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Abstract

Due to the threatened status of multiple howler monkey species, it is important to
monitor them for effective conservation. Passive methods such as acoustic localiza-
tion are becoming increasingly popular for this purpose. This involves recording
vocalizations by an array of microphones that are spread over the habitat of the animal
and estimating differences in arrival times to triangulate its position. The quality of
these time differences therefore largely determines the quality of the position estimate.
However, the signal of interest may be significantly obscured by background noise,
thereby complicating the accurate estimation of those differences. The state-of-the-art
cross-correlation method fails to overcome this difficulty, which calls for more robust
methods. This thesis investigates whether techniques from computational geometry
may be more successful in this, with the ultimate goal of improving the position
estimates. We model the problem of shape matching under one-dimensional transla-
tions and propose (multiple variations of) exact or approximation methods for three
geometric distance measures: the Hausdorff distance, the Fréchet distance and the
Earth Mover’s Distance. Experimental results demonstrate that the cross-correlation
method is still significantly more robust than our proposed methods. The localization
of eight roars captured from the field shows more promising results as the perfor-
mance of the Hausdorff distance for point sets does not show a statistically significant
difference, whereas the other methods lag behind and perform significantly worse.
Simulations reveal the limitations and the impact of the microphone geometry on
those, which confirm that the largest bottleneck is the scalability.
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Chapter 1

Introduction

In the fields of ecology, behavior biology, and conservation biology, it is important to
survey and monitor the population and behavior of animals. A common and simple
method to achieve this is direct observation of the animals in the field. However, this
may not always be practically feasible due to a shortage of resources to observe for
long periods of time, or the animals being cryptic, elusive, nocturnal, or living in
visually occluded and very large habitats. Another disadvantage of this method is
that the presence of human observers can inadvertently affect the observing behavior
[53]. An alternative, controversial method is capturing the animals and attaching a
tracking device (e.g., GPS) to each individual, but this can be a stressful experience
for them that could consequently affect their behavior and survival [79]. Furthermore,
these tracking devices can be expensive and are limited by power capacity, requiring
frequent change of batteries. Hence, there is a growing interest for cheap, non-
invasive and passive methods that can be employed for longer periods of time.

Vocal animals reveal their presence by the sound they produce. Acoustic sensors,
which are audio recording devices for recording environmental sound, are becom-
ing increasingly popular for monitoring these animals, including birds, amphibians,
bats, and other mammals. With the recent advances in technology, these devices
are becoming more practical and affordable. In large-scale wildlife surveys, they
have proven to be cost-effective and their performance often exceeds that of human
observers [27]. Not only do vocalizations provide information about the presence of
the animals, but also about their specific location since sound travels in a predictable
way. The recorders can therefore be used to localize the animal in space too. This
specific application is known as acoustic localization. Acoustic localization (some-
times referred to as acoustic multilateration) is the process of estimating the location
of a sound source by using recordings of its produced sound captured by an array
of time-synchronized microphones. See Figure 1.1 for an illustration. It received
much attention in marine sciences for studying the behavior and ecology of aquatic
animals [65, 67], which are challenging to directly observe, but the use of this method
in terrestrial wildlife has thus far been less explored. Likely due to it being more
difficult as sound propagates better through water than air. The environment is also
often more cluttered and has varying conditions that both affect the acoustics and
thereby the detection with sensors [28]. Besides localizing the animals themselves,
this technique also shows promising results in species conservation by localizing
poachers via gunshot sounds [77] and illegal logging via chainsaw sounds [9].

Among the highly vocal animals, the howler monkeys (genus Alouatta) stand
out as their loud calls can be heard from up to 4.8 kilometers away through dense
forest. They are the loudest terrestrial animals known in the world and outperform
all other animals in both call duration and amplitude per body size [26]. The loud
calls can have multiple functions, for example avoiding predation, facilitating group
cohesion, attracting females and competing with other males or other groups over
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FIGURE 1.1: Setup of an array of four microphones in the habitat of an
animal.

resources such as food or space [48]. These animals are native to the forests of
Central and South America, where they live in tall rainforest trees in groups of 4
to 19 members. They travel from tree to tree to search for food and are most active
during the day. The group of howler monkeys consists of 15 different species that
have been recognized. However, according to the Red List of Threatened Species
[42] by the International Union for Conservation of Nature (IUCN), the conservation
status of this genus is concerning as two species are marked near threatened, five
are marked vulnerable and two are marked endangered. The main threats they are
currently facing are deforestation and hunting. Due to their (near) threatened status,
it is crucial to monitor the populations and take proper measures when necessary to
protect them from further extinction. As the loud calls of these species are audible at
large distances, acoustic localization could be a promising tool to achieve this goal.

Acoustic localization involves computing the time difference of arrivals (TDOAs)
of vocalizations recorded by pairs of microphones and use these in a triangulation
process to determine the position. State-of-the-art methods for computing the TDOAs
are cross-correlation of the representations between the two sound signals, where
one representation is slided over the other in time and a correlation coefficient is
calculated at each time offset. The peak correlation coefficient then corresponds to the
best overlap of the two signals. However, the recordings of the howler monkey vocal-
izations often have a low signal-to-noise ratio, meaning that the signal is obscured
by (background) noise and is therefore difficult to distinguish. The cross-correlation
methods are inherently sensitive to noise, which currently results in imprecise TDOA
measurements. For accurate localization of the animals, these measurements need
to be very precise. Related works on the acoustic localization of primates [25, 66]
show that cross-correlation is insufficient to accurately estimate those due to the
low signal-to-noise ratios, which is why researchers have to rely on error-prone and
time-intensive manual estimation instead. For localization at large scales, this is
clearly impractical. To this end, we have to resort to more robust methods. One
understudied approach would be to consider the sound signals as geometric entities
that form shapes in space. We could then potentially try to match the shapes of two
sound signals using methods from computational geometry.
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1.1 Research Questions

Therefore, the central research question that we aim to answer in this thesis is:

Does taking a geometric approach for estimating the time difference of arrival between two
sound signals improve the localization of howler monkeys?

To answer this question, we have to answer a couple of sub-questions:

• How to model the problem in a geometric fashion (i.e., what is our geometric input and
our desired output)?

If we model sound as a function of its intensity over time, the graph of this
function represents a shape in space. Given two of those approximately equal
shapes, where one is possibly shifted in time with respect to the other, we would
like to determine the precise TDOA. We need to formally specify this problem.
After we have done that, the next question that arises is:

• What methods can be used to solve the problem (i.e., how to compute the TDOA between
two geometric input representations)?

If we have some sort of function that given two shapes returns a quantitative
measure of their similarity (also called a similarity measure), we could algo-
rithmically try to minimize this function over all possible shifts in time. After
development of such algorithmic techniques, they need to be evaluated where
we aim to answer each of the following questions:

• How accurate are the estimated TDOAs using these methods (i.e., is the method robust
enough against noise)?

• How accurate are the derived positions (taking into account the errors made on the
TDOAs)?

• How do the obtained results specifically compare to the state-of-the-art cross-correlation
methods?

1.2 Our Contributions

The contributions in this thesis are twofold. We contribute to the area of computa-
tional geometry by studying the problem of shape matching under one-dimensional
translations, which has received less attention thus far in the literature, and develop-
ing exact or approximation algorithms that solve this problem with respect to three
well-known geometric distance measures. The algorithms are moreover implemented
and made publicly available [75], enabling the use of them in a variety of applications.
The application considered in this thesis is TDOA estimation, which is a crucial part
of the localization process. With this, we aim to provide more advanced tools that
help in the accurate monitoring of howler monkeys, and potentially primates or vocal
animals in general, which contributes to effective wildlife conservation.

1.3 Outline

This thesis is structured as follows. Chapter 2 provides the necessary background
information to understand the relevant concepts and describes related and/or pre-
vious work. In Chapter 3, we formally study the problem that is related to TDOA
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estimation and propose solutions for this. Chapter 4 describes the methodology of
this research. The experimental results are presented and discussed in Chapter 5.
Finally, a conclusion based on the experimental results is made in Chapter 6, together
with possible directions for future research.
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Chapter 2

Background

In this chapter, we first introduce core concepts related to acoustic localization, with a
focus on hyperbolic methods that require TDOAs to estimate the position. We take a
look at previous work that has been done on investigating the call structure of the
Guianan red howler monkey, which are the primates of interest in this thesis and in
particular their loud calls, and also briefly summarize results obtained from acoustic
localization studies on other primates. Finally, we delve into previous work within
the topic of shape matching, which is a subarea of computational geometry that
concerns our problem, for three geometric distance measures. We provide a literature
review of algorithms for computing a distance statically and under transformation,
where we are especially interested in the set of transformations that is restricted to
translations only. To the best of our knowledge, little to no research has been done
before on these distance measures applied to sound signals (or signals in general).

2.1 Acoustic Localization

2.1.1 Sound Propagation

Sound is produced by vibrations which alternately compress and decompress the
medium, creating pressure waves that radiate outward from the sound source. A
proper understanding of properties of sound is required in order to perform an
acoustic localization study, which include the amplitude, frequency and wavelength.
Amplitude is proportional to perceived loudness and commonly measured in decibels
(dB). Frequency is the number of waves per time unit and is measured in hertz (Hz).
It is perceived as pitch with a higher frequency corresponding to a higher pitch and
a lower frequency to a lower pitch. The wavelength is the distance between waves
and is inversely proportional to the frequency. When a sound is produced, the sound
waves move through the medium (e.g., air or water) and propagate from the sound
source as a sphere of increasing diameter. As the sound gets farther from the source,
the amplitude decreases. This process is called attenuation. Sounds with higher
frequency attenuate faster than sounds with lower frequency, which means that they
reach a smaller area and become less likely of being received at larger distances.

Note that attenuation affects the detection of a signal produced by vocalizing
animals. Animals that produce louder vocalizations can be detected at larger distances
as the amplitude of the signal is larger. However, if the animals produce equally loud
vocalizations at different frequencies, the signal with the lower frequency will be
detectable at a larger distance than the signal with the higher frequency.

Properties of the medium also affect the sound propagation as they determine the
speed of sound, which is the speed at which the pressure waves travel. Sound waves
travel almost five times faster in water than in air due to its higher density. In air, it is
largely determined by factors such as temperature, humidity and pressure.
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FIGURE 2.1: Visualizations of digital audio data (example from a
trumpet).

2.1.2 Digital Sound

When a sound wave arrives at a microphone, it is converted to an electric signal.
During digital recording, the amplitude of the electric signal is sampled at a given
sample rate (typically 44.1 kHz) and bit-depth (typically 16-bit). This records the
signal in the time-domain, visualized as a waveform where the x-axis is the time and
y-axis is the amplitude (see Figure 2.1a). In this domain, we can observe how the
signal changes over time. The sample rate affects the frequency resolution, with the
Nyquist–Shannon sampling theorem stating that the sampling rate must be at least
twice as high as the highest frequency of interest. The bit-depth affects the amplitude
resolution, so a higher bit-depth corresponds to a better approximation for the digital
representation of the original sound wave.

To recover the frequency information and shift our focus to the frequency-domain
representation, which is often more insightful than its time-domain representation,
a mathematical technique called Fourier Transform is applied to the data. As the
digital audio data is inherently discrete, this specifically requires the Discrete Fourier
Transform (DFT). The main idea behind this technique is to decompose the signal
into a sum of sinusoids of different frequencies. A sinusoid (also called a sine wave)
is defined as:

y(t) = A sin(2π f t + ϕ)

where A denotes the amplitude, f denotes the frequency and ϕ denotes the phase. Let
x be a discrete signal represented as an array of N samples where x[n] is the amplitude
value at the n-th sample. Then the frequency representation X[k] is computed by:

X[k] =
N−1

∑
n=0

x[n] · e−j 2π
N kn

The output X is an array of complex numbers, consisting of real and imaginary
components. This holds information about the amplitude and phase of a sinusoidal
component for each frequency component. The array is again of size N. Let fs be the
sampling rate of the original time-domain signal, then the frequency fk corresponding
to the k-th bin is calculated as follows:
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fk =
k · fs

N
The amplitude of a frequency component is obtained by taking the magnitude

of the complex number X[k]. Since the input signal is real-valued, the spectrum of
the positive and negative frequencies is symmetric: the first half of the DFT output
(k = 0 to N/2) represents the positive frequencies and the second half (k = N/2 + 1
to N − 1) is the complex conjugate of the first half. This means that only the first half
needs to be considered for obtaining amplitudes of unique frequencies. An efficient
algorithm that is often used to compute the DFT is Fast Fourier Transform (FFT)
which computes the representation in O(N log N) time.

While applying DFT over the entire signal provides insights of the occurring
frequencies, it does not provide information about how the frequencies change over
time. This requires the Short-Time Fourier Transform (STFT). The main idea behind
this technique is to take segments of the signal and compute the DFT for each segment.
It is mathematically defined as:

X[m, k] =
M−1

∑
n=0

x[n + mH] · w[n] · e−j 2π
M kn

where M is the window size, which defines the number of samples per segment, H is
the hop size, which determines the amount of overlap between consecutive segments,
and w[n] is the window function (e.g., Hamming, Hanning or Gaussian) which is
also of size M. The purpose of applying this window function to the segment is to
reduce the effect of leakage that occurs due to discontinuities at the boundaries of
the segment. These parameters naturally affect the quality of the frequency-domain
representation. For the window size, there is a trade-off between the time and
frequency resolution. A shorter window size allows for a higher time resolution,
which captures rapid changes in the signal, but a lower frequency resolution, which
makes it harder to distinguish closely spaced frequency components. Conversely, a
larger window size allows for a higher frequency resolution, which helps to identify
smaller frequency differences, but a lower time resolution, so identifying the rapid
changes in the signal becomes more difficult. It is therefore crucial to find an optimal
balance between the two. The overlap rate helps to reduce the loss of information at
the edges of the windows and with that providing a smoother representation. While
a higher overlap rate generally results in a smoother representation, it comes with
a higher computational cost. The time-frequency domain representation can then
be visualized using a spectrogram, where the x-axis is the time, the y-axis is the
frequency and the color intensity is the amplitude (see Figure 2.1b). It is important to
note that the waveform and spectrogram are just different ways to visualize the same
data.

2.1.3 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is a measure that compares the level of the desired
signal to the level of the background noise. Formally, it is defined as the ratio of the
power of the signal to the power of the background noise:

SNR =
Psignal

Pnoise



Chapter 2. Background 8

where P denotes the average power. There are multiple ways for computing the
average power. One concrete example is: Suppose we have a discrete signal x[t] and
a noise n[t], both consisting of N samples. We can calculate the average power of the
signal Psignal as follows:

Psignal =
1
N

N

∑
t=1

x[t]2

Analogously for the average power of the noise Pnoise. The SNR that results from
these powers can take a wide range of values, which makes it difficult to intuitively
interpret. We can convert this ratio to decibels (dB), which is often used in signal
processing, as follows:

SNRdB = 10 log10

(
Psignal

Pnoise

)
A positive SNR implies a good signal quality where the signal power is stronger

than the noise. On the other hand, a negative SNR implies a poor quality where the
noise dominates the signal. This has implications on the performance and quality
of signal processing algorithms, including the estimation of the time difference of
arrival.

2.1.4 Time Difference of Arrival

Consider a deployed array of microphones in an area and some source produces
a sound near (or within) the array. The arrival of the sound at each microphone
is then delayed by a certain amount of time. If the distance from the source to the
microphone is d meters and the speed of sound in that environment is c meters per
second, the time of arrival (TOA) in seconds is calculated as follows:

TOA =
d
c

The microphones of an array are positioned at different locations. This means
that the sound travels a different distance to reach each microphone in general and
consequently arrives at different times. The difference between the arrival times of a
sound between two microphones is called the time difference of arrival (TDOA). For
a sound captured by two microphones with time of arrivals TOA1 and TOA2, the
TDOA is calculated by:

TDOA12 = TOA2 − TOA1

which tells us how much later the sound arrived at the second microphone compared
to the first microphone.

In a typical application, the TDOA tends to be in the order of several milliseconds.
To accurately measure this difference, proper synchronization of the recorders is
required. Synchronization is the process of temporally aligning recordings from mul-
tiple microphones. Often times, periodic re-synchronization is necessary as recorders
will eventually fall out of synchronization, even if they start recording simultane-
ously. This phenomenon is known as drift and is caused by slight differences in true
sampling rates of the recording hardware. There are many methods to synchronize
the recorders that have been reviewed by Rhinehart et al. [62]. Cable synchronization
connects the microphones to a central multichannel recorder which records the cap-
tured sounds simultaneously, so synchronization is done during recording. Acoustic
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FIGURE 2.2: Wildlife localization approaches (from Rhinehart et al.
[62]).

synchronization involves playing back an artificial sound from a known location and
subsequently computing the expected delay in arrival time at each microphone. The
recordings are then aligned to these delays. These two methods often work for arrays
that cover a relatively small area, but for larger areas, a feasible alternative would be
GPS synchronization. In this method, a GPS receiver is attached to each microphone
and the received GPS timestamps are then used to align the recordings, which can be
done during or after the recording process. If using GPS in a specific environment
could be unreliable for some reason, another option would be to synchronize by
connecting each recorder to a shared wireless network.

2.1.5 Hyperbolic Localization

Reviewed by Rhinehart et al. [62], localization approaches are divided into two
broad categories: hyperbolic and direction of arrival (DOA; see Figure 2.2). Recall
that, when a sound is emitted, the sound waves radiate from the source location as
a sphere. This is the near field assumption that hyperbolic methods make, which
requires the array of microphones to be widely spaced where the distance from the
sound source to the microphones must be around the same order of magnitude as
the distance between the microphones [50]. These methods also often require the
explicit calculation of TDOAs, which is why they are referred to as TDOA localization
algorithms. Conversely, if the sound originates from a distant source and arrives
at a set of at least four closely spaced microphones, the curved edge of the arriving
sound can be approximated as a straight line. This is the far field assumption that
DOA methods make. In this case, a single set of microphones is able to derive the
direction of arrival of a sound. The location can then be determined by intersecting
the direction of arrival estimates obtained from at least two sets. There are other
methods of localization that do not precisely fall into one of the two mentioned
categories (e.g., time-of-arrival and energy-based [43]), but they are less suitable for
wildlife localization due to the lack of essential information or higher inaccuracies in
such a setup [62].
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For the hyperbolic methods, four microphones are required to unambiguously
determine the position on the plane and five microphones for positioning in the
three-dimensional space [64]. However, more microphones generally results in a
higher localization accuracy as averaging the results reduces the influence of errors
made by any recorder.

The acoustic recorders often record the sound from the environment for the dura-
tion of several minutes, which contain segments of interesting parts (i.e., vocalizations
of animals) and background noise. This data must be either manually or automatically
analyzed to identify the segments of interest (e.g., recent developments in deep learn-
ing allow for very accurate automatic identification [68]). After identifying the sounds
that are desired to be localized from the recordings, the time difference of arrival must
be derived for pairs of recordings. A popular method for directly calculating those is
spectrogram (or waveform) cross-correlation, which was first introduced by Clark
et al. [22]. This technique involves overlaying the two representations and sliding
one over the other incrementally in time and calculating a correlation coefficient at
each time offset. The peak correlation coefficient then corresponds to the time offset
between the two representations. For two signals X[t, f ] and Y[t, f ] where t and f
represent the time and frequency respectively in the spectrogram representation, the
cross-correlation RXY(τ) measures the similarity between X and Y as a function over
the time lag τ and is calculated as follows:

RXY(τ) = ∑
t

∑
f

X[t, f ] · Y[t + τ, f ]

The waveform cross-correlation is similarly calculated (without the additional fre-
quency component) and is often a more accurate method in general due to spec-
trograms having imperfect temporal resolution, but automatically identifying the
sounds of interest in a waveform requires higher signal-to-noise ratios [78]. It is also
possible to manually obtain the TDOA by visual inspection, but this is time-intensive
and error-prone.

Using the obtained TDOAs, position estimation algorithms are used to finally
determine the location of the sound source. This is the two-stage approach, where we
first explicitly calculate the TDOAs and then use them as input to the algorithm for
estimating the position. There are also algorithms following a one-stage approach,
which implicitly use the TDOA information without explicitly calculating the TDOAs
first. Consider the time difference of arrival ∆t between two microphones in seconds.
If the speed of sound is c meters per second, then we can calculate a distance ∆d as
follows:

∆d = c · ∆t

This is the difference of distance of the sound source between the two microphones.
This defines a set of potential locations of the origin of the source, which forms a
contour that has the shape of a hyperbola in the plane and hyperboloid in three-
dimensional space (hence the term "hyperbolic" in hyperbolic localization). Each pair
of microphone defines such a contour and the intersection of those should ideally give
the exact location (see Figure 2.2(a)). If there is no such perfect intersection, which is
very likely in practice due to inaccuracies in the measurements, the algorithms may
estimate the point that, for example, minimizes the sum of the squared distances to
the contours (or some other optimization criterion). The (Euclidean) distance between
the true and estimated position is called the position estimation error. Rhinehart et al.
[62] reviewed the main causes of the position estimation error:
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FIGURE 2.3: Distribution map of the Guianan red howler monkey
(from IUCN [42]).

• Using fewer microphones than the recommended number, which creates some
areas of localization ambiguity (further explained in [64]).

• No tight and frequent (re-)synchronization, which results in inaccurate TDOA
measurements.

• Inaccurate estimation of speed of sound, which depends on the temperature,
wind and humidity conditions that also require precise measurements at any
time.

• Improper placement of the microphones.

• Inaccurate measurement of the microphone locations.

• The location of the sound source with respect to the array: localization inside
the convex hull of the array is more accurate than outside and closer to the
center of the array is more accurate than closer to the edges.

• Errors in calculating the TDOAs caused by external factors such as background
noise, attenuation of the sound where the amplitude decreases farther from the
source, and reverberation due to reflecting sound in the environment, which is
more common in forest habitats than in open fields. These factors distort the
signal and affect the signal-to-noise (SNR) ratio.

2.2 Guianan Red Howler

The red howler is the most common howler monkey species with five subspecies
being recognized. One of them is the Guianan red howler monkey (Alouatta mac-
connelli), who can be found in Guiana, French Guiana, Trinidad, Suriname, east of
the Orinoco River in Venezuela, and north of the Amazon River in Brazil (see Figure
2.3). Particularly in areas such as rain forests near sea levels, gallery forests and dry
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deciduous forests. The estimated population density in French Guiana is around
19 individuals per km2 where they live in groups of 5 members on average (and
range from 2-10). According to the most recent IUCN Red List of Threatened Species
assessment in 2021 [42], the species is listed as "Least Concern" due to its widespread
distribution and lack of any major threats that could result in a significant population
decline. However, they are still hunted locally and in southern parts of their range
deforestation occurs due to ranching.

2.2.1 Acoustic Structure

The acoustic structure of the loud calls and the 24-h emission behavior for this specific
species have been studied extensively by Drubbel and Gautier [73] in French Guiana.
These loud calls are described as low-pitched noisy hoarse sounds with an upper
frequency limit of around 3 kHz and roughly divided into two classes based on
their duration: long (more than 60 seconds) and short (less than 40 seconds) calls
(which have similar carrying distances). The long calls have a mean duration of 3
minutes and 28 seconds with a maximum of 10 minutes and standard deviation of 109
seconds (over 603 samples). It consists of three successive phases: the introduction
(on average 60 seconds), the climax (on average 120 seconds) and the coda (on average
1 second). At the end of the call, after a period of silence for 2 seconds, one or two
blowing sounds (on average 3.3 seconds) are heard with again a period of silence
in between (on average 7.4 seconds). These blowing sounds have a relatively low
amplitude with a low carrying distance, which are likely produced by emptying of
the air sacs. During the introduction phase, the amplitude gradually increases and
reaches a maximum at the start of the climax phase. Then, during the coda phase,
the amplitude gradually decreases again and reaches a minimum at the start of the
blowing sounds. The maximum bandwidth of the loud calls is between 125 and
3128 Hz where two clusters of frequency bands were observed in the introduction
and climax phases: 310-1100 and 1310-2900 Hz. Each cluster includes two dominant
frequency bands of around a 250-Hz range. The short calls have a mean duration of
11 seconds with a standard deviation of 11.2 seconds (over 122 samples). The analysis
of this call type is limited as these calls were mainly emitted during daytime where
the spectral energy hardly contrasted with the background noise. In contrast, the
long calls were mostly heard during the night, with a peak around dawn. At both
day and night, the number of calls are on average 5.2. The total call duration was 15
minutes during night and 8 minutes during daytime.

