
Thesis Project

Utrecht University

Department of Mathematics

Uniform Sampling of
Bi-colored Random Graphs

Author:
Andi Lin

Supervisor:
Dr. Ivan Kryven

Second Reader:
Prof. Rob Bisseling

Daily supervisor:
Dr. Rik Versendaal

February 11, 2022

Abstract

We propose a near-linear complexity algorithm for uniform sampling of simple random graphs with
bi-colored edges imposed by two given colored degree sequences. This problem is also known as
three-colour discrete tomography and is closely related to the sequence packing problem, both of
which are known to be NP hard in the general setting. That being said, our algorithm provides a
fast means of asymptotically uniform sampling for large graphs. The algorithm is applicable when
the maximum degree, dmax is of order O(m

1
4−τ) with m being the total number of red and blue

edges, and any small enough τ > 0.

Keywords: Random Graphs, Simple Graphs, Colored edges, Randomised Approximation Al-
gorithms

Symbols and Notations used

[n] All numbers 1 to n

δ, ε Arbitrary small real numbers

i ∼ j The edge connecting vertex i to j

i ∼B j The blue edge connecting vertex i to j

i ∼R j The red edge connecting vertex i to j

d̄B , d̄R Blue degree sequence and Red degree sequence

d̂B , d̂R Residual blue and red degree sequence

mB , mR Total number of blue edges, red edges respectively

kB , kR Number of blue edges, red edges formed at stage k

O(x), Ω(x), o(x) Different order of growth of functions, defined on page 4

E(X) Expectation of a (random) variable

P(X) Probability of an event X

qk Probability of removing an edge (or an edge not present at stage k)

pk Probability of keeping an edge (or an edge present at stage k)

M(G) Set of matchings that leads to G

N ∈ S(M) Set of all orderings, N , of a fixed matching M

GPK Expected state of the algorithm at stage k

Epk [X] Expectation of X within the Gpk model

Hm m-th Harmonic number

EBk , ERk Set of all suitable matchings at k-th stage of an ordering⊔
Disjoint union of sets

1

Contents

I. Introduction and Preliminaries 3
1. Introduction . 3
2. Notations . 4
3. Configuration Models . 6

(a) Bayati’s algorithm . 6
(b) Execution Tree . 7

II. Algorithm and Heuristics 9
1. Algorithm . 9

(a) Generalized Execution tree . 10
(b) Heuristics . 11

III.Analysis Part One: Coin-flip and offsets 13
1. Derivation of PB and PR . 13
2. Proposition of bias and offset . 14

IV.Analysis Part Two: Asymptotic results 18
1. Asymptotic Behaviour . 18

(a) Gpk model and its heuristics . 20
(b) Computing ψBk (and ψRk) . 21

V. Analysis Part Three: Concentration results 29
1. Partitioning S(M) . 30

(a) Technical definitions and theorems . 31
2. Alternate Partitioning of S′(M) . 32

(a) Rewriting A,B, C . 33
(b) Bounding E[f(N)] on the partitions . 34

3. Research limitation . 35

VI.Conclusion 36

2

Chapter I

Introduction and Preliminaries

1 Introduction

The theory of random graphs lies at the intersection between graph theory and probability theory.
Ever since its first definition by Paul Erdős and Alfréd Rényi [15], it has brought together different
fields of research, such as discrete mathematics, probability theory, theoretical computer science,
and statistical physics. Since then, it have been extensively studied since their introduction, and
became one of the central themes of contemporary mathematics, partly because they are closely
related to various random discrete structures such as random surfaces, random maps, random
matrices, random satisfiability problems[12]; and these mathematical concepts have found very
natural applications in different real life problems. An example would be analysis of human inter-
actions and communication where one of the oldest and best-known examples is the ‘six degree of
separation’ phenomenon describe any two people can be connected by a chain of acquaintances on
average six persons long.

A graph is simple if it has no self loops and multi-edges and a degree sequence is graphical if
there is a graph that satisfies it. Erdős and Gallai provided a necessary and sufficient conditions
for a finite sequence of natural numbers to be the degree sequence of a simple graph [10]. The
study of generating graphs satisfying a degree is an interesting, especially in the areas of hypothesis
testing. Hence formally, one could ask the following related problem:

1. Given the sample space of all graphs that satisfies a given degree sequence, can we ensure we
sample only the simple graphs?

2. Can we perform the sampling uniformly ?

One possible way to solve question one is to use rejection sampling with respect to the configuration
model. In essence, this naive method constructs a graph that satisfies the degree sequence, however
we reject the output whenever there is an multi-edge or self loops. According to a result by [4],
this method is exponential in (the square of) the average degree, which is not ideal. So what
we learnt is that enforcing simplicity in sampling is not a trivial problem and there have been
numerous research undertaken to resolve this. Two such methods are the Markov Chain Monte
Carlo (MCMC) algorithms that approximate the desired sample by taking the last element of
an ergodic Markov chain [16][6][11][17][1] and Fast sequential construction algorithms that build
a graph by placing m edges one-by-one, starting with an empty graph[13][3][2]. Both methods
greatly improve in terms of complexity as both have polynomial (in fact linear) time complexity
with respect to the degree sequence. However in this thesis we are mainly interested in the latter.
Steger and Wormald’s algorithm [18] samples from regular graphs and the algorithm by Bayati,
Kim and Vu[13] generalizes it further to arbitrary degree sequences while still maintaining linear
complexity with respect to the number of edges. However these algorithms only solve the first
problem posted. The one downside is that the proposed algorithm only achieve uniform sampling
asymtoptically, meaning the bias and the error of the sampling as n (or number of edges) tend to
positive infinity.
In this thesis we will focus on generalizing the algorithm by Bayati, Kim and Vu[13] by generalizing
the algorithm to receive two input sequences-a blue and red sequence. Specifically we will sample

3

a simple graph with colored edges satisfying the input sequences. At the end we will show that
the run-time of the algorithm is still linear in n (or the number of edges) while still achieving
uniformity asymptotically.
Perhaps as a starting motivation for this thesis, we can revisit the context of human interactions
and connectivity. We know that any two people can be connected by a chain of acquaintances on
average six persons long. But one can also decide to impose conditions like social status, financial
standings, gender, races etc and investigate how it affects connectivity between individuals.
The thesis will be structured into six core chapters, beginning with the preliminaries and notation.
From there we will formally introduce the notion of configuration model and the modification
proposed by Bayati, Kim and Vu [13] to generate simple graph. In chapter two, we will propose a
more generalize version of [13] and explore the relevant heuristics. Chapter three, four and five will
be a three part analysis with the focus on investigating the asymptotic behaviour of our algorithm.
We then end off with a conclusion to summarize our findings and possible future works. Last we
wish to acknowledge the admirable work of [7] who not only worked on the directed version of the
algorithm by Bayati, Kim and Vu [13], but also serves as the basis of inspiration for this thesis.

2 Notations

We will begin by introducing some important notations and preliminaries that will be used through-
out the thesis. As we proceed deeper into the chapters, new notations will be introduced as new
concepts and definition arise.

We start by defining a graph. A graph G is an ordered pair (V,E), where V is a set of n vertices
and E ⊂ V × V is the set of edges connecting the vertices. We use vi ∼ vj to denote the ordered
paired (vi, vj) which represents vertex i being connected to vertex j.
A graph G is undirected if for every vi, vj ∈ V, vi ∼ vj ⇐⇒ vj ∼ vi. Since there are n vertices in a
graph, for simplicity, we will denote each vi ∈ V by simply i ∈ [n], meaning the i− th vertex of G.
In the future chapters, we will frequently be performing summation indexed by edges. Example as
follow: ∑

i∼j
1 = m =

1

2

∑
i∈[n]

di

This example illustrate a simple counting of total number of edges in a graph G, which we will
denote by m, from here on out. Finally we say a graph is simple if there are no self loops and for
every i 6= j, there is at most one edge connecting i to j.

Figure I.1: Example of self-loops and multiedge in an undirected graph

In this thesis, unless otherwise stated, we will assume all graphs that we fixed to be undirected
and simple. Every i ∈ [n] has an associated degree di, which is the number on edges connecting
to it. Hence a degree sequence of length n is of the form (d1, . . . , dj , . . . dn), where each di is the
degree of i. Throughout the thesis, we will denote this by d̄. Naturally when given d̄, one might
ask if there is a graph G such that each vertex i has precisely di many adjacent vertices.If there
is, we then say G satisfies the degree sequence d̄ and that the degree sequence is graphical.

4

Figure I.2: Example of a graph satisfying the degree sequence (2, 2, 2)

In our thesis, we are interested in two degree sequences differentiated by the colors blue and red
. Specifically we have the degree sequences d̄B = (dB1 , . . . , d

B
n) and d̄R = (dR1 , . . . , d

R
n) where each

i ∈ [n] has dBi many adjacent vertices connected via a blue edge and dRi many red edges connected
through a red edge. This meant that we have the following:

di = dBi + dRi

d̄ = d̄B + d̄R

With the introduction of colored edges, we would then have the need to indicate if i and j is
connected via a blue edge or red a red edge. We will use i ∼B j and i ∼R j to denote vertex
i being connected to vertex j via a blue or red edge respectively. Like before, in the upcoming
chapters, we will be frequently performing summation indexed by blue and red edges.∑

i∼Bj
1 = mB =

1

2

∑
i∈[n]

dBi

∑
i∼Rj

1 = mR =
1

2

∑
i∈[n]

dRi

The above example illustrate a simple counting of blue and red edges using the notation we
introduced. Since the number of blue edges is mB and the number of red edges is mR, we get that

m = mB +mR

We say that a two colored degree sequence is satisfiable if there is a there is a graph G such that
each vertex i has precisely dBi adjacent vertices via blue edges and dRi adjacent vertices via red
edges. We will sometimes refer to such a G as a bi-colored edged graph. Finally we will assume
throughout the thesis the following

• mB and mR are of the same order as m. Hence, mB ,mR = O(m)

• The maximal blue and red degree is of the same order as dmax = Max (di)i∈[n]

In future chapters, we will be performing detailed analysis on some on the algebraic expressions.
In particular, we will be comparing the growth rate between functions f and g. Thus we will be
introducing the following definition.

Definition. We say f(x) = O(g(x)) if and only if there exist a constants and C > 0 and a real
number x0 such that

|f(x)| ≤ C|g(x)|

for all x ≥ x0.

Furthermore, We say f(x) = o(g(x)) if and only if for every positive ε > 0 there exists a real
number x0 such that

|f(x)| ≤ ε|g(x)|

for all x ≥ x0.

Intuitively one may view the former definition as saying f ’does not grow faster than’ g and
the latter definition as f ’grows strictly slower than’ g.

Remark 1. One can also say f ’grows at least as fast as’ g with the definition f = Ω(g(x)).

5

3 Configuration Models

The first and perhaps most important definition that we will introduce is the notion of config-
uration model. Intuitively, a configuration model is nothing more than a (random) graph that
obtained through a random matching of half edges. We will go into details on the specifics in a
while, but the main caveat is that the process accepts input of a degree sequence d̄ which is fixed
beforehand, and its main goal is to construct a G that satisfies such a d̄. Hence, it is not hard to
see why configuration model lays the foundation for all future algorithm and analysis in this thesis.

We will now begin explaining what exactly this random matching process entails. First let us
begin with just one degree sequence d̄, and without loss of generality assume that each di > 0.
The reason being if di = 0, then vertex i is isolated and hence not relevant in the construction.
Next to each vertex i, we associate di many half-edges, denoted by wi to it. A half edge of i only
becomes an (full) edge when paired with another half-edge of j, connecting i to j.

Figure I.3: Example of half edges and matchings

The above example concerning the degree sequence (3, 2, 1, 4, 2, 2) shows the assigned half-edges
to the vertices and we see on the right picture that we paired one half edge of vertex 1 to another
half edge of vertex 4, forming an edge connecting these two vertices. Now let ln be the total number
of half-edges assigned, the randomness of the process comes into play when we consider pairing the
half-edges in a uniform way. Meaning that by fixing one half edge wi of vertex i, with probability

1
ln−2k we paired it with another arbitrary half-edge of our choice at the k-th iteration of the process.

We repeat this random matching process for ln
2 iterations, where at each stage after pairing,

the half-edges are removed from the list of half-edges that need to be paired. The resulting graph
G is called the configuration model with degree sequence d̄, abbreviated as CMn(d̄).

