
MSc Artificial Intelligence
Faculty of Science

Focus error sensing in lithography
patterns by means of machine

learning

Master Thesis
ASML Veldhoven

Dirk F.I. Vet

Supervisors:
First Supervisor: dr. ir. Xixi Lu

Daily supervisor: dr. ir. Victor Calado (ASML)
Second Examiner: dr. ing. Georg Krempl

PUBLIC VERSION

20-Feb-2025



Abstract

With the continuous growth of technology (e.g. artificial intelligence, au-
tonomous vehicles) the demand for more advanced computer chips keeps
increasing. This boils down to a need for more transistors on a chip while
maintaining the chip size constant. One solution that is being pursued by chip
manufacturers is to shrink the transistors further by reducing the lithogra-
phy. Within chip manufacturing, a 3D structure is created by stacking layers
containing structures made by means of lithography. A resolution reduction
can be achieved by increasing the physical size of the lens, i.e. the numerical
aperture (NA), which is currently being developed for ASML’s future high-
NA extreme ultraviolet (EUV) system. A physical consequence of a higher
NA is that the depth of focus (DOF) increases, which leads to focus mar-
gins becoming more critical. The error between the intended focus during
exposure of wafers and actual focus applied is called the focus error, which
should be kept as small as possible. This focus error becomes more signifi-
cant in high-NA systems. In this research we aim to find a machine learning
based method that quantifies these focus errors by using scanning electron
microscope (SEM) derived data. The models use as features the measured
critical dimension (CD) and placement errors in the X and Y-direction (PEx
and PEy) for a set of patterns leveraging the optical proximity effect. We
further investigate how different aggregation methods influence the perfor-
mance for focus prediction and how a new feature concept leveraging the
optical proximity effect might be beneficial for focus prediction. Results
on R2, root-mean-squared error (RMSE) and 3σ have shown that in general
feedforward neural network is the best algorithm compared to the alternative
(regularized) linear regression algorithms.
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Chapter 1

Introduction

In this day and age it is hard to imagine a world without computer chips.
With the continuous growth of technology (e.g. artificial intelligence, au-
tonomous vehicles) the demand for more advanced computer chips increases.
In chip designing lithography is an essential aspect we cannot miss.

Layer 3
Metal line

Layer 2
Contact hole

Layer 1
Metal line

Layer 1

Layer 2

Layer 3

Layer 1
Layer 2
Layer 3

(a) (b) (c)

Figure 1.1: Lithography consists of printing layers of metal lines and contact
holes (a) to create a 3D structure (b). The resulting cross-section is shown
in (c).
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Light
Pattern
Resist layer
Wafer

Figure 1.2: Pattern is printed in the resist layer (Adapted from [1])

According to Moore’s Law the amount of transistors in a computer chip
doubles every two years [2]. The need for more transistors on a chip requires
more advanced technology while maintaining the chip size constant. As the
amount of transistors increases, the circuit designs within the chips become
more dense, thus the error margins are getting smaller. With lithography a
3D structure is printed by printing layers from the bottom up and connecting
these individually as shown in Figure 1.1. Printing is done on a wafer, i.e.
a silicon disk, which consists of multiple chips once cut up. To create these
chips, a pattern of structures is printed in the resist layer on the wafer by
exposing it with light as shown in Figure 1.2. In order to achieve a higher
chip density, the print resolution has to go down. The print resolution,
i.e. the size of the smallest structure that can be printed, is defined by
Formula 1.1. Here λ is the wavelength of the light used for exposure and NA
the numerical aperture, which is related to the size of the lens. The latest
technology has reduced the resolution by going from deep ultraviolet lighting
(DUV) with a wavelength of 193 nm to extreme ultraviolet lighting (EUV)
with a wavelength of 13 nm. The next step in reducing the resolution is by
increasing the NA.

Resolution ∼ λ

NA
(1.1)
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Figure 1.3: A camera gives a clear image when in focus. When out of focus
the image gets blurry.

To get optimal yield in the production process and optimal performance
in terms of functionality, we need to reduce the printing errors as much as
possible. The ultraviolet light is bundled towards one focal point, which
is called the focus. The importance of focus will be explained through an
analogy: In Figure 1.3 three situations are drawn at which an image is taken
of a flower. Light reflected from the object hits the camera lens and gets
bundled onto the image plane. In Figure 1.3(b) the image plane and focal
plane are the same, so all the light gets bundled towards one focal point.
This means that the camera is in focus and results in a sharp image. In
Figure 1.3(a) the light bundle hits the image plane before it reaches the focal
plane. This means that the camera is out of focus and results in a blurred
image. In Figure 1.3(c) the light gets bundled but spreads out again before
it hits the image plane. Again, the camera is out of focus with a blurry
image as result. The importance of focus for clear camera imaging is similar
to that of printing a chip. The light source for printing can be in focus at
its optimal setting and out of focus at a suboptimal setting. To reduce the
printing errors on a chip the optimal focus needs to be set.
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Pattern

Light sourceWafer

Figure 1.4: Internal components of an EUV machine [3]

In Figure 1.4 an EUV machine is shown together with its internal com-
ponents. Instead of a lens system similar to a camera an EUV machine uses
mirrors to bundle the ultraviolet light. The light indicated in purple gets
reflected on a series of mirrors before it hits the mask containing the chip
pattern. Next the light with the pattern is reflected onto another series of
mirrors before it hits the wafer. This light prints the pattern and has to be
in focus when it hits the wafer.

The depth of focus (DOF) specifies the focus error in which the image is
still considered of good quality. Returning to the camera analogy, in Figure
1.3 the green area indicates the optimal focus ± DOF range. When the
image plane falls in this range clear images are returned, otherwise the images
will be blurry. So with a relatively small DOF focus control becomes more
important as images are prone to become blurry more easily.

Focus set point
Depth of 

focus

(a) (b)

Wafer

NA = 0.33 NA = 0.55

Figure 1.5: Illustration of focus significance. Wafer topology becomes more
significant for high-NA (b) than low-NA (a) due to the smaller depth of focus
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To print the chip a focus is set in the machine settings. However, a wafer
is not perfectly flat, so there is a difference between the focus in the machine
settings and the focus that effectively is applied on the wafer. The need for
accurate focus measurement becomes evident in Figure 1.5. As mentioned
before, the next step in improving the print resolution is by increasing the
NA. In Figure 1.5(a) the error range in which the wafer is in focus, i.e.
the DOF, is relatively big for a low-NA system. In Figure 1.5(b) the high-
NA system comes with a relatively small depth of focus. Similarly to the
camera analogy, the high-NA system needs better focus control due to the
DOF. Since a wafer is not perfectly flat, inconsistencies in the wafer are
proportionally more significant for high-NA systems than low-NA systems.
This means that focus becomes more important when evolving from low-NA
to high-NA system.

Since development of more advanced computer chip requires proceeding
towards high-NA systems, it might be important to be able to measure the
applied focus on the wafer as these might differ from the intended focus.
There could be a need to post-correct these focus errors. Until today focus
errors can be optically measured on dedicated metrology patterns. In this
research we explore the possibility of measuring focus by using scanning
electron microscope (SEM) data. This might be preferred over the optical
approach as the focus measurement is done on real product patterns with
small structures, whereas the optical measurement rely on dummy patterns.
In previous researches focus measurement methods have been proposed that
use regression to infer the effective focus on the wafer and the dose, which is
the amount of energy used per surface area [4][5]. Therefore, in this research
we aim to find the best algorithm for a prediction based model that functions
as a measurement for focus. It is based on previous work from Calado et al.,
which will be explained in more detail in Section 2.2.1. That work implements
a prediction based model for focus and is made by means of linear regression
[5].

This algorithm will be fitted for every chip design that goes into produc-
tion as chip design will heavily influence the performance. Once a model has
been created using this algorithm, the predicted dose and focus can enhance
the performance of existing focus metrology systems by providing additional
information or it can adjust the light source accordingly as a form of feedback
correction. Although the problem case is not existing today, the findings of
this research might be beneficial to achieve sufficient low focus measures for
critical layers for high-NA systems in the future.

This report consists of eight chapters. In Chapter 1 the reasoning be-
hind this research will be explained together with the research question and
short introduction to the company at which the research has taken place.
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Chapter 2 describes the background knowledge related to chip manufactur-
ing, prior work and machine learning algorithms that are suitable for the
research objective. Chapter 3 contains the essentials of chip manufacturing
that are key in this research. Chapter 4 explains the data, setup and re-
search method. In Chapter 5 we introduce the concept of a new feature by
discussing the drawbacks of prior work. Chapter 6 describes the results of
different experiments on focus prediction models, the newly defined feature
from Chapter 5 and ends with an analysis. In Chapter 7 a discussion takes
place on our findings and on further improvement of the research. Finally,
in Chapter 8 we draw our conclusion and summarize the research.

1.1 Research Question

Previously the growing need for better focus control for more advanced lithog-
raphy machines has been identified. The scope of this research is to find a
machine learning model for predicting focus by using SEM derived data on
contact holes. This brings us to the main research question:

Main research question
Which machine learning algorithm performs best in a predicting model for

focus measuring on SEM derived data?

The primary assumption that is made is that input features heavily de-
pend on the chip design. Therefore our objective is to find the best algorithm
or network architecture for a selected set of features. In order to answer the
main research question, this research will be split up in subresearch questions:

RQ1 What available data could be turned into a useful feature for a candi-
date model? :
For this subresearch question we need to select which data has a valu-
able meaning within in our domain. This domain knowledge will be
obtained through a background study. Questions that arise from this
are:

(a) Should the available data be adapted in order for it to be used by
a candidate model? :
This involves verifying whether the data can be used as it is or
whether a preprocessing step needs to be applied.

(b) What new features can we define by means of the available data? :
From the background study we aim to understand the relation
between the new input feature and focus as output. The need for
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a new feature becomes evident from the drawbacks of prior work,
which will be discussed in Section 5.1

RQ2 What candidate machine learning techniques are there for the given
data and our problem? :
Focus measurement should be on a continuous scale, so a list of can-
didate algorithms and architectures is made that are suitable for a
regression problem.

RQ3 How does our model perform against other algorithms? :
A linear regression model will be used as baseline model. Other models
following different architectures will be compared against the baseline
model by looking at the R2, root-mean-squared error and the 3σ mea-
sure.

The second assumption that is made is that findings on the given data
will hold on real applications, even though the data is from a wafer developed
for research purposes. This research is based on the work of Calado et al. [5]
and aims to extend it by proposing different algorithms and a new feature
to improve performance. Furthermore, different input granularity levels for
the model input instances are investigated by aggregating different amount
of data.

1.2 Method

In this research there will be two data sets used: the first one for model
training and to determine the best algorithm, the second one for the gener-
alizability of the trained models. These data sets are from a focus energy
matrix (FEM) wafer, which are developed for research purposes only and
provided by ASML. From SEM images there is data of roughly 20M contact
holes, i.e. each data set has upto 20M instances.
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Figure 1.6: Focus energy matrix wafer. Each field has a specific focus and
dose value following a matrix structure.

To answer RQ1 subresearch questions RQ1.a and RQ1.b need to be an-
swered, which make use of the same background study. The aim is to find
physical phenomena and quantities that are related to focus and dose. This
is done by skimming through related work, literature regarding lithography,
and through talking with domain experts. These findings will tell which
available data can be considered as useful features. In RQ1.a the translation
from data to feature is considered. From the background study findings it
is determined whether the given data is usable as is, a preprocessing step
is needed, or if data needs to be restructured (e.g. a x and y coordinate
should be restructured into a location structure (x, y)). To answer RQ1.b
understanding the relation between a quantity or physical phenomenon and
the focus and dose is needed. It might become possible to derive quantities
or physical phenomena used in other researches from the given data.

A second background study is performed to answer RQ2. In this study
algorithms and neural architectures are found to solve a regression problem.
These findings will be based on a Google Scholar query on existing techniques
from the domain and other sources on general theory on algorithms tackling
regression problems.

Then a new feature is implemented that explains the physical phenomenon
that followed from the domain knowledge gained in RQ1.b. The physical
phenomenon that will be described by a new feature is the proximity effect,
which will be explained in Chapter 5. Placement errors in contact holes
are caused by the proximity effect following the effective focus and dose on
wafer level. Hence the strength of the proximity effect is modeled into a new
feature by empirically finding out the best relationship between placement

12



error and the proximity effect. The concept of the new feature will be thor-
oughly explained in Chapter 5 together with the results of this subresearch
in section 6.3.

The last part is about RQ3, which involves testing out the different algo-
rithms with different inputs against each other. A baseline model is created
by means on linear regression. The performance measures that are being used
are R2 to indicate a sufficient fit, RMSE for quantifying prediction error on
values relevant to the usecase and 3σ for focus uniformity.

1.3 Internship host - ASML

This research has been developed through an internship at Advanced Semi-
conductor Materials Lithography, ASML. ASML is known for their lithogra-
phy systems that are used for chip manufacturing, in particular their state-
of-the-art EUV technology [6].
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Chapter 2

Background

2.1 Chip manufacturing

2.1.1 Optics

In lithography the numerical aperture (NA) and the depth of focus (DOF)
are of high significance. These determine the minimum size that structures
on a chip can have.

Figure 2.1: The maximum angle of diffraction is determined by the aperture
size [1]

For exposure we want the lens to be as big as possible to collect light.
The aperture defines the area of the lens that is able to catch diffracted light.
Any light that falls outside the aperture will not hit the target on the object
plane. From Figure 2.1 we notice that by increasing the aperture size, the
maximum angle of diffraction θmax is increased. In Equation 2.1 we define

14



the size of the aperture as the numerical aperture NA based on the refractive
index n of the medium between the mask and the lens, and θmax. In this
formula we see that an increase in θmax results in a greater NA.

NA = n sin θmax (2.1)

In Equation 2.2 the Raleigh criterion formula is shown for calculating the
minimum structure size called the critical dimension (CD). Here the CD is
in nanometers, a scaling factor k1 depending on the manufacturing process,
the wavelength of exposure λ in nanometers and the NA. In Equation 2.3
the DOF depends on a process dependent scaling factor k2, the wavelength
of exposure λ and the NA.

CD = k1
λ

NA
(2.2)

DOF = k2
λ

NA2 (2.3)

Focus set point

Depth of 
focus

(a)

(b)

Wafer

Figure 2.2: Low-NA systems with a high DOF (a) are less prone to focus
errors than high-NA systems with low DOF (b). Focus errors are indicated
by red areas

From Equation 2.2 can be observed that for constant exposure wave-
lengths an increase in NA is needed in order to print finer structures. The
result of this is that the DOF will decrease. A wafer can be represented as
a landscape of mountains and valleys as shown in Figure 2.2. When we set
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Figure 2.3: SEM image of contact holes [5]

the focus, the scanner (i.e. the light source) will be considered in focus as
long it is within the boundaries defined by the DOF. Because of the wafer
topography the scanner gets out of focus, resulting in printing errors. The
wafer topography is responsible for the difference between the set and the
real focus used on the wafer.

2.1.2 Scanning electron microscope

A scanning electron microscope (SEM) is a device that performs microscopy
by emitting electrons [7]. There three key differences between optical metrol-
ogy systems and scanning electron microscopy. First, a SEM uses electrons
for measuring, while optical microscopes use visible light. Second, optical
microscopes typically achieve a magnification upto 400-1000 times the orig-
inal size of the observed object, whereas SEM achieves magnification upto
300.000 times. This allows SEM to observe object with 200 nm resolution
compared to 1 nm for SEM [8]. Third, with optical microscopy an object
can be observed in their original colors, while SEM returns a highly-detailed
gray-scale image of the object as shown if Figure 2.3. The SEM used in this
research captures is able to create images of 12x12 micron, where each pixel
represents 1 nm (i.e. images of 12Kx12K pixels) [9].
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2.1.3 SEM vs Optical focus metrology systems

There are a few differences between SEM and optical focus metrology sys-
tem, which form the driving force of this research. SEM uses electrons to
measure the structures, so its operating wavelength is relatively small. On
the otherhand, optical focus metrology uses visible light, so it is a relatively
big operating wavelength [10]. This difference in wavelength implies that
SEM can measure individual contact holes of nanometer size, whereas op-
tical metrology systems cannot. Yet optical metrology systems are able to
measurement data by creating a target of micron size. This makes optical fo-
cus metrology an ’on-target’ approach. SEM does not require any dedicated
structure for measuring as it can measure structures of the product directly,
hence SEM is an ’on-product’ measurement. The major drawback of SEM
is that the electrons used in measurement damage the product, which means
that it no longer can be used for further production processes. With optical
focus metrology, the visible light does not damage the product, so there is
no product loss.

2.2 Prior work

2.2.1 Linear regression on orthogonal grouping SEM

This research is based on the research of Calado et al. which implemented a
prediction based model for focus and dose [5]. The prediction based model
is a linear regression consisting of 48 input features and a bias. The 48
input features are based on the CD and PE for the X and Y direction for 16
patterns as shown in Figure 2.4(a).
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(a) (b)

Figure 2.4: Classification scheme used by Calado et al. [5] (a) Orthogonal
grouping scheme (b) SEM image with pattern label per contact hole

The patterns indicate the orientation of neighboring contact holes in close
proximity. The purpose of the patterns is to describe the orientation of the
optical proximity effect, which will be explained more thoroughly in sec-
tion 3.4, and thus the systematic behaviour for CD and PE. The area in
close proximity around a contact hole (i.e. the ambit) is divided into four
quadrants: left, right, top and bottom. Depending of the presence of a neigh-
boring contact hole in a quadrant, we can assign a label to a contact hole for
16 different patterns. In Figure 2.4(b) a SEM image is shown with a pattern
label for each contact hole. When a neighboring contact hole is present in
one of the quadrants, it is expected that the proximity effect will be caused
by that quadrant. For each focus and dose setting the proximity effect will be
different, so changes in CD and PE are focus and dose dependent. The neigh-
boring contact holes are found by means of the K-nearest neighbor (KNN)
algorithm.
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Figure 2.5: Diffraction orders [11]

2.2.2 Diffraction Based Focus metrology

Diffraction based focus metrology is a form of optical metrology based on
diffraction. When white light is projected onto a grating it gets separated
into a zero order and negative and positive higher order diffractions as shown
in Figure 2.5. White light contains all colors of visible light, so the differ-
ent order diffraction contain information about the intensities of different
wavelengths.

For different shapes of grating the intensity of the diffraction orders
change. Since the shapes are the result of focus the diffraction order in-
tensities can be used to infer the focus. The inference curve of focus that has
been used on the wafer is shown in Figure 2.6[12].

Figure 2.6: Inference curve for focus based on asymmetry in negative and
positive diffraction order [12]

2.3 Machine learning algorithms

This research requires machine learning algorithms that are suitable for re-
gression in a prediction-based model. The algorithm should be able to predict
focus on a continuous scale, but also not be piece-wise constant.
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2.3.1 Linear Regression with regularization

Linear regression aims to find a fit on the given data that reduces the error to
a minimum. A common approach is to use ordinary least squares (OLS) to
find the best weights of the model. In 2.4 the OLS formula is shown, which
is slightly adapted from Bishop [13].

ED(w) =
1

2

N∑
n=1

{yn −wTX}2 (2.4)

With OLS there is still the risk of overfitting. By means of restrictions
on the weights overfitting can be controlled by minimizing a formula of the
form in eq. 2.5. Here ED(w) represents the data-dependent error, lambda
the regularization coefficient and EW (w) the regularization term that forms
the restriction on the weights. Once eq. 2.5 is combined with eq. 2.6 for EW
we get eq. 2.7 that should be minimized.

ED(w) + λEW (w) (2.5)

EW (w) =
1

2

M∑
j=1

|wj|q (2.6)

1

2

N∑
n=1

{yn −wTX}2 +
λ

2

M∑
j=1

|wj|q (2.7)

In 2.6 we see that the type of regularization can be decided by the value
of q. When we set q = 1 we get the least absolute shrinkage and selection
operator, in short Lasso regularization or L1 regularization [14]. q = 1 implies
that we take the Manhattan distance on our weight vector. When we set
q = 2 we get Ridge regression or L2 regularization, which means taking the
Euclidean distance on our weight vector.
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Figure 2.7: Difference between L2 (Ridge) regularization left and L1 (Lasso)
on the right [13]

M∑
j=1

|wj|q ≤ η (2.8)

The difference between Lasso and Ridge regression lies in the solution of
minimizing Equation 2.7. This comes down to the most optimal OLS so-
lution for Equation 2.4 while also satisfying the constraint in Equation 2.8
for a chose η. In Figure 2.7 we see in blue the contour lines in the parame-
ter space, where the blue dot represent the optimal solution for w1 and w2

through unregularized OLS. The orange circle and square represent the pa-
rameter space that satisfy Equation 2.8, so the regularized OLS solution fall
in these regions. For Ridge regression we see that the optimal regularized
OLS solution w? gives w1 6= 0 and w2 6= 0. For the Lasso regression we have
an optimal regularized OLS solution w? with w1 = 0 and w2 6= 0. Lasso is
more prone to sparse solutions than Ridge regression for sufficiently large λ,
therefore one might prefer Ridge regression over Lasso regression.

(1− α)
M∑
j=1

|wj|+ α
M∑
j=1

|wj|2 ≤ η (2.9)

It is also possible to combine Lasso and Ridge regression together to get
the best balance of the methods [15]. This means we have two regularization
parameters λ1 and λ2 that give an OLS solution that has to satisfy the
constraint if eq. 2.9 where α = λ2

λ1+λ2
. When we set α = 0 elasticnet is

similar to Lasso regression, similarly for α = 1 we have elasticnet being
similar to Ridge regression.
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Figure 2.8: Elasticnet (solid line) solution space drawn as a combination of
L1 (dashed line) and L2 (dotted line) regularization [15]
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Chapter 3

Preliminaries

In Chapter 1 we have explained focus, dose and depth of focus in detail. In
addition, in this chapter we will introduce other key aspects in detail in order
to understand this research.

3.1 Wafer

A wafer is a silicon disk on which chips are printed by means of lithography.
It has a radius of 300mm and can be divided into many fields containing chip
design a chip design as shown in Figure 3.1(a). It is possible to have multiple
chips (i.e. multiple dies) in a single field as shown in Figure 3.1(b) [16].