The previous study, which was conducted over three decades ago, was con-
strained in software and hardware equipment that limited the analysis of both the
spectrograms and number of calls. Recently, Do Nascimento et al. [30] performed a
study on the differences of the call structure over the entire diurnal cycle in the Viruá
National Park, Roraima, Brazil. They only consider the long calls and ignore the
short calls (which they refer to as barks) in their analysis. A statistical test confirmed
that calls at night are not only more common than calls during the day, but also on
average shorter in duration (258 vs 327 seconds). The mean and median frequencies
are always around 900-1000 Hz and the dominant frequency (frequency with the
highest amplitude) is around 700 Hz. Moreover, the calls during the day have 5%
lower frequencies and are harsher as measured by a lower (1.16 vs 2.01) harmonic-to-
noise ratio (which is a measure of deterministic chaos). This leads to calls that sound
more intimidating.



Chapter 2. Background 13

2.2.2 Related Work

While there has been done extensive research on the call structure of the Guianan
red howler monkey, acoustic localization of these species remains an understudied
topic. However, there has been done related research on acoustic localization of other
primates (i.e., Eastern chimpanzee and Bornean orangutan), which we summarize
below.

Fairly recently, Crunchant et al. [25] performed an acoustic localization study for
localizing the Eastern chimpanzee (Pan troglodytes schweinfurthii) in western Tanza-
nia. They deployed an array of four GPS time-synchronized acoustic sensors in a
mountainous environment with heterogeneous vegetation. The sensors were placed
around 500 meters from each other that cover an area of nearly 2 km2. The collected
sound samples were visualized as spectrograms in the Raven software [61] and the
TDOAs were manually estimated due to the low signal-to-noise ratio of the chim-
panzee calls. The position was subsequently estimated in the Sound Finder software
[78] that uses the least-squares solution which was developed for global positioning
systems [12]. From the playback experiments, they show a mean localization error
of 27 meter and a standard deviation of 21.8 meter. The localization error increased
with higher temperatures and surprisingly with lower wind speeds. The localization
also appeared to be more prone to error in open vegetation than closed vegetation.

Spillmann et al. [66] tested the utility of an Acoustic Localization System (ALS) for
localizing the Bornean orangutan (Pongo pygmaeus wurmbii) in Central Kalimantan
at the Tuana field site, a dense peat swamp forest. They deployed an array of 20
GPS time-synchronized acoustic sensors that were placed in a lattice at 500 meter
intervals encompassing a grid of 3 km2. The study aimed to validate this system in
two main steps. The first step concerned determining whether it is able to pick up all
long calls in the area and the second step was about checking whether the system
provides accurate localizations. For this, observers collected the GPS locations of 89
long calls to compare against the estimated position. For identifying the long calls,
they trained a recognition model using the Song Scope software (no longer supported
as of 2016), which was able to find 99% of the long calls. Analysis also showed
that the long calls were often still picked up by a recorder at 700 meter distance,
which means the array covered an area of around 9 km2 in total. For estimating
the time of arrival differences, they used the spectrogram cross-correlation that is
provided in the Raven software. A band-pass filter from 200 to 1000 Hz is additionally
applied to remove background noise. They had to manually inspect the automatically
generated correlation functions due to the low quality of the signal of interest, which
resulted in imprecise time of arrival differences. Similar to the previously mentioned
work, they use these as input to the Sound Finder software to estimate the position.
Triangulation of 66 long calls that occurred within the hull of the array resulted in
a mean error of 58 meter and standard error of mean of 7.2 meter. Considering the
error made by variable animal-human distances and the measured coordinates of
the GPS (approximately 8-12 meter), they found the results reasonable compared
to the inter-individual distances between the animals. Long calls outside the grid
furthermore showed much larger triangulation errors, especially if the distance from
the long call to the grid is more than 200 meter.

2.3 Shape Matching

The term shape is used for describing a geometrical pattern that consists of a set of
points, curves, surfaces, and other geometric entities. Shape matching is important in
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FIGURE 2.4: Matching polygons under translations.

various application areas, including computer vision, pattern recognition, computer-
aided design and robotics. It involves transforming the shape (e.g., by translation,
rotation or scaling) and measuring the resemblence with another shape using some
similarity measure [7, 71]. One well-known application in multimedia retrieval is
the retrieval of shapes from a database that are similar to a query shape, where the
similarity is invariant of transformations (see Figure 2.4 for an illustration). The
matching problem has been studied in various forms which have been classified
accordingly by Veltkamp and Hagedoorn [71]. Informally, given two shapes and a
distance function:

Computation compute the distance between the two shapes.

Decision (static) decide whether the distance between the two shapes is smaller than
a given threshold.

Decision (dynamic) decide whether there exists a transformation such that the dis-
tance between the transformed shape and other shape is smaller than a given
threshold.

Optimization find the transformation that minimizes the distance between the trans-
formed shape and the other shape.

Ideally, we can efficiently compute an exact solution to the optimization problem,
but due to its complexity and the high computational cost that comes with this, it is
not always practically feasible. In that case, we have to rely on approximations of the
solutions instead. This means that we obtain a solution of a transformation where the
distance between the transformed shape and other shape is within a certain factor c
from the minimum distance. We call this a c-approximation.

There are multiple ways of approaching the shape matching problem, but in this
thesis we specifically focus on methods from computational geometry. The distance
function is in that case of geometric nature. We will be looking at three such measures
that are relatively popular in the literature, namely the Hausdorff distance, Fréchet
distance and Earth Mover’s Distance.
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2.3.1 Metric Property

It is often desired that the similarity measure is a metric. Let S be a set of objects (e.g.,
collection of shapes) and d : S × S → R be some function. Then d is a metric if and
only if it satisfies the following properties for all x, y, z ∈ S:

Non-negative d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y

Symmetry d(x, y) = d(y, x)

Triangle inequality d(x, y) ≤ d(x, z) + d(z, y)

If d is a metric, then the pair (S, d) is called a metric space. If we replace the first
condition such that two distinct elements can be zero, i.e., d(x, x) = 0, then d is called
a pseudo-metric.

2.3.2 Hausdorff Distance

The Hausdorff distance is one of the most widely used distance measures. Informally,
it is the maximum of all the distances from a point in one set to the closest point in
the other set. Below we provide a formal definition.

Definition

For two compact subsets A, B ⊆ Rd, we first define the directed Hausdorff distance
h(A, B) as the maximum of distances between each point in A to its nearest neighbour
in B:

h(A, B) = max
a∈A

min
b∈B

d(a, b)

where d is the underlying distance (e.g., Euclidean). Note that this function is not
symmetric (i.e., h(A, B) ̸= h(B, A)). The undirected Hausdorff distance H(A, B) is
then the maximum over the directed distances:

H(A, B) = max{h(A, B), h(B, A)}
When we are referring to the Hausdorff distance, we typically mean the undirected

distance.

Computation

For polygons that consist of m and n vertices, the Hausdorff distance can be computed
in O((m + n) log(m + n)) time using Voronoi diagrams [4]. This method also works
for point sets in the plane and sets of non-intersecting line segments in the plane.

For point sets of size m and n (in any dimension), a straightforward approach to
compute their (directed) Hausdorff distance is brute-force, where we have a pair of
nested loops iterating over the two sets while keeping track of the minimum distance
in the inner loop and the maximum distance in the outer loop. This clearly takes
O(mn) time. In theory, this is the best possible algorithm known in terms of the
worst-case complexity, but there has been done research to improve the runtime
using heuristics and by exploiting the structure of the input. The inner loop of the
brute-force algorithm is an exhaustive nearest neighbor search, but an exhaustive
search may actually not be necessary: If we compute a distance between a pair of
points that is lower than the minimum Hausdorff distance known thus far, we may
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skip to the next iteration of the outer loop as further computation will not affect the
Hausdorff distance. This gives a linear best-case time complexity for computing the
directed Hausdorff distance. In combination with an effective sampling strategy,
this can significantly reduce the runtime. An algorithm exploiting this early break
condition with random sampling was presented by Taha and Hanbury [69].

Translation-invariant

For polygons that consist of m and n vertices, there is an algorithm known specifically
for translations along one fixed direction only that runs in O(mn log(mn) log∗(mn))
time by Alt et al. [4]. They claim that this algorithm also works on more general
structures like polygonal chains. For other shapes, the focus has been mainly on
translations in arbitrary directions.

For point sets in one-dimension of size m and n, Huttenlocher and Kedem [40]
presented one of the first algorithms for minimizing the Hausdorff distance under
translations. They analyze the structure of the cost as a function of the translation that
describes the Hausdorff distance and exploit these properties to design an algorithm
that runs in O(mn log(mn)) time.

For point sets in the plane, the Hausdorff distance under translation can be
computed in O(mn log2(mn)) time when the underlying metric is L1 or L∞ [21]. This
algorithm makes use of segment trees. If the underlying metric is L2, there is a
O(mn(m + n) log(mn)) time algorithm that uses the upper envelopes of Voronoi
surfaces [41]. We will describe this method by Huttenlocher et al. in more detail.

Huttenlocher et al. Given a set S = {pj | j = 1, ..., n} of points in Rd and some
metric ρ. We denote the Voronoi diagram of S as Vor(S), which is the decomposition
of Rd into "Voronoi cells" C1, ..., Cn such that each cell Cj contains those points of Rd

that are closer to pj than any other point. Consider the function:

d(x) = min
pj∈S

ρ(x, pj)

The graph of this function {(x, d(x)) | x ∈ Rd} is called the Voronoi surface. The
surface is at a local minimum when x is coincident with a point pj ∈ S and at a local
maximum for certain points that lie along the boundary of the Voronoi cells of Vor(S).
Let {Si | i = 1, ..., m} be m point sets, and ni = |Si| for i = 1, ..., m be the number of

points in Si. Let n =
m

∑
i=1

ni be the total number of points. The Voronoi surface of a set

Si is denoted as di(x). Consider the function:

f (x) = max
i=1,...,m

di(x)

The graph of this function is the upper envelope of the m Voronoi surfaces. Note that
f (x) is the largest distance from x to each nearest neighbour of Si.

One application of this upper envelope of Voronoi surfaces is the Hausdorff
distance under translation. Let A = {a1, ..., am} and B = {b1, ..., bn} be point sets. The
minimum Hausdorff distance D(A, B) is defined as:

D(A, B) = min
t

H(A, B ⊕ t)
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where B⊕ t is the Minkowski sum of B and t and H is the Hausdorff distance as given
by the definition above. The key of determining this minimum distance is by finding
the value of t that minimizes the upper envelope of the Voronoi surfaces defined by
the m + n sets Si = ai ⊖ B = {ai − bj | bj ∈ B} and S′

j = A ⊖ bj = {ai − bj | ai ∈ A}.
For any ai ∈ A, bj ∈ B and translation t, we use the fact that ρ(ai, bj + t) = ρ(ai − bj, t).
We obtain the Voronoi surface of Si by:

di(t) = min
p∈Si

ρ(p, t)

Similarly, for the set S′
j we obtain the Voronoi surface d′j(t). We denote by f (t) the

upper envelope of the functions di(t) and d′j(t), and then by definition:

f (t) = max{max
ai∈A

di(t), max
bj∈B

d′j(t)} = H(A, B ⊕ t)

Hence, the minimum Hausdorff distance corresponds to the point t that minimizes
this upper envelope:

D(A, B) = min
t

f (t)

The authors show that the local minima of f (t) are on its vertices and show bounds on
the number of those. They propose efficient algorithms for computing these vertices
in R2 and R3, which provides the global minimum required to solve this problem.
They also obtained results on line segments in the plane for the L1 and L∞ metrics.

The bounds on these have not been improved for over decades. Recent work has
shown a lower bound of (nm)1−o(1) for L1 and L∞ assuming the Orthogonal Vectors
Hypothesis (OVH) and a lower bound of n2−o(1) for L2 in the imbalanced case of
m = O(1) assuming the 3SUM Hypothesis [17]. There is also an approximation
algorithm known that runs in O((m + n) log(m + n)) time which uses reference
points [3], described in more detail below.

Reference Points. A reference point of a shape is a characteristic point such that
similar shapes have reference points that are close to each other. The approach of
reference points extends to higher dimensions as well. This framework plays an
important role in approximate shape matching. Let Cd be the set of compact subsets
of Rd and let T be the set of transformations in this space. A mapping s : Cd → Rd is
called a reference point with respect to T , if the following holds for all A, B ∈ Cd and
T ∈ T :

Equivariance s(T(A)) = T(s(A)).

Lipschitz continuity There exists some constant c ≥ 0 such that:

d(s(A), s(B)) ≤ c · H(A, B)

where d is the Euclidean distance. We call c the quality of the reference point. If we
have such a mapping s with respect to a set of translations T , then the translation
of B that approximately minimizes the Hausdorff distance is simply s(A) − s(B).
This algorithm provides a (c + 1)-approximation. So the approximation guarantee
depends on the quality of the reference point.

In the two-dimensional case, it was observed by Alt et al. [4] that the point
s(A) = (xmin, ymin), where xmin and ymin are the minimal x and y coordinates of
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FIGURE 2.5: Two curves with a small Hausdorff distance.

points in A, is a reference point of quality
√

2 for translations. A better reference point
was later found by Alt et al. [3], namely the Steiner point that has quality 4/π ≈ 1.27
which also works on more general transformation sets. It is shown that for any two
compact sets A and B and their convex hulls conv(A) and conv(B), we have that
H(conv(A), conv(B)) ≤ H(A, B). It follows that if we have a reference point for the
convex hull of A, then it is also a reference point for A itself. This property allows to
focus on convex figures and makes the Steiner point a perfect candidate as reference
point (since the definition is quite involved, we refer to the paper for this [3] instead).
Although there is evidence that for translations in d ≥ 2 the quality of any reference
point cannot be smaller than

√
4/3 ≈ 1.155, it is believed that the Steiner point is the

optimal reference point.

2.3.3 Fréchet Distance

The Fréchet distance is a measure of similarity between (polygonal) curves. We first
provide a formal definition of (polygonal) curves.

Definition (Curves). A curve is a continuous mapping f : [a, b] → Rd with a, b ∈ R

and a < b. A polygonal curve is a curve P : [0, n] → Rd with n ∈ N, such that for all
i ∈ {0, ..., n − 1} each P|[i,i+1] is affine, i.e., P(i + λ) = (1 − λ)P(i) + λP(i + 1) for all
λ ∈ [0, 1]. Note that P|[i,i+1] means the restricted function of P to the domain [i, i + 1].

The Hausdorff distance is considered an appropriate measure in many applica-
tions that involve point sets, but for polygonal curves, it is often inadequate. There
are examples of curves that have a small Hausdorff distance, but they do not resemble
each other at all (see Figure 2.5). The Hausdorff distance only takes into account the
sets of points on both curves, thereby ignoring the course of the curves. While this
makes the Hausdorff distance easily computable, it may not be a desirable property
in some applications. The Fréchet distance is an alternative metric that does not suffer
from this issue.

Definition

A popular intuitive definition is as follows: We are given two curves in space. Suppose
a man is walking his dog, where he is walking on one curve and the dog on the other
curve. They are both allowed to control their speed, but not allowed to go backwards.
The Fréchet distance is then the minimal length of a leash that is necessary for both to
traverse their paths from start to finish. Below we provide a formal definition.
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Continuous. Let f : [a, a′] → Rd and g : [b, b′] → Rd be curves. Then the Fréchet
distance is denoted by δF( f , g) and defined as:

δF( f , g) = inf
α:[0,1]→[a,a′]
β:[0,1]→[b,b′]

max
t∈[0,1]

d( f (α(t)), g(β(t)))

where d is the underlying distance (typically Euclidean) and α, β range over contin-
uous and increasing functions with α(0) = a, α(1) = a′, β(0) = b and β(1) = b′

only.
This definition is known as the classic continuous Fréchet distance. A variant is

the discrete Fréchet distance which intuitively replaces each curve by a sequences of
points where at any time step the man and his dog must be at the points of the curves
and may jump to the next point. This closely approximates the continuous Fréchet
distance and is to some extent easier to compute, but still requires roughly quadratic
time assuming the Strong Exponential Time Hypothesis (SETH) [2, 15]. Below we
provide a formal definition, following from [44].

Discrete. Given a polygonal curve P = (p1, p2, ..., pn), a k-walk along P parti-
tions the vertices of P into k disjoint nonempty subsets {Pi}i=1,2,...,k such that Pi =
(pni−1+1, ..., pni) and 0 = n0 < n1 < ... < nk = n. Now given two polygonal curves P
and Q of m and n vertices respectively, a paired walk along P and Q is a k-walk along
P and a k-walk along Q such that for 1 ≤ i ≤ k, either |Pi| = 1 or |Qi| = 1 (that is,
either Pi or Qi contains exactly one vertex). The cost of a paired walk W = {(Pi, Qi)}
along P and Q is defined as:

dW
F (P, Q) = max

i
max

(p,q)∈Pi×Qi

d(p, q)

The discrete Fréchet distance between two polygonal curves P and Q is then defined
as:

dF (P, Q) = min
W

dW
F (P, Q)

Computation

Alt and Godau [6] showed how to compute the continuous Fréchet distance between
two polygonal curves. We will describe this method in more detail as the concepts
play an important role in computing the translation-invariant version as well. We
assume the Euclidean norm, but they also apply to other norms.

Alt and Godau. Let P : [0, m] → R2 and Q : [0, n] → R2 be two polygonal
curves and assume that ε is given and fixed. The free space of P and Q is defined as
Fε(P, Q) = {(s, t) ∈ [0, m]× [0, n] | d(P(s), Q(t)) ≤ ε} (also abbreviated as Fε). The
partition of [0, m]× [0, n] in points that either belong or not belong to Fε is referred to
as the free space diagram FDε(P, Q) (also abbreviated as FDε).

Each point p ∈ Fε is called feasible or ’white’ and each other point p ∈ FDε \ Fε is
called infeasible or ’black’. See Figure 2.6 for an illustration. The free space diagram
FDε is divided into mn cells ζi,j = [i, i + 1] × [j, j + 1] for 0 ≤ i ≤ m − 1 and 0 ≤
j ≤ n − 1. We denote by Pi the i-th vertex of P and Pi the line segment between Pi
and Pi+1 (analogously for Q). It follows that Fε is composed of the mn free spaces
Fε(Pi, Qj) = Fε(P, Q) ∩ ζi,j for each pair of line segments (Pi, Qj) with i = 0, ..., m − 1
and j = 0, ..., n − 1.
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FIGURE 2.6: Free space diagram of polygonal curves P and Q (from
Wenk [76]).

FIGURE 2.7: Cell of the free space diagram (from Wenk [76]).
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FIGURE 2.8: Clamped horizontal passage in the free space diagram
(from Wenk [76]).
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FIGURE 2.9: Geometric situations corresponding to horizontally
clamped paths.

The authors connect the structure of the free space to the problem of computing
δF(P, Q). They show that δF(P, Q) ≤ ε if and only if there exists a curve within
Fε(P, Q) from (0, 0) to (m, n) which is monotone in both coordinates. For (i, j) ∈
{0, ..., m − 1} × {0, ..., n − 1}, let Lε

i,j = {i} × [j + aε
i,j, j + bε

i,j] and Bε
i,j = [cε

i,j, dε
i,j]× {j}

be the left and bottom line segment respectively that bound ζi,j ∩ Fε. See Figure 2.7
for an illustration. We can use a dynamic programming approach to compute those
parts of the segments Lε

i,j and Bε
i,j which are reachable from (0, 0) by a monotone path

in Fε and thus decide if δF(P, Q) ≤ ε by checking whether (m, n) is reachable. This
can be done in O(mn) time.

For the optimization problem, the authors exploit a continuity property of Fε. If
we start with ε = 0 and continuously increase ε, passages will open in the free space.
If δF(P, Q) = ε, then Fε contains at least one monotone path from (0, 0) to (m, n). One
of the following cases must then occur:

1. Lε
i,j or Bε

i,j is a single point on the path for some (i, j).

2. aε
i,j = bε

k,j (or cε
i,j = dε

i,k) for some (i, j, k) and the path passes through (i, j + aε
i,j)

and (k, j + bε
k,j) (or through (i + cε

i,j, j) and (i + dε
i,k, k)).

In case 1, the path passes through a passage between two neighboring cells that
consists of a single point. In case 2, the path contains a ’clamped’ horizontal or verti-
cal passage, illustrated in Figure 2.8. Figure 2.9 shows the geometric situations that
correspond to these two cases. Note that the first case is actually a special instance
of the second case where i = k (or j = k). This observation of clamped paths leads
to a finite number of critical values of ε. They consider these critical values and use
the decision algorithm combined with Megiddo’s parametric search technique [55] to
obtain an optimization algorithm that runs in O(mn log(mn)) time.
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Since the introduction of this algorithm, a number of other efficient exact and
approximation algorithms have been proposed and used in various applications. For
the discrete Fréchet distance, Eiter and Mannila [31] introduced a simple dynamic
programming algorithm to compute it in O(mn) time.

Surfaces. While the definition for the (continuous) Fréchet distance given here is
specifically for curves in arbitrary dimensions, the general definition is also applicable
to surfaces. In contrast to curves, very little is known about computing the Fréchet
distance between surfaces. Computing the Fréchet distance between triangulated
surfaces is known to be NP-hard [36] and upper semi-computable [5] (i.e., there
exists an algorithm that produces a sequence of real numbers that converges to the
Fréchet distance), but it is not known whether it is computable. Nayyeri and Xu
[58] described the first (1 + ε)-approximation algorithm for computing the Fréchet
distance between two piecewise linear surfaces of genus zero. The runtime of this
algorithm is super-exponential in the size of the input and total area of the surfaces.
Later, the same authors [59] show that the Fréchet distance between two piecewise
linear surfaces can be decided in finite time and give the first exact algorithm for this.
For the special case that one of the surfaces is a triangle, they show that the problem
is in PSPACE.

Translation-invariant

The first algorithm for matching two polygonal curves in the plane with respect to the
continuous Fréchet distance was given by Venkatasubramanian [72] for translations
along a fixed direction, which runs in O((mn)2(m + n) log(mn)) time. Alt et al.
[8] later provided an algorithm that works for translations in arbitrary directions,
which uses a different approach. Similarly to the algorithm of Alt and Godau [6] for
computing the Fréchet distance, they first solve the decision problem in O((mn)3(m +
n)2) time and apply Cole’s trick for parametric search based on sorting to solve the
optimization problem in O((mn)3(m + n)2 log(m + n)) time. This was later extended
to higher dimensions by Wenk [76]. Moreover, they observe that each reference
point for the Hausdorff distance with respect to a set of transformations T is also a
reference point for the Fréchet distance with respect to T of the same quality. Another
observation they make is that the Fréchet distance is at least the distance between
the start points of the two curves. This leads to a new reference point for the Fréchet
distance of curves with respect to translations of quality 1 and thus they show that
substantially better reference points exist for the Fréchet distance compared to the
Hausdorff distance. Using a grid-based approach to reduce the approximation factor
to 1 + ε, the runtime of the algorithm finally comes down to O(ε−2mn).

Due to the reduced computational complexity of the discrete Fréchet distance, its
translation-invariant version received more attention than that of the continuous
Fréchet distance. The discrete Fréchet distance under translation was first studied
by Jiang et al. [44]. They provide an exact algorithm that runs in O(m3n3 log(m + n))
time and an (1 + ε)-approximation algorithm that runs in O(m3n3 log(1/ε)) time. This
exact algorithm was later improved by Avraham et al. [10] and runs in O(m3n2(1 +
log(n/m)) log(m + n)) time (assuming m ≤ n). Mosig and Clausen [57] also pre-
sented an approximation algorithm under rigid motions (translation, rotation and
scaling) with an approximation factor close to 2 and that runs in O(m2n2) time. For
polygonal curves of equal length n, the current fastest exact algorithm is given by
Bringmann et al. [16] and runs in O(n14/3 log3(n)) time. Similarly to many of the
previously listed algorithms, this algorithm relies on an arrangement-based approach.
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They also show that it cannot be improved below n4−o(1) assuming the Strong Expo-
nential Time Hypothesis (SETH).