(a) Bayati’s algorithm

The matching process described by the configuration model this does not exactly provide the
answer to our problem if we insist on the output being a simple graph as the process we describe
will likely produce a multigraph - a graph with self loops and multi-edges. In fact, a result by [14]
shows that the probability of the process in configuration model producing a simple graph is in
essence

P(CMn(d̄) = simple) ∝ e−λ
S
n−λ

M
n

Here λSn , λ
M
n are both proportional to the degrees, di’s, of the degree sequence. Thus what this

means is that the bigger the values of di’s the more unlikely we are able to produce a simple graph
from the process.

However, the solution to this conundrum turns out to be quite elegant, as we need only to insist
that at each iteration, we only focus on pairing vertices i 6= j that have no edge connecting them.
The only caveat is that we can can no longer do the pairing uniformly. This idea was explored and
proposed in [13]’s thesis, and the following is the proposed algorithm.

6

Algorithm: Graph sampling

Input : n-length degree sequence d̄
Output : G satisfying the input degree sequence or output failure

1. Let E be the set of edges formed. Let d̂ = (d̂1, . . . , d̂n) be a vector of n integers.

Initialize E to empty set and d̂ = d̄.

2. Choose two vertices vi, vj ∈ V with probability proportional to d̂id̂j(1− didj
4m

)
among all pairs vi, vj with i 6= j and {vi, vj} /∈ E.

3. Add {vi, vj} to E and decrease d̂i and d̂j by 1.

4. Repeat step 2 until no more edges can be added

5. If |E| < m, output FAILURE. Otherwise output G = (V,E).

Perhaps it is worthwhile to explore some of the heuristics in this algorithm, in particular step
2 of the algorithm. The first thing to note is that the algorithm it no longer allows for arbitrary
matching between half edges, which is reflected by the checking for {vi, vj} /∈ E. However if we
choose to maintain uniform matching of half-edges and proceed to step 3 at this point, this will
result in a bias during the sampling. Consider the following:

Figure I.4: Vertex 1, 2 with high degree

The above diagram illustrates vertex 1, 2 with very high degree (compared with other vertices).
Now if we were to match half edges uniformly, then very likely we will end up matching a half edge
w1 of vertex 1 with another half edge w2 of vertex 2 as shown in the diagram. This will result in
a bias towards graphs containing the edge (v1, v2). It is precisely because of this reason, that we

have to offset this bias in the latter step of step 2, which is reflected by the term d̂id̂j(1 − didj
4m).

We will explain in detail how such a bias offset is being derived in chapter III.

It is shown in the paper by [13] that when given a graphical degree sequence d̄, the probability of
failure due to mismatching of half-edges tends to 0 asymptotically as the number of edges, m tends
to ∞. This means that if a given d̄ (with sufficiently large degree sum) produces a FAILURE
output, then the algorithm by [13] provides statistical evidence that such d̄ is in fact not graphical.
Now we shall move on to the next important notion in our thesis - execution tree.

(b) Execution Tree

An Execution tree is an important tool to help us analyze and understand the (asymptotic) analysis
of algorithms in the upcoming section, and it is a tool to study the algorithm proposed in [13]. In
essence, a execution tree, T ,is a data-structure that keeps track of all possible states of the partial
graph by stage k. As an example, let us consider the execution tree when we run the algorithm
with input sequence (1, 2, 1)

Now node I would be the initial state with no pairings of half edges, and nodes II, III, IV, V
would then store the following possible states of the partial graph after one matching of half-edges
has been performed; do note that the half-edges are labelled.

7

So by viewing all states of the algorithm in terms of an execution tree, it makes it much easier to
analyze the algorithm at each stage k as every path from the root to any node in stage k represents
one way to form a subgraph. In fact if we were to go back to the topic of biases caused by uniform
matching of half-edges, this fact can be reflected in the execution tree, T . Consider the following
arbitrary execution tree T .

Each path from the root to the leave will represent one graph G, and the edge connecting the
parent to its child is weighted by pk defined to be probability of transitioning from the parent state
to the children state.With this, the probability of obtaining such G is simply by multiplying (and
possibly summing) the relevant pk’s from the root to the leave(s) corresponding to G. Suppose we
perform uniform matching of half edges, then one can verify there is bias towards certain graph
by simply computing the probability of reaching certain leaves. Conversely, to obtain uniform
sampling, the problem becomes ensuring that every path to the leave(s) corresponding to G has
equal total weight. This idea will actually be used in the upcoming section when we are deriving
the bias and the offsets for the generalized algorithm that we will propose.

Remark. To be more explicit, technically there is one more nodes in the execution tree in the
above example if we consider pairing the half edge of vertex 1 to the half edge of vertex 3. But we
omit this in the illustration as we only intend to demonstrate the key idea of what an execution
tree does - the storing of states/partial graphs up to stage k.

Before we end the chapter, it is worth pointing out that the algorithm by [13] only samples
graph that satisfies one degree sequence uniformly at an asymptotic level. We however wish to
generalize it one step further for it to sample graphs to satisfy two degree sequences.

8

Chapter II

Algorithm and Heuristics

In this chapter we will formally introduce our proposed generalization of the algorithm by [13]. As
we proceed deeper into the chapter, we will discuss the related heuristics and a more generalized
execution tree induced by our algorithm. Finally we end the chapter by formerly stating the main
theorem about our algorithm - uniform sampling of bi-colored edged graphs that satisfies two
colored degree sequences.

1 Algorithm

The algorithm of [13] only solves half of our problem as the input is a single degree sequence d̄. We
require an algorithm that accepts two (colored) degree sequences. If we do not want to reinvent
the wheel, it would be natural for us to try to generalize the algorithm in [13]. Hence we propose
the following modification to the algorithm.

Algorithm: Bi-colored graph sampling

Input : n−length Red degree sequence d̄R and Blue degree sequence d̄B

Output : G satisfying the input degree sequences or output failure

Let EB , ER be the set of Blue edges and Red edges respectively. Let d̂B = (d̂B1 ,, d̂Bn) and

d̂R = (d̂R1 ,, d̂Rn) be two vectors of n integers.

1. Initialize EB , ER to empty set and d̂B = d̄B , d̂R = d̄R.

2. if there are i, j, s.t. d̂Bi > 0, d̂Rj > 0 then
P ∼ Uniform[0, 1]

else if for all i, d̂Bi = 0 and there is j s.t. d̂Rj > 0 then
P=1

else if for all j, d̂Rj = 0 and there is i s.t. d̂Bi > 0 then

P=0;
else

Go to step 4;
end

3. if P ≤ mB
m

then

a Choose two vertices vi, vj ∈ V with probability proportional to d̂Bi d̂Bj (1−
dBi dBj
4m

) among all pairs vi, vj with

i 6= j and {vi, vj} /∈ EB , ER.

b Add (vi, vj) to EB and decrease d̂Bi and d̂Bj by 1.

c Go to step 2

else

a Choose two vertices vi, vj ∈ V with probability proportional to d̂Ri d̂Rj (1−
dRi dRj
4m

) among all pairs vi, vj with

i 6= j and {vi, vj} /∈ EB , ER.

b Add (vi, vj) to ER and decrease d̂Ri and d̂Rj by 1.

c Go to step 2

end

9

4. if |EB | < mB or |ER| < mR then
Output FAILURE

else
Output G = (V, EB , ER)

end

The proposed algorithm follows a very similar structure to the algorithm of [13], with the key
difference being step 2 and step 3. Now let us compare it with step 2 of the algorithm by [13]. In
the algorithm by [13], since there is only one degree sequence d̄, so any graph G that satisfies d̄
will have single colored edges. This means during the construction process, we know at by the end
of k-th iteration, there will be exactly k many single colored edge(s) formed.
However in our case of two colored degree sequences, at each k-th iteration, we have to decide
whether we are going to form a blue edge or red edge. We have decided to propose that we make
this decision in a probabilistic manner instead of deterministic. The reason for this will be elabo-
rated in subsection (b).

The next thing to note is the difference in interpretation of the out FAILURE between the
algorithm by [13] and our proposed algorithm. We have discussed in subsection (a) that an output
of FAILURE is statistical evidence that the given (single) degree sequence d̄ is not graphical. In
our case, our algorithm is less conclusive in that regard as a FAILURE in our case only provide
evidence that there is no graph G that can satisfies the two colored sequence simultaneously,
however we cannot conclude whether or not the individual degree sequence is graphical.
The next and perhaps the most noteworthy difference is that of the execution tree. Since the
new execution serves as visual foundation for all future analysis, we will discuss it formally and in
detail.

(a) Generalized Execution tree

Before we delve into the heuristics and analysis of our algorithm, it is vital that we spend some
time to analyze the new execution tree since it serves as the main tool to model our algorithm up
to each stage k ≤ m and is heavily used in chapter III.

To help understand the new execution tree, let us run the our algorithm with the input colored
sequences d̄B = (0, 1, 1), d̄R = (2, 1, 1). We will get the following partial execution tree T at depth
1.

In the diagram above, the red arrow represents forming a red edge with probability mR
m , likewise

for the blue arrow. Nodes II to V II store the following states of the algorithm.

Figure II.1: Execution tree nodes

10

We now draw our attention to node IV. Observe that there is now no way to produce a graph

G that satisfies the residue red degree sequence d̂R = (2, 0, 0) and residue blue degree sequence

d̂B = (0, 1, 1) and hence our algorithm will output FAILURE. Now compare this to the execu-
tion tree of the algorithm by [13]. Without colors, node IV is still able to output a valid graph
satisfying the uni-colored degree sequence (2, 2, 2).

So the first difference is that the new algorithm has fewer nodes that leads to successful output,
however, what is more important is perhaps the reason why this is the case. The crux of this issue
lies with the order in which we decided to form our blue or red edges. Using II.1 again, we see
that if we form a blue edge first, we will always have a successful output but this is not the case if
we start with forming a red edge. This provide a good intuition that the ordering of the formation
of the edges directly influence the success rate of the algorithm. In fact, the ordering also affects
uniformity of the sampling process, this will be thoroughly explored in the upcoming chapters.

Now the next thing to take away from the execution tree is that it is possible for multiple leaves
to store the same graph G that satisfies the input. In fact using our example d̄B = (0, 1, 1), d̄R =
(2, 1, 1), there is exactly one graph that satisfies it, so this means the leaves of the execution tree
must all store such a graph. So now suppose the input blue and red sequences are graphical, hence
there is a graph G that satisfies the sequences. One could ask then how many leaves stores such a
G?

Lemma 1. For any G that satisfies d̄B and d̄R, the size of leaves in the execution tree that stores
G is m!

∏
i∈[n]

(dBi !)(dRi !).

Proof. We know there are m! ways for the edges to be form. Once an order is fixed, for each i,
there are (dBi !)(dRi !) ways for the half-edges of i to be paired, and each way represents a path from
the root leading to the leaves storing G. Hence we have that the total number of leaves storing G
is m!

∏
i∈[n]

(dBi !)(dRi !).

Remark. From the above lemma, one sees that the number of leaves is actually independent of G
and only depends on the degree sequences.

(b) Heuristics

This section will be dedicated to the heuristics behind our proposed algorithm. Mainly, we will
discuss in detail the motivations behind some of the steps in our proposed algorithm. We will
start by addressing the elephant in the room - why do we use probabilistic means to decide which
colored edge to form at stage k
II.1 shows us that the order in which the edges are formed directly affects how successful the
algorithm is in generating a graph that satisfies the input. This would motivate the question on
how do we come up with a suitable ordering of red and blue edges so that it not only maximizes
the success rate but also generates all possible graphs uniformly at random.

However coming up with such a deterministic sequence of blue and red is not a trivial task, as
the order has a huge impact on the uniformity. To illustrate this, let us simplify the matter by
once again using uniform matching of half-edges. Consider the following picture:

The above picture focuses on vertices 1 and 2 among the n vertices, where they have a much
higher blue and red degree compared to other vertices. Now if we decide (deterministically) to
form a blue edge here, then there will be a bias towards graph containing a blue edge between
vertices 1 and 2. The same goes if we decide to form a red edge. This conundrum motivates the
probabilistic choice between blue and red edges, as we are essentially flipping an unfair coin with

11

probability PB of obtaining blue and PR of obtaining red . This then reduces the problem from
choosing a suitable ordering of red and blue to choosing a suitable probability weight for the coin
flip.

Remark. The example given above also provide an intuition on why it is not wise to perform the
algorithm by [13] on the blue degree sequence first, follow by the red degree sequence. Because this
essentially is equivalent to the following ordering:

(blue, . . . , blue, red, . . . , red)

where the blue edges appear mB times first, follow by the red edges appearing mR times after.

