According
to this chapter, the main elements we are interested in for
evaluating the effectiveness of the system are:

• The total coverage performed by our system on
the SUT.

• The average execution time of each test case.

• The ratio of successfully completed goals.

• The ratio of correct verdicts reported by the sys-
tem.

In addition to the aforementioned, we also intend to take
into account a number of secondary factors which can be
helpful for the overall assessment of our study. More pre-
cisely, the time and the effort we invested in order to in-
tegrate our SUT into the framework plays an essential role
for the system evaluation. Moreover, the ease with which
we can modify the framework according to our needs, is
also an important factor for our assessment. The modifica-
tion of the system might be related to small adjustments on
the SUT. For example, a number of assets can be added,
updated or deleted in the game and hence, we need to mod-
ify our implementation in order to execute our automated
testing tasks. Applying changes in the framework must be
a relatively easy task, so we can keep our system updated
according to the in-use version of the SUT.

Finally, through the visualization of the collected data we
are planning to observe and discuss any interesting findings
we may discover.

6.4.1 Level Difference
Before running the tests, we first needed to ensure that our
approach is able to generalize for almost every level gener-
ated in the game and it does not simply overfits for similar
levels. For this purpose we utilized a similarity measure,
called Levenshtein Distance [54, 1, 15].

Levenshtein Distance is a metric that focuses on text data,
indicating between two strings of any length, how similar
or different they are. Given two strings, Levenshtein dis-
tance measures the number of edits needed in order to con-
vert the first string into identical to the second one. The
distance takes into account pairs which include characters
and their position in the string. Similar characters in differ-
ent positions between two strings cannot be considered as a
similarity. For example, the strings ”Dog” and ”God” have
Levenshtein distance of 2, meaning that we need to apply
two edits in order to make the first string identical to the
second one (first and last letter need edit, since both strings
have ”o” character at the same position). Likewisely, the
strings ”Employment” and ”Experiment” have Levenshtein
distance of 4, since they have 6 similar characters at the
same position. Between two similar strings, the Levenshtein
distance is 0, while for two completely different strings, their
Levenshtein distance is the number of characters the longest
string has (for instance, ”Abc” and ”Wxyz” have Levenshtein
distance equal to 4).

As expected, measuring the distance between all possible
pairs of levels we used for our experiments would be im-
possible according to our research time frames (for 307 lev-
els, 46970 possible pairs to compare). Given the fact that
NethackClone randomly generates levels, we decided to gen-
erate 10 random levels and compute the Levenshtein dis-
tance between those (for 10 levels, 44 possible pairs to com-
pare). Our idea was that if we are able to prove that all
44 random pairs differ in an important level, then we can
consider the game to generate levels which are not similar.

Therefore, we first generated 10 random levels using the seed
numbers 1, 5, 10, 13, 22, 27, 38, 52, 80, 137. Since the lev-
els in NethackClone are visualized with ASCII characters,
we managed to convert the whole levels into strings of 4500
characters each and then calculate their similarity by utiliz-
ing Levenshtein distance.

Another aspect we needed to take into account was the num-
ber of elements (objects or entities) placed in a level. Lev-
enshtein distance is not able to ensure that item and mon-
ster distribution varies between levels and hence, we need
to investigate whether the elements placed in a level vary in
terms of type and quantity.

Figure 7 presents the item and monster distribution for the
10 levels we generated . As we notice in the table, the dis-
tribution for both items and monster varies at an important
level between the levels. In the 10-level sample we present,
the number of monsters in a level fluctuates from 3 to 11,
with an average of 6.6 monsters per level. The number of

26

Figure 7: The distribution of Monsters, Health Items and
Weapons for 10 random levels.

health items in a single level can be between 2 and 17, with
an average value of 9.2 health items per level, which is a
pretty high number, considering that there are levels with
only 2 or 3 health items. Considering the weapon distribu-
tion, we can find from 1 to 8 weapons in a level, with average
2.9 weapons per level.

Turning to the similarity aspects, Figure 8 displays the Lev-
enshtein distance between all possible pairs of the 10 levels
we generated. We notice that the distance values are more
than 1050 in all cases, with a range from 1079 to 1469. More-
over, most pairs have distance value more than 1200, which
is a quite big number for a 4500 character string, consid-
ering that more than 60% of each level consists of the ”#”
character, representing wall tiles.

Figure 8: The Levenshtein distance as a similarity metric
for all possible pairs between 10 randomly generated lev-
els. Higher values indicate bigger difference between 2 levels,
while lower values point out more similar pairs.

The two figures presented above (Figure 7 & Figure 8),
make clear that the generated levels in NethackClone vary in
terms of the level map, as well as the distribution of the in-
cluded game elements, making in this way each level unique.

7. RESULTS
Our need for evaluating our testing approach and ensuring
the robustness of the system we created, led us to design
and conduct a set of tests on the framework. We run our

experiments on various test cases we created for this pur-
pose, investigating the performance of the system on both
Test 1 and Test 2 approaches. We note that Test 1 is about
the agent solving a sequence of five levels in a row, while Test
2 focuses on interacting with every element in a single level.
Therefore, each test case for Test 1 consists of a sequence
of 5 levels, while a test case in Test 2 is about solving just
a single level. More details related to our experiment and
the tests we performed can be found in the corresponding
section 6: Experimental Approach & Evaluation.

We tested our approach on 307 unique test cases in total.
171 of those were focused on the first test (Test 1), while
the rest 136 investigated the system’s performance on the
second testing task (Test 2). The creation of the test cases
was accomplished by adjusting the seed number in the SUT,
which is responsible for controlling the randomness in the
game and generating levels.

Results derived from the experiments seem promising and
helped us form an insight about the overall functionality of
the system we created, such as in which cases the testing pro-
cess operates as intended during the testing cases, or which
of its parts can be improved and reach higher performance.

A major criterion for evaluating the system’s efficiency is
the testing coverage our approach was able to achieve on
the SUT. During the testing process, we need to ensure that
we are able to test as many parts of the SUT as possible.
This is the role coverage plays in a testing system, informing
testers about the proportion of the SUT that is being tested
at each run.

100% coverage is impossible in most cases, thus, we aim
to the highest possible coverage according to our research
needs. For the current study, we focused on testing the
functional parts of the SUT, including methods and classes
which can affect the game’s behaviour. However, we were
not interested in testing visual and audio parts of the game,
as well as unimplemented parts and parts which are not used
in the version of the SUT that we chose for our research.
There are also parts of the game which we know they are
not being tested at all. For instance, there is a method in
PlayerStatus class which reduces the player’s health when
needed and turns the alive status into false when health is
equal to, or below zero. Therefore, in order for our system
to cover this instruction, we need our agent to die and fail
its main goal. However, we constructed our tactics in a way
that we are trying to prevent the agent’s death during the
testing process, which means that either the agent will fail its
goal, or this specific instruction in the source code will never
be covered. As a consequence, we expect from our approach
to never reach 100% coverage on PlayerStatus class.

Tables 2 & 3 present the detailed lists of the coverage our
system achieved on the SUT, for Test 1 and Test 2, respec-
tively. The coverage information derived by executing our
two testing tasks on levels we generated by using the same
seed number in both cases. In this way, we are able to com-
pare the coverage derived from Test 1 and Test 2, ignoring
the level itself and focusing on the architecture of the tasks
we designed.

27

In both tables, the first row describes the whole SUT, while
the rest lines represent the classes consisting the game. In
both cases, the tables provide us with information related to
the name of the element that has been tested, a proportion
of the achieved coverage, as well as the numbers of the total,
covered and missed instructions in the game. The term in-
struction describes the code written in order to instruct the
SUT to behave in a specific way, under specific conditions.
Thus, instruction coverage provides information about the
amount of code that has been executed or missed during the
testing process.

Element Coverage Covered Instructions Missed Instructions Total Instructions

NethackClone 76.6% 4.700 1.435 6.135
Screen.java 74.8% 3.713 1.252 4.965
PlayerStatus.java 67.9% 163 77 240
Monster.java 95.8% 184 8 192
Runner.java 0.0% 0 27 27
MusicPlayer.java 25.0% 6 18 24
SeedNumber.java 0.0% 0 13 13
Boss.java 100.0% 11 0 11
Item.java 79.5% 35 9 44
Weapon.java 67.9% 19 9 28
Tile.java 93.3% 97 7 104
BlankTile.java 0.0% 0 5 5
TestTile.java 73.7% 14 5 19
Room.java 91.4% 32 3 35
Water.java 100.0% 20 0 20
ItemTile.java 98.1% 106 2 108
BareHand.java 100.0% 15 0 15
BottomBar.java 100.0% 40 0 40
Bow.java 100.0% 18 0 18
Dictionary.java 100.0% 26 0 26
FloorTile.java 100.0% 19 0 19
Food.java 100.0% 20 0 20
FreshIDGenerator.java 100.0% 22 0 22
Gold.java 100.0% 14 0 14
HealthPotion.java 100.0% 20 0 20
Mob.java 100.0% 16 0 16
Player.java 100.0% 35 0 35
StairTile.java 100.0% 7 0 7
Sword.java 100.0% 18 0 18
Wall.java 100.0% 12 0 12
WeaponDictionary.java 100.0% 18 0 18

Table 2: Detailed Coverage Report for Test 1: Walk Through
The First 5 Levels. First row in the table represents the av-
erage coverage achieved on the whole SUT (NethackClone),
while the rest elements are the classes of the game.