2.3.4 Earth Mover’s Distance

While the Fréchet distance fixes the issue encountered with the Hausdorff distance
where the course of the curves are ignored, it still only focuses on capturing the
maximum distance attained during the traversal of both curves. We can make
significant changes to the curves while maintaining the same Fréchet distance, which
likewise may not be a desirable property in certain applications. An alternative
measure that stays relatively close to the Fréchet distance, but does not suffer from
this issue, is Dynamic Time Warping (DTW) which instead takes the sum of distances.
However, there is not much known about the translation-invariant version due to its
computational intricacy [18]. A different measure that also does not have this specific
problem, but has been studied more, is the Earth Mover’s Distance (EMD).

The Earth Mover’s Distance is widely used in fields such as image retrieval [63]
and shape matching [37]. It is proportional to the minimum amount of work required
to transform one distribution into the other. This transformation process can be
visualized as piles of dirt and holes that need to be filled with dirt. The heavier
distribution holds the piles of dirt and the lighter distribution holds the holes that
need to be filled. The amount of dirt in a pile or the capacity of the hole is given by its
respective weight value. The goal is then to fill all the holes such that the total work
is minimized. The work is measured by the amount of moved dirt multiplied by the
distance over which it is moved. If the total weights of the distributions are equal,
then all the dirt has been moved to the holes, and otherwise there will be dirt leftover.
The problem of optimally moving a distribution of mass was first introduced by the
French mathematician Gaspard Monge in 1781 [56], which was later reformulated by
the Soviet mathematician and economist Leonid Kantorovich in 1942 [47]. It became
known as the Monge-Kantorovich problem and the Earth Mover’s Distance is the
discrete version of it. Below we provide a formal definition.

Definition

We denote a discrete distribution A as A = {(ai, wi)}m
i=1 with each ai ∈ Rd and wi ≥ 0.

The weight of a distribution is defined as the sum of its weights, i.e., WA =
m

∑
i=1

wi.

Given two distributions A = {(ai, wi)}m
i=1 and B = {(bi, ui)}n

i=1, a flow is any
matrix F = ( fij) ∈ Rm×n. Intuitively, fij is the amount of weight at ai which is
matched to weight at bj. A flow F is called a feasible flow if and only if it satisfies the
following constraints:

1. fij ≥ 0, i = 1, ..., m, j = 1, ..., n

2.
n

∑
j=1

fij ≤ wi, i = 1, ..., m

3.
m

∑
i=1

fij ≤ uj, j = 1, ..., n

4.
m

∑
i=1

n

∑
j=1

fij = min(WA, WB)



Chapter 2. Background 24

Constraint 1 enforces non-negative flow. Constraint 2 ensures that the weight in B
matched to ai does not exceed wi. Similarly, constraint 3 ensures that the weight in
A matched to bj does not exceed uj. Constraint 4 forces the total amount of weight
matched to be equal to the lighter distribution.

Let F (A, B) denote the set of all feasible flows between A and B. The work done
by a feasible flow F ∈ F (A, B) in matching A and B is given by:

WORK(F, A, B) =
m

∑
i=1

n

∑
j=1

fijd(ai, bj)

where d(ai, bj) is the ground distance (e.g., Euclidean distance) between ai and bj.
The Earth Mover’s Distance EMD(A, B) between A and B is the minimum amount of
work required to match the two distributions, normalized by the weight of the lighter
distribution:

EMD(A, B) =
minF∈F (A,B) WORK(F, A, B)

min(WA, WB)

Note that this formulation allows for a partial matching since some weight in the
heavier distribution remains unmatched. It is also important to know that the EMD
is only a true metric when the distributions have equal total weight and the ground
distance is a metric itself; For unequal total weight distributions, they can have a zero
distance even if they are not identical (thereby violating the non-negative property)
and it does not obey the triangle inequality [35].

This problem is a special instance of the the minimum cost flow problem. If
the distributions are unweighted point sets (or equivalently, we have unit weights
wi = uj = 1 with integer flows), it simply becomes the (partial) assignment problem.

Computation

The work minimization problem is a type of linear program known as the transporta-
tion problem, for which efficient algorithms exist to solve it, such as the transportation
simplex method [39]. There are also various approximation algorithms known, such
as the (1 + ε)-approximation by Cabello et al. [20] that uses a combination of geo-
metric spanners and a minimum cost flow algorithm. This runs in nearly quadratic
time.

For the assignment problem, the Hungarian algorithm [51] can be used to solve
it exactly in O(n3) time for sets of equal size n = m. For point sets in the plane, the
algorithm of Vaidya [70] computes it in O(n2 log3(n)) time for the L1 and L∞ metrics.
Bringmann et al. [19] recently generalized this result to differently-sized point sets
in any dimension d and proposed an algorithm that runs in O(n2 logd+2(n)) time
(where n ≥ m).

Translation-invariant

Cohen and Guibas [23] introduced the EMD under Transformation problem, where we
try to find a transformation t ∈ T of one distribution which minimizes its EMD to
another:

EMDT (A, B) = min
t∈T

EMD(A, t(B)) =
mint∈T ,F∈F (A,B) WORK(F, A, t(B))

min(WA, WB)
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where t(B) represents the transformation t applied to distribution B. Note that our
focus is on transformations that only modify the points of a distribution and leave its
weights fixed (i.e., F (A, t(B)) = F (A, B)).

They presented an iterative Flow-Transformation algorithm which alternates
between finding the optimum flow for a given transformation, and the optimum
transformation for a given flow. This iterative procedure has been proven to con-
verge, but not necessarily to a global optimum. In case the distributions have equal
weight and the L2

2 (squared Euclidean) distance is considered, then there is a unique
optimal translation (i.e., the translation that lines up the centroids of the point sets).
This allows for an efficient exact computation. In case the distributions have equal
weight and the L1 (Manhattan) distance is considered, then there is a simple solution
for computing the translation for one-dimensional points that involves cumulative
distribution functions.

Klein and Veltkamp [49] used reference points to approximate the problem for
the translation class. They propose a 2-approximation algorithm, but this algorithm
works only on weighted point sets of equal total weight. The center of mass is in this
case an (optimal) reference point with respect to affine transformations and its quality
is 1. For a weighted point set A = {(ai, wi)}m

i=1, the center of mass of A is defined as:

C(A) =
1

WA

m

∑
i=1

wiai

They furthermore prove that there does not exist an EMD-reference point for weighted
point sets with unequal total weights with respect to all transformation sets that
include the set of translations. In light of this, they consider another distance measure
called the Proportional Transportation Distance (PTD), which was introduced by
Giannopoulos and Veltkamp [35]. Let A = {(ai, wi)}m

i=1 and B = {(bi, ui)}n
i=1 be two

weighted point sets, then the Proportial Transportation Distance is defined as:

PTD(A, B) =
minF∈F (A,B) WORK(F, A, B)

WA

At first sight, it looks relatively similar to the EMD, but a feasible flow F has to satisfy
constraints that are different:

1. fij ≥ 0, i = 1, ..., m, j = 1, ..., n

2.
n

∑
j=1

fij = wi, i = 1, ..., m

3.
m

∑
i=1

fij =
ujWA

WB , j = 1, ..., n

4.
m

∑
i=1

n

∑
j=1

fij = WA

In contrast to EMD, the PTD obeys the triangle inequality. It follows that the PTD is a
pseudo-metric. The center of mass is then a PTD-reference point for weighted point
sets of arbitrary total weight with respect to affine transformations and quality 1.

Cabello et al. [20] introduced, for two weighted point sets in the plane of size m
and n with m ≤ n, a (1 + ε)-approximation algorithm that runs in O((n3m/ε4) log2(n))
time for translations where the point sets have unequal total weight. This decreases to
O((n2/ε4) log2(n)) time for equal total weight sets. This algorithm can furthermore
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be generalized to arbitrary dimensions d with a runtime of O((n3m/ε3d−2) log2(n/ε)).
In case of unweighted and equal amount of points, then they also propose a (1 +
ε)-approximation algorithm that runs in O((n3/2/ε7/2) log5(n)) time. If we have
unequal amount of points instead, then there are probabilistic approximations with
the same guarantees which run in O((n3/ε4) log3(n)) time and succeed with high
probability.

For unweighted points, Bringmann et al. [19] have also recently proposed al-
gorithms to compute the Earth Mover’s Distance under translations for points in
arbitrary dimension d for the L1 and L∞ metrics that run in O(mdnd+2 logd+2(n))
time, which extends on the results obtained by Epstein et al. [32] who already had a
O(n6 log3(n)) time algorithm for equally sized points in the plane with respect to the
L1 metric. They furthermore show that the Earth Mover’s Distance under translations
with the L2 metric can not be solved exactly in any dimension d ≥ 2 and therefore
must be approximated. The reason for this is that for any equally-sized point sets A
and B where B only consists of same point (0, 0, ..., 0) (the origin), the EMD is simply
the geometric median of A, which has no algebraic expression for d ≥ 2 [11] (that is,
no expression using only addition, multiplication, and k-th roots).
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Chapter 3

Matching Under One-Dimensional
Translations

In this chapter, we study the problem of matching shapes under transformations
restricted to translations along one axis from an algorithmic point of view. While there
has been done quite some research already on shape matching under translation in
arbitrary directions, finding a one-dimensional translation that minimizes the distance
between two shapes has received less attention thus far. This has applications in the
problem we are trying to solve for estimating the TDOA between sound signals for
example, but also potentially in other applications where alignment of time series
data is required. We start with a formal description of the problem and after that
describe (multiple variations of) exact or approximation methods that solve it for
three different geometric distance measures.

3.1 Problem Statement

Let A, B ⊆ Rd be shapes in d-dimensional space with d ≥ 1. Without loss of generality,
we only allow translations along the first component (which we sometimes refer to as
the x-axis). We first introduce some notation. We denote a point as a = (x, ar) ∈ A
where x is the first component and ar ∈ Rd−1 denotes the remaining components.
For a point a = (x, ar) ∈ A and a one-dimensional translation t ∈ R, we write
a + t = (x + t, ar). Note that the other component(s) ar remain unaltered. We also use

A B

t∗

FIGURE 3.1: Matching noisy sine waves under translations along the
x-axis.
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this notation for a set of points: A + t = {a + t | a ∈ A}. Analogously for the set B.
We adopt this notation throughout the rest of this thesis.

Let T ⊆ R be the collection of all one-dimensional translations and D(A, B) be
the distance between A and B where D : Rd × Rd → R is some distance measure.
Without loss of generality, we fix the set A and only allow the set B to translate. Then
we try to find a one-dimensional translation t∗ ∈ T such that:

D(A, B + t∗) = min
t∈T

D(A, B + t)

An illustration of the problem is given in Figure 3.1. It is important to note
that the specific distance measure D used could significantly affect the optimal one-
dimensional translation t∗.

In this formulation, the entire shapes of A and B must be optimally matched.
However, we might encounter situations where we want to match A to only a part
of B. This variant is known as the partial matching problem. In that case, we have a
collection of partial shapes B ⊆ P(B) (where P(B) denotes the power set of B), and
we then try to find a partial shape B∗ ∈ B and a one-dimensional translation t∗ ∈ T
such that:

D(A, B∗ + t∗) = min
B′∈B,t∈T

D(A, B′ + t)

In this thesis, we will mainly focus on developing algorithms that solve the
regular matching problem. Note that we can still solve the partial matching problem
by computing a regular matching for each B′ ∈ B and taking the minimum distance
of those. In that case, the runtime would be proportional to the size of B (which may
be infinite).

3.2 Hausdorff Distance

For two compact sets A and B, we define H∗(A, B) as the minimum Hausdorff
distance between A and B over all one-dimensional translations t ∈ R of B:

H∗(A, B) = min
t∈R

H(A, B + t)

Inspired by the approach of Huttenlocher et al. [41], we will also analyze the
structure of the upper envelope for this specific problem. Let A = {a1, ..., am} and
B = {b1, ..., bn} be two compact sets in Rd. We denote the distance between a pair
of entities ai ∈ A and bj ∈ B (which may be points, line segments or triangles for
example), as bj ∈ B undergoes a one-dimensional translation t, by:

δij(t) = ρ(ai, bj + t)

where ρ(ai, bj) is the (static) distance between the two entities ai and bj. We define the
function di(t) as the lower envelope of the functions δij(t) for a given ai ∈ A and all
bj ∈ B:

di(t) = min
bj∈B

δij(t)

Similarly, d′j(t) is the lower envelope for a given bj ∈ B and all ai ∈ A. We define the
function f (t) as the upper envelope of the functions di(t) for each ai ∈ A:

f (t) = max
ai∈A

di(t)
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t

δ(
t)

FIGURE 3.2: Example of the lower envelope d′j(t) for point sets (with
ρ being the L2 metric).

Similarly, f ′(t) is the upper envelope of the functions d′j(t) for each bj ∈ B. Note that
f (t) and f ′(t) specify the values of h(A, B + t) and h(B + t, A) as a function of the
translation t, respectively. Therefore:

H∗(A, B) = min
t∈R

max{ f (t), f ′(t)}

An illustration of a lower envelope d′j(t) for some bj ∈ B is given in Figure 3.2. The
envelopes are formed by a set of curved edges where each edge belongs to the graph
of a single function δij(t). The endpoints of the edges are located at the intersection
points of these functions and are called the vertices of the envelope. Note that δij(t)
itself might also have vertices depending on its definition (e.g., the point-to-segment
function in the plane is composed of edges from the continuous point-to-point and
point-to-line functions).

3.2.1 Algorithm

We describe the algorithm for computing H∗(A, B) and its corresponding translation
below step-by-step. It uses the algorithm that is provided by Boissonnat and Yvinec
[14] for computing the lower envelope of univariate functions. Note that we do not
have to explicitly construct f (t) and f ′(t) first to compute H∗(A, B) since we can
directly compute the upper envelope of all the lower envelopes.

1. Compute the lower envelope di(t) for a given ai ∈ A. This can be done using a
divide-and-conquer approach [14].

• Recursively split the set of n functions δij(t) into two halves until we reach
a single function. By definition, the lower envelope of a single function is
the function itself.

• In each merge step, we compute the combined lower envelope from the
two (partial) lower envelopes I1 and I2. Due to the x-monotonicity prop-
erty of these envelopes, we can achieve this by a plane sweep from left
to right where at any time the sweep line intersects an edge of I1 and
I2. When it passes over a vertex or an intersection point, the edge that
contributed to the combined lower envelope simply becomes a new edge
in this envelope.
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Do this for all m functions di(t).

2. Apply the same procedure to all n functions d′j(t).

3. Compute the upper envelope of the m + n lower envelopes from the previ-
ous two steps. This can simply be done using the same divide-and-conquer
approach as previously, but the goal is then to find an upper envelope instead.

4. The global minimum then either lies on a vertex of the envelope or at a local
minimum of an edge.

The time complexity of this algorithm depends on the combinatorial complexity
of the envelopes, which can be determined using Davenport-Schinzel sequences [1].
It follows that the lower envelope of a set of n functions which intersect each other at
most s times has complexity O(λs(n)) and can be computed in O(λs(n) log(n)) time
[14], where it has been shown that

λ1(n) = n
λ2(n) = 2n − 1
λ3(n) = Θ(nα(n))

with α(n) being the inverse Ackermann function. For s > 3, it is still nearly linear in
n.

Suppose that each pair of functions δij(t) intersect each other at most s times. The
first step then takes O(m · λs(n) log(n)) time and the second step, analogously, takes
O(n · λs(m) log(m)) time. The third step has a recursion depth of O(log(m + n)) and
the complexity of this upper envelope is O(λs(mn)), so the runtime comes down to
O(λs(mn) log(m + n)). The fourth step is a simple iteration over the vertices and
local minima, which takes O(λs(mn)) time. This brings us to the following theorem:

Theorem 1. Given two compact sets A and B of sizes m and n and a pairwise distance
function δij(t) for each ai ∈ A and bj ∈ B whose graphs intersect each other at most s
times, then H∗(A, B) and its corresponding one-dimensional translation t can be computed
in O(λs(mn) log(m + n)) time.

Note that the runtime simply depends on how the distance function δij(t) between
each entity ai ∈ A and bj ∈ B is defined, which determines the bound on the number
of intersections s between them. In the next sections, we will analyze the case where
A and B are point sets in any dimension. We then extend the analysis to line segments
in the plane and triangles in three-dimensional space.

3.2.2 Point sets

For a point ai ∈ A, we denote by ak
i the k-th component of ai (similarly for a point

bj ∈ B). Note that for any Lp-norm with p ≥ 1, the function δij(t) becomes of the
following form:

δij(t) = (|a1
i − (b1

j + t)|p +
d

∑
k=2

|ak
i − bk

j |p)1/p

= (|x − t|p + c)1/p

where x = a1
i − b1

j and c =
d

∑
k=2

|ak
i − bk

j |p are constants. We prove the following

property:
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(A) Manhattan (L1)
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(B) Chebyshev (L∞)

FIGURE 3.3: Example of the lower envelope d′j(t) for point sets with
different metrics as ρ (and for the same set of points as in Figure 3.2).

Proposition 1. Two functions δij(t) intersect each other at most once.

Proof. Let f (t) = (|x1 − t|p + c1)
1/p and g(t) = (|x2 − t|p + c2)

1/p be two such
functions. The intersection is given by:

(|x1 − t|p + c1)
1/p = (|x2 − t|p + c2)

1/p

|x1 − t|p + c1 = |x2 − t|p + c2

|x1 − t|p − |x2 − t|p = c2 − c1

Let us analyze the function h(t) = |x1 − t|p − |x2 − t|p. We can assume that, in
general, x1 ̸= x2. Suppose that x1 < x2. The points that change one of the functions
is at t = x1 and t = x2.

Consider the interval t < x1. This means that |x1 − t|p = (x1 − t)p and |x2 − t|p =
(x2 − t)p. As t increases, they both decrease (and (x1 − t)p decreases faster for p > 1).
So h(t) is non-decreasing (and strictly increasing for p > 1).

Consider now the interval x1 ≤ t ≤ x2. We get |x1 − t|p = (−x1 + t)p, so this is
increasing as t grows, whereas (x2 − t)p is still decreasing. This means that h(t) is
(strictly) increasing.

For the interval t > x2, we get |x2 − t|p = (−x2 + t)p, which also starts increasing
as t grows (again, (−x1 + t)p increases faster for p > 1). So h(t) is again non-
decreasing (and strictly increasing for p > 1).

Therefore, h(t) is a monotonically increasing function (for p > 1, it is even strictly
monotone). For p = 1, there is at most one intersection at h(t) = c2 − c1 and, for
p > 1, we have exactly one intersection. A similar argument holds for x1 > x2 where
h(t) is a monotonically decreasing function instead.

An illustration of the lower envelope di(t) for some ai ∈ A is given in Figure 3.2
and 3.3 for the L1, L2 and L∞ metrics, which are the metrics that we are especially
interested in. It is easy to see that the number of vertices is at most n − 1: a single
function has no vertices and each additional function adds at most one vertex at an
intersection point. This is in accordance with the Davenport-Schinzel sequence where
the number of vertices is at most λ1(n) = n. The complexity of the upper envelope is
thus O(λ1(mn)) = O(mn). By Proposition 1 and Theorem 1, we immediately obtain
the following lemma:
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FIGURE 3.4: Point-to-segment distance under translation.

Lemma 1. Given two point sets A and B of sizes m and n in any (constant) dimension,
then H∗(A, B) and its corresponding one-dimensional translation t can be computed in
O(mn log(m + n)) time for any Lp-norm where p ≥ 1.

3.2.3 Line segments in plane

We now consider the case where A and B are sets of line segments in R2. To use the
algorithm that we described previously, we need to define a distance function

δij(t) = seg-to-seg(ai, bj + t)

for each segment ai ∈ A and bj ∈ B where seg-to-seg(ai, bj + t) denotes the distance
between them when bj is translated by t. In the sequel, when we refer to seg-to-seg
(or any other distance between two entities) as a function, we mean the function over
the translation t. Also, we will be using the Euclidean distance as underlying metric.

It is easy to see that for two non-intersecting line segments, the shortest distance
is always defined on one of the endpoints. With that in mind, let us first focus on the
distance between a point b and a line segment a where b is moved along the x-axis.

Proposition 2. The point-to-segment distance function is given by:

point-to-seg(b + t, a) =


d(a1, b + t) if t ≤ t1

cos(α) · |t − t∗| if t1 < t ≤ t2

d(a2, b + t) if t > t2

where d denotes the Euclidean distance, of which the function over the translation t has already
been covered with point sets, and α is the angle between the horizontal line and perpendicular
line (see Figure 3.4b).

Proof. If we decompose a into its edge and two vertices a1 and a2, we can create a
Voronoi diagram which divides the plane into three areas: the points closest to the
endpoints and the points closest to the interior of the line segment (see Figure 3.4a).
We call the area of the points closest to the interior the interior cell of a. Observe
that outside the interior cell, the distance between the point and the line segment is
simply the Euclidean distance between the point and the closest endpoint. Within
the interior cell, the distance is defined by the perpendicular distance (see Figure
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FIGURE 3.5: Segment-to-segment distance under translation.

3.4b). We call the translations where a point b leaves and enters another area the
event points. In the general case, these are the translations t1 and t2 where b enters
and leaves the interior cell respectively. There exists exactly two such translations
due to the convexity property of the areas, so it may enter and leave an area at most
once. We also have the translation t∗ where b intersects a (or its infinite line). The
distance function point-to-seg(b + t, a) is then a piecewise function which changes at
the event points.

Note that we also have the degenerate cases with the line segment either being
horizontal, where the distance simply becomes constant when it enters the interior
cell until it leaves the interior cell again, or vertical where the point either stays within
or outside the interior cell. Also note that if the line segment is the moving entity
instead, the event points are simply the negation.

The distance between two line segments a and b is then a piecewise function
composed of the point-to-segment distances:

Proposition 3. The segment-to-segment distance function is given by:

seg-to-seg(a, b + t) =



0 if they intersect
min{point-to-seg(a1, b + t),

point-to-seg(a2, b + t),
point-to-seg(b1 + t, a),
point-to-seg(b2 + t, a)} otherwise

and, by analysis of the behavior of this function, consists of at most four vertices.
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Proof. For simplicity, we ignore the degenerate cases and assume for now that the
line segments are not parallel, perpendicular, horizontal or vertical. Similarly with
a, we create a Voronoi diagram of the edge and vertices of b. We first observe that
when both line segments are outside the interior cells, then by definition the distance
between them is at the endpoints. Specifically, the endpoint that defines the area
where the other line segment resides in. Without loss of generality, let this be the
endpoints a1 and b1. We observe that this changes once the line segments enter the
interior cells of each other. How it specifically changes depends on the orientation
and position relative to each other, but we can assume that w.l.o.g. again b1 is the first
endpoint that enters the interior cell of a. This means that the distance is first defined
by point-to-seg(b1 + t, a) (Figure 3.5a) until either

1. b1 intersects with a, where the distance becomes zero, or

2. when a2 enters the interior cell of b.

If (1) occurs, then the distance remains zero until either b2 intersects a where the
distance becomes point-to-seg(b2 + t, a) (Figure 3.5b), or a2 intersects b. In the latter
case or when (2) occurs, the distance becomes point-to-seg(a2, b + t) (Figure 3.5c).
There are no more switches in the distance function after that. This means that the
function is composed of at most three (Euclidean) endpoint-to-endpoint distances
and two (perpendicular) endpoint-to-segment distances. It is easy to see that this also
holds for the degenerate cases.

We now have a well-defined distance function δij(t) for two line segments ai ∈ A
and bj ∈ B. Moreover, it can be observed that each pair of the individual continuous
endpoint-to-endpoint and endpoint-to-segment distance functions intersect each
other at most twice. The complexity of the upper envelope is therefore O(λ2(5mn)) =
O(mn). Given this observation and Theorem 1, we obtain the following lemma:

Lemma 2. Given two sets of line segments A and B of sizes m and n in the plane, then
H∗(A, B) and its corresponding one-dimensional translation t can be computed in O(mn log(
m + n)) time.

3.2.4 Triangles in 3D space

Finally, we consider the case where A and B are triangles in R3. Similarly to line
segments, we need to define a distance function

δij(t) = △-to-△(âi, b̂j + t)

for each triangle âi ∈ A and b̂j ∈ B where △-to-△(âi, b̂j + t) denotes the distance
between them when b̂j is translated by t. We again take the Euclidean distance as
underlying metric.