(a) (b)

Figure 3.1: Two illustrations of a wafer. (a) Empty wafer consisting of many
fields (i.e. rectangular areas). (b) Wafer within each field (blue) a 5x3 die
array [16]
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(a) (b) (c) (d)

30 µm

10 µm

20 mm 

30 mm 

10 µm 200 nm

(e)

Figure 3.2: Rough dimensions of the data visually presented. (a) One field
on a wafer. (b) Four pads within a field. (c) Nine SEM images within a pad.
(d) One SEM image.

In Figure 3.2(a) an illustration of a field on a wafer is shown again. Within
a field, pads can be defined which are collections of SEM images. In Fig-
ure 3.2(b) four pads are shown of typically 30x30 micron with in it nine SEM
images (Figure 3.2(c)). Figure 3.2(d) shows a SEM image of 10x10 micron.

On each field there can be millions of contact holes, but it is unfeasible to
collect data of each structure individually. SEM measuring these structures
is a time consuming process. Besides, the resist layer is getting damaged by
the electrons shot by the SEM and leads to product loss as already mentioned
in Section 2.1.3.

3.2 Critical Dimension

The critical dimension (CD) is the diameter of a contact hole. This follows
in general a quadratic relationship with focus as indicated in Figure 3.3.
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Focus

C
D

Figure 3.3: Sketch of the quadratic relationship between CD and focus.

Since contact holes change in size and shape when printed, the CD will
be affected. To determine the CD of a printed contact hole an ellipse is fitted
on SEM images by means of Equation 3.1. Here x and y are the points on
the ellipse and a and b form half the width and half the height of the ellipse
(see Figure 3.4(a)). In Figure 3.4(b) a SEM image is shown with an ellipse
fit on the contact holes.

x

a

2

+
y

b

2

= 1 (3.1)
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(a) (b)

α

Figure 3.4: (a) Ellipse components for finding the critical dimension. (b)
Illustration of ellipse fits on contact holes in a SEM image

CD =
√
CDmajor · CDminor (3.2)

CDmajor and CDminor are the major and minor axis of the ellipse, so
that is the width and height respectively. The CD can be calculated through
Equation 3.2 by using the CDmajor and CDminor. In addition, the X-component
CDX and Y-component CDY of the CD can be found by fitting a box around
the ellipse as shown in Figure 3.4(a). The formulas used to calculate the CDX

and CDY are shown in Formula 3.3 and 3.4 where α is the angle of rotation
of the ellipse.

CDX =
√

(CDmajor · cos(α))2 + (CDminor · sin(α))2 (3.3)

CDY =
√

(CDmajor · sin(α))2 + (CDminor · cos(α))2 (3.4)
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3.3 Placement Error

Designed 
location

Printed 
location

Placement error 
in Y-direction

Placement error 
in X-direction

Figure 3.5: Placement error in the X- and Y-direction

In Figure 3.5 the placement error (PE) of a contact hole is shown. The place-
ment error is the difference between the designed location and the printed
location of a structure based on the centroid. This displacement is defined
through components in the X- and Y-direction, i.e. PEX and PEY respec-
tively. PE follows a linear relationship with focus, which is shown in Fig-
ure 3.6.
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Focus

PE

Figure 3.6: Sketch of the linear relationship between placement error and
focus.

3.4 Optical Proximity Effect

Imaging relies on the assumption that light is fully propagated through a
lens or mirror. However, light will never be perfectly propagated due to the
scattering of light.

Following the scattering of light, the effective dose on the wafer gets
changed. This is especially a problem in the close proximities of the printed
structures. During exposure, the light used for one structure will also be used
for neighboring structures in close proximity. This imaging effect is called
the (optical) proximity effect and cannot be avoided.
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(a) (b) (c)

Target pattern

Aerial Image

Cross-section
of pattern 

profile

D
o

se

Threshold dose

Figure 3.7: Proximity effect. Adapted from [17]

In Figure 3.7 we see the result of the proximity effect when exposing a
target pattern consisting of line segments. In Figure 3.7(a) we see a target
pattern with a single L-shape with an expected aerial image and one peak
above the threshold dose. In Figure 3.7(b) we try to print three L-shaped
patterns in close proximity of each other. In the cross-section of the pattern
profile we expect to see three distinct dose curves, similar as in Figure 3.7(a).
However, due to the close proximity of the L-shapes, the spikes curves are
starting to overlap. This phenomenon is the proximity effect. Note that there
are still three distinguishable spikes present above the threshold dose, making
it a printed pattern consisting of three separate L-shapes. Figure 3.7(c) still
has the same three L-shaped patterns as target, but now the patterns are
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closer to each other. In the cross-section of the pattern profile we see that
the proximity effect is so strong by the decreased space between the patterns
that the three expected dose curves merge such that only one spike above
the threshold dose arises. This means that the printed image also starts to
overlap as can be seen in the aerial image. From the aerial images and cross-
section profile we observe that target patterns get distorted in the direction
of neighboring patterns during printing. This distortion behavior also occurs
with contact holes. Besides a shift in location, the shape of contact holes
will change, which will affect the CD. The shift and distortion of the contact
hole is a function of focus and dose.
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Chapter 4

Experimental methods

4.1 Data description

The first data set consists of information about 19M individual contact
holes from the same FEM wafer as used by Calado et al [5]. There are 119
fields on this wafer, where each exposure field is distinguishable by their
combined dose and focus value. The dose is the intensity of the ultraviolet
light during exposure, which is defined by an amount of energy per surface
area in mJ/cm2. For each focus and dose pair a subset consists of 150K
contact holes, which can be subdivided into four pads and within each pad
nine SEM images similar to Figure 3.2. A pad and SEM images consist of
42K and 5K contact holes respectively (see Table 4.1).
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Contacthole Test_ID Cycle_ID Image_ID field_index_x field_index_y Group_ID Point_ID Polygon_ID

5794199 3 1 1505 2 -1 0 5 0

5787862 3 1 1502 2 -1 0 4 0

3172193 3 1 912 0 -9 0 0 0

Pattern_ID module_type img_x img_y intra_field_x intra_field_y gds_x gds_y gds_cd_x

19 2 2479 4485 2.213086 13.57932 -1.1E+07 5730660 26

6 2 12520 4218 2.210533 13.57907 -1.1E+07 5730409 27

11 2 11553 2251 2.202581 13.58563 -1.1E+07 5736971 26

gds_cd_y focus_index measurability pixel_res_index Roughness glv cog_x cog_y

26 0.829957 0.96 2.982692 1.916913 50.85561 -0.33475 -0.80487

27 0.832997 0.959996 3.358929 2.598076 55.79769 0.553741 -0.80295

26 0.800924 0.959988 3.509615 2.769231 55.61487 0.940063 1.052521

area angle ellipse_major ellipse_minor ellipse_fit_conf ul_dist up_dist ur_dist

341.4609 7.252207 21.64688 20.29154 0.959752 NaN NaN 100.1742

316.7402 32.70804 21.10436 19.2964 0.894174 82.87128 93.70837 62.23705

709.8906 168.7253 31.00769 29.45473 0.947191 51.74633 NaN 17.99339

File_ID Sequence_ID dose focus field_center_x_exposure field_center_y_exposure ellipticity

0 1505 73 50 51.8 -15.9 0.062611

0 1502 73 50 51.8 -15.9 0.085667

0 912 97 0 0 -143.1 0.050083

intra_field_index intra_field_index_x intra_field_index_y cd cd_x cd_y cd_area

7 2 1 20.95826 21.62595 20.31385 20.85094

3 1 1 20.18014 20.59287 19.84134 20.08199

6 0 2 30.22124 30.94977 29.51559 30.06428

pe_x pe_y group_ortho group_diag group_base group_ortho_70

-0.0208 -0.50139 100 200 0 100

0.744912 -0.73102 100 213 2 100

0.505344 0.722219 100 210 3 100

group_diag_70 group_base_70

200 0

225 63

210 1

Figure 4.1: Overview of all the available data for three contact tholes.
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Examples of the available data are shown in Figure 4.1 for three contact
holes. From this data there are some variables that could be of interest.
First, gds x and gds y describe the location (x, y) of the contact holes in
design. The Sequence ID is the identifier of one single SEM image. Dose and
focus are key variables required in this research as they define the FEM wafer
structure. Intra field index x and intra field index y describe the index of the
SEM image location in the X and Y-direction within a field. The combination
of the intrafield indices in the X and Y-direction, describe in which pad a
contact hole is located. The Cd indicates the measured CD of the contact
holes. Pe x and pe y are the measured placement errors PEx and PEy in
the X and Y-direction respectively. Group ortho indicates which orthogonal
grouping label the contact holes has.

The chip layout of each field on the FEM wafer are identical. The SEM
images are taken at the exact locations relative to the fields, but the amount
of data per field is not consistent. This is caused by three types of errors:
First, the SEM makes a placement error in itself, so the location of the
images are not always on the same position. Some contact holes get out of
view or get sliced. Second, the SEM does not capture a contact hole properly
even though it is present. Third, a contact hole is not present at all, so it
is a printing error rather than a measuring error. Since the SEM images
are roughly at the same position, the same contact holes in the design are
directly comparable albeit with different properties. One important aspect
to note is that there is a large amount of data provided (i.e. millions of data
points), but the diversity is relatively low as the data comes from one wafer.

Granularity level Number of contact
holes

Instances after aggre-
gation

SEM 5K 3744
Pad 42K 416
Field 150K 104

Table 4.1: Number of instances before and after aggregation at different
levels

In our research we use a subset of the data by reducing the focus range
between -75 nm and 75 nm as this is closer to values used in practice. In
Figure 4.2 are all the 119 focus and dose values shown together with the 104
focus and dose values in the subset.
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(a) (b) (c) (d)

Figure 4.2: Focus and dose values before and after reducing the data to focus
ranging between -75 and 75 nm. (a) All dose values (b) All focus values (c)
Dose values in the subset (d) Focus values in the subset.

With different granularity levels model input instances are created through
aggregation on contact holes per field, pad or SEM image. Since we want
to investigate different granularity levels it is important that all groups from
the classification scheme in Figure 2.4(a) are present for the different gran-
ularities. For SEM granularity level it becomes a problem, because in some
SEM images in the wafer not all groups are present. In Figure 4.3 the group
count on dataset 1 and dataset 2 is shown. From the figure can be observed
that the groups with three or four neighbors combined are less than 0.5%
present in the data, while the majority is determined by contact holes with
zero, one or two neighbours. Therefore, after applying grouping the contact
holes with three or four neighbors are removed from the datasets such that
on all granularity levels the same groups as input features are being used.
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(a) (b)

Figure 4.3: Amount of contact holes per group and their percentage of pres-
ence in the first dataset (a) and second dataset (b).

Following the grouping of contact holes with upto 2 neighbors and the
different granularity levels, the input and output values of the variables of
interest are shown in Table 4.2, 4.3 and 4.4 for field, pad and SEM granu-
larity level respectively. At field granularity level, each data instance for the
models can be distinguished by a combination of focus and dose as visible
in Table 4.2. In Figure 4.3, each data instance at pad granularity can be
distinguished by the focus, dose and Pad ID, which indicates on which one of
the four pads within a field has been aggregated. At SEM granularity level
the combination of focus, dose and Sequence ID makes each data instance
unique identifiable as observed in Figure 4.4.
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PE_X_100 PE_X_110 … PE_X_124 PE_X_125

-0.01128 0.169119 … 0.017075 -0.09907

-0.01769 1.355911 … 0.063526 -1.3929

-0.02039 0.459044 … 0.026887 -0.36564

-0.01769 0.390389 … 0.018128 -0.26037

-0.01143 0.129485 … 0.041282 -0.05265

Focus Dose CD_100 CD_110 … CD_124 CD_125

-50 52 17.15935 17.42487 … 17.31055 17.437

50 82 23.08735 25.02386 … 24.13584 25.5357

0 64 21.84582 22.36471 … 22.20858 22.43891

-25 64 22.04095 22.45294 … 22.31243 22.50385

-75 49 15.82584 16.0464 … 15.97387 16.06095

PE_Y_100 PE_Y_110 … PE_Y_124 PE_Y_125

-0.01476 0.002603 … 0.091543 -0.16894

-0.00151 0.001594 … 0.060374 -0.54101

-0.01043 -0.00682 … 0.07563 -0.28074

-0.01382 -0.00184 … 0.075393 -0.22235

-0.01641 0.004362 … 0.080598 -0.11367

Table 4.2: Focus and dose output values with CD, PEx and PEy input values
at field granularity level.
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PE_X_100 PE_X_110 … PE_X_124 PE_X_125

-0.01779 2.449761 … 0.021173 -2.33899

0.002729 1.147498 … 0.013981 -1.30673

-0.01698 0.878557 … 0.023653 -0.91365

-0.01575 0.564452 … 0.048066 -0.56816

-0.01433 0.632306 … 0.059776 -0.61761

PE_Y_100 PE_Y_110 … PE_Y_124 PE_Y_125

0.003533 -0.01149 … 0.025546 -0.5177

-0.00937 0.030846 … 0.045964 -0.32661

-0.00828 0.001605 … 0.06055 -0.40524

-0.01898 0.003862 … 0.069607 -0.14554

-0.01007 -0.01027 … 0.073485 -0.30507

Focus Dose Pad ID CD_100 CD_110 … CD_124 CD_125

50 94 3 26.6724 30.00806 … 27.4821 30.23771

-25 88 0 27.4824 28.69956 … 27.70889 29.08363

25 76 2 23.76163 24.84861 … 24.32439 25.1674

-75 76 3 22.44214 23.15629 … 22.63943 23.39904

0 73 2 24.46486 25.12212 … 24.7762 25.34891

Table 4.3: Focus and dose output values with CD, PEx and PEy input values
at pad granularity level.
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PE_X_100 PE_X_110 … PE_X_124 PE_X_125

-0.01484 0.37262 … -0.04741 -0.13804

-0.0127 0.764909 … 0.179911 -0.78851

0.007624 1.180715 … 0.041609 -1.55084

-0.01842 0.435641 … 0.070106 -0.37567

-0.02597 0.427132 … -0.05036 -0.23887

Focus Dose
Sequence 

ID
CD_100 CD_110 … CD_124 CD_125

-25 64 3797 22.07756 22.41874 … 22.32362 22.40425

-50 82 2142 25.93036 26.64123 … 26.22285 26.82818

25 82 4041 25.40508 26.77849 … 25.84978 27.45844

-25 67 800 22.55568 22.98302 … 22.84598 22.92777

-25 64 819 22.06865 22.46599 … 22.20488 22.41644

PE_Y_100 PE_Y_110 … PE_Y_124 PE_Y_125

-0.01838 -0.01792 … 0.104816 -0.19915

-0.01752 0.018831 … 0.138309 -0.1279

-0.00873 0.05002 … 0.02161 -0.34797

-0.01572 -0.06545 … 0.021277 -0.32211

0.001184 0.02231 … 0.004556 -0.21891

Table 4.4: Focus and dose output values with CD, PEx and PEy input values
at SEM granularity level.

The second dataset comes from a second FEM wafer with the same subset
as shown in Figure 4.2, i.e. focus between -75 nm and 75 nm and groups with
upto two neighbours. In Figure 4.4 the distribution of CD, PEx and PEy
for the first and second dataset are given. This dataset differs from the first
dataset in their mask biased CD, i.e. the CD in chip layout are the same, but
not on the mask. The mask biased CD is 24.31 nm for wafer 1 and 25.245
nm for wafer 2, which results in a different distribution for CD as shown in
Figure 4.4(a).
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(a)

(b)

(c)

Figure 4.4: Distribution of CD (a), PEx (b) and PEy (c) of first and second
dataset.

Since switching to different granularity levels involves aggregation on dif-
ferent amount of contact holes, the distribution of CD, PEx and PEy of
the contact holes within a single input instance might change. In Figure 4.5
the distribution of CD, PEx and PEy within a single field, pad and SEM
instance of nominal focus are shown.
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(a)

(b)

(c)

Figure 4.5: Distribution of CD (a), PEx (b) and PEy (c) within one field,
pad and SEM instance.

From Figure 4.5 can be observed that the distribution of CD, PEx and
PEy does not change much between field, pad and SEM instances. How-
ever, with finer granularity the number of contact holes that are aggregated
reduces, which result in higher standard error of the mean. The standard
error of the mean describes how precise the sample mean corresponds with
the mean of the true distribution. The higher the standard error becomes,
the more imprecise the input data of our model gets, so it implies that the
input data becomes noisier. The standard error of the mean is defined by
SEM = σ√

N
, where σ is the standard deviation and N is the amount of

contact holes. As shown in Table 4.1, the amount of contact holes for one
input instance deviates a lot among the different the granularity levels, which
could reflect in the standard error of the mean. In Table 4.5, Table 4.6 and
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Table 4.7 can be seen that the standard error of the mean increases when
switching to finer granularity levels due to the lower number of contact holes.

Granularity
level

Number
of contact
holes

Mean
Standard
deviation

Standard error
of the mean

Field 168757 23.954 1.000 0.002
Pad 42110 23.944 0.998 0.005
SEM 4602 23.940 1.027 0.015

Table 4.5: The standard error of the mean increases for CD as the number
of contact holes per granularity level reduces.

Granularity
level

Number
of contact
holes

Mean
Standard
deviation

Standard error
of the mean

Field 168757 0.000 0.716 0.002
Pad 42110 0.000 0.712 0.003
SEM 4602 0.000 0.714 0.011

Table 4.6: The standard error of the mean increases for PEx as the number
of contact holes per granularity level reduces.

Granularity
level

Number
of contact
holes

Mean
Standard
deviation

Standard error
of the mean

Field 168757 0.000 0.660 0.002
Pad 42110 0.000 0.661 0.003
SEM 4602 0.000 0.651 0.010

Table 4.7: The standard error of the mean increases for PEy as the number
of contact holes per granularity level reduces.

4.2 Objective

In order to conclude which algorithm is best for focus prediction and how
generalizable the trained model is, we will look at multiple metrics on two
different data sets. First the R2 score to see how well the fitted model behaves
against the true values. We create a set-get plot, which shows predicted
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values plotted against the true values as shown in Figure 4.6. Ideally all
predictions follow the line y = x, giving R2 = 1 while the slope is one.
Comparing the R2 of all models against a baseline will tell whether a fit is
sufficient enough.

Figure 4.6: Example of a set-get plot, with the red line indicating the ideal
fit y = x.

The second measure we will look at is the root-mean-squared error (RMSE).
This measure takes at first the squared differences between the fitted out-
comes and the expected outcomes. Then the mean is taken of the squared
differences followed by the root. The RMSE ranges from zero to infinity.
Ideally we want the RMSE value to be zero as that implies a perfect fit. This
measure will be performed on nominal focus, i.e. data from a common fixed
focus value and common dose range used in practice.

The final measure to take into consideration is the 3σ. The 3σ describes
three times the standard deviation in our error distribution. The RMSE and
3σ are closely related to eachother as 3 · RMSE ≈ 3σ. A 3σ close to zero
for the difference in predicted and expected focus would imply that the focus
on the entire wafer is close to uniformity. In practice, the expected 3σ is
not zero as focus errors also rise due to other stochastics involved. At field
granularity level it is known that 3σ ≈ 10 nm, meaning that roughly 99.7%
of the focus errors are upto 10 nm from the mean error. Therefore we are
looking for 3σ ≈ 10 nm in this research. This 10 nm will be used also at
other granularity levels for comparison.

The most crucial measures for the conclusion are the RMSE and the 3σ
as they are relevant to the usecase. To verify generalizability the trained
models are applied on a second dataset.
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4.3 Setup

We create a new feature that also makes use of the proximity effect, but in
a numerical way and with less parameters to be tuned as will be explained
in Chapter sec:proxy-force-theory. The proximity effect tells us that there
is an inverse relationship between the strength of the effect and the distance
between structures. Therefore, we empirically look for an inverse relation-
ship based on the distance to describe the strength of the proximity effect,
which we will call ’proximity force’ (PF). The proximity force feature will be
defined by empirically trying out different orders of inverse distance functions
between a contact hole and its local neighborhood. By finding a relationship
between function results and the PE a new feature can be defined in which
the feature values are the function parameters

In this research five experiments will be conducted:

(A) Finding the appropriate amount of epochs to train a neural network
for focus prediction

(B) Focus prediction with machine learning models on two datasets.

(C) Defining a new feature that builds upon existing work.

(D) Focus prediction with machine learning models on two datasets while
using the new defined feature from Experiment (C)

(E) Analysing the difference in results between the two datasets.

In Experiment (A) we will try to estimate an appropriate amount of
epochs to train a neural network for focus predictions. This is required as a
too small amount of epochs used in training might lead to underfitting. The
amount of epochs will be investigated for field, pad and SEM granularity
and for the 80%/20%, nominal focus and 3σ datasplits. In Experiment (B)
the amount of epochs found in Experiment (A) will be used for neural net-
work training. Together with linear regression, lasso, ridge and elasticnet
regression models for focus prediction will be developed. These models will
be tested on two datasets on which we will compare the R2, RMSE and 3σ
metrics with their corresponding datasplits. For this a similar approach as
Calado et al. is used as explained in Section 2.2.1 [5]. In that research focus
and dose were predicted with the CD, and the PE for the X and Y direc-
tion per pattern, resulting in 48 input features. In Experiment (C) a new
feature will be developed based on the existing work of Calado et al. The
approach of orthogonal grouping comes with drawbacks that we try to tackle
by defining a new feature. In Experiment (D) focus prediction models will
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be developed based on Experiment (D) by adding the new feature defined
in Experiment (C). Also here will the models be tested on two datasets
on which we will compare the R2, RMSE and 3σ metrics with their corre-
sponding datasplits. In Experiment (E) we try to argue why discrepancies
in performance arise between the first and second dataset.

4.4 Hardware and software

Simple machine learning experiments have been executed on a Windows
based virtual desktop interface (VDI) with an Intel Xeon Gold 6146 CPU.
The neural network approaches have been executed on a Linux based high
performance cluster with 4 GPU’s and 16 Intel CPU’s of Skylake architec-
ture.

In Table 4.8 an overview is given of the software used in this research.
The code is developed in python by means of the Pandas and NumPy module
for data processing, Matplotlib module for plotting, and scikit-learn and Ray
for hyperparameter tuning, PyTorch module for neural networks, and Ray
for neural network hyperparameter tuning [18][19][20][21][22][23][24]. The
models are made with scikit-learn and Pytorch. We opted for python and
these modules because of their simplicity, available support online and com-
patibility with the existing toolbox of ASML.

Module Purpose

Pandas Data processing
NumPy Data processing

Matplotlib Plotting
Scikit-learn Linear models, hyperparameter tuning

PyTorch Neural Networks
Ray Hyperparameter tuning

Table 4.8: Modules used during development.

