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Abstract

There are various ways of constructing spectral sequences from the in�nity category of towers of
spectra. Classically there is the approach via exact couples; we will also discuss the décalage functor as
constructed by Hedenlund. We will show that this construction of spectral sequences from towers and
the construction via exact couples give isomorphic spectral sequences. This can be proved by showing
that both methods of can be related to another third construction method by Lurie, using recent work
by Antieau. Furthermore, the décalage construction yields a functor of in�nity operads and provides
a way to construct multiplicative spectral sequences. Then we can de�ne Massey products on such
a multiplicative spectral sequence. Lastly, we will discuss a possible relation between these Massey
products and Toda brackets on homotopy groups of spectra, analogous to Moss' theorem for the Adams
spectral sequence.
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Introduction

Spectral sequences are tools used to compute many objects in algebraic topology. Notable historical
examples are the Atiyah-Hirzebruch spectral sequence, relating generalized cohomology theories to
singular cohomology of spaces and the Adams spectral sequence, which arises from cohomology and
is used to determine stable homotopy groups of spectra. There are many more, see for example [19].
In certain cases a spectral sequence has a multiplicative structure. This can be used to determine
the di�erentials of the spectral sequence and to compute multiplicative structures on the objects the
sequence converges to. For instance, multiplication in the cohomological Serre spectral sequence is used
to determine ring structures of cohomology rings. Furthermore, there are also higher multiplicative
structures, such as Massey products and Toda brackets, which we will explained later.

There are several ways of constructing spectral sequences; often they arise from towers or �ltrations
of spectra. For instance, Lurie provides a way of constructing spectral sequences from �ltrations in
a stable ∞-category in Higher Algebra [16], which we will also discuss in this thesis. However, the
focus will be on Hedenlund's method of constructing spectral sequences from towers in the∞-category
of spectra, since this method yields multiplicative spectral sequences [12, Paper II]. She constructs
spectral sequences via the décalage functor. This is an ∞-categorical functor

Tow(Sp) := Fun(N(Z)op, Sp)→ Tow(Sp)

and de�ned using the Beilinson t-structure on Tow(Sp). Let X ∈ Tow(Sp). Then the Beilinson-
Whitehead tower of X is the tower of towers arising from the Beilinson t-structure on the ∞-category
of towers of spectra:

. . . τBei≥n+1(X) τBei≥n (X) τBei≥n−1(X) . . .

For each k, we can take the colimit of the tower τBei≥k (X), which yields another tower of spectra

. . . colimi∈Z τ
Bei
≥n+1(Xi) colimi∈Z τ

Bei
≥n (Xi) colimi∈Z τ

Bei
≥n−1Xi . . .

This resulting tower is called the décalée of X, which yields the décalage functor Déc : Tow(Sp) →
Tow(Sp). The décalage functor turns out to be a lax symmetric monoidal functor and can be iterated.
The functor E∗,∗ : Tow(Sp)→ SSeq is then de�ned by mapping a tower X to the spectral sequence

En,sr (X) := πnGr(r−1)n+s(Décr−1(X)).

That is, we take the homotopy groups of the ((r−1)n+s)'th associated graded of the (r−1)-fold décalee
of X. This construction generalizes several spectral sequence. Among them is the Atiyah-Hirzebruch
spectral sequence, see [7].

A classical way of constructing spectral sequences is via exact couples. This method can also be
applied to towers of spectra. That is, from a tower of spectra we get exact couples

⊕n,sπn(X(s)) ⊕n,sπn(X(s))

E1(X) := ⊕n,sπnGrs(X)

i

jκ

from which we can derive another exact couple. Iterating this precess will yield a spectral sequence,
see [13]. Therefore, it makes sense to ask the question whether Lurie's method, décalage and the
construction via exact couples yield isomorphic spectral sequences when applied to towers in the ∞-
category of spectra. Indeed this is true and part of this thesis will be focussed on showing this. In
particular, we will relate Lurie's method and the construction via exact couples and discuss Antieau's
recent proof relating the décalage constructing with Lurie's method. This is an important result, as it
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will allow us to use the language of either method in proofs and discussions on these spectral sequences.

As mentioned, the construction of spectral sequences via décalage yields multiplicative spectral se-
quences. In particular, we shall see that it is possible to de�ne higher multiplication structures on
these spectral sequences as well, called Massey products. Furthermore, we want to relate them to an-
other higher multiplication structure, Toda brackets, on homotopy groups of spectra. Massey products
were initially introduced by Massey in 1958. They were later used by him to topologically describe
Borromean Rings and their n-fold generalizations, Brunnian links in knot theory [18]. They have also
been used to describe elements or di�erentials in various spectral sequences, such as the Adams spec-
tral sequence, see [20], the Eilenberg-Moore spectral sequence [19, Ch. 8] and the Atiyah-Hirzebruch
spectral sequence on twisted K-theory, see [2].

Generally, they are de�ned as follows, see also [19, p. 302,303]. Let Γ be a di�erential graded
algebra and consider its corresponding cohomology ring H∗(Γ). Let α = [a], β = [b], γ = [c] ∈ H∗(Γ)
and write ā = (−1)|a|+1a. Suppose αβ = 0 and βγ = 0. Then the Massey product is de�ned as

⟨α, β, γ⟩ := {[āy + x̄c] : d(x) = āb, d(y) = b̄c} ⊂ H |α|+|β|+|γ|+1(Γ).

Furthermore, Toda introduced the Toda bracket originally to compute stable homotopy groups of
spheres. They can be de�ned on general triangulated categories as follows. Let C be a triangulated
category. Suppose we have a sequence of maps

X
f−→ Y

g−→ Z
h−→W

in C such that g ◦ f = 0 = h ◦ g. Then we get an induced diagram

X Y Cf X[1]

X Y Z W

f i

ϕ ψ

f g h

where Cf is the cone of f . Note that neither the factorization of g into ϕ ◦ i and the factorization
of h ◦ ϕ through Cf are unique. Therefore the Toda bracket ⟨f, g, h⟩ is de�ned to be the set of maps
ψ : X[1]→W arising from such diagrams as the one above.

Moss discussed Massey products on the Adams spectral sequence and used them to describe the
di�erentials in this spectral sequence, see [20]. Furthermore, in the same paper he proved that under
certain conditions for a convergent Adams spectral sequence one can �nd an element in the Massey
product of permanent cycles converging to an element in the corresponding Toda bracket. This was
generalized by Belmont and Kong for spectral sequences arising from towers in an arbitrary symmet-
ric monoidal stable topological model category and with a multiplicative Toda bracket instead of a
composition Toda bracket, see [4].

We will use the multiplicative structure of décalage spectral sequences on associative algebra objects
in Tow(Sp) to de�ne Massey products on these spectral sequences. The goal then is to discuss a similar
statement as the result by Belmont and Kong and give a potential proof strategy. In particular, we
will need the result relating spectral sequences from exact couples with the décalage spectral sequence,
as the paper by Belmont and Kong is written in the language of exact couples. The statement is as
follows.

Pretheorem. Suppose we have a towerX ∈ Tow(Sp) with a multiplication µ : X⊗X → X, associative
up to coherent homotopy; and X(−∞) := colimZX. Consider the associated multiplicative décalage
spectral sequence En,sr (X)⇒ πnX(−∞), which we assume to be weakly convergent. Let

a ∈ En,sr (X), a′ ∈ En′,s′
r (X), a′′ ∈ En′′,s′′

r (X)

be permanent cycles converging as in the set-up of Section 6.2 to

α ∈ πnX(−∞), α′ ∈ πn′X(−∞) , α′′ ∈ πn′′X(−∞)
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such that aa′ and a′a′′ are dr-boundaries and αα
′ and α′α′′ are null-homotopic. Then under a certain

hypothesis, there exists an element in the Massey product ⟨[a], [a′], [a′′]⟩ ⊂ Er+1(X) converging to an
element in the multiplicative Toda bracket ⟨α, α′, α′′⟩.

For this thesis, we will assume knowledge of category theory, basic knowledge of∞-categories as well as
a background in algebraic topology. For a �rst introduction in ∞-categories, we refer to [14]. We will
provide an introduction in stable and (symmetric) monoidal ∞-categories as well as a description of
the∞-category of spectra in Chapter 2 and 3. Before this, in Chapter 1, we will brie�y discuss spectral
sequences and spectra, hence prior knowledge of spectral sequences is not necessary, but it is advisable
as spectral sequences can seem rather complicated at �rst sight. In Chapter 4, we will discuss the
décalage functor and Hedenlund's proof of multiplicativity of the resulting décalage spectral sequence.
In Chapter 5, we will relate the décalage spectral sequence to one obtained via exact couples. In
Chapter 6, we will de�ne Massey products and Toda products and discuss their relation. In particular,
we will give a proof strategy for our main statement.
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1 Spectra and Spectral Sequences

We will start with some preliminaries on spectra and spectral sequences. Spectra of spaces are histor-
ically used to determine stable behaviour of spaces, which is motivated by Freudenthal's suspension
theorem. We can also view spectra as (co)homology theories and vice versa, see [10, �. 4.E].

On the other hand, spectral sequences are a useful tool for computations of homotopy and (co)homology
groups. They can be used to relate generalized (co)homology theories with (co)homology of spaces,
amongst other applications.

1.1 Spectral Sequences

We will start with a discussion of spectral sequences and the way they can be graded, as well as what
it means for spectral sequences to converge.

De�nition 1.1. Let R be a ring. Then a spectral sequence of R-modules consists of

� R-modules Er for r ≥ 1,

� R-module homomorphisms dr : Er → Er with the property that dr ◦ dr = 0,

� isomorphisms ϕr : Er+1 → H(Er) := ker(dr)/ im(dr).

We refer to a spectral sequence (Er, dr) as a cohomological spectral sequence if all modules Er
are bigraded and the di�erential has bidegree (r, 1− r). That is, for each i, j ∈ Z we get that

dr : E
i,j
r → Ei+r,i−r+1

r ,

and Ei,jr+1 = ker(dr : E
i,j
r → Ei+r,i−r+1

r )/ im(dr : E
i,j
r → Ei−r,i+r−1

r ). Similarly, a homological spec-

tral sequence has a di�erential with bidegree (−r, r + 1) and a spectral sequence is Adams graded
if the di�erential dr : Er → Er has bidegree (r, r − 1).

Remark 1.2. The grading conventions are somewhat arbitrary; one can move from one to another via
linear transformations. When visualizing a spectral sequence, the �rst index is usually placed on the
x-axis and the second is placed on the y-axis. The exception is the Adams graded spectral sequences.
This is often written down with s on the vertical axis, and t−s on the horizontal axis, where t−s is the
total degree of an element x ∈ Es,tr . This changes the bidegree of the di�erential dr to (−1, r) relative
to the x and y-axis. That is, if E denotes an Adams graded spectral sequence, then by placing s on the
x-axis and t− s on the y-axis, we obtain the spectral sequence Ẽ which then satis�es Ẽn,qr = Eq,n+qr ,
with n on the x-axis and q on the y-axis. The total degree then changes to n+ q − q = n. The latter
grading convention will be used in this thesis.

Classically, one can construct spectral sequences using exact couples, see [13] for more details. In
short, the method goes as follows. Consider R-modules (E,A) together with maps i, j, k such that the
triangle

A A

E

i

jk

is exact at every corner. This is also called an exact couple. Set d = j ◦ k. Then d ◦ d = 0. From this
we can derive another exact couple

A2 A2

E2

i2

j2k2
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where A2 := im(i) ⊂ A and E2 := H(E, d) = ker(d)/ im(d) and the maps are de�ned by

� i2 = i |im(i);

� k2[e] = k(e);

� j2(a) = j(b) for a = i(b).