It is easy to see that the shortest distance between two non-intersecting triangles
in three-dimensional space either involves one of vertices or a pair of edges between
the triangles. There are six vertex-triangle pairs and nine edge-edge pairs. Let us start
with the vertex-triangle distance and after that the edge-edge distance.

Vertex-Triangle Distance. If we take the Voronoi diagram of the vertices and edges
of the triangle, we divide the space into exactly seven areas: the points closest to the
interior, the points closest to each of the edges and the points closest to each of the
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FIGURE 3.6: Subdivision of areas for a triangle.

vertices. See Figure 3.6 for an illustration of the two-dimensional projection where
each area category has been assigned a different color. The blue areas are simply the
point-to-point Euclidean distances, which we have already seen with point sets. The
green areas are the point-to-line distances where the line is defined by the respective
line segment.

Proposition 4. Given a point p and a line defined by the line segment ab with endpoints a
and b, the point-to-line distance function is of the form (with constants c):

point-to-line(p + t, ab) = c1 ·
√

c2 + (c3 + c4t)2 + (c5 + c6t)2

Proof. Let p = (x0, y0, z0), a = (x1, y1, z1), and b = (x2, y2, z2). The static point-to-line
distance is given by:

point-to-line(p, ab) =
||ap × ab||

||ab|| =

√
c2

x + c2
y + c2

z√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

where cx = (y0 − y1)(z2 − z1) − (z0 − z1)(y2 − y1) and analogously for cy and cz,
which are simply the cross product components. Note the use of vector notation
where for example ab = (x2 − x1, y2 − y1, z2 − z1) (the vector from a to b) and ||ab||
is the magnitude of the vector. The interpretation of this formula is as follows: The
cross-product of ap and ab produces a vector that is perpendicular to both vectors
and its magnitude is the area of the parallelogram formed by ap and ab. The height
of the parallelogram is the perpendicular distance from p to ab, which we obtain by
dividing the area with the base, which is simply the magnitude of ab. Defining this as
a function over the translation along the x-axis for point p proves the proposition.

We then also have the red area that is the point-to-plane distance where the plane
is defined by the interior of the triangle.

Proposition 5. Given a point p and the plane defined by the triangle △abc with vertices a,
b and c, the point-to-plane distance function is of the form (with constants c):

point-to-plane(p + t,△abc) = c1 · |c2t + c3|
Proof. Let p = (x0, y0, z0), a = (x1, y1, z1), b = (x2, y2, z2), and c = (x3, y3, z3). The
normal vector of the plane (which is simply the perpendicular vector to the plane) is
given by:
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n = ab × ac = (nx, ny, nz)

where nx = (y2 − y1)(z3 − z1)− (z2 − z1)(y3 − y1) and analogously for ny and nz.
The static point-to-plane distance is given by:

point-to-plane(p,△abc) =
|ap · n|
||n|| =

|nx(x0 − x1) + ny(y0 − y1) + nz(z0 − z1)|√
n2

x + n2
y + n2

z

The interpretation is again as follows: Note that the shortest distance from a point
to plane is along the direction of the normal vector. This means that we need to
project the vector ap onto n. The dot product of ap and n measures how much ap
points along n and dividing it by the magnitude of the normal vector normalizes the
projection. Since the dot product can be either positive (point is above the plane, as
defined by the normal vector) or negative (point is below the plane), we also need to
take the absolute value. Defining this as a function over the translation for point p
proves the proposition.

This means that the point-to-triangle distance function point-to-△(p + t,△abc)
for a point p and triangle △abc is determined by the area where p resides in when it
is translated by t. It follows that:

Proposition 6. The point-to-triangle distance function consists of at most six vertices.

Proof. Due to the convexity of the Voronoi cells, a point that is translated along the
x-axis will enter and leave the same cell at most once. This means that the number of
switches in the distance function is bounded by the number of areas, of which there
are seven in total (see Figure 3.6).

Edge-Edge Distance. This setting is relatively similar to line segments in the plane
where the Voronoi diagram of the vertices and edge of a line segment in three-
dimensional space results in a division into three areas. However, in contrast to that
setting, the line segments are generally not coplanar, which makes the analysis of
how the distance function behaves a bit more difficult. We again have the point-to-
point and point-to-line distances, which we already discussed for the vertex-triangle
distance, but we now additionally have a line-to-line distance.

Proposition 7. Given two lines defined by the line segment ab with endpoints a and b, and
the line segment cd with endpoints c and d, the line-to-line distance function is of the form
(with constants c):

line-to-line(ab, cd + t) = c1 · |c2t + c3|
Proof. Let a = (x1, y1, z1), b = (x2, y2, z2), c = (x3, y3, z3), and d = (x4, y4, z4). The
vector perpendicular to both lines is given by:

n = ab × cd = (cx, cy, cz)

where cx = (y2 − y1)(z4 − z3)− (z2 − z1)(y4 − y3) and analogously for cy and cz. The
static line-to-line distance is then given by:

line-to-line(ab, cd) =
|ac · n|
||n|| =

|cx(x3 − x1) + cy(y3 − y1) + cz(z3 − z1)|√
c2

x + c2
y + c2

z
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The idea is relatively similar to the point-to-plane distance. The shortest distance
between the two lines is a line segment that is perpendicular to both lines, so we need
to project any vector between the two lines, in our case ac, onto n. Defining this as a
function over the translation for cd proves the proposition (which as expected, is of
the same form as the point-to-plane distance function).

Note that the line-to-line distance occurs when the shortest distance between ab
and cd is defined within their interiors. This is the case when they are perpendicular
to each other. Recall that the vector n is the vector that is perpendicular to both lines.
We can then obtain the normal vector of the plane that goes through the segment ab
and is perpendicular to cd by:

nab = n × ab

And analogously we obtain ncd. We observe that when we translate cd, one of the
endpoints will first intersect the plane defined by nab. Up to the point where the other
endpoint intersects the plane, the segment remains perpendicular to the line defined
by ab. If at the same time one of the endpoints of ab also first intersects the plane of
ncd, then ab is also perpendicular to the line defined by cd. When they both meet this
condition, then the shortest distance is defined by the line-to-line distance.

By analyzing the behavior of the (now three-dimensional) segment-to-segment
distance function seg-to-seg-3D(ab, cd + t), we find the following:

Proposition 8. The segment-to-segment distance function consists of at most 12 vertices.

Proof. The previous observation suggests that we need to keep track of a state that
defines the position of the segments relative to each other and such that given a state,
we can determine which function defines the shortest distance. The state changes at
certain translations, which we call the event points. For each endpoint of one segment,
we store in which of the three areas (endpoint 1, interior or endpoint 2) it resides of
the other segment. Each endpoint has two translations for entering and leaving the
interior cell, which creates a total of eight event points. For each segment, we also
store which endpoint is closest to the plane that is perpendicular to the segment and
goes through the other segment, or whether the segment is currently intersecting this
plane. This creates another four event points. So we have a total of 12 event points
that alter the state and potentially change the distance function.

Using this defined state, if both segments are currently in the intersecting state,
then the distance is defined by their lines. If two endpoints are not in an interior cell
and are each other’s closest endpoints, then the distance is defined between these
two points. If an endpoint is within the interior cell of the other segment and it is also
closest to the perpendicular plane through this segment, then the distance is defined
between this point and line.

Triangle-Triangle Distance. Let vert(â) and edge(â) denote the set of vertices and
edges respectively of a triangle â. With some slight abuse of notation, for two triangles
â and b̂, let point-to-△(vert(â), b̂) denote all vertex-triangle distances for each vertex
in â, and let seg-to-seg-3D(edge(â), edge(b̂)) denote all edge-edge distances between
each pair of edges of edge(â) and edge(b̂). We can now formally specify the following:

Proposition 9. The triangle-to-triangle distance function is given by:
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△-to-△(â, b̂ + t) =


0 if they intersect
min{point-to-△(vert(â), b̂ + t),

point-to-△(vert(b̂ + t), â),
seg-to-seg-3D(edge(â), edge(b̂ + t))} otherwise

and consists of at most 85 vertices.

Proof. One can easily observe that each pair of the individual continuous distance
functions (point-to-point, point-to-line, point-to-plane and line-to-line) intersect each
other at most twice again. Since there are nine point-to-point, 18 point-to-line, six
point-to-plane and nine line-to-line distance functions (a total of 42), a naive bound
on the number of vertices in the lower envelope would therefore be λ2(42) = 83.
Moreover, it is clear that two triangles only have at most two intersection events for
entering and leaving the intersection region due to their convex shapes, which creates
at most two additional vertices.

So we now also obtain a well-defined distance function δij(t) for two triangles
âi ∈ A and b̂j ∈ B. The complexity of the upper envelope is again O(λ2(42mn)) =
O(mn) and the lemma follows by Theorem 1:

Lemma 3. Given two sets of triangles A and B of sizes m and n in R3, then H∗(A, B) and
its corresponding one-dimensional translation t can be computed in O(mn log(m + n)) time.

It is worth noting that the time complexity for line segments and triangles is still
very similar compared to point sets in Rd for any d ≥ 1, where it was already shown
that their dimension for d > 1 is irrelevant to the complexity. The results we obtained
for line segments and triangles also suggest that, even for more complex geometric
entities in arbitrary dimensions, the complexity largely depends on the degree of
freedom of the translation, which is a fixed parameter in our problem.

3.2.5 2-approximation

For the minimal x and y coordinates of a set A, denoted by xmin and ymin respectively,
Alt et al. [4] showed that the point (xmin, ymin) is a reference point of quality

√
2

for translations in arbitrary directions, which results in a (1 +
√

2)-approximation.
Although the concept of a reference point does not exactly translate well to this
specific problem, we take inspiration from this approach and show a 2-approximation
for translations along the x-axis.

For two compact sets A and B, let xA and xB be their lowest x-coordinates. Let
tx be the translation that matches xA and xB, that is, tx = xA − xB. We have the
following theorem:

Theorem 2. H(A, B + tx) ≤ 2 · H∗(A, B) if the underlying metric is any Lp-norm with
p ≥ 1.

Proof. Let t∗ denote an optimal translation and let xB+t∗ denote the lowest x-coordinate
of B + t∗. By definition, it is clear that

|xA − xB+t∗ | ≤ H(A, B + t∗)
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Since xB+tx = xA, we can obtain B + t∗ from B + tx by the translation xB+t∗ − xA. It is
easy to see that any point in B + t∗ has a point B + tx with distance |t∗ − tx| (and vice
versa). Therefore, we have

H(B + t∗, B + tx) ≤ |xB+t∗ − xA|
≤ H(A, B + t∗)

By the triangle inequality, we have

H(A, B + tx) ≤ H(A, B + t∗) + H(B + t∗, B + tx)

≤ 2 · H(A, B + t∗)

Note that this also holds if we take the highest x-coordinates instead.

3.3 Fréchet Distance

In this section, we consider both the continuous and discrete Fréchet distance between
polygonal curves in the plane. We will not be considering the Fréchet distance for
surfaces due to its computational intricacy.

3.3.1 Continuous

For polygonal curves P and Q consisting of m and n segments respectively, we define
δ∗F(P, Q) as the minimum continuous Fréchet distance between P and Q over all
one-dimensional translations t ∈ R of Q:

δ∗F(P, Q) = min
t∈R

δF(P, Q + t)

Alt et al. [8] provided an exact algorithm for matching polygonal curves in the
plane under translations with respect to the continuous Fréchet distance. Wenk [76]
later generalized this approach to any dimension and transformations of arbitrary
degree of freedom. We will describe this method specifically for translations restricted
to one dimension by adapting [8].

Let t ∈ R be a one-dimensional translation. The free space of two line segments is
the intersection of the unit square with an ellipse (see Figure 2.6). Consider all mn
ellipses, each corresponding to a pair of line segments from P and Q. It is easy to see
that each ellipse in Fε(P, Q + t) is a translation of its corresponding ellipse in Fε(P, Q).
Therefore, each ellipse varies continuously in t ∈ R. This also holds for ellipses that
have an empty intersection with the unit square and for degenerate ellipses (i.e., the
space between parallel line segments). We already observed earlier that each ellipse
in Fε varies continuously in ε. The lemma follows:

Lemma 4. For two given polygonal curves P, Q, a one-dimensional translation t ∈ R and
ε > 0, we have that Fε(P, Q + t) varies continuously in ε and t.

A general proof for this is given by Wenk [76]. This continuity property plays an
important role in the algorithm described below. First we introduce the definitions of
configurations and critical translation sets, which are also similarly described in [8].

Definition 1 (Configurations). A triple (Pi, Pk, Qj) for vertices Pi, Pk of polygonal curve P
and line segment Qj of polygonal curve Q is called an h-configuration. Analogously, a triple
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FIGURE 3.7: Example of a critical translation t in an h-configuration.

(Qj, Qk, Pi) is called a v-configuration. A configuration (x, y, s) is either an h-configuration
or v-configuration.

Definition 2 (Critical Translations). Let c = (x, y, s) be an h-configuration and c′ =
(x′, y′, s′) be a v-configuration. The sets

Tε
crit(c) = {t ∈ R | ∃z ∈ s : d(x, z + t) = d(y, z + t) = ε}

Tε
crit(c

′) = {t ∈ R | ∃z′ ∈ s′ : d(x′ + t, z′) = d(y′ + t, z′) = ε}

are called the sets of critical translations for c and c′. A translation is called critical if it is
critical for some configuration.

The following two lemma’s also come from [8], but these hold similarly for one-
dimensional translations.

Lemma 5. Let t ∈ R be a one-dimensional translation. If δF(P, Q + t) = ε, then t is critical.

Proof. Since δF(P, Q + t) = ε, we know that there must be a monotone path from
(0, 0) to (m, n) that is clamped. If the geometric situation corresponds to case 2 (see
Figure 2.9), we have the vertices Pi and Pk that both have distance ε to a point Q(j′) + t
on the line segment Qj + t. This means that the h-configuration (Pi, Pk, Qj) has t in its
critical translation set and therefore t is critical. The same reasoning applies to the
geometric situation corresponding to case 1 and for v-configurations.

It is important to note that there are critical translations t such that δF(P, Q+ t) ̸= ε,
so the condition is necessary, but not sufficient.

Lemma 6. If there is a translation t≤ ∈ R such that δF(P, Q + t≤) ≤ ε, then there is a
critical translation t= ∈ R such that δF(P, Q + t=) = ε.

Proof. Let t> ∈ R be any translation such that δF(P, Q + t>) > ε. By the continuity
property in Lemma 4, it follows that there exists a translation t= between t≤ and t> in
the translation space R such that δF(P, Q + t=) = ε. By Lemma 5, t= must be critical
then.

Consider now the set of all critical translations. Note that it consists of individual
points (Figure 3.7) and intervals (Figure 3.8) in the translation space R. From Lemma
6, in order to check if there exists a translation t≤ ∈ R such that δF(P, Q + t≤) ≤ ε, it
is sufficient to check all critical translations. However, the critical translation intervals
that arise from the configurations (x, y, s) where x = y have an infinite number of
translations. We call the set of all individual points and endpoints of the intervals the
vertices. We prove the following lemma:
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FIGURE 3.8: Example of critical translation intervals [t1, t3] and [t1 +
t2, t3 + t4] in an h-configuration (where Pi = Pk).

Lemma 7. For a translation t= such that δF(P, Q + t=) = ε and t= ∈ [t1, t2] ⊆ Tε
crit(c)

for some configuration c, then t= must be a vertex in the set of all critical translations.

Proof. If t= = t1 or t= = t2, we are done.
Suppose that c = (Pi, Pi, Qj) is an h-configuration. Recall that aε

i,j, bε
i,j, cε

i,j, dε
i,j

define the boundaries of the free space. By definition, we have that aε
i,j ≤ bε

i,j for
all translations t ∈ Tε

crit(c). This means that if there is a monotone path that passes
through the single point aε

i,j = bε
i,j for t=, then the translations t1 and t2 do not close

this gap further. A similar argument holds for c being a v-configuration.
Suppose that t= does not lie on one of the endpoints and once we move away

from t=, we have that δF(P, Q + t>) > ε for some translation t> ∈ [t1, t2]. Since
the gap is not closed, this means that there must be a clamped path from another
configuration c′ where t= ∈ Tε

crit(c
′). This again means that t= is either an individual

point (in that case we would be done) or lies on some interval of Tε
crit(c

′), but since
t> /∈ Tε

crit(c
′) as the clamped path got closed, this means that t= must be an endpoint

of that interval.

From Lemma 7, it follows that it is sufficient to only check the vertices of the
critical translations. There are O(mn(m + n)) different configurations and each con-
figuration has O(1) critical translations to check: at most two for configurations that
involve two different vertices of a curve (Figure 3.7) and at most six for the other
configurations (two tangent points of segment to circle and two intersection points
for each endpoint with circle; Figure 3.8). Wenk [76] moreover showed a lower bound
of Ω(mn) configurations for this specific case. Each check takes O(mn) time to decide
whether δF(P, Q + t) ≤ ε for a critical translation t. It thus takes O((mn)2(m + n))
time in total. This is summarized in the following theorem:

Theorem 3. For polygonal curves P, Q and ε ≥ 0, we can decide whether there exists a
one-dimensional translation t ∈ R such that δF(P, Q + t) ≤ ε in O((mn)2(m + n)) time.

For solving the optimization problem, we can use the binary search technique
which provides a (1 + ε)-approximation in O(log(1/ε)) searches. For our particular
use case, this is a more practical solution than, for example, the parametric search
technique with Cole’s sorting trick [24].

Theorem 4. For polygonal curves P, Q and ε ≥ 0, we can compute a (1 + ε)-approximation
of δ∗F(P, Q) and its corresponding one-dimensional translation t∗ ∈ R in O((mn)2(m +
n) log(1/ε)) time.
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3.3.2 Discrete

For polygonal curves P and Q consisting of m and n segments respectively, we
define d∗F (P, Q) as the minimum discrete Fréchet distance between P and Q over all
one-dimensional translations t ∈ R of Q:

d∗F (P, Q) = min
t∈R

dF (P, Q + t)

Jiang et al. [44] provided a first simple algorithm for matching polygonal curves
under translations with respect to the discrete Fréchet distance. For translations
restricted to one dimension, the situation becomes more convenient. We introduce a
similar algorithm for this. The following observation is important:

Observation 1. Given two polygonal curves A and B, if there is a translation t ∈ R such that
dF (A, B + t) = ε, then there are two vertices a ∈ A and b ∈ B such that d(a, b + t) = ε.

Similarly to the continuous variant, the discrete Fréchet distance also has the
continuity property since it is a composite function of the continuous Euclidean
distance functions. This implies the following lemma:

Lemma 8. If there is a translation t≤ ∈ R such that dF (A, B + t≤) ≤ ε, then there is a
translation t= ∈ R such that dF (A, B + t=) = ε.

This means that for a given ε, we can easily determine all the critical translations
t such that d(a, b + t) = ε since each pair a ∈ A and b ∈ B has at most two such
translations. Therefore, we have a total of O(mn) critical translations and for each
translation t, we can check in O(mn) time whether dF (A, B + t) ≤ ε using the
dynamic programming algorithm of Eiter and Mannila [31]. This brings us to the
following theorem:

Theorem 5. For polygonal curves A, B and ε ≥ 0, we can decide whether there exists a
one-dimensional translation t ∈ R such that dF (A, B + t) ≤ ε in O(m2n2) time.

Note that this is a factor O(m + n) faster than its continuous variant. For the
optimization problem, we can again use the binary search technique which results in
the following theorem:

Theorem 6. For polygonal curves A, B and ε ≥ 0, we can compute a (1 + ε)-approximation
of d∗F (P, Q) and its corresponding one-dimensional translation t∗ ∈ R in O(m2n2 log(1/ε))
time.

3.4 Earth Mover’s Distance

For two weighted point sets A and B of sizes m and n respectively in Rd, we define
EMD∗(A, B) as the minimum Earth Mover’s Distance between A and B over all
one-dimensional translations t ∈ R of B:

EMD∗(A, B) = min
t∈R

EMD(A, B + t)

We introduce an exact algorithm for the L1 and L∞ metrics first and after that, we
show a 2-approximation that could provide a solution to other metrics.
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3.4.1 L1 and L∞

To find a translation t that minimizes EMD(A, B + t), it suffices to minimize the cost
function:

D(F, t) =
m

∑
i=1

n

∑
j=1

fijd(ai, bj + t)

where F = ( fij) ∈ Rm×n denotes a flow again. Note that we simply ignore the
constant factor that divides the cost by the minimum total weight of A and B. It is not
immediately clear how to optimize this function, so let us first analyze the structure
of D(F, t) for a fixed (feasible) flow F = ( fij) ∈ F (A, B). For a point ai ∈ A, we
denote by ak

i the k-th component of ai (similarly for a point bj ∈ B). For the L1 metric,
the cost function D(t) becomes of the form:

D(t) =
m

∑
i=1

n

∑
j=1

fij · (|a1
i − (b1

j + t)|+
d

∑
k=2

|ak
i − bk

j |)

=
m

∑
i=1

n

∑
j=1

fij · (|xij − t|+ cij)

=
m

∑
i=1

n

∑
j=1

fij|xij − t|+ fijcij

=
m

∑
i=1

n

∑
j=1

fij|xij − t|+
m

∑
i=1

n

∑
j=1

fijcij

=
m

∑
i=1

n

∑
j=1

fij|xij − t|+ C

where xij = a1
i − b1

j , cij =
d

∑
k=2

|ak
i − bk

j | and C =
m

∑
i=1

n

∑
j=1

fijcij are constants. For

simplicity, we will again ignore the constant factor C. Note that each function
δij(t) = fij|xij − t| is a piecewise linear function, so the cost function D(t) is the sum
of these piecewise linear functions, and therefore, also a piecewise linear function
itself. We observe that the slope and intercept of the piecewise linear function D(t)
changes each time a function δij(t) changes its slope and intercept, which happens
at t = xij where the course of the function switches from fij(xij − t) to fij(−xij + t).
Since fij ≥ 0, this means that D(t) is first gradually decreasing and at a certain point
xij gradually increases again, which means that the minimum also lies at that point.
An illustration of this is given in Figure 3.9. This means that, for a fixed flow F, we
can compute the corresponding optimal one-dimensional translation using a simple
plane sweep from left to right in O(mn log(mn)) time (since sorting the mn event
points dominates the runtime).

Let us now consider the L∞ metric. The cost function becomes of the form:

D(t) =
m

∑
i=1

n

∑
j=1

fij · max{|a1
i − (b1

j + t)|, d
max
k=2

|ak
i − bk

j |}

=
m

∑
i=1

n

∑
j=1

fij · max{|xij − t|, cij}
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FIGURE 3.9: Example of the cost function structure for the L1 metric.

where xij = a1
i − b1

j and cij =
d

max
k=2

|ak
i − bk

j | are constants again. Note that we again

obtain a piecewise linear function composed of the functions δij(t) = fij · max{|xij −
t|, cij}. Each function δij(t) is also composed of the piecewise linear functions:

δij(t) =


fij(xij − t) if t ≤ xij − cij

fijcij if xij − cij < t ≤ xij + cij

fij(−xij + t) if t > xij + cij

We can therefore use a similar approach that we used for the L1 metric, but each
function δij(t) now results in (at most) two event points t1 = xij − cij and t2 = xij + cij
where the intercept and slope of D(t) changes. The procedure is besides that identical.

So we know now how to optimize this distance function with respect to a fixed
feasible flow, but our goal is to find the global optimum for any flow. We observe
that for any flow F, we always have the same set of event points (that is, the event
points are independent of the flow). This means that we can simply compute for
each such event point t the corresponding optimal flow by static computation of
EMD(A, B + t). The event point t∗ that corresponds to the lowest distance is then the
optimal one-dimensional translation for any flow. Let T(m, n) be the time it takes
to compute the Earth Mover’s Distance between two sets of points of sizes m and n
(using any algorithm). We obtain the following theorem:

Theorem 7. Given two weighted point sets A and B of sizes m and n, we can compute the
optimal one-dimensional translation in O(mn · T(m, n)) time for the L1 and L∞ metrics.