Element Coverage Covered Instructions Missed Instructions Total Instructions

NethackClone 75.1% 4.607 1.528 6.135
Screen.java 73.7% 3.660 1.305 4.965
PlayerStatus.java 66.2% 159 81 240
Monster.java 84.4% 162 30 192
Runner.java 0.0% 0 27 27
MusicPlayer.java 25.0% 6 18 24
SeedNumber.java 0.0% 0 13 13
Boss.java 0.0% 0 11 11
Item.java 79.5% 35 9 44
Weapon.java 67.9% 19 9 28
Tile.java 93.3% 97 7 104
BlankTile.java 0.0% 0 5 5
TestTile.java 73.7% 14 5 19
Room.java 91.4% 32 3 35
Water.java 85.0% 17 3 20
ItemTile.java 98.1% 106 2 108
BareHand.java 100.0% 15 0 15
BottomBar.java 100.0% 40 0 40
Bow.java 100.0% 18 0 18
Dictionary.java 100.0% 26 0 26
FloorTile.java 100.0% 19 0 19
Food.java 100.0% 20 0 20
FreshIDGenerator.java 100.0% 22 0 22
Gold.java 100.0% 14 0 14
HealthPotion.java 100.0% 20 0 20
Mob.java 100.0% 16 0 16
Player.java 100.0% 35 0 35
StairTile.java 100.0% 7 0 7
Sword.java 100.0% 18 0 18
Wall.java 100.0% 12 0 12
WeaponDictionary.java 100.0% 18 0 18

Table 3: Detailed Coverage Report for Test 2: Interact with
Every Entity on the Map. First row in the table represents
the average coverage for the whole SUT (NethackClone),
while the rest elements are the classes of the game.

Tables indicate a small difference between the overall cov-
erage reached in Test 1 and Test 2. More precisely, Test 1

achieved 76.6% coverage on the SUT, while Test 2 reached
a slightly lower performance, with 75.1% overall coverage.
Therefore, the coverage difference between the two testing
tasks is at 1.5%. These numbers can be explained due to
the fact that Test 1 drives the agent until solving the fifth
level, meaning that in a sequence of five levels, the player
interacts with more monsters, uses more health items and
has to fight a boss monster in the last (fifth) level. On the
other hand, Test 2 limits the agent in only one level, with-
out being able to fight with a boss, for example. However,
the agent performs all possible interactions with the SUT in
this single level, which is why the coverage value is so close
to Test 1.

Besides the Boss class, we also notice small divergences in
the Water, Monster, PlayerStatus and Screen classes. Be-
tween the two tests, the difference on the coverage performed
on these classes was 25%, 11.4%, 1.7% and 1.1%, corre-
spondingly. Since we used the same tactics in both tests,
we can explain these deviations in the coverage due to the
reason we described above; the architecture of the goals we
constructed for the tests.

Although the coverage we achieved is considered to be in a
sufficient level, the overall coverage of the SUT could reach
even higher values if we exclude unused instructions which
we are not interested in testing, or parts of the game which
their implementation has not been completed yet. For exam-
ple, we are not interested in testing the MusicPlayer class
(25.0% coverage). In addition, classes like BlankTile and
SeedNumber (both 0.0% coverage) are not completed and
hence, are not used by the SUT. On the other hand, class
Runner (0.0% coverage) is fully functional when a human
player runs the game, but in our case the game launches
autonomously through the NethackWrapper and this class
in never used. Besides classes, there are also various un-
used or unfinished methods which are not being tested and
therefore degrade the overall coverage on the SUT. For ex-
ample, Screen class has two constructors, but only one of
them is being tested at each run (that means 0.0% cover-
age for the other one). Additional methods such as Key-
Typed and KeyReleased focus on keyboard inputs and are
functional for human players, but in automated testing are
not used, with the coverage in both cases to be at 0.0%.
Similarly, in PlayerStatus class there are a few unfinished
implementations regarding Mana, an attribute assigned to
game characters, indicating their power to use special mag-
ical abilities or spells. However, the implementations are
not functional and we see game aspects related to Mana
nowhere in the game. As a consequence, methods such as
gainMana, checkMana, reduceMana, increaseMaxMana, de-
creaseMaxMana, etc., are always covered by 0.0%, reducing
the average coverage of PlayerStatus class and by extension,
reduce the overall coverage of the whole SUT.

We estimate that by excluding all idle and unfinished parts
of the SUT, as well as parts which we are not interested
in testing, we could achieve coverage rise, up to (≈ 84.0 -
88.0%).

The second criterion for assessing our system was related
to the ratio of successfully completed goals. Results were
more than promising at this point, with the first test (Walk

28

Through The First 5 Levels) to reach 80.1% successfully
completed tests. More specifically, Test 1 completed the
main goal in 136 out of the 171 total test cases, failing or
aborting the goal in only 34 cases (19.9% failure), as we can
see in Figure 9. In addition, we noticed that most times our
agent died in these tests and failed the goal, was in the last
(fifth) level of the sequence, while fighting the Boss Monster.

Figure 9: Pie Chart for Test 1: Walk Through The First 5
Levels, indicating the goal status ratio for 171 test cases in
total.

As for the second test (Test 2: Interact with Every Entity on
the Map), results raised even more, achieving a percentage
close to 97.1% success goal ratio on 136 test cases in
total. This means that in 132 out of the 136 test cases, the
goal was reached successfully, while the goal was aborted or
failed in only 4 test cases (2.9%), as Figure 10 depicts.

We notice that although most of the tactics we used are
similar for both tests, as we can see in Table 4, the second
test was able to successfully complete the assigned goal in
more cases. The table thoroughly describes the tactics we
used for Test 1 and Test 2. We can see that besides the
tactics implemented to serve a specific purpose related to
the test goal, such as loadNewLevel and killBossFirst in Test
1, or checkIfEntityNoLongerExists in Test 2, the rest of the
tactics are used jointly by both tests.

At the end of the data analysis related to the goal status,
results proved our approach able to successfully complete
the assigned goals, in most cases.

Turning our interest to the verdicts reported by the system
related to the additional checks we performed during the
testing process, we first need to state that all verdicts pro-
vided by our system were correct. Every time an interaction
is taking place between the agent and a game element, an
additional test is performed by the system, which indicates
whether the check was a pass or a fail. Passes are the ver-
dicts where the SUT was tested and reacted as intended,

Figure 10: Pie Chart for Test 2: Interact with Every Entity
on the Map, indicating the goal status ratio for 136 test cases
in total.

Test Type Actions & Tactics Used

Test 1: Walk Through The First 5 Levels: · abortIfDead
· loadNewLevel
· collectHealthItemsIfNeeded
· useHealthToSurvive
· collectBowWeapon
· equipBestAvailableWeapon
· bowAttack
· meleeAttack
· killBossFirst
· travelTo

Test 2: Interact with Every Entity on the Map: · abortIfDead
· checkIfEntityNoLongerExists
· collectHealthItemsIfNeeded
· useHealthToSurvive
· collectBowWeapon
· equipBestAvailableWeapon
· bowAttack
· meleeAttack
· travelToMonster
· travelTo

Table 4: Detailed list of actions & tactics utilized in Test 1
and Test 2.

while fails are the malfunctions detected in the SUT.

In more detail, regarding Test 1, for 171 test cases, the sys-
tem reported 4605 verdicts, which averages in about ≈ 26.9
verdicts per test case. Out of the total 4605 verdicts, the
4599 were passes, and surprisingly 6 were fails. This means
approximately ≈ 99.63% passes and ≈ 0.37% fails out of
all verdicts. These values average to ≈ 26.865 passes and ≈
0.035 fails per test case.

Concerning the second test, in 136 test cases in total, our
system reported 4610 verdicts, with an average ≈ 33.9 ver-
dicts per test case. The 4572 verdicts were passes, while the
rest 38 were fails. This equals to ≈ 99.18% passes and ≈

29

Figure 11: Additional checks performed in a single test case
for Test 2: Interact with Every Entity on the Map. The
graph presents the positions of the agent during the whole
test execution, indicating the locations where one, or multi-
ple checks were performed.

0.82% fails out of all verdicts reported. The values average
to ≈ 33.68 passes and ≈ 0.28 fails per test case.

By observing the results above, we notice that Test 2 per-
forms slightly more tests per case and is able to detect more
passes and fails in the SUT, in average. This observation
can be explained due to the fact that Test 2 instructs the
agent to interact with every object and entity existing in
a level, while Test 1 drives the agent directly to the stairs.
For this reason, Test 2 interacts with more game elements in
average and as a consequence, it performs more tests during
a single run. On the other hand, the main goal in Test 1 is
to reach the stairs, which makes the agent to interact with
objects or monsters only when needed. For instance, during
an execution of Test 1, the agent will seek for a weapon,
will probably fight with monsters and collect health items
(according to the tactics attached on the goal), but when it
eventually reach the stairs, there will be various items left
behind that will not be tested at all.