We leave it to the reader to check that these maps are indeed well-de�ned and yield an exact couple.
Iterating this process on the resulting derived exact couple, we get a spectral sequence where
Er+1(X) ∼= H(Er, dr = jrκr) by de�nition. In fact, as a quotient of the E1-page, the Er−page of this
spectral sequence can be rewritten as

Er ∼=
κ−1(im(ir−1)

j(ker(ir−1)
.

Remark 1.3. Applying this method to double cochain complexes and its total complex, this con-
struction is what results in the well-known cohomological Serre spectral sequence. Furthermore, if the
double complexes are multiplicative, this yields a product structure on the spectral sequence. For a
precise construction, we refer to [6]. Other spectral sequences which can be constructed using exact
couples include the Atiyah-Hirzebruch spectral sequence, see [13].However, if we want to consider prod-
uct structures on spectral sequences in general, looking at them from the perspective of exact couples
makes it very hard to determine well-de�ned product structures on spectral sequences.

Next, we remark that we can form a of spectral sequences, SSeq, by de�ning morphisms as follows.

De�nition 1.4. Let (Dr, d
D
r , ϕ

D
r ) and (Er, d

E
r , ϕ

E
r ) be two spectral sequences. Then a map of spectral

sequences g : D → E consists of morphisms

gr : Dr → Er

such that the maps gr are compatible with the structure maps of the spectral sequences. That is,

gr ◦ dDr = dEr ◦ gr and H(gr) ◦ ϕDr = ϕEr ◦ gr+1.

Often one is interested in whether a spectral sequence converges or not and if so, to what. We follow
Boardman [5, p. 63] for the de�nition of convergence.

De�nition 1.5 (E∞-page). Let (En,sr , dr, ϕr) be a spectral sequence. Then we have subgroups

0 = Bn,s
1 ⊂ Bn,s

2 ⊂ . . . Zn,s2 ⊂ Zn,s1 = En,s1 ,

where Zn,sr consists of those elements of En,s1 which are killed by d1, . . . dr, i.e. dr-cycles. Similarly,
Bn,s
r consists of those elements of En,s1 which lie in the image of d1, . . . dr, i.e. dr-boundaries. Then

we have

En,sr
∼=
Zn,sr−1

Bn,s
r−1

.

Furthermore, we de�ne

Zn,s∞ :=
⋂
r

Zn,sr ,

of which the elements are called the in�nite cycles, and

Bn,s
∞ :=

⋃
r

Bn,s
r ,

of which the elements are called the in�nite boundaries. Next, we de�ne the E∞−page by

En,s∞ :=
Zn,s∞
Bn,s

∞
.

Hence on E∞ all in- and outgoing di�erentials are zero.
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Example 1.6. In the case of the spectral sequence obtained via exact couples we have Zr = κ−1(im(ir−1))
and Br = j(ker(ir−1)).

De�nition 1.7 (Convergence). Let (En,sr , dr, ϕr) be a spectral sequence. Let M∗ be a graded ring.
Then we say that Er converges weakly to M , often written En,s2 =⇒ Mn, if

� there is an exhaustive �ltration on M∗, i.e.

0 ⊆ · · · ⊆ F−1M ⊆ F 0M ⊆ F 1M ⊆ · · · ⊆M

with M =
⋃
F iM ;

� there are isomorphisms

En,s∞
∼=

F sMn

F s+1Mn

for all n, s ∈ Z.

We say that Er converges to M if Er converges weakly to M and the �ltration is Hausdor� as well.
That is, 0 =

⋂
F iM. Lastly, we say that Er converges strongly to M if Er converges weakly to M

and the �ltration is complete Hausdor�. For a precise de�nition of this, we refer to [5, Part I].

1.2 Spectra

In this section we discuss spectra from several points of view. Firstly we look at them from the
perspective of spaces.

De�nition 1.8. A spectrum consists of an in�nite sequence of pointed spaces {Xn}n∈Z together with
maps ΣXn → Xn+1.

Example 1.9. The simplest example is the sphere spectrum S, which is de�ned by Sn = Σn(∗), i.e. the
n-sphere. More generally, for any pointed topological space X, we have the suspension spectrum

Σ∞X, de�ned by Σ∞Xn = ΣnX and the obvious maps, with X−n = X for all n ∈ N.

Example 1.10. Another important example of a spectrum consists of the Eilenberg-MacLane spaces.
Recall that for an abelian group A, n ∈ N, the Eilenberg-MacLane spaces K(A,n) are determined by

πk(K(A,n), A) ∼=

{
A for k = n

0 else

and unique up to weak homotopy equivalence. Furthermore, we have weak homotopy equivalences
K(A,n)→ ΩK(A,n+ 1), which makes the Eilenberg-Maclane spaces of A into a spectrum by taking
the adjoints of these equivalences.

Such a spectrum, where the adjoint maps of the suspension maps into the loop spaces are in fact
weak equivalences, is also called a Ω-spectrum. A space X0 admits a delooping if we can write
X0 ≃ ΩX1 ≃ ΩX2 . . . .

Originally, the motivation for came from studying homotopy groups of spheres and the Freudenthal
Suspension Theorem, which states the following, see also [10, Cor. 4.24].

Theorem 1.11. Let X be an (n − 1)−connected CW complex. Then πi(X) → πi+1(ΣX) induced by
taking the suspension functor is an isomorphism for i < 2n− 1 and surjective for i = 2n− 1.

As a consequence, for any suitable pointed space X, the sequence

πk(X)→ πk+1(ΣX)→ πk+2(Σ
2X)→ . . .

must eventually stabilize.
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De�nition 1.12. The k'th stable homotopy group of a pointed space X is de�ned as

πstk (X) := colimn πk+n(Σ
nX)

In other words, we consider the suspension spectrum of X and its homotopy groups and see where
they stabilize. For the sphere spectrum S, the k'th homotopy group of S is given by πstk (∗). In general,
if we have a spectrum {Xn}n≥N, its k'th homotopy group is given by

πstk colimn πk+n(Xn).

Alternatively, we can view spectra as generalized reduced cohomology theories. Indeed, the suspension
isomorphisms of a generalized cohomology theory give rise to spectra and in turn any spectrum de�nes
a generalized (co)homology theory by Brown's Representability Theorem, see [10, Thm. 4E.1].

Theorem 1.13. Every reduced cohomology theory on the category of base-pointed CW complexes and
base-point preserving maps has the form hn(X) = [X,Kn]∗, where {Kn}n∈Z. is a loop spectrum.
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2 Monoidal ∞-categories

2.1 Monoidal ∞-categories

Since we will look at spectral sequences from an in�nity-categorical perspective, the following two
chapters will be concerned with generalizing certain 1-categorical concepts to an∞-categorical setting,
which go somewhat further than a �rst introduction in ∞-categories such as in [14]. In this chapter,
we will consider what it means for∞-categories to have a monoidal structure. Recall that an ordinary
monoidal category C is a category with a pairing ⊗ and certain natural transformations which satisfy
certain associativity conditions, also called MacLane's pentagram, see [21, App. E.2].

Alternatively, it turns out that we can encode the monoidal structure of a monoidal category in
one single map, which is a Grothendieck op�bration, see [9, �. 4.1]. It is via this viewpoint we can
de�ne monoidal ∞-categories, as de�ning associativity conditions via a "pentagram" would result in
an in�nite amount of conditions to set. In this section we mostly use the survey made by Moritz Groth
[9], which in turn relies heavily on multiple works by Lurie. We start with the following analogue of
ordinary categorical coCartesian lifts.

De�nition 2.1. Let C,D be ∞-categories, p : C → D a functor. Then a morphism f : c1 → c2 in C is
p-coCartesian or a p-coCartesian lift of α = p(f) : d1 → d2 if the map

ϕ : Cf/ → Cc1/ ×Dp(c1)/
Dp(f)/

is a trivial Kan �bration.

Here the map ϕ is induced by the diagram

Cf/ Dp(f)/

Cc1/ Dp(c1)/,

p

p

where the vertical arrows are given by the forgetful functor. This means that if we have a 2-simplex σ

d2

d1 d

p(f)

and a lift c1 → e in C of d1 → d then we have a unique lift of the above 2-simplex in C, i.e.

c2

c1 e,

f

up to equivalence. Next, consider a map p : C → D between∞-categories. Then we have the following
de�ntion as analogue of Grothendieck op�brations for ordinary categories.

De�nition 2.2. A map p : C → D between ∞-categories is a coCartesian �bration if p is an inner
�bration and for every vertex c ∈ C and morphism α : p(c) → d in D there is a p-coCartesian lift
f : c→ c′ of α in C.

We can then de�ne monoidal ∞-categories as follows.

De�nition 2.3. (Monoidal∞-category) Amonoidal∞-category is a coCartesian �bration p : C⊗ →
N(∆op) ∼= N(∆)op such that the Segal maps

σn : C⊗[n] → (C⊗[1])
×n

induced by ⟨i−1, i⟩op : [n]→ [1] in ∆op are equivalences. The �ber C := C⊗[1] is the underlying monoidal
∞-category.
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In particular, this implies that for a monoidal ∞-category the �ber C⊗[0] is contractible. Also, the map

s0 : [0] → [1] in ∆op induces a functor s : ∗ ≃ C⊗[0] → C
⊗
[1] which yields a unit in C⊗[1] up to equivalence.

Furthermore, by de�nition the maps ⟨0, 1⟩ : [1]→ [2] and ⟨1, 2⟩ : [1]→ [2] yield an equivalence

σ2 : C⊗[2] → C
⊗
[1] × C

⊗
[1]

Write σ−1
2 for a homotopy inverse. Then together with the functor induced by d1 : [2] → [1] we get a

map

C⊗[1] × C
⊗
[1]

σ−1
2−−→ C⊗[2] → C

⊗
[1],

de�ned up to equivalence. This yields an associative and unital structure on C⊗[1] up to coherent

homotopy. Furthermore, for a monoidal ∞-category C = C⊗[1] the homotopy category h(C) is in fact a
monoidal category in the ordinary categorical sense.

Example 2.4. One way of generating monoidal ∞-categories is by taking the nerve of ordinary
monoidal categories. That is if p : Cot → ∆op is an ordinary monoidal structure, then taking the nerve

N(p) : N(C⊗)→ N(Dop)

yields a monoidal ∞-category. In particular, since id : ∆op → ∆op is isomorphic to the Grothendieck
construction on the one-point category and thus a monoidal structure, we have that

id = N(id) : N(∆op)→ N(∆op)

is a monoidal ∞-category. For more on this, as well as a generalization we refer to [9, Ex. 4.15].

Analogous to the ordinary categorical sense, we can de�ne algebra objects of a monoidal ∞-category.
We note that for ordinary categories, these are de�ned as objects A within a monoidal category C
together with maps µ : A⊗A→ A and η : 1M → A compatible with the monoidal structure in C. For
instance, monoids or algebra objects in (Ab,⊗) are rings. Again, such a de�nition is hard to translate
in a convenient way to the ∞-categorical setting. However, the algebra objects can also be described
using maps, see [9, Prop. 4.21], which we can take as a de�nition for ∞-categories.

De�nition 2.5. Let α : [m] → [n] be a morphism in ∆. Then α is convex, if α is injective and the
image is an interval, i.e., im(α) = [α[0], α(m)] ⊂ [n].

De�nition 2.6. Let p : C⊗ → N(∆op) be a monoidal ∞-category. Then an (associative) algebra

object of C is a section s : N(∆op)→ C⊗ such that arrows in N(∆op) de�ned by convex maps α in ∆
are sent to p-coCartesian arrows in C⊗.

This results in a map on A[1] which is associative and unital up to coherent homotopy. Furthermore,
algebra objects are in fact a special case of functors between monoidal ∞-categories which preserve
the monoidal structure to some extent. To be more precise, algebra objects are lax monoidal functors.
These are de�ned as follows.

De�nition 2.7. Let p : C⊗ → N(∆op) and q : D⊗ → N(∆op) be two monoidal ∞-categories. Then a
functor F : C⊗ → D⊗ over N(∆op), i.e.