4.5 Execution

The research has been split up into three methods:

(I) Splitting the data into 80% training set and 20% test set

(II) Taking a nominal focus and a dose range as a test set and taking the
rest as training. The nominal focus was set on -25.0 nm with a dose
range of 70.0 mJ/cm2 ± 14%
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(III) Calculating the focus uniformity on the wafer by fitting on all the data.
This describes how much focus prediction differs from the expected
focus value in general on the entire wafer.

A scaler will be fitted on the input data of the trainingsplit, which will
standardize the input features by the formula z = x−µ

σ
. This scaling is done

for the training data at field, pad and SEM granularity, which results in
Table 4.9, 4.10 and 4.11 respectively.

Focus Dose CD_100 CD_110 … CD_124 CD_125

-50 52 -1.23333 -1.32398 … -1.35038 -1.35792

50 82 0.208922 0.355937 … 0.346797 0.408802

0 64 -0.09314 -0.23192 … -0.13243 -0.26676

-25 64 -0.04566 -0.21242 … -0.10661 -0.25259

-75 49 -1.55777 -1.62872 … -1.68275 -1.6581

PE_X_100 PE_X_110 … PE_X_124 PE_X_125

0.135373 -1.11404 … -0.67553 1.152554

-0.64722 0.752225 … 1.447126 -0.76679

-0.97688 -0.65812 … -0.22719 0.757103

-0.6481 -0.76609 … -0.62741 0.913269

0.116371 -1.17637 … 0.430621 1.221421

PE_Y_100 PE_Y_110 … PE_Y_124 PE_Y_125

-0.54636 -0.17132 … 1.604209 0.919601

1.242833 -0.24162 … -0.2477 -1.32711

0.038203 -0.8279 … 0.658759 0.244526

-0.41953 -0.4807 … 0.644678 0.597068

-0.76978 -0.04888 … 0.953892 1.25335

Table 4.9: Focus and dose output values with scaled CD, PEx and PEy input
values at field granularity level.
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PE_X_100 PE_X_110 … PE_X_124 PE_X_125

-0.61358 2.471498 … -0.34784 -2.16722

1.715022 0.424345 … -0.582 -0.63815

-0.52169 0.001571 … -0.26709 -0.05588

-0.38135 -0.4922 … 0.527701 0.455882

-0.22092 -0.38553 … 0.908941 0.382637

Focus Dose Pad ID CD_100 CD_110 … CD_124 CD_125

50 94 3 1.081006 1.457611 … 1.178727 1.434317

-25 88 0 1.278044 1.168377 … 1.235112 1.182597

25 76 2 0.372938 0.317151 … 0.393644 0.328417

-75 76 3 0.051961 -0.05692 … -0.02528 -0.05729

0 73 2 0.544003 0.377609 … 0.505975 0.368006

PE_Y_100 PE_Y_110 … PE_Y_124 PE_Y_125

1.829314 -0.90301 … -1.42894 -1.16954

0.172229 1.405764 … -0.6807 -0.03193

0.312502 -0.18898 … -0.14614 -0.50005

-1.06162 -0.06584 … 0.185748 1.046028

0.082694 -0.83678 … 0.327887 0.096279

Table 4.10: Focus and dose output values with scaled CD, PEx and PEy
input values at pad granularity level.
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PE_X_100 PE_X_110 … PE_X_124 PE_X_125

-0.18709 -0.78984 … -0.93344 1.064217

-0.02813 -0.17565 … 1.666373 0.118489

1.479828 0.475354 … 0.084638 -0.98987

-0.45302 -0.69117 … 0.410547 0.718728

-1.01298 -0.70449 … -0.96717 0.917627

PE_Y_100 PE_Y_110 … PE_Y_124 PE_Y_125

-0.59862 -0.49334 … 0.52053 0.612059

-0.53145 0.308827 … 0.91515 0.970398

0.157514 0.989609 … -0.45981 -0.13648

-0.39025 -1.53083 … -0.46373 -0.00642

0.935205 0.384764 … -0.66074 0.512626

Focus Dose
Sequence 

ID
CD_100 CD_110 … CD_124 CD_125

-25 64 3797 -0.03662 -0.21948 … -0.1034 -0.27259

-50 82 2142 0.900439 0.71374 … 0.864866 0.692344

25 82 4041 0.772683 0.744075 … 0.772227 0.829814

-25 67 800 0.079662 -0.09477 … 0.026316 -0.1584

-25 64 819 -0.03879 -0.20904 … -0.13288 -0.26993

Table 4.11: Focus and dose output values with scaled CD, PEx and PEy
input values at SEM granularity level.

In method (I) the R2 is used to indicate whether a fit is sufficient enough
compared to the baseline model. The RMSE from method (II) and the 3σ
from method (III) will be used to give the final conclusion on which algorithm
is the best in each experiment.

4.5.1 Simple machine learning models

Following method (I), (II) and (III) the focus and dose values used in method
(I) and method (II) for training and testing of the simple machine learning
models are indicated in Figure 4.7 where red fields are from the test set and
blue fields are from the training set. After standardizing the input features,
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the fitted scaler is applied on the test data.

(a) (b)

Figure 4.7: Train and test sets used per method in the simple machine learn-
ing models. Blue fields are used in training, red fields are used in testing.
(a) Method (I) (b) Method (II)

The hyperparameter tuning of the simple machine learning models is done
with GridSearch. With this approach all possible combinations of hyperpa-
rameter values are tried out. The alternative could be RandomSearch which
tries out random combinations of hyperparameter values for a given amount
of attempts to find the best hyperparameter values. Since RandomSearch is
random it does not ensure finding the best hyperparameter settings. There-
fore we use GridSearch, even though it is an exhausting approach.
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Figure 4.8: Illustration of the testing procedure with KFold cross-validation
for K = 5 [25]

In both Method (I) and (II) we do a cross-validation by means of Group-
KFold, where K = 10. With KFold, training data is split into K folds of
equal size. One fold is selected for validation, the remaining K − 1 folds
for training and while all possible hyperparameters combinations. This is
done K times for all the different validation folds that can be selected as
illustrated in 4.8. From the K procedures a mean R2 is calculated to select
the best hyperparameter settings. The collection of hyperparameter values
per model is shown in Figure 4.12.
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Algorithm Hyperparameters Values

Linear Regression - -

Lasso Regression
Alpha 10−6, 10−5, ..., 104, 105

Maximum number of iterations 10000
Warm start True

Ridge Regression
Alpha 10−6, 10−5, ..., 104, 105

Maximum number of iterations 1000

Elastic Net

Alpha 10−6, 10−5, ..., 104, 105

L1 ratio 0.1, 0.2, ..., 0.8, 0.9
Maximum number of iterations 10000

Warm start True

Table 4.12: Hyperparameter settings for different machine learning models

When applying KFold cross-validation at pad and SEM granularity level,
it might occur that instances coming from the same field are split up into
different folds, resulting in a cross-validation in which training and validation
happens on the same focus and dose combinations. To prevent this Group-
KFold is used rather than KFold. By defining instances with the same focus
and dose combinations as a group (i.e. from the same field), instances from
the same field no longer can be split up over different folds. This means
that at pad granularity level a group has a common focus and dose combi-
nation and variable Pad ID and that groups at SEM granularity level have a
common focus and dose combination with a variable Sequence ID. Note that
when data is aggregated on field granularity level GroupKFold and KFold
boil down to the same cross-validation setup.

4.5.2 Neural Network approach

For the neural networks a similar approach as method (I), (II) and (III) is
being used. Since a validation set is introduced for the training process in
neural networks the percentage of data used in each data subsets is differ-
ent than for the data subsets in the simple machine learning models. The
corresponding focus and dose values and percentages of data used in the
training, validation and test set of method (I), (II) and (III) are shown in
Figure 4.9(a), (b) and (c) respectively.
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(a)

(b)

(c)

Figure 4.9: Train, validation and test sets used per method in the neural
networks indicated in yellow with the percentage of data per subset. (a)
Method (I) (b) Method (II) (c) Method (III)

The data will be split up into a training, validation and test split. After
standardizing the input features, the fitted scaler is applied on the validation
and test set. From the available loss functions of Pytorch we are using the
MSE loss as this is closely related to RMSE. With MSE large errors get
penalized harder due to the squaring of the error. Further we use the Adam
optimizer, which is based on stochastic gradient descent. It chosen as it has
shown to perform well in other researches and capable of handling sparse
data [26].

For the number of neurons in a hidden layer there is no clear formula
as multiple researches propose different solutions [27]. However, there are
general rules of thumbs that can help towards finding the optimal number
of neurons [28]. The first rule is that the number of neurons for a hidden
layer should be between the size of the input layer and the output layer. The
second rule is that the number of hidden neurons is smaller than two times
the number of output nodes. The third rule states that the minimum number
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of hidden layers and neurons should capture 70-90% of the variance of the
input data. Given that there are 11 orthogonal groups with features CD,
PE x and PE y, the input has 33 input nodes. There is one output nodes for
focus, so by following the first rule of thumb the number of hidden neurons
should be between 1 and 33. We deviate slightly from this and select for each
hidden layer in the neural network the amount of nodes to be in the range
[8, 16, 32, 64] as shown in the list of hyperparameter values in Figure 4.13.

Hyperparameters Values

Layers 1, 2, 3, 4
Nodes 8, 16, 32, 64

Dropout 0.0, 0.1, 0.2, 0.3, 0.4, 0.5
Batch Normalization False, True

Table 4.13: Hyperparameter settings used in the prediction models

We assume that the PE and CD are a direct result of only changes in
focus, meaning that dose and focus are independent. If we would make one
model with two output nodes for focus and dose, the models would share
the weights in all hidden layers and would make focus and dose correlated.
Therefore we opt for neural networks with only one output node, i.e. a model
for focus prediction and a model for dose predictions.

A dataloader is implemented to split the data into batches such that it can
fit into memory. A batch size of 16 is being used and samples in the training
set and validation set are shuffled during each epoch. The last samples that
form a batch smaller than the given batch size are removed from the training
epoch. As we want to implement batch normalization, a batch smaller than
the given batch size is removed to ensure that a batch has more than one
sample, which is a requirement for batch normalization.

A problem in general for neural networks is the overfitting problem. With
dropout some neurons are made inactive defined by a ratio, while the remain-
ing neurons become the relevant ones that can describe the training data
sufficiently without changing the neurons that are inactive. This is a form
of regularization, which helps to prevent overfitting. For dropout we use the
probability 0.0 upto 0.5 for the hidden layers with the exception for the input
layer, which is set to a maximum dropout probability of 0.2. This means a
minimum of 50% of the neurons in the hidden layers is kept and at least 80%
of the neurons in the input layer.

The network has to be trained for a sufficient amount of epochs in order
to learn the mapping from input to output. If learning has been insufficient
it might lead to underfitting. However, too many epochs might result in

52



good performance on the training set but bad performance on the test set,
i.e. overfitting. To prevent overfitting early stopping can be applied, which
stops the training when the loss on the validation set stops decreasing. In
order to prevent underfitting we try to estimate the amount of epochs needed
for training in Experiment (A). By setting the maximum amount of epochs
of training high and implementing an early stopping criterion an estimate on
the appropriate amount of epoch for sufficient learning can be made.

Hyperparameters Values

Optimizer Adam
Number of layers 1, 2, 3, 4
Number of nodes 32, 64

Batch size 16
Learning rate 0.01

Table 4.14: Hyperparameter settings used to find the appropriate number of
epochs.

Multiple models have been made and trained with fixed hyperparameters,
which are shown in table 4.14. By observing the training and validataion
curves we can make an estimate on an appropriate amount of epochs based
on convergence of the validation loss curve. In general, different hyperparam-
eter settings influence the amount of epochs to achieve optimal performance.
So our estimate holds under the assumption that the number of epochs is in-
dependent of changes in other hyperparameters. This estimate also depends
on the input data, so for field, pad and SEM granularity level input instances
we have to find the appropriate amount of epochs separately.
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Chapter 5

Proximity Force feature -
Alternative to grouping scheme

In this chapter the prior work from section 2.2.1 on which this research is
based will be discussed more thoroughly. By discussing the drawbacks of this
work we opt for a new feature to address these issues.

5.1 Drawbacks

Figure 5.1: Increasing the ambit size leads to saturated grouping. Colors
correspond with the groups in Figure 2.4(a)

54



Figure 5.2: Diagonal classification scheme as alternative to the orthogonal
classification scheme from Figure 2.4(a)

There are several drawbacks of the classification approach. First, the value
K for KNN. The number of contact holes to look for determines how many
neighboring contact holes are taken into consideration when assigning a group
label. Second, the ambit size can heavily influence the results as it is depen-
dent on the chip layout of interest. Similarly to K in KNN, it influences how
the neighboring contact holes will get distributed among the quadrants. In
Figure 5.1 the count per grouping within an SEM image for different ambit
sizes is shown, where the colors correspond with the groups in Figure 2.4(a).
When the ambit sizes increases, the grouping starts to saturate towards a
small set of dominant groups, i.e. groups with neighbors in three or four
quadrants. The groups with less neighbors will shrink in group size or might
even disappear. This results in the wrong labeling of the proximity effect that
has occurred. Third, besides the ambit size and K in KNN, the classification
scheme in itself is a hyperparameter that can be tuned. In Figure 5.2 an al-
ternative to the orthogonal grouping is shown, which uses diagonal patterns,
i.e. the quadrants top-left, top-right, bottom-left and bottom-right. Simi-
larly, the ambit can be divided into more than four areas to get a more refined
classification scheme. Lastly, this approach does not quantify the proximity
effect, but only describes the direction in which the proximity effect might
have an impact on contact holes based on the quadrants.
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5.2 Feature Proposal

In order to address the drawbacks mentioned before, we opt for a new feature
based on the classification approach. Rather than classifying the direction
of the proximity effect based on quadrants, we want to describe the strength
of the proximity effect numerically. The proximity effect tells us that there
is an inverse relationship between the strength of the effect and the distance
between structures. Therefore, we empirically look for a inverse relation-
ship based on the distance to describe the strength of the proximity effect,
which we will call ’proximity force’ (PF). With this feature we address the
drawbacks of the classification method by making the proximity effect quan-
tifiable and introducing less hyperparameters to be tuned. The strength of
the proximity effect will change as function of focus and dose, therefore de-
scribing this strength quantitatively might be beneficial for focus and dose
prediction. In the following subsections two models are introduced that form
the physical reasoning behind our calculations: a vector-based model and a
wave-based model.

5.2.1 Vector model

(a) (b)

Figure 5.3: Proximity Force is defined as the sum of force vectors proportional
to the inversed distance between neighboring contact holes.

In Figure 5.3 the idea of the proximity force by means of vectors is shown.
Figure 5.3(a) shows a schematic overview of gravitational force, where two
objects attract each other with an increasing force when distance decreases.
The gravitational force F is given by F = Gm1m2

r2
, where G is the gravi-

tational constant, m1 and m2 the masses of the object and r the distance
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[29]. We know that the proximity effect is strong on relatively short dis-
tances and weak on big distances between neighboring contact holes. This
corresponds with the gravitational force analogy in which we treat contact
holes as objects that attract eachother. This idea is mapped onto force vec-
tors in Figure 5.3(b) from which can be observed that the inverse distance
determines the magnitude of the force vectors indicated in black. These vec-
tors describe the strength and direction of the proximity effect with respect
to each neighboring contact hole. Once these vectors are summed up, the
net vector indicated in blue describes the strength and direction of the total
proximity effect, which corresponds with the direction and magnitude of the
placement error indicated in red. We call this net vector the proximity force.

The PF calculation for one contact hole i and different order n functions
is given in eq. 5.1. Here j is a contact hole in the local neighborhood of i,
N the amount of neighboring contact holes in the neighborhood and r the
distance between the contact holes i and j measured on the wafer.

PFi =
N∑
j

1

rnij
(5.1)

With this formula we are able to describe the strength of the proximity
effect, while addressing the drawbacks mentioned in section 5.1. Firstly, we
are able to describe the strength of the proximity effect. Secondly, we are
able to describe the direction of the proximity effect on a 360 circle rather
than a rough direction, e.g. a quadrant. So there is no need for defining
an orthogonal or diagonal grouping system based on an arbitrary number of
quadrants. Furthermore, since we are defining the strength of the proximity
effect based on this, there is no need anymore to set up a fixed ambit size
and no need to define K for KNN. Lastly, with no grouping system there is
also no case of saturated grouping.

5.2.2 Wave model

An alternative mechanism for the proximity force feature might be based
on waves. The single slit experiment rests on a fundamental principle in
optics, namely diffraction. With a single slit experiment light is being emitted
through a small slit as shown in Figure 5.4. Due to the small size of the slit,
light is being diffracted such that a pattern of different intensities becomes
visible. Since EUV lithography involves developing structures by means of
light, contact holes on the mask can be seen as individual slits that diffract
light since contact holes are of nanometer scale. For each contact hole a
diffraction pattern can be determined based on the CD.
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Figure 5.4: Single slit experiment shows the interference pattern on the
screen. Adapted from [30]

Note that the diffraction occurs on the mask, so instead of using wafer
dimensions as done in the vector model we need to use the mask dimensions.
Since our data comes from a low-NA machine with a lens system with a
reduction factor of 4x for both the X- and Y-direction, all the dimensions
on the mask are 4x bigger than on the wafer. This implies that the CD and
distances have to be scaled accordingly.

rect
(x
a

)
=


0, if |x| > a

2
1
2
, if |x| = 1

2

1, if |x| < a
2

(5.2)

Ideally for each contact hole a rectangular function would be used to
expose the wafer. In Figure 5.5(a) a plot of a rectangular function is given
by Equation 5.2 where width a = 1. However, in reality the intensity function
will take shape of a diffraction pattern as shown in Figure 5.5(b) [31]. From
Figure 5.5(b) can be observed that the highest intensity is found around
x = 0 between the first positive and negative minima. The intensity in
this range will be used for the contact hole itself, but the other intensities
observed beyond this range are caused by diffracted light. These intensities
will contribute to the intensities of surrounding contact holes.
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(a) (b)

Figure 5.5: Plots of the ideal intensity function (a) and reality (b).

y =

[
2J1(x)

x

]2
(5.3)

PFi =
N∑
j

[
2J1(rij)

rij

]2
(5.4)

The function used in Figure 5.5 is the Fraunhofer diffraction formula
given by Equation 5.3. It is based on the first kind Bessel function Jα of the
first order, i.e. α = 1. With Equation 5.4 we define the proximity force of
a contact hole i by summing the values following the Fraunhofer diffraction
formula on each neighboring contact hole j, where rij is the distance between
contact hole i and a neighboring contact hole j.

Important to note is that the diffraction pattern is based on distance
between the aperture plane and the observation plane, i.e. the mask and the
wafer respectively. The requirement for Fraunhofer diffraction is that the
diffraction is measured in ’far-field’. In Figure 5.6 the difference in diffraction
patterns is shown for increasing distances between the aperture plane and
the observation plane [32]. The Fresnel number FN, based on the slit width
a, distance L and wavelength of light λ, determines which diffraction pattern
will be observed. The formula for FN is given in Equation 5.5

FN =
a2

Lλ
(5.5)

For EUV lithography we can pick contact holes of 100 nm and wavelength
of 13.5 nm, so for a = 100 · 10−9 m and λ = 13.5 · 10−9 m we end up with
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FN = 7.4·10−7

L
. Given that light in a high-NA machine traverses a series of

mirrors between the mask and the wafer, L is in the range of meters, which
results in FN� 1. Following FN� 1, the observation plane is in ’far field’
and diffraction follows a Fraunhofer pattern.

Figure 5.6: Diffraction patterns for increasing distance between aperture
plane and observation plane [32]

5.3 Approach

Since the hypothesis is that the proximity effect is dependent on the focus
and dose we expect to see a relationship between the PE and the proximity
force feature. We take the intended locations of contact holes per field on
the wafer and calculate for each contact hole the relative distance to their
250 nearest neighbors by means of KNN. The choice of 250 neighbors is
an arbitrary choice, which includes neighboring contact holes that are in
practice not considered as in close proximity. Similarly to the ambit and the
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K amount of nearest neighbors to select in the work from Calado et al. it is
unknown what a proper amount of neighbors is for our calculations. However,
since the proximity effect follows an inverse-distance relationship we know
that the neighboring contact holes with large distance contribute less to the
proximity effect. So by defining the amount of neighbors sufficiently large,
the contribution of far distant neighboring contact holes tend to be close to
zero, hence the choice for K = 250.

For each field we calculate the proximity force and perform a linear fit of
PF against the PE. It is expected that this fit on each field gives a different
slope following the combination of focus and dose. By using the slope of this
linear relationship we can define the sensitivity of the proximity effect on the
printing errors for focus and dose values. By observing the slope of the fit,

the R2 of the fit and the cosine similarity between
−→
PE = (PEx, PEy) and

−→
PF = (PFx, PFy) for the given combinations of focus and dose we define the
most appropriate relationship that describes the proximity effect.

The cosine similarity is a measure that checks similarity between two
vectors by mapping them onto their respective normalized vector. So it
describes the similarity in direction independent of the magnitude. Following
Equation 5.6 the cosine similarity ranges between -1 and 1, where 0 implies
vectors being orthogonal, 1 implies vectors having the exact same angle, and
-1 vectors being in complete opposite directions. As we want to map the
proximity force onto the placement errors we ideally want a cosine similarity
of one between PE and PF.

By empirically testing out different functions we determine the most ap-
propriate functions by iteratively excluding functions. We start with the
vector models that consist of the 1/rn functions. After determining the best
vector-based model(s) we explore the wave model consisting of Fraunhofer
diffraction function to potentially get a more appropriate function.

cosine similarity(
−→
a ,
−→
b ) =

−→
a ·
−→
b

|
−→
a ||
−→
b |

(5.6)
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Chapter 6

Results

In this research five experiments have been conducted. In Experiment (A)
the appropriate amount of epochs to train a neural network for focus predic-
tion is estimated. Following the findings from Experiment (A) neural net-
works and other regression models are trained in Experiment (B). Through
empirical research the new proximity force feature introduced in Chapter 5
will be defined in Experiment (C). Following the new feature definition from
Experiment (C) neural networks and other regression models are trained in
Experiment (D). In Experiment (E) an analysis is performed to explain the
difference in performance between the datasets from Experiment (B). The
results of each experiment are shown below.