It turns out there is a natural choice for PB and PR which we will derive in the upcoming
section. However before we proceed, it might be worthwhile to consider why it is not wise to set
PB = PR = 1

2 straight away at the start. Let us first consider the scenario where mB � mR. If we
set PB = PR = 1

2 in this case where there are much more blue edges than red edges, then we are
forming red edges much more often than required. The same can be said if after some k iterations
the remaining red edges becomes much more than the remaining blue edges. This motivates the
idea that a good choice of PB and PR would be one that respects the remaining colored edges, and
this idea will be explored in the upcoming section.

12

Chapter III

Analysis Part One: Coin-flip and
offsets

The main goal of this section is to determine what would be a suitable value for PB and PR
using the intuition discussed in subsection (b). After which we will give a proper treatment to the
derivation of the bias when performing the matching of half edges by following similar technique
used in [13]. It should be noted that the derivation and analysis taken will have an asymptotic
focus, meaning when m is sufficiently large.

1 Derivation of PB and PR

The main goal of this section is to determine what would be a suitable value for PB and PR, defined
to be the probability forming a blue edge or red edge in each iteration of the algorithm. At the
end of subsection (b), we analyze why it is not ideal to propose a fair coin flip right off the start.
We also discussed that a good choice of PB , PR would be one respects the remaining colored edges.
Now let kB be defined as the number of blue edges formed by the end of stage k, with kR defined
symmetrically. Then the following would be a reasonable, albeit naive definition.

P kB :=
mB − kB
m− k

Here P kR = 1−P kB is defined symmetrically. We now note that kB and kR is a random variable for
k > 0. This means that for k > 0, P kB and P kR is also random. As mentioned, we are interested in
asymptotic results; which is why at this point it is worthwhile to investigate around which value
does P kB and P kR concentrates. The first step to do this is to make use of the notion of a martingale.

Definition. [5]Martingale is a discrete-time stochastic process (i.e., a sequence of random vari-
ables) X1, X2, X3, ... that satisfies for any time n,

• E[|Xn|] <∞

• E[Xn+1|X1, . . . , Xn] = Xn

That is, the conditional expected value of the next observation, given all the past observations, is
equal to the most recent observation.

With this, it is now reasonable to claim that P kB and P kR is in fact a martingale since we are
choosing to form a blue or red edge in each stage k base on their respective ratio of unpaired
half-edges to the total amount of unpaired half edges, which is why in expectation we should see
P kB and P kR follow the properties of a Martingale. Hence define Xk := P kB

Claim. For all 0 ≤ k ≤ m− 1, Xk is a Martingale.

Proof. Clearly E[Xk] <∞. Now E[Xk+1|Xk] = Xk(mB−kB−1
m−k−1)+(1−Xk)(mB−kBm−k−1) This is because

by definition Xk is the probability of entering the blue case and hence 1 − Xk is the probability
of entering the red case. Next by substituting the definition of Xk, we arrive at the expression
(mB−kBm−k)(mB−kB−1

m−k−1) + (1− mB−kB
m−k)(mB−kBm−k−1). All that remains is to simplify this expression and

13

we arrive at the equation E[Xk+1|Xk] = Xk. The proof that P kR is a martingale is completely
symmetric.

This simple yet extremely useful result tells us one very important fact, that is the ratio of
un-formed blue edges to the total remaining un-formed edges is expected to remain constant.
Furthermore, by using the law of total expectation, we arrive at the following.

E[E[Xk+1|Xk]] = E[Xk+1] = E[Xk] = . . . = E[X0] =
mB

m
= P 0

B := PB

So what we have arrived at is that the the expectation of P kB is mB
m . The next step is to show that

in fact, P kB concentrates around its expectation. If this is true, then we arrive at a very natural
choice for PB (and PR). In order to show this concentration, we will make use of the following
theorem.

Theorem 1. [9][Azuma] Suppose {Xk : k = 0, 1, 2, 3, . . .} is a martingale and for all k, |Xk+1 −
Xk| ≤ ck. Then for all positive integers N and all positive reals ε, P(|XN − X0| ≥ ε) ≤
2 exp (−ε2

2
∑N
k=1 c

2
k

).

This is theorem by [9] is extremely useful in showing that P kB concentrates around its expec-
tation, which is precisely X0 in this case. And all we have to do now is to bound the difference
between P k+1

B and P kB , which we will show in the following lemma.

Lemma 2. Let Xk := P kB, then for all k, |Xk+1 −Xk| ≤ ck for some ck.

Proof. |Xk −Xk+1| ≤ |mB−kBm−k −
mB−kB−1
m−k−1 | = |

(m−k)−(mB−kB)
(m−k)2−(m−k) |. Since mB − kB is non negative,

we have that | (m−k)−(mB−kB)
(m−k)2−(m−k) | ≤

(m−k)
(m−k)2−(m−k) = 1

m−k−1 = ck.

With this and theorem by [9]. We see that with high probability (w.h.p) that P kB concentrates
around its expectation and thus this is a good motivation for us to set

P kB = . . . = P 0
B = PB =

mB

m

The case for P kR can be argued symmetrically.

Remark. Perhaps it is worthwhile to remark that the reason that it took some effort to justify our
choice of PB and PR is due to the fact that kB , kR is a random variable, that means a lot of times
we have to deal with its expectation and investigate how much its actual value deviates from it. We
will see a similar conundrum soon in section 2

2 Proposition of bias and offset

Now that we have proposed a choice for PB and PR, what remains is to propose a suitable set of
bias for choosing which vi, vj to form an edge with, for the reason that is discussed in subsection (a).
In order to motivate our choice, we will use similar technique as in [13]. The idea is that we start
off by assuming we form an arbitrary edge (red or blue) uniformly, then lets assume our algorithm
terminates successfully and output a G that satisfies the input red and blue degree sequence. So
fix such a G, we will then compute what is P(G), the probability that our algorithm produces such
a G in general. From there we derive the bias towards G and an offset for it.

Remark. Before we continue, we will remark that we will be working a lot with the expectation
of a random variable and use it as a motivation behind most of our proposed definitions or values.
However the formal justification for them will be discussed in the later chapters on the analysis.

The first question that is perhaps worth addressing is what is the residue blue / red degree or

unpaired blue / red half-edges of vertex i, which we will denote as d̂Bi and d̂Ri from here on. This
is because in the setting in which we match half-edges uniformly, the probability of there being
an edge (whichever color) connecting to vertex i is directly proportional to the respective residue
degree. However the residue degree is a random variable and hence we will investigate its value in
expectation.

14

Lemma 3. Let i ∈ [n], 0 ≤ k ≤ m− 1. If the matching of the blue half edges is done uniformly at
random, then

• The expected number of unpaired blue half-edges at the end of stage k for vi is dBi (1− k
m).

• The expected number of unpaired red half-edges at the end of stage k for vi is dRi (1− k
m).

Proof. Fix and i and k, the expected number of (total) blue edges formed is kPB . Since the
matching of half edges is done uniformly at random, the expected number of matched/paired half

edges for vi is kPB · d
B
i

mB
. Hence the expected number of unpaired half edges for vi is dBi −kPB ·

dBi
mB

.

Since PB = mB
m , the expression simplifies to dBi (1− k

m). The proof for the red case is completely
symmetric.

Remark 2. From the proof above, let qk = 1 − k
m . Observe that now qk can be viewed as the

probability that an arbitrary edge is not present by stage k. Further more observe that by our
choice of PB and PR, this probability becomes independent of the colors.

Now since we are interesting in the probability that our algorithm output a graph G which is
simple, it is then worthwhile to investigate how many ways are there to there for valid matchings
of half edges at stage k so that we have a successful output. As an example, the number valid
matchings of blue half edges is (

2mB − 2kB
2

)
−∆B

k (III.1)

Where
(

2mB−2kB
2

)
is the number of arbitrary ways that to match blue half edges at stage k and

∆B
k is the number of matchings of blue half edges at stage k that leads to blue self loops and blue

multi-edge.

Remark. blue multi-edge in our context, we are counting both the following cases:

The case for red is also the same symmetrically.

However in our example, the number of arbitrary blue and red pairings at stage k is a random
variable because kB and kR is a random variable. So once again, we will investigate its expectation.
In other words, we wish to know what is E[

(
2mB−2kB

2

)
]. A wishful thinking is that we could simply

push the expectation function into the choose function as follows

E[

(
2mB − 2kB

2

)
] =

(
2mB − 2E[kB]

2

)
However, the ”choose-2” function is not linear, which means that if kB and d̂Bi deviates from its
expectation even by a little, we would end up with more choices by a factor! Hence before we
proceed, we need to investigate how much the R.H.S of the equation deviates from the L.H.S. The
result can be phrase in terms of the following lemma.

Lemma 4. For each k ≤ m−m1−δ, where δ is small and positive, then w.h.p the following holds

• E[
(

2mB−2kB
2

)
] =

(
2mB−2E[kB]

2

)
+ o(m2)

Proof. We need to make use of Azuma’s inequality 1 once again. We will use the ck in the
proof of Lemma 2. Now let ε = (m − k)−1/2−τ/2 for some small τ > 0. Then by 1, this means

that P(|XN − X0| ≥ ε) ≤ 2 exp (−ε2
2
∑k
i=1 c

2
i

) ≤ 2 exp (−1/(m−k)−1−τ (m−k)2

2k/(m−k−1)2). Since asymptotically

m−k−1 ≈ m−k, we further simplify to 2 exp (−(m−k)1+τ

2k) ≤ 2 exp (−(m−k)1+τ

2m). Since k ≤ m1− 1

mδ ,

this means 2 exp (−(m−k)1+τ

2m) is at most 2 exp (−(m1−δ)1+τ

2m), which we can choose a suitable τ (that

15

depends on δ) so that the exponent goes to −∞.

So we know that with with low probability, |XN−X0| differs by more than (m−k)−1/2−τ/2. This
would imply with high probability (w.h.p), |XN −X0| is bounded by (m− k)−1/2−τ/2. Explicitly,
w.h.p, we have the following

|mB − kB
m− k

− mB

m
| ≤ (m− k)−1/2−τ/2

=⇒ |(mB − kB)−mBqk| ≤ (m− k)
1
2−τ/2

=⇒ (mB − kB) = mBqk + o(m)

Now to get the conclusion we want, we substitute (mB − kB) = mBqk + o(m) into
(

2mB−2kB
2

)
=

(2mB−2kB−1)(2mB−2kB)
2

Now we are ready to approximate the expected number of arbitrary matchings at stage k.

Lemma 5. For any k ≤ m(1 − 1
mδ

), if mB (and mR) is of O(m), then the expected number of
arbitrary matchings is asymptotically

• 2(mB)2(qk)2 as m→∞ for the blue case

• 2(mR)2(qk)2 as m→∞ for the red case

Proof. Once again we make use of Lemma 4 and we have that E[
(

2mB−2kB
2

)
] =

(
2mB−2PBk

2

)
+o(m2).

Next we will expand this expression as follows,(
2mB − 2PBk

2

)
+ o(m2) =

(2mB − 2PBk)(2mB − 2PBk − 1)

2
+ o(m2)

= 2m2
B(1− PBk

mB
− 1

2mB
)(1− PBk

mB
) + o(m2)

Since 1− PBk
mB

= qk, we get that 2m2
B(1− PBk

mB
− 1

2mB
)(1− PBk

mB
) + o(m2) = 2m2

Bq
2
k(1− 2m

mB(m−k) +
o(m4)

m2
B(m−k)2

). Finally since mB is of O(m), this means the last 2 terms → 0 as m → ∞, and with

that, we have the conclusion we want. The proof for the red case is completely symmetric.

Perhaps it is worthwhile now for a quick summary on what we achieved. We started by
investigating what is the number of valid matchings of half edges at a given stage k and we arrive
at equation III.1. From there we decide to estimate

(
2mB−2kB

2

)
by its expectation, and by Lemma 4,

we conclude that we can push in the expectation function into the choose 2 function at a cost of a
deviation of o(m2). After which we can finally come up with a approximation for the expectation
of
(

2mB−2kB
2

)
by Lemma 5. However we still need to come up with a good approximation for ∆B

k

in Equation III.1. Once again, we will estimate its value by its expectation, but for the moment
we will postulate that the following remark holds.