C⊗ D⊗

N(∆op)

F

p

q

is called lax monoidal if it sends p-coCartesian lifts of convex maps in N(∆op) to q-coCartesian
maps in D⊗. Furthermore, such a functor F is called monoidal or strong monoidal if it sends all
p-coCartesian arrows in C⊗ to q-coCartesian maps in D⊗.
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In particular, we write Funlax(C⊗,D⊗) and Funmon(C⊗,D⊗) for the full subcategories of the∞-category
FunN(∆op)(C⊗,D⊗) of lax and strong monoidal functors respectively. Also, we get an ∞-category of
associative algebra objects of a monoidal ∞-category p : C⊗ → N(∆op) via

AlgA∞(C⊗) := Funlax(N(∆op), C⊗).

Indeed, sections of p : C⊗ → N(∆op) lifting convex maps to p-coCartesian arrows are precisely the lax
monoidal functors between the identity on N(∆op) and p.

2.2 Symmetric Monoidal ∞-categories

So far we have only discussed monoidal ∞-categories and functors between them. However, it is
desirable to have an ∞-categorical de�nition of symmetric monoidal categories as well. For this we
note that ∆, since it is ordered, cannot give us the notion of symmetry we want. Therefore we consider
the following category.

De�nition 2.8. Let Fin∗ be the category of �nite pointed sets, which is spanned by objects ⟨n⟩ =
{0, . . . , n}, n ∈ N, with 0 as base-point and base-point preserving maps.

First, as an analogue of the maps ⟨i, i− 1⟩ : [1]→ [n] in ∆, we consider projection maps pi : ⟨n⟩ → ⟨1⟩
in Fin∗ de�ned by pi(j) = 0 for j ̸= i and pi(i) = 1. We then have the following de�nition.

De�nition 2.9. A symmetric monoidal ∞-category is a coCartesian �bration p : C⊗ → N(Fin∗)
such that the Segal maps

sn : C⊗⟨n⟩ →
(
C⊗⟨1⟩

)×n
,

induced by projections pi : ⟨n⟩ → ⟨1⟩ are equivalences.

Then for a symmetric monoidal ∞-category, the map m : ⟨2⟩ → ⟨1⟩ by 1, 2 7→ 1 induces a map

C⊗⟨1⟩ × C
⊗
⟨1⟩

s−1
n−−→ C⊗⟨2⟩ → C

⊗
⟨1⟩,

where s−1
n is an inverse for the equivalence given by the Segal maps. Furthermore, as before, we get a

unit induced by the constant map ⟨1⟩ → ⟨0⟩. Additionally, the twist map t : ⟨2⟩ → ⟨2⟩ will give C⊗⟨1⟩ a
commutative structure, up to homotopy.

Example 2.10. As for ordinary monoidal categories, an ordinary symmetric monoidal category can
also be de�ned by a Grothendieck op�bration p : C⊗ → Fin∗ satisfying the Segal condition and taking
the nerve then yields a symmetric monoidal ∞-category. Also, N(id) : N(Fin∗) → N(Fin∗) is a
symmetric monoidal ∞-category. Conversely, the homotopy category of a symmetric monoidal ∞-
category is an ordinary symmetric monoidal category.

As before, we can de�ne commutative algebra objects and symmetric monoidal functors. In particular,
as an analogue of convex maps, we have the following de�nition.

De�nition 2.11. A morphism α : ⟨m⟩ → ⟨n⟩ in Fin∗ is called inert if α−1(i) is a singleton for every
i ≥ 1.

In particular, the projection maps pi from before are inert. We can then now de�ne the desired algebra
objects and functors.

De�nition 2.12. Let p : C⊗ → N(Fin∗) and q : Dot → N(Fin∗) be two symmetric monoidal ∞-
categories. Then a functor F : C⊗ → D⊗ over N(Fin∗), i.e.

C⊗ D⊗

N(∆op)

F

p

q
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is called lax symmetric monoidal if it sends p-coCartesian lifts of inert maps in N(Fin∗) to q-
coCartesian maps in D⊗. Furthermore, such a functor F is called symmetric monoidal or strong
symmetric monoidal if it sends all p-coCartesian arrows in C⊗ to q-coCartesian maps in D⊗.

As before, we have ∞-categories FunsLax(C⊗,D⊗) ⊂ FunsMon(C⊗,D⊗) spanned by lax and (strong)
symmetric monoidal functors in FunN(Fin∗)(C⊗,D⊗). We then de�ne commutative algebra objects

E of a symmetric monoidal ∞-category C⊗ to be the lax monoidal functors between the identity
N(Fin∗)→ N(Fin∗) and C⊗ → N(Fin∗). We write

AlgE∞(C⊗) = FunsLax(N(Fin∗), C⊗)

for the ∞-category of commutative algebra objects on C⊗.

Since we want to be able to determine whether functors are monoidal or not, we note that we can
construct new monoidal functors from previously existing ones in the following way.

Proposition 2.13. Let C⊗,D⊗, E⊗ be symmetric monoidal ∞-categories.

� Then the composition G ◦ F : C⊗ → E⊗ of two (lax) symmetric monoidal functors F,G is (lax)
symmetric monoidal.

� There is an inverse equivalence between the ∞-category of lax symmetric monoidal right-adjoints
C⊗ → D⊗ and oplax symmetric monoidal left-adjoints D⊗ → C⊗ [11, Prop. A]

Remark 2.14. As is mentioned on [11, p. 2], a symmetric monoidal ∞-category can be described via
a coCartesian �bration C⊗ → N(Fin∗), but also by a Cartesian �bration C⊗ → N(Finop∗ ). An oplax
symmetric monoidal functor is then a functor between Cartesian �brations over N(Fin∗) which sends
Cartesian lifts of inert maps to Cartesian maps. In particular, any strong symmetric monoidal functor
is also oplax symmetric monoidal.

Remark 2.15. Symmetric monoidal ∞-categories are in turn speci�c cases of ∞-operads. Indeed,
ordinary symmetric monoidal categories are speci�c kinds of coloured operads, which are collections
of objects together with some kind of "multilinear" maps. This in turn can be generalized to the
∞-categorical setting. For the precise formulation of this we refer to [16, �. 2.1.1].
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3 Stable ∞-categories

3.1 Stable ∞-categories and t-structures

In this section, we will discuss stable ∞-categories, t-structures and the ∞-category of spectra. An
interesting property of stable ∞-categories is that their homotopy category is triangulated and �ber
and co�ber sequences are the same. We will follow the approach of Groth [9, Section 5] and Lurie [16,
Ch. 1] in de�ning stable in�nity categories and further discussion.

De�nition 3.1. Let C be an ∞-category. We say that C is pointed if it has a zero object. That is,
if it has an object which is both terminal and initial in C.

In particular, let C be a pointed ∞-category, say with zero object 0. Then for all objects x, y ∈ C the
mapping spaces MapC(0, y) and MapC(x, 0) are contractible, hence we have a map

x y

0

0x,y

uniquely de�ned up to a contractible Kan complex.

Example 3.2. Let C be an∞-category with a terminal object ∗. Then the coslice∞-category C∗/ is a
pointed ∞-category, with a zero object ∗ → ∗. In particular, we write S∗ := S∗/ for the ∞-category of
pointed spaces. Note that ∗ := ∆0. The zero object ∆0 → ∆0 in S is also referred to as the 0-sphere,
and denoted by S0.

De�nition 3.3. Let C be a pointed ∞-category. Then a triangle in C is a diagram q : ∆1 ×∆1 → C
given by

x y

0 z

f

g

where 0 is a zero object of C. Furthermore, we say that a triangle q : ∆1 × ∆1 → C is exact or a
�ber sequence if it is a pullback square in C, i.e. q : ∆1 ×∆1 ∼= (Λ2

2)
◁ → C is a limit cone. Similarly,

we say that q : ∆1 × ∆1 → C is coexact or a co�ber sequence if it is a pushout square in C, i.e.
q : ∆1 ×∆1 ∼= (Λ2

0)
▷ → C is a colimit cone.

If we have a triangle q : ∆1 ×∆1 → C by

x y

0 z

f

g

which is a �ber sequence, we refer to x as a �ber of g, whereas if q is a co�ber sequence, we refer to z
as a co�ber of f . In particular, �bers and co�bers are unique up to equivalence.

If enough limits and colimits exist in an∞-category, we can de�ne the loop and suspension functors.
In particular, suppose C is a �nitely complete and cocomplete, pointed ∞-category. Then we can
consider the full subcategory

CΣ ⊆ Fun(∆1 ×∆1, C)

spanned by co�ber sequences in C with zero objects in both the upper right and the lower left corner,
i.e. pushout squares
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x 0′

0 y.
⌜

Note that in a way, these diagrams are determined by the objects x ∈ C. Similarly, we can consider
the full subcategory

CΩ ⊆ Fun(∆1 ×∆1, C)

spanned by �ber sequences

x 0′

0 y

⌟

in C. In a way, these diagrams are determined by the objects x ∈ C, in particular, as a consequence of
[15, 4.3.2.15] the evaluation maps

ev(0,0) : CΣ → C

and
ev(1,1) : CΩ → C

are trivial Kan �brations. Hence they admit sections sΣ and sΩ which are unique up to equivalence
[17, Cor. 1.5.5.5]. We then de�ne the suspension and loop functors as follows.

De�nition 3.4 (Suspension and loop). Let C be a pointed �nitely complete and �nitely cocomplete
∞-category. Then we de�ne the suspension functor Σ as the composition

Σ: C sΣ−→ C
ev(1,1)−−−−→ C.

Similarly, the loop functor is de�ned as the composition

Ω: C sΩ−→ C
ev(0,0)−−−−→ C.

In particular, for any object c ∈ C, Σ(c) �ts into a diagram

c 0′

0 Σ(c).
⌜

which is unique up to equivalence. We have a pullback diagram instead of a pushout for Ω(c).Moreover,
the following theorem holds.

Theorem 3.5. Let C be a �nitely complete and �nitely cocomplete pointed ∞-category. Then the
suspension functor Σ is left adjoint to the loop functor Ω.

Remark 3.6. Technically, we can de�ne the suspension functor and loop functor if every morphism
in C admits a co�ber and �ber respectively. We do not require the existence of all �nite (co)limits for
the de�nition of each to be well-de�ned. Also, the adjunction above holds if both functors are de�ned.

Proof sketch. The unit of this adjunction η : idC → Ω ◦ Σ is given by setting, for every c ∈ C the
morphism ηc to be the map ηc : c → ΩΣ(c) induced by the diagram by universal property of the
pullback
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c 0′

0 Σ(c).
⌜

In turn, we can de�ne a co-unit ϵ : Σ ◦Ω→ idC by setting ϵc : ΣΩ(c)→ c to be the morphism induced
by the diagram

Ω(c) 0′

0 c.
⌜

Intuitively, it is not hard to see that these indeed yield an adjunction in the sense of [17, 6.2.1.1]. This
can also be proved by using that MapC(−, d) : Cop → S preserves limits.

For stable ∞-categories, the suspension and loop functor satisfy an even stronger statement. In
particular, we have the following de�nition [16, 1.1.1.9].

De�nition 3.7. Let C a pointed ∞-category. Then C is stable if

� every morphism in C admits a �ber and a co�ber

� every triangle is a co�ber sequence if and only if it is a �ber sequence.

Note that if C is stable, then both suspension and loop functor are well-de�ned and CΣ = CΩ. So then
Σ and Ω are mutually inverse equivalences. Even stronger, we have the following theorem [16, Cor.
1.4.2.27] [9, Thm. 5.12].

Theorem 3.8. Let C be a pointed ∞-category. Then the following are equivalent.

� C is stable

� C has all �nite colimits and Σ: C → C is an equivalence.

� C has all �nite limits and Ω: C → C is an equivalence.