6.1 Experiment A: Find the appropriate amount

of epochs for neural networks

With training a neural network, there is a risk of potential underfitting.
This underfitting might be caused by not sufficiently training the model, i.e.
having not enough training epochs. Therefore we estimate what the minimal
amount of training epochs should be by inspecting the training and validation
curves during hyperparameter tuning. For each datasplit on all granularity
levels we investigate the loss curves for models with 32 nodes and 64 nodes
per hidden layers. By investigating the loss curves for 32 and 64 nodes per
hidden layer we can make an assumption on whether the loss curves change
substantially with different hyperparameters.
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6.1.1 Field granularity

At field granularity level five model fits are being performed with learning
rate 0.001, 2000 epochs and 1, 2, 3, 4 hidden layers at 32 and 64 nodes per
hidden layer. The mean-squared error (MSE) loss curves of training and
validation are given for each datasplit.

I. 80%/20% random data split

In Figure 6.1 and 6.2 the training and validation loss curves for the
80%/20% datasplit and 32 nodes per hidden layer are shown. Similarly
for 64 nodes per hidden layer, Figure 6.3 and 6.4 show the training and
validation loss curves. Within each figure, the subfigure (a), (b) and (c)
show the same loss curves, albeit on different scale. Subfigures (a) show the
epochs on a linear x-axis and loss on a linear y-axis, (b) shows the epochs on
a linear x-axis and loss on a logarithmic y-axis, and (c) shows the epochs on
a logarithmic x-axis and loss on a logarithmic y-axis. In Figure 6.2 and 6.4
the model with the lowest validation loss is indicated by a dashed line.
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(a)

(b)

(c)

Figure 6.1: MSE training loss of five fits using field granularity inputs with
32 nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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(a)

(b)

(c)

Figure 6.2: MSE validation loss of five fits using field granularity inputs with
32 nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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(a)

(b)

(c)

Figure 6.3: MSE training loss of five fits using field granularity inputs with 64
nodes per a hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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(a)

(b)

(c)

Figure 6.4: MSE validation loss of five fits using field granularity inputs with
32 nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

In Figure 6.1 and 6.3 we see a continuous decline in the training loss
curves, while the validation loss curves in Figure 6.2 and 6.4 converge. The
validation loss curves show that the neural networks perform better than
predicting the mean and the linear regression baseline.

II. Nominal range

In Figure 6.5 and 6.6 the validation loss curves for the nominal datasplit
are shown for 32 and 64 nodes per hidden layer respectively. Within Fig-
ure 6.5 and 6.6, the subfigure (a), (b) and (c) show the same loss curves,
albeit on different scale. Subfigures (a) show the epochs on a linear x-axis
and loss on a linear y-axis, (b) shows the epochs on a linear x-axis and loss
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on a logarithmic y-axis, and (c) shows the epochs on a logarithmic x-axis
and loss on a logarithmic y-axis. The model with the lowest MSE loss is
indicated by a dashed line. In Figure 6.5 and 6.6 the model with the lowest
validation loss is indicated by a dashed line.

(a)

(b)

(c)

Figure 6.5: MSE validation loss of five fits using field granularity inputs with
32 nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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(a)

(b)

(c)

Figure 6.6: MSE validation loss of five fits using field granularity inputs with
64 nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

In Figure 6.5 and 6.6 the validation loss curves show that the neural
networks offer improvement with respect to the mean prediction, but not
with respect to the baseline.

III. On all data

In Figure 6.7 and 6.8 the validation loss curves for the 3σ datasplit are
shown where (a) shows the epochs on a linear x-axis and loss on a linear y-
axis, (b) shows the epochs on a linear x-axis and loss on a logarithmic y-axis,
and (c) shows the epochs on a logarithmic x-axis and loss on a logarithmic
y-axis. In Figure 6.7 and 6.8 the model with the lowest validation loss is
indicated by a dashed line.
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(a)

(b)

(c)

Figure 6.7: MSE validation loss of five fits using field granularity inputs
with 32 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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(a)

(b)

(c)

Figure 6.8: MSE validation loss of five fits using field granularity inputs
with 64 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

The validation loss curves from Figure 6.7 and 6.8 show that neural
networks offer similar performance to the linear regression baseline, while
outperforming the mean prediction.

6.1.2 Pad granularity

At pad granularity level five model fits are being performed similar to field
granularity, albeit with less epochs. The fits use learning rate 0.001, 1000
epochs and 1, 2, 3, 4 hidden layers with 32 and 64 nodes per hidden layer.
The training loss curves are shown in Appendix A. The validation loss curves
for 32 and 64 nodes at different datasplits are shown below.
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I. 80%/20% random data split

In Figure 6.9 and 6.10 the MSE loss curves for validation on the 80%/20%
datasplit are shown where (a) shows the epochs on a linear x-axis and loss
on a linear y-axis, (b) shows the epochs on a linear x-axis and loss on a
logarithmic y-axis, and (c) shows the epochs on a logarithmic x-axis and
loss on a logarithmic y-axis. The model with the lowest validation loss is
indicated by a dashed line.

(a)

(b)

(c)

Figure 6.9: MSE validation loss of five fits using pad granularity inputs
with 32 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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(a)

(b)

(c)

Figure 6.10: MSE validation loss of five fits using pad granularity inputs
with 64 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

The validation loss curves from Figure 6.9 and 6.10 show that neural
networks offer similar performance to the linear regression baseline, while
outperforming the mean prediction.

II. Nominal range

Figure 6.11 and 6.12 show the validation loss curves for the nominal
datasplit. Within Figure 6.11 and 6.12 subfigure (a) shows the epochs on a
linear x-axis and loss on a linear y-axis, (b) shows the epochs on a linear x-axis
and loss on a logarithmic y-axis, and (c) shows the epochs on a logarithmic
x-axis and loss on a logarithmic y-axis. The model with the lowest validation
loss is indicated by a dashed line.
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(a)

(b)

(c)

Figure 6.11: MSE validation loss of five fits using pad granularity inputs
with 32 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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(a)

(b)

(c)

Figure 6.12: MSE validation loss of five fits using pad granularity inputs
with 64 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

In Figure 6.11 and 6.12 the validation loss curves show that the neural
networks offer improvement with respect to the mean prediction, but not
with respect to the baseline.

III. On all data

In Figure 6.13 and 6.14 the validation loss curves for the 3σ datasplit are
shown. Within each figure, subfigures (a), (b) and (c) show the same loss
curves, albeit on different scale. Subfigure (a) shows the epochs on a linear
x-axis and loss on a linear y-axis, (b) shows the epochs on a linear x-axis
and loss on a logarithmic y-axis, and (c) shows the epochs on a logarithmic
x-axis and loss on a logarithmic y-axis. In Figure 6.13 and 6.14 the model
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with the lowest validation loss is indicated by a dashed line.

(a)

(b)

(c)

Figure 6.13: MSE validation loss of five fits using pad granularity inputs
with 32 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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(a)

(b)

(c)

Figure 6.14: MSE validation loss of five fits using pad granularity inputs
with 64 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

From Figure 6.13 and 6.14 we observe that neural networks offer similar
performance to the linear regression baseline, while showing a big improve-
ment over the mean prediction.

6.1.3 SEM granularity

For the SEM granularity the same approach is used as for pad granularity:
Five model fits are being performed with learning rate 0.001, 1000 epochs
and 1, 2, 3, 4 hidden layers at 32 and 64 nodes per hidden layer. The training
loss curves are shown in Appendix A. The validation loss curves for 32 and
64 nodes per hidden layer are shown below.
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I. 80%/20% random data split

In Figure 6.15 and 6.16 the MSE loss curves for validation on the
80%/20% datasplit are shown. Within Figure 6.15 and 6.16, subfigure (a)
shows the epochs on a linear x-axis and loss on a linear y-axis, (b) shows
the epochs on a linear x-axis and loss on a logarithmic y-axis, and (c) shows
the epochs on a logarithmic x-axis and loss on a logarithmic y-axis. In Fig-
ure 6.15 and 6.16 the model with the lowest validation loss is indicated by
a dashed line.

(a)

(b)

(c)

Figure 6.15: MSE validation loss of five fits using SEM granularity inputs
with 32 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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(a)

(b)

(c)

Figure 6.16: MSE validation loss of five fits using SEM granularity inputs
with 64 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

From Figure 6.15 and 6.16 we observe that neural networks performs
much better than the mean prediction, but offer similar performance to the
linear regression baseline.

II. Nominal range

In Figure 6.17 and 6.18 the validation loss curves for the nominal datas-
plit are shown where subfigure (a) shows the epochs on a linear x-axis and
loss on a linear y-axis, (b) shows the epochs on a linear x-axis and loss on
a logarithmic y-axis, and (c) shows the epochs on a logarithmic x-axis and
loss on a logarithmic y-axis. The model with the lowest validation loss is
indicated by a dashed line.
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(a)

(b)

(c)

Figure 6.17: MSE validation loss of five fits using SEM granularity inputs
with 32 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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(a)

(b)

(c)

Figure 6.18: MSE validation loss of five fits using SEM granularity inputs
with 64 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

Figure 6.17 and 6.18 show that neural networks give much better per-
formance than the mean prediction, but gives worse performance than the
baseline.

III. On all data

In Figure 6.19 and 6.20 the validation loss curves for the 3σ datasplit are
shown. Within each figure, subfigure (a) shows the epochs on a linear x-axis
and loss on a linear y-axis, (b) shows the epochs on a linear x-axis and loss
on a logarithmic y-axis, and (c) shows the epochs on a logarithmic x-axis
and loss on a logarithmic y-axis. The model with the lowest validation loss
is indicated by a dashed line.
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(a)

(b)

(c)

Figure 6.19: MSE validation loss of five fits using SEM granularity inputs
with 32 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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(a)

(b)

(c)

Figure 6.20: MSE validation loss of five fits using SEM granularity inputs
with 64 nodes per a hidden layer. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

The validation loss curves from Figure 6.19 and 6.20 show that the
neural networks show better performance than the mean prediction, but
worse performance than the linear regression baseline.

6.1.4 Discussion

If the training loss curve would converge, then the learning process would be
(almost) finished. This would switch our concerns of potential underfitting to
potential overfitting. If the training loss curves together with the validation
loss curves keeps improving and does not converge, then it would indicate that
the model is likely to be underfitting as more learning would be beneficial. We
will discuss our findings from Experiment (A) by investigating the training
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and validation loss curves to address the underfitting problem.
In section 6.1.1, at field granularity the training loss curves for 32 and 64

nodes per hidden layer for the random 80%/20% split in Figure 6.1 and 6.3
are shown. The figures show that the performance on the training set keeps
improving as the MSE loss continues to follow a downward trend. The con-
tinuous improvement indicates that the learning process has not yet finished.
Further can be observed that on the training set with the given amount of
epochs models with 2, 3 and 4 hidden layers perform better than simply pre-
dicting the mean and the linear regression baseline. Although models with 1
hidden layer also perform much better than the mean prediction, it does not
perform better than the linear regression baseline. Similar behaviour can be
observed in the loss curves of the 32 and 64 nodes per hidden layer on the
nominal datasplit in Appendix A Figure 1 and 2 and the 32 and 64 nodes
per hidden layer on all the data in Appendix A Figure 3 and 4. Given that
the training loss curves of these models are still descending, the models might
perform better than the baseline if we use a larger training period.

In Figure 6.2(c), 6.5(c) and 6.7(c) we observe that for the neural networks
with 32 nodes per hidden layers all validation curves at field granularity
converge for the 80%/20%, nominal datasplits and all data. This can be
noticed by the loss curves descending to a minimum followed by an upward
trend. This implies that the neural networks have learned sufficiently and
that there is no underfitting. This similarly holds for models with 64 nodes
per hidden layer in Figure 6.4(c), 6.6(c) and 6.8(c).

From the training and validation loss curves we observe that neural net-
works can learn sufficiently for the given amount of epochs. Although all
the validation figures have shown that the validation curves have converged
at all granularity levels, there is still a possibility that with other hyperpa-
rameter settings underfitting still takes place, i.e. the validation curves are
not converging. For this uncertainty we add extra epochs for training in Ex-
periment (B) such that maximum amount of training epochs becomes 2500,
1500 and 1500 for field, pad and SEM granularity level respectively. With
this, potential underfitting has been addressed. By preventing underfitting
the validation loss curves show a continuous increase in loss, which indi-
cates potential overfitting. However, this problem can be avoided through
earlystopping, which stops the training once the validation curves do not
show improvement.

The training and validation loss curves also give some insight about the
results that might come forward in Experiment (B) section 6.2. All the
validation curves show a big improvement over the mean prediction on all
granularity levels and datasplits, but not for the linear regression baseline.
In particular for the nominal datasplits in Figure 6.5, 6.6, 6.11, 6.12, 6.17
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and 6.18 at all different granularity levels we see that the neural networks
give worse performance than the linear baseline, which could reflect in the
results on the test set in Experiment (B). Further can be observed that for
within each datasplit and each granularity levels the validation loss curves
have similar shapes. This implies that for 32 and 64 nodes per hidden layer
there is little performance difference, albeit that the number of hidden layers
might change for the best model.

6.2 Experiment B: Focus prediction based on

orthogonal groups

6.2.1 Feedforward Neural Network

Following the 192 hyperparameter combinations defined by Table 4.13 a
model is fitted for each hyperparameter combination. Through Experiment
(A) we have set the amount of epochs for training at 2500 epochs at field
granularity and 1500 epochs for pad and SEM granularity. The model with
the lowest MSE loss will be considered as the best model, which will be used
on the test set.

The MSE loss and loss curves on the validation set of the 10 best and 10
worst are given for each datasplit and granularity level. The most important
loss curves of the 10 best models are given in the following sections, but not
all the loss curves of the 10 worst models per setup are shown

Field granularity

At field granularity level models are trained upto 2500 epochs with earlystop-
ping applied, learning rate 0.001 and the Adam optimizer. In Table 6.1 are
the 10 best and worst models given with their hyperparameters and lowest
recorded MSE loss. In Figure 6.21 the MSE validation loss of the 10 best
models are shown, where Figure 6.21(a), (b) and (c) show the same data,
but on different scales to properly see if loss curves converge. Figure 6.21(a)
shows the epochs on a linear x-axis and loss on a linear y-axis, (b) shows the
epochs on a linear x-axis and loss on a logarithmic y-axis, and (c) shows the
epochs on a logarithmic x-axis and loss on a logarithmic y-axis.

I. 80%/20% random data split
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Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 4 64 0.0 No 25.86

2 3 16 0.0 No 27.75

3 4 8 0.0 No 32.18

4 2 32 0.0 No 39.56

5 4 64 0.1 No 39.66

6 3 64 0.3 No 40.35

7 2 8 0.0 No 45.10

8 3 64 0.0 No 45.68

9 4 64 0.2 No 46.41

10 1 64 0.1 No 47.28

… … … … … …

183 4 8 0.4 No 832.57

184 4 8 0.1 Yes 841.86

185 4 8 0.5 No 1286.62

186 4 8 0.4 Yes 1370.96

187 3 8 0.1 Yes 1484.47

188 3 8 0.4 Yes 1664.13

189 3 8 0.5 Yes 1797.06

190 4 16 0.5 No 1817.55

191 4 8 0.5 Yes 2119.41

192 2 8 0.5 No 2316.86

Table 6.1: MSE loss of the 10 best and worst models with field instances on
the validation set of the 80%/20% datasplit
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(a)

(b)

(c)

Figure 6.21: MSE validation loss of the 10 best models using field granularity
inputs on the 80%/20% datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

The validation loss curves of the 10 best models on the 80%/20% datas-
plit are shown in Figure 6.21. The model numbers in the legends correspond
with the model rank in Table 6.1. From Table 6.1 we observe that the 10 best
models consists of a large amount of nodes per layer, low dropout rate and
without batch normalization. The 10 worst models consists mostly of high
dropout rates and a small amount of nodes per layer. From Figure 6.21(b)
and (c) can be observed that for model 1 the loss fluctuates slightly, while for
model 5 and 9 the loss curves are fluctuating more with lower model rank.
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The models have the same hyperparameters, but differ in dropout rate. From
these three models we observe that increasing dropout rates give an increase
in MSE loss and fluctuations.

II. Nominal range

In Table 6.2 are the 10 best and worst models given with their hyperpa-
rameters and lowest recorded MSE loss. In Figure 6.22 the MSE validation
loss of the 10 best models are shown, where Figure 6.22(a)(b) and (c) show
the same data, but on different scales to properly see if loss curves converge.
Figure 6.22(a) shows the epochs on a linear x-axis and loss on a linear y-axis,
(b) shows the epochs on a linear x-axis and loss on a logarithmic y-axis, and
(c) shows the epochs on a logarithmic x-axis and loss on a logarithmic y-axis.
Similarly, the MSE validation loss of the 10 worst models on the nominal fo-
cus datasplit are shown in Figure 6.23 with similar scaled axes for (a), (b)
and (c).
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Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 4 32 0.0 No 36.23

2 4 16 0.0 No 44.37

3 2 16 0.0 No 45.63

4 2 32 0.0 No 48.18

5 3 8 0.0 No 50.72

6 3 64 0.1 No 51.49

7 2 64 0.0 No 51.68

8 3 64 0.0 No 54.93

9 3 32 0.0 No 57.10

10 4 64 0.0 No 57.12

… … … … … …

183 3 8 0.5 Yes 1107.27

184 4 8 0.4 Yes 1178.54

185 4 8 0.4 No 1398.42

186 4 8 0.0 Yes 1636.56

187 4 8 0.5 No 1649.02

188 4 8 0.5 Yes 1718.59

189 4 8 0.1 Yes 1812.57

190 4 8 0.3 No 2243.73

191 4 8 0.3 Yes 2258.66

192 2 8 0.0 No 2674.44

Table 6.2: MSE loss of the 10 best and worst models with field instances on
the validation set of the nominal datasplit
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(a)

(b)

(c)

Figure 6.22: MSE validation loss of the 10 best models using field granularity
inputs on the nominal datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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(a)

(b)

(c)

Figure 6.23: MSE validation loss of the 10 worst models using field granu-
larity inputs on the nominal datasplit. (a) Epochs and loss on linear scale.
(b) Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss
on logarithmic scale.

The validation loss curves are shown in Figure 6.22 and 6.23. The model
numbers in the legends correspond with the model rank in Table 6.2. From
Table 6.2 we observe that the 10 best models use a low dropout rate and no
batch normalization. The 10 worst models consists mostly of high dropout
rates, many layers and small amount of nodes per layer. Figure 6.22(b)
and (c) show that all the 10 best models converge as the MSE loss does no
longer show any improvement after a specific amount of epochs following
earlystopping, i.e. the loss curves do not show a positive trend. We further
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observe that the loss curves of models 3, 4 and 7 need a relatively large
amount of epochs. This is likely due to the relatively low model complexity
made up of 2 hidden layers, while the other models in the top 10 contain
more hidden layers.

Note that in Figure 6.23 the worst model is using the total amount of
epochs and is not converging. The model with the same hyperparameters
but with 16 nodes per layer is ranked as the third best model and does
converge, although it uses a relatively big amount of epochs compared to
other good models. This shows that similar models converge slowly, but can
perform well, so ideally the worst model should be given a longer training
period, i.e. more epochs.

III. On all data

In Table 6.3 are the 10 best models given with their hyperparameters and
lowest recorded MSE loss. In Figure 6.24 the MSE validation loss of the 10
best models are shown, where Figure 6.24(a)(b) and (c) show the same data,
but on different scales to properly see if loss curves converge. Figure 6.24(a)
shows the epochs on a linear x-axis and loss on a linear y-axis, (b) shows the
epochs on a linear x-axis and loss on a logarithmic y-axis, and (c) shows the
epochs on a logarithmic x-axis and loss on a logarithmic y-axis.
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Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 1 64 0.0 No 20.10

2 1 32 0.0 No 23.36

3 4 64 0.0 No 25.61

4 2 8 0.0 No 26.16

5 2 64 0.0 No 27.76

6 3 64 0.0 No 28.01

7 2 32 0.0 No 28.06

8 1 16 0.0 No 30.29

9 1 8 0.0 No 30.48

10 2 64 0.3 No 30.80

… … … … … …

183 4 8 0.3 Yes 578.51

184 3 8 0.4 No 609.48

185 2 8 0.5 Yes 669.59

186 4 8 0.4 No 854.29

187 3 8 0.5 No 905.27

188 4 8 0.5 Yes 1121.36

189 4 8 0.5 No 1262.55

190 3 8 0.5 Yes 1308.75

191 2 8 0.1 No 1789.69

192 4 8 0.0 No 3327.92

Table 6.3: MSE loss of the 10 best and worst models with field instances on
the validation set of the 3σ datasplit
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(a)

(b)

(c)

Figure 6.24: MSE validation loss of the 10 best models using field granularity
inputs on the 3σ datasplit. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

The validation loss curves are shown in Figure 6.24. The model numbers
in the legends correspond with the model rank in Table 6.3. From Table 6.3
we observe that the 10 best models use a small amount of layers, a low
dropout rate and no batch normalization. The 10 worst models mostly use
high dropout rates and a small amount of nodes per layer. Figure 6.24(b) and
(c) show that all the models converge with earlystopping activated. However,
model 10 shows some fluctuations in the loss curve, likely due to the dropout
rate of 0.3 while the other best performing models do not use dropout. Note
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that most of the best models only consists of one layer, which implies that
relatively simple model is enough to capture the complexity in our data.

Pad granularity

At pad granularity level models are trained upto 1500 epochs with earlystop-
ping applied, learning rate 0.001 and the Adam optimizer. In Appendix B
are validation loss curves of the 10 best and worst models on each datasplit
shown similar to the validation loss curves observed at field granularity level.