The graph in Figure 11 depicts the route followed by our
agent during a single execution of Test 2 (one level run).
The locations where one or multiple additional checks took
place, have been also marked in the graph. By looking at the
figure, we notice that it is possible for the agent to perform
up to five checks on the SUT, in a single location and in the
same step. A regeneration of the current test case enlight-
ened us about the type of checks that can occur at the same
time, in similar cases. More specifically, in the given case
the agent has to deal with two monsters, simultaneously. In
addition, the agent has not collected any weapon yet and
hence, is attacking with its bare hands (attack damage: 1).
The low attacking damage of the bare hands force the agent
to attack each monster twice, while it allows monsters to at-
tack back twice, as well. Therefore, the five tests performed
stand for testing: 2x attacks to monsters, 2x attacks from the
monsters, as well as 1x use of health item, since after two
attacks the health of the agent was considerably decreased.

The additional tests performed in the SUT proved to be

Figure 12: Malfunction detected in NethackClone. In this
screenshot of the game, we can see the player’s inventory.
In the black rectangle we have marked a Sword of Earth
weapon, which has attacking damage = 0. This value is not
valid for a weapon object and hence, it consists a malfunc-
tion in the SUT that was detected by our system.

informative, since they assisted us detect an actual issue ex-
isting in the SUT, which we did not know about. Unlike the
health items and the monsters, the amount of gold as well
as the attacking damage of the weapons have no pre-defined
values. This means that for both gold and weapons, their
values are randomly assigned when the object is picked up.
A part of the additional tests is about checking the validity
of these values. We consider as reasonable values any posi-
tive numbers for these objects. However, negative or equal
to zero values are not sensible to describe the amount of
collected gold or the attacking damage of a weapon. Feed-
back provided by the system indicated that there are cases
where a weapon is picked up, having attacking damage equal
to zero, as we can see in figure 12. This issue in the SUT
was completely unknown to us before performing the testing
process. We also need to state that all fails indicated by the
system are related to this issue we detected.

By focusing on time related data, we can see that the system
we created is relatively fast, completing most of the test
cases for both Test 1 or Test 2, in less than 30 seconds.

In more detail, Test 1 needs ≈ 26.22 seconds to successfully
execute a test case, while executions in Test 2 last for ≈
24.9 seconds per test case.

Note that time values can drop to even lower levels if we
disable the graphical representation of the SUT during the
testing process. However, without any graphics it is not
possible to observe and control the testing process during the
executions, but only to analyse the results derived through
it, after completing each test case. At this point of our
study, we found this option a bit risky and hence, this is
why we chose to keep graphics on and observe parts of the
execution, slightly increasing in this way the execution time
of the experiments.

A second metric we used to represent time in the framework
was the number of steps performed by the agent. The term

30

”steps” describes the moves completed by the player while
gameplay. In our template, we use the steps of the agent as
the main timestamp in order to control the duration of the
executions.

We decided on using the number of steps as a secondary
measure to describe time, because the execution time is not
independent and completely stable for each execution, but it
depends on the computational power used by testers. This
means that executing the same approach on different com-
puters, does not guaranty that the execution time will be the
same. Instead, it is more likely for the time to fluctuate up
to ± 10 seconds between the executions. However, this does
not happen when we measure the duration of an execution in
steps performed by the agent. No matter the computational
power we use when we execute our approach, the number of
steps between two executions on different computer systems
will be equal. Time is a measurement everyone is familiar
with, while the number of steps might be no informative at
all for users who have no experience with the SUT. This
is why we decided to combine the two measures, in our at-
tempt to provide users with both a stable and an approxi-
mate measure, so they can get an insight of the execution
length. Therefore, if we attempt to optimize our approach
in terms of time, we should focus on minimizing the number
of steps performed by our agent, instead of trying to reduce
the execution time.

According to the number of steps metric, Test 1 had an
average of ≈ 328.5 steps per test case, which equals to ≈
12.5 steps/second, for each test case.

In the same way, Test 2 averages at ≈ 332.7 steps per test
case, meaning a relation of ≈ 13.36 steps/second, per test
case.

We notice that on average, Test 1 takes a few more seconds
to finish a test case, but it performs less steps, compared
to Test 2. Once again, we justify this behaviour due to the
architecture of the goals we created. A test case in Test 1
consists of five levels, but the main goal drives the agent
directly to the stairs, planning additional routes only when
is needed (seek for a weapon, health items, etc.). On the
other hand, Test 2 deals with only one level per test case,
however interacting with every game element in the level
makes the agent carry out many ”unnecessary” routes.

Figure 13 and Figure 14 present the trajectory of the re-
lation between time (in seconds) and the steps performed
by the agent, for Test 1 and Test 2, respectively. The two
graphs derived from executing the tests on the same test
case. We can see that Test 1 lasts ≈ 23 seconds, while Test
2 ≈ 26 seconds. Turning to the number of steps performed,
Test 1 completes the execution with less than 350 steps, in
contrast with Test 2, which needs more than 370. Focusing
on the first level, Test 1 needs less than 8 seconds and ≈
110 steps to solve it, proving in this way how direct is the
main goal for Test 1. We also observe that fifth (boss) level
needs way less time and steps to be solved, compared to any
other level in the graph.

Figure 15 and Figure 16 illustrate the testing cases executed
for Test 1 and Test 2, respectively. Each test case has been

Figure 13: Test 1: Walk Through The First 5 Levels. The
line graph illustrates the number of steps performed by the
agent through time (in seconds) and levels, for a single test
case.

Figure 14: Test 2: Interact with Every Entity on the Map.
For a single test case, the line graph provides a representa-
tion of the number of steps performed by the agent through
time (in seconds).

placed in the graph according to its time (seconds) - number
of steps relation. The blue bullets in the graph represent the
successfully completed test cases, while the red bullets depict
the failed or aborted cases.

The two graphs indicate that for Test 1, most unfinished test
cases occur after the first 60 seconds of the execution time.
However, the number of steps remains too low in those cases,
making clear that the agent gets unable to keep moving at
some point during the execution. The reason of this issue
is still ambiguous to us, but we estimate that it arises due
to a malfunction in the system, which is related to the path
planning. Another possible reason for this issue could be a
abnormal functioning in MyEnv class, which is responsible
the movement of the agent.

31

Figure 15: Test 1: Walk Through The First 5 Levels. The
scatter plot provides a representation of the number of steps
performed by the agent through time (in seconds), for every
executed test case.

Figure 16: Test 2: Interact with Every Entity on the Map.
The scatter plot presents the number of steps performed by
the agent through time (in seconds), for every executed test
case.

Turning to Test 2, although there is an important raise in
the succeed goal ratio, compared to Test 1, we still notice
failed or aborted test cases. However, unfinished executions
in this case can be only observed too early, or too late in
time, while the number of steps fluctuates in extremely low
levels, in most cases close to zero. We reason this behaviour
similarly as in Test 1, estimating that there is a potential
issue in our path planning implementation.

Although our implementation does not lack of unexpected
malfunctions, our system is able to achieve sufficient levels
of succeed goal ratio, proving our study capable of bringing
representative results.

Coming to a few additional data, although these results
are less relevant to our research questions, their observation

Figure 17: Test 1: Walk Through The First 5 Levels. A
frequency representation of the agent’s position during the
5-level execution of the test case. The 5 routes followed for
the 5 levels are depicted combined.

Figure 18: Test 2: Interact with Every Entity on the Map.
Frequency representation of the agent’s position. The actual
level represented by the graph can be seen in figure 21

might be helpful and informative enough to us, in order to
form additional conclusions about the system’s behaviour.

Starting from the routes followed by the agent, we can see in
Figure 17 and Figure 18 the routes executed for Test 1 and
Test 2, respectively. Since test cases in Test 1 include five
levels, Figure 17 combines all five routes in one graph. The
two graphs also inform us about the frequency with which
the agent visits each locations in the level. We observe that,
although Test 1 includes five different routes, the maximum
times our agent stepped on the same tile was 6 (Figure 17),
while for Test 2 it was 7 (Figure 18).

Similar information about Test 2 also derive from the heatmap
in Figure 19. The heatmap draws the agent’s route, anno-
tating for each node (x, y position on the map), how many
times has been visited. Through the heatmap we notice that

32

Figure 19: Test 2: Interact with Every Entity on the Map.
Heatmap based on agent’s X and Y position, describing the
agent’s route and indicating the position frequency. Blue
nodes on the heatmap indicate less visited areas, while the
red ones represent the most visited ones. The nodes of the
graph are also annotated, informing us about the number of
times each position has been visited by the agent. The actual
level represented by the heatmap can be seen in Figure 21

there are highly visited locations on the map, with their
neighbouring nodes to have low visiting frequency, though
(Figure 20). By observing the nodes it is clear that there are
cases where there is no path which lead to this frequency val-
ues, for specific nodes. However, leaving a node is not neces-
sary for the agent in order to step again on it. The heatmap
helped us understand that the system records the position of
the agent after each move it performs in the game, no mat-
ter if an actual movement (motion) was executed. It turns
out that moves in the game are mostly related to the turns
and therefore, the agent might be recorded on the same posi-
tion multiple times in cases where it performs multiple tasks
on it. For instance, if the agent steps on a position, aims
with its bow and kills a monster, then uses a health item
and finally moves to the next node, the system will record a
frequency value equal to 3 for this position (assuming that
the agent will not visit the same location for the rest of the
execution).