Furthermore, if C is pointed and �nitely complete and cocomplete, then C is stable if and only if every
square is a pullback if and only if it is a pushout.

Another kind of nice ∞-categories are presentable ∞-categories. These are de�ned as follows, see also
[15, p. 312].

De�nition 3.9. An ∞-category C is presentable if it has all (small) colimits and is accessible.

Roughly this means that C is generated under suitable �ltered colimits by a small full subcategory.

Example 3.10. The∞-category S of spaces is presentable, in particular it is generated under colimits
by one object, ∆0 = ∗.

The reason why presentable ∞-categories are relevant is mostly because as with ordinary categories,
we have an adjoint functor theorem, see also [15, Cor. 5.5.2.9]. This states the following.

Theorem 3.11. Let F : C → D be a functor between presentable ∞-categories. Then

� F has a right adjoint if and only if it preserves small colimits.

� F has a left adjoint if and only if it preserves small limits and it is accessible.
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3.2 The homotopy category of a stable ∞-category

In this section, we will describe the structure of the homotopy category of a stable∞-category. For the
notion of an additive category we refer to [16, 1.1.2.1]. We will state the de�nition of a triangulated
category, as de�ned by Verdier [16, 1.1.2.5].

De�nition 3.12. A triangulated category is an additive category C together with an equivalence
Σ: C → C, also denoted by X 7→ X[1], and a collection of distinguished triangles

X → Y → Z → X[1],

satisfying Verdier's four axioms, see [16, 1.1.2.5] for the precise formulation.

Remark 3.13. For X ∈ C a triangulated category, we write X[n] for the n-fold interation of Σ, for
any n ∈ Z.

Theorem 3.14. Let C be a stable ∞-category. Then hC has the structure of a triangulated category.

Proof sketch. While we will not check all axioms, but we will give a description of the triangulated
structure on the category hC. Firstly, since C is stable, it is in particular pointed. Hence C has a zero
object, which also yields a zero object of hC. Furthermore, the suspension functor is an equivalence
Σ: C → C, which also yields an equivalence Σ: hC → hC.

For additivity, to see that homhC(c, d) is a group, we note that homhC(c, d) ∼= π0MapC(c, d).
Furthermore, since pullbacks and pushouts in the∞-category of (pointed) spaces are precisely (pointed)
homotopy pullbacks and pushouts of simplicial sets, we have that the suspension functor Σ is in fact
determined by equivalences MapC(Σ(c), d) ≃ ΩMapC(c, d). Furthermore, as for spaces, we have that
πnΩ ≃ πn+1, hence we get that

homhC(Σ(c), d) ∼= π0MapC(Σ(c), d)
∼= π0ΩMapC(c, d)
∼= π1mapC(c, d).

So homhC(Σ(c), d) is a group. Since Σ is an equivalence, every object in hC can be written as Σ(c′)
for some object c′ ∈ C. Therefore for all c, d ∈ C, we have that homhC(c, d)isagroup. Also, hC has all
�nite products and coproducts, see [16, 1.1.2.9], so hC is an additive category.

Next, we can de�ne the distinguished triangles as follows [16, Def. 1.1.2.11] [9, p. 62]. In a stable
∞-category C, we can extend any co�ber sequence

x y

0 z

f

⌜
g

to a diagram

x y 0′

0 z w.

f

⌜
g

⌜h

Since a pasting lemma holds similarly for ∞-categorical pushouts as in the ordinary categorical sense,
it follows that the outer diagram is also a co�ber sequence, hence we get a morphism ϕ : Σ(x) ≃ w by
de�nition of the suspension functor. This yields a sequence

x
f−→ y

g−→ z
ϕ◦h−−→ w[1],
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and a well-de�ned triangle in hC when passing to homotopy classes. We then set a triangle in hC to
be distinguished if it is isomorphic to a triangle

x
[f ]−→ y

[g]−→ z
[ϕ◦h]−−−→,

as discussed above. In [16, Thm. 1.1.2.14] it is proved that this class of distinguished triangles in fact
satis�es Verdier's axioms, hence hC is a triangulated ∞-category.

3.3 t-structures

In addition to being triangulated, some categories also come with a t-structure, which where introduced
�rst by Beilinson, Bernstein and Deligne in [3]. However, we will mostly follow Lurie's discussion of
this in [16, �. 1.2.1].

De�nition 3.15. Let C be a triangulated ordinary category. Then a t-structure on C consists of a
pair of full subcategories C≤0 and C≥0 satisfying the following properties:

� for every X ∈ C≥0 and Y ∈ C≤0, we have that homC(X,Y [−1]) = 0.

� We have inclusions C≥0[1] ⊆ C≥0 and C≤0[−1] ⊆ C≤0.

� For any X ∈ C, there exists a distinguished triangle

X ′ → X → X ′′ → X ′[1]

where X ′ ∈ C≥0 and X ′′ ∈ C≤0[−1].

Remark 3.16. For convenience, we write C≥n := C≥0[n] for the image of C≥0 under the n-fold iteration
of the map Σ. Similarly, we write C≤n := C≤0[n].

Theorem 3.17. Let C be a triangulated category with a t-structure. Then ∀n ∈ Z, the inclusion
C≤n → C admits a left adjoint. Similarly, the inclusion C≥n → C admits a right adjoint. We denote
these left and right adjoints by τ≤n and τ≥n respectively [3, Prop. 1.3.3].

For stable ∞-categories, we saw that hC is in fact a triangulated ∞-category. Hence we can de�ne
t-structures on stable ∞-categories as follows, see also [16, Def. 1.2.1.4].

De�nition 3.18. Let C be a stable ∞-category. Then a t-structure on C is a t-structure on the
homotopy category hC. We write C≤n, C≥n for the full subcategories spanned by objects of hC≤n and
hC≥n respectively.

As in the ordinary categorical case, we have the following theorem, see also [16, Prop. 1.2.1.5].

Theorem 3.19. Let C be a stable ∞-category. Then ∀n ∈ Z, the inclusion C≤n → C admits a left
adjoint. Similarly, the inclusion C≥n → C admits a right adjoint. We denote these left and right
adjoints by τ≤n and τ≥n respectively. Furthermore, for every n ∈ Z, the maps τ≤n, τ≥n map C≤m into
itself and for any object X ∈ C, there is a co�ber sequence in C

τ≥nX → X → τ≤n−1X.

As a consequence, all C≥m are closed under colimits and all C≤m are closed under limits.

Remark 3.20. Note that co�ber sequences τ≥nX → X → τ≤n−1X are also �ber sequences. Also, any
co�ber sequence τ≥nX → X → τ≤n−1X in a stable category C corresponds to a diagram

τ≥nX X

0 τ≤n−1X

f

⌜
g
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which, since C has all �nite colimits and hence all co�bers, can be extended to a diagram

τ≥nX X 0′

0 τ≤n−1X W

f

⌜
g

⌜

which will precisely yield a distinguished triangle in hC as de�ned in the previous section. Indeed, in
general distinguished triangles in hC are given by (co)�ber sequences in C, hence the terms distinguished
triangle and co�ber sequence are sometimes used interchangeably.

De�nition 3.21. Let C be a stable ∞-category. We de�ne C♡, the heart of C, to be the full subcat-
egory of C given by C≤0 ∩ C≥0 ⊆ C.

Remark 3.22. We have that h(C♡) = (hC)♡ := hC≤0 ∩ hC≥C . Hence as a property of t-structures on
ordinary categories, h(C♡) is an abelian category, see [3, Thm. 1.3.6]. Furthermore, C♡ is equivalent
to the nerve of its homotopy category h(C♡) [16, Rk. 1.2.1.12].

Lastly, we de�ne a homotopy group functor on stable ∞-categories by

πn := τ≥0 ◦ τ≤0 ◦ [−n] : C → C♡.

Remark 3.23. There is an equivalence of functors C → C≤m ∩ C≥n

θ : τ≤m ◦ τ≥n → τ≥n ◦ τ≤m

for every m,n ∈ Z [16, Prop. 1.2.1.10], hence it does not matter if we de�ne π0 = τ≥0 ◦τ≤0 or the other
way around.

We conclude this paragraph with a discussion of a possible interaction between t-structures and
monoidal structures.

De�nition 3.24. Let F : C → D be a functor between stable ∞-categories. Then F is exact if and
only if F preserves 0-objects and maps �ber sequences (or exact triangles) to �ber sequences.

Remark 3.25. This is equivalent to F preserving �nite limits or colimits [16, 1.1.4.1].

De�nition 3.26. A t-structure on a symmetric monoidal stable ∞-category C is compatible with

the monoidal structure [12, App. II.A] if

(1) the tensor product ⊗ : C × C → C is exact in both variables,

(2) the monoidal unit is contained in C≥0,

(3) C≥0 is closed under tensor products.

3.4 The ∞-category of spectra

In the last paragraph of this section we de�ne and discuss the ∞-category of spectra. In particular,
we will look at the ∞-category of spectrum objects in C, written as Sp(C), for a su�ciently nice
pointed ∞-category, as well as the ∞-category Sp of spectra of spaces and its monoidal structure and
t-structure. For (pre)-spectrum objects, we mostly follow [9, �. 5.2].

De�nition 3.27. Let C be a �nitely (co)complete pointed ∞-category. Then we de�ne a pre-

spectrum object of C to be a functor

X : N(Z× Z)→ C

such that for all i ̸= j the object X(i, j) is a zero object in C.
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We can visualize a pre-spectrum object via a diagram

0 X(n+1,n+1) . . .

0′ X(n,n) 0′′

. . . X(n−1,n−1) 0′′′

By de�nition of the suspension and loop functor, we have induced maps

αn : ΣXn+1 → Xn and βn : Xn → ΩXn+1.

De�nition 3.28. Let X be a pre-spectrum object of C. Then X is a spectrum below n if for every
m < n the maps βm : Xm → ΩXm+1 are equivalences. We write Spn(C) for the full subcategory of
Fun(N(Z× Z), C) of spectra below n on C. Furthermore, we say that X is a spectrum object if the
maps βm are equivalences for all m ∈ Z. We write Sp(C) for the ∞-category of spectrum objects of C.

Note, for an ∞-category C which is not pointed with suitable limits, we can set Sp(C) := Sp(C∗).
In particular, for a pointed ∞-category, there is an equivalence Sp(C∗) ≃ Sp(C). Lurie actually �rst
de�nes spectrum objects in ∞-categories before de�ning them for pointed ∞-categories, see [16, �.
1.4.2], but this is in fact equivalent.

Remark 3.29. The de�nition of spectrum objects is equivalent to the following notion. For C an
∞-category with �nite limits, the loop functor on the pointed ∞-category C∗ exists. We can de�ne
Sp(C) to be the limit in Cat∞ of the tower

. . .
Ω−→ C∗

Ω−→ C∗
Ω−→ C∗,

see also [16, Rk. 1.4.25]. Indeed, the objects of Sp(C) are then precisely sequences of pointed objects
{Xn}n∈Z together with equivalences Xn ≃ ΩXn+1 [17, 7.6.6.12]. This yields a spectrum object by
setting X(n, n) = Xn and 0 else.

Example 3.30. Consider S, the∞-category of spaces. Then we set Sp := Sp(S∗) to be the∞-category
of spectra of spaces, often simply referred to as the ∞-category of spectra.

Groth refers to the spectrum of an ∞-category C as the stabilization of C, indeed, the following holds
[16, 1.4.2.17].

Theorem 3.31. Let C be an ∞-category with �nite limits. Then the ∞-category Sp(C) = Sp(C∗) is
stable.

In particular, Sp is a stable∞-category, as S as all small (co)limits. We can de�ne loop and suspension
functors on ∞-categories of spectrum objects as follows.

De�nition 3.32. Let C be a pointed∞-category with �nite limits. The n-th loop spectrum functor

is the evaluation functor Ω∞−n : Sp(C) → C by X 7→ X(n, n). If C is also a presentable ∞-category
and has all �nite colimits, this functor has a left-adjoint Σ∞−n : C → Sp(C), which we refer to as the
n-th suspension spectrum functor, see [9, p. 66].