I. 80%/20% random data split

In Table 6.4 are the 10 best and worst models given with their hyperpa-
rameters and lowest recorded MSE loss. The validation loss curves of the
10 worst models on the 80%/20% datasplit are shown in Figure 6.25. In
Figure 6.25 the MSE validation loss of the 10 worst models are shown, where
Figure 6.25(a), (b) and (c) show the same data, but on different scales to
properly see if loss curves converge. Figure 6.25(a) shows the epochs on a lin-
ear x-axis and loss on a linear y-axis, (b) shows the epochs on a linear x-axis
and loss on a logarithmic y-axis, and (c) shows the epochs on a logarithmic
x-axis and loss on a logarithmic y-axis. Similarly, the MSE validation loss
of the 10 best models on the 80%/20% datasplit are shown in Appendix B
Figure 20 with similar scaled axes for (a), (b) and (c).
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Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 4 64 0.2 No 38.31

2 4 64 0.4 No 39.03

3 4 64 0.1 No 40.74

4 3 32 0.0 No 41.17

5 4 32 0.1 No 41.34

6 4 32 0.0 No 41.36

7 2 64 0.1 No 41.37

8 1 8 0.0 No 41.56

9 4 64 0.0 No 41.81

10 2 32 0.1 No 42.00

… … … … … …

183 4 8 0.3 No 541.14

184 4 8 0.4 No 545.58

185 3 8 0.4 Yes 606.36

186 2 8 0.5 No 613.60

187 3 8 0.5 Yes 663.11

188 4 8 0.4 Yes 689.08

189 1 8 0.3 No 725.33

190 3 8 0.5 No 754.61

191 4 8 0.5 Yes 1113.87

192 4 8 0.5 No 1273.56

Table 6.4: MSE loss of the 10 best and worst models with pad instances on
the validation set of the 80%/20% datasplit
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(a)

(b)

(c)

Figure 6.25: MSE validation loss of the 10 worst models using pad granularity
inputs on the 80%/20% datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

The model numbers in the legend of each figure correspond with the
model rank in Table 6.4. From Table 6.4 we observe that the 10 best models
use many layers, many nodes per layer and no batch normalization. The 10
worst models mostly use high dropout rates and a small amount of nodes per
layer.

From Figure 6.25 can be observed that the loss curve of model 189 does
not converge as maximum amount of epochs for training has been reached.
The model has the same amount of layers and nodes as model 8, but different
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dropout rate. Since model 189 has a similar model complexity as model 8,
it might perform well when a higher amount of training epochs is applied.

II. Nominal range

In Table 6.5 are the 10 best and worst models given with their hyper-
parameters and lowest recorded MSE loss. In Appendix B Figure 21 the
MSE validation loss of the 10 best models are shown, where Figure 21(a),
(b) and (c) show the same data, but on different scales to properly see if
loss curves converge. Figure 21(a) shows the epochs on a linear x-axis and
loss on a linear y-axis, (b) shows the epochs on a linear x-axis and loss on a
logarithmic y-axis, and (c) shows the epochs on a logarithmic x-axis and loss
on a logarithmic y-axis. Similarly, the MSE validation loss of the 10 worst
models on the nominal focus datasplit are shown in Appendix B Figure 22
with similar scaled axes for (a), (b) and (c). The model number in the legend
of each figure correspond with the model rank from Table 6.5.

98



Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 3 64 0.0 No 68.00

2 2 32 0.0 Yes 73.58

3 4 64 0.0 No 73.92

4 1 32 0.0 No 76.42

5 2 32 0.0 No 77.85

6 2 64 0.0 Yes 79.83

7 1 64 0.1 No 81.40

8 4 32 0.0 No 82.54

9 1 64 0.0 No 83.19

10 2 64 0.0 No 85.21

… … … … … …

183 3 8 0.4 Yes 610.64

184 4 8 0.4 Yes 691.52

185 3 8 0.5 Yes 737.74

186 3 8 0.4 No 849.35

187 4 8 0.4 No 1149.12

188 4 8 0.5 Yes 1283.18

189 4 8 0.3 No 1498.01

190 3 8 0.3 No 1696.65

191 3 8 0.5 No 1702.28

192 4 8 0.5 No 1826.07

Table 6.5: MSE loss of the 10 best and worst models with pad instances on
the validation set of the nominal datasplit

From Table 6.5 we observe that the 10 best models use many nodes per
layer, a low dropout rate and no batch normalization. The 10 worst mod-
els mostly use many layers with small amount of nodes per layer and high
dropout rates.

III. On all data

In Table 6.6 are the 10 best and worst models given with their hyperpa-
rameters and lowest recorded MSE loss. In Appendix B Figure 23 the MSE
validation loss of the 10 best models are shown, where Figure 23(a), (b) and
(c) show the same data, but on different scales to properly see if loss curves
converge. Figure 23(a) shows the epochs on a linear x-axis and loss on a lin-
ear y-axis, (b) shows the epochs on a linear x-axis and loss on a logarithmic
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y-axis, and (c) shows the epochs on a logarithmic x-axis and loss on a loga-
rithmic y-axis. Similarly, the MSE validation loss of the 10 worst models on
all the data are shown in Appendix B Figure 24 with similar scaled axes for
(a), (b) and (c). The model number in the legend of each figure correspond
with the model rank from Table 6.6.

Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 1 16 0.0 No 38.40

2 4 32 0.2 No 39.45

3 1 8 0.0 No 42.09

4 1 32 0.0 No 42.93

5 1 64 0.1 No 43.19

6 4 64 0.2 No 44.61

7 2 8 0.0 Yes 44.75

8 3 64 0.0 No 44.85

9 4 64 0.3 No 44.86

10 2 64 0.0 Yes 44.95

… … … … … …

183 4 8 0.4 Yes 452.22

184 3 8 0.5 Yes 479.96

185 4 16 0.5 No 492.51

186 4 8 0.3 No 661.11

187 3 8 0.4 No 684.85

188 4 8 0.4 No 741.89

189 4 8 0.5 No 779.92

190 3 8 0.2 No 930.17

191 4 8 0.5 Yes 979.24

192 3 8 0.5 No 1267.51

Table 6.6: MSE loss of the 10 best and worst models with pad instances on
the validation set of the 3σ datasplit

From Table 6.6 we observe that most of the 10 best models only use one
layer, with low dropout rates and no batch normalization. The 10 worst
models mostly use many layers with a low amount of nodes per layer and
high dropout rates. Since most of the best models only consists of one layer,
it would imply that a relatively simple model is enough to capture the com-
plexity in our data.
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SEM granularity

At SEM granularity level models are trained upto 1500 epochs with earlystop-
ping applied, learning rate 0.001 and the Adam optimizer. In Appendix B
are validation loss curves of the 10 best and worst models on each datasplit
shown.

I. 80%/20% random data split

In Table 6.7 are the 10 best and worst models given with their hyperpa-
rameters and lowest recorded MSE loss. In Figure 6.26 the MSE validation
loss of the 10 best models are shown, where Figure 6.26(a), (b) and (c) show
the same data, but on different scales to properly see if loss curves converge.
Figure 6.26(a) shows the epochs on a linear x-axis and loss on a linear y-axis,
(b) shows the epochs on a linear x-axis and loss on a logarithmic y-axis, and
(c) shows the epochs on a logarithmic x-axis and loss on a logarithmic y-axis.
Similarly, the MSE validation loss of the 10 worst models on the 80%/20%
datasplit are shown in Appendix B Figure 25 with similar scaled axes for (a),
(b) and (c). The model number in the legend of each figure correspond with
the model rank from Table 6.7.
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Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 4 64 0.1 No 121.23

2 4 64 0.2 No 121.80

3 4 64 0.3 No 122.34

4 3 64 0.1 No 123.58

5 3 32 0.1 No 125.63

6 4 64 0.0 No 127.46

7 3 64 0.0 No 129.39

8 3 32 0.0 No 130.84

9 3 64 0.2 No 132.55

10 3 64 0.4 No 133.24

… … … … … …

183 2 8 0.5 No 452.52

184 3 16 0.5 Yes 455.55

185 4 8 0.4 No 534.89

186 2 8 0.5 Yes 548.09

187 3 8 0.4 Yes 555.60

188 3 8 0.5 No 635.94

189 3 8 0.5 Yes 850.98

190 4 8 0.4 Yes 994.30

191 4 8 0.5 Yes 1267.75

192 4 8 0.5 No 2305.35

Table 6.7: MSE loss of the 10 best and worst models with SEM instances on
the validation set of the 80%/20% datasplit
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(a)

(b)

(c)

Figure 6.26: MSE validation loss of the 10 best models using SEM granularity
inputs on the 80%/20% datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

The validation loss curves of the 10 best models are shown in Figure 6.26.
From Table 6.7 we observe that the 10 best models use many layers, many
nodes per layer and no batch normalization. The 10 worst models mostly use
high dropout rates and a small amount of nodes per layer. Since all models
consistently use many layers, many nodes and low dropout rates it implies
that there is an increase in data complexity compared to data of field and
pad granularity. Furthermore, we observe that all models behave roughly the
same, i.e. all models show some fluctuations in the loss curves.
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II. Nominal range

In Table 6.8 are the 10 best models given with their hyperparameters and
lowest recorded MSE loss. In Figure 6.27 the MSE validation loss of the 10
best models are shown, where Figure 6.27(a), (b) and (c) show the same data,
but on different scales to properly see if loss curves converge. Figure 6.27(a)
shows the epochs on a linear x-axis and loss on a linear y-axis, (b) shows the
epochs on a linear x-axis and loss on a logarithmic y-axis, and (c) shows the
epochs on a logarithmic x-axis and loss on a logarithmic y-axis. Similarly,
the MSE validation loss of the 10 worst models on the nominal datasplit are
shown in Appendix B Figure 26 with similar scaled axes for (a), (b) and (c).
The model number in the legend of each figure correspond with the model
rank from Table 6.8.
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Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 4 8 0.0 No 173.00

2 3 32 0.0 No 182.74

3 4 32 0.0 No 187.15

4 4 64 0.0 No 194.58

5 2 64 0.0 No 202.04

6 4 16 0.0 No 203.38

7 2 32 0.0 No 204.24

8 3 8 0.0 No 207.24

9 3 8 0.0 Yes 212.29

10 2 16 0.0 No 212.59

… … … … … …

183 2 8 0.5 Yes 639.40

184 3 8 0.5 Yes 660.74

185 2 8 0.4 No 673.92

186 3 8 0.5 Yes 684.90

187 4 8 0.4 No 690.31

188 3 8 0.5 No 699.61

189 4 8 0.5 Yes 796.81

190 4 8 0.4 Yes 1092.74

191 4 8 0.5 No 1111.54

192 4 8 0.5 Yes 1268.47

Table 6.8: MSE loss of the 10 best and worst model with SEM instances on
the validation set of the nominal datasplit
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(a)

(b)

(c)

Figure 6.27: MSE validation loss of the 10 best models using SEM granularity
inputs on the nominal datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

The validation loss curves are shown in Figure 6.27. From Table 6.8 we
observe that the 10 best models use no dropout and no batch normalization.
The 10 worst models mostly use high dropout rates, batch normalization
and a small amount of nodes per layer. Model 9 shows more fluctuations in
the loss curves compared to the other models, which is likely due to batch
normalization being applied.

III. On all data
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In Table 6.9 are the 10 best models given with their hyperparameters and
lowest recorded MSE loss. In Figure 6.28 the MSE validation loss of the 10
best models are shown, where Figure 6.28(a), (b) and (c) show the same data,
but on different scales to properly see if loss curves converge. Figure 6.28(a)
shows the epochs on a linear x-axis and loss on a linear y-axis, (b) shows the
epochs on a linear x-axis and loss on a logarithmic y-axis, and (c) shows the
epochs on a logarithmic x-axis and loss on a logarithmic y-axis. Similarly,
the MSE validation loss of the 10 worst models on all the data are shown
in Appendix B Figure 27 with similar scaled axes for (a), (b) and (c). The
model numbers in the legend of each figure correspond with the model rank
in Table 6.9.

Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 4 64 0.1 No 139.79

2 4 8 0.0 No 141.06

3 3 8 0.0 Yes 143.96

4 2 64 0.1 Yes 144.03

5 4 32 0.3 No 145.56

6 2 32 0.1 Yes 145.92

7 3 8 0.0 No 146.32

8 4 64 0.5 No 147.31

9 2 8 0.0 Yes 147.62

10 3 64 0.4 Yes 148.97

… … … … … …

183 3 8 0.5 Yes 377.86

184 2 8 0.5 Yes 392.83

185 4 16 0.4 Yes 395.35

186 3 8 0.5 No 421.72

187 4 8 0.4 No 542.71

188 4 8 0.5 Yes 571.71

189 4 8 0.5 No 574.66

190 3 8 0.4 Yes 620.45

191 4 8 0.5 No 704.45

192 4 8 0.5 Yes 704.59

Table 6.9: MSE loss of the 10 best and worst models with SEM instances on
the validation set of the 3σ datasplit
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(a)

(b)

(c)

Figure 6.28: MSE validation loss of the 10 best and worst models using SEM
granularity inputs on the 3σ datasplit. (a) Epochs and loss on linear scale.
(b) Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss
on logarithmic scale.

The validation loss curves are shown in Figure 6.28. From Table 6.9 we
observe that the 10 best models mostly use many layers. The 10 worst mod-
els mostly use high dropout rates and a small amount of nodes per layer.
Note that among the best models high dropout rates and batch normaliza-
tion is sometimes used, which differs from the best models at field and pad
granularity for the same datasplit.

In general we observe that the MSE loss increases with finer granularity,
i.e. from field to pad to SEM. This is expected as the finer granularity
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results in a higher standard error of the mean. A higher standard error of
the mean introduces more noise in the data, which explains the increase in
model complexity. This is best observed between field and SEM granularity
levels on the 80%/20% datasplit in Table 6.1 and 6.7 and on all the data
in Table 6.3 and 6.9 by the increasing number of hidden layers and nodes
per hidden layer in the 10 best models. In addition we can conclude that
lower dropout rates tend to perform better than higher dropout rates and
that batch normalization often leads to performance decrease.

6.2.2 Testing the models

Simple machine learning models are being performed with 33 input features
based on CD, PEx, PEy for 11 orthogonal groups from groups 100-130 in Fig-
ure 2.4(a). The neural networks will be compared against simpler models, i.e.
linear regression, lasso regression, ridge regression and elastic net regression.
Following training, the hyperparameters used for lasso, ridge and elastic net
regression with different input granularities on the 80%/20% datasplit are
given in Table 6.10. Similarly the hyperparameters for the nominal focus
datasplit and the 3σ datasplit are given in Table 6.11 and 6.12 respectively.

Algorithm
Hyperparameters

Field Pad SEM
Lasso alpha = 0.01 alpha = 0.001 alpha = 0.001
Ridge alpha = 0.01 alpha = 0.01 alpha = 0.01

Elastic Net
alpha = 0.001 alpha = 0.001 alpha = 0.0001
l1 ratio = 0.9 l1 ratio = 0.9 l1 ratio = 0.6

Table 6.10: Hyperparameter values of the regression models for the 80%/20%
datasplit at different granularity levels.

Algorithm
Hyperparameters

Field Pad SEM
Lasso alpha = 0.001 alpha = 0.001 alpha = 0.001
Ridge alpha = 0.001 alpha = 0.01 alpha = 10−6

Elastic Net
alpha = 0.001 alpha = 0.001 alpha = 0.0001
l1 ratio = 0.9 l1 ratio = 0.9 l1 ratio = 0.7

Table 6.11: Hyperparameter values of the regression models for the nominal
datasplit at different granularity levels.

109



Algorithm
Hyperparameters

Field Pad SEM
Lasso alpha = 0.001 alpha = 0.001 alpha = 0.001
Ridge alpha = 0.01 alpha = 0.01 alpha = 10−6

Elastic Net
alpha = 0.001 alpha = 0.001 alpha = 0.0001
l1 ratio = 0.9 l1 ratio = 0.9 l1 ratio = 0.7

Table 6.12: Hyperparameter values of the regression models for the 3σ datas-
plit at different granularity levels.

From Table 6.10, 6.11 and 6.12 we observe that the elastic net models
have a high L1 ratio. This implies that the models implements a proportion-
ally high L1 penalty and low L2 penalty, which almost boils down to lasso
regression.

Next, the models together with the best neural networks from section 6.2.1
are used on the test sets of the 80%/20%, nominal and 3σ dataset. In Ta-
ble 6.13 the performance metrics are shown for each model and granularity
level.

Algorithm
Field Pad SEM

R2 RMSE 3σ R2 RMSE 3σ R2 RMSE 3σ
Linear 0.99 3.18 8.86 0.99 5.23 14.73 0.93 11.11 25.52
Lasso 0.99 3.60 9.86 0.98 5.60 15.31 0.93 11.15 25.67
Ridge 0.99 3.36 9.80 0.99 5.33 14.83 0.93 11.11 25.52

ElasticNet 0.99 3.60 10.11 0.98 5.45 15.26 0.93 11.10 25.54
Neural network 0.98 3.03 8.52 0.98 3.81 11.77 0.95 13.78 19.40

Table 6.13: Test results with R2 on the 80%/20% datasplit, RMSE on the
nominal datasplit, 3σ on all the data at different input granularity levels.

From Table 6.13 we observe that all models give a sufficiently high R2

value close to zero at all granularity levels, meaning that focus can be prop-
erly predicted without too much error. At field granularity neural network
performs on RMSE the best with 3.03 nm, i.e. focus errors deviate by 3.03
nm RMSE from the nominal focus -25 nm. Similarly for pad granularity,
the RMSE is the best for neural network with 3.81 nm and shows a notice-
able improvement in particular for the pad granularity level compared to
the other regression models. However, the RMSE at SEM granularity level
is worse than the regression models, showing errors deviating by 13.78 nm
RMSE from nominal focus -25 nm in contrast with the 11.10 RMSE for the
elasticnet model. The 3σ is the best for neural network at field, pad and
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SEM with noticeable improvement in particular at pad and SEM granularity
level. The 3σ scores show that 99.7% of the data in the neural networks
contain focus errors upto 8.52 nm, 11.77 nm and 19.40 nm for field, pad and
SEM granularity levels respectively.

6.2.3 Prediction on dataset 2

The models that are trained on the first dataset are applied on the second
dataset. The second dataset contains the same output values as the first
dataset, but differ in the input feature values. The second dataset differs
from the first dataset in the CD distribution, so a performance decrease in
the R2, RMSE and 3σ can be expected. The results are shown in Table 6.14.

Algorithm
Field Pad SEM

R2 RMSE 3σ R2 RMSE 3σ R2 RMSE 3σ
Linear 0.98 4.23 24.17 0.95 8.10 33.47 0.80 18.45 69.96
Lasso 0.98 4.38 26.64 0.95 8.56 35.03 0.80 18.55 69.94
Ridge 0.98 3.92 25.34 0.95 8.24 33.96 0.80 18.45 69.96

ElasticNet 0.98 4.51 25.63 0.95 8.34 34.14 0.80 18.46 69.82
Neural network 0.96 18.11 25.23 0.96 5.07 27.18 0.91 6.84 34.35

Table 6.14: Test results on the second dataset with R2 on the 80%/20%
datasplit, RMSE on the nominal datasplit, 3σ on all the data at different
input granularity levels.

From Table 6.14 we observe that at field and pad granularity the R2 of
all models have reduced compared to Table 6.13, but still give a sufficiently
high R2 value close to zero. However, at SEM granularity only the neural
network returns a reasonable R2 value of 0.91, while the R2 of the other re-
gression models have reduced to 0.80. At field granularity level, the RMSE of
the regression models have increased slightly compared to the first dataset,
while the RMSE of neural network shows a big increase. For pad and SEM
granularity there is also a RMSE increase present for all models, but neural
networks then shows a noticeable performance improvement over the regres-
sion models. The 3σ of all models show a big increase on all granularity
levels compared to Table 6.13. At field granularity the 3σ is the best for lin-
ear regression, while neural networks is the best at pad and SEM granularity
level with big improvement over the regression models .
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6.2.4 Discussion

From section 6.2.2 we observe that the performance metrics R2, RMSE and
3σ on the testset deteriorate when using finer granularity levels, i.e. from field
to pad to SEM granularity level. Although the number of input instances
increase when using finer granularity levels, the standard error of the mean
increases as demonstrated in Table 4.5, 4.6 and 4.7 for CD, PEx and PEy
respectively. This increase results in noisier input data, an increase in model
complexity and worse performance metrics.

The performance metrics show overall that neural network is the best
algorithm as it returns high R2 and the best 3σ and mostly the best RMSE
at all granularity levels. This shows that a neural network is suitable for
focus prediction and offers improvement over the linear regression baseline.

The performance metrics worsen with finer granularity, which is most
noticeable in the RMSE and 3σ of pad and SEM granularity. The best RMSE
for field is 3.03 nm , 3.81 nm for pad and 13.78 nm for SEM granularity. The
ideal RMSE should be zero, so the RMSE for field and pad granularity is
relatively close compared to the RMSE of SEM granularity. The best 3σ
for field is 8.52 nm, 11.77 nm for pad and 19.40 nm for SEM granularity.
The expected 3σ at field granularity should be around 10 nm, so 8.52 nm is
acceptable. The 11.77 nm 3σ at pad granularity implies that roughly 99.7%
of the focus predictions have an error upto 11.77 nm from the mean error.
Since this is close to the expected 10 nm of field granularity level and that
input data becomes noisier at pad granularity level, the 11.77 nm 3σ could
still be considered as acceptable. However, at SEM granularity even more
noise is introduced into the input data, which explains the 3σ increase to
19.40 nm. It says that roughly 99.7% of the focus predictions have an error
upto 19.40 nm from the mean error, so it might be considered as bad as it
might differ too much from the expected 10 nm 3σ at field granularity.

6.3 Experiment C: Defining the Proximity Force

feature

To define the proximity force feature we start implementing the vector-based
model by empirically trying out 1/rn functions to calculate the proximity
force for each contact hole. In Equation 6.1 the inverse-distance function
for the proximity force is given for the relative distance r for the amount of
neighboring contact holes N = 250 and order n = 1, 2, 3, 4.
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PFi =
250∑
j=1

1

rnij
(6.1)

In Figure 6.29 a field of view image containing contact holes from a single
SEM image are shown. The color of the contact holes indicate the PE and
the calculated PF for different orders 1/r relationships in the X-direction.
To have an indication on what the proper relationship between PE and PF
could be, the images for the PF values in Figures 6.29(a),(b),(c) and (d)
should follow a similar colorspread as the ones for PE in Figure 6.29(e). In
Figure 6.29(a) it is clearly visible that the PF colorspread does not match
with the PE of Figure 6.29(e) due to the large amount of PF values colored
in red that are less present in the PE figures. In Figure 6.29(b) the colors
are spread more evenly, although the higher PF values colored in red are
still occurring more frequently. Figures 6.29(c) and (d) show more similar
colorspread as the extreme values colored in blue and red are not frequently
occurring in both the PF and PE figures.

(a) (c) (d)(b) (e)

Figure 6.29: SEM image based field of view of calculated PF value per contact
hole for different order 1/r relationships in the X-direction (a)(b)(c)(d) and
the measured PE in the X-direction (e).