The actual NethackClone level represented by the heatmap
in Figure 19 and the scatter plots in Figure 11 and Figure
18, can be seen in Figure 21. Through the figures we observe
that the route followed by the agent covers most of the rooms
in the level. More specifically, the agent visits every area in
the level where there are objects or monsters in.

Another interesting fact derives through the observation of
the graph in Figure 22. Here, the information presented is
similar as in Figure 17, depicting the routes executed by
the agent for a test case in Test 1 (sequence of 5 levels).
However, Figure 22 distinguishes between the five different
levels, marking the route for each level, separately. We an-
notated the route of each level with a different colour on the
scatter plot. By looking the figure it is clear that the routes
in level 1 and level 4 are the longest ones, while the routes

Figure 20: Part of the heatmap depicted in Figure 19. Ex-
ample of highly visited locations of the agent’s route, with
the neighbouring nodes to have low visiting frequency.

Figure 21: An actual level in NethackClone game. The level
was generated by using the seed number = 1. In the current
level we perform Test 2: Interact with Every Entity on the
Map, while there are graphs presenting our results on this
level throughout the document.

for levels 2, 3 and 5 are much shorter. This clue is also
confirmed by Table 5, where we present the exact number
of steps performed on each level, for this specific test case.
We reason this fluctuation between the number of steps in
each level due to the tactics we attached on the main goal
of the test.

When the execution starts, the agent has two secondary
goals placed before its main goal: first is to seek and equip
a bow weapon and the second one is to collect health items,
which can use later in the test. This is why level 1 has the
longest route of the test case, with 208 steps. Continuing,
both level 2 and level 3 have short routes, with 33 and 45
steps, respectively. We assume that the agent did not have
to collect any health items in these two levels, or it was able
to find health items in very close locations. In level 4 we
observe one more long route, with 149 steps this time. It is
clear enough from the graph that the agent had to move in a

33

Figure 22: Test 1: Walk Through The First 5 Levels. The
graph illustrates the 5 routes executed for this single test
case, indicating the frequency with which the agent visits a
location on the map, for each level separately.

different direction and collect health items at this level, im-
portantly increasing the number of steps performed in this
way. The final level (level 5) has the shortest route, with
only 14 steps. This value is also reasonable, as there are no
items that can be collected in the fifth level and hence, the
agent only needs to fight the boss and reach the stairs.

Level Number of Steps

Level 1: 208 Steps
Level 2: 33 Steps
Level 3: 45 Steps
Level 4: 149 Steps
Level 5: 14 Steps

Table 5: Test 1: Walk Through The First 5 Levels. Detailed
list indicating the number of steps performed per level, for
a single test case.

Lastly, we turn our interest to an essential game element,
which is responsible for the whole assessment of the system.
We refer to the health of the agent, which plays an important
role in the progress of our study, since the first task after we
made our system functional, was to teach our agent how to
survive. In Figure 23 we present a line graph illustrating
the trajectory of the agent’s health for a single test case in
Test 1. The agent’s health is presented in relation to time
and through the levels.

With a first look on the graph, we confirm the conclusion we
formed through Figure 22 and Table 5, about the fluctuation
of the route lengths for the five levels. In this graph, we can
also measure the level lengths in terms of time, with level 1
to be the longest one, lasting for about ≈ 17 seconds, while
level 5 was the shortest one, lasting for less than 2 seconds
(≈ 1.1 seconds).

We also observe that in level 1, the agent uses a health item

Figure 23: Test 1: Walk Through The First 5 Levels. Line
graph illustrating the agent’s health through time and levels.
The horizontal dotted line represents the average value of the
agent’s health.

6 times, while in level 4 a similar item is being used 5 times.
These values are reasonable, considering that level 1 and
level 4 are have the longest routes in the graphs, with the
highest number of steps.

Additionally, Figure 23 provides us with information re-
lated to the average value of the agent’s health, during the
whole execution, for both 5 levels. The mean value proves
that the tactic we implemented for keeping our agent alive
(useHealthToSurvive), actually works efficiently, achieving a
health average value of more than 6 points, as the blue, dot-
ted line indicates. The health average our tactic was able to
achieve, is sufficient enough for our research purposes, since
the agent is able to survive in most test cases, with its health
points to be more than half during the biggest part of the
execution.

8. DISCUSSION, LIMITATIONS & FUTURE
WORK

Our study was focused on a relatively new, upcoming field
concerning automated video game testing. For the needs
of the project we utilized an essential testing tool, namely
Iv4XR Framework, which was developed for implementing
and conducting autonomous testing tasks, with the ability
to can be adjusted and applied on a big range of different
video game types.

Through our research, we attempted to investigate whether
Iv4XR framework was able to support our testing approach
of combining agent-based testing and goal-based program-
ming to perform automated testing in our SUT. We de-
cided on the SUT we utilized due to the fact that it rep-
resents a whole category of video games that has not been
tested by Iv4xr framework before. More precisely, in our
research, NethackClone stands for a wide range of video
games, including categories such as 2D, top-down, survival,
turn-based and grid-based, tile games.

The research part of the project consisted of an initial hy-

34

pothesis and two research questions. In order to test our
hypothesis and answer the research questions, we designed
and conducted a set of experiments on the SUT, by utilizing
Iv4xr framework.

Results derived through the experiments proved to be infor-
mative and gave us an insight about the functionality and
the efficiency of the system we have created.

8.1 Research Hypothesis
”Iv4XR framework is able to efficiently combine agent-based
approach with goal-based programming for performing auto-
mated playtesting in video games.”

Starting from our hypothesis, we attempted to investigate
whether it is possible to combine agent-based testing with
goal-based programming through Iv4xr framework, in order
to create a system capable of performing automated play-
testing tasks in the SUT. Since we managed to create a
template based on the framework and integrate Nethack-
Clone into it, we found out that it is relatively easy to em-
ploy agents and control their behavior by assigning goals to
them. We created functional goals for any possible behav-
ior we needed from our agents to perform. Our approach
seemed to work efficiently since the very early steps of the
implementation, when we achieved our agents to perform
small tasks and complete simple goals, proving in this way
our initial hypothesis true.

8.2 Research Question 1
”How well does the Iv4XR framework perform when applying
our approach for automatically conducting testing tasks in
the NethackClone game?”

By confirming our approach feasible via the Iv4xr frame-
work, another need came up in our study, about evaluating
the system we had created. Thus, our first research ques-
tion rose, describing the need for measuring the performance
of our implementation. The experiments we conducted for
this purpose proved to be enlightening, with the results to
be positive in most cases, in terms of coverage, success ratio
and time. This means that our system is able to execute
test cases in relatively short time periods, approximately ≈
20-30 seconds per test case, covering the biggest part of the
SUT’s source code. As for the success ratio, agents in both
tests manage to successfully complete the goals in most test
cases, with the verdicts reported by the system to be always
correct.

Another indication related to the system’s performance, was
an additional outcome derived from the experiments, where
the system was able to detect an actual bug in the game.
In this case, our approach pointed out that it is possible for
the game to generate weapons with attacking damage equal
to 0. Hence, it is reasonable for such a behavior not to be
desired and to consist a malfunction in the game. In addi-
tion, the system also provided us with information related
to the frequency this bug happens in the game. Although
the bug occurs due to a simple programming mistake and is
not about a complicated issue, we were completely unaware
of its existence in the game, before the system identified it.

In addition to the aforementioned bug, we also were able to
detect another malfunction we observed in the SUT, which
was related to the position of some objects in a level. When
a new level is constructed, objects are randomly generated
and placed on the map. The position where a new object
will be placed on the map is decided by taking into account
the position of the already generated objects, in order to
avoid overlapping objects which are placed on the same tile.
However, we noticed that the system does not consider the
position of the stairs in the level. As a consequence, we
faced cases where an object seems to be placed on the same
tile where the stairs are, overlapping each other. In such
cases, only the stairs are visible on the map and the agent
may keep failing its goals while trying to reach this spe-
cific object. Instead of interacting with the object, when
the agent reaches the tile, the game behaves as the stair tile
has been reached, loading a new level and placing the agent
into it. We were able to fix this unwanted behaviour quite
easily, by not allowing NethackClone to place items in posi-
tions where game elements of any kind already exist. This
malfunction consists one more bug which we did not know
about its existence in the game and was detected through
our system.

8.3 Research Question 2
”Is the effort needed to integrate Iv4XR for automatically
testing NethackClone reasonable?”

As a secondary goal in our study, we were also interested in
assessing the time and effort we spent on Iv4xr, in order to
integrate it for automatically testing NethackClone. Since
Iv4xr is a generic framework, at the beginning of the project
we needed to focus on the implementation of an interface for
the game we chose to test. Therefore, it was a question to
us whether the time and effort needed to implement such an
interface, each time we wanted to test a new SUT, is worthy.