Example 3.33. In particular, the ∞-category of pointed spaces is presentable, hence we have an
adjunction

Σn−∞
+ ⊣ Ωn−∞

Furthermore, for the ∞-category of spaces, we can in fact give a nice description of Σn−∞
+ , see [9,

p. 65]. Let Dn ⊆ Spn be the full subcategory of spectra below n such that αm : ΣXm → Xm+1 is an
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equivalence for all m ≥ n. Then X ∈ Dn is determined by Xn and the evaluation map evn : Dn → S∗
is a trivial Kan �bration. Hence we have a section of this map, sn, and we set

Σn−∞
+ : S∗ → PSp

to be the composition of sn with the inclusion functor Dn ↪→ PSp . Composed with a localization
functor L : PSp→ Sp, this yields the n'th suspension spectrum functor.

Remark 3.34. We refer to the sphere spectrum S as the image of the zero-sphere S0 ∈ S∗ under Σ∞
+ .

As ∆0 does for S, the∞-category Sp is generated under colimits by the sphere spectrum. Furthermore,
colimit preserving functors F : Sp→ C, for C presentable, are determined by their value on the sphere
spectrum, as are colimit preserving functors on S by their evaluation of the point [9, Prop. 5.3, Cor.
5.27].

For the remainder of this paragraph we will look at a symmetric monoidal structure and a t-structure
on the∞-category Sp .We can look at the∞-category of stable, presentable∞-categories, PrLSt, which
can be endowed with a closed symmetric monoidal structure [9, 5.34], for which Sp is the monoidal
unit. The following theorem will then yield a way to endow Sp with a monoidal structure.

Theorem 3.35. For every symmetric monoidal ∞-category C⊗ → N(Fin) the ∞-category AlgE∞(C)
has an initial object. Moreover, a commutative algebra object E is initial if and only if the unit map
S→ E⟨1⟩ is an equivalence.

Hence Sp corresponds to an initial object in AlgE∞(PrLSt). Now, via straightening-unstraightening,
we have that commutative monoids in Cat∞ are precisely symmetric monoidal ∞-categories, see also
[9, p. 58-59], hence AlgE∞(PrLSt) ≃ PrL,⊗St , the ∞-category of stable, presentable, symmetric monoidal
closed ∞-categories and symmetric monoidal, colimit-preserving functors. This means Sp can be
endowed with a symmetric monoidal structure Sp⊗, of which we call the tensor product the smash

product.

Theorem 3.36. The smash product on Sp is uniquely determined by the following properties:

(1) The functor ⊗ : Sp×Sp→ Sp preserves colimits in both variables.

(2) The sphere spectrum S is the monoidal unit of Sp⊗ .

Next, we de�ne a t-structure on Sp as follows. We set Sp≤−1 to be the full subcategory of Sp on those
objects X for which Ω∞(X) is contractible. This yields a t-structure via [16, Thm. 1.4.3.6.]. The proof
of Theorem 1.4.3.6 also yields that Sp≥0 is the full subcategory of Sp spanned by

{X ∈ Sp | πn(X) ≃ 0 ∀n < 0}

and Sp≤0 is the full subcategory of Sp spanned by

{X ∈ Sp | πn(X) ≃ 0 ∀n > 0}.

Here πn refers to the usual homotopy group functor of spectra. Furthermore, Theorem 1.4.3.6 also
states that the heart of Sp with this t-structure is equivalent to the nerve of the category of abelian
groups, i.e. Sp♡ ≃ N(Ab) and the homotopy group functor πn : Sp → Sp♡ corresponds to the usual
homotopy group functor.

Theorem 3.37. The t-structure on Sp is compatible with the monoidal structure on Sp given by the
smash product [16, Lemma 7.1.1.7].
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4 Décalage

In this section we look at a way of constructing spectral sequences from towers in the ∞-category of
spectra. Furthermore, we can endow the ∞-category of towers of spectra with a symmetric monoidal
structure and we will see that the construction of spectral sequences is in a way compatible with this
structure. This yields a recipe for constructing multiplicative spectral sequences, which are di�cult
to get via traditional methods. This theory is laid out by Hedenlund in her PhD thesis [12] and we
also used De Potter's master thesis [7] as an overview of Hedenlund's theory. For the most part we
will not give proofs, as they are already done in detail by Hedenlund. For interested readers, we
note that both Hedenlund and De Potter give an application: Hedenlund uses décalage to construct
multiplicative Tate spectral sequences and De Potter applies the theory to construct the multiplicative
Leray-Serre-Atiyah-Hirzebruch spectral sequence.

4.1 The ∞-category of towers and the associated graded

We start with a discussion of towers of a stable ∞-category and the associated graded functor.

De�nition 4.1. Let C be a stable∞-category. Then Tow(C) is the∞-category of towers given by the
functor category Fun(N(Zop), C).

Note that for a stable ∞-category, the ∞-category Tow(C) is stable as well since limits and colimits
are computed pointwise. We can visualise a tower as a sequence

· · · → X(i+ 1)→ X(i)→ X(i− 1)→ . . .

of objects in C.

Provided C is endowed with a symmetric monoidal structure, we get a symmetric monoidal struc-
ture on Tow(C) via Day Convolution. See [12, �. II.1.3] for further references. In particular, for
X,Y ∈ Tow(C), we have

(X ⊗ Y )(n) := colimi+j≥nX(i)⊗X(j).

In this case, a map X ⊗ Y → Z in Tow(C) is called a pairing of towers. The unit of this monoidal
structure is the tower de�ned by

1Tow(C)(n) =

{
1C for n ≤ 0

0 else
,

where 1C is the monoidal unit of C. We can visualize this as

· · · ∗ → ∗ → ∗ → 1C → 1C → . . . .

Aside from a monoidal structure, if C is a stable ∞-category with a t-structure, we can de�ne a
t-structure on Tow(C) in the following way [12, �. II.1.4].

De�nition 4.2 (Canonical t-structure on Tow(C)). Suppose C is a stable ∞-category with a t-
structure. Then we de�ne τ can≥0 : Tow(C)→ Tow(C) where for X ∈ Tow(C),

τ can≥0 X(n) := τ≥nX(n).

Here τ≥n comes from the t-structure on C. The essential image of this functor we denote by Towcan≥0 (C),
and it is spanned by the objects

{X ∈ Tow(C) | X(n) ∈ C≥n}.

Remark 4.3. To show that this is indeed a well-de�ned t-structure, by the dual of [16, Prop. 1.2.1.16]
it is enough to show that Towcan≥0 (C) is closed under extensions, which Hedenlund does in [12, Prop.
II.1.22].
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Also, if C is endowed with both a symmetric monoidal structure and a t-structure, this t-structure
works nicely with Day convolution. In particular, the following holds [12, Prop. II.1.23].

Proposition 4.4. Let C be a symmetric monoidal stable ∞-category, with a t-structure that is com-
patible with the monoidal structure. Then the canonical t-structure on Tow(C) is compatible with the
monoidal structure via Day Convolution.

Proof. By De�nition 3.26, there are three things to check, namely that the tensor product is exact
in both variables, that Towcan≥0 (C) contains the monoidal unit and that Towcan≥0 (C) is closed under the
tensor product. Exactness of Day convolution follows from the fact that Day convolution is de�ned by
taking a colimit over tensor products in C. Since colimits commute with colimits, see the dual of [15,
5.5.2.3], and the t-structure on C is compatible with the monoidal structure on C, the tensor on C is
exact in both variables, therefore so is the tensor on Tow(C).

The monoidal unit 1Tow(C) is contained in Towcan≥0 (C), since 1C is contained in C≥0. Next, suppose
X,Y ∈ Tow(C)≥0. For each i, j we have that X(i)⊗Y (j) lies in C≥i+j as X(i) ∈ C≥i and Y (j) ∈ C)≥ j.
Since for m ≥ n we have C≥m ⊆ C≥n and all ∞-categories C≥m are closed under colimits, indeed
X ⊗ Y (n) := colimi+j≥nX(i)⊗X(j) lies in C≥n. So X ⊗ Y is in Tow≥0(C).

De�nition 4.5 (Whitehead Tower). Let C be a stable ∞-category with a t-structure. Then we de�ne
τ≥∗ : C → Tow(C) by

τ≥∗(X)(n) := τ≥n(X).

In other words, τ≥∗ is the composition of the constant functor C → Tow(C) mapping X to the constant
tower at X and the functor τ can≥0 : Tow(C)→ Towcan≥0 (C).

Proposition 4.6. Let C be a symmetric monoidal stable ∞-category, with a t-strucutre that is com-
patible with the monoidal structure. Then the Whitehead tower functor is lax symmetric monoidal.

Proof. One can show that the constant functor C → Tow(C) is strong symmetric monoidal. In turn, the
functor ι≥0 : Tow C≥0 → Tow(C) is symmetric monoidal, since the canonical t-structure is compatible
with Day Convolution, see also the dual of [16, Prop. 2.2.1.9]. The functor τ can≥0 is its right adjoint.
Since strong symmetric monoidal functors are in particular oplax symmetric monoidal functors, see
Proposition 2.13, it follows that τ can≥0 is lax symmetric monoidal. The composition of lax symmetric
monoidal functors is lax symmetric monoidal, hence indeed τ≥∗ is lax symmetric monoidal.

We have for now gathered all information needed on the ∞-category of towers. We will continue with
the associated graded functor.

De�nition 4.7 (Associated Graded). Let C be a stable ∞-category, X ∈ Tow(C). For q ∈ Z, we write

Grq : Tow(C)→ C

for the functor sending a tower X to X(q)/X(q + 1) := cofib(X(q + 1) → X(q)). This is the q'th
associated graded functor. We can then de�ne a total associated graded functorGr: Tow(C)→∏

Z C by
X 7→ (X(q)/X(q + 1))q∈Z.

The following useful proposition was proved by De Potter in his thesis [7, Prop. 4.4].

Proposition 4.8. Let i ≥ j ≥ k ≥ l; X ∈ Tow(C). Then

X(k)/X(i) X(l)/X(i)

X(k)/X(j) X(l)/X(j)

is a pushout square.

Page 23 of 54



Julie Creemers � January 22, 2025

Proposition 4.9. Let C be a symmetric monoidal stable ∞-category. Then the total associated graded
functor Gr: Tow(C) →

∏
Z C is strong symmetric monoidal with respect to Day Convolution. In

particular, for all q ∈ Z, we have

Grq(X ⊗ Y ) ≃
⊕
i+j=q

Gri(X)⊗Grj(Y ).

For the proof we refer to [12, Prop. II.1.3]. Eventually we wish to construct a chain complex using the
associated graded, hence we de�ne a di�erential as follows.

De�nition 4.10 (Di�erential). Let X ∈ Tow(C), for C stable. Then for each i ∈ Z, we have a map
δi : Gri(X)→ Gri+1(X)[1] in C via

Gri+1(X) X(i)/X(i+ 2) 0

0 Gri(X) Gri+1(X)[1]δi

Remark 4.11. Note that the left square is a push-out square, as well as the outer diagram, which
induces δi and means that the right square is also a push-out square. As it turns out, one can prove
that δi is indeed a di�erential, i.e. δ ◦ δ ≃ 0, via pasting push-out squares. In particular, for i ≥ j ≥ k,
we have commutative diagram

X(i) X(j) X(k) 0

0 X(j)/X(i) X(k)/X(i) X(i)[1] 0

0 X(j)/X(k) X(j)[1] X(j)/X(k)[1]κ j

in which all squares are pushouts. This immediately implies that we can factor δ as j ◦ κ.

Furthermore, if C is a symmetric monoidal stable ∞-category, the di�erentials work nicely with the
monoidal structure [12, Prop. II.1.21].