Remark 3. For each 0 ≤ k ≤ m− 1, the following holds

1. The expected number of blue self loops at stage k is ≈ 2m(qk)2λ(d̄B) where λ(d̄B) =

∑
i∈[n]

(d
B
i
2)

2m .
The red case is defined symmetrically.

2. The expected number of blue multi-edge at stage k is ≈
∑
i∼Bj

dBi d
B
j (qk)2(1− qk). The red case

is defined symmetrically.

With the above lemmas, we are ready to approximate P(G), where G is the output of our
sampling algorithm. Now let L(G) be the set of all leaves in the execution tree storing G. Next,
Let ξkR, ξ

k
B are the number of suitable blue matchings and red matchings in stage k respectively.

Then we arrive at the following,

P(G) =
∑
L(G)

m−1∏
k=0

1

ξkR + ξkB

= |L(G)| ·
m−1∏
k=0

1

ξkR + ξkB

16

By Lemma 1, we know the expression for |L(G)| explicitly and that it is actually independent of
G. So all that remains is to approximate ξkB and ξkR. Once again, we will approximate them by
their expectation by using Lemma 5, Remark 3. With this, we arrive at

ξkB ≈ 2m2
Bq

2
k − 2mq2

kλ(d̄B)− 4mBq
2
k(1− qk)γBG

where γBG =
∑
i∼Bj

dBi d
B
j (qk)2(1 − qk)/4mB and ξkR is evaluated symmetrically. Thus we have the

following:

ξkB + ξkR = 2m2q2
k · [P 2

R + P 2
B −

1

m
(λ(d̄B)) + λ(d̄R)))− 2(1− qk)

m
(PBγ

B
G + PRγ

R
G)]

Since P 2
B + P 2

R = (PB + PR)2 − 2PBPR = 1− 2PBPR, Hence

m−1∏
k=0

1

ξkB + ξkR
=

m−1∏
k=0

[1− 1

m
(λ(d̄B)) + λ(d̄R))− 2(1− qk)

m
(PBγ

B
G + PRγ

R
G)− 2PBPR]−1

= exp [−1 ·
m−1∑
k=0

ln (1− 1

m
(λ(d̄B)) + λ(d̄R))− 2(1− qk)

m
(PBγ

B
G + PRγ

R
G)− 2PBPR))]

Now we will use the approximation ln (1− x) = x + O(x2). In our case, the terms in O(x2) → 0
as m→∞, with the exception of the term (P 2

BP
2
R). Thus we can rewrite the above as

m−1∏
k=0

1

ξkB + ξkR
≈ exp [

m−1∑
k=0

1

m
(λ(d̄B)) + λ(d̄R)) +

m−1∑
k=0

2(1− qk)

m
(PBγ

B
G + PRγ

R
G) + f(PB , PR))]

In which f(PB , PR) =
m−1∑
k=0

2PBPR + 4P 2
BP

2
R. At this point, it would be helpful to observe that the

only term in the evaluation of P(G) that depends onG is the factor exp [
m−1∑
k=0

2(1−qk)
m (PBγ

B
G + PRγ

R
G)],

the rest of the factors only depends on the input red and blue sequences. This means the proba-
bility of outputting G, and hence the bias, is only dependent on that factor. Evaluating further,
we arrive at the following:

exp [

m−1∑
k=0

2(1− qk)

m
(PBγ

B
G + PRγ

R
G)] ≈ exp

∑
i∼Bj

dBi d
B
j

4m

 · exp

∑
i∼Rj

dRi d
R
j

4m

So what this means is that adding one blue edge connecting i, j in G produce a bias of exp [

dBi d
B
j

4m].

Hence at every stage we will offset the probability connecting i, j by exp [
dBi d

B
j

4m]−1 ≈ 1 − dBi d
B
j

4m .
The same reasoning applies to the red case.

Before we conclude this chapter, it is useful what we have achieved. The goal of this chapter is
to give motivation and intuition behind our choice of the weights for the coin-flip PB , PR and the
bias-offsets when performing the matchings of colored half-edges. However, the main goal of this
thesis is to show that given our definitions, we can show the following theorem

Theorem 2. For an arbitrary τ > 0 and for any degree sequences d̄B , d̄R with maximum degree of
O(m

1
4−τ), our algorithm generates any graph G that satisfy the aforementioned degree sequences

with probability within 1± o(1) factor of uniformity.

17

Chapter IV

Analysis Part Two: Asymptotic
results

The work so far is mostly heuristic in nature, where we provide motivation on the proposed
generalization of [13]’s algorithm. However we still need to prove that our generalized algorithm
does in fact generate all graphs that satisfies the input colored degree sequences uniformly at
random as m → ∞. The goal in mind is formally stated in Theorem 2. However the proof of
Theorem 2 is an endeavor, and we will summarize, in essence, the key milestones involved as
followings

Milestones 1.

1. Analyze our algorithm with the proposed value, and identify expressions that will affect uni-
formity of the sampling

2. Propose an approximation for the expression in step 1

3. Show that our approximated value proves Theorem 2

4. Prove that the actual expression in step 1 concentrates around our proposed approximation

At this point, the steps described will seem convoluted, and it will be our main focus to shed
light on them. To this end, we will omit some cumbersome computation that does not provide any
extra useful insights on the main ideals of the different notions that we will introduce.

1 Asymptotic Behaviour

We will start by tackling the first step in 1. Formally we will be showing the following proposition.

Proposition 1. For all for G that satisfies the input degree sequences, the probability of our
algorithm generating it can be written as

P(G) =
∏
i∈[n]

(dBi !)(dRi !)[
∏
i∼Bj

(1−
dBi d

B
j

4m
)
∏
i∼Rj

(1−
dRi d

R
j

4m
)]

×
∑

N∈S(M)

∏
0≤k≤m−1

1(
2mB−2kB

2

)
−ΨB

k (N) +
(

2mR−2kR
2

)
−ΨR

k (N)

for some values ΨB
k (N) and ΨR

k (N).

Proof. To begin proving the proposition, we use a similar technique as used in section 2. We
first wish to find an expression for P(G), where G satisfies the colored degree sequences, with
our proposed PB and PR and the relevant bias-offset now. So let M(G) be the set of all valid

18

matching of half-edges that lead to G. Observe that for any M,M ′ ∈M(G), M,M ′ differ only by
a permutation of the half edges belonging to each vertex i. So this means that

P(G) =
∑

M∈M(G)

P(M) =
∏
i∈[n]

(dBi !)(dRi !)P(M)

for a fixed M ∈ M(G). The reasoning is similar to that used in Lemma 1. So we reduce the
problem to finding an expression for P(M). The next observation is that once we fix a matching
M , we can denote S(M) to be the order in which the red/blue edges occurs. This further reduces
our problem in the sense that we can rewrite P(M) =

∑
N∈S(M) P(N).

This is where our real work begins as we proceed to find an expression for P(N). Now for each
N = (e1, . . . , em), P(N) is nothing more than

P(N) =
∏

0≤k≤m−1

P(ek+1 | e1, . . . , ek) (IV.1)

Now this can then be rewritten in terms of our algorithm. Let us first have the following definition.

Definition 1. EBk , E
R
k is the set of all possible blue and red pairings, respectively, after choosing

(e1, . . . , ek).

Then we can rewrite (IV.1)

P(N) =
∏

0≤k≤m−1

P(ek+1 | e1, . . . , ek) (IV.2)

=
∏

0≤k≤m−1

weight of ek
sum of weights of all other pairings in EBk and ERk

(IV.3)

=
∏
i∼Bj

(1−
dBi d

B
j

4m
)
∏
i∼Rj

(1−
dRi d

R
j

4m
)

∏
0≤k≤m−1

1

CB + CR
(IV.4)

Here CB =
∑

(u,v)∈EBk

d̂Bu d̂
B
v (1− dBu dBv /4m) and CR =

∑
(u,v)∈ERk

d̂Ru d̂
R
v (1− dRu dRv /4m).

However CB and CR are too cumbersome to work with and does not provide insights into
further analysis, hence we need to rewrite it further. Denote the number of unsuitable blue
matchings after choosing the edges after choosing (e1, . . . , ek) by ∆B

k , similarly for red . Now if we
focus on the factor ∑

(u,v)∈EBk

d̂Bu d̂
B
v

By definition of EBk , this means we are summing over all possible valid matchings to form blue
edges at stage k where we account for the different choices of blue half edges for each matching.

Then what this means is that
∑

(u,v)∈EBk

d̂Bu d̂
B
v can be written as

(
2mb−2kb

2

)
− ∆B

k . Using this

expression, and performing substitution into CB , one finds that CB can be written as
(

2mb−2kb
2

)
−

ΨB
k (N) where ΨB

k (N) = ∆B
k +

∑
(u,v)∈EBk

d̂Bu d̂
B
v (dBu d

B
v /4m). The red case, ΨR

k can be defined sym-

metrically.

Now combining what we know so far we arrive at the following:

P(G) =
∏
i∈[n]

(dBi !)(dRi !)[
∏
i∼Bj

(1−
dBi d

B
j

4m
)
∏
i∼Rj

(1−
dRi d

R
j

4m
)]

×
∑

N∈S(M)

∏
0≤k≤m−1

1(
2mb−2kb

2

)
−ΨB

k (N) +
(

2mr−2kr
2

)
−ΨR

k (N)

Which completes the proof of our proposition.

19

What comes next is that we now make use of the assumption we made in Theorem 2 that d̄B

and d̄R has maximum degree of O(m
1
4−τ), combined with the approximation 1 − x = e−x+O(x2).

We can conclude the following

P(G) =
∏
i∈[n]

(dBi !)(dRi !) e−γ
B
G−γ

R
G+o(1)

∑
N∈S(M)

∏
0≤k≤m−1

1(
2mb−2kb

2

)
−ΨB

k (N) +
(

2mr−2kr
2

)
−ΨR

k (N)

At this stage we are done with step one of 1, as the terms above that depend onG are γBG , γ
R
G ,Ψ

B
k (N)

and ΨR
k (N). As such, these are the terms that affect uniformity in sampling.

Now we are ready to tackle steps two and three in Milestones 1, where the first order of work cut
out for us is to come up with an approximation, ψBk , ψ

R
k , for ΨB

k (N) and ΨR
k (N). After which we

will show the following lemma regarding ψBk and ψRk .

Lemma 6. If dmax = O(m
1
4−τ), then with high probability, the following relation holds∏

0≤k≤m−1

1(
2mb−2kb

2

)
− ψBk +

(
2mr−2kr

2

)
− ψRk

∝ eγ
B
G+γRG+λ(d̄B)+λ2(d̄B)+λ(d̄R)+λ2(d̄R)+o(1)

Suppose we manage to prove Lemma 6, then this means we can substitute Ψk’s with ψk’s and
combining it with the expression we got for P(G) in Proposition 1, we see that asymptotically P(G)
is independent of G that satisfies the input degree sequences. This would then imply Theorem 2,
which is the goal of this thesis.

(a) Gpk model and its heuristics

The goal of at hand is to propose a good approximations ψBk and ψRk for ΨB
k (N) and ΨR

k (N).
Before we begin, we note that we will be making a few changes to the notation throughout this
(sub)section. The first is that since we are working with a fixed ordering N ∈ S(M), we will write
ΨB
k (N) as simply ΨB

k (likewise for ΨR
k). The next thing to note is that discussion is completely

symmetric between the blue and red case , and hence our discussion will only revolve around the
blue case.

Before we proceed to the computations, it is indeed worthwhile to have another discussion on
the the heuristic behind how we are going to define ψBk . First let us recall that ΨB

k = ∆B
k +∑

(u,v)∈EBk

d̂Bu d̂
B
v (dBu d

B
v /4m), where ∆B

k counts the number of unsuitable blue edges that can be

formed at stage k, and EBk is the set of suitable blue edges that can be formed after choosing the
edges (e1, . . . , ek) of N . Then ΨB

k is a random variable and naively we might just decide to take
it’s expectation as an approximation. However this is extremely difficult to compute, if we consider
the following

Figure IV.1: Stage k execution tree

Here the diagram depicts an execution tree up to stage k, and the nodes k1 to kz are the partial
graphs of G at stage k. Then for each partial graph stored in k1 to kz, it can have it’s own variation
of (the expectation of) ΨB

k ! Hence we need a more effective way to approximate ΨB
k . As it turns

out, we have another way of looking at this problem. Consider the following graph that satisfies
the sequence d̄B = (1, 1, 1, 1), d̄R = (2, 2, 2, 2).