From Figure 6.29 it becomes clear how the PF calculations are supposed
to be related to the PE values. Based on these observations we can exclude
1/r and 1/r2 as a possible PF formula. For 1/r3 and 1/r4 we cannot simply
observe one SEM image per field to grasp the relationship between PF and PE
considering the SEM image size relative to the field. Therefore all the contact
holes from multiple SEM images within a field are taken into consideration
by calculating for each contact hole a PF value. For each field a linear fit
of PE against PF on each contact hole is performed to expose the relation
between PE, focus and dose. In Figure 6.30(a) a linear fit of PE against PF
in the X-direction for one field is shown. From this figure we observe that
there is likely a linear relationship between PE and PF. The R2 of the fit
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is considerably lower than the ideal R2 = 1 due to the large spread of data
points. To reduce the spread binning is applied, which results in the linear
fit of Figure 6.30(b). Through binning the relationship between PF and PE
takes on a more profound linear shape and the R2 increases. The slope of
this fit will indicate the sensitivity of PE with respect to focus and dose. The
PF function will be determined by considering the R2 for directions X and
Y individually and the cosine similarity for X and Y combined.

(a) (b)

Figure 6.30: Linear fit for PE against PF in the X-direction before and after
binning

In Figure 6.31 the linear fit PE against PF for one field in direction X
and Y is shown for the 1/r3 and 1/r4 relationships. The figures for the Y-
direction show a clear linearity around PF = 0, which gets less profound
with more extreme PF values due to outliers. This probably explains why
the figures for the X-direction look non-linear. Figure 6.30(a) has shown
that the most contactholes fall in the central cluster around PF = 0. The
most knowledge about the relation between PF and PE can be found in this
cluster. Therefore we want to perform a fit on the bins in the central cluster
by applying a bincount boundary of 1000, i.e. bins with more than 1000
contact holes.
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(a) (b)

Figure 6.31: Linear fit for PE against PF in the X and Y-direction

After performing a fit with bincount boundary on each all focus and dose
combinations, the R2 of the 1/r3 and 1/r4 relationship the X and Y-direction
are shown in Figure 6.32. We observe that in Figure 6.32(a) and (b) the R2

is the highest in both the X and Y-direction. Therefore we select 1/r3 as
the best function for PF. However, as we have observed in Figure 6.31 a
non-linear pattern arises following the 1/r3 relationship for PF. This might
indicate that actually the 1/r3 relationship for PF might be too simplistic.
Therefore we investigate whether a PF function using a Bessel function might
be a more suitable relationship.
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(a) (b)

Figure 6.32: R2 of the linear fit in the X and Y-direction for each focus and
dose combination.
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(a) (b)

Figure 6.33: Linear fit for PE against PF in the X and Y-direction

In Figure 6.33 the linear fits are shown using the PF function from Equa-
tion 5.3 based on the Bessel function. Figure 6.33(b) shows in the Y-direction
a similar linearity as in Figure 6.31. However, the linearity in the X-direction
seems to be better for the Bessel function than for 1/r3. Similarly as before
we apply a bincount of 1000 to capture the relationship around PF = 0. The
R2 in the X and Y-direction of the Bessel based relationship for each focus
and dose combination is shown in Figure 6.34.

(a) (b)

Figure 6.34: R2 of the Bessel function in the X and Y-direction
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From Figure 6.32 and 6.34 we observe that the relationship based on the
Bessel function has a higher mean R2 in the X and Y-direction than 1/r3. In
Figure 6.35 the cosine similarity scores per focus and dose combinations are

given by using the vectors
−→
PE = (PEx, PEy) and

−→
PF = (PFx, PFy). When

comparing the cosine similarity for the 1/r3 and Bessel based relationship, we
see that 1/r3 performs the best as the mean cosine similarity score is higher.
While the Bessel based model has the best R2 and the 1/r3 relationship
has the best cosine similarity, we opt for the Bessel based function from
Equation 5.3 to describe PF as this formula is heavily related to optics and
shows a bigger improvement on R2 compared to the improvement of 1/r3 on
cosine similarity. The coefficients of the linear fits in the X and Y-direction
are shown in Figure 6.36. These coefficients will be used as the PF values in
models from Experiment D.

(a) (b)

Figure 6.35: Cosine similarity of the 1/r3 and Bessel functions

118



(a) (b)

Figure 6.36: Coefficients for PF in the X and Y-direction with the Bessel
based relationship.

6.4 Experiment D: Focus prediction based on

orthogonal groups with Proximity Force

added

With the new proximity force feature defined in Experiment C section 6.3 we
aim to improve the previous models from Experiment (B) section 6.2. The
models still use the CD, PEx and PEy per orthogonal group as before, but
also use two additional features PFx and PFy, which are the coefficients as
shown in Figure 6.36. This brings the number of input features to 35. For
hyperparameter tuning the same hyperparameter ranges from Experiment
(B) are used as defined by Table 4.12 and 4.13.

6.4.1 Feedforward Neural Network

A model is fitted for each hyperparameter combination from Table 4.13 fol-
lowing the gridsearch approach. The MSE loss of the validation set of the
10 best and 10 worst models are given for each datasplit and granularity
level. The model with the lowest MSE loss will be considered as the best
model, which will be used on the test set. The validation loss curves show
similar behavior as the validation curves from Experiment (B). In Appendix
C the MSE loss curves of the 10 best and worst models for different input
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granularity levels and datasplits are shown.

Field granularity

At field granularity the models are trained with learning rate 0.001, 2500
epochs, the Adam optimizer and earlystopping applied. The validation loss
of the 10 best and worst models per datasplit are shown below.

I. 80%/20% random data split

In Appendix C Figure 28 and 29 are the validation loss curves of the 10
best and worst models on the 80%/20% random data split given. Subfigures
(a), (b) and (c) show the same data, but on different scales to properly see if
loss curves converge. Subfigure (a) shows the epochs on a linear x-axis and
loss on a linear y-axis, (b) shows the epochs on a linear x-axis and loss on
a logarithmic y-axis, and (c) shows the epochs on a logarithmic x-axis and
loss on a logarithmic y-axis. The model numbers in the legend of each figure
correspond with the model rank in Table 6.15.
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Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 3 32 0.0 False 32.32

2 4 64 0.0 False 34.64

3 4 16 0.0 False 37.13

4 3 64 0.0 False 38.00

5 3 16 0.0 False 41.57

6 2 32 0.0 False 43.07

7 4 32 0.0 False 43.23

8 2 64 0.0 False 44.13

9 1 64 0.0 False 47.02

10 2 16 0.0 False 48.97

… … … … … …

183 3 8 0.4 False 822.51

184 3 8 0.3 True 873.10

185 4 8 0.3 True 1070.74

186 3 8 0.5 False 1240.88

187 4 8 0.5 True 1244.23

188 4 8 0.5 False 1455.89

189 3 8 0.1 False 1457.98

190 3 8 0.5 True 1729.60

191 4 8 0.4 False 2473.73

192 4 8 0.4 True 2584.15

Table 6.15: MSE loss of the 10 best and worst models with field instances
on the validation set of the 80%/20% datasplit

In Table 6.15 are the 10 best and worst models given with their hyper-
parameters and lowest recorded MSE loss. From Table 6.15 we observe that
the 10 best models do not use dropout rate nor batch normalization. The 10
worst models consists mostly of a high amount of layers, a small amount of
nodes per layer and a high dropout rate.

II. Nominal range

The validation loss curves of the 10 best and worst models on the nominal
datasplit are shown in Appendix C Figure 30 and 31. Subfigures (a), (b)
and (c) show the same data, but on different scales to properly see if loss
curves converge. Subfigure (a) shows the epochs on a linear x-axis and loss
on a linear y-axis, (b) shows the epochs on a linear x-axis and loss on a
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logarithmic y-axis, and (c) shows the epochs on a logarithmic x-axis and loss
on a logarithmic y-axis. The model numbers in the legend of each figure
correspond with the model rank in Table 6.16.

Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 3 32 0.0 False 35.20

2 4 16 0.0 False 41.45

3 3 64 0.0 False 43.46

4 4 32 0.0 False 45.34

5 2 64 0.0 False 47.51

6 2 32 0.0 False 47.99

7 4 64 0.0 False 48.96

8 3 16 0.0 False 53.02

9 2 64 0.1 False 53.18

10 4 32 0.1 False 54.14

… … … … … …

183 2 8 0.5 True 1157.89

184 4 8 0.4 False 1219.06

185 4 8 0.4 True 1273.09

186 2 8 0.4 True 1526.30

187 4 8 0.2 False 1714.52

188 3 8 0.5 True 1805.43

189 4 8 0.5 False 1822.81

190 4 16 0.5 False 1943.53

191 4 8 0.5 True 1984.61

192 4 8 0.3 True 2547.19

Table 6.16: MSE loss of the 10 best and worst models with field instances
on the validation set of the nominal datasplit

In Table 6.16 are the 10 best and worst models given with their hyperpa-
rameters and lowest recorded MSE loss. From Table 6.16 we observe that the
10 best models mostly use a large amount of nodes per layer, a low dropout
rate and no batch normalization. The 10 worst models consists mostly of high
dropout rates, many layers and small amount of nodes per layer. When com-
paring models 184 with 185 and models 189 with 191 we observe that each
pair of models use the same hyperparameters, but differ in batch normaliza-
tion. It shows that batch normalization has a bad impact on the performance.
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III. On all data

The validation loss curves of the 10 best and worst models are shown
in Appendix C Figure 32 and 33. To properly see if loss curves converge
subfigures (a), (b) and (c) show the same data on different scales. Subfigure
(a) shows the epochs on a linear x-axis and loss on a linear y-axis, (b) shows
the epochs on a linear x-axis and loss on a logarithmic y-axis, and (c) shows
the epochs on a logarithmic x-axis and loss on a logarithmic y-axis. The
model numbers in the legend of each figure correspond with the model rank
in Table 6.17.

Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 1 64 0.0 False 22.77

2 4 32 0.1 False 26.71

3 2 64 0.0 False 27.12

4 1 16 0.0 False 27.16

5 1 8 0.0 False 27.77

6 3 64 0.1 False 29.31

7 4 64 0.0 False 30.55

8 3 64 0.0 False 30.69

9 4 32 0.0 False 31.56

10 1 32 0.0 False 31.69

… … … … … …

183 3 8 0.5 True 580.67

184 4 8 0.4 True 581.37

185 3 8 0.4 True 601.28

186 4 8 0.3 False 730.45

187 4 8 0.4 False 866.56

188 4 8 0.5 True 875.19

189 3 8 0.3 True 894.90

190 3 8 0.5 False 980.45

191 4 8 0.5 False 1235.60

192 2 8 0.0 False 1306.97

Table 6.17: MSE loss of the 10 best and worst models with field instances
on the validation set of the 3σ datasplit

In Table 6.17 are the 10 best and worst models given with their hyper-
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parameters and lowest recorded MSE loss. From Table 6.17 we observe that
the 10 best models use a small amount of layers, a low dropout rate and no
batch normalization. The 10 worst models mostly use many layers, a small
amount of nodes per layer and high dropout rates. Note that most of the
best models only consists of one layer, which implies that relatively simple
model is enough to capture the complexity in our data.

Pad granularity

At pad granularity the models are fitted with learning rate 0.001 and 1500
epochs. The validation loss curves of the best and worst models per datasplit
are shown in Appendix C.

I. 80%/20% random data split

The validation loss curves of the 10 best and worst models on the 80%/20%
random data split are shown in Appendix C Figure 34 and 35. Subfigures
(a), (b) and (c) show the same data, but on different scales to properly see if
loss curves converge. Subfigure (a) shows the epochs on a linear x-axis and
loss on a linear y-axis, (b) shows the epochs on a linear x-axis and loss on
a logarithmic y-axis, and (c) shows the epochs on a logarithmic x-axis and
loss on a logarithmic y-axis. The model numbers in the legend of each figure
correspond with the model rank in Table 6.18.
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Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 4 64 0.0 False 40.97

2 4 64 0.3 False 42.09

3 4 64 0.4 False 43.92

4 2 64 0.1 False 44.58

5 2 64 0.2 False 45.02

6 4 32 0.0 False 45.32

7 2 64 0.3 False 45.73

8 4 32 0.1 False 46.34

9 4 16 0.0 False 47.83

10 1 64 0.5 False 47.88

… … … … … …

183 3 8 0.3 False 528.99

184 4 8 0.4 True 584.31

185 3 8 0.5 True 636.94

186 2 8 0.5 True 734.13

187 4 8 0.5 True 740.17

188 4 8 0.4 False 744.66

189 3 8 0.5 False 788.00

190 4 16 0.5 False 828.87

191 4 8 0.1 False 1704.33

192 4 8 0.5 False 2254.99

Table 6.18: MSE loss of the 10 best and worst models with pad instances on
the validation set of the 80%/20% datasplit

In Table 6.18 are the 10 best and worst models given with their hyper-
parameters and lowest recorded MSE loss. From Table 6.18 we observe that
the 10 best models use many nodes per layer and no batch normalization.
The 10 worst models mostly use many layers with small amount of nodes
and high dropout rates.
II. Nominal range

The validation loss curves of the 10 best and worst models on the nominal
datasplit are shown in Appendix C Figure 36 and 37. To properly see if loss
curves converge subfigures (a), (b) and (c) show the same data on different
scales. Subfigure (a) shows the epochs on a linear x-axis and loss on a linear y-
axis, (b) shows the epochs on a linear x-axis and loss on a logarithmic y-axis,
and (c) shows the epochs on a logarithmic x-axis and loss on a logarithmic
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y-axis. The model numbers in the legend of each figure correspond with the
model rank in Table 6.19.

Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 4 64 0.0 False 65.96

2 2 64 0.0 False 71.59

3 2 64 0.0 True 73.59

4 2 32 0.0 False 73.80

5 1 64 0.0 False 79.40

6 4 64 0.0 True 79.91

7 2 32 0.0 True 81.69

8 2 16 0.0 True 81.94

9 2 16 0.0 False 82.21

10 4 16 0.0 False 83.31

… … … … … …

183 4 8 0.4 True 638.26

184 3 8 0.5 True 682.68

185 3 8 0.3 True 696.18

186 3 8 0.4 True 715.90

187 4 8 0.3 False 737.54

188 4 16 0.5 False 831.25

189 4 8 0.4 False 1090.76

190 3 8 0.5 False 1294.30

191 4 8 0.5 False 1421.47

192 4 8 0.5 True 1599.89

Table 6.19: MSE loss of the 10 best and worst models with pad instances on
the validation set of the nominal datasplit

In Table 6.19 are the 10 best and worst models given with their hyper-
parameters and lowest recorded MSE loss. From Table 6.19 we observe that
the 10 best models use many nodes per layer and a low dropout rate. The 10
worst models mostly use many layers with small amount of nodes per layer
and high dropout rates.

III. On all data

The validation loss curves of the 10 best and worst models are shown
in Appendix C Figure 38 and 39. To properly see if loss curves converge
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subfigures (a), (b) and (c) show the same data on different scales. Subfigure
(a) shows the epochs on a linear x-axis and loss on a linear y-axis, (b) shows
the epochs on a linear x-axis and loss on a logarithmic y-axis, and (c) shows
the epochs on a logarithmic x-axis and loss on a logarithmic y-axis. The
model numbers in the legend of each figure correspond with the model rank
in Table 6.20.

Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 4 64 0.3 False 36.11

2 1 32 0.0 False 36.74

3 4 64 0.0 False 37.27

4 1 16 0.0 False 39.99

5 1 64 0.0 False 40.22

6 4 64 0.1 False 41.44

7 3 64 0.3 False 41.75

8 4 32 0.2 False 42.27

9 2 16 0.0 True 42.42

10 1 64 0.1 False 43.07

… … … … … …

183 4 8 0.2 True 403.94

184 3 8 0.4 False 442.83

185 4 8 0.3 True 522.51

186 4 8 0.4 True 529.69

187 4 8 0.4 False 597.44

188 3 8 0.5 True 618.52

189 3 8 0.4 True 622.01

190 3 8 0.5 False 685.14

191 4 8 0.5 False 804.71

192 4 8 0.5 True 1110.88

Table 6.20: MSE loss of the 10 best and worst models with pad instances on
the validation set of the 3σ datasplit

In Table 6.20 are the 10 best and worst models given with their hyper-
parameters and lowest recorded MSE loss. From Table 6.20 we observe that
most of the 10 best models use a large amount of nodes per layer, with low
dropout rates and no batch normalization. Since some of the best models
only consists of one layer, it would imply that a relatively simple model is
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enough to capture the complexity in our data. The 10 worst models mostly
use many layers with a low amount of nodes per layer and high dropout rates.

SEM granularity

At SEM granularity the models are fitted with learning rate 0.001 and 1500
epochs. The validation loss curves of the best and worst models per datasplit
are shown in Appendix C.

I. 80%/20% random data split

The validation loss curves of the 10 best and worst models on the 80%/20%
random data split are shown in Appendix C Figure 40 and 41. Subfigures
(a), (b) and (c) show the same data, but on different scales to properly see if
loss curves converge. Subfigure (a) shows the epochs on a linear x-axis and
loss on a linear y-axis, (b) shows the epochs on a linear x-axis and loss on
a logarithmic y-axis, and (c) shows the epochs on a logarithmic x-axis and
loss on a logarithmic y-axis. The model numbers in the legend of each figure
correspond with the model rank in Table 6.21.
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Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 4 64 0.4 False 107.44

2 2 64 0.1 False 108.41

3 4 64 0.3 False 113.29

4 2 32 0.1 False 113.41

5 3 64 0.0 False 114.95

6 4 64 0.1 False 115.64

7 2 64 0.0 False 117.31

8 4 32 0.1 False 117.54

9 2 32 0.1 True 117.92

10 4 32 0.0 False 122.97

… … … … … …

183 2 8 0.5 False 497.68

184 4 16 0.5 True 500.83

185 3 8 0.4 True 508.55

186 3 8 0.5 False 553.30

187 4 8 0.4 True 576.59

188 3 8 0.5 True 650.11

189 4 8 0.5 False 718.23

190 4 8 0.3 False 1117.12

191 4 8 0.3 True 1345.58

192 4 8 0.5 True 1346.00

Table 6.21: MSE loss of the 10 best and worst models with SEM instances
on the validation set of the 80%/20% datasplit

In Table 6.21 are the 10 best and worst models given with their hyper-
parameters and lowest recorded MSE loss. From Table 6.21 we observe that
the 10 best models use many nodes per layer without batch normalization.
The 10 worst models mostly use many layers with a small amount of nodes
per layer and high dropout rates. Since the best models primarily use more
layers, more nodes and higher dropout rates than the best models in Ta-
ble 6.15 and 6.18 for field and pad granularity, it implies that there is likely
an increase in data complexity.

II. Nominal range

The validation loss curves of the 10 best and worst models on the nom-
inal datasplit are shown in Appendix C Figure 42 and 43. Subfigures (a),
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(b) and (c) show the same data, but on different scales to properly see if
loss curves converge. Subfigure (a) shows the epochs on a linear x-axis and
loss on a linear y-axis, (b) shows the epochs on a linear x-axis and loss on
a logarithmic y-axis, and (c) shows the epochs on a logarithmic x-axis and
loss on a logarithmic y-axis. The model numbers in the legend of each figure
correspond with the model rank in Table 6.22.

Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 2 64 0.0 False 183.39

2 4 16 0.0 False 185.57

3 4 8 0.0 False 197.25

4 2 32 0.0 False 197.47

5 4 64 0.0 False 197.72

6 3 64 0.0 False 198.33

7 4 32 0.0 False 201.13

8 3 16 0.0 False 202.29

9 2 64 0.1 False 204.02

10 2 16 0.0 False 204.84

… … … … … …

183 4 8 0.3 True 618.14

184 4 8 0.3 False 668.65

185 4 16 0.5 True 677.04

186 3 8 0.5 False 700.36

187 4 8 0.4 True 847.77

188 3 8 0.5 True 875.73

189 4 8 0.4 False 939.12

190 4 8 0.5 True 1050.93

191 4 8 0.5 False 1111.16

192 3 8 0.4 True 1561.05

Table 6.22: MSE loss of the 10 best and worst model with SEM instancess
on the validation set of the nominal datasplit

In Table 6.22 are the 10 best and worst models given with their hyper-
parameters and lowest recorded MSE loss. From Table 6.22 we observe that
most of the 10 best models do not use dropout nor batch normalization. The
10 worst models mostly use high dropout rates, and many layers with a small
amount of nodes.
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III. On all data

The validation loss curves of the 10 best and worst models are shown
in Appendix C Figure 44 and 45. To properly see if loss curves converge
subfigures (a), (b) and (c) show the same data on different scales. Subfigure
(a) shows the epochs on a linear x-axis and loss on a linear y-axis, (b) shows
the epochs on a linear x-axis and loss on a logarithmic y-axis, and (c) shows
the epochs on a logarithmic x-axis and loss on a logarithmic y-axis. The
model numbers in the legend of each figure correspond with the model rank
in Table 6.23.

Model rank Layers Nodes Dropout Batch normalization Validation MSE

1 3 64 0.1 False 129.41

2 4 64 0.1 False 131.11

3 3 32 0.0 False 135.44

4 2 64 0.1 True 136.76

5 4 64 0.3 False 137.21

6 4 16 0.1 True 137.44

7 4 32 0.0 False 137.66

8 4 64 0.2 False 139.49

9 2 32 0.0 True 139.83

10 2 16 0.1 True 141.62

… … … … … …

183 3 8 0.4 True 414.33

184 4 8 0.4 False 418.63

185 3 8 0.5 False 483.82

186 4 8 0.3 False 483.84

187 4 8 0.4 True 491.09

188 3 8 0.4 False 559.14

189 3 8 0.3 True 727.84

190 3 8 0.5 True 771.49

191 4 8 0.5 True 915.30

192 4 8 0.5 False 1721.38

Table 6.23: MSE loss of the 10 best and worst models with SEM instances
on the validation set of the 3σ datasplit
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In Table 6.23 are the 10 best and worst models given with their hyper-
parameters and lowest recorded MSE loss. From Table 6.23 we observe that
the 10 best models mostly use many layers with many nodes. The 10 worst
models mostly use high dropout rates and many layers with a small amount
of nodes per layer.