Proposition 4.12 (Leibniz Rule). Let ϕ : X ⊗ Y → Z be a pairing of towers in Tow(C). Then we
have a commuting diagram in C as follows

Gri(X)⊗Grj(Y )
(
Gri+1(X)⊗Grj(Y )

)
⊕
(
Gri(X)⊗Grj+1(Y )

)

Gri+j(Z) Gri+j+1(Z)[1].

Gri,j(ϕ)

δiX⊗1+1⊗δjY

Gri+1,j(ϕ)⊕Gri,j+1(ϕ)

δi+j
Z

4.2 The Beilinson t-structure

From now on we will only consider the case where C = Sp . Recall that Sp is a symmetric monoidal
∞-category, with a compatible t-structure, hence we can use all results from the previous paragraph.
In this paragraph we will discuss an additional t-structure on Tow(Sp) besides the canonical one. The
heart of this t-structure is particularly important, as it is equivalent to the category of chain complexes
of abelian groups. We will follow Hedenlund's approach in Chapter [12, II.2], for original sources on
the Beilinson t-structure we refer to the ones listed by her in [12, �. II.2.1].
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De�nition 4.13 (Beilinson t-structure). For n ∈ Z we de�ne the Beilinson t-structure by setting
Tow(Sp)Bei≥n to be the full subcategory of Tow(Sp) spanned by

{X ∈ Tow(Sp) | Grq(X) ∈ Sp≥n−q ∀q ∈ Z}.

Furthermore, we set Tow(Sp)Bei≤n to be the full subcategory of Tow(Sp) spanned by

{X ∈ Tow(Sp) | X(q) ∈ Sp≤n−q ∀q ∈ Z}.

Proposition 4.14. The Beilinson t-structure is well-de�ned and compatible with Day Convolution.

Proof. We mostly give an overview of the steps in the proof. For more details, we refer to Hedenlund
[12, Prop. II.2.1 & II.2.7]. To show that the t-structure is well-de�ned, we note that the �rst con-
dition of a t-structure holds by construction. For the other two conditions, the idea is to construct
τ≤−1 : Tow(Sp)Bei → Tow(Sp)Bei≤−1 and show that it indeed maps into Tow(Sp)Bei≤−1. The construction

of τ≤−1 is as follows. Since Tow(Sp) is presentable and Tow(Sp)Bei≥0 is closed under colimits, the inclu-

sion map has a right-adjoint as a consequence of the adjoint functor theorem. This we call τBei≥0 . Then

τ≤−1 is de�ned by mapping each X to the co�ber of τBei≥0 (X)→ X.

To show that the t-structure is compatible with Day convolution, we remark that we only need to
show that the unit is contained in Tow(Sp)Bei≥0 and that Tow(Sp)Bei≥0 is closed under the tensor product,
as we already saw that the tensor product is exact in both variables. Firstly, we note that the q′th
associated graded of 1Tow(Sp) is given by the unit of Sp for q = 0 and 0 otherwise. The unit, which is
the sphere spectrum, is in Sp≥0 because the t-structure of Sp is compatible with the smash product.
So it follows that indeed 1Tow(spc) is in Tow(Sp)Bei≥0 .

Furthermore, to show that for X,Y ∈ Tow(Sp)Bei≥0 , their tensor X ⊗ Y is in Tow(Sp)Bei≥0 , we note
that the total associated graded functor is lax symmetric monoidal. Combined with the fact the t-
structure on Sp is compatible with the smash product, this means that all Gri(X) ⊗ Grj(Y ) lie in
Sp≥−i−j . Using also that Sp≥m is also closed under colimits for all m ∈ Z, the result will follow by a
similar reasoning as in Proposition 4.4.

For discussing the heart of the Beilinson t-structure and its isomorphism to Ch(Ab), we need to
understand the Eilenberg-MacLane functor. It is de�ned as follows.

De�nition 4.15. Let Ch(Ab) be the ordinary category of chain complexes. Then the Eilenberg-
MacLane functor is the canonical functor

H : Ch(Ab)→ Sp .

Formally, this is the composition of (1) the localization functor L from Ch(Ab) to the derived ∞-
category D(Ab), (2) the ∞-categorical equivalence E : D(Ab) ≃ ModHZ, see [16, Thm. 7.1.2.13] and
(3) the forgetful functor U : D(Ab) ≃ ModHZ → Sp .

Remark 4.16. This functor is lax symmetric monoidal, as the monoidal structure on D(Ab) is such
that N(Ch(Ab))→ D(Ab) is lax symmetric monoidal, the forgetful functor is lax symmetric monoidal
and so is the equivalence D(Ab) ≃ ModHZ, see [16, Thm. 7.1.2.13]. The model structure on Ch(Ab)
has as weak equivalences those chain maps which induce isomorphisms on homology, see [16, 7.1.2.8].
These then become actual isomorphisms in the homotopy category of D(Ab).

Corollary 4.17. Let C ∈ Ch(Ab). Then we have a natural isomorphism

Hn(C) ∼= πnH(C)

Proof. First, we note that the forgetful functor sits in an adjunction

ModZ Sp

U

F

,
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where the free functor F is given by −⊗HZ. Hence we have

πnH(C) ∼= Ho(Sp)(ΣnS, H(C))
∼= Ho(ModZ)(Σ

nH(Z), EL(C))
∼= Ho(D(Ab))(ΣnZ, L(C))

Here ΣnZ is the chain complex · · · → 0 → Z → 0 → . . . with Z in degree n. By de�nition of the
model structure and de�nition of the derived category, we have that Ho(D(Ab))(ΣnZ, L(C)) is precisely
Hn(C).

We will now state the theorem given by Hedenlund which relates the heart of the Beilinson t-structure
with chain complexes of abelian groups.

Theorem 4.18. There is an equivalence of abelian categories Tow (Sp)Bei,♡ ≃ Ch(Ab). Here the
equivalence is given by the functor Φ: Tow (Sp)Bei,♡ → Ch(Ab) where

X 7→ · · · → π1(Gr−1(X))→ π0(Gr0(X))→ . . .

and the di�erentials are induced by the di�erentials from De�nition 4.10.
Its inverse Ψ: Ch(Ab)→ Tow (Sp)Bei,♡ is de�ned by

C 7→ ΦC : Zop → Sp; where ΨC(n) = H(σ≤nC),

where H is the Eilenberg-MacLane functor and σ≤n : Ch(Ab) → Ch(Ab) is the stupid truncation
functor.

The proof of this consists of showing that Ψ is well-de�ned and has a right-adjoint, which is shown to
be naturally isomorphic to Φ. Lastly, Hedenlund shows that this adjunction is in fact an equivalence of
categories. For the details, which require quite some work, we refer to [12, Prop. II.2.10]. This theorem
essentially makes the décalage functor and the corresponding construction of spectral sequences work
the way that it does.

Note that we can de�ne a symmetric monoidal structure on Tow (Sp)Bei,♡ via

X ⊗Bei,♡ Y := τBei≤0 (X ⊗ Y ),

where X ⊗ Y comes from Day Convolution.

Theorem 4.19. The equivalence in Theorem 4.18 is strong symmetric monoidal.

We will not prove this in detail, this is done in [12, Prop. II.2.11], but it is worth mentioning that the
proof uses the lax symmetric monoidality of the homotopy group functor

π∗ : Sp→
∏
Z

Ab,

which is lax symmetric monoidal by compatibility of the t-structure on Sp . The proof also uses the
fact that the total associated graded functor is strong symmetric monoidal.

Remark 4.20. Under the isomorphism of Theorem 4.18, we can view the Beilinson homotopy groups
πBein X as the chain complexes

· · · → πn+1(Gr−1(X))→ πn(Gr0(X))→ · · · → πn−1(Gr1(X))→ . . . ,

with πn(Gr0(X)) in degree 0. The resulting functor

πBei∗ : Tow(Sp)→
∏
Z

Ch(Ab)

is lax symmetric monoidal, see also [12, Prop. II.2.12 and II.2.13].
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4.3 Décalage and the Construction of Multiplicative Spectral Sequences

We will now de�ne the décalée of a tower of spectra. We start with the de�nition, see also [12, II.2.15].
Next, we will give Hedenlunds construction of the spectral sequence.

De�nition 4.21 (Décalage). Let X ∈ Tow(Sp). Then the Beilinson-Whitehead tower of X, similarly
to De�nition 4.5, is the tower of towers

· · · → τBei≥n+1(X)→ τBei≥n (X)→ τBei≥n−1(X)→ . . .

Since for each k, we have that τ≥k(X) is a tower, we can take the colimit of this tower. This in turn
yields a tower of spectra

· · · → colimi∈Z τ
Bei
≥n+1(X)(i)→ colimi∈Z τ

Bei
≥n (X)(i)→ colimi∈Z τ

Bei
≥n−1(X)(i)→ . . .

This resulting tower is the décalée of X.

Proposition 4.22. De�nition 4.21 yields a lax symmetric monoidal functor Déc : Tow(Sp)→ Tow(Sp).

Proof. The proof is also stated in [12, II.2.19]. Firstly, note that taking the Whitehead tower is lax
symmetric monoidal, see Proposition 4.6. Furthermore, we can commute colimits and this is symmetric
monoidal, by exactness of Day convolution and the smash product.

Remark 4.23. This functor is not idempotent, so we can iterate it. Thus we write Décn for the n-fold
iteration.

We now state an important theorem that will be necessary for the construction of spectral sequences
from towers.

Theorem 4.24. There is a lax symmetric monoidal equivalence of functors

Gr ◦Déc ≃ H ◦ Σtot ◦ πBei∗ .

Here H :
∏

ZCh(Ab)→
∏

Z Sp is the Eilenberg-MacLane functor and Σtot :
∏

ZCh(Ab)→
∏

ZCh(Ab)
is the shift-functor de�ned by

Σtot({Ck∗}k∈Z) = {Ck∗−k}k∈Z.

Remark 4.25. For the proof of this we refer to [12, Thm. II.2.20, II.2.22]. The fact that the composi-
tions are equivalent can be seen via a degree wise computation and commuting certain colimits, whereas
the monoidality of the equivalence follows mostly from the monoidality of the functors involved, and
the monoidality of the previous equivalence in Theorem 4.18.

We will now construct spectral sequences using décalage. For the de�nition of spectral sequences, we
refer to De�nition 1.1.

Theorem 4.26. Let X ∈ Tow(Sp) be a tower of spectra. Then we have a spectral sequence de�ned by

Ern,s := πnGr(r−1)n+s(Décr−1(X)),

for r ≥ 0 with di�erentials dr : Ern,s → Ern−1,s+r induced by the push-out

Gr(r−1)n+s+1(Décr−1(X)) Déc
r−1(X)((r−1)n+s)

Déc
r−1(X)((r−1)n+s+2)

0

0 Gr(r−1)n+s(X) Gr(r−1)n+s+1(Décr−1(X))[1]δr

as in De�nition 4.10.
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Proof. We will include the proof as in [12, Thm. II.3.2]. Firstly, note that as in De�nition 4.10,
δr ◦ δr = 0, which must then also hold for dr = πn(δ

r). It remains to show that for each n, s, r, we
have isomorphisms

Er+1
n,s
∼= H(Ern,s, d

r).

First, note that by Theorem 4.18

πn(Grq Déc(X)) ∼= πn(H(πBeiq (X)[q])).

Next, by Corollary 4.17, we have that

πn(H(πBeiq (X)[q])) ∼= Hn(π
Bei
q (X)[q])

=
ker(dn : πn(Grq−n(X))→ πn−1(Grq−n+1(X)))

im(dn+1 : πn+1(Grq−n−1(X))→ πn(Grq−n+1(X)))
.