20

So let’s assume that our algorithm output this graph after m = 6 iterations. Now one could
ask what would be it’s expected partial graph at, for example, stage 4 ?

Remark 4. In order for the question to make sense, one need to assume some kind of distribution
on S(M), which if we recall, is the set of all orderings of the edges of G. So throughout the rest of
the section, we will impose uniform distribution on S(M).

Turns out we can define the expected partial graph of G, as the outcome of the following steps:

1. Iterate through all edges, ei, i ∈ {1, . . . ,m}, of G

2. For each edge, ei:

• For some probability qBk we remove ei if it is blue .

• For some probability qRk we remove ei if it is red .

3. The end result would be the expected graph of G at stage k.

Perhaps what is really interesting to note about this process is that choice of qBk and qRk . If we
recall Remark 2, from our choice of PB and PR we can set qBk = qRk = qk = 1− k

m . Which means
the the process we just described becomes independent of the colors of the edges.

1. Iterate through all edges, ei, i ∈ {1, . . . ,m}, of G

2. For each edge, ei, remove ei with probability qk.

3. The end result would be the expected graph of G at stage k.

We will henceforth call this expected partial graph the Gpk model, where pk = 1− qk.

Remark 5. One might notice at this point is that by definition Gpk might not have exactly k edges
as Gpk is the result of m coin flips. In fact one can observe that if we look at all the possible Gpk
with exactly k edges, this is in 1− 1 correspondence with the nodes of the execution tree at depth
k. And the probability of Gpk having exactly k edges is bounded from below by the following lemma
due to [13]

Proposition 2. For all k, P(|E(Gpk)| = k) ≥ 1
n

Now let us summarize what we have done. By IV.1 we realize it is impractical to compute
the different possible variations of ΨB

k for each partial graph stored in node k1 to kz. So now we
instead propose to compute the expected value ΨB

k in the Gpk model, which is what we will define
ψBk to be.

(b) Computing ψB
k (and ψR

k)

With the discussion in subsection (a), we will now begin computing ΨB
k in the Gpk model. We first

need to perform some bookings as we rewrite the current definition of ΨB
k . From its definition, we

observe that ΨB
k can be written as ∆B

k + ΛBk where

• ∆B
k =

(
2mb−2kb

2

)
−

∑
(i,j)∈EBk

d̂Bi d̂
B
j

• ΛBk =
∑
i 6=j

d̂Bi d̂
B
j

dBi d
B
j

4m −
∑

(i,j)/∈EBk
i 6=j

d̂Bi d̂
B
j

dBi d
B
j

4m

21

Now by definition ∆B
k counts the number of unsuitable pairings which is simply the sum of number

of self-loops with multi-edges. We will denote them by ∆
(B,1)
k , ∆

(B,2)
k where

∆
(B,1)
k =

∑
i∈[n]

(
d̂Bi
2

)
(IV.5)

∆
(B,2)
k = ∆B

k −∆
(B,1)
k (IV.6)

Next we will also rewrite ΛBk as follows

4mΛBk =
∑
i 6=j

d̂Bi d̂
B
j d

B
i d

B
j −

∑
(i,j)/∈EBk
i 6=j

d̂Bi d̂
B
j d

B
i d

B
j

=
(
∑
i∈[n] d̂

B
i d

B
i)2 −

∑
i∈[n](d̂

B
i)2(dBi)2

2
−

∑
(i,j)/∈EBk
i 6=j

d̂Bi d̂
B
j d

B
i d

B
j

We will rewrite the three-terms as Λ
(B,1)
k ,Λ

(B,2)
k and Λ

(B,3)
k respectively. Thus we have

ΛBk =
(Λ

(B,1)
k)2 − Λ

(B,2)
k

8m
−

Λ
(B,3)
k

4m
(IV.7)

Since our goal is to approximate ΨB
k , it would be extremely useful to prove some bounds.

Lemma 7. For all k, the following holds:

1. ∆B
k ≤

(2m−2k)dmax
2

2. Λ
(B,1)
k ≤ dmax(2m− 2k)

3. ΛBk ≤
(2m−2k)2d2max

8m

Proof. For 1. we first try to bound the number of possible blue self-loops. At stage k, there are
at most 2m− 2k half-edges left regardless of color. Now fix an half edge that belongs to vertex i.
There are at most dmax − 1 other possible half-edges to pair with to form self loops. Thus total

blue self loops is bounded by 2m−2k(dmax−1)
2 . Next for the blue multi-edge, following the same

argument, we fixed one half edge of vertex i and another half edge of vertex j 6= i. Then there
are at most (dmax − 1)2 many ways to form double edges when i is already connected to j. So we

upper-bound blue multiedges by (2m−2k)(dmax−1)2

2 . Using the fact ∆B
k = ∆

(B,2)
k + ∆

(B,1)
k , we get

the bound that we want.

For 2., we have the following chain of inequalities: Λ
(B,1)
k ≤ dmax

∑
i∈[n] d̂

B
i ≤ dmax

∑
i∈[n] d̂i =

dmax(2m− 2k)

Finally for 3. By definition, ΛBk =
∑

(i,j)∈EBk

d̂Bi d̂
B
j

dBi d
B
j

4m ≤ d2max
4m

∑
(i,j)∈EBk

d̂Bi d̂
B
j ≤

d2max
4m

(
2m−2k

2

)
Now we are ready to begin to compute ψBk . Before we begin, we will use the subscript pk to

denote properties and computation performed involving our approximation model Gpk . Our first
tasks is to compute the terms in ΛBk and ∆B

k as defined in Equation IV.7 and Equation IV.5. The
computation can be summarized in the following lemma:

Lemma 8. For every k, the following holds:

i. Epk [∆
(B,1)
k] = (2m−2k)2

2 (λ(d̄B)
m), where λ(d̄B) =

∑
i∈[n]

(d
B
i
2)

2m

ii. Epk [∆
(B,2)
k] = (2m−2k)2

2 (k
∑
i∼j

(dBi − 1)(dBj − 1)/2m3)

22

iii. Epk [Λ
(B,1)
k] = (2m− 2k)

∑
i∈[n]

(dbi)
2

2m

iv. Epk [Λ
(B,2)
k] = (2m− 2k)2

∑
i∈[n]

(dBi)4

4m2 + 2k(2m− 2k)

∑
i∈[n]

(dBi)3

4m2

v. Epk [Λ
(B,3)
k] = (2m−2k)2

2 (
k

∑
i∼j

dBi d
B
j (dBi −1)(dBj −1)

2m3)

Proof.

i. For i. We first note that in the Gpk model, the probability of an edge to be removed is
qk = 1 − k

m . Now fix an i and consider any two arbitrary j, k(j 6= k) and consider the
following:

Only when edges e1 and e2 is removed, can we formed a self loop. Furthermore since G is
simple and and satisfies the input blue sequences, that means all the dBi many half-edges of

i are paired in a valid way. So there are
(
dBi
2

)
many ways for i to be connected to arbitrary

j, k. And for each ways, it is with probability (qk)2 that the edges are removed in the Gpk
model. Thus the expected number of self loops for vertex i in Gpk is

(
dBi
2

)
(qk)2. So now if we

sum over all i ∈ [n], we get the following

Epk [∆
(B,1)
k] =

∑
i∈[n]

(
dBi
2

)
(qk)2

= 2m(qk)2
∑
i∈[n]

(
dBi
2

)
2m

=
(2m− 2k)2

2
(
λ(d̄B)

m
)

where λ(d̄B) =

∑
i∈[n]

(d
B
i
2)

2m

ii. For ii., the proof is similar. Fix i, j and consider any two arbitrary k, l and consider the
following:

Then only when e1 remains and e2, e3 removed. Can we form a multiedge between i, j. By
the same reasoning as in i., there are (dBi − 1)(dBj − 1) ways for arbitrary k, l to be connected

to i and j via some e1 and e2. And with probability (qk)2 that they are removed from Gpk .
Furthermore it is with probability pk = k

m that the edge e1 = (i, j) remains. So summing over
all i ∼ j we get the following:

Epk [∆
(B,2)
k] =

∑
i∼j

k

m
(1− k

m
)2(dBi − 1)(dBj − 1)

=
(2m− 2k)2

2

k∑
i∼j

(dBi − 1)(dBj − 1)/(2m3)

23

Where the last equality comes from rewriting the first equality.

iii. For iii.), by definition Epk [Λ
(B,1)
k] =

∑
i∈[n]

dBi E[d̂Bi]. By Lemma 3 this is equal to
∑
i∈[n]

dBi (dBi qk),

which is exactly what we need.

iv. To prove iv. We need only to evaluate what is Epk [d̂Bi
2
] in the model of Gpk . However, this can

be rewritten as Epk [d̂Bi (d̂Bi −1)+d̂Bi] = Epk [d̂Bi (d̂Bi −1)]+Epk [d̂Bi] = 2Epk [
(
d̂Bi
2

)
]+qkd

B
i . However

Epk [
(
d̂Bi
2

)
] is the expected number of blue self loops for vertex i in Gpk , which we already shown

in i. Thus the expression further simplify to (qk)2(dBi)(dBi −1)+qkd
B
i = Epk [d̂Bi

2
]. Performing

subsition into Epk [Λ
(B,2)
k] will conclude the required result.

v. Finally for v. by definition one only needs to evaluate Epk(d̂Bi d̂
B
j) where i 6= j and (i, j) /∈ EBk ,

where EBk is defined in Definition 1. Now since i 6= j, d̂Bi d̂
B
j counts the number of ways to

match the residue blue half edges(degrees) of i to the residue blue half edges(degrees) of j
to form a blue edge. Since (i, j) /∈ EBk , then there must already be an edge (regardless of
color) present between i and j. Hence we are counting the number of ways to form multiedges
between i and j and the value is simply ii. of Lemma 8. Performing the relevant substitution
and we will arrive at the result needed.

Remark. The first two results of Lemma 8 justifies the choice we made in the approximation of
self loops and multi-edge in Remark 3. We will further remark that the first two results shows the
elegance of the Gpk model in which the dependence on the colors of the edges is weaken significantly.
Consider the proof of ii. If we are still heavily dependent on the colors, we would then need to split
into two cases of blue and blue each with a different probability of keeping/removing an edge.

At this point, technically, we are ready to define ψBk . However once again, we wish to rewrite
it even further in terms of algebraic bounds for the analysis that lies ahead. To achieve this, we
will first prove a simple technical lemma.

Lemma 9. For all i ∈ [n] and positive integer r, the following equation holds:∑
i∈[n]

(dBi)r =
∑
i∼Bj

((dBi)r−1 + (dBj)r−1) = O(mdr−1
max)

Proof. For the terms in
∑
i∼Bj

((dBi)r−1 + (dBj)r−1), we are summing (dBi)r−1, dBi many times. Sym-

metrically for (dBj)r−1. Hence∑
i∼Bj

((dBi)r−1 + (dBj)r−1) =
∑
i,j∈[n]

(dBi)r + (dBj)r =
∑
i∈[n]

(dBi)r

On the other hand,
∑
i∼Bj

((dBi)r−1 + (dBj)r−1) ≤
∑
i∼Bj

2(dmax)r−1 = O(mdr−1
max)

We can state formally what we wish to rewrite with the following lemma:

Lemma 10. For all k, the following holds:

• Epk [Λ
(B,2)
k /8m] = (2m−2k)2

2 (O(
d3max
m2) +O(

d2max
m2

2k
2m−2k))

• Epk [Λ
(B,3)
k /4m] = k(2m−2k)2

2 O(
d4max
m3)

Proof. The proof is simply by using Lemma 9 and Lemma 8,

Now we will formally define ψBk (and hence ψRk symmetrically) with the following lemma.

24

Lemma 11. For every k, the following holds:

ψBk = Epk [∆
(B,1)
k] + Epk [∆

(B,2)
k] + Epk [

(Λ
(B,1)
k)2 − Λ

(B,2)
k

8m
−

Λ
(B,3)
k

4m
]

=
(2m− 2k)2

2
(
λ(d̄B)

m
+

k
∑
i∼Bj

(dBi − 1)(dBj − 1)

2m3
+

(
∑
i∈[n]

(dBi)2)2

16m3
+ tk)

Where tk = O(
kd4max
m3 +

kd2max
(m−k)m2).

Proof. The proof is simply putting together terms from Lemma 8 and Lemma 10.