After spending a considerable amount of hours studying the
framework, its main uses, capabilities, the way it works
and its contribution in previous studies and projects, we
started working on the implementation of the interface for
our chosen SUT. We also need to state that we did not have
any prior knowledge about the framework and the current
project was our first experience with it.

From our experience in working with the Iv4xr framework,
we realized that the effort we put on it was a one-time invest-
ment that can be proved valuable in the fullness of time. The
framework requires from the users to be aware of -at least,
the basic way it functions, as well as its main elements, be-
fore they start working on the implementation of a specific
SUT interface. In addition, for the creation of an interface
is needed access to the SUT’s source code and is quite de-
manding in terms of time and effort until the framework to
fully integrate with the game under test. However, once the
integration procedure has been completed, the interface can
be used repeatedly, turning procedures such as creating and
employing agents, constructing actions, tactics and goals,
as well as implementing testing tasks, into easy and quick
processes. In this way, testers initially have to invest time
and effort when integrating the framework for testing a new
game, but after that, they get fully access on the SUT, being
able to create unlimited testing tasks and test any parts of

35

Figure 24: Example of dysfunction with the agent copying
itself in a level. Copies can confuse the system’s counters
related to the execution time and steps performed. We had
to adjust the game settings in order for copies not to collide
with each other and block the agent’s path. Note that this
is about a non-deterministic case, which barely occurs in the
system and we cannot intentionally reproduce it.

the game they may want to.

The aforementioned investment can definitely proved worth-
while over time, especially when a game is being updated,
adjusted, or new assets are added into it. A well-designed
implementation could be even used in later versions of the
game. A lot of time and effort can be saved in those cases,
by creating testing tasks which are focused on the game
changes, instead of keep testing the whole SUT over and
over again. Furthermore, the time and effort needed for the
interface implementation depends on the structure and the
complexity of the SUT.

8.4 Limitations
Despite the promising results emerged through our project,
our study did not lack malfunctions originated from both
the SUT and our approach, limiting in this way our research.
For instance, we observed test cases where the agent seems
to copy itself in the level, confusing in this way the counters
of the time and the steps performed (Figure 24). However,
this cases are non-deterministic, since when we try to replay
the test case, by repeating the execution using the same
seed number, it is not assured that we will observe the same
behaviour. This issue does not consist a bug in the SUT
itself, but it probably occurs due to the way we build the
interface, by not taking concurrency into account when both
the SUT and the agents try to update the tiles in the game,
at the same time.

Another unwanted behaviour we observed in the system is
related to our tactics. Figure 25 illustrates an example
about a tactic that instructs the agent to collect a sword
weapon. The tactic attempts to locate the sword which is
closest to the agent. We used the Euclidean distance to
calculate the distance between the agent and the sword. Al-
though the tactic works efficiently when the agent stands in
a room full with objects, it is not optimal when there objects
only in nearby rooms. This happens because in the distance

calculation, we did not take into account the obstacles in the
room.

As it turned out, tactics related to seeking and collecting
objects in a level are not optimized in terms of execution
time and number of steps performed. Instead, our experi-
ments indicated that this issue has an impact on these two
performance related factors, since there are cases where the
agent needs to travel more in order to reach an item. How-
ever, this malfunction does not affect the robustness of the
system.

Figure 25: Example of an agent looking for a sword. The
agent (marked with purple), is looking around for sword
weapons. Trying to reach the closest one, it decides on the
sword in the red circle, based on the Euclidean distance.
However, we can see that due to the walls in the level, the
sword in the red circle is not the best choice. There are
swords marked with blue circles, which are closer to the
agent, even if the Euclidean distance in those cases is bigger.
Under certain circumstances, this issue can make the agent
walk more in order to get an item.

8.5 Future Work
The unwanted behaviours described above proved that there
is space for improvements in our system, since our research
was limited in terms of time. Moreover, the experiments
we conducted are capable of bringing representative results
only when performed multiple times on different test cases.
As long as we are able to increase the amount of test cases,
results will be more informative and representative. In addi-
tion, performance related data, such as the execution time,
could reach even higher values, if our implementation was
not restricted due to the limited computational sources we
had access to.

Therefore, the need for extending our research in further,
future studies emerges, in order to create various additional
goals, actions and tactics, as well as optimizing the already
existed ones. Furthermore, getting access to more computa-
tional power would be also of interest to us, in order to exe-
cute our experiments on a huge number of test cases, includ-
ing more and more testing tasks, goals, actions and tactics in
our project. Extending our research on the field, optimizing
our implementation, as well as collecting and analysing data
arisen from a massive amount of experiments, would prob-

36

ably improve our study and give us a better insight about
the overall system’s efficiency. Further access to higher com-
putational power would enhance the system’s performance,
boosting the experiment execution and the result analysis.

Finally, another improvement that could strengthen our re-
search is related to the evaluation of our system. More
precisely, we would be interested in a future study, where
we could compare our automated testing approach with ap-
proaches of different implementation, such as reinforcement
learning, which has proved to work efficiently in goal-based
automated testing. Such comparison requires the imple-
mentation of a reinforcement learning system for playtesting
NethackClone, focusing on the same testing tasks, design-
ing the same goals and applied to the same game levels,
generated by utilizing the same seed numbers, as in our ap-
proach. A comparison between the results derived from the
two approaches would be informative about the level of our
system’s functionality, efficiency and performance.

The Nethack Challenge, is a competition organized and con-
ducted by AIcrowd, Facebook AI Research, as well as in-
dividual researchers, providing the opportunity for AI and
Machine Learning researchers and enthusiasts to partici-
pate, compete, collaborate and suggest their solutions on
automated playing the original Nethack videogame [7]. In
this challenge, participants are called to design agents which
can navigate the procedurally generated ASCII dungeons of
Nethack, survive for as long as they can and ascend to as
many rooms as possible. The implementation method of
the agents is completely up to the participants, however,
they are encouraged to use Reinforcement Learning agent
architectures, training methods and other machine learning
ideas.

For the competition, the NetHack Learning Environment is
used, a Reinforcement Learning environment which is based
on Nethack, and was designed to provide a standard RL
interface to the game. NetHack Learning Environment con-
sists an ideal option for research on the fields of decision
making and Machine Learning, since it comes with tasks
that function as a first step to evaluate agents on it [46].

We consider Nethack challenge to be an interesting means
of creating and evolving AI techniques for the automation
of the playing process for the current video game, and we
believe that due to the implemented environment which is
provided, it could easily be adapted to serve the playtesting
purposes of our research. Therefore, it would be of interest
to us to adjust our study to fit the challenge’s requirements,
and participate the competition in order to test the perfor-
mance of our approach, in possible future studies.

9. CONCLUSIONS
In the current project, we utilized the Iv4XR framework
in order to create and perform automated testing tasks on
NethackClone, a 2D grid-based video game. The game we
chose to perform our testing represents a wide range of video
games of the same or similar kind, such as tile-based, sur-
vival, top-down and rogue-like games.

For the implementation we first adjusted the game in order
to fit our research needs and we applied agent-based testing

and goal-based programming through the Iv4xr framework,
creating two different kinds of tests; one for walking through
the first five game levels and one for interacting with all
game elements within a single level. For the testing tasks
we created 7 goals and more than 25 actions,tactics and
utilities in total, running our experiments on more than 300
test cases (171 for test 1 and 136 for test 2).

The evaluation of our approach was focused on three main
factors: coverage, success ratio and time, while the success
ratio consists of successfully completed goals and correct ver-
dicts reported by the system. Additionally, another element
of the study that was also of interest to us, was the wor-
thiness of the time and effort needed to put on the frame-
work, in order to initialize and adapt the SUT into it, as
well as to conduct a complete automated testing process
(deploy agents, create testing tasks/goals/tactics, collect re-
sults, etc.).

Results derived through the experiments were promising,
proving the efficiency of our approach at an adequate level.
In terms of coverage, the system was able to cover more than
75% of the whole SUT in both tests, successfully complet-
ing more than 80% and 97% of the test cases. Turning to
time related data, our implementation was able to complete
the testing tasks in an average of ≈25 seconds per test case,
reporting ≈27-34 verdicts per test case. Moreover, our ap-
proach proved more than informative in bug reporting, be-
ing able to even detect an actual, unknown malfunction in
the game(Figure 12), as well as a second glitch that occurs
during the generation of a new level in the game.

From our experience with the framework, it turned out to
be a one-time investment, since it requires time and effort in
order to adjust a new SUT into it, but once the procedure
is finished, we can repeatedly create and perform testing
scenarios quickly and easily. In this way, we are able to keep
testing small adjustments, new versions, or updates of the
game, saving important time and effort.