In general we observe that the MSE loss increases with finer granularity,
i.e. from field to pad to SEM. This is caused by the larger standard error of
the mean at SEM granularity compared to field and pad granularity. This
introduces more noise in the data, which explains the increase in model
complexity through the increase in layers, nodes, dropout rate and use of
batch normalization as observed in Table 6.21 and Table 6.23. The increase
of dropout rates and the use of batch normalization are likely to control
overfitting as a result of increasing model complexity. In addition, we can
conclude that lower dropout rates tend to perform better than higher dropout
rates and that batch normalization often leads to performance decrease.

6.4.2 Testing the models

Simple machine learning models are being performed with 33 input features
based on CD, PEx, PEy for 11 orthogonal groups from groups 100-130 in
Figure 2.4(a). The neural networks will be compared against simpler mod-
els, i.e. linear regression, lasso regression, ridge regression and elastic net
regression. Following training the hyperparameters used for lasso, ridge and
elastic net regression are given in Table 4.12

Algorithm
Hyperparameters

Field Pad SEM
Lasso alpha = 0.01 alpha = 0.001 alpha = 0.001
Ridge alpha = 0.01 alpha = 0.01 alpha = 0.001

Elastic Net
alpha = 0.001 alpha = 0.001 alpha = 0.0001
l1 ratio = 0.9 l1 ratio = 0.9 l1 ratio = 0.7

Table 6.24: Hyperparameter values of the regression models for the 80%/20%
datasplit at different granularity levels.
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Algorithm
Hyperparameters

Field Pad SEM
Lasso alpha = 0.001 alpha = 0.001 alpha = 0.001
Ridge alpha = 0.001 alpha = 0.01 alpha = 10−6

Elastic Net
alpha = 0.001 alpha = 0.001 alpha = 0.0001
l1 ratio = 0.9 l1 ratio = 0.9 l1 ratio = 0.7

Table 6.25: Hyperparameter values of the regression models for the nominal
datasplit at different granularity levels.

Algorithm
Hyperparameters

Field Pad SEM
Lasso alpha = 0.001 alpha = 0.001 alpha = 0.001
Ridge alpha = 0.01 alpha = 0.01 alpha = 0.1

Elastic Net
alpha = 0.001 alpha = 0.001 alpha = 0.0001
l1 ratio = 0.9 l1 ratio = 0.9 l1 ratio = 0.7

Table 6.26: Hyperparameter values of the regression models for the 3σ datas-
plit at different granularity levels.

From Table 6.24, Table 6.25 and Table 6.26 we observe that the elastic
net models have a high L1 ratio. This implies that the models implements a
proportionally high L1 penalty and low L2 penalty, which almost boils down
to lasso regression.

Next, the models together with the best neural networks from section 6.4.1
are used on the test sets of the 80%/20%, nominal and 3σ dataset. In Ta-
ble 6.27 the performance metrics are shown for each model and granularity
level.

Algorithm
Field Pad SEM

R2 RMSE 3σ R2 RMSE 3σ R2 RMSE 3σ
Linear 0.99 3.34 8.75 0.99 5.24 14.72 0.93 10.90 34.50
Lasso 0.99 3.69 9.69 0.98 5.55 15.26 0.93 10.96 34.55
Ridge 0.99 3.45 9.61 0.99 5.31 14.81 0.93 10.90 34.50

ElasticNet 0.99 3.67 9.95 0.98 5.39 15.23 0.93 10.89 34.53
Neural network 0.98 4.55 8.52 0.98 4.29 11.77 0.95 12.08 19.33

Table 6.27: Test results with R2 on the 80%/20% datasplit, RMSE on the
nominal datasplit, 3σ on all the data at different input granularity levels.
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From Table 6.27 we observe that all models give a sufficiently high R2

value close to zero at all granularity levels, meaning that focus can be prop-
erly predicted without too much error. At field and pad granularity the
RMSE is the best for neural network and shows a noticeable improvement
in particular for the pad granularity level compared to the other regression
models. However, the RMSE at SEM granularity level is worse than the
regression models. The 3σ is the best for neural network at field, pad and
SEM with noticeable improvement in particular at pad and SEM granularity
level.

6.4.3 Prediction on dataset 2

The models from section 6.4.2 are now applied on the second dataset. The
input values follow from the same output values used on the testset from the
first dataset. The results are shown in Table 6.28.

Algorithm
Field Pad SEM

R2 RMSE 3σ R2 RMSE 3σ R2 RMSE 3σ
Linear 0.99 11.09 21.45 0.95 8.15 34.50 0.79 18.31 72.03
Lasso 0.98 4.82 27.25 0.95 8.61 38.36 0.79 18.32 71.91
Ridge 0.99 8.59 24.99 0.95 8.26 36.49 0.79 18.31 72.09

ElasticNet 0.99 3.72 26.19 0.95 8.49 37.64 0.79 18.40 72.24
Neural network 0.95 16.26 26.54 0.93 8.17 25.70 0.85 16.58 53.43

Table 6.28: Test results on the second dataset with R2 on the 80%/20%
datasplit, RMSE on the nominal datasplit, 3σ on all the data at different
input granularity levels.

From Table 6.28 we observe that at field granularity the R2 hardly has
changed. At pad granularity the R2 did change slightly, but the R2 change
is most noticeable at SEM granularity. Compared to Table 6.27 the models
at field and pad granularity still give a sufficiently high R2 value close to
zero, but at SEM granularity the neural network has reduced to 0.85 and
other regression models have reduced to 0.79. At field granularity level, the
RMSE of the linear regression, ridge regression and neural networks models
have increased a lot compared to the first dataset, while the RMSE of lasso
and elasticnet regression show a relatively small increase. For pad and SEM
granularity there is also a RMSE increase present for all models, but on pad
granularity level linear regression outperforms the other models, while neural
networks is the best at SEM granularity. The 3σ of all models show a big
increase on all granularity levels compared to Table 6.27. At field granularity
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the 3σ is the best for linear regression, neural network performs the best on
pad and SEM granularity with big performance improvement with respect
to the other models.

6.4.4 Discussion

Similarly to the results in Table 6.13, section 6.4.2 shows that the perfor-
mance metrics R2, RMSE and 3σ on the testset deteriorate when using finer
granularity levels, i.e. from field to pad to SEM granularity level. Since
the standard error of the mean increases, input data becomes noisier, which
reflects on the worsening performance metrics.

The performance metrics show that neural network is the best algorithm
on field and pad granularity as it returns high R2 and the best RMSE and
3σ. However the RMSE is higher for neural network at SEM granularity at
all granularity levels. This shows that a neural network is suitable for focus
prediction and offers improvement over the linear regression baseline for field
and pad input instances, but not for SEM due to overfitting on noise.

The performance metrics worsen with finer granularity, which is most
noticeable in the RMSE and 3σ of pad and SEM granularity. The best RMSE
for field is 3.03 nm , 3.81 nm for pad and 13.78 nm for SEM granularity. The
ideal RMSE should be zero, so the RMSE for field and pad granularity is
relatively close compared to the RMSE of SEM granularity. The best 3σ for
field is 8.52 nm, 11.77 nm for pad and 19.33 nm for SEM granularity. As
mentioned before, the expected 3σ at field granularity should be around 10
nm, so 8.52 nm is acceptable. The 11.77 nm 3σ at pad granularity implies
that roughly 99.7% of the focus predictions have an error upto 11.77 nm from
the mean error. Since this is close to the expected 10 nm of field granularity
level and that input data becomes noisier at pad granularity level, the 11.77
nm 3σ could still be considered as acceptable. However, 19.33 nm 3σ at SEM
granularity implies that roughly 99.7% of the focus predictions have an error
upto 19.40 nm from the mean error, which might be considered as bad as it
differs too much from the expected 10 nm 3σ.

When comparing the results from Table 6.13 and 6.27 the R2 of the
two model approaches (i.e. with or without PF features added) give similar
performances at all the granularity levels. However, the RMSE and 3σ does
not give a solid conclusion on which model is consistently the best among
the different granularity levels as the values fluctuate. We have similar ob-
servations on the prediction on the second dataset in Table 6.14 and 6.28.
Therefore, we conclude that the adding the proximity force features PFx and
PFy does not improve performance in focus prediction.
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6.5 Experiment E: Analysis on discrepancies

between dataset 1 and dataset 2

Since the neural network models are not always showing the best performance
as expected, we aim to find an explanation for these results. By zooming in
on the linear regression models (with regularization) with the 80%/20% data
split a possible explanation for the increase in focus prediction errors on the
second dataset will be found.

6.5.1 Pearson correlation - Orthogonal groups

There is a possibility that the increase in focus error on the second dataset
comes from uncorrelated input features that are part of the model. We
investigate this by calculating the Pearson correlation coefficient for each one
of the 33 input feature against focus at field, pad and SEM granularity level.
The Pearson correlation coefficient ranges between -1 and 1, where -1 means
negative correlation, 0 means no correlation and 1 means positive correlation.
The correlation coefficients for field, pad and SEM input granularity are
shown in Table 6.29, 6.30 and 6.31. In addition, the Pearson correlation
coefficient of the proximity force input features in the X and Y-direction for
different granularity levels are shown in Table 6.32.

Group CD PEx PEy

100 -0.05 -0.07 0.90
110 0.10 0.56 -0.55
111 0.01 -0.49 0.95
112 0.09 -0.54 -0.91
113 -0.01 0.41 -0.96
120 0.16 0.57 0.91
121 0.20 -0.24 -0.71
122 0.16 -0.55 0.88
123 0.15 0.56 -0.98
124 0.05 -0.13 -0.53
125 0.13 -0.53 -0.97

Table 6.29: Pearson correlation between field granularity input features and
focus
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Group CD PEx PEy

100 -0.05 -0.07 0.85
110 0.10 0.56 -0.43
111 0.01 -0.44 0.95
112 0.09 -0.54 -0.82
113 -0.01 0.33 -0.96
120 0.16 0.56 0.88
121 0.20 -0.18 -0.51
122 0.16 -0.55 0.84
123 0.15 0.56 -0.96
124 0.05 -0.09 -0.32
125 0.13 -0.53 -0.95

Table 6.30: Pearson correlation between pad granularity input features and
focus

Group CD PEx PEy

100 -0.05 -0.04 0.51
110 0.10 0.55 -0.17
111 0.01 -0.23 0.91
112 0.09 -0.53 -0.46
113 -0.01 0.13 -0.92
120 0.16 0.54 0.64
121 0.19 -0.07 -0.14
122 0.16 -0.53 0.55
123 0.15 0.54 -0.79
124 0.05 -0.03 -0.10
125 0.13 -0.51 -0.80

Table 6.31: Pearson correlation between SEM granularity input features and
focus

Table 6.29 and Figure 6.37(a) can be observed that the absolute correla-
tion coefficients for CD input features indicated in red are relatively close to
zero compared to the absolute correlation coefficients for PEx shown in green
and PEy shown in blue. Similarly, from Table 6.30 and Figure 6.37(b) for
pad granularity input features and from Table 6.31 with Figure 6.37(c) for
SEM granularity level we observe that at all granularity levels the absolute
correlation coefficients for CD input features are relatively close to zero com-
pared to the absolute correlation coefficients for PEx and PEy. This implies
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that CD is weakly correlated with focus, whereas PEx and PEy are stronger
correlated with focus. The relatively weak correlation with CD might be
explained by the linear relationship that is assumed by the Pearson corre-
lation coefficient, while CD has a quadratic relationship with focus. Note
that the correlations becomes weaker when going to finer input granularity,
i.e. the correlation between the input features and focus are stronger at field
granularity and the weakest at SEM granularity. This is

PFx PFy

Field 0.61 0.88
Pad 0.61 0.88
SEM 0.61 0.85

Table 6.32: Pearson correlation between proximity force input features and
focus at different input granularities.

In Table 6.32 we see that both PFx and PFy have a relatively high corre-
lation coefficient among all granularity levels. This means that PFx and PFy
have a relatively strong correlation with focus. Similarly to input features for
CD, PEx and PEy we observe that the correlations becomes weaker when
going to finer input granularity.

(b) (c)(a)

Figure 6.37: Pearson correlation coefficient between input features and focus
at different granularity levels. CD features indicated in red, PEx features
indicated in green and PEy features indicated in blue.
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6.5.2 Regression coefficients

The pearson correlation coefficients have shown that CD input variables are
weakly correlated with focus. How this reflects in focus prediction will be
investigated by looking at the model coefficients. The model coefficients of
linear regression, lasso, ridge and elasticnet regression for field, pad and SEM
granularity on the 80%/20% random split are shown in Table 6.33, 6.34 and
6.35, respectively.
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Input variable Group Linear Lasso Ridge Elasticnet

CD

100 187.19 110.41 81.44 116.12
110 163.51 0 15.23 -10.4
111 234.33 0 39.75 4.11
112 64.59 0 13 -17.37
113 -246.11 0 19.48 -0.16
120 -166.1 -110.84 -51.88 -70.63
121 59.02 0 -5.19 -10.92
122 -87.08 -4.98 -35.32 -21.51
123 -99.35 0 -31.08 -3.47
124 -61.15 0 -18.84 11.74
125 -59.41 -6.74 -41.3 -12.71

PEx

100 -5.99 -1.51 -1.34 -0.98
110 -61.63 11.34 6.44 14.18
111 -7.83 -5.67 -4.6 -4.5
112 -44.57 -18.15 -27.63 -31.64
113 -0.05 1.9 1.6 1.69
120 24.95 -2.88 -9.75 -10.3
121 -0.18 0.62 0.63 0.68
122 8.56 0 -3.33 -0.81
123 20.94 0 8.68 4.88
124 -0.28 0.35 0.49 0.47
125 -6.39 7.12 13.26 17.39

PEy

100 -18.44 -2.53 -9.77 -9.38
110 -4.19 -2.1 -2.76 -2.77
111 -32.65 -3.61 -26.94 -26.78
112 -10.81 -5.93 -8.18 -8.3
113 -79.59 -21.91 -52.74 -51.29
120 -4.2 -0.55 -3.98 -4.35
121 0.88 2 1.75 1.87
122 0.28 4.19 2.97 3.38
123 -13.65 -25.15 -24.69 -25.56
124 -1.41 0.04 -0.36 -0.41
125 -12.24 -9.25 -10.81 -10.51

Table 6.33: Model coefficients on the 80%/20% random split for field granu-
larity input features.
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Input variable Group Linear Lasso Ridge Elasticnet

CD

100 208.91 229.15 153.84 174.73
110 45.66 -64.7 25.84 13.17
111 113.45 -7.54 71.24 10.17
112 2.26 -28.15 14.9 -22.96
113 -128.56 -14.11 -20.08 -10.73
120 -28.93 -22.46 -33.62 -41.27
121 16.76 2.68 9.79 -6.15
122 -51.85 -70.38 -52.83 -59.47
123 -60.42 -36.65 -57.01 -49.24
124 -58.27 -1.74 -55.39 -8.39
125 -75.54 -13.41 -76.25 -22.82

PEx

100 -4.65 -3.52 -3.75 -2.8
110 -14.98 16.65 -4.51 8.21
111 -3.5 -3.39 -3.11 -2.73
112 -37.38 -31.75 -33.04 -29.75
113 -1.01 -0.99 -0.88 -0.65
120 -5.3 -8.33 -5.71 -6.21
121 -0.1 0.15 0.06 0.29
122 -4.73 -2.2 -3.8 -2.62
123 3.26 2.22 2.64 2.24
124 -0.73 -0.85 -0.7 -0.53
125 -7.35 -3.21 -6.07 -2.68

PEy

100 -12.14 -12.76 -12.19 -11.2
110 -2.79 -2.95 -2.92 -2.8
111 -13.42 -17.16 -14.84 -13.2
112 -5.77 -6.41 -5.9 -5.91
113 -63.45 -63.79 -63.16 -58.57
120 -2.82 -2.93 -2.71 -2.19
121 -0.34 -0.45 -0.36 -0.35
122 -1.8 -1.41 -1.7 -1.17
123 -12.6 -14.07 -13.35 -13.94
124 -1.4 -1.5 -1.43 -1.32
125 -9.01 -10.31 -9.64 -9.85

Table 6.34: Model coefficients on the 80%/20% random split for pad granu-
larity input features.
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Input variable Group Linear Lasso Ridge Elasticnet

CD

100 214.89 242.81 212.36 211.87
110 -39.38 -31.55 -39.21 -27.88
111 74.55 38.48 74.09 53.24
112 -74.21 -88.14 -73.62 -79.46
113 -165.56 -166.61 -162.28 -146.09
120 18.26 19.94 18.01 16.28
121 7.93 7.38 7.96 7.65
122 3.36 6.4 3.1 2.95
123 -31.35 -27 -31.54 -30.99
124 -4.09 0.56 -4.37 -3.36
125 -22.01 -18.82 -22.11 -21.09

PEx

100 3.25 3.07 3.27 3.3
110 36.95 34.93 36.99 35.31
111 0.61 0.55 0.62 0.64
112 6.19 5.02 6.25 5.92
113 2.43 2.41 2.44 2.48
120 2.06 1.81 2.07 2.24
121 1.23 1.29 1.23 1.31
122 0.87 1 0.84 0.64
123 1.43 1.47 1.42 1.49
124 0.4 0.33 0.41 0.45
125 3.17 3.12 3.19 3.34

PEy

100 3.71 3.99 3.71 3.93
110 -0.62 -0.52 -0.62 -0.57
111 23.38 24.55 23.38 24.15
112 -1.24 -1.16 -1.24 -1.17
113 -17.16 -16.93 -17.11 -16.62
120 2 2.1 2.01 2.1
121 0.23 0.25 0.24 0.29
122 1.16 1.24 1.16 1.23
123 -4.41 -4.35 -4.41 -4.38
124 0.49 0.52 0.48 0.47
125 -3.94 -3.89 -3.95 -3.98

Table 6.35: Model coefficients on the 80%/20% random split for SEM gran-
ularity input features.

From Table 6.33, 6.34 and 6.35 can be observed that the regression
models mostly have coefficients of relatively high absolute magnitude for CD
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input features compared to PEx and PEy input features. This means that a
unit increase in the scaled CD input features result in bigger changes in focus
prediction than a unit increase in the scaled PEx and PEy input features.

6.5.3 Input difference between dataset 1 and dataset
2

When the models are trained, scaling is applied on the input variables based
of wafer 1. This scaler is then used to transform the input variables from
wafer 2. The difference between the input variables on wafer 1 and wafer
2 might explain why predictions on wafer 2 show big errors. Therefore the
mean, maximum and minimum difference in scaled input variables between
wafer 1 and wafer 2 is shown in Table 6.36, 6.37 and 6.38 for field, pad and
SEM granularity.

Group
CD PEx PEy

Mean Min. Max. Mean Min. Max. Mean Min. Max.
100 0.37 0.25 0.59 -0.45 -4.85 1.06 0.64 0.07 1.26
110 0.45 0.26 0.89 0.63 0.09 1.94 -1.86 -4.14 -0.03
111 0.38 0.27 0.61 0.61 -0.3 1.99 0.02 -0.17 0.56
112 0.43 0.25 0.77 -0.57 -1.4 -0.06 -0.19 -0.82 1.12
113 0.38 0.26 0.61 -0.17 -1.74 0.86 -0.07 -0.43 0.09
120 0.44 0.26 0.76 0.57 0.15 1.24 0.41 -0.41 0.95
121 0.48 0.27 0.85 -0.2 -2.27 1.91 -0.3 -2.13 0.73
122 0.45 0.26 0.75 -0.56 -1.15 -0.1 0.53 0.17 0.97
123 0.46 0.27 0.84 0.55 0.01 1.43 -0.41 -0.81 -0.01
124 0.39 0.27 0.62 0.01 -2.01 1.36 0.15 -1.26 1.4
125 0.45 0.27 0.75 -0.58 -1.13 -0.12 -0.29 -0.56 0.08

Table 6.36: Mean, minimum and maximum difference in scaled field input
instances between wafer 1 and wafer 2.
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Group
CD PEx PEy

Mean Min. Max. Mean Min. Max. Mean Min. Max.
100 0.37 0.19 0.65 -0.42 -5.01 1.36 0.62 -0.66 2.02
110 0.45 0.23 0.93 0.63 0.01 2.06 -1.49 -5.16 1.52
111 0.38 0.21 0.67 0.56 -0.86 3.25 0.02 -0.34 0.76
112 0.43 0.23 0.85 -0.57 -1.51 -0.03 -0.17 -2.39 2.28
113 0.38 0.21 0.67 -0.14 -4.56 2.82 -0.07 -0.59 0.29
120 0.44 0.24 0.79 0.57 0.01 1.39 0.4 -1.24 1.64
121 0.47 0.23 0.93 -0.15 -3.34 2.83 -0.22 -2.24 2.39
122 0.44 0.21 0.8 -0.55 -1.21 -0.02 0.51 -0.58 2.28
123 0.46 0.25 0.9 0.55 -0.05 1.49 -0.4 -1.27 0.46
124 0.39 0.21 0.68 0.01 -2.37 2.5 0.1 -2 2.97
125 0.45 0.23 0.84 -0.58 -1.3 0.03 -0.29 -0.93 0.59

Table 6.37: Mean, minimum and maximum difference in scaled pad input
instances between wafer 1 and wafer 2.

Group
CD PEx PEy

Mean Min. Max. Mean Min. Max. Mean Min. Max.
100 0.37 -0.13 0.7 -0.27 -6.97 3.29 0.39 -3.94 3.87
110 0.45 -0.11 1.15 0.62 -0.25 2.4 -0.6 -4.93 4.44
111 0.38 -0.11 0.71 0.32 -3.81 5.5 0.01 -2.63 1.52
112 0.43 -0.08 1.07 -0.57 -2.04 0.22 -0.07 -4.07 4.13
113 0.38 -0.17 0.74 -0.07 -5.11 3.59 -0.07 -1.62 2.77
120 0.44 -0.13 1.05 0.55 -0.56 2.53 0.33 -2.78 4.44
121 0.47 -0.16 1.27 0.03 -4.58 4.93 -0.01 -3.84 5.92
122 0.45 -0.03 1.06 -0.54 -2.71 0.67 0.32 -4.24 4.49
123 0.46 -0.05 1.28 0.54 -0.63 2.78 -0.36 -2.92 1.92
124 0.39 -0.26 0.83 -0.01 -4.38 4.01 -0.01 -4.58 4.85
125 0.45 -0.12 0.99 -0.55 -2.3 0.65 -0.22 -2.96 2.64

Table 6.38: Mean, minimum and maximum difference in scaled SEM input
instances between wafer 1 and wafer 2.