Now that we have finish defining ψBk (and ψRk) we have completed step two of Milestones 1.
The next task to complete to to show that our definitions satisfies the relation stated in Lemma 6.
To do that, we once again need a technical lemma for book keeping in the upcoming computations.

Lemma 12. For all k and dmax = O(m
1
4−τ), ψBk is bounded above by O(

d2max(2m−2k)2

2m)

Proof. We will use Lemma 9 on Lemma 11 to get that ψBk = (2m−2k)2

2 (O(dmax2m +
kd2max
2m2 +

d2max
16m +

kd4max
m3 +

kd2max
(m−k)m2)). Now using the fact that k ≤ m and that dmax = O(m

1
4−τ), thenO(

d2max(2m−2k)2

2m)

dominates all the linear terms written above.

Now we have defined ψBk , with ψRk defined symmetrically. We are now ready to prove Lemma 6
which we shall recall as followings

Lemma. If dmax = O(m
1
4−τ), then with high probability, the following relation holds∏

0≤k≤m−1

1(
2mb−2kb

2

)
− ψBk +

(
2mr−2kr

2

)
− ψRk

∝ eγ
B
G+γRG+λ(d̄B)+λ2(d̄B)+λ(d̄R)+λ2(d̄R)+o(1)

Proof. For simplicity we will use χBG to denote
∑
i∼Bj

(dBi − 1)(dBj − 1). The red case is denoted

symmetrically. We begin by first multiplying
∏

0≤k≤m−1

(
2mB−2kB

2

)
+
(

2mR−2kR
2

)
to Lemma 6. Then

we can rewrite the new equation as follows:

exp

m−1∑
k=0

log

1 +
λ(d̄B)+λ(d̄R)

m +
k(χBG+χRG)

2m3 +
(
∑
i∈[n]

(dBi)2)2+(
∑
i∈[n]

(dRi)2)2

16m3 + tk

(mB−kBm−k)2 + (mR−kRm−k)2 − 1
2m−2k −O(

d2max
m)

Now the key here is that we now use the fact that mB−kB
m−k and mR−kR

m−k is a martingale and hence
by azuma’s inequality, we have that w.h.p they are equal to PB and PR respectively. Now using
the fact that P 2

B + P 2
R = 1− 2PBPR Thus we are able to rewrite the equation as follows:

exp

m−1∑
k=0

log

1 +
λ(d̄B)+λ(d̄R)

m +
k(χBG+χRG)

2m3 +
(
∑
i∈[n]

(dBi)2)2+(
∑
i∈[n]

(dRi)2)2

16m3 + tk

1− 1
2m−2k −O(

d2max
m)− 2PBPR

= exp

m−1∑
k=0

log

1 +

(
1

1− 2PBPR

) λ(d̄B)+λ(d̄R)
m +

k(χBG+χRG)
2m3 +

(
∑
i∈[n]

(dBi)2)2+(
∑
i∈[n]

(dRi)2)2

16m3 + tk

1−
(

1
1−2PBPR

)(
1

2m−2k

)
−O(

d2max
m)

(
1

1−2PBPR

)

At this point, we observe that PBPR = O(1) because mB and mR are of same order as m, and
hence 1−O(1) = O(1). This help us to further simplify to the following

exp

m−1∑
k=0

log

1 +O(1) ·
λ(d̄B)+λ(d̄R)

m +
k(χBG+χRG)

2m3 +
(
∑
i∈[n]

(dBi)2)2+(
∑
i∈[n]

(dRi)2)2

16m3 + tk

1−O(1) ·
(

1
2m−2k

)
−O(

d2max
m)

 (IV.8)

we will make a technical claim to help simplify Equation IV.8.

25

Claim 1.
ψBk +ψRk

(2m−2k)2 ·
(

O(1)
2m−2k +O(

d2max
m) +O

((
1

2m−2k +O(
d2max
m)

)2
))

= O(
d4max
m2)

Proof. We first make use the of algebraic bound derived in Lemma 12 to rewrite the equation of
the L.H.S of our claim to the following

O

(
d2
max

m

)(
O(1)

2m− 2k
+O(

d2
max

m
) +O

((
O(1)

2m− 2k
+O(

d2
max

m
)

)2
))

Next we expand the squared terms to arrive at

O

(
d2
max

m

)(
O(1)

2m− 2k
+O

(
d2
max

m

)
+O

(
O(1)

(2m− 2k)2
+O

(
d4
max

m2

)
+O

(
d2
max

m(m− k)

)))
Now multiplying all the terms above, we arrive finally arrive at

O

(
d2
max

(2m− 2k)m

)
+O

(
d4
max

m2

)
+O

(
d2
max

m(2m− 2k)2

)
+O

(
d6
max

m3

)
+O

(
d4
max

m2(m− k)

)
Now using the assumption that dmax = O(m

1
4−τ), we can see that the term O(

d4max
m2) dominates

all other terms. Hence we arrive at the conclusion we need.

Now let us continue from Equation IV.8. Rewrite the numerator as
ψBk +ψRk

(2m−2k)2 and by using the

algrabraic estimate 1
1−x = 1 + x+O(x2), we see that we can write the terms in the big bracket of

Equation IV.8 as

1 +O(1) · ψBk + ψRk
(2m− 2k)2

(
1 +

O(1)

2m− 2k
+O

(
d2
max

m

)
+O

((
O(1)

2m− 2k
+O

(
d2
max

m

))2)
= 1 +O(1)

ψBk + ψRk
(2m− 2k)2

+ Claim 1

= 1 +O(1)
ψBk + ψRk

(2m− 2k)2
+O(

d4
max

m2
)

We next wish to refine the algebraic bound a little by writing out

1 +O(1)
ψBk + ψRk

(2m− 2k)2
+O

(
d4
max

m2

)
(IV.9)

= 1 +
λ(d̄B) + λ(d̄R)

m
+
k(χBG + χRG)

2m3
+

(
∑
i∈[n]

(dBi)2)2 + (
∑
i∈[n]

(dRi)2)2

16m3
+ tk +O

(
d4
max

m2

)
(IV.10)

= 1 +
λ(d̄B) + λ(d̄R)

m
+
k(χBG + χRG)

2m3
+

(
∑
i∈[n]

(dBi)2)2 + (
∑
i∈[n]

(dRi)2)2

16m3
+O

(
d4
max

m2
+

kd2
max

(m− k)m2

)
(IV.11)

Where by Lemma 12,
ψBk +ψRk

(2m−2k)2 = O(
d2max
m) to conclude that the constant O(1) has no influence in

the growth of
ψBk +ψRk

(2m−2k)2 , so we can ignore it for the rest of the computation. Now we make use of

the fact that log(1 + x) = x−O(x2), then by taking logarithm of Equation IV.9, we arrive at the

26

following:

λ(d̄B) + λ(d̄R)

m
+
k(χBG + χRG)

2m3
+

(
∑
i∈[n]

(dBi)2)2 + (
∑
i∈[n]

(dRi)2)2

16m3
+O(

d4
max

m2
+

kd2
max

(m− k)m2
)

−O(
λ(d̄B) + λ(d̄R)

m
+
k(χBG + χRG)

2m3
+

(
∑
i∈[n]

(dBi)2)2 + (
∑
i∈[n]

(dRi)2)2

16m3

+O(
d4
max

m2
+

kd2
max

(m− k)m2
))2

=
λ(d̄B) + λ(d̄R)

m
+
k(χBG + χRG)

2m3
+

(
∑
i∈[n]

(dBi)2)2 + (
∑
i∈[n]

(dRi)2)2

16m3
+O(

d4
max

m2
+

kd2
max

(m− k)m2
)

Where the last equality is due to the highlighted terms is of smaller order than O(
d4max
m2 +

kd2max
(m−k)m2).

Now substituting the equation back to Equation IV.8, we arrive at

exp

m−1∑
k=0

λ(d̄B) + λ(d̄R)

m
+
k(χBG + χRG)

2m3
+

(
∑
i∈[n]

(dBi)2)2 + (
∑
i∈[n]

(dRi)2)2

16m3
+O(

d4
max

m2
+

kd2
max

(m− k)m2
)

(IV.12)

We will now make another technical claim to aid in the simplification of the equation.

Claim 2.
m−1∑
k=0

k
m−k = O(m log(m))

Proof. We can rewrite
m−1∑
k=0

k
m−k as

m∑
k=1

m−k
k . This is then equal to

m∑
k=1

m− k
k

=

m∑
k=1

(m
1

k
− 1)

= mHm − m

= (m)(Hm − 1)

Where Hm is the m-th Harmonic number [8]. Now by a result in [8], Hm = O(log(m)) =⇒
m(Hm − 1) = O(m log(m)).

Now we will continue from Equation IV.12. By summing over the index k. We arrive at

exp

[
λ(d̄B) + λ(d̄R) +

m(m− 1)(χBG + χRG)

4m2
+

(
∑
i∈[n]

(dBi)2)2 + (
∑
i∈[n]

(dRi)2)2

16m2

+O(
d4
max

m
+
d2
max

m2
· (
m−1∑
k=0

k

m− k
))

]
Now we invoke Claim 2 to simplify it the following:

exp

[
λ(d̄B) + λ(d̄R) +

m(m− 1)(χBG + χRG)

4m3
+

(
∑
i∈[n]

(dBi)2)2 + (
∑
i∈[n]

(dRi)2)2

16m2

+O(
d4
max

m
+
d2
max

m
log(m))

]

= exp

[
λ(d̄B) + λ(d̄R) +

(χBG + χRG)

4m
+

(
∑
i∈[n]

(dBi)2)2 + (
∑
i∈[n]

(dRi)2)2

16m2

−χ
B
G + χRG
4m2

+O(
d4
max

m
+
d2
max

m
log(m))

]

27

Now by definition of χBG (and hence χRG), it is upper bounded by O(d2
max) this means we can arrive

at the following

exp

[
λ(d̄B) + λ(d̄R) +

(χBG + χRG)

4m
+

(
∑
i∈[n]

(dBi)2)2 + (
∑
i∈[n]

(dRi)2)2

16m2

+O(
d4
max

m
+
d2
max

m
log(m))

]

Finally we will use the fact that dmax = O(m
1
4−τ) to strength the algebraic bound O(

d4max
m +

d2max
m log(m)) to o(1), thus arriving at

exp

[
λ(d̄B) + λ(d̄R) +

(χBG + χRG)

4m
+

(
∑
i∈[n]

(dBi)2)2 + (
∑
i∈[n]

(dRi)2)2

16m3
+ o(1)

]
(IV.13)

Finally we will make a final technical claim to arrive at the conclusion we want in Lemma 6.

Claim 3. λ2(d̄B) = 1
4 +

(
∑
i∈[n]

(dBi)2)2

16m2 −

∑
i∼Bj

di+dj

4m . The red case is defined symmetrically.

Proof. By expanding λ(d̄B), we see that λ2(d̄B) can be written as
∑
i∈[n]

(dBi)2 − dBi

4m

2

=

∑
i∈[n]

(dBi)2

4m
− 1

2

2

=

(
∑
i∈[n]

(dBi)2)2

16m2
+

1

4
−

(
∑
i∈[n]

(dBi)2)

4m

. By Lemma 9,
(
∑
i∈[n]

(dBi)2)

4m =

∑
i∼Bj

di+dj

4m

Continuing from Equation IV.13, we expand the definition of χRG and χBG to arrive at the
following

exp

[
λ(d̄B) + λ(d̄R)−

∑
i∼Bj

(dBi + dBj)

4m
+

(
∑
i∈[n]

(dBi)2)2

16m2
+

1

4

−

∑
i∼Rj

(dRi + dRj)

4m
+

(
∑
i∈[n]

(dRi)2)2

16m2
+

1

4

+

∑
i∼Bj

dBi d
B
j

4m
+

∑
i∼Rj

dRi d
R
j

4m
+ o(1)

]
Now by using Claim 3, we have finally arrived at

(1 + o(1)) exp
[
λ(d̄B) + λ(d̄R) + λ2(d̄B) + λ2(d̄R) + γBG + γRG

]
Which completes the proof of Lemma 6

28

Chapter V

Analysis Part Three:
Concentration results

With the first two part of the analysis, we have achieved step one, two and three of Milestones 1.
All that remains is step four, and we will elaborate in details on what the task ahead entails. The
goal is to show that for an ordering N ∈ S(M),ΨB

k (N) concentrates around ψBk (G) as defined in
Lemma 11, where the same goes for the red case. To put into more formal terms, we have the
following theorem:

Theorem 3. For every 0 ≤ k ≤ m− 1, let ψBk (G) be as defined in Lemma 11. Then the following
relation is true ∑

N∈S(M)

m−1∏
k=0

1(
2mB−2kB

2

)
−ΨB

k (N) +
(

2mR−2kR
2

)
−ΨR

k (N)

= (1 + o(1))m!

m−1∏
k=0

1(
2mB−2kB

2

)
− ψBk (G) +

(
2mR−2kR

2

)
− ψRk (G)

Let us pry a little deeper into Theorem 3 and multiply both side of the equation by
∏m−1
k=0

(
2mB−2kB

2

)
−

ψBk (G)+
(

2mR−2kR
2

)
−ψRk (G). Then we divide by m!. We would then arrive at the following equation∑

N∈S(M)

1

m!
f(N) = 1 + o(1) (V.1)

Where f(N) =
∏m−1
k=0

(2mB−2kB
2)−ψBk (G)+(2mR−2kR

2)−ψRk (G)

(2mB−2kB
2)−ΨBk (N)+(2mR−2kR

2)−ΨRk (N)
.