We need to clear that the tests we implemented for our
study, as well as the additional checks we perform, are not
able to cover and test the functionality of the whole game.
However, we can use similar structures to create more goals,
tests and checks in the same way, so we can cover more
and more parts of the game and test different assets in it.
The functionality of the framework is also depended on how
easy we can create new test cases for an SUT and Iv4xr has
proven that once we integrate Iv4xr in the SUT, we can cre-
ate test cases, goals, actions and tactics relatively easy and
quickly.

Nevertheless, our implementation did not lack defects, with
the experiments to also indicate a few failures and dysfunc-
tions in our system, pointing out the need for extended re-
search on the field, as well as the potential use of more pow-
erful computational sources, in possible future studies. In
this way we could improve the system’s implementation and
the evaluation of our study, while we could perform our ex-
periments on a bigger number of testing tasks and test cases,
boosting at the same time the execution time.

37

10. REFERENCES
[1] Damerau–levenshtein distance.

https://en.wikipedia.org/wiki/Damerau–Levenshtein
distance.

[2] Gamasutra: Mathieu lachance’s blog - how much
people, time and money should qa take? part1.
https://www.gamasutra.com/blogs/MathieuLachance
/20160113/263446/
How much people time and money should QA take
Part1.php.

[3] Game testing - wikipedia.
https://en.wikipedia.org/wiki/Game testing.

[4] Github - iv4xr-project/labrecruits: A 3d game for
testing ai and for ai to test.
https://github.com/iv4xr-project/labrecruits.

[5] Github - psousa612/nethackclone.
https://github.com/psousa612/NetHackClone.

[6] Nethack 3.6.6: Nethack home page.
https://www.nethack.org/.

[7] Neurips 2021 - the nethack challenge: Challenges.
https://www.aicrowd.com/challenges/neurips-2021-
the-nethack-challenge.

[8] Quality assurance - wikipedia.
https://en.wikipedia.org/wiki/Quality assurance.

[9] Record and replay debugging - wikipedia.
https://en.wikipedia.org/wiki/
Record and replay debugging.

[10] Reinforcement learning - wikipedia.
https://en.wikipedia.org/wiki/Reinforcement learning.

[11] Scenario-based testing best practices | soapui.
https://www.soapui.org/learn/functional-
testing/scenario-based-testing/.

[12] Scenario testing - wikipedia.
https://en.wikipedia.org/wiki/Scenario testing.

[13] Software agent - wikipedia.
https://en.wikipedia.org/wiki/Softwareagent.

[14] Testing overview and black box testing techniques
laurie williams 2006 41 unit | course hero.
https://www.coursehero.com/file/p4enoq/Testing-
Overview-and-Black-Box-Testing-Techniques-Laurie-
Williams-2006-41-unit/.

[15] Levenshtein distance.
https://en.wikipedia.org/wiki/Levenshtein distance,
Oct 2021.

[16] S. Agarwal, C. Herrmann, G. Wallner, and F. Beck.
Visualizing ai playtesting data of 2d side-scrolling
games. In 2020 IEEE Conference on Games (CoG),
pages 572–575. IEEE, 2020.

[17] N. Alshahwan and M. Harman. Automated web
application testing using search based software
engineering. In 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE
2011), pages 3–12. IEEE, 2011.

[18] P. Ammann and J. Offutt. Introduction to software
testing. Cambridge University Press, 2016.

[19] D. Anghileri. Using player modeling to improve
automatic playtesting, 2018.

[20] S. Ariyurek, A. Betin-Can, and E. Surer. Automated
video game testing using synthetic and human-like
agents. IEEE Transactions on Games, 2019.

[21] J. Booth. Ppo dash: Improving generalization in deep

reinforcement learning. arXiv preprint
arXiv:1907.06704, 2019.

[22] I. Borovikov and A. Beirami. Imitation learning via
bootstrapped demonstrations in an open-world video
game. In NeurIPS 2018 Workshop on Reinforcement
Learning under Partial Observability, 2018.

[23] I. Borovikov and A. Beirami. From demonstrations
and knowledge engineering to a dnn agent in a
modern open-world video game. In AAAI Spring
Symposium: Combining Machine Learning with
Knowledge Engineering, 2019.

[24] I. Borovikov, J. Harder, M. Sadovsky, and A. Beirami.
Towards interactive training of non-player characters
in video games. arXiv preprint arXiv:1906.00535,
2019.

[25] C. Buhl and F. Gareeboo. Automated testing: A key
factor for success in video game development. case
study and lessons learned. In proceedings of Pacific
NW Software Quality Conferences, pages 1–15, 2012.

[26] B. Chan, J. Denzinger, D. Gates, K. Loose, and
J. Buchanan. Evolutionary behavior testing of
commercial computer games. In Proceedings of the
2004 Congress on Evolutionary Computation (IEEE
Cat. No. 04TH8753), volume 1, pages 125–132. IEEE,
2004.

[27] T. Y. Chen, H. Leung, and I. Mak. Adaptive random
testing. In Annual Asian Computing Science
Conference, pages 320–329. Springer, 2004.

[28] G. Cuccu, J. Togelius, and P. Cudré-Mauroux. Playing
atari with six neurons. arXiv preprint
arXiv:1806.01363, 2018.

[29] S. R. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz. Model-based
testing in practice. In Proceedings of the 21st
international conference on Software engineering,
pages 285–294, 1999.

[30] F. de Mesentier Silva, S. Lee, J. Togelius, and
A. Nealen. Ai as evaluator: Search driven playtesting
of modern board games. In AAAI Workshops, 2017.

[31] A. C. Dias Neto, R. Subramanyan, M. Vieira, and
G. H. Travassos. A survey on model-based testing
approaches: a systematic review. In Proceedings of the
1st ACM international workshop on Empirical
assessment of software engineering languages and
technologies: held in conjunction with the 22nd
IEEE/ACM International Conference on Automated
Software Engineering (ASE) 2007, pages 31–36, 2007.

[32] E. Dustin, J. Rashka, and J. Paul. Automated software
testing: introduction, management, and performance.
Addison-Wesley Professional, 1999.

[33] A. I. Esparcia-Alcázar, F. Almenar, M. Mart́ınez,
U. Rueda, and T. Vos. Q-learning strategies for action
selection in the testar automated testing tool. 6th
International Conferenrence on Metaheuristics and
nature inspired computing (META 2016), pages
130–137, 2016.

[34] R. Evertsz, J. Thangarajah, N. Yadav, and T. Ly. A
framework for modelling tactical decision-making in
autonomous systems. Journal of Systems and
Software, 110:222–238, 2015.

[35] G. Fraser and A. Arcuri. Evosuite: automatic test
suite generation for object-oriented software. In

38

Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of
software engineering, pages 416–419, 2011.

[36] T. Fullerton, C. Swain, and S. Hoffman. Game design
workshop: Designing, prototyping, & playtesting
games. CRC Press, 2004.

[37] R. Hamlet. Random testing. Encyclopedia of software
Engineering, 2002.

[38] J. Harmer, L. Gisslén, J. del Val, H. Holst,
J. Bergdahl, T. Olsson, K. Sjöö, and M. Nordin.
Imitation learning with concurrent actions in 3d
games. In 2018 IEEE Conference on Computational
Intelligence and Games (CIG), pages 1–8. IEEE, 2018.

[39] C. Holmg̊ard, M. C. Green, A. Liapis, and J. Togelius.
Automated playtesting with procedural personas
through mcts with evolved heuristics. IEEE
Transactions on Games, 11(4):352–362, 2018.

[40] C. Holmg̊ard, A. Liapis, J. Togelius, and G. N.
Yannakakis. Evolving personas for player decision
modeling. In 2014 IEEE Conference on Computational
Intelligence and Games, pages 1–8. IEEE, 2014.

[41] H. Hu and L. Lu. Automatic functional testing of
unity 3d game on android platform. In 2016 3rd
International Conference on Materials Engineering,
Manufacturing Technology and Control, pages
1136–1140. Atlantis Press, 2016.

[42] C. Huchler. An mcts agent for ticket to ride. Master’s
thesis, 2015.

[43] S. Iftikhar, M. Z. Iqbal, M. U. Khan, and
W. Mahmood. An automated model based testing
approach for platform games. In 2015 ACM/IEEE
18th International Conference on Model Driven
Engineering Languages and Systems (MODELS),
pages 426–435. IEEE, 2015.

[44] J. G. Kormelink, M. M. Drugan, and M. A. Wiering.
Exploration methods for connectionist q-learning in
bomberman. In ICAART (2), pages 355–362, 2018.

[45] D. Kung. An agent-based framework for testing web
applications. In Proceedings of the 28th Annual
International Computer Software and Applications
Conference, 2004. COMPSAC 2004., volume 2, pages
174–177. IEEE, 2004.

[46] H. Küttler, N. Nardelli, A. H. Miller, R. Raileanu,
M. Selvatici, E. Grefenstette, and T. Rocktäschel. The
nethack learning environment. arXiv preprint
arXiv:2006.13760, 2020.

[47] C. Lewis, J. Whitehead, and N. Wardrip-Fruin. What
went wrong: a taxonomy of video game bugs. In
Proceedings of the fifth international conference on the
foundations of digital games, pages 108–115, 2010.