3.4.2 2-approximation

For translations in arbitrary directions, it has been shown that exact computation
in case of the L2 metric is not possible due to the reduction from the geometric
median [19]. Although our problem is a bit more restricted, we still expect that exact
computation is not possible. Therefore, for this particular case, we have to rely on
approximations. Cabello et al. [20] showed a 2-approximation when we consider
the translations that match each pair of points and take the minimum Earth Mover’s
Distance of those. We show that this also holds for matching points only along one
dimension. Note that in case of the L1 metric, this provides an exact solution as
shown earlier.
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Given two weighted point sets A and B, let tij denote the translation that matches
the points ai ∈ A and bj ∈ B on the x-axis and let t∗ denote an optimal translation.
We have the following theorem:

Theorem 8. min
ai∈A,bj∈B

EMD(A, B + tij) ≤ 2 · EMD(A, B + t∗) if the underlying metric is

any Lp-norm with p ≥ 1.

Proof. It is obvious that there exists a pair of points ai∗ ∈ A and bj∗ ∈ B such that

d(ai∗ , bj∗ + t∗) ≤ d(ai, bj + t∗)

for any ai ∈ A and bj ∈ B. For a point bj ∈ B, the distance between the points bj + t∗

and bj + ti∗ j∗ is simply the difference in their translations, i.e.,

d(bj + t∗, bj + ti∗ j∗) = |t∗ − ti∗ j∗ |

This is exactly the distance along the x-axis between ai∗ and bj∗ + t∗, and since d is
any Lp-norm with p ≥ 1, it follows that

d(bj + t∗, bj + ti∗ j∗) ≤ d(ai∗ , bj∗ + t∗)

≤ d(ai, bj + t∗)

By triangle inequality, we have

d(ai, bj + ti∗ j∗) ≤ d(ai, bj + t∗) + d(bj + t∗, bj + ti∗ j∗)

≤ 2 · d(ai, bj + t∗)

Hence, we have

min
ai∈A,bj∈B

EMD(A, B + tij) ≤ EMD(A, B + ti∗ j∗)

= min
F∈F (A,B)

∑m
i=1 ∑n

j=1 fijd(ai, bj + ti∗ j∗)

min(WA, WB)

≤ min
F∈F (A,B)

∑m
i=1 ∑n

j=1 fij2d(ai, bj + t∗)
min(WA, WB)

= 2 · EMD(A, B + t∗)
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Chapter 4

Methodology

In this chapter, we describe the methodology of this research. We start with a for-
mal description of the problems that are related to hyperbolic localization, which
includes the TDOA estimation and show how this connects to the matching under
one-dimensional translations problem that we discussed in Chapter 3. We then de-
scribe the datasets we are using and specify the pre- and post-processing that needs to
be done. Finally, we describe the general experimental setup and evaluation methods.

4.1 Hyperbolic Localization

In Chapter 2, we already provided a high-level overview of the concepts related to
hyperbolic localization. This section builds on that and goes into more detail. Recall
that acoustic localization using hyperbolic localization methods is accomplished
in two stages. The first stage involves the estimation of the TDOAs between the
microphones, where we take a geometric approach to achieve this. In the second stage,
we try to produce an unambiguous solution to the nonlinear hyperbolic equations
that arise from these TDOAs using efficient techniques.

4.1.1 Geometric TDOA Estimation

Problem Statement. For a signal of interest s(t), the general model for the time
delay estimation between signals received at two different recorders, x1(t) and x2(t),
is given by:

x1(t) = a1 · s(t − τ1) + n1(t)
x2(t) = a2 · s(t − τ2) + n2(t)

where a1 and a2 are the amplitude scaling which represent the attenuation that is
experienced during propagation of the signal, τ1 and τ2 represent the time delay of
the signal from the source to the recorders, and n1(t) and n2(t) are the additive noise.
This model can be simplified further if we take first recorder as reference:

x1(t) = s(t) + n1(t)
x2(t) = a · s(t − T) + n2(t)

where a =
a2

a1
is the ratio of the amplitude scaling factors and T = τ2 − τ1 is the

difference in time between the signals. Our goal is to estimate T.
We can turn this into some kind of optimization problem. Informally, let x1 and

x2 be the signals, either in their waveform or spectrogram representation, and let D
be some distance function. We then try to find a time shift t∗ such that D(x1, x2 + t∗)
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FIGURE 4.1: Example of a partial matching between time series data.

is the minimum value across all translations. This is exactly how the cross-correlation
methods operate, where they calculate a similarity value at each sliding step and
takes the offset with the largest similarity value. If we take a geometric approach
instead, the waveform and spectrogram representations of the signals are treated as
two-dimensional curves and three-dimensional surfaces in space and D represents
some geometric distance measure. Below we provide a formal description of the
problem. Although sound is typically captured in a discrete form, we will treat them
as continuous beings.

Geometric Approach. Let f (x) : Rd−1
≥0 → R denote a function that returns the

amplitude for each sample x ∈ Rd−1
≥0 in dimension d = 2, 3. We denote the set

A = {(x, f (x)) | x ∈ Rd−1
≥0 } ⊆ Rd

as the graph of the function. Note that for d = 2, this is the two-dimensional x-
monotone curve, and for d = 3, this is the three-dimensional surface (more specifically,
a terrain). Let A, B ⊆ Rd be the curves or surfaces for d = 2 and d = 3 respectively
that represent the graphs of the functions f and g corresponding to their signals. The
x-component always represents the time. For d = 2, the y-component represents
the amplitude. For d = 3, the y-component represents the frequency and the z-
component represents the amplitude. From a set of possible shifts in time T ⊆ R,
we would like to find the optimal shift t∗ ∈ T such that the distance between the
shapes is minimized. This is exactly the problem of matching under one-dimensional
translations.

However, this assumes that A and B represent the same segment of the signal,
which would imply that we already have information on the time delay between
them. This therefore leans more towards a partial matching problem, where A is a
(continuous) template signal that we are trying to optimally match against part of
a (continuous) target signal B of longer duration. Suppose that B∗ ⊆ B is the part
of the shape that corresponds to the same segment A, we can safely assume that (1)
B∗ must have the same duration as A, and (2) B∗ must also be continuous (i.e., no
interruptions). If the template has a duration of dur(A) along the time axis, we can
define a set of partial shapes B ⊆ P(B) that should satisfy the constraint of having
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(A) Single location (B) Ambiguous location

FIGURE 4.2: Hyperbolas defined by the difference in distance com-
pared to a reference. The triangles denote the microphones with the

black triangle being the reference.

equal duration and being continuous (cont). More formally:

B = {B′ ∈ P(B) | dur(B′) = dur(A) ∧ cont(B′)}

Note that for the discrete case, both signals are sampled at the same fixed sample
rate, which means that the set B simply consists of all continuous segments of B
with an equal number of samples to A. This allows us to match A on each partial
shape B′ ∈ B independently and find the best matching with its corresponding time
shift, which is again exactly the problem of partial matching under one-dimensional
translations. We can therefore use the algorithms described in Chapter 3 to solve the
TDOA estimation. An illustration of the problem is shown in Figure 4.1.

4.1.2 Localization Technique

Problem Statement. For an array consisting of M microphones, we assume that
the TDOAs are referred to the first microphone, which is often the microphone that
is closest to the source. Let (x, y) be the (unknown) source location and (Xi, Yi) be
the (known) location of the i-th microphone for i = 1, ..., M. The (Euclidean) distance
between the source and the i-th microphone is given by:

Ri =
√
(Xi − x)2 + (Yi − y)2

The difference in the distance between the first microphone and i-th microphone is
then given by:

Ri,1 = c · τi,1 = Ri − R1

=
√
(Xi − x)2 + (Yi − y)2 −

√
(X1 − x)2 + (Y1 − y)2

where c is the (known) propagation speed and τi,1 is the (known) estimated TDOA
between the first microphone and i-th microphone. This defines a set of non-linear
hyperbolic equations whose solution gives the two-dimensional location of the source.

Ideally, the system of equations provides a unique solution. An example of this is
shown in Figure 4.2a where we have four microphones and the closest microphone
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to the source is considered the reference microphone. The hyperbolas defined by
each microphone intersect each other at a common point, which is the source location.
However, there are several reasons that could lead to this system of equations to be
inconsistent (e.g., inaccurate TDOA measurements or microphone locations) where
the intersection of the hyperbolas does not coincide. In that case, it is required to select
an optimum solution using some error criteria. Note that if the set of equations equals
the number of unknown coordinates of the source location (e.g., two hyperbolas for
a two-dimensional position), then the system is by definition consistent as there is
always a unique solution. In practice, we often have more equations to minimize the
error.

Techniques. Solving these non-linear hyperbolic equations is difficult. Most of the
times, the equations are linearized to simplify the computation, which generally does
not introduce errors in the estimation. However, in situations where the microphones
are poorly placed with respect to the source location (known as dilution of precision),
it can introduce significant errors [12]. The hyperbolic localization algorithms are
classified into two categories: iterative and non-iterative [33], which both have their
advantages and disadvantages. Iterative algorithms do not always converge due to
the need of a proper initialization setup, and non-iterative algorithms always yield
two feasible solutions (a positive and negative root) of which one is closer to the
actual source location, but it is not immediately clear which of the two. An example
of the output locations from the two roots is shown in Figure 4.2b for a setup with 3
microphones.

In this thesis, we will be using the least-squares method as developed by Stephen
Bancroft [12], which is a non-iterative algorithm originally designed for GPS systems,
but it also applicable to various other localization systems including TDOA local-
ization. It provides a closed-form algebraic solution to the estimated position that
minimizes the sum of squared residuals between the observed and predicted TDOAs.
A brief description of the mathematical formulation can be found in Appendix A.
Note that all the given formulations can easily be extended to three dimensions, but
in this thesis, we are more interested in finding an accurate two-dimensional position.

Sound Finder. The algorithm of Bancroft requires the specification of a speed of
sound and since it returns two root solutions, one must be selected as output. The
Sound Finder software [78] is an implementation of this and makes concrete decisions
on these aspects. The speed of sound c (m/s) is determined by:

c = 331.3 ·
√

1 +
T

273.15

where T is the temperature in ◦C. Moreover, the root with the lower sum of squares
discrepancy is selected as output estimate position. In Figure 4.2a, this would mean
that we obtain the root location where all hyperbolas perfectly intersect since the
discrepancy is zero, whereas the other root location clearly has a higher discrepancy.
This also shows why at least four microphones is required to unambiguously deter-
mine the position, since the discrepancy of the two root solutions in the setup with
three microphones are both zero (see Figure 4.2b again).
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FIGURE 4.3: High-quality roar (after preprocessing).

4.2 Data

In this section, we describe the three data sources that we will be using, which are:

• Real: roars obtained from the field that we aim to accurately localize.

• Simulated: synthetically construct more roars to evaluate localization (and
TDOA estimation) performance in a controlled simulation environment.

• Synthetic Signals: generation and modification of signals to evaluate matching
or TDOA estimation performance.

4.2.1 Real

This study uses a dataset of the Guianan red howler monkey that is provided by
Yannick Wiegers, Julia Blok, Martijn Ruisbroek, Tom Simmelink, and Georgis Rallis,
who are affiliated with Utrecht University.

During the months of November and December of 2024, five arrays consisting
of either five or 10 microphones have been deployed at known howler monkey
territories in French Guiana. Close to the arrays, a total of eight roars were emitted at
dawn and have been sufficiently captured by at least four microphones of a single
array. The two-dimensional source locations have been measured, together with
the three-dimensional locations of the microphones themselves (see Figure 4.4). The
microphones recorded in single-channel WAV format for the duration of ±5 minutes
with a sampling rate of 24 kHz (see Figure 4.3).

Despite the fact that the Guianan red howler monkey is currently listed as "Least
Concern", this research mainly aims to study the feasibility of localizing primates
using our methods and most of the results obtained from this dataset likely generalize
to other howler monkey species as well (or even other primates) due to similarities
in the characteristics of their vocalizations. As they are still hunted locally, the
localization of this specific species could help in revealing potential danger early for
effective conservation.

4.2.2 Simulated

For a large-scale evaluation of our methods on the localization of howler monkeys, a
simulation of roars is required. In a simulation setup, we have a virtual environment
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FIGURE 4.4: Microphone setup and roar locations in two different
areas (Réserve naturelle des Nouragues, French Guiana).
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where we can manually specify microphone and source locations. The idea is then
to play a recording at a source location and obtain a modified recording as if it was
captured by the respective microphone in this environment. We simulate a forest
environment of 1 × 1 km with a speed of sound that matches with the localization
algorithm. Since we focus on two-dimensional localization, we set for all objects
(i.e., microphone and source locations) an equal height of 1.5 meters (which will
the be irrelevant). The microphones will furthermore only be placed in the range
[200, 800]× [200, 800] (in meters) for two reasons: to prevent edge-effects and ensure
that the TDOAs will not exceed the limit set by our matching algorithms.

To simulate recordings in a forest environment, we can use a forest impulse
response (IR) simulation algorithm. An impulse response describes how a system
reacts to an impulse, which is a very short and instantaneous input signal. In acoustics,
this system describes a certain environment, such as a concert hall, where an impulse
response represents how sound propagates from a source to a receiver in that specific
environment. If we convolve an impulse response with a sound signal, we can
simulate how that signal would sound in the modeled environment. Formally, if we
have an input signal x[t] and an impulse response h[t], the convolved signal y[t] is
obtained by:

y[t] =
∞

∑
k=−∞

x[k] · h[t − k]

So for each source-microphone pair in the simulation, we construct such an im-
pulse response and convolve this with a (high-quality) roar to obtain the simulated
recording.

Kaneko and Gamper [45] fairly recently introduced an algorithm for this that
models acoustic scattering in a forest caused by tree trunks using single scattering
cylinders. The same authors later employ this algorithm for simulating forest scenes to
examine the performance of distributed microphone arrays for bird localization [46],
but it has not yet been employed on other use cases. We use this for our simulation
setup. We set the number of trees to zero, since we are mainly interested in the
performance of our methods in a best-case scenario. Besides, the reverberation effect
caused by the trees alone did not seem to have a significant impact on our roar signal,
so the performance of the TDOA estimation is not expected to significantly differ
either. For a more realistic simulation, one would additionally need separate ambient
(or background) noise recordings that are appropriate for the aimed environment.
The simulation returns IRs of 5-second duration with a sample rate that matches that
of the roar recordings, allowing for the convolution.

4.2.3 Synthetic Signals

Our goal is to develop methods that are more robust to noise and attenuation effects,
which are common in real-world signals, for more accurate estimation of the TDOA.
This trivially leads to more accurate localization. To make reliable statements about
the robustness characteristics of the methods, we sometimes have to rely on synthetic
signals since we have limited information on the quality of the real dataset. For
example, we can not determine an approximate SNR of each recording since they
do not contain sufficient samples of isolated background noise. Other than that,
synthetic data allows for a larger-scale evaluation where we have full control over
relevant parameters that simulate these effects. For the signal type, we either consider
fully synthetic signals (e.g., sine wave) or a (high-quality) roar from the real dataset.
We also need to specify a noise model and time shift strategy.



Chapter 4. Methodology 53

0 2 4 6 8
Time (s)

−1.0

−0.5

0.0

0.5

1.0

A
m

pl
it

ud
e

FIGURE 4.5: Example of a noisy shifted signal (SNR=15dB and relative
shift is 25%).

Noise Model. The additive white Gaussian noise (AWGN) is often used in signal
processing to mimic the effect of many random processes that occur in nature. Noise
is modeled as a Gaussian distribution with zero mean and a specified standard
deviation σ, which corresponds to a certain SNR level.

Given the power of the signal Psignal and a desired SNR level, we can determine
the power of the noise Pnoise (rewrite of the equation given in Chapter 2), which
comes down to the variance of the noise σ2. To additionally simulate the effect of
attenuation, we multiply the original signal with an attenuation factor α ∈ [0, 1]. In
practice, if we have a clean signal y[t] and a sampled noise n[t] ∼ N (0, σ2), the noisy
signal simply becomes

y′[t] = α · y[t] + n[t]

Time Shift. For the evaluation of the matching or TDOA estimation performance, it
is desired to also add a time shift to the noisy signal. The strategy of determining a
time shift depends specifically on the matching setting. In case we perform a regular
matching, the shift is relative to the original signal and will be uniformly sampled
from [−1, 1] (e.g., 0.25 represents a shift of 25% with respect to the original shape, see
also Figure 4.5). Note that for most algorithms, the initial position is irrelevant to the
matching position and only affects the translation. For the partial matching setting,
the shift is absolute and will be uniformly sampled within a range depending on the
TDOA limit set by our matching algorithms (e.g., if we allow TDOAs of at most 2.5
seconds, we take the range [−2.5, 2.5]).

4.3 Pre- and Post-processing

In this section, we detail three preprocessing steps that are applied to the signal data
and a postprocessing step that is required to correct for synchronization.

Downsampling and Band-limiting. The dominant frequency band of the howler
monkey roars are in the 100-1000 Hz range. By the Nyquist-Shannon sampling
theorem, we need a sampling rate of at least 2 kHz to prevent aliasing. The recordings
are therefore downsampled to 2 kHz. Additionally, a band-pass filter of 10-1000 Hz
is applied to the data to filter out the irrelevant frequencies.
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Noise Removal. Since the recordings contain errors with segments of complete
silence that affect the TDOA calculation, we have to filter them out. Empirically
determined, we look at reach region of 128 samples with an overlap rate of 50% and
compare its loudness to a threshold below the peak of 60 dB. This means that any
parts that are up to 60 dB quieter than the peak are considered non-silent and may
stay, whereas the other parts have a silent level that is even uncommon to regular
background noise and are therefore removed.

Normalization. Since we want to compare the shapes of the signals rather than their
absolute magnitudes, we have to normalize the data. This ensures that the amplitude
differences do not bias the comparison. One that is often used in signal processing is
peak normalization, which scales the data into the fixed range [−1, 1] based on the
largest peak. However, this is sensitive to outliers as the overall energy distribution
might be significantly different. In the case of real-world signal data, the presence
of outliers is very likely. To better match the energy levels of the signals, root mean
square (RMS) normalization is a more suitable alternative. For a set of values X of
size N, the normalized set X′ is then obtained as follows:

X′ =
X

RMS(X)
where RMS(X) =

√√√√ 1
N

N

∑
i=1

X2
i

where Xi represents the i-th value in X. Moreover, the RMS value is a good indication
of the resolution of the signal, which we can use to determine which microphones
best captured the signal. Often times, these are the microphones closest to the source
location, on which we obviously have no information in practice.

Synchronization. To synchronize the recorders, we apply the acoustic synchro-
nization method by playing a beep at the start and end of deployment, when the
recorders are together (such that they capture this beep simultaneously). This beep
is captured at different timestamps by each recorder, so these are first identified
and relative differences are taken between the recorders. We then obtain offsets for
both the start and end points. Calls that occurred within 24 hours of one of these
moments are synchronized using their respective offsets by subtracting them from
the TDOA estimates. Outside this range, we need to correct for drift on top of the
start synchronization (so we assume drift to be negligible within this range). If we
assume that drift is linear, we can calculate a drift rate based on these measurements
again. For example, if we have two recorders where the two beeps were captured 600
seconds apart for the first recorder and 600.3 seconds apart for the second recorder,
we then obtain a drift rate of 0.3/600 = 0.5 ms/s for the second recorder. After 10
seconds, its internal clock is 5 ms ahead compared to the first recorder. This must also
be subtracted from the TDOA estimates.

4.4 Experimental Setup

This section describes the general experimental setup, which involves the transforma-
tion of the signal data to a suitable representation, strategies for selecting template
segments to match on, parameter settings, and the technical specifications.
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FIGURE 4.6: Examples of signal representations. The spectral energy
envelope is obtained by aggregating the frequency bins at each time

bin.

4.4.1 Signal Representation

The waveform of the signal is a rich representation, containing both the phase and
amplitude information of the entire signal. It has a high temporal resolution with
a sample rate of 2000 Hz, meaning that at each 1/2000 = 0.0005 second, we have a
sample of the original signal. While this gives enough information for reconstructing
the original signal, using the waveform directly as input of our methods will be
infeasible (e.g., a 5-second template requires 10.000 points). We can not downsample
the signal further as we would lose important frequency information about the roars.
Taking a shorter segment as template may be insufficient for a proper matching and
does not fully resolve the issue as it still requires a considerable amount of matchings
with the partial shapes. Our focus will be on the spectrogram representation, which
is more compact as it considers segments of the signal in time and also discards the
phase information.

Spectral Energy Envelope. While this representation already reduces the complex-
ity of the original waveform, it still does not significantly reduce the number of points
due to its extra dimension. Note that it consists of a set of points in a grid with weights
associated to them, representing the amplitude values at each time and frequency
point. We need to reduce this grid to a fewer number of points that still effectively
approximates the original grid. We can aggregate the frequency bins at each time bin
to reduce this three-dimensional spectrogram to a two-dimensional energy envelope
of the signal over time (see Figure 4.6). Not only is this a more compact representation
than the waveform, but it is also less oscillatory, making it easier to observe patterns
in the shape, which consequently should improve the matching as well (Figure 4.1
shows an example of such a matching). On top of that, it comes with the benefit
of having non-negative values only, meaning that we can directly model them as
weights in the Earth Mover’s Distance for example. This representation will mainly
be our focus.

Spectrogram Approximation. The main disadvantage of the spectral energy en-
velope is that we still lose frequency-specific information, which could potentially
be useful in the matching process for more accurate TDOA estimation. Therefore, it
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FIGURE 4.7: Example of a weighted K-means approximation with
averaging weights of points in same cluster. Other approximations

can be found in Figure B.6 of Appendix B.

would be interesting to also observe how the algorithms respond if we retain this
extra dimension. We could perform a similar procedure as previously where we ag-
gregate bins in a small L × W window for some L, W ∈ N and slide it over the entire
grid, but we can also do something more targeted knowing that we are more inter-
ested in the regions with high amplitude values where the roar is more pronounced.
Namely, the lower amplitude regions tend to fluctuate more due to noise (or other
factors that, for example, involve the STFT transformation), which makes them less
suitable to match on. We will consider two options for this: weighted K-means [60],
which is a clustering-based approach, and a greedy insertion approach [34], which
samples important points. A brief description of these methods can also be found
in Appendix A. The amplitude of the cluster centers obtained from the weighted
K-means is determined by aggregating (sum, max, or average) the amplitudes of the
points that belong to the same cluster. An example of a K-means approximation is
shown in Figure 4.7.

4.4.2 Template Selection

Throughout the experiments, we sometimes need to choose which recording of a roar
is used as template (or target). In most cases, we simply take the recordings with
the highest resolutions as determined by the RMS value. We assume that these best
represent a clean roar (without significant background noise) and results obtained on
them likely generalize well to other high-quality roar recordings.

Strategy. Since we only consider a small segment of the entire signal as template,
it is important to select a segment with a distinct shape that can be matched un-
ambiguously to the target segment. Taking a random segment of the signal could
be one strategy, however, this might select segments of background noise that can
not be properly matched due to their fluctuating patterns. Similarly as with the
spectrogram approximations, we should focus on the parts where the roar is most
pronounced. These are simply the peaks in the spectral energy envelope. Suppose
we have a peak at time bin x and we have a template length of L (which we expect to
be even), we then center the template around x such that the template range becomes

[x − L
2

, x +
L
2
] (and correct for boundaries by shifting the center position if necessary).



Chapter 4. Methodology 57

Top-k. In the experiments, we either focus on a single peak or a top-k of peaks. If
we are using a top-k, we want the templates to be sufficiently different from each
other (e.g., a largest peak at time bin x and a second largest peak at x + 1 is generally
not different enough). Therefore, the time bins that were part of the template in the
prior peaks are excluded from the candidate list. This concretely means that, with
our strategy, the maximum overlap between the templates is 50%.

4.4.3 Parameters

We list the parameters used throughout the experiments below. Note that the focus
here is on the general setting from which we do not deviate unless otherwise specified.
Other parameters are explicitly stated with their experimental results.