Now if we recall from Remark 4, we imposed uniform distribution on S(M) and there are
precisely m! many orderings in the set S(M). This means to each f(N) we are giving it a weight
of 1

m! . Then Equation V.1 becomes E[f(N)] = 1 + o(1). Hence we will restate Theorem 3 in terms
of the following equivalent lemma

Lemma 13. For every 0 ≤ k ≤ m− 1, let ψBk (G) be as defined in Lemma 11. Then the following
relation is true

E[f(N)] = 1 + o(1)

Where f(N) =
∏m−1
k=0

(2mB−2kB
2)−ψBk (G)+(2mR−2kR

2)−ψRk (G)

(2mB−2kB
2)−ΨBk (N)+(2mR−2kR

2)−ΨRk (N)
.

Remark 6.

The Proof of Lemma 13 can be achieve by the following steps:

1. Partition the set S(M) into smaller subsets.

2. For each partition, we study the deviation of f .

3. Show that which f concentrates in one particular partition.

29

As before we will be fixing an arbitrary (satisfactory) G and an arbitrary N ∈ S(M). Thus, we
will be writing ψBk (G) as ψBk and ΨB

k (N) as ΨB
k . Perhaps as a foreword, the proof of Lemma 13

is rather involved and has several non-intuitive definitions and constructions. Like in the previous
parts of the chapters on analysis, we will, as much as possible, focus on the intuition behind rather
than the actual full computation.

1 Partitioning S(M)

At this moment, it is perhaps worthwhile to see how we can interpret ΨB
k (and ΨN

k). By the
discussion at the start of subsection (b), we can write ΨB

k + ΨR
k as

ΨB
k + ΨR

k = ∆B
k + ∆R

k + ΛBk + ΛRk

Where ∆k’s counts the number of respective unsuitable pairings at stage k and the Λk’s can be
written sub of linear terms involving unsuitable pairings also. That means intuitively, we can view
ΨB
k + ΨN

k) as the sum of unsuitable blue pairings plus the sum of unsuitable red pairings at stage
k adjusted accordingly to some weight. This is useful in providing intuition on how to define the
partitions using the following steps.

1. In this first step, we consider orderings from N ∈ S(M) where the the number of unsuitable
red and blue pairings (weight-adjusted) does not exceed a constant (strictly less than 1)
fraction of the number of all available blue plus red pairings. We can achieve this by first
defining S′(M) as follows:

S′(M) :=

{
N ∈ S(M | ΨB

k (N) + ΨB
k (N) ≤ (1− ε)

[(
2mB − 2kB

2

)
+

(
2mR − 2kR

2

)]

: ∀ 0 < k < m

}
Where 0 < ε ≤ 1

3 . Now our first partition will be S(M) − S′(M). N ∈ S(M) − S′(M) are
orderings that are extremely ’badly behaved’ where the number of unsuitable matchings are
- for all intends and purposes - unbounded.

2. Now we wish to remove ordering in which ΨB
k (N) − ψBk + ΨR

k (N) − ψRk deviates by more
than a certain function independent of G and N ∈ S(M). We define A ⊆ S′(M) as:

A :=

{
N ∈ S′(M) | ΨB

k (N)− ψBk + ΨR
k (N)− ψRk > 2Tk

(
(log n)1+δ

)}
Where the δ is small (e.g. 0.01) and the function Tk will be defined later on in the chapter.
However we will remark at this point that the function Tk is simply a mathematical construct
for the computations ahead. In essence, A captures the notion of ΨB

k + ΨR
k deviating ’too

much’ from ψBk + ψRk .

3. On this third step, we will define B ⊆ S′(M)−A. We wish B to contain orderings in which
towards the end of the algorithm, there are still unsuitable pairings. This is reflected in the
folllowing definition:

B :=

{
N ∈ S′(M)−A | for some k with 2m− 2k ≤ (log n)1+2δ,

ΨB
k (N) + ΨR

k (N) ≥ 1

}
4. Finally for the last partition, we simply have C = S′(M)− (A ∪ B)

30

Figure V.1: Partitions of S(M)

Now let 1A be the indicator function that returns 1 if N ∈ A and returns 0 otherwise. (The
indicator functions for the other partitions is defined symmetrically). Our goal for the rest of the
chapter is to show the following algebraic bound

E[f(N)1A] = o(1) (V.2)

E[f(N)1B] = o(1) (V.3)

E[f(N)1C] ≤ 1 + o(1) (V.4)

E[f(N)1C] ≥ 1− o(1) (V.5)

E[f(N)1S(M)−S′(M)] = o(1) (V.6)

Suppose we manage to show all results from Equation V.2 to Equation V.6. Then instead of
considering the entire S(M), we need only consider orderings N ∈ C ⊆ S(M) instead. Then
Lemma 13 follows immediately from Equation V.4 and Equation V.5.

(a) Technical definitions and theorems

The goal of this subsection is to consolidate our ”toolbox” as we introduce notations ,definitions
and technical theorems for the upcoming computations and proofs. Perhaps as a foreword, the
constructions of this subsection is extremely un-intuitive and readers who are not purist may just
take these constructions and theorems for granted and continue on to the next section.

Now the remainder of the thesis δ will be a positive small real number smaller than 0.01. Next,
we let ω := (log n)δ and we have the following recursive definition.

Definition 2. For every i ∈ N,

λ0 = ω log(n)

λi = 2λi−1 = 2iλ0, i ≥ 1

Furthermore, let L ∈ N such that for some large c, λL−1 < cd2
max log n < λL.

Hence from now on, We will now only consider i ∈ {0, 1, 2, . . . , L}. Next we will now begin to
define Tk when we are defining A ⊆ S′(M). We first have the following

Definition 3. Let qk = 1− k
m and pk = 1−qk. For all 0 ≤ k ≤ m−1, let c be some large constant.

Then

βk(x) = c
√
x(md2

maxq
2
k + x2)(d2

maxqk + x) (V.7)

ηk(x) = c
√
x(md2

maxq
3
k + x3)(d2

maxq
2
k + x2) (V.8)

νk = 8md2
maxq

3
k (V.9)

Furthermore, for all 0 ≤ k < m, define Tk : R→ R as

Tk(x) 7→

{
3βk(x) + 2 min(ηk(x), νk) if 2m− 2k ≥ ωx
x2

w otherwise

31

Remark. One need not be daunted by the un-intuitive constructions. As mentioned at the start
of section, these are purely mathematical constructs. Though as we proceed on with the chapter,
we will get some insights behind the definitions once we invoked the result by [19].

Now by the definition of Equation IV.7, we propose a simple but useful inequality that can aid
us further on.

Lemma 14. For all 0 ≤ k < m and i ∈ {1, . . . , L}, Tk(λi) ≤ 8Tk(λi−1)

Proof. Fix an i ∈ {1, . . . , L}, we will show that the claim is true for every positive 2m− 2k < 2m
on the intervals below.

• Case I: We have 2m− 2k < ωλi−1 and 2m− 2k < ωλi. By performing by applying Tk to λi
and λi−1 we get the following chain

Tk(λi) =
λ2
i

ω
=

4 · (2i−1)2λ2
0

ω
≤ 8 · (2i−1)2λ2

0

ω
= 8Tk(λi−1)

• Case II: So we have We have 2m − 2k ≥ ωλi−1 and 2m − 2k < ωλi. Then by direct
computation, we see that

Tk(λi) =
λ2
i

ω
=

4λ2
i−1

ω
≤ 8 · 3βk(λi−1) + 8 · 2 min(ηk(λi−1), νk)

Where the inequality holds because ηk and vk is non negative and 8βk(λi−1) ≥ 4λ2
i−1

ω

• Case III: So we have We have 2m− 2k ≥ ωλi−1 and 2m− 2k ≥ ωλi. So we are in the first
case of Definition 3. We first apply β on the λi’s, using the fact that λi = 2λi−1.

βk(λi) = c
√

2λi−1(md2
maxq

2
k + 4λ2

i−1)(d2
maxqk + 2λi−1)

8βk(λi−1) = c
√

64λi−1(md2
maxq

2
k + λ2

i−1)(d2
maxqk + λi−1)

Now we make use of the fact that the λi’s is monotone increasing and the βk function is
non-negative to enable us to compare them without the square root function. Then one can
see that

2cλi−1(md2
maxq

2
k + 4λ2

i−1)(d2
maxqk + 2λi−1) ≤ 64cλi−1(md2

maxq
2
k + λ2

i−1)(d2
maxqk + λi−1)

So βk(λi) ≤ 8βk(λi−1). In fact using the same argument, we can also show that ηk(λi) ≤
8ηk(λi−1). Then we can conclude the following:

min(ηk(λi), νk) ≤ min(8ηk(λi−1), νk) ≤ min(8ηk(λi−1), 8νk) = 8 min(ηk(λi−1), νk)

Hence Tk(λi) ≤ 8Tk(λi−1)

2 Alternate Partitioning of S ′(M)

Now we have the required tools to begin proving Equation V.2, Equation V.3, Equation V.4 and
Equation V.5. Heuristically speaking, to prove Equation V.2, we sub-partition A and show that
the probability of N landing in each sub-partition bounded, and if N did land in these partitions
then f(N) is also bounded by some ”nice” function. Hence the first matter at hand is to define
the sub-partitions, first consider the following chain of inclusion defined on S′(M)

32

Figure V.2: Chain of inclusion of Ai≤L ⊆ S′(M)

Where A0 ⊆ A1 ⊆ A2 ⊆ . . . AL ⊆ S′(M) is defined as follows:

Ai =
{
N ∈ S′(M) | ΨB

k (N)− ψBk (N) + ΨR
k (N)− ψRk (N) < Tk(λi), ∀ 0 ≤ k < m

}
(V.10)

Furthermore, this will induce a partition defined by Ai − Ai−1, as seen by Figure V.2 and to
partition the entire S′(M) we simply define

A∞ :=
{
N ∈ S′(M) | ∃ 0 ≤ k < m, ΨB

k (N)− ψBk (N) + ΨR
k (N)− ψRk (N) ≥ Tk(λL)

}
= S′(M)−AL

(V.11)
It is perhaps worthwhile to discuss on what we are trying to achieve with the partitioning S′(M)

again when are have already done it in Figure V.1. Heuristically, one can view the partitions in
Figure V.1 as a consequence of Equation V.10 and Equation V.11. In fact we will be writing the
partitions A,B and C in terms of the Ai. The idea is that we will be dealing with the Ai’s from
here on as they are much easier to work with.

(a) Rewriting A,B, C
By Definition 2, we can write

A =

{
N ∈ S′(M) | ΨB

k (N)− ψBk + ΨR
k (N)− ψRk > 2Tk(λ0)

}
= S′(M)−A0 = A∞ +

L⊔
i=1

(Ai −Ai−1)

Since A,B and C are partitions, this means B + C ⊆ A0. Hence we will carve up A0 into smaller
subsets Bi ⊂ A0 so that we can write B and C in terms of them. To achieve that, lets consider an
integer K such that 2K−1 < ωλ0 ≤ 2K . Now consider the chain of subsets B0 ⊆ B1 . . . ⊆ BK = A0

defined by
Bj :=

{
N ∈ A0 | ΨB

k (N) + ΨR
k (N) < 2j ,∀k ≥ (2m− ωλ0)/2

}
Claim 4. C = B0

Proof. Recall by definition C = S′(M) − (A t B). Pick any N ∈ B0, then N /∈ A because

A = A∞ +
⋃L
i=1Ai −Ai−1. At the same time N /∈ B as well because

B0 :=
{
N ∈ A0 | ΨB

k (N) + ΨR
k (N) < 1,∀k ≥ (2m− ωλ0)/2

}
Hence N has the negation to the conditions defined on B, thus B0 ⊆ C. In fact, by definition
B0 is precisely Bc. So if we pick any N ∈ C, then N /∈ B because B is a partition and thus
N ∈ Bc = B0 =⇒ C ⊆ B0.