[48] D. Lin, C.-P. Bezemer, Y. Zou, and A. E. Hassan. An
empirical study of game reviews on the steam
platform. Empirical Software Engineering,
24(1):170–207, 2019.

[49] D. Loubos. Automated testing in virtual worlds.
Master’s thesis, 2018.

[50] P. McMinn. Search-based software test data
generation: a survey. Software testing, Verification
and reliability, 14(2):105–156, 2004.

[51] J.-J. Meyer, J. Broersen, and A. Herzig. Bdi logics.
2015.

[52] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

[53] L. Mugrai, F. Silva, C. Holmg̊ard, and J. Togelius.
Automated playtesting of matching tile games. In
2019 IEEE Conference on Games (CoG), pages 1–7.
IEEE, 2019.

[54] E. Nam. Understanding the levenshtein distance
equation for beginners.
https://medium.com/@ethannam/understanding-the-
levenshtein-distance-equation-for-beginners-
c4285a5604f0, Feb
2019.

[55] M. Nelson. Game metrics without players: Strategies
for understanding game artifacts. In Proceedings of the
AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 7, 2011.

[56] J. Ortega, N. Shaker, J. Togelius, and G. N.
Yannakakis. Imitating human playing styles in super
mario bros. Entertainment Computing, 4(2):93–104,
2013.

[57] M. H. Overmars. Path planning for games. In Proc.
3rd Int. Game Design and Technology Workshop,
pages 29–33, 2005.

[58] S. Paydar, M. Kahani, et al. An agent-based
framework for automated testing of web-based
systems. Journal of Software Engineering and
Applications, 4(02):86, 2011.

[59] J. Pfau, A. Liapis, G. Volkmar, G. N. Yannakakis, and
R. Malaka. Dungeons & replicants: automated game
balancing via deep player behavior modeling. In 2020
IEEE Conference on Games (CoG), pages 431–438.
IEEE, 2020.

[60] J. Pfau, J. D. Smeddinck, and R. Malaka. Automated
game testing with icarus: Intelligent completion of
adventure riddles via unsupervised solving. In
Extended Abstracts Publication of the Annual
Symposium on Computer-Human Interaction in Play,
pages 153–164, 2017.

[61] E. J. Powley, S. Colton, S. Gaudl, R. Saunders, and
M. J. Nelson. Semi-automated level design via
auto-playtesting for handheld casual game creation. In
2016 IEEE Conference on Computational Intelligence
and Games (CIG), pages 1–8. IEEE, 2016.

[62] I. Prasetya. Budget-aware random testing with t3:
benchmarking at the sbst2016 testing tool contest. In
2016 IEEE/ACM 9th International Workshop on
Search-Based Software Testing (SBST), pages 29–32.
IEEE, 2016.

[63] I. Prasetya. Aplib: Tactical programming of intelligent
agents. arXiv preprint arXiv:1911.04710, 2019.

[64] I. Prasetya, M. Dastani, R. Prada, T. E. Vos,
F. Dignum, and F. Kifetew. Aplib: Tactical agents for
testing computer games. In International Workshop
on Engineering Multi-Agent Systems, pages 21–41.
Springer, 2020.

[65] I. Prasetya, M. Dastani, R. Prada, T. E. Vos,
F. Dignum, and F. Kifetew. Aplib: Tactical agents for
testing computer games. In International Workshop
on Engineering Multi-Agent Systems, pages 21–41.
Springer, 2020.

39

[66] I. Prasetya, M. Voshol, T. Tanis, A. Smits, B. Smit,
J. v. Mourik, M. Klunder, F. Hoogmoed, S. Hinlopen,
A. v. Casteren, et al. Navigation and exploration in
3d-game automated play testing. In Proceedings of the
11th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and
Evaluation, pages 3–9, 2020.

[67] I. S. W. B. Prasetya and M. Dastani. Aplib: An agent
programming library for testing games. In Proceedings
of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pages 1972–1974,
2020.

[68] K. Sen and G. Agha. Cute and jcute: Concolic unit
testing and explicit path model-checking tools. In
International Conference on Computer Aided
Verification, pages 419–423. Springer, 2006.

[69] F. D. M. Silva, I. Borovikov, J. Kolen, N. Aghdaie,
and K. Zaman. Exploring gameplay with ai agents. In
Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment,
volume 14, 2018.

[70] A. Smith, M. Nelson, and M. Mateas. Computational
support for play testing game sketches. In Proceedings
of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 4, 2009.

[71] F. Southey, R. Holte, G. Xiao, M. Trommelen, and
J. Buchanan. Machine learning for semi-automated
gameplay analysis. In Proceedings of the 2005 Game
Developers Conference (GDC, 2005.

[72] V. Sriram. Automated Playtesting of Platformer
Games using Reinforcement Learning. Northeastern
University, 2019.

[73] S. Stahlke, A. Nova, and P. Mirza-Babaei. Artificial
playfulness: A tool for automated agent-based
playtesting. In Extended Abstracts of the 2019 CHI
Conference on Human Factors in Computing Systems,
pages 1–6, 2019.

[74] S. N. Stahlke and P. Mirza-Babaei. Usertesting
without the user: Opportunities and challenges of an
ai-driven approach in games user research. Computers
in Entertainment (CIE), 16(2):1–18, 2018.

[75] C. Thurau, T. Paczian, G. Sagerer, and C. Bauckhage.
Bayesian imitation learning in game characters. In
ALaRT, pages 143–151, 2005.

[76] J. Togelius, S. Karakovskiy, and R. Baumgarten. The
2009 mario ai competition. In IEEE Congress on
Evolutionary Computation, pages 1–8. IEEE, 2010.

[77] N. Tziortziotis, K. Tziortziotis, and K. Blekas. Play
ms. pac-man using an advanced reinforcement learning
agent. In Hellenic Conference on Artificial
Intelligence, pages 71–83. Springer, 2014.

[78] J. J. UK and G. Ping-ping. The game, the player, the
world: Looking for a heart of gameness. Studies in
Culture & Art, page 03, 2009.

[79] T. E. Vos, P. Tonella, I. Prasetya, P. M. Kruse,
O. Shehory, A. Bagnato, and M. Harman. The fittest
tool suite for testing future internet applications. In
International Workshop on Future Internet Testing,
pages 1–31. Springer, 2013.

[80] P. Yap. Grid-based path-finding. In Conference of the
canadian society for computational studies of
intelligence, pages 44–55. Springer, 2002.

[81] I. Zarembo. Analysis of artificial intelligence
applications for automated testing of video games. In
ENVIRONMENT. TECHNOLOGIES. RESOURCES.
Proceedings of the International Scientific and
Practical Conference, volume 2, pages 170–174, 2019.

[82] Y. Zhao, I. Borovikov, F. de Mesentier Silva,
A. Beirami, J. Rupert, C. Somers, J. Harder, J. Kolen,
J. Pinto, R. Pourabolghasem, et al. Winning is not
everything: Enhancing game development with
intelligent agents. IEEE Transactions on Games,
12(2):199–212, 2020.

[83] A. Zook, E. Fruchter, and M. O. Riedl. Automatic
playtesting for game parameter tuning via active
learning. arXiv preprint arXiv:1908.01417, 2019.

40

APPENDIX
A. ACTIONS & TACTICS
In this Appendix section we list and briefly describe more
actions and tactics which we implemented for the purposes
of our project.

• Observe (action) When this action is invoked by an
agent, it will return the observed current state of the
SUT. This action is always enabled.

• TravelToMonster(ID) (action). This action is pretty
much similar with the TravelTo(ID) action, but instead
of travelling to a fixed destination (a position or an
item), it focuses on travelling to monsters. As we men-
tioned earlier, monsters are not static in a level, but
they can move. Thus, we need to keep tracking them
when we try to reach them. Besides that, the action
works in the same way as TravelTo does.

• CollectBowWeapon (tactic). This tactic first checks
whether the agent owns a bow weapon, by looking in
the inventory. If not, as in the previous tactic, it looks
for the closest, according to the agent’s current posi-
tion, bow weapon on the map and sets a goal for the
agent to go and pick up this weapon. The goal is added
before the agent’s current goal. We created this tactic
because we realized that bow weapons are more useful
than swords, since allow our agent to shot arrows from
distance, avoiding in this way collisions with monsters.
Thus, the agent saves its health points and is able to
survive for longer. Choosing the bow weapon is a nat-
ural choice which a human player would also make.

• EquipBestAvailableWeapon (tactic). This tactic inves-
tigates over all available weapons in the player’s in-
ventory (both bows and swords), looking for the one
with the highest attack damage. If that weapon is
not the agent’s currently equipped weapon, it equips
it. We created this tactic to make our agent choose
the strongest weapon to hold, a choice that a human
player would also make in most cases. Although a bow
weapon is more convenient, we want the player to deal
the highest possible damage, on each attack.

• MeleeAttack (action). Attacking consists one of the
main game mechanics in our SUT, in order for our
agent to survive, pass through levels and reach its goals.
In order to attack a monster using a melee weapon
(sword), our agent needs to first travel towards the
monster and when it stands next to it, it simply moves
towards the directions where the monster is. If the
player is holding a melee weapon, it will directly attack
the monster with it.