STFT. For the STFT procedure to transform the waveform to a spectrogram repre-
sentation, we choose a FFT size (n_ f f t) and window size (win_length) of 512 samples.
Recall that the window size determines the length of the segment that is used for each
Fourier Transform. The FFT size is a different parameter where we can control the
number of frequency bins without affecting the time resolution, so setting a larger FFT
size than the window size would require zero-padding (which does not add any new
information to the signal). The hop size (hop_length) is set at 256 samples, resulting in
an overlap of 50% between consecutive STFT frames. The window function (window)
is Hanning, which reduces spectral leakage more effective than other functions. Since
our data is sampled at a sample rate of fs = 2000 Hz, these settings correspond to
a frequency resolution of fs/n_ f f t = 2000/512 = 3.91 Hz and time resolution of
hop_length/ fs = 256/2000 = 0.128 seconds. Since the frequencies between 0 and 100
Hz are filtered out with a band-pass filter, the bins corresponding to these frequencies
are removed from the spectrogram which leaves us with a total of 231 frequency bins.

Template and Target Lengths. Taking into account the computational restrictions
that we are dealing with, we set a template length of 40, corresponding to a segment
of 40 · 0.128 = 5.12 seconds (the effectiveness will be experimentally validated as
well). For the target length, we assume that the TDOA is at most 2.5 seconds. If we
take the target segment at the same timestamp as the template segment, this means
that we need to add another 2.5/0.128 = 20 samples before and after. In reality, this
means that if we draw a line between two microphones and the source location lies
on this line, but not on the interior of the segment, then the microphones should have
a distance of at most 2.5 · 346.71 = 866.77 meters. While this is not always the case for
certain setups, the signal strength has likely weakened at such distances to a point
where TDOA estimation becomes very difficult. In most setups, there are enough
microphones closer to the source that can be used for the TDOA estimation instead.
Moreover, our data matches this assumption, so setting a higher upper bound would
only be redundant.

Temperature. For the localization, we need to specify a temperature which deter-
mines the speed of sound. Since this was not measured during the recordings of
the roars, a fixed temperature of T = 26◦C is assumed. Using the formula from the
Sound Finder software, this corresponds to a speed of sound of roughly 346.71 m/s.

Binary Search. For the Fréchet distance matching algorithms, we need to specify a
range for the binary search, which terminates when the difference between the higher
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and lower bound is below a specified ε. We set an initial lower bound of zero and a
greedy upper bound that is determined by the maximum of the two static distances
between the curves if we match the last vertex of one curve with the first vertex of
the other curve. This is clearly a valid upper bound since moving the curves further
away from each other can only increase the Fréchet distance.

4.4.4 Technical Specifications

In this section, we describe the implementation details. Note that if we refer to any
library, we mean the Python version of this, unless otherwise specified.

Matching Algorithms. The shape matching algorithms have been implemented in
Python 3.10.7, with the aim of making the algorithms easily usable for people without
a programming background as well. The code is available at our GitHub repository
[75], accompanied with instructions on how to run the code.

For most of the array processing, we used the numpy library [38]. For static
computation of the discrete Fréchet distance, we used the frechetdist library [29],
which is an implementation of the dynamic programming algorithm of Eiter and
Mannila [31]. We used a custom implementation for the continuous Fréchet distance
due to a lack of available libraries, based on the algorithm of Alt and Godau [6].
For static computation of the Earth Mover’s Distance, we used the scipy library
[74], which provides an efficient implementation for both the one-dimensional case
through the function wasserstein_distance, and for the higher-dimensional case through
wasserstein_distance_nd (that uses the Euclidean distance as underlying metric).

One additional optimization we made to the implementation of the algorithms
exploits the observation that the point sets of our data are sampled at a constant
sampling rate, which means that they are evenly spaced (i.e., the distance between
two consecutive points on the x-axis is always the same). For the Earth Mover’s
Distance, instead of a quadratic number of translations, we would only have to
consider a linear number of translations.

Other Libraries. For loading and processing the audio files, we used the librosa
library [54]. The Sound Finder [78] implementation in R is used to perform the
localization, which supports both two- and three-dimensional localization. The cross-
correlation TDOAs are calculated using the numpy library again. For the spectrogram
approximations, we used the scikit-learn library [60] to obtain the clusters from the
weighted K-means. For the terrain approximation using greedy insertion as described
by Garland and Heckbert [34], we took the pydelatin library [13].

Hardware. All experiments are run on a Windows 11 notebook with an Intel Core
i7-8750H 2.20GHz 6-cores processor and 16GB RAM.

4.5 Evaluation

The evaluation consists of three main parts: the errors made on the matchings and
TDOAs, the errors of the estimated positions and the quality of the microphone setup.

Matching Error. For measuring the translation error between a single matching,
we simply take the absolute difference between the estimated x and true shift y (i.e.,
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e = |y − x|). If we have a set of n samples, we can take the mean absolute error (MAE)
defined as:

MAE =
∑n

i=1 |yi − xi|
n

=
∑n

i=1 ei

n
The main advantages of this metric are its interpretability and robustness to

outliers.

TDOA Error. For measuring the error of the TDOA, we could again use the MAE.
However, this gives equal weight to all errors, but a larger error in the TDOA estima-
tion could lead to a significantly larger error in the estimated position. An alternative
metric that takes this into account is the root mean square error (RMSE), which is
defined as:

RMSE =

√
∑n

i=1(yi − xi)2

n
Note that for the roar recordings, we do not directly have ground truth TDOAs

available, so for this we would have to rely on manual estimation.

Position Error. The localization algorithm returns a three-dimensional position
estimate from the estimated TDOAs, which again depend on the three-dimensional
position of the howler monkey. Since we only have measurements of their two-
dimensional positions, we simply ignore the z-coordinate estimate. A position is then
defined as a point p = (p1, p2) in the plane. For measuring the error e of the position,
it is common to take the Euclidean distance between the estimated x = (x1, x2) and
ground truth y = (y1, y2) position. This simply comes down to:

e =
√
(y1 − x1)2 + (y2 − x2)2

If we have a set of n samples, we define the mean position error e as:

e = ∑n
i=1 ei

n
To make statements whether our methods perform significantly better than the

cross-correlation methods for the localization, we need to do statistical significance
testing. Suppose we have two algorithms a1 and a2 and n test samples. Let ei,1 and
ei,2 denote the position errors made by a1 and a2 respectively on test instance i. Let e1
and e2 be the mean position error of a1 and a2 respectively. We can define the null
(H0) and alternative (Ha) hypothesis as follows:

• H0: There is no difference in performance between the two algorithms (i.e.,
e1 = e2).

• Ha: There is a difference in performance between the two algorithms (i.e.,
e1 ̸= e2).

Since we have a pair of errors on each test instance, we need a paired statistical
test. Given our small sample size (eight roars), we can not assume that the errors
are (approximately) normally distributed (e.g., di = ei,1 − ei,2 is the difference in
errors on instance i). We will therefore use the Wilcoxon signed-rank test, which tests
whether the median difference between the paired observations is zero or not. For
the significance level, we choose the commonly used α = 0.05.
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Geometric Dilution of Precision. Other than the quality of the TDOA estimates,
the accuracy of the position estimate is mainly determined by the geometry of the
source location with respect to the microphones, known as geometric dilution of
precision (GDOP). It is a concept to indicate how errors in measurements (in our
case TDOAs) affect the position estimate. Microphones that are poorly placed (e.g.,
closely spaced or collinear) typically have a high GDOP value where small errors in
the measurements can cause large position errors.

While our measurements are TDOAs, the localization algorithm we use is in
fact TOA-based. It essentially treats our TDOA measurements as pseudo-TOAs and
then solves the position estimate with its corresponding time offset. Therefore, we
consider the formulation of the GDOP that matches this mathematical structure, as
also provided by Bancroft [12]. Using the same notation as earlier, the pseudorange
for a microphone i is defined as:

ρi =
√
(Xi − x)2 + (Yi − y)2 + b

where b is the unknown clock offset. We compute the Jacobian matrix, which consists
of the partial derivatives of these pseudoranges, by:

H =



∂ρ1

∂x
∂ρ1

∂y
∂ρ1

∂b
∂ρ2

∂x
∂ρ2

∂y
∂ρ2

∂b
...

...
...

∂ρM

∂x
∂ρM

∂y
∂ρM

∂b


=



x − X1

R1

y − Y1

R1
1

x − X2

R2

y − Y2

R2
1

...
...

...

x − XM

RM

y − YM

RM
1


We then obtain the covariance matrix by:

Q = (HT H)−1 =


σ2

x σxy σxb

σxy σ2
y σyb

σxb σyb σ2
b


where σ2

x and σ2
y are the variances in the x- and y-direction estimates respectively, σ2

b is
the variance in the clock bias estimate, and the remaining elements are the covariances.
The diagonal elements (σ2

x , σ2
y ) basically indicate the positioning uncertainty along

each axis and σ2
b indicates the time uncertainty. The GDOP is then defined as:

GDOP =
√

trace(Q) =
√

σ2
x + σ2

y + σ2
b

The interpretation of these values is listed in the table below.
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GDOP Rating Description

< 1 Ideal Highest possible precision. Unlikely in practice.
1 − 2 Excellent Very good accuracy.
2 − 5 Good Acceptable for most applications.
5 − 10 Moderate Noticeable degradation in accuracy.
10− 20 Poor Very low precision. Positions should only be

used as rough indication.
> 20 Very poor Positions should be discarded.
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Chapter 5

Experimental Results

In this chapter, we present, interpret and discuss the experimental results of the
matching algorithms described in Chapter 3 applied to signal data. It is divided into
three broad sections:

• Matching of simple signals representing x-monotone curves in space.

• The TDOA estimation of roars.

• The localization of roars using these TDOA estimates.

Throughout the experiments, we use labels to refer to the methods being exam-
ined, which can be found in the table below.

Label Method

HD_PNT Hausdorff distance for point sets L1 and L2 (in case of equal
performance)

HD_LX Hausdorff distance for point sets (LX)
HD_SEG Hausdorff distance for line segments (L2)
CON_FD Continuous Fréchet distance (L2)
DIS_FD Discrete Fréchet distance (L2)
EMD Earth Mover’s Distance (L1 unless otherwise specified)
CR_CRR Cross-correlation
KM_X Weighted K-means with aggregations

X ∈ {MAX, SUM, AVG}
GI Greedy Insertion
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FIGURE 5.1: Shapes of sine waves.

5.1 Matching Simple Signals

Since the partial matching of signals is achieved by matching a template segment
shape with the partial shapes of the target segment, the matching of such a partial
shape directly influences the quality of the TDOA estimation. Therefore, we consider
simple signals with distinct shapes and observe how distortions in the amplitude
values of the target signal affect the optimal alignment with the unaffected template
signal. This could give an indication of the robustness for each method and how they
compare. Note that we do not consider the spectrogram representation since our
choice of signal representation are mainly x-monotone waveform curves. Besides,
a spectrogram is more appropriate for complex signals with changing properties of
frequencies and amplitudes over time, which applies more to real-world signals.

5.1.1 Setup

The simplest and most fundamental sound signal is a sine wave, characterized by
its smooth and harmonic shape. We start with a sine wave that has an amplitude
of A = 1, a frequency of f = 1 Hz, a phase of ϕ = 0, and a duration of 1 second,
which corresponds to a single cycle. By the Nyquist-Shannon sampling theorem, we
need a sampling rate of at least 2 Hz to capture the information of this signal, but
this does not provide us a visually smooth waveform. For this reason, we choose
a sampling rate of 10 Hz, resulting in a total of 10 samples. This also appears to
be the minimum amount of samples required to obtain the recognizable shape (see
Figure 5.1a). Since the noise added onto the target signal is randomly sampled from a
Gaussian distribution, we have to average the results over multiple instances. At each
noise level, we therefore take the average over 1000 instances and each algorithm is
tested on the same set of instances for proper comparisons. As our main goal is to
observe the behavior of the algorithms on small distortions of the signal, we ignore
the attenuation effect to keep it simple and set α = 1. For the continuous and discrete
Fréchet distance, we set ε = 0.00001 as threshold for the binary search, which allows
for a nearly exact solution.

5.1.2 Preliminary Experiments

EMD Weights. One other practical consideration is how we deal with the weights in
the EMD algorithm. Since the loud parts of the signal are considered more important,
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FIGURE 5.2: Preliminary experiments on matching performance ( f = 1
Hz).

we can simply model the amplitude values of the data as the weights of the points.
We expect that the total weights of the two points are (in general) unequal and will
therefore be partially matched. However, there is one problem with this approach as
the amplitudes can take negative values, whereas the weights must be non-negative.
There are three potential solutions for this:

• MIN_SHIFT: Shift all the amplitude values by the minimum amplitude value
(of both signals).

• ABS: Take the absolute values of the amplitudes.

• WTD_ABS: Take absolute values, but positive amplitudes get higher weights
(i.e., by doubling them).

The latter option allows to still differentiate between positive and negative ampli-
tudes. The results for each strategy are shown in Figure 5.2a. It shows that for a SNR
of ≥ 15 dB, each strategy performs equally well, but when the noise further increases,
the strategy of shifting the amplitude values outperforms the other strategy on av-
erage. This is in line with expectations as this best preserves the original shape by
keeping the relative amplitude differences consistent. It is also worth noting that the
weighted absolute values in this situation performs better than the regular approach,
confirming that the differentiation between the positive and negative amplitudes has
slightly improved.

Hausdorff Variations. We also performed a preliminary experiment for a first com-
parison between each Hausdorff distance variation, presented in Figure 5.2b. This
shows that, on average, the Chebyshev metric has a significantly larger matching
error compared to any of the other metrics at each noise level. Recall that the Cheby-
shev distance between two points is the maximum distance along any coordinate
dimension, so the distances from the other coordinate dimensions are basically ig-
nored in the final measure, which is not the case in the other variations. As the noise
further increases, the distances of those other coordinate dimensions also appear to
become increasingly important for a proper matching. This makes this metric less
suitable for our particular matching application where precision in time differences is
important. For this reason, we omit this variation in the remaining experiments.
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FIGURE 5.3: Matching performance on a sine wave ( f = 1 Hz).

5.1.3 Matching Performance

We now move our attention to the matching results of all the algorithms shown in
Figure 5.3a.

Hausdorff Distance. It stands out that the Hausdorff distance for the L1 metric
performs on average consistently better compared to the L2 metric variant at the
higher noise levels. Given also our earlier observation of the L∞ metric performing
worse than the L2 metric, this might indicate that higher-order Lp-norms as underly-
ing distance are more vulnerable to distortions in the signal, which leads to larger
matching errors. Another interesting observation is that the Hausdorff distance for
segments seems to perform, on average, noticeably better at the larger noise levels
(< 0 dB), equally well on the middle noise levels (0 − 10 dB), and worse at the lower
noise levels (> 10 dB), compared to the Hausdorff distance for L1. It shows the
benefit of the added precision through interpolation of consecutive points in settings
with larger noise levels. This is even more confirmed if we take a glance at the
performance of the continuous Fréchet distance, which shows further improvement
as it adds another precision layer by taking the course of the curves into account as
well. However, in settings with lower noise levels, the noise has a larger negative
impact, which we would expect with smaller distortions and higher precision.

Fréchet Distance. Continuing on the topic of the Fréchet distances, the continuous
variant generally does not improve on the discrete variant and, at best, matches the
performance at the larger noise levels (< 10 dB). Figure 5.4 shows the solution quality
and wall-clock time comparisons between them. Since the discrete Fréchet distance is
restricted to only the vertices of the curves and is in that regard an approximation
of the continuous variant, it is expected that the continuous distance finds solutions
with slightly lower distances, which is in accordance with our observations. Although
there is some improvement in the solution in terms of its distance, it surprisingly
does not lead to better matchings at the larger noise levels on average, indicating
that the vertices alone are typically sufficient enough and that we possibly reached
a limit on the performance gain for matchings that optimize a maximum distance
in space. In terms of computation time, we already showed that the algorithm for
solving the decision problem of the continuous variant is a factor O(m + n) slower in
time complexity compared to the discrete variant. It shows that this, in combination
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FIGURE 5.4: Comparisons between continuous and discrete Fréchet
distance ( f = 1 Hz).

Method SR_10 SR_30 Increase (%)

HD_L1 0.00272 0.0237 771
HD_L2 0.00749 0.0840 1021
HD_SEG 0.0769 1.029 1238
EMD 0.00134 0.00374 179

TABLE 5.1: Rough indication of wall-clock times (s) on a single match-
ing for two different sample rates. Averages over all 9000 instances of

each noise level.

with the more expensive intersection operations that need to be done, has a large
impact on the wall-clock times, especially with higher levels of noise. The reason
for this lies in the fact that higher noise levels lead to curves with higher distances.
At the same time, we have set a fixed lower bound of zero, which consequently
results in more iterations being needed for the binary search to converge. For the
continuous Fréchet distance, this significantly increases the computation time by
multiple seconds, whereas the impact on the discrete Fréchet distance stays relatively
low. Since we already observe relatively high computation times for a single matching
between two curves of 10 points and no remarkable improvement compared to its
discrete counterpart, we omit the continuous variant in any further experiments.

For reference, the wall-clock times of the other methods are shown in Table 5.1,
which in contrast to the Fréchet distance, do not depend on the specific SNR value.
For the Hausdorff distance, the more complex it gets, the worse it scales. The EMD
scales relatively well in comparison.

EMD. One final interesting observation is that the EMD outperforms all other
algorithms, especially at the larger noise levels. We must take into account the fact
that the optimal matching in this case always occurs when the coordinates of the two
points align. This means that there is either a perfect matching with time error of 0
seconds or an imperfect matching with a time error of at least 1/10 = 0.1 seconds.
Since we observe average errors of lower than 0.05 seconds on all noise levels, this
means that it succeeds more than 50% of the time in correctly aligning the curves at
any noise level and (nearly) all of the time for smaller noise levels (≥ 10 dB). Given
this observation of the sample rate playing a role in the matching quality for the
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FIGURE 5.5: Matching performance on sine waves with a sample rate
of 30.

EMD, it might be interesting to investigate the effect of larger sample rates. This is
shown in Figure 5.3b. It becomes immediately clear that a larger sample rate can be
beneficial in settings with higher noise levels (≤ 0 dB), but it seems to sacrifice a little
in the middle noise levels (5 − 10 dB) again. More samples increases the likelihood
for a wrong matching in settings where ambiguity starts to increase, which typically
happens at the middle noise levels. For the lower noise levels (≥ 15 dB), there is no
difference as it always finds the correct alignment for any sample rate.

5.1.4 Effect of Signal Type

All the previous observations were based on a simple sine wave, but these might not
always hold for other signal types. Therefore, we also consider other signals that
have distinct structures. Due to computational restrictions, we ignore the Fréchet
distance methods in this section.

Sum of Sine Waves. All sound signals can essentially be represented as the sum
of one or more sine waves, each with their own set of parameters. If we increase
the frequency, we obtain more cycles within the same duration. Summing the sine
waves of frequencies 1, 2 and 3 Hz results in a more interesting shape shown in Figure
5.5b. Note that this requires a sample rate of 30 Hz since our maximum frequency
has become 3 Hz. To ensure fair comparison with our simple sine wave as well,
we evaluate the performance on a sine wave of 30 samples, of which the results
are given in Figure 5.5a. We observe fairly similar results to the sine wave of 10
samples, but one noticeable difference is that the Hausdorff distance for point sets
starts to align more with the segments variant. More samples better approximates the
original curve and therefore the impact of the added precision through interpolation
naturally degrades. The results of our complex signal are shown in Figure 5.5b. One
interesting observation is that the L2 metric matches the L1 metric at the middle noise
levels (0 − 10 dB), whereas we clearly saw a different pattern with the simple sine
wave thus far. Another remarkable change concerns the segments variant, which
again seems to perform better at the larger noise levels (< 0 dB), but now performs
noticeably worse at both the middle and lower noise levels (≥ 0 dB). It seems that for
increasingly complex structures, the added precision of the segments variant becomes
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FIGURE 5.6: White noise signal with a sample rate of 30.

more vulnerable to small distortions, but when the noise dominates the signal, it
remains a beneficial feature.

White Noise. Another distinct signal type is a white noise signal, which in contrast
to sine waves, lacks any structure. The signal is sampled from a Gaussian distribution
with zero mean and standard deviation of one, similarly to how noise is modeled.
An example of this is shown in Figure 5.6a, which also matches the sample rate
of our previous signal types. We can use this specific instance and compare the
matching performance again. The results of this are shown in Figure 5.6b. We observe
a convergence behavior, where increasing noise levels no longer significantly increase
the matching error. The gap between the Hausdorff distance for the L1 and L2 metrics
has become more apparent again. Another noticeable difference is the segments
variant that significantly improves on the L1 metric now in the middle noise levels
(0 − 10 dB). This could mean that the added precision of the Hausdorff distance for
segments becomes more important with signals that have less structure, which seems
to be in line with our earlier observation for a more complex structured signal where
it becomes less important. A similar statement could be made for the L1 and L2
metrics, where the L1 metric seems to perform significantly better for signals that
have less structure, but the L2 metric starts to match its performance with more
complex structures at the noticeable noise levels.
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FIGURE 5.7: Example of roar with artificial noise (SNR = 5dB and
α = 0.8; spectrogram of clean version in Figure 4.3).

5.2 Roar TDOA Estimation

In this section, we evaluate the performance of our methods on the TDOA estimation
if the signals represent roars captured from recorders in the field, and compare them
to the cross-correlation method. There are multiple factors that could affect the
quality of the TDOA estimation, including the template length, the noise robustness
characteristics of the respective method, and the input representation of the signal.
We investigate each of those aspects to empirically find an optimal setting for this,
which should also provide the best possible performance in the localization.

General Setup. Although we try to incorporate all the algorithms described in
this thesis, we can only focus on a small subset of them due to poor scalability.
Our first candidate is the EMD, given the fact that it showed the best performance
for a single matching in noisy settings, so we expect that if we can improve this
algorithm in a certain experimental setting, that this consequently has a positive
effect on the other algorithms as well. However, we should be cautious due to
the different nature of the Hausdorff and Fréchet distances. Another candidate is
therefore the Hausdorff distance for point sets with underlying metric L1 due to its
better performance (especially for structured shapes and reasonable noise levels)
compared to the other variants. To ensure fair comparison, the cross-correlation is
also applied to the envelope representation (unless otherwise specified).

5.2.1 Effect of Template Length

The template length is a key parameter in the partial matching process. A larger
template allows for a more precise matching in most cases, but can have a significant
impact on the runtime. Therefore, the challenge is to find an optimal balance between
a sufficient template length that allows for a proper comparison with the target
segment and such that the partial matching can be computed in a reasonable amount
of time.

Setup. We take the recording of a roar with the highest resolution as both our
template and target signal and apply noise and shifts to the target copy. Using our
noise model, we set a SNR of 5 dB and an attenuation of 0.8. This results in an energy
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FIGURE 5.8: Effect of the template length on the matching performance
(SNR = 5dB and α = 0.8). The red line shows the mean and the blue
area shows the 95% confidence interval based on the RMSE of five
peaks. The RMSE of a single peak is determined over 100 instances.

envelope that is difficult enough to match with the original shape, while still being
comparable (see Figure 5.7). Note that the spectrogram of the noisy signal gets larger
energies in areas of lower energies in the original signal. Our noise model adds
equal power at all frequencies, which reduces the contrast of the original signal. This
naturally affects the energy envelope as well.

Results. The results are shown in Figure 5.8. We observe that for both the EMD and
Hausdorff distance, the error gradually decreases as the template length increases
until a point of convergence where no significant improvements are made. This hap-
pens at a template length of around 40 (which is the same as our chosen parameter
value). In fact, a larger template seems to increase the error again for the EMD. The
cross-correlation method requires a considerably larger template length with conver-
gence occurring at 260. This may be explained by the geometric nature of the EMD
and Hausdorff distance as they directly take into account the spatial relationships of
the points, whereas the cross-correlation ignores this and simply creates a summary
value based on a dot product of amplitude values. This is computationally more
efficient, but requires a larger template length in return for a reliable comparison.
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Effect of Noise Setting. We also experimented with a larger noise level setting
(SNR = 0dB and α = 0.6) and a lower noise level setting (SNR = 10 dB and α = 1)
to observe how this affects the optimal template length compared to our previous
(medium) noise setting. The results can be found in Figure B.1 and B.2 of Appendix B
respectively. For the high noise level setting, we still observe a similar convergence
pattern for the EMD and cross-correlation at the same lengths as with our medium
setting, although the errors are unsurprisingly on a higher scale and more fluctuating.
For the low noise level setting, the EMD seems to converge slightly earlier at 20,
whereas the other algorithms follow the same pattern as our medium setting, with
lower scale errors and more certainty. This confirms that in other noise settings, it is
not necessary to adapt the template length. Except possibly for the cross-correlation,
which showed a small jump in error again at 320 with the larger noise setting.