Corollary 1. B =
⊔K
j=1Bj −Bj−1

Proof. If we refer to Figure V.1, we see that C +B = S′(M)−A = A0. This means B = A0 −C =

A0 −B0 =
⊔K
j=1Bj −Bj−1.

33

Once again for the purist, we will address the some issues involving the construction of the Ai’s
and the Bi’s. Let us focus on Ai first, after we fix k then inclusion chain is well defined because
of the monotone increasing nature of Tk. The next issue to address is - why is it enough to just
consider the inclusion chain of length K. Note that a priori we might need an inclusion chain of
length greater than K to cover the entirety of A0. To answer this we first fix any N ∈ A0, then by
definition for every 0 ≤ k < m, we have

ΨB
k (N)− ψBk + ΨR

k (N)− ψRk < Tk(λ0)

Now if we consider 2m− 2k < ωλ0 ⇐⇒ k > m− ωλ0, then by Definition 3 we have

ΨB
k (N)− ψBk + ΨR

k (N)− ψRk < (log n)2 ⇐⇒ ΨB
k (N) + ΨR

k (N) < (log n)2 + ψBk + ψRk

Claim 5. For all k > m− ωλ0, ψ
B
k + ψRk = o(1)

Proof. By Lemma 12, we have ψBk + ψRk = O(
d2max(2m−2k)2

2m). Since 2m − 2k < ωλ0 ⇐⇒ k >

m−ωλ0, we have ψBk +ψRk = ω2λ2
0 ·O(

d2max
2m) = O(

d2max
2m) since ω2λ2

0 is independent of m. Now we

make use of the fact the dmax = O(m
1
4−τ) to conclude that ψBk + ψRk = o(1).

So by using the above claim we have the following inequalities

ΨB
k (N) + ΨR

k (N) < (log n)2 + ψBk + ψRk

⇐⇒ ΨB
k (N) + ΨR

k (N) < (log n)2 + o(1) =⇒ ΨB
k (N) + ΨR

k (N) < (log n)2 + 1

Now we use the fact that for every real number x there exist integer K such K − 1 ≤ x < K. So
for log2((log n)2 + 1) there exist integer K such that

K − 1 < log2((log n)2 + 1) ≤ K =⇒ 2K−1 ≤ (log n)2 + 1 < 2K

Hence we need only consider the K-length inclusion chain as defined above.

(b) Bounding E[f(N)] on the partitions

Since we have rewritten A,B and C, it is perhaps worthwhile to update the diagram of Figure V.1
to the following.

Figure V.3: New partitions of S(M)

Now with respect to each of the partitions, we have the following lemma.

Lemma 15. For all 1 ≤ i ≤ L,

(a) P(N ∈ Ai −Ai−1) ≤ e−Ω(λi)

(b) For every N ∈ Ai −Ai−1, f(N) ≤ eo(λi)

Lemma 16. For a large enough constant c, the following holds

(a) P(N ∈ A∞) ≤ e−cd2max logn

(b) For every N ∈ A∞, f(N) ≤ e4d2max logn

Lemma 17. For all 1 ≤ j ≤ K, the following holds

34

(a) P(N ∈ Bj −Bj−1) ≤ e−Ω(2j/2 logn)

(b) For all N ∈ Bj −Bj−1, f(N) ≤ eO(23j/4)

Lemma 18. For all N ∈ C, we have f(N) ≤ 1± o(1)

Now the above four lemmas allow us to show Equation V.2,Equation V.3, Equation V.4 and
Equation V.5, which we will state the the following corollaries with proof.

Corollary 2. Assuming Lemma 15 and Lemma 16, then Equation V.2 holds.

Proof. For a fixed N , We rewrite Equation V.2 as

Equation V.2 =

L∑
i=1

E[f(N)1Ai−Ai−1
] + E[f(N)1A∞]

=

L∑
i=1

P(N ∈ Ai −Ai−1) · f(N) + P(N ∈ A∞) · f(N)

Now we invoke Lemma 15 and Lemma 16 to see that

L∑
i=1

P(N ∈ Ai −Ai−1) · f(N) + P(N ∈ A∞) · f(N)

≤
L∑
i=1

e−Ω(λi)+o(λi) + e−cd
2
max logn+4d2max logn

Now it suffices to check the the individual summand is o(1). First we have

e−Ω(λi)+o(λi) =
eo(λi)

eΩ(λi)

Where the numerator grows strictly slower than λi and the denominator grows at least as fast as
λi =⇒ the fraction is of order o(1). Now

e−cd
2
max logn+4d2max logn =

1

e(c−4)(d2max logn)

Now choose any large enough c� 4 and we see that the above is also of order o(1).

Corollary 3. Assuming Lemma 17, Equation V.3 is true.

Proof. Once again for a fixed N , By rewriting Equation V.3, we now have

K∑
j=1

P(N ∈ Bj −Bj−1) · f(N) ≤
K∑
j=1

eO(23j/4)

eΩ(2j/2 logn)

Since j ≤ K and by definition of K, we can deduce that 2K/4 � log n. Then we can conclude that
23j/4 � 2j/2 log n). Hence the equation above is of o(1).

Corollary 4. Assuming Lemma 18, then Equation V.4 and Equation V.5 holds.

Proof. This is because if the actual value is bounded, then the expectation follows the same bound
as well.

3 Research limitation

Regrettably at this moment due to time constraint, we are unable to prove the above lemmas and
Equation V.6. In essence we feel that the proof should be somewhat symmetric to that of the
single color case in [13]. However as our results so far is a generalization of the work in [13], hence
it is likely that some aspect of the proof discussed in [13] will also need to be changed. Hence, we
feel that it is worthwhile as a future endeavor to delve into the technicality and provide a thorough
treatments to proving the above lemmas.

35

Chapter VI

Conclusion

In this thesis, we investigated how one might generalize the algorithm by [13] to two colors. The
main contribution of this thesis is that, we proposed to use a biased coin flip to generate a m-length
sequence of blue and red edges to decide which edge is to be formed at the current k-th iteration
of the algorithm. Using the notion of a martingale, we managed to arrive at the choice of the bias,
PBk and PRk for the coin flip. Our first main result, and perhaps also the most crucial one in this
thesis is that PBk and PRk can be defined independent of k.

The second key result that we arrived at with this thesis is with the Gpk model - a model that
we used to approximate the state of our algorithm at stage k. Due to our choice of P kB and P kR, we
are able view the edges as independent identically distributed random variable regardless of their
colors. This is extremely interesting and vital in future analysis because firstly we see that the
dependence between the blue and red edges is gone in the Gpk model. Furthermore we see that
the i.i.d nature of the edges allow us to disregard colors and orderings, reducing many parts of our
analysis to a single color case. Ultimately, it is this that led us to the final main result of our thesis
in which we show that in the Gpk model, our algorithm does in fact generate a satisfactory graph
G uniformly at random.

Remark. We would also like to discuss a little on the time complexity of the algorithm. One can
see that if we are not concerned with whether the output is successful, then the complexity can be
no worse than perform the algorithm by Bayati[13] twice. And it has been shown that Bayati’s
algorithm has a runtime complexity of O(mdmax)

Future work

We believe there are many interesting prospective future work directions besides from what we
discussed in the research limitations.

I. The further generalization from 2-color to arbitrary n-color. We feel that this is perhaps the
closest next step to our work in this thesis as a lot of the heuristics remains largely the same.

II. In this thesis, the key modification we proposed in our algorithm is the use of a coin-flip
to generate a random sequence of blue and red edges. However, we feel that there might
be a deterministic sequence that still preserves the uniformity of the sampling, so long as it
respects the ratio of the blue (or red) edges.

The application of our algorithm is quite diverse as (random) graphs is a very natural tool for
modelling and understanding problems at both application and abstract level. Perhaps one of
the most notable example would be in the area of hypothesis testing and economy where human
interactions need to be modeled; the colors can be used to represent social status, race, age etc.
However other prospective application can be found in the areas of discrete tomography.
As a final word, we are confident and excited over the prospect that our algorithm can find its use
by professionals in different fields and we feel elated that our effort, however small, plays a part in
their work.

36

Bibliography

[1] Rao A Ramachandra, Jana Rabindranath, and Bandyopadhyay Suraj. “A markov chain
monte carlo method for generating random (0, 1)-matrices with given marginals”. In: Sankhya:
The Indian Journal of Statistics, Series A, pages 225–242 (1996).

[2] Arman Andrii, Pu Gao, and Wormald Nicholas. “Fast uniform generation of random graphs
with given degree sequences”. In: 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pages 1371–1379. IEEE (2019).

[3] Angelika, Steger, and Nicholas. C. Wormald. “Generating random regular graphs quickly”.
In: Combinatorics, Probability and Computing, 8(4):377–396 (1999).

[4] Bollobás Béla. “A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs”. In: European Journal of Combinatorics (1980).

[5] Williams. David. “Probability with Martingales”. In: Cambridge University Press (1991).

[6] Tinhofer Gottfried. “Generating Graphs Uniformly at Random”. In: Computing Supplemen-
tum, vol 7. Springer, Vienna (1990).

[7] Femke van Ieperen. “Percolation in random directed graphs with an arbitrary degree distri-
bution”. In: Utrecht University (2020).

[8] Havil. J. “Gamma: Exploring Euler’s Constant”. In: Princeton, NJ: Princeton University
Press (2003).

[9] Azuma. K. “Weighted Sums of Certain Dependent Random Variables”. In: Tôhoku Mathe-
matical Journal (1967).

[10] Aigner Martin and Eberhard Triesch. “Realizability and uniqueness in graphs”. In: Freie
Universität Berlin (1993).

[11] Müller-Hannemann Matthias and Berger Annabell. “Uniform sampling of digraphs with a
fixed degree sequence”. In: In International Workshop on Graph-Theoretic Concepts in Com-
puter Science, pages 220–231. Springer (2010).

[12] Kang Mihyun. “Random Graphs: Theory and Applications from Nature to Society to the
Brain”. In: Technische Universitat Graz, Internat. Math. Nachrichten Nr. 227 (2014), 1–24
(2014).

[13] Bayati Mohsen, Kim Jeong Han, and Saberi Amin. “A sequential algorithm for generating
random graphs”. In: Springer Science+Business Media, LLC (2009).

[14] Angel Omer, Hofstad Remco van der, and Holmgren Cecilia. “Limit laws for self-loops and
multiple edges in the con guration model”. In: arXiv:1603.07172v2 [math.PR] 2 Feb 2017
(2017).

[15] Erdős Paul and Rényi Alfréd. “On Random Graphs I”. In: Publ. Math. Debrecen 6, p. 290–297
(1959).

[16] L. Erdős Péter, Greenhill Catherine, and Mezei Tamás Róbert. “The mixing time of the
switch markov chains: a unified approach”. In: Cornell University, arXiv:1903.06600 (2019).

[17] Gao Pu and Greenhill Catherine. “Mixing time of the switch markov chain and stable degree
sequences”. In: Discrete Applied Mathematics, 291:143–162 (2021).

[18] A. Steger and N. C. Wormald. “Generating random regular graphs quickly”. In: University
of Melbourne, Technische Universitat Munchen ().

[19] Vu. V.H. “Concentration of non-lipschitz functions and applications”. In: Random Structures
and Algorithms (2002).

37

	Introduction and Preliminaries
	Introduction
	Notations
	Configuration Models
	Bayati's algorithm
	Execution Tree

	Algorithm and Heuristics
	Algorithm
	Generalized Execution tree
	Heuristics

	Analysis Part One: Coin-flip and offsets
	Derivation of PB and PR
	Proposition of bias and offset

	Analysis Part Two: Asymptotic results
	Asymptotic Behaviour
	Gpk model and its heuristics
	Computing kB (and kR)

	Analysis Part Three: Concentration results
	Partitioning S(M)
	Technical definitions and theorems

	Alternate Partitioning of S'(M)
	Rewriting A, B, C
	Bounding E[f(N)] on the partitions

	Research limitation

	Conclusion