41

B. GOALS
In this section we list the rest of the goals we have cre-
ated for our project purposes, alongside a brief description
of their functionality in the system. We also need to note
that most of the presented goals bellow are being used in
goal structures with multiple goals included.

• BowIsEquiped. This is a relatively simple goal, which
leads the agent to search in the inventory and equip a
bow weapon, if there is one. The goal is reached when
the equipped weapon is type of bow.

• SwordIsEquiped. Similar with the previous one, this
goal leads the agent to search for and equip a sword
weapon from the inventory. The goal is reached when
the equipped weapon is type of sword.

• AimWithBow. This is also about a simple goal. It was
created to make the agent aim with the bow and be
ready to shot at its next move. The goal is reached
when the equipped weapon of the agent is type of bow
and the variable isAiming is true.

• PickUpItem. Another goal that represents just a single
action. The goal was implemented to make the agent
pick up items from the floor of a level. The items that
have been picked up are stored in the inventory. There-
fore, the goal is reached if the size of the inventory at
the current state is greater by one value, compared to
the previous state.

We notice that there are goals which have no tactics assigned
on them. However, this is actually not happening, since for
very simple goals, the goal itself is the actual tactic. In
these cases, we first create the action we want our agent to
perform and then we convert it into a tactic. Afterwards,
we create a goal and define this tactic to be the only one
included in the goal. For example, for the aiming with the
bow goal, which is just a single action, we first implement
the action of aiming and then we turn it into a tactic. As we
mentioned earlier, tactics and actions are similar terms, as a
tactic is a set of actions. Therefore, an action is the simplest
form of a tactic, containing just one action. When we create
the goal, we define that the goal is reached when the agent
reaches the desired game state (aiming with the bow). As
a consequence, if we include just this tactic for solving the
goal, the goal will be solved when the agent aims with the
bow.

42

C. ALGORITHM - TEST 2: INTERACT WITH
EVERY ENTITY ON THE MAP

Algorithm 6 Interact with Every Entity on the Map

Data: wom // World Object Model

Post-Condition: (No entities left on the map & (Agent is at
the Stair tile position)

Initialize Time.
Launch the Game.
Initialize agent and attach a clean state & environment to
it.

Create a data collector.
while (True) do

/* This loop will always run, until we brake it

*/

Initialize a minimum distance. /* We initialize this

variable with a relatively big value, in our

case is 140, which is the maximum distance

possible in our 90x50 grid */

Initialize a Target Entity = null
for (each entity on the map) do

Check Entity Type.
if (Entity type = (Water) || (Food) || (Health Potion)
|| (Gold) || (Sword) || (Bow) || (Monster)) then

/* The entity types we are interested in

checking, excluding the Stairs */

if (Stairs exist) & (Entity Position != stairs po-
sition) then

continue /* Continue the process */

/* We are not testing an entity which

is placed on the stairs */

end
Find distance between the agent and the entity.
if (distance < minimum distance) then

Set Target Entity = entity.
/* We are looking for the closest to

the agent entity (target entity)

*/
end

end

end
if (Target Entity == null) then

break
/* Break the while loop when there are no

more entities on the map to be checked

*/
end

Target ID = Target Entity ID
/* We create a string with the target entity ID

*/

Construct a Goal Structure g1.
if (Target Entity = Type of Monster) then

Initialize Goal g1 to get close and kill the monster.
Include Tactics in the goal structure g1.
/* Tactics included: abortIfDead, check-

IfEntityNoLongerExists, collectHealth-

ItemsIfNeeded, useHealthToSurvive, col-

lectBowWeapon equipBestAvailableWeapon,

bowAttack, meleeAttack, travelToMonster

*/
end

end

while (True) do
/* Continue in the same while loop */

else
Initialize Goal g1 to reach the item’s position.
if (item != null) then

/* The item is still there */

Add second goal to the goal structure, to pick up
the item.

Include Tactics in the goal structure g1.
/* Tactics included: Same as above */

end

end
Assign the goal structure g1 to the agent.
while (Goal Status g1 is In Progress) do

if (Agent is Dead) || (steps > maxSteps) then
/* maxSteps indicates the maximum number

of steps we need our agent to perform,

so it will not run forever in cases

where it cannot solve the goal. We

set maxSteps to 1000 steps. */

break
/* Terminate the testing process */

end
Perform additional checks in the SUT.
/* Additional Checks: Weapons’ attack dam-

age, Health Items’ restore points, col-

lected Gold amount, Damage received/dealt

from/to the monsters */

Save information related to the testing process in
CSV file.
/* Information Saved: Seed Number, X, Y Po-

sition, Level, Health, Seconds, Steps,

New Tests, New Passes, New Fails */

end
if (Testing process has been terminated) then

Save goal status in CSV file.
/* Possible Goal Status: Success, Failed,

In Progress */

end
Construct a second Goal Structure g2 for travelling to
the stairs.

Include Tactics in goal structure g2.
/* Tactics Included: Same as above */

Assign goal structure to the agent.
while (Goal Status g2 is In Progress) do

if (Agent is Dead) || (steps > maxSteps) then
break
/* Terminate the testing process */

end

end
Perform additional checks in the SUT. /* Additional

Checks: Same as above */

Save information related to the testing process in CSV
file. /* Information Saved: Same as above */

if (Testing process has been terminated) then
Save goal status in CSV file.
/* Possible Goal Status: Same as above */

end

end

43

D. UTILITIES
In this section we list all utilities we created for the needs of
our study. The name of each implemented method is pro-
vided, as well as a brief description of its main functionality.

The main utilities we created and utilized for our project
purposes are listed below:

• ToTileCoordinate. This function gets a 3D coordinate
of type Vec3 and converts it to a discrete tile-world
coordinate (pair of x, y integers).

• ToVec3. It gets a pair of two integers (x, y) and con-
verts it to a Vec3 coordinate for 2D world, by turning
the z axis into 0. For example: int x, int y -> Vec3 (x,
y, 0).

• SameTile. Checks whether two Vec3 coordinates rep-
resent the same tile coordinate. Makes use of toTile-
Coordinate.

• Vec3ToNavgraphIndex. It gets a Vec3 coordinate and
a navigation graph. The function checks all vertices
in the navGraph and returns ones which correspond to
the given Vec3 coordinate. Makes use of sameTile.

• DebugPrintPath. Used for debugging. It prints useful
information during a playtesting session, such as the
first and last elements of the path that agent follows,
agent’s position, duplicate nodes existing in the path,
etc.

• ItemRestoreAmount. By getting the ID of a health
item, this method returns the amount of health points
that it restores.

• CheckHealthRestoreAmount. When a health item is be-
ing used, this method checks whether the agent’s life
was restored by the correct amount of health points,
based on the item’s restore amount.

• BestWeaponDmg. By getting the ID of a weapon item,
the method returns the attack damage of this weapon.

• CheckWeaponDmg. When the agent collects a weapon
item, this method checks whether the attack damage
of the weapon is a valid number. A valid number for
the attacking damage can be any positive number, but
it cannot be a negative or equal to zero value.

• CheckRestoreItemAmount. Similar to the method above.
When a health item is being collected, this method
checks whether the life restoration amount of the item
is a valid number. Once again, a valid amount for life
restoring can be any positive value, but it cannot be a
negative or equal to zero number.

• MonsterId. This method gets a Vec3 location on the
map as input. If there is a monster on this location, it
returns the ID of the monster.

• CheckDealtDamage. We created this method in order
to check whether the damage dealt on a monster is
the correct amount. Every time our agent attacks a
monster, the method checks the monster’s life before
and after the attack and compares the difference with
the attack damage of the currently equipped weapon.

• NumberOfNearbyMonsters. It returns the number of
the monsters which are standing right next to the agent.
The calculation is based on the agent’s position. In

order to be next to the agent, the distance between the
agent and the monster should be equal to 1 unit. This
method helps us understand how many monsters are
able to attack the agent at each timestamp.

• NearMonsterId. It returns the ID’s of the monsters
which are standing next to the agent.

• DxPlusDy. This method is based on the agent’s and
monsters’ location. It first sets a distance limit around
the agent, which we can define in advance. Then, it
calculates the distances between the agent and every
monster on the map. Finally, it returns the lowest dis-
tance between the agent and a monster. In this way we
are able to know how far from the agent is the closest
monster.

• MonsterAttackDmg. This method checks and returns
the attack damage of every monster in a level.

• CheckReceivedDmg. We implemented this method so
we can check whether the amount of damage our agent
receives by the monsters is correct. The method inves-
tigates the agent’s life before and after each attack and
compares it with the attack damage of the monster. For
the calculations, we also take into account the number
of the monsters surrounding the agent, (it is possible
for more than one monsters to attack the agent at the
same time), as well as the health point deduction for
every 16 steps the agent performs.

• CheckInvItemValues. For every item in the inventory,
this method checks whether their values are correct.
For health items, the health restoration amount must
be a positive number. Similarly for collected gold, the
amount should also be a positive number. Finally, for
weapon items, the attack damage has to be a positive
value, as well.

44