5.2.2 Noise Robustness Analysis

A method that is more robust to noise should in theory provide more accurate TDOAs.
We have already investigated the performance of a single matching for simple signals
in noisy settings, however, the situation with roars is different in various aspects. The
spectral energy envelopes of roars clearly have their own distinct patterns which are
vastly different from clean sine waves or white noise signals. Moreover, the TDOA
estimation is achieved by a partial matching, since we have no foreknowledge where
the template is exactly (or approximately) represented within the target segment.
This can drastically increase the TDOA errors due to a wrong matching with a partial
shape that is located at a distant timestamp.

Setup. Similarly as in the previous section, we take the recording of a roar with the
highest resolution as both our template and target signal and apply noise and shifts
to the target copy for a variety of noise and attenuation levels.

Results. The results are shown in Figure 5.9. First of all, we observe expected
behavior where degradation of the signal quality in terms of both the SNR and
attenuation results in non-decreasing (and generally increasing) TDOA errors. The
Hausdorff distance seems to perform slightly better in the regions representing the
lowest noise levels (attenuation 0.6 − 1 and SNR 5 − 10 dB), but moving outside this
range, the EMD seems to become more robust. When the noise starts to dominate
the signal (SNR ≤ 0 dB), the performance gap narrows to a point where it becomes
equally difficult for them. On the other hand, the cross-correlation seems to be
significantly more robust overall to the noise when we consider the entire signal as
template, which is still computationally more feasible than most of our methods at
their current template lengths. We should keep in mind our earlier observation that a
larger template length does not necessarily improve the TDOA estimation at different
noise settings, so while it seems like an unfair comparison at first sight, this is likely
the best that can be achieved for each individual method.

Effect of Template Length. To experimentally demonstrate this, we performed
the same evaluation on other template lengths as well, presented in Figure B.3 of
Appendix B. It shows that if we match the template length of cross-correlation with the
other methods (40), then it noticeably struggles at the lower noise levels (0.27 vs 0.037)
as expected. If we set the template length at our earlier observed convergence point
for the cross-correlation (around 300), then the cross-correlation performs slightly
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FIGURE 5.9: Noise robustness on the roar with the highest resolution.
Average RMSE values over the five largest peaks. The RMSE of a

single peak is determined over 100 instances.
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FIGURE 5.10: Same roar captured by two different microphones (LP3-
D (I)).

worse at the higher noise levels than when we take the entire signal, confirming that a
higher template length is always more beneficial for this method. The EMD however
shows significantly worse performance overall in this case, which confirms our earlier
observation that a larger template length increases the error again. If we instead set
the template length of all methods to 100 and consider only the largest peak for a
subset of the noise levels (due to computational restrictions), we again observe the
cross-correlation outperforming the other methods (see Figure B.4 of Appendix B).

5.2.3 Real Estimation

Now that we have analyzed the noise robustness of some of our methods, the next
step is to evaluate the performance on roars captured in the field by actual different
microphones. While our noise model tries to accurately capture the way noise affects
the signal, it is clear that this still deviates from real-world observations. The analysis
in the previous section provides an indication of their robustness, but we still expect
slightly different results in practice. Moreover, it assumes that the original template
signal is a clean roar, which is typically not the case even for the recording of a roar
with the highest resolution. A final limitation is that, while the roars share similar
acoustic characteristics, there are still differences among them and each method might
respond differently to those.

Setup. Since the recordings of the roars all have varying quality that we can not
directly describe in terms of the SNR or attenuation parameters, we focus on the
performance in a best-case scenario setting. This is done by taking a roar that has been
captured best by at least two recorders, as measured by the RMS, where we again take
the one with the highest resolution as reference. The roar satisfying this condition
comes from the LP3-D setup (see Figure 5.10). We expect that this setting should be
relatively easy for our methods as a more difficult setting is not expected to improve
the performance either. By manual inspection, the real TDOA appears to be −0.799
seconds, which is also the output of the cross-correlation method when applied to
the waveform representation. When it is applied to the envelope representation, the
output is −0.768 seconds (due to its lower time resolution). We will look at a top-5
of largest peaks. When estimating the TDOA, we often take the matching with the
lowest distance and return its corresponding translation as output TDOA.
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Peak
HD_PNT HD_SEG DIS_FD (ε = 0.01) EMD
t dist t dist t dist t dist

1 −0.768 0.472 −0.956 0.292 −0.749 0.495 −0.896 0.120
2 −0.768 0.380 −0.736 0.221 −0.883 0.552 −0.64 0.173
3 −0.768 0.288 −0.823 0.168 −0.749 0.324 −0.896 0.348
4 −0.768 0.426 −0.703 0.280 −0.750 0.448 −1.28 0.375
5 −0.768 0.266 −0.799 0.119 −0.744 0.324 −0.64 0.156

TABLE 5.2: Top-5 largest peaks matchings for a single roar (LP3-D
(I)) between two high-resolution recordings. For each peak, the best
estimation compared to true TDOA (−0.799) is in bold. For each

algorithm, the smallest distance is in bold.

Results. For the discrete Fréchet distance, we need to determine a suitable ε value.
We experimented with various values at the largest peak (see Table B.1 of Appendix
B) and found ε = 0.01 to have the best quality-runtime ratio.

The results of the matching are shown in Table 5.2. One interesting observation
is that the Hausdorff distance for the L1 and L2 metrics show equivalent matching
performance. For both metrics, the optimal matching between the template and the
corresponding partial target shape is (in most cases) when they perfectly align in
time and where the maximum distance is defined between two points at the same
x-coordinate. This means that the distance simply becomes the absolute distance
of the other coordinate dimension, which is why they have equal distances as well.
One explanation for this are the unit differences between the coordinate dimensions.
The contribution of the other component difference may be (significantly) less, so by
aligning the two shapes, there is always another point on the same x-coordinate and
the distance is then only defined by the smaller other component difference.

Another interesting observation between them is that they not only consistently
return the same translation for all five peaks, but also frequently obtains the best
translation estimates of all the methods. The best estimation, however, was found by
the segments variant, which would have also been chosen as output TDOA because
of its smallest matching distance, but seems to be less consistent over the other four
peaks in comparison. The segments variant therefore seems to have the potential to
find more accurate TDOAs, but this largely depends on the chosen template segment,
which is not necessarily the one corresponding to the largest peak. The discrete
Fréchet distance shows fairly consistent results, but the estimation quality does not
exceed that of the Hausdorff distance for points while still requiring significantly
more runtime (1 hour vs 7 seconds, on average). For the EMD, we observe the most
variability in the estimations, but despite this, still chooses its closest estimation out
of those five.

Based on these observations, we would expect the Hausdorff distance for point
sets to perform best in TDOA estimation overall, with an occasional better estimation
from the segments variant. The EMD is expected to perform the worst due to both
its inconsistency and larger errors. Although we should keep in mind that the noise
level is supposedly quite low in this example and we already observed that the EMD
can perform better with higher noise levels. However, if we assume that the noise
is relatively constant across the recordings, then the recordings with the highest
resolutions often correspond to the ones with the higher SNR and lower attenuation
(we also observe this by inspection of the spectrograms in Figure B.5 of Appendix B).
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Peak t dist template_error target_error run_time

1 −0.768 1.563 6.046 5.315 6h42m
2 −0.899 2.431 6.811 8.959 6h24m
3 −1.175 1.995 4.869 4.689 6h9m
4 −0.512 1.019 7.798 5.165 6h8m
5 −1.152 2.157 5.435 5.546 6h16m

TABLE 5.3: Hausdorff distance for triangles using a greedy insertion
approximation at 80 vertices (baseline is −0.768 and true is −0.799).

So by always taking these when estimating TDOAs, our expectations become more
likely.

Another Roar. To additionally support our statements, we performed the same
evaluation on a different high-quality roar, which was also from the LP3-D setup.
The results can be found in Table B.2 of Appendix B, which shows similar results. For
some peaks, the discrete Fréchet distance now returns the closest estimate instead
of the Hausdorff distance for point sets, but by a marginal difference (less than 0.02
seconds). This still does not outweigh the additional computational cost. If we also
look at the performance on a low-resolution recording (of which the roar has still been
sufficiently captured) in Table B.3 of Appendix B, the EMD returns closest estimates
in some peaks as expected. The Hausdorff distance for segments remains to find the
closest estimates in both cases as well.

5.2.4 Spectrogram Approximations

We now consider spectrogram approximations instead of our envelopes, which might
be able to improve our previous obtained results.

Setup. We use the same setup as in the previous section and evaluate the perfor-
mance on our methods supporting this three-dimensional input representation. We
also define a baseline, which is simply the best translation estimate from the envelope
representation of its corresponding method (i.e., −0.768 for the Hausdorff distance
and −0.896 for the EMD).

Triangles. The greedy insertion method aims to accurately approximate the original
terrain using as few triangles as possible. This makes our Hausdorff distance method
for triangles an ideal candidate to start with. Often times, the termination condition
for the approximation is based on an error measure, but given the relatively large
runtime of our method, we should set this based on the number of vertices instead.
We experimented with various number of vertices at the largest peak (see Table B.4 of
Appendix B) and 80 vertices appeared to match our baseline, which already takes
over six hours to run, so we try to keep it at a minimum.

The results for all five peaks are shown in Table 5.3. Contrary to the point sets
method on the envelope representation, we observe inconsistent results where the best
translation estimate is obtained at the largest peak, but the translation corresponding
to the smallest distance is −0.512, which deviates 0.256 seconds more as opposed to
the baseline. Part of this can be explained by the approximation errors of the template
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Peak t dist template_error target_error run_time

1 −0.64 1.899 4.010 3.820 1h10m
2 −0.896 2.476 4.000 3.748 1h12m
3 −0.512 1.672 3.362 2.851 1h6m
4 −1.184 1.000 3.779 3.731 1h8m
5 −0.64 1.378 3.739 3.121 1h7m

TABLE 5.4: Directed Hausdorff distance for triangles using a greedy
insertion approximation (baseline is −0.768 and true is −0.799). Tem-

plate consists of 200 vertices and target consists of 400 vertices.

and partial shape of the target, which represents the maximum vertical error of any
point in the grid. Note that the amplitude values have no fixed range since we use
RMS normalization to scale them, which complicates the interpretation of these error
values. For reference, in the original terrains we observe amplitude values of around
1 ± 1.2 (Mean ± SD) and maximum values in the range [10, 25] (see Table B.5 of
Appendix B for a more detailed description). We observe an average error of around
6, which is still relatively high considering this range. If we allow more vertices in
the approximation, we expect to observe increasingly better estimates, but this does
not seem to outweigh the computational cost.

Triangles (weaker definition). One solution for this would be to consider a weaker
definition of the Hausdorff distance instead. Currently, we aim to find an optimal
matching in terms of the undirected Hausdorff distance between the template and
each partial shape of the target segment, but we could also try to find an optimal
matching from the template to the entire target by means of the directed Hausdorff
distance. We increase the number of vertices from 80 to 200. Since the target segment
is twice as long as our template segment, we also need to double the amount of
vertices in the target approximation to compensate for this.

The results are shown in Table 5.4. We still observe inconsistent results, but the
translation estimates seem to be overall in the right range as they stay fairly close to the
ground truth, which is a pattern we also observe to a lesser degree in the undirected
distance variant. The estimate corresponding to the lowest distance is −1.184, which
clearly has the largest deviation of all of the estimates. On a positive note, we
observe smaller approximation errors with values typically below 4. The template
and target errors also appear to be approximately equal as well, indicating that their
approximation quality is similar and matching them should be fair. While the directed
Hausdorff distance is capable of matching the terrain approximations consisting of
more vertices in considerably lower runtimes (1 hours vs 6 hours, on average), it thus
does not significantly improve the estimates. The weaker distance definition might
therefore have a larger negative impact than the gain in approximation quality.

Vertices. Another solution is to keep our stronger distance definition of the undi-
rected Hausdorff distance, but only consider the vertices of the approximations. This
allows us to further increase the number of vertices as it improves the computational
feasibility again. The methods supporting this representation are the Hausdorff
distance for both the L1 and L2 metrics. For the EMD, we restrict ourselves to the L2
metric due to limitations of the implementation being used.
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FIGURE 5.11: Estimated TDOA on spectrogram approximations be-
tween two high-resolution recordings of a roar at the largest peak for

varying number of points.
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The results at the largest peak are shown in Figure 5.11. Contrary to the envelope
representation, the EMD scales worse than the Hausdorff distance, so we had to
terminate at 200 vertices while the Hausdorff distance was able to continue up to
400 vertices. We would expect to find a convergence point an increase in the number
of vertices no longer improves the estimation, but for the most part, we observe
unstable estimations. The K-means sum variant falls largely behind as it does not
come close to the true TDOA in general, whereas the other approximations at least
tend to get (and stay) close starting from a certain number of vertices (around 150) for
the Hausdorff distances specifically. This happens relatively early for the K-means
max variant, which summarizes their clusters by taking the most pronounced point.
These are expected to be more important in the spectrogram, which consequently
allows for an early sufficient matching. In contrast, the K-means average and greedy
insertion require more vertices for a more accurate approximation and matching. If
we look at the other peaks for the Hausdorff distance with underlying metric L1 (see
Figure B.7 of Appendix B), then we observe the exact same instability property.

Vertices (weighted L1). Thus far, the distance measures assigned equal weight to
the distances of each coordinate dimension between two vertices. If we have two
vertices v1 = (t1, f1, a1) and v2 = (t2, f2, a2) where t, f , a represent the time, frequency
and amplitude respectively, the L1 metric for example returns a distance of:

|t1 − t2|+ | f1 − f2|+ |a1 − a2|
However, we have already seen that the unit differences affect the matching in the
envelope representation, so this likely also affects the spectrogram approximations
which could explain the instability in the estimates. Given this observation, the
distance of a certain component should perhaps have a larger impact on the overall
distance. We can turn our L1 measure into a weighted variant that takes this into
account. For weights α, β, γ, the distance is then measured by:

α · |t1 − t2|+ β · | f1 − f2|+ γ · |a1 − a2|
And this can be normalized such that we only have two weights α, β with respect to
the time component:

|t1 − t2|+ α · | f1 − f2|+ β · |a1 − a2|

Since we have no information on what could be sensible weights for our particular
application, we will simply experiment with various weights. We fix the number of
vertices at 300 as this seemed to provide fairly accurate estimates on all methods (see
Figure 5.11 again; examples of approximations are shown in Figure B.6 of Appendix
B). Considering the observation that the performance on the K-means sum variant
stayed significantly behind compared to the other methods, we ignore this variant
(also in favor of computational restrictions).

The average TDOA errors over the five largest peaks are shown in Figure 5.12.
Our goal is to find a combination of weights that, on average, provides the best
translation estimate. This appears to be different for each approximation method. We
would expect that if we get closer to the optimal weight combination, that the errors
also gradually decrease, but this pattern is not immediately visible. The K-means
average shows a best average error of 0.085 seconds for weights α = 0.67, β = 1.
In this case, the frequency should have a slightly lower weight. The K-means max,
however, shows areas of good and bad weights, where the good weights seem to
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FIGURE 5.12: Hausdorff distance with weighted L1 metric using ap-
proxmations of 300 vertices. Average TDOA errors based on ground

truth (−0.799) over five largest peaks.
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be mainly concentrated at [0.5, 0.67, 1], with the best average error of 0.066 seconds
at α = 0.67, β = 0.67. This implies that the time distance should have a higher
weight for this approximation type again. On the other hand, the greedy insertion
requires the frequency and amplitude distances to have double the weight (i.e.,
α = 2, β = 2) compared to the time distance with best average error of 0.083 seconds.
Since the envelope representation has an average error of 0.031 seconds over the
same five largest peaks, none of the approximation methods succeed in matching this
performance.

Summary. Despite our efforts, it seems that spectrogram approximations are not a
suitable representation to match on, as the TDOA estimates are not getting closer to
the true TDOA. The approximations of the terrains may have been too coarse, or the
Hausdorff distance is simply more sensitive to small deviations in this more detailed
representation, which is likely the reason why we observed unstable estimates in the
unweighted variants when varying the number of vertices. This is clearly less the
case with the envelope representation. Considering the fact that the envelope also
requires significantly less points, makes it a more suitable representation altogether.
We should keep in mind that our observations are limited to a single roar (at different
peaks) due to computational constraints, but we expect similar results on other roars
as well and the conclusion not changing at other noise levels.



Chapter 5. Experimental Results 81

Roar HD_PNT HD_SEG EMD CR_CRR GDOP

LP2 203.85 319.12 347.48 66.55 7.03
LP3-D (I) 50.69 96.67 83.29 56.48 6.73
LP3-D (II) 69.36 98.89 80.57 66.23 6.77
LP5 416.16 120.36 427.83 107.86 4.51
LP7 6.71 102.12 211.87 27.78 2.86
LP8 (I) 248.75 1150.49 1176.72 431.71 5.20
LP8 (II) 231.88 337.62 815.36 93.45 13.47
LP8 (III) 41.48 101.26 109.21 18.93 2.56

AVG 158.61 290.81 406.54 108.62 6.14

TABLE 5.5: Position errors (m) based on four recordings with highest
resolution for each roar. The recording with the highest resolution was

taken as reference. Best estimate for each roar is in bold.

5.3 Roar Localization

Now that we have gained more insights into the TDOA estimation performance of our
methods on recordings of roars, we turn our attention to the localization performance.
First we consider the localization of real roars as obtained from the field. After that,
we extend the analysis to simulations of roars.

5.3.1 Real Roars

Setup. Since we need at least four microphones to unambiguously determine the
position and given the fact that a roar did not always reach each microphone equally
well, we pick for each roar the four microphones which have the recordings with
the highest resolution. The TDOAs are then estimated with respect to the recording
with the highest resolution. For each such estimation, we pick the matching that
corresponds to the lowest distance from the five largest peaks. Note that our main goal
is to improve the localization of the howler monkeys, which is currently best achieved
using TDOA estimates from waveform (or spectrogram) cross-correlations due to
their higher time resolution and richer information. We will therefore specifically
compare our methods against these. Note that we do not consider the discrete Fréchet
distance due to its poor scalability with little to no performance gain in terms of the
TDOA estimation, as indicated in the previous section.

Results. The localization results are presented in Table 5.5. On average, the cross-
correlation still seems to perform better than our methods by frequently having the
best position estimates. However, the Hausdorff distance for point sets provides
better estimates in three out of the eight cases. The estimate that particularly stands
out is from the LP7 setup with 6.71 meters as opposed to 27.78 meters. Since we also
observe a corresponding GDOP value of 2.86 that indicates good geometry of the
microphones, this likely means that the Hausdorff distance provided better TDOA
estimates in this case as well. Aside from this, we sometimes observe extremely large
position errors up to nearly 1200 meters by the segments variant and EMD, which
generally show larger errors as well. This seems to be in line with our observations
made regarding the TDOA estimation, where the Hausdorff distance for point sets
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Method Mean ± SD Median Max Min

HD_PNT 0.0731 ± 0.0936 0.0399 0.333 0
HD_SEG 0.104 ± 0.123 0.0554 0.551 0
EMD 0.123 ± 0.109 0.117 0.398 0
CR_CRR 0.0775 ± 0.0746 0.0558 0.317 0

TABLE 5.6: Approximation of TOA errors (s) based on four recordings
with highest resolution for all roars. The recording with the highest

resolution was taken as reference.

appeared to be more robust compared to the other methods. Moreover, for this
method we do not observe a significant difference (T = 12, p = 0.461), whereas for
both the segments variant and EMD, we do observe a significant difference (T = 0,
p = 0.00781).

Measurement Errors. Ideally, we can directly relate the observed localization per-
formance to the measurement errors of each method, but we do not immediately
have access to the ground truths. However, we can approximate them using the
measured two-dimensional position of the roar, the positions of the microphones and
our speed of sound assumption. This only ignores the heights, which still results in
fairly accurate positions with an average error of around 17 meters (see Table B.6 of
Appendix B).

The TOA errors for each method can be found in Table 5.6. Note that we specifi-
cally refer to TOAs instead of TDOAs, since the localization algorithm expects TOAs
as input. The TDOAs are relativized to become pseudo-TOAs with the microphone
that is first reached having a TOA of zero, and after that corrected for synchronization.
We observe approximately equal errors for both the Hausdorff distance for point sets
and the cross-correlation method, slightly larger errors for the segments variant and
subsequently slightly larger errors for the EMD. This seems to be reflected in the local-
ization performance. Note that the cross-correlation TDOAs have been derived from
the waveform representation with a time resolution that is 0.128/(1/2000) = 256
times more precise than our spectral energy envelope and that has additional phase
information of which it could benefit, so it should be capable of more exact estimation
in those respects. However, the Hausdorff distance for point sets still seems to match
its performance surprisingly. The findings should still be interpreted with caution
given the relatively small sample size.

Other Factors. An average position error of more than 100 meters is still considered
relatively high. Other factors than the TDOA estimates that have likely affected the
accuracy are:

• Poor root choice.

If we look at Table B.8 of Appendix B, we observe that especially the cross-
correlation suffered from this, which might indicate that more precise TDOAs
result in root solutions with similar sum of squares discrepancies, increasing
the likelihood of making the wrong choice. For the other methods, it mostly
picked the right one, but we also observe no changes in more than half of their
estimates. If the localization algorithm obtains a negative discriminant when
solving the equation, it sets this to zero to still obtain a location, so the positive
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Roar HD_PNT HD_SEG EMD CR_CRR

LP2 203.85 319.12 347.48 65.02
LP3-D (I) 50.69 72.74 83.29 56.48
LP3-D (II) 69.36 18.30 123.55 68.13
LP5 153.80 285.23 143.04 10.81
LP7 6.71 102.12 211.87 27.78
LP8 (I) 145.42 327.42 627.20 267.84
LP8 (II) 351.33 206.93 254.89 200.55
LP8 (III) 55.56 185.94 109.21 19.57

AVG 129.59 189.72 237.56 89.52

TABLE 5.7: Position errors (m) based on all combinations of five record-
ings with highest resolution for each roar. The recording with the
highest resolution was taken as reference. Improvement is marked

green and decline is marked red with respect to Table 5.5.

and negative roots represent the same solution in that case. This means that,
for the most part, the algorithm was not able to find a proper solution that
best matches the set of TDOAs, which is often times an indication of large
measurement errors.

• Inaccurate measurements of the microphone and roar positions.

• Inaccurate time synchronization.

Measurements in clock deviations are made during the start and end of the
deployment, which may be slightly off, and the assumption that drift occurs in
a linear pattern may also not completely hold in practice.

• Inaccurate speed of sound.

We had no measurements of the exact temperature during each of the recordings
and therefore assumed a temperature of 26◦ C. This affects the solving process
of the localization algorithm to find an estimate position that best matches the
TDOAs, as these depend on the speed of sound in that environment at that
moment.

• Suboptimal microphone placement.

With an average GDOP value of around 6, the geometry of the microphones
gets a moderate rating and has a noticeable impact on the accuracy with slight
deviations in the TDOA measurements.

Improvements. Having the same set of recordings at each roar to determine the
position allowed for a more fair comparison between the methods. This also came
with the benefit of being able to analyze and compare the GDOPs and TOA errors.
Most of the times, the position estimates can be improved by estimating more TDOAs
and trying out different combinations of those to optimize a predicted position error
(calculated by the Sound Finder software). The results can be found in Table 5.7. Note
that the results concerning the roar from the LP7 setup are identical, which is due to
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a lack of synchronization measurements on one of the recorders. It shows on average
improvements for all methods, but the ranks remain unchanged. This also does not
affect our earlier made conclusions, since the Hausdorff distance for point sets still
shows no significant difference (T = 10, p = 0.3125), whereas the segments variant
(T = 3, p = 0.0390625) and the EMD (T = 0, p = 0.0078125) still show a significant
difference.