In Table 6.36, 6.37 and 6.38 can be observed that the mean difference
between wafer 1 and wafer 2 remains roughly the same for all input variables
among different granularities. When going to SEM granularity input vari-
ables, the difference between wafer 1 and wafer 2 becomes more profound
compared to field and pad granularity as the minima decrease and maxima
increase.
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6.5.4 Discussion

The pearson correlation coefficients in Table 6.29, 6.30 and 6.31 have shown
that the CD input features are weakly correlated with focus. This could
mean that CD actually has a negative contribution to focus prediction. As
the model coefficients in Table 6.33, 6.34 and 6.35 show that the absolute
magnitude is mostly the highest for CD compared to PEx and PEy, it means
that the weakest correlated input features of the models have the most im-
pact on focus prediction. The mean difference in scaled input features in
Table 6.36, 6.37 and 6.38 multiplied by their respective model coefficient
confirms that the change in CD between wafer 1 and wafer 2 is likely causing
the increase in focus prediction errors on wafer 2.
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Chapter 7

Discussion

7.1 Result evaluation

7.1.1 Granularity levels on the first dataset

In section 6.2 Experiment (B) has shown how a neural network performs
against other regression models for different input granularity levels. When
comparing the neural network performance metrics for the different input
granularities we end up with Figure 7.1.

Pad SEM

0.98 0.98 0.95
3.03 3.81

13.78

8.52

11.77

19.4

Granularity level

3σ (nm)

RMSE (nm)

Neural network performance metrics

Field

R^2

Figure 7.1: Neural network performance metrics at different granularity lev-
els.

In Figure 7.1 the R2 remains sufficiently large for field, pad and SEM
granularity level, implying that a sufficient fit can be made. Further, we see
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that the RMSE increases slightly between field and pad granularity level and
starts to increase a lot with SEM granularity level. Similarly for the 3σ score,
there is a relatively small increase between field and pad granularity level,
while the increase between pad and SEM is relatively big. This expected
behaviour follows from the increase in the standard error of the mean with
finer granularity as mentioned in section 6.2.4.

Since the performance is worsening on all three performance metrics when
switching to finer granularity levels, we can conclude that in general perfor-
mance deteriorates with finer granularity levels. In addition, it is likely that
SEM granularity input instances are not suitable for proper focus prediction
as the RMSE and 3σ are deteriorating too much compared to field granularity
level.

7.1.2 Proximity Force feature

In section 6.4 Experiment (D) we have developed models for focus prediction
using the new Proximity Force feature defined in section 6.3 Experiment
(C). To observe the effect of the new feature as an alternative approach to
the orthogonal grouping scheme, the performance metrics of the orthogonal
grouping models with and without PF feature added are shown below for
different input granularity levels on the first dataset. The R2, RMSE and 3σ
of the best model, i.e. neural network, are shown in Figure 7.2, 7.3 and 7.4
respectively.

Pad SEM

0.98 0.98 0.950.98 0.98 0.95

Granularity level

R^2 - With PF

Neural network R^2 performance

Field

R^2 - Without PF

Figure 7.2: R2 on orthogonal grouping models with and without PF at dif-
ferent input granularity levels.
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Pad SEM

3.81

13.78

4.55 4.29

12.08

Granularity level

RMSE (nm) - With PF

Neural network RMSE performance

Field

RMSE (nm) - Without PF

3.03

Figure 7.3: RMSE on orthogonal grouping models with and without PF at
different input granularity levels.

Pad SEM

11.77

19.4

8.64

11.49

19.33

Granularity level

3σ (nm) - With PF

Neural network 3σ performance

Field

3σ (nm) - Without PF

8.52

Figure 7.4: 3σ on orthogonal grouping models with and without PF at dif-
ferent input granularity levels.

Figure 7.2 shows that on all three granularity levels there is no change in
R2 between with or without PF feature added to the models. In Figure 7.3
the RMSE on field and pad granularity level increases when adding the PF
feature to the models, while on SEM granularity level the RMSE decreases
with PF added. We expect to see a trend in increasing RMSE with finer
granularity levels as mentioned in section 6.2.4 and 6.4.4. It is noteworthy
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that the trend of increasing RMSE with finer granularity is visible in the
orthogonal grouping models without PF, but not visible with models using
the PF feature. The difference in RMSE between the neural network with
and without PF might be the result of splitting the dataset with this random
seed, so a different seed might give different results in which the increasing
RMSE trend does become visible. The increasing RMSE trend is visible on
the 3σ in Figure 7.4. The 3σ measure also shows similar performance for the
models with or without PF within each granularity level. Given that for the
models with PF the R2 and 3σ show similar behaviour and that RMSE at
some granularity levels show worse performance, it shows that the new PF
feature does not give added value to the existing orthogonal grouping model
without PF.

7.1.3 Comparison between dataset 1 and 2

In Experiment (B) and (D) we have trained models on the first dataset and
applied them on both the first and second dataset. We will zoom in on the
performance metrics of the best model for both datasets, i.e. neural network.
In Figure 7.5 the 3σ on all the data of the first and second dataset for different
granularity levels is shown. The figure shows that with finer granularity the
3σ increases on both datasets and that at all granularity levels the 3σ of
the second dataset is considerably bigger than for the first dataset. This
consistency in increasing 3σ is due to the increasing standard error of the
mean with finer granularity level input instances as discussed in section 4.1
and 6.2.4.

Field Pad SEM

Dataset 1 Dataset 2

8.52
11.77

19.4

25.23
27.18

34.35

3σ on all the data

Figure 7.5: 3σ on all the data of the first and second dataset at different
granularity levels.
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In Figure 7.6 the RMSE on the nominal focus datasplit of the first and
second dataset for different granularity levels is shown. On the first dataset
the RMSE increases with finer granularity levels, which is due to the in-
crease in the standard error of the mean. As mentioned in section 6.2.4,
the increasing RMSE with finer granularity on the first dataset is expected
due to the increasing standard error of the mean. The RMSE on the second
dataset should ideally follow a similar trend, but from Figure 7.6 this cannot
be observed. The RMSE on the second dataset is actually the highest at
field granularity level and relatively low at SEM granularity level. From the
big differences in 3σ and RMSE between the two datasets at all granularity
levels it follows that the neural network models trained on the first dataset
cannot be applied on the second dataset.

Field Pad SEM

Dataset 1 Dataset 2

3.03

13.78

18.11

5.07
6.84

3.81

RMSE (nm) on nominal focus datasplit

Figure 7.6: RMSE on the nominal focus datasplit of the first and second
dataset at different granularity levels.

7.1.4 Explanation on performance decrease on the sec-
ond dataset

In Experiment (E) we have discussed how the difference in performance be-
tween the first and second dataset might come from input features with bad
correlation with focus. In this section we further investigate how the coeffi-
cients of input features in linear regression, lasso, ridge and elasticnet might
explain the performance decrease on the second dataset. In Figure 7.7, co-
efficients of linear regression, lasso, ridge and elasticnet regression with field
input granularity are plotted using the coefficients from Table 6.33. Sim-
ilar figures for pad and SEM granularity levels are shown in Appendix D
Figure 46 and 47 using Table 6.34 and 6.35 respectively.

150



Figure 7.7: Coefficients of each input feature per model using field granularity
input instances.

In Figure 7.7 we observe that for linear regression the coefficients for
the CD input features on absolute scale are very large meaning that the
CD features are dominant in focus prediction. This trend in which CD is
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more dominant than PEx and PEy is also observed in lasso and elasticnet
regression. In ridge regression the CD, PEx and PEy look more similar in
magnitude, but in terms of quantity there is a larger amount of CD features
with high coefficient than for PEx and PEy. In lasso regression we also
observe that some of the features have coefficient zero as lasso regression
tends to bring coefficients to zero to minimize the loss. We see then that
there are more valuable PEx and PEy features than for CD. However, it still
shows that CD is very dominant as the coefficients in CD are much larger
than for PEx and PEy. The same dominance of CD features in the models
at pad and SEM granularity level can be observed in Appendix D Figure 46
and 47.
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(a)

(b)

(c)

Figure 7.8: Coefficients per input feature of the lasso regression model at
field (a), pad (b) and SEM (c) granularity level.

In Figure 7.8 are the coefficients for each feature of the lasso regression
models given at field (a), pad (b) and SEM (c) input granularity level. In
Figure 7.8(b) and (c) we observe that in lasso regression all the coefficients
are now greater than zero compared to field granularity level in Figure 7.8(a).
This means that all features are now contributing to focus prediction, which
is also visible in the coefficients in Table 6.33, 6.34 and 6.35 of Experiment
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(E) for field, pad and SEM granularity respectively. This change in coeffi-
cients might be due to the increase in data complexity following the different
aggregation.

(a)

(b)

(c)

Figure 7.9: Coefficients of CD (a), PEx (b) and PEy (c) input features of
linear models using SEM granularity input instances.

In Figure 7.9 again we observe that CD features with SEM granularity
input instances have the largest coefficients in absolute magnitude. However,
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all the models are now roughly the same, meaning that there is hardly any
gain to achieve with regularization compared to simple linear regression.

In addition we observe a trend in Figure 7.7, Appendix D Figure 46
and 47 in which the influence of PEx and PEy among all the three types
of granularity are hardly changing, i.e. in all models the coefficients are
roughly the same. This implies that the choice of features to be important in
all the models are pretty consistent among the models and among different
granularity levels. The change between models within and among different
granularities are mostly coming from the CD features, which imply that CD
features are heavily influencing the performance in focus prediction. Since
CD follows a quadratic relationship with focus as mentioned in section 3.2, it
might be more difficult for the linear regression models to properly capture
this non-linear relationship for focus prediction, while it is easier to properly
capture the linear relationship between focus and PEx and PEy as mentioned
in section 3.3. Together with the different CD in design in the second dataset
it explains why the performance on the second dataset deteriorates.

Following Figure 7.7, 7.8 and 7.9 we conclude that the decrease in
performance on the second dataset are due to the models being to sensitive
to CD features. Given that the second dataset has a different CD distribution
it is likely that the CD sensitivity causes the performance decrease.

7.2 Considerations and future work

Since the first and second dataset differ in their CD in design and their
CD distribution, it would be better to have two datasets with an equal CD
distribution. With the second dataset two variables in our data changed,
which are firstly the properties of the wafer during exposure and secondly
the change of mask biased CD. The changes in wafer characteristics are
always present in the usecase, so the generalizibility of the models for this
change in variable of interest should be checked. To properly check for the
generalizibility we should keep other variables of interest that influences the
input, i.e. the CD in design, constant. Therefore we recommend having two
wafers with the same CD in design as our first and second dataset.

In general, it would have been preferred to even have more wafers as
then we can train across wafers rather than on only one. Furthermore, the
FEM wafer structure contains focus and dose values that are not often used
in practice. We therefore opt to create a FEM wafer that contains smaller
focus and dose ranges such that the ranges correspond more with practice.

Following the observations of the models being sensitive to CD change
and that CD is not correlating well with focus it might be interesting to
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investigate how the performance changes when CD is excluded from the
models. By excluding the CD from the models, only the features PEx and
PEy are maintained, which are the features that correlate better with focus.

In this research the trained models from the first dataset are directly ap-
plied on the second dataset. Since we are interested in the best algorithm
as models are heavily dependent on chip layout, it would be worthwhile to
retrain a new model on the second dataset for future work. Ideally the same
algorithm and the same hyperparameters should be returned. In order to
investigate this, the trained hyperparameters from the models on the first
dataset could be reused such that only the coefficients of a new model are
different, or new model would be developed by redoing hyperparameter tun-
ing.

We have investigated models that take aggregated inputs from different
granularity levels, i.e. field, pad and SEM images. Results have shown that
field and pad granularity offer performance metrics that are relatively close
to eachother compared to SEM images. This has opened the door towards
further research into pad granularity input instances for prediction models
as it is for metrology a more costeffective alternative to field granularity
level. Therefore we opt for further research into finer granularity aggregation
methods.

Furthermore, the training, validation and test set for the 80%/20% datas-
plit and the training and validation set for the nominal and 3σ datasplits
involves randomly picking a subset from the data, so that the distribution
of the subset in theory follows the same distribution as the original data. In
practice, these distributions can vary due to the randomness. Therefore, ide-
ally we should perform the datasplits multiple times with different random
splits. With multiple tests we can define a mean and standard error for R2,
RMSE and 3σ to exclude the possibility that results from a single test are a
lucky shot.

In section 2.3 we have discussed possible machine learning algorithms for
focus error prediction, but we were not able to implement an alternative
model that we took into consideration, i.e. LinXGBoost. LinXGBoost is a
gradient-boosting machine with linear regressions in the leaf nodes of each
boosted tree, making it a piece-wise linear model. Due to software limi-
tations regarding multithreading and GPU support together with the time
constraints of this research we were not able to implement this, therefore
it might interesting for further research. An additional proposal for further
research might be the implementation of transfer learning. With transfer
learning we can train any neural network on a collection of wafers with the
same chip layout and different CD in design in order to get a pre-trained
model. Then the pre-trained model can be finetuned for a specific CD in
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design for which focus should be predicted.

7.3 Research questions

In Experiment (B) and Experiment (D) we have developed focus predicting
models by taking CD, PEx and PEy as input features. In addition, the
distance between contact holes is used for a new feature as defined in Exper-
iment (C). The new feature describes quantitatively the proximity effect and
tackles the drawbacks of the original orthogonal grouping approach used in
Experiment (B). With these variables of interest we have answered research
question RQ1.

We have answered research question RQ2 in section 2.3 by providing a list
of candidate machine learning algorithms that are suitable for a regression
problem and are not piece-wise constant. We have proposed besides the
linear regression from previous work lasso, ridge and elasticnet regression
and feedforward neural network.

Research question RQ3 involves comparing model performance per gran-
ularity level and datasplit. The results of these comparisons on both the first
and second dataset are given in Table 6.13, 6.27, 6.14 and 6.28. It often
shows that the baseline linear regression performs better than the regular-
ized regression models. However, it is frequently less superior than a neural
network, primarily at field and pad granularity levels. Neural network has
shown that it is able to outperform or to be just as good as the baseline and
the remaining models. From the different models at different granularity lev-
els we have observed that focus error tends to increase with finer granularity.
This is in particular noticeable at SEM granularity level, therefore we rec-
ommend to develop a focus prediction model beyond the level of SEM input
instances.

To answer the main research question we look at the results from Exper-
iment (B). From these results we conclude that neural network is the best
algorithm on the first dataset as it performs well on R2 and 3σ on all granu-
larity levels and well on RMSE for field and pad granularity levels. However,
the generalizibilty of all the models might not have been thoroughly tested as
Experiment (E) has shown that models might be biased towards the uncor-
related input features of CD, while also the second dataset for testing follows
a different CD distribution than in the first dataset. This likely leads to the
big difference in performance between the two datasets.
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Chapter 8

Conclusion

In this research we have found the best machine learning algorithm to pre-
dict focus by means of CD, PEx and PEy for each group in an orthogonal
classification scheme. By investigating simple regression models (linear re-
gression, lasso, ridge, elasticnet regression) and a feedforward neural network
on two datasets and quantifying the performance with the R2, RMSE and
3σ we were able to find the most suitable algorithm for focus prediction. In
addition, we have investigated the effect of different input granularity levels
in focus prediction, i.e. aggregating on different amount of data.

In Experiment (A) we have estimated the minimum amount of epochs
required to properly train a neural network. With this minimum amount of
epochs we aim to avoid underfitting.

Following our estimations from Experiment (A), in Experiment (B) we
have developed simple regression models and a neural network using field,
pad and SEM input granularity. Following the results from the first dataset
we conclude that neural network is the best algorithm for focus prediction
under the premise that input is at field or pad granularity. Further it is
observed that the trained model from the first dataset cannot be applied on
the second dataset due to the different CD in design.

In Experiment (C) we have defined a new feature that leverages the opti-
cal proximity effect and addresses the drawbacks of the orthogonal grouping
approach. By empirically testing out several inverse-distance relationships we
selected a relationship based on the Bessel function to describe the strength
of the proximity effect.

In Experiment (D) we have duplicated Experiment (B), albeit that the
models also use the new feature defined in Experiment (C). Following the
results from the first dataset we conclude that using the new feature in the
models do not give great performance gain. Again it is observed that the
trained model from the first dataset cannot be applied on the second dataset
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following the big performance decrease.
Experiment (E) investigates the difference between the first and second

dataset to find a possible cause for the bad performance on the second dataset
in Experiment (B) and (D). It has shown that in the simple linear models
CD has a high impact on the focus prediction models.

Following the experiments that have been performed in this research, we
can conclude that in general feedforward neural network is the best algo-
rithm to be used for focus prediction as it shows improvement over the linear
regression baseline used in previous work. In addition, we have shown that
with finer granularity more focus errors in the models occur. Focus prediction
models using field and pad input granularity offer reasonable performance,
while SEM input granularity gives big declines in performance. Therefore
we recommend to develop a focus prediction model beyond the level of SEM
input instances.
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Appendix A - Experiment A
additional loss curves

Field granularity

II. Nominal range
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(a)

(b)

(c)

Figure 1: MSE training loss of five fits using field granularity inputs with 32
nodes per a hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Figure 2: MSE training loss of five fits using field granularity inputs with 64
nodes per a hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

III. On all data
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(c)

Figure 3: MSE training loss of five fits using field granularity inputs with 32
nodes per a hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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(c)

Figure 4: MSE training loss of five fits using field granularity inputs with 64
nodes per a hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

Pad granularity

I. 80%/20% random data split
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Figure 5: MSE training loss of five fits using pad granularity inputs with 32
nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Figure 6: MSE training loss of five fits using pad granularity inputs with 64
nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

II. Nominal range
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Figure 7: MSE training loss of five fits using pad granularity inputs with 32
nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Figure 8: MSE training loss of five fits using pad granularity inputs with 64
nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

III. On all data
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Figure 9: MSE training loss of five fits using pad granularity inputs with 32
nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Figure 10: MSE training loss of five fits using pad granularity inputs with 64
nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

SEM granularity

I. 80%/20% random data split
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Figure 11: MSE training loss of five fits using SEM granularity inputs with
32 nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Figure 12: MSE training loss of five fits using SEM granularity inputs with
64 nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

II. Nominal range
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Figure 13: MSE training loss of five fits using SEM granularity inputs with
32 nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Figure 14: MSE training loss of five fits using SEM granularity inputs with
64 nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

III. On all data
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Figure 15: MSE training loss of five fits using SEM granularity inputs with
32 nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Figure 16: MSE training loss of five fits using SEM granularity inputs with
64 nodes per hidden layer. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Appendix B - Experiment B
additional loss curves

Field granularity

I. 80%/20% random data split
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Figure 17: MSE validation loss of the 10 worst models using field granularity
inputs on the 80%/20% datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

II. Nominal range
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Figure 18: MSE validation loss of the 10 worst models using field granularity
inputs on the nominal datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

III. On all data
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Figure 19: MSE validation loss of the 10 worst models using field granularity
inputs on the 3σ datasplit. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

Pad granularity

I. 80%/20% random data split
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Figure 20: MSE validation loss of the 10 best models using pad granularity
inputs on the 80%/20% datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

II. Nominal range
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Figure 21: MSE validation loss of the 10 best models using pad granularity
inputs on the nominal datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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Figure 22: MSE validation loss of the 10 worst models using pad granularity
inputs on the nominal datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

III. On all data
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Figure 23: MSE validation loss of the 10 best models using pad granularity
inputs on the 3σ datasplit. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Figure 24: MSE validation loss of the 10 worst models using pad granularity
inputs on the 3σ datasplit. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

SEM granularity

I. 80%/20% random data split
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Figure 25: MSE validation loss of the 10 worst models using SEM granularity
inputs on the 80%/20% datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

II. Nominal range
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Figure 26: MSE validation loss of the 10 worst models using SEM granularity
inputs on the nominal datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

III. On all data
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Figure 27: MSE validation loss of the 10 worst models using SEM granularity
inputs on the 3σ datasplit. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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additional loss curves

Field granularity

I. 80%/20% random data split
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Figure 28: MSE validation loss of the 10 best models using field granularity
inputs on the 80%/20% datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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Figure 29: MSE validation loss of the 10 worst models using field granularity
inputs on the 80%/20% datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

II. Nominal range
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Figure 30: MSE validation loss of the 10 best models using field granularity
inputs on the nominal datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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Figure 31: MSE validation loss of the 10 worst models using field granularity
inputs on the nominal datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

III. On all data
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Figure 32: MSE validation loss of the 10 best models using field granularity
inputs on the 3σ datasplit. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

212



(a)

(b)

(c)

Figure 33: MSE validation loss of the 10 worst models using field granularity
inputs on the 3σ datasplit. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.

Pad granularity

I. 80%/20% random data split
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Figure 34: MSE validation loss of the 10 best models using pad granularity
inputs on the 80%/20% datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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Figure 35: MSE validation loss of the 10 worst models using pad granularity
inputs on the 80%/20% datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

II. Nominal range
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Figure 36: MSE validation loss of the 10 best models using pad granularity
inputs on the nominal datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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Figure 37: MSE validation loss of the 10 worst models using pad granularity
inputs on the nominal datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

III. On all data
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Figure 38: MSE validation loss of the 10 best models using pad granularity
inputs on the 3σ datasplit. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Figure 39: MSE validation loss of the 10 worst models using pad granularity
inputs on the 3σ datasplit. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Figure 40: MSE validation loss of the 10 best models using SEM granularity
inputs on the 80%/20% datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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Figure 41: MSE validation loss of the 10 worst models using SEM granularity
inputs on the 80%/20% datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

II. Nominal range
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Figure 42: MSE validation loss of the 10 best models using SEM granularity
inputs on the nominal datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.
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Figure 43: MSE validation loss of the 10 worst models using SEM granularity
inputs on the nominal datasplit. (a) Epochs and loss on linear scale. (b)
Epochs on linear scale and loss on logarithmic scale. (c) Epochs and loss on
logarithmic scale.

III. On all data
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Figure 44: MSE validation loss of the 10 best models using SEM granularity
inputs on the 3σ datasplit. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Figure 45: MSE validation loss of the 10 worst models using SEM granularity
inputs on the 3σ datasplit. (a) Epochs and loss on linear scale. (b) Epochs on
linear scale and loss on logarithmic scale. (c) Epochs and loss on logarithmic
scale.
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Appendix D - Coefficients of
features in linear models

Pad granularity

Figure 46: Coefficients of each input feature per model using pad granularity
input instances.
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SEM granularity

Figure 47: Coefficients of each input feature per model using SEM granularity
input instances.
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