If we apply this to Er+1
n,s , we get

Er+1
n,s = πnGrrn+s(Décr(X))

∼=
ker(dn : πn(Gr(r−1)n+s(Décr−1(X))→ πn−1(Gr(r−1)n+s+1(Décr−1(X))))

im(dn : πn+1(Gr(r−1)n+s−1(Décr−1(X)))→ πn(Gr(r−1)n+s(Décr−1(X))))

= H(Ern,s, dr).

We will now discuss the multiplicativity of these spectral sequences. For this we �rst go back to the
category of spectral sequences SSeq. On this category we can de�ne a structure which is not quite
a monoidal structure, but we can talk about multilinear maps. In particular, SSeq is a (coloured)
operad, see Remark 2.15. The multilinear maps are built by iterating the construction below.

De�nition 4.27. Let (E, drE), (D, d
r
D) and (C, drC) be spectral sequences, for convenience we assume

they are Adams graded, i.e. have bidegree (−1, r). A bilinear map ϕ : (C,D)→ E consists of maps

ϕr : Crn,s ⊗Dr
n′,s′ → Ern+n′,s+s′ ,

where
dr ◦ ϕr = ϕr(dr ⊗ 1 + 1⊗ dr) : Crn,s ⊗Dr

n′,s′ → Ern+n′−1,s+s′+r

and the diagram

Crn,s ⊗Dr
n′,s′ Ern+n′,s+s′

H(Crn,s ⊗Dr
n′,s′) H(Ern+n′,s+s′)

ϕr

H(ϕr)

commutes for all n, s, n′, s′, r.

We now claim that the construction of spectral sequences via décalage preserves the operad structure.
In particular, the following theorem holds [12, Thm. II.3.5].

Theorem 4.28. The functor E : Tow(Sp) → SSeq which sends a tower X to a spectral sequence Er

as de�ned in Theorem 4.26 is a map of ∞-operads.

Proof. First note that the statement makes sense, as any ordinary operad can be made into an ∞-
categorical operad using a nerve construction and any symmetric monoidal∞-category is an∞-operad.
We give an overview of the proof, for more details, see [12, II.3.5]. Since SSeq is an ordinary category, all
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higher coherencies in Tow(Sp) are irrelevant for proving this, i.e. we only have to show that multilinear
maps in Tow(Sp) are mapped to multilinear maps in SSeq . For maps of ∞-operads, see [16, �. 2.1.2].

Note that the monoidal structure on Tow(Sp) is symmetric, hence it is enough to only consider
bilinear maps, i.e. pairings X ⊗ Y → Z in Tow(Sp). Since both the total associated graded and the
décalage functor are lax symmetric monoidal, as well as the homotopy group functor π∗ : Sp→

∏
ZAb,

it follows that any pairing ϕ : X ⊗ Y → Z immediately induces maps

ϕr : πnGr(r−1)n+s(Décr−1(X))⊗ πnGr(r−1)n′+s′(Décr−1(Y ))→ πnGr(r−1)(n+n′)+s+s′(Décr−1(Z)).

In particular, the functors Er : Tow(Sp)→
∏

Z×ZAb are all lax symmetric monoidal. Hence it remains
to check the conditions of the previous de�nition. The �rst condition follows from the fact that both
the décalage functor and the homotopy group functor are lax symmetric monoidal, as well as the
Leibniz rule, see 4.12.

For the second condition, we note that the isomorphisms Er+1
n,s

∼= H(Ern,s, d
r) come from the

symmetric monoidal equivalence in Theorem 4.18. Combined with the fact that both the homotopy
group functor π∗ : Sp →

∏
ZAb and the Eilenberg-MacLane functor are lax symmetric monoidal, we

get a commutative diagram

πi(Grp(′Déc(X)))⊗ πj(Grq(Déc(Y ))) πi+j(Grp+q(Déc(Z)))

Hi+j−p−q(π
Bei
p (X)⊗ πBeiq (Y )) Hi+j−p−q(π

Bei
p+q(Z))

Applying this with setting i, j, p, q the right indices and also with the iterated décalage functor, we get
that indeed, the second condition holds for the spectral sequence constructed via décalage. Hence the
functor E sends bilinear maps to bilinear maps.

Remark 4.29. We end this section with a remark on signs. As is usual for (bi)graded abelian groups,
we tensor in accordance with the Koszul sign formula. That is, for maps f : Cn,s → Cn+k,s+l and
g : Dn′,s′ → Dn′+k′,s′+l′ , where C,D are bigraded abelian groups, we have

f ⊗ g(x⊗ y) = (−1)|x|·|g|f(x)⊗ g(y)

when evaluating them. Here |x|, |g| denote the total degrees of x and the map g respectively. In the
case of Adams spectral sequences C,D with grading (−1, r), the total degrees |x| and |g| are n and k′

respectively. That is, the total degree depends only on the �rst grading index, see also Remark 1.2. In
particular, this means that in De�nition 4.27, we have

(dr ⊗ 1 + 1⊗ dr)(x⊗ y) = (−1)n·0dr(x)⊗ y + (−1)n·−1x⊗ dr(y).

So the �rst property in De�nition 4.27 translates to

dr(a · a′) = dr(a) · a′ + (−1)na · dr(a′),

for a ∈ Crn,s and a′ ∈ Crn′,s′ . This is analogous to Property (ii) in [20, Thm. 2.1].

Page 29 of 54



Julie Creemers � January 22, 2025

5 Exact couples

In their paper [4], Belmont and Kong use the description of the spectral sequence they consider via
exact couples in order to rewrite the Er−page as a workable subquotient of the E1-page. Ideally, we
wish to do the same for the spectral sequence obtained via décalage. Originally décalage was de�ned
by Deligne [8]. The functor `turns the page' in the spectral sequence of a �ltered chain complex F∗C∗,
which can be obtained via exact couples. Therefore, it makes sense to ask whether the spectral sequence
obtained via décalage on a tower of spectra is in fact the same as one arising from exact couples, that
is, whether the∞-categorical functor also `turns the page'. More precisely, let X be a tower of spectra
and consider the following exact couple.

⊕n,sπn(X)(s) ⊕n,sπn(X)(s)

E1(X) := ⊕n,sπnGrs(X)

i

jκ

Here i is induced by the maps Xs+1 → Xs, the map j is induced by the maps Xs → Grs(X) and the
map κ comes from the map Grs(X)→ Xs+1[1] induced by the co�ber sequence. Recall from Chapter
1 that we can derive another exact couple from this by setting d = j ◦ κ and taking homology with
respect to this di�erential d. In particular, this yields a spectral sequence.

Note that the map d is precisely the map d1 : πnGrs(X) → πn−1Grs+1(X) of the E1-page of the
décalage spectral sequence, see also Remark 4.11. Furthermore, by Theorem 4.26 the E2-page obtained
via décalage is isomorphic to H(E1, d1). Also, the E2-page of the décalage spectral sequence �ts in an
exact couple

⊕n,sπnDéc(X)(n+ s) ⊕n,sπnDéc(X)(n+ s)

E2
Déc

(X) := ⊕n,sπnGrn+s(Déc(X))

i

jκ

which de�nes the di�erential of the E2-page of the décalage spectral sequence. Ideally, this di�erential
is compatible with the di�erential d2 = j2κ2 of the spectral sequence obtained via exact couples under
isomorphism H(E1, d1) ∼= πnGrn+s(Déc(X)). In fact, we want this to hold for all r ≥ 1. Proving
this directly is quite complicated. However, Antieau has proved a link between the décalage spectral
sequence and another method of constructing a spectral sequence by Lurie [1, Thm. 4.13]. We will
prove that this third method of constructing a spectral sequence results in the same spectral sequence
as the one obtained via derived exact couples.

5.1 Spectral sequence: Lurie's method and relation to exact couples

The third method of constructing a spectral sequence from a tower of spectra is one described by Lurie
in [16, Section 1.2.2] and by Antieau in [1, Section 4]. Let X ∈ Tow(Sp). For convenience, we write
X(i, j) := cofib(X(j)→ X(i)). Then for every n, s ∈ Z and r ≥ 0, we have a commutative diagram of
co�ber sequences

X(s+ r) X(s) X(s, s+ r)

X(s+ 1) X(s− r + 1) X(s− r + 1, s+ 1)

This in turn yields a commutative diagram of co�ber sequences
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X(s+ r, s+ 2r) X(s, s+ 2r) X(s, s+ r)

X(s+ 1, s+ r + 1) X(s− r + 1, s+ r + 1) X(s− r + 1, s+ 1),

see also Proposition 4.8. We then set

Ẽrn,s(X) := im(ern,s : πnX(s, s+ r)→ πnX(s− r + 1, s+ 1)),

where ern,s is induced by the above diagram of co�ber sequences. We de�ne the di�erential via the
following commutative diagram.

πnX(s, s+ r) Ẽrn,s(X) X(s− r + 1, s+ 1)

πn−1X(s+ r, s+ 2r) Ẽrn−1,s+r(X) X(s+ 1, s+ r + 1).

dr

The left and right-most vertical maps are given by the boundary maps induced by the previous diagram.
The desired, dotted arrow then exists as a consequence of functoriality of epi-mono factorizations, as is
also stated by Antieau [1, Not. 4.4]. This yields a spectral sequence, see also Lurie [16, Prop. 1.2.2.7].
We will not give the details of the proof as is given there, but we will brie�y describe the isomorphisms

Ẽr+1(X) ∼=
ker(dr)

im(dr)
,

as are detailed in [16, Prop. 1.2.2.7]. Write

Z̃rn,s : = ker(dr : Ẽrn,s(X)→ Ẽrn−1,s+r(X))

and
B̃r
n,s : = im(dr : Ẽrn+1,s−r(X)→ Ẽrn,s(X)).

For each n, s ∈ Z we have that

Ẽr+1
n,s (X) := im(πnX(s, s+ r + 1)→ πnX(s− r, s+ 1)).

We can factor the map er+1
n,s that de�nes Ẽr+1

n,s as

πnX(s, s+ r + 1)→ πnX(s, s+ r)
ern,s−−→ πnX(s− r + 1, s+ 1)→ πnX(s− r, s+ 1).

The composition

τ r+1
n,s : πnX(s, s+ r + 1)→ πnX(s, s+ r)

ern,s−−→ πnX(s− r + 1, s+ 1)

maps into Z̃rn,s and yields an epi-mono factorization

πnX(s, s+ r + 1)
τr+1
n,s

↠ Z̃rn,s↠
Z̃rn,s

B̃r
n,s

↪→
Ẽrn,s

B̃r
n,s

↪→ πnX(s− r, s+ 1).

For details on this, we refer again to [16, Prop. 1.2.2.7]. Important is that τ r+1
n,s is an epimorphism

onto Z̃rn,s. Thenwe have isomorphisms Ẽr+1
n,s (X) ∼= Z̃r

n,s

B̃r
n,s

as a consequence of uniqueness of epi-mono

factorizations in Ab. In particular, the isomorphisms ϕr+1
n,s : Ẽr+1

n,s (X)→ Z̃r
n,s

B̃r
n,s

are given by

ϕr+1
n,s (x) = [τ r+1

n,s (y)], where er+1
n,s (y) = x.
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The inverse of ϕr+1
n,s is given by ψr+1

n,s :
Z̃r
n,s

B̃r
n,s
→ Ẽr+1

n,s (X) with

ψr+1
n,s [x] := er+1

n,s (y), where [τ r+1
n,s (y)] = [x].

Note that τ r+1
n,s is in fact an epimorphism onto Z̃rn,s, so we can always just pick y ∈ πnX(s, s+ r + 1)

such that τ r+1
n,s (y) = x. We will now give our own proof that for any tower of spectra X, this spectral

sequence is isomorphic to the spectral sequence arising from exact couples.

Theorem 5.1. Let X be a tower of spectra, r ≥ 1. Let

Ẽrn,s(X) := im(πnX(s, s+ r)→ πnX(s− r + 1, s+ 1))

be r-page of the spectral sequence discussed above. Write Ern,s(X) for the spectral sequence obtained via

exact couples as in the introduction of this section. Then Ẽrn,s(X) ∼= Ern,s(X) as subquotients of the
E1-page, in a way that is compatible with the di�erentials, i.e.