So far, we always took the roar with the highest resolution as reference, but this
might not always be the best template to match against. One could think that a
roar with a slightly lower resolution allows for a better matching as the discrepancy
between the template and target decreases (i.e., the discrepancy between the highest
and lowest resolution is expected to be larger). Therefore, it may be beneficial to
additionally try out different combinations of references, which requires separate
TDOA estimates for each reference combination. The results can be found in Table
B.9 of Appendix B, which shows improvements on some estimates, but on average
performs worse on our methods. The predicted position error used as optimization
criterion significantly deviates from our ground truths, which again causes the al-
gorithm to pick the wrong estimate. This could potentially be further improved if
we only consider combinations of which we are more certain that the TDOAs are
accurate, for example those that involve recordings with a high resolution or low
spectral entropy (which tells something about the spread of the energy), but this
requires a more advanced analysis.

5.3.2 Simulated Roars

While the localization of real roars from the field gives us an idea how our methods
perform in practice, it is difficult to explain some of the observed outcomes. In
particular, we expected the cross-correlation to have a significant advantage over the
other methods, which did not always appear to be the case. To obtain more insight
in this, we perform a simulation of roars. Note that our goal here is not to create
a challenging setting with respect to TDOA estimation, but rather investigate the
limitations of our envelope representation and the effects of the microphone geometry
on those for each method.

Microphone Setups. We will consider three different microphone setups as shown
in Figure 5.13, which additionally displays the GDOP value at each position. Two of
those setups are directly taken from the real dataset and projected onto our allowed
microphone range. From the five setups in the real dataset, four shared the same
collinear structure consisting of five microphones and the remaining setup takes two
of those next to each other, so these two setups are the most distinct. The other setup
we consider puts the microphones in the four corners, forming a square, because
of its beneficial geometry with well-defined areas. If we look at their GDOP values,
we observe that within its convex hull, the geometry has the least impact, but in
the corners it gets a significant larger impact. If the position lies on the line formed
by the microphones of the LP2 setup for example, the accuracy becomes extremely
poor. This concretely means that if a howler monkey would roar in this area and we
would be trying to estimate its position, the TDOAs need to be (nearly) exact to be
any useful.

Perfect Geometry. We start with the simulation in the region where the impact
of the geometry is at a minimum, which means that the localization accuracy is
largely determined by the signal representation and the characteristics of the TDOA
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FIGURE 5.13: Custom setups or projections of setups from our real
dataset onto the simulation grid and their GDOP values. The red

triangles denote the microphones.
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FIGURE 5.14: Location samples in the simulation grid. The red tri-
angles denote the microphones and the orange crosses denote the

samples.
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Method Mean ± SD Median Max Min

HD_PNT 28.97 ± 62.03 14.49 406.19 1.35
HD_SEG 13.00 ± 39.87 4.34 287.57 0.19
EMD 40.50 ± 94.00 16.09 562.34 1.35
CR_CRR (env) 46.31 ± 103.37 15.64 512.73 1.35
CR_CRR (wf) 0.055 ± 0.028 0.053 0.15 0.0017

GDOP 1.23 ± 0.089 1.21 1.46 1.12

TABLE 5.8: Position errors (m) of 100 positions sampled within the
convex hull of the square setup.

Method Mean ± SD Median Max Min

HD_PNT 0.0321 ± 0.0193 0.0315 0.0723 0.000161
HD_SEG 0.0105 ± 0.0102 0.00702 0.0481 3.39 · 10−6

EMD 0.0329 ± 0.0211 0.0320 0.157 0.000161
CR_CRR (env) 0.0318 ± 0.0187 0.0315 0.0658 0.000161
CR_CRR (wf) 0.000134 ± 9.59 · 10−5 0.000131 0.000893 2.70 · 10−6

TABLE 5.9: TDOA errors (s) of 100 positions sampled within the
convex hull of the square setup.

estimation method being used. For this, we uniformly sample 100 positions within
the convex hull of the square setup (see Figure 5.14a). For the TDOA estimation, we
always take the closest microphone as reference. Note that in this case, the simulation
setup is equivalent to only sampling positions in the Voronoi region within the hull
for some reference microphone due to the symmetry of the microphone placements.
Since we expect the quality of the TDOAs to be independent from the choice of
reference here, this has (little to) no impact on the localization performance and is
only done for simplicity purposes.

The localization results are presented in Table 5.8. Note that for the cross-
correlation method, we applied TDOA estimation to both the envelope and waveform
representation. Our first observation is that the GDOP values are in the range 1 − 2,
indicating excellent precision in terms of geometry as expected. Despite the rela-
tively easy TDOA estimation setup, we still observe differences in the localization
performance. The Hausdorff distance for point sets seems to perform on average
slightly better than the EMD and cross-correlation for envelopes which share similar
performances, but their median errors are fairly similar with 15 meters, so it may
occasionally find a slightly better TDOA estimate that still has a noticeable impact on
some position estimates. This seems to be in line with our earlier observation where
it is more robust in lower noise level settings.

If we take a look at the TDOA errors in Table 5.9, the errors between those methods
all have an average (and median) of around 0.032 seconds. Given the time resolution
of 0.128 seconds and the observation that the algorithms find their optimal matching
by aligning two points, this means that the errors will generally lie in the range
[0, 0.064]. Since the positions are uniformly sampled, the TDOAs are consequently
also uniformly sampled, so the errors are on expectation 0.032 seconds, matching our
observation.



Chapter 5. Experimental Results 87

Setup HD_PNT EMD CR_CRR (env) CR_CRR (wf) GDOP

LP2 133.34 138.01 142.33 0.41 4.72
LP8 38.55 37.82 34.40 0.18 3.53
Square 19.43 20.96 20.66 0.090 1.93

TABLE 5.10: Median position errors (m) of 100 positions sampled over
the entire grid for multiple setups.

The Hausdorff distance for segments does not have this characteristic and should
therefore be less restricted by the time resolution, which is reflected in the TDOA
estimates with an average error of around 0.010 seconds and median position error of
4 meters, both being three times more accurate. This is different from the localization
of real roars, where this variant performed on average worse than the point sets,
which can be explained by the easier TDOA setup causing less fluctuating estimates.
If we compare the cross-correlation methods on the two different representations,
we observe a noticeable difference in performance where the waveform allows for
TDOA estimates of more than 200 times the precision. This also translates to the
position estimates. Given the relatively easy TDOA setup, the phase information in
the waveform has a negligible contribution to the quality of the estimates, so this
clearly shows the time resolution being the largest bottleneck. However, we now
observe a significant performance difference between the Hausdorff distance for point
sets and the waveform cross-correlation, which was not the case with the localization
of real roars. In practice, this effect might therefore be smaller.

Effect of Geometry. Now that we have gained more insight into the limitations of
the envelope representation on the TDOA estimates specifically, we will investigate
how the geometry of the microphones amplify these errors in the position estimate.
We uniformly sample 100 positions over the entire grid (see Figure 5.14b) and try to
estimate them for each of our three different setups.

For conciseness and because of the large variance in the position estimates, only
the median results are shown in Table 5.10 (the full tables can be found in Appendix
B). The Hausdorff distance for segments is omitted due to computational restrictions,
but we expect that the observations we make on the other methods similarly apply
there. As the TDOA errors are (nearly) identical as well, we will ignore the analysis
of those. Let us first focus on the methods applied to the envelope representation.
We observe that the collinear setup of LP2 is suboptimal with position estimates that
are seven times less accurate compared to the square setup. An additional line-up
in the LP8 setup improves this significantly, but is still twice less accurate. This is
also reflected in their GDOP values. If we now compare this to the cross-correlation
method applied to waveforms, we observe approximately the same proportions,
but the absolute differences are clearly on a significant lower scale. Depending on
the desired precision of the position estimates, the geometry of the microphones
becomes more important if we would be considering a representation with a lower
time resolution such as our envelope.
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Chapter 6

Conclusion

In this thesis, we investigated whether taking a geometric approach for estimating
the time difference of arrival between two sound signals improves the localization
of howler monkeys. The state-of-the-art for obtaining these differences is by cross-
correlation, which has been unsuccessful in accurately estimating them for signals
that are significantly obscured by noise. This consequently has a negative impact
on the precision of the position estimates. Since the signal data can be treated as
geometric entities that form shapes in space, the goal was therefore to find more
robust methods in the area of computational geometry.

For this, we modeled the problem of shape matching under one-dimensional
translations, which is related to the problem of TDOA estimation, and proposed
several methods for solving this. We obtained a general exact algorithm for the
Hausdorff distance and applied this to point sets, line segments in the plane, and
triangles in three-dimensional space, that all run in O(mn log(m + n)) time. We
adapted methods for the Fréchet distance and obtained a (1 + ε)-approximation
for both the continuous and discrete variant that run in O((mn)2(m + n) log(1/ε))
and O(m2n2 log(1/ε)) time, respectively. Finally, we introduced an exact algorithm
for the Earth Mover’s Distance when the underlying metrics are L1 or L∞, and a
2-approximation for the other norms. This requires O(mn) times solving the static
distance (using any algorithm).

A first indication of the noise robustness of each of our proposed methods was
given by matching a clean simple signal (sine waves or white noise signal) with a
shifted noisy copy. This showed that the Earth Mover’s Distance was most robust
in any case. For the Hausdorff distance methods, the segments variant appeared to
be more robust in higher noise levels, especially when the signal is more structured,
but the point sets variant with underlying metric L1 performed overall better in the
lower noise levels.

In the more practical setting with roars as signal type, we focused on a spectral
energy envelope representation of the signal to cope with the poor scalability of our
methods. The cross-correlation showed to be significantly more robust than our meth-
ods. Attempts to improve the estimation quality further by considering spectrogram
approximations of the signals have not been successful either. Contrary to expecta-
tions, the localization of eight roars showed no significant difference between the
cross-correlation and Hausdorff distance for point sets, whereas the segments variant
and Earth Mover’s Distance still performed significantly worse. Simulations showed
the impact of the limitations of our current signal representation on the precision
of the position estimates. This moreover proved the importance of the microphone
geometry, especially when dealing with these limitations.

Based on these observations, we have to conclude that a geometric approach
for TDOA estimation does not improve the localization of howler monkeys. The
largest bottleneck appeared to be the scalability of our methods, which is why we
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had to rely on simplifications of the original signal representation and were not able
to use all methods effectively (i.e., the Fréchet distance). An interesting direction for
future research would be to design and try out more efficient geometric methods,
perhaps other approximations or heuristics, that are capable of handling larger time
resolutions. One potential approach that could be worth looking into is to increase
the time resolution and use a similar optimization method as cross-correlation, where
we slide the template over the target and compute at each step the static distance,
which has a better scalability. This would result in suboptimal matchings between
the template and target, but the increased time resolution partially compensates for
this. Another more interesting approach would be to reduce the number of segment
matchings. We now matched a template to each possible segment of the target, but
we may be able to eliminate segments that do not match the frequency content of
the template for example, or we could simply focus first on the peaks of the target,
since the template is also selected based on the largest peaks, and terminate earlier
if the matching quality only decreases at a certain point. Although a larger time
resolution is expected to improve the TDOA estimation, it could also result in a signal
representation that is more oscillatory (or noisy) again due to the time-frequency
trade-off to which the geometric methods could be more sensitive, so it might have
the opposite effect. Other than those directions, one could try out several noise
reduction techniques (e.g., Wiener filtering or spectral subtraction), which may have
a positive effect on the matching performance.

With respect to the localization itself, related work [25, 66] showed mean position
errors of 27 and 58 meters for larger sample sizes and with manually verified TDOAs.
In this study, the cross-correlation showed the best performance with a mean error of
90 meters, performing slightly worse in comparison. The simulation indicates that
the current microphone setup used to capture the roars may have been suboptimal,
so we expect the performance to improve with setups that have a more beneficial
geometry (e.g., a square or star shape). One other factor that had a noticeable impact
on the performance was the algorithm being used, as it picked the wrong root
solution in some cases. It currently selected the solution with the least sum of
squares discrepancy, but one could also use a different criterion (e.g., the pseudorange
error which appeared to work better in some test cases [52]). Alternatively, it may
be beneficial to look at more robust localization techniques, either in the iterative
(e.g., hyperbolic least squares) or non-iterative (e.g., maximum likelihood estimator)
category [33].
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Appendix A

Additional Background

This chapter contains additional background information of the techniques being
used in the context of this research.

Bancroft Algorithm

For a microphone i, we have the vector:

pi =

 Xi
Yi

−c · τi,1


The Lorenz inner product between two vectors pi and pj is calculated by:

⟨pi, pj⟩ = Xi · Xj + Yi · Yj − c2 · τi,1 · τj,1

We define the matrix:

B = (p1, p2, ..., pM)T =


x1 y1 −c · τ1,1
x2 y2 −c · τ2,1
...

...
...

xM yM −c · τM,1


We need the vectors u and v that solve the linear systems:

Bu = e Bv = a

where e is the all-ones vector of length M and a is defined as:

e =


1
1
...
1

 a =
1
2


⟨p1, p1⟩
⟨p2, p2⟩

...
⟨pM, pM⟩


For a setup consisting of M = 3 microphones, we can easily solve it using the inverse
of B (i.e., u = B−1e and v = B−1a) since it is a square matrix. For a setup with M > 3
microphones, which results in an overdetermined system and therefore requires a
least-squares solution, the pseudo-inverse of B is used (through, for example, QR-
decomposition).
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We then have the scalar coefficients:

E = ⟨u, u⟩
F = ⟨u, v⟩ − 1

G = ⟨v, v⟩

which are then used in the final equation:

E · λ2 + 2F · λ + G = 0

This gives us two solutions: a positive root λ+ and a negative root λ−. The
corresponding source locations are calculated by:

q+ = λ+u + v =

 x+

y+

c · τ+

 q− = λ−u + v =

 x−

y−

c · τ−


where τ+ and τ− represent the time of emission from the source relative to time
delays τi,1 for i = 1, ..., M where τ1,1 = 0 (which means that we expect those to be
negative in general). For more details of its derivation, we refer to the original paper
[12].

Weighted K-means

We describe the algorithm as implemented by the scikit-learn library [60]. Suppose we
have a set of N points in the grid and we want to reduce it to K < N clusters. Each
point xi = (ti, fi), where ti and fi represent the corresponding time and frequency
bins, is assigned a weight wi which corresponds to the amplitude value. The objective
is then to minimize the sum of weighted squared distances between the points and
their assigned cluster centers:

K

∑
k=1

∑
xi∈Ck

wi · d(xi, µk)

where µk is the centroid of the cluster Ck and d(xi, µk) is the Euclidean distance
between xi and µk. This is also known as the inertia score, which measures how
well the data is clustered. Points with higher weights will pull the centroid closer
to them and therefore regions with higher amplitude values are more highlighted.
The algorithm first randomly initializes K centroids. Then an assignment step occurs
where each point xi is assigned to the nearest cluster based on the regular Euclidean
distance. After that, an update step occurs where the centroids are updated based on
the weighted mean of the points:

µk =
∑xi∈Ck

wi · xi

∑xi∈Ck
wi

These last two steps are repeated until convergence. In practice, this algorithm runs
relatively fast, but it is prone to falling in local minima. This is why the algorithm
is often run for multiple iterations and the iteration with the lowest inertia score
is selected. After the clustering, we must assign amplitude values to the cluster
centers to obtain the approximation of the spectrogram, which can be achieved by
aggregating the weights of the points that belong to the same cluster.
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Greedy Insertion

If we view the spectrogram as a terrain (or height field), we can try to approximate
it with a mesh of triangles, often called a triangulated irregular network (TIN), by
minimizing the number of points. One simple algorithm that efficiently achieves this
goal is greedy insertion [34], which in contrast to the weighted K-means method,
samples important points instead of aggregating important regions. It starts with an
initial approximation of two triangles by picking the four corner points of the grid.
Then it repeatedly searches for the unused point with the largest error and adds it
to the current approximation. The vertical error of a point is often used as (local)
error measure, which is obtained by taking the difference between the actual height
and the interpolated height of the approximation. This procedure terminates when a
certain condition is met, for example, the error (which may be a more global measure
such as the sum of vertical errors) is below a threshold, or a maximum number of
points or triangles is reached. The triangulation that results from this satisfies the
Delaunay condition.
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Additional Results

Effect of Template Length
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FIGURE B.1: Effect of the template length on the matching performance
(SNR = 0dB and α = 0.6). The red line shows the mean and the blue
area shows the 95% confidence interval based on the RMSE of five
peaks. The RMSE of a single peak is determined over 100 instances.
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FIGURE B.2: Effect of the template length on the matching performance
(SNR = 10dB and α = 1). The red line shows the mean and the blue
area shows the 95% confidence interval based on the RMSE of five
peaks. The RMSE of a single peak is determined over 100 instances.
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Noise Robustness Analysis
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FIGURE B.3: Noise robustness on the roar with the highest resolution
for different template lengths. Average RMSE values over the five
largest peaks. The RMSE of a single peak is determined over 100

instances.
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Real Estimation
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FIGURE B.5: Same roar captured by multiple microphones and ranked
according to their RMS value (LP3-D (I)).
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ε dist t t_error run_time

0.1 0.5332 -0.4958 0.3032 34m
0.01 0.4951 -0.7487 0.0503 1h2m
0.001 0.4927 -0.7497 0.0493 1h43m
0.0001 0.4925 -0.7498 0.0492 2h23m

TABLE B.1: Results of discrete Fréchet distance at largest peak for
different thresholds (true is −0.799).

Peak
HD_PNT HD_SEG DIS_FD (ε = 0.01) EMD
t dist t dist t dist t dist

1 0.0 0.318 −0.0241 0.188 −0.117 0.457 −0.128 0.285
2 −0.128 0.263 −0.115 0.164 0.00252 0.419 −0.128 0.154
3 0.0 0.418 0.0166 0.330 −0.122 0.448 −0.256 0.379
4 −0.128 0.343 0.0421 0.212 −0.113 0.362 −0.128 0.362
5 0.0 0.362 −0.0393 0.271 −0.125 0.371 −0.256 0.204

TABLE B.2: Top-5 largest peaks matchings for a single roar (LP3-D
(II)) between two high-resolution recordings. For each peak, the best
estimation compared to true TDOA (−0.0468) is in bold. For each

algorithm, the smallest distance is in bold.

Peak
HD_PNT HD_SEG DIS_FD (ε = 0.01) EMD
t dist t dist t dist t dist

1 −1.024 0.795 −1.170 0.583 −1.012 0.800 −1.152 0.280
2 −1.664 0.648 −1.601 0.562 −1.650 0.657 −1.536 0.323
3 1.664 0.785 1.664 0.635 1.577 0.790 −1.408 0.412
4 −1.408 0.657 −1.232 0.541 −1.383 0.686 −1.536 0.233
5 −1.664 0.765 −2.300 0.637 −1.652 0.771 −2.304 0.335

TABLE B.3: Top-5 largest peaks matchings for a single roar (LP3-D
(II)) between a high-resolution and low-resolution recording. For each
peak, the best estimation compared to true TDOA (−1.292) is in bold.

For each algorithm, the smallest distance is in bold.
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Spectrogram Approximations

vertices t dist template_error target_error run_time

40 −0.375 0.997 7.608 6.450 1h31m
60 −0.616 1.313 6.509 6.678 3h43m
80 −0.768 1.563 6.046 5.315 6h42m

TABLE B.4: Hausdorff distance for triangles using a greedy insertion
approximation (baseline is −0.768 and true is −0.799). Results are

from the largest peak.

Peak Mean ± SD Median Max Min

1 1.048 ± 1.3473 0.641 17.318 9.163 · 10−6

2 1.013 ± 1.390 0.624 22.999 2.167 · 10−6

3 0.917 ± 1.070 0.565 12.612 2.373 · 10−6

4 0.962 ± 1.218 0.576 15.566 2.163 · 10−6

5 0.984 ± 1.121 0.633 12.786 1.255 · 10−6

TABLE B.5: Descriptive statistics of the amplitudes for the templates
at the roar with the highest resolution.
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FIGURE B.6: Terrain approximations at 300 points for a segment of the
roar with the highest resolution at the largest peak.
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FIGURE B.7: Estimated TDOA on spectrogram approximations be-
tween two high-resolution recordings for the Hausdorff distance (L1).
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Roar Localization

Roar low_discr high_discr

LP2 12.36 12.36
LP3-D (I) 21.55 18.19
LP3-D (II) 16.81 26.09
LP5 1.83 1.83
LP7 65.19 0.059
LP8 (I) 0.23 482.20
LP8 (II) 2.67 1.64
LP8 (III) 16.24 15.31

AVG 17.11 69.71

TABLE B.6: Position errors (m) based on four recordings with highest
resolution for each roar. Localization based on hypothetical TOAs of
known two-dimensional position. Both solutions of the lower and

higher discrepancy are given.

Roar Top-4 Top-5

LP2 72.30 328.74
LP3-D (I) 50.69 50.69
LP3-D (II) 70.44 108.37
LP5 416.16 153.80
LP7 163.06 163.06
LP8 (I) 365.01 233.41
LP8 (II) 291.93 274.81
LP8 (III) 183.26 35.32

AVG 201.61 168.53

TABLE B.7: Position errors (m) for cross-correlation applied to enve-
lope representation. Top-4 shows results based on four recordings
with highest resolution for each roar, and top-5 shows results based
on all combinations of five recordings. The recording with the highest
resolution was taken as reference. Improvement is marked green and

decline is marked red with respect to Top-4.
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Roar HD_PNT HD_SEG EMD CR_CRR

LP2 266.41 319.12 623.46 65.02
LP3-D (I) 50.69 96.67 87.60 55.33
LP3-D (II) 69.36 98.89 80.57 66.23
LP5 416.16 155.00 424.31 107.86
LP7 50.69 462.83 211.87 300.89
LP8 (I) 248.75 1150.49 1176.72 119.42
LP8 (II) 208.97 338.49 815.36 93.45
LP8 (III) 55.56 101.26 110.99 0.33

AVG 170.82 340.34 441.36 101.07

TABLE B.8: Position errors (m) based on four recordings with highest
resolution for each roar. The recording with the highest resolution
was taken as reference. Solutions are from the higher discrepancy.
Improvement is marked green and decline is marked red with respect

to Table 5.5.

Roar HD_PNT HD_SEG EMD CR_CRR

LP2 203.85 105.26 347.48 60.19
LP3-D (I) 40.68 72.57 118.42 42.11
LP3-D (II) 145.23 1628.76 90.09 74.01
LP5 73.72 268.87 340.49 92.34
LP7 6.71 20.92 144.76 30.71
LP8 (I) 330.46 327.42 627.20 270.42
LP8 (II) 236.44 206.93 132.30 77.05
LP8 (III) 50.32 27.95 109.21 19.57

AVG 135.93 332.34 238.74 83.30

TABLE B.9: Position errors (m) based on all combinations of five
recordings with highest resolution for each roar and all combinations
of references. Improvement is marked green and decline is marked

red with respect to Table 5.7.

Method Mean ± SD Median Max Min

HD_PNT 38.26 ± 92.26 19.43 857.72 0.10
EMD 40.77 ± 91.13 20.96 857.72 0.10
CR_CRR (env) 40.38 ± 90.82 20.66 857.72 0.10
CR_CRR (wf) 0.12 ± 0.12 0.090 0.78 0.0071

GDOP 3.06 ± 2.33 1.93 9.10 1.12

TABLE B.10: Position errors (m) of 100 positions sampled over entire
grid in square setup.
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Method Mean ± SD Median Max Min

HD_PNT 217.57 ± 244.38 133.34 1193.14 8.72
EMD 227.21 ± 265.78 138.01 1193.14 8.72
CR_CRR (env) 228.48 ± 254.27 142.33 1193.14 8.72
CR_CRR (wf) 2.00 ± 6.96 0.41 55.09 0.0054

GDOP 16.74 ± 73.61 4.72 719.33 1.44

TABLE B.11: Position errors (m) of 100 positions sampled over entire
grid in LP2 setup.

Method Mean ± SD Median Max Min

HD_PNT 74.46 ± 128.57 38.55 1156.77 0.96
EMD 87.11 ± 159.05 37.82 1156.77 0.96
CR_CRR (env) 70.81 ± 133.95 34.40 1156.77 0.96
CR_CRR (wf) 0.35 ± 0.40 0.18 1.97 0.0073

GDOP 4.87 ± 5.21 3.53 41.08 0.75

TABLE B.12: Position errors (m) of 100 positions sampled over entire
grid in LP8 setup.
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