Ẽrn,s(X) Ern,s(X)

Ẽrn−1,s+r Ern−1,s+r

∼=

dr dr

∼=

commutes.

Proof. First, for every n, s ∈ Z and r ≥ 1 we de�ne a map δr+1 :
Z̃r
n,s

B̃r
n,s
→ Z̃r

n−1,s+r+1

B̃r
n−1,s+r+1

via the following

diagram

Ẽr+1
n,s (X)

Z̃r
n,s

B̃r
n,s

Ẽr+1
n−s,s+r+1

Z̃r
n−1,s+r+1

B̃r
n−1,s+r+1

.

ϕr+1
n,s

ψr+1
n,s

dr+1 δr+1

ϕr+1
n−1,s+r+1

ψr+1
n−1,s+r+1

That is, δr+1 = ϕr+1
n−1,s+r+1d

r+1ψr+1
n,s . We have a commutative diagram

πn
X(s)

X(s+r+1) πn
X(s)
X(s+r) πn

X(s−r+1)
X(s+1) πn

X(s−r)
X(s+1)

πn−1
X(s+r+1)
X(s+2r+2) πn−1

X(s+r+1)
X(s+2r+1) πn−1

X(s+2)
X(s+r+2) πn−1

X(s+1)
X(s+r+2) .

τr+1
n,s

er+1
n,s

dr+1

ern,s

dr+1

τr+1
n−1,s+r+1

er+1
n−1,s+r+1

ern−1,s+r+1

Hence for [x] ∈ Z̃r
n,s

B̃r
n,s

we have

δr+1[x] = ϕr+1
n−1,s+r+1d

r+1ψr+1
n,s [x]

= ϕr+1
n−1,s+r+1d

r+1er+1
n,s (y), where τ

r+1
n,s (y) = x for some y ∈ πnX(s, s+ r + 1),

= ϕr+1
n−1,s+r+1e

r+1
n−1,s+r+1d

r+1(y)

= [τn−1,s+r+1d
r+1(y)].
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Indeed, clearly dr+1(y) is a lift of er+1
n−1,s+r+1d

r+1(y) under en−1,s+r+1.

As mentioned at the start of this section, we obtain the exact couple spectral sequence from the
exact couple with maps

i : πnX(s+ 1)→ πnX(s),

js,s+1 : πnX(s)→ πnX(s, s+ 1)

κs,s+1 : πnX(s, s+ 1)→ πn−1X(s+ 1).

As in Example 1.6, note that for r ≥ 1 we can write Er+1
n,s (X) =

Zr
n,s

Br
n,s

, with

Zrn,s := κ−1
s,s+1(im(ir : πn−1X(s+ r + 1)→ πn−1X(s+ 1))) ⊂ πnX(s, s+ 1)

and
Br
n,s := js,s+1(ker(i

r : πnX(s)→ πnX(s− r))) ⊂ πnX(s, s+ 1).

Then Er+1
n,s (X) becomes a subquotient of the E1-page. Under this identi�cation, the di�erential dr+1

ex.cpl.

becomes the map

κ−1(im(ir : πn−1X(s+ r + 1)→ πn−1X(s+ 1)))

j(ker(ir : πnX(s)→ X(s− r))
→ κ−1(im(ir : πn−2X(s+ 2r + 1)→ πn−2X(s+ r + 1)))

j(ker(ir : πn−1X(s+ r + 1)→ πn−1X(s+ 1))

where for a class [x] with x ∈ Zrn,s we lift κs,s+1(x) to πn−1X(s+ r + 1) along

ir : πn−1X(s+ r + 1)→ X(s+ 1)

and then map into πn−1X(s+ r + 1, s+ r + 2) via j. In a diagram:

πn−1X(s+ r + 1) πn−1
X(s+r+1)
X(s+r+2)

πn
X(s)
X(s+1) πn−1X(s+ 1).

j

i

κ

lift

Note that
Zr
n,s

Br
n,s

is a subquotient of the E1-page of the exact couple spectral sequence; but
Z̃r
n,s

B̃r
n,s

is a

subquotient of the Ẽr-page of Lurie's spectral sequence in this notation. The �rst page of both spectral
sequences is de�ned by

Ẽ1
n,s(X) = E1

n,s(X) = πnX(s, s+ 1)

together with the di�erential

d1 : πnX(s, s+ 1)
κ−→ πn−1X(s+ 1)

j−→ πn−1X(s+ 1, s+ 2).

As a consequence

Ẽ2
n,s

ϕ2n,s∼=
ψ2
n,s

Z̃1
n,s

B̃1
n,s

=
Z1
n,s

B1
n,s

= E2
n,s(X).

We will now show that δ2 and d2ex.cpl are the same map. First, we note that

e1n,s : πnX(s, s+ 1)→ πnX(s, s+ 1)

is simply the identity map. We then keep the diagram
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πn
X(s)
X(s+2) πn

X(s)
X(s+1) πn

X(s)
X(s+1) πn

X(s−1)
X(s+1)

πn−1X(s+ 2)

πn−1
X(s+2)
X(s+4) πn−1

X(s+2)
X(s+3) πn−1

X(s+2)
X(s+3) πn−1

X(s+1)
X(s+3)

τ2n,s

e2n,s

κs,s+2

d2

y

e1n,s

x

d2

js+2,s+4

τ2n−1,s+2

e2n−1,s+2

e1n−1,s+2

in mind. Note that in general dr+1 : πnX(s, s+ r+1)→ πnX(s+ r+1, s+ r+2) from Lurie's spectral
sequence factors as

πnX(s, s+ r + 1)
κs,s+r+1−−−−−→ πn−1X(s+ r + 1)

js+r+1,s+2r+2−−−−−−−−−→ πnX(s+ r + 1, s+ 2r + 2)

by Remark 4.11, as is also indicated in the diagram. Then, for [x] ∈ Z̃1
n,s

B̃1
n,s

we have

δ2[x] = [τ2n−1,s+2d
2(y)]

where τ2n,s(y) = x. Note that the diagram of co�ber sequences

X(s+ 4) X(s+ 2) X(s+ 2, s+ 4)

X(s+ 3) X(s+ 2) X(s+ 2, s+ 3)

implies that the map τ2n−1,s+2 ◦ js+2,s+4 is simply js+2,s+3 : πn−1X(s + 2) → πn−1X(s + 2, s + 3).
Therefore,

δ2[x] = [τ2n−1,s+2d
2(y)]

= [js+2,s+3κs,s+2(y)].

Using again a diagram of co�ber sequences as above, we have a commutative diagram

πnX(s, s+ 1) πnX(s, s+ 2)

πn−1X(s+ 1) πn−1X(s+ 2).

κs,s+1

τ2n,s

κs,s+2

Therefore κs,s+2(y) is in fact a lift of κs,s+1(τ
2
n,s(y)) = κs,s+1(x) under i : πn−1X(s+2)→ πn−1X(s+1)

and therefore
δ2[x] = [js+2,s+3κs,s+2(y)] = d2ex.cpl[x]

by de�nition of d2ex.cpl., which does not depend on the choice of lifts, as these are quotiented out. So
for r = 1, the theorem holds.

We will now assume for 1 ≤ i ≤ r− 1 we have that
Z̃i
n,s

B̃i
n,s

when viewed as a sub-quotient of Ẽ1
n,s = E1

n,s

via applying the isomorphisms ϕi, . . . , ϕ2, ϕ1 is the same as the sub-quotient
Zi
n,s

Bi
n,s

of the E1-page. We

also assume that these isomorphisms are compatible with the di�erentials. Here ϕ1 is simply the
identity E1 = Ẽ1. That is, we assume the diagram
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Z̃i
n,s

B̃i
n,s

Zi
n,s

Bi
n,s

Z̃i
n−1,s+i+1

B̃i
n−1,s+i+1

Zi
n−1,s+i+1

Bi
n−1,s+i+1

∼=

δi di+1
ex.cpl.

∼=

commutes. This in turn yields isomorphisms

Z̃rn,s

B̃r
n,s

∼=
Zrn,s
Br
n,s

via the commutative diagram

Ẽrn,s
Z̃r−1
n,s

B̃r−1
n,s

Zr−1
n,s

Br−1
n,s

Ẽrn−1,s+r

Z̃r−1
n−1,s+r

B̃r−1
n−1,s+r

Zr−1
n−1,s+r

Br−1
n−1,s+r

.

ϕr

dr

∼=

δr drex.cpl

ϕr ∼=

Indeed, this diagram implies that Z̃rn,s
∼= Zrn,s and B̃

r
n,s
∼= Br

n,s. To clarify this, consider r = 2. Then
the discussion of the base case satis�es the hypothesis and yields isomorphisms

Z̃2
n,s

B̃2
n,s

∼=
ker(d2ex.cpl. :

Zn,s
1

B1
n,s
→ Zn−1,s+2

1

B1
n−1,s+2

)

im(d2ex.cpl. :
Zn+1,s−2
1

B1
n+1,s−2

→ Zn,s
1

B1
n,s

)

∼=
Z2
n,s

B2
n,s

via

[x] 7→ [ϕ2n,s(x)] = [[τ2n,s(y)]] 7→ [τ2n,s(y)], where e
2
n,s(y) = x.

and

[ψ2
n,s[x

′]] = [e2n,s(y
′)] 7→[[x′]] 7→[x], where x = τ2n,s(y

′).

In general, this means that the isomorphsims

Ẽr+1
n,s

ψr+1
n,s←−−−

Z̃rn,s

B̃r
n,s

ψr,...,1

←−−−−
Zrn,s
Br
n,s

are given by the following. Consider the diagram

πnX(s, s+ r + 1) πnX(s, s+ r) πnX(s− r + 1, s+ 1) πnX(s− r, s+ 1)

πnX(s, s+ r − 1) πnX(s− r + 2, s+ 1)

. . . . . .

πnX(s, s+ 2) πnX(s− 1, s+ 2)

πnX(s, s+ 1) πnX(s, s+ 1)

yr+1 yr xr=ern,s(yr)

τr+1
n,s

er+1
n,s

ern,s

τrn,s

yr−1∈
er−1
n,s

∋xr−1=e
r−1
n,s (yr−1)

y2∈
e2n,s

τ2n,s

∋x2=e2n,s(y2)

∋x1:=x

g

Page 35 of 54



Julie Creemers � January 22, 2025

Then a class [x] ∈ Zr
n,s

Br
n,s

is mapped to er+1
n,s (yr+1) ∈ Ẽr+1

n,s , where y
r+1 is chosen by the process of taking

lifts
y2 such that τ2n,s(y2) = x,

y3 such that τ3n,s(y3) = x2 := e2n,s(y2),

. . .

In particular, this implies that we simply choose yr+1 as a lift of σ(x) with

σ : πnX(s, s+ 1)→ πnX(s− r + 1, s+ 1).

Similarly, we note that

Ẽr+1
n,s

ϕr+1
n,s−−−→ Z̃n,s

B̃n,s

ϕr,...,1−−−−→
Zrn,s
Br
n,s

is given by sending

x′ ∈ Ẽr+1
n,s = im(πnX(s, s+ r + 1)

er+1
n,s−−−→ πnX(s+ 1, s+ r + 2))

to [τ2n,s(y
′
2)], where y2 is the image of y′r+1 under the map g : πnX(s, s + r + 1) → πnX(s, s + 2) and

er+1
n,s (y

′
r+1) = x′. We will now show that

Ern,s
Z̃r
n,s

B̃r
n,s

Zr
n,s

Br
n,s

Ern−1,s+r+1
Z̃r
n−1,s+r+1

B̃r
n−1,s+r+1

Zr
n−1,s+r+1

Br
n−1,s+r+1

dr+1

ψr+1 ψr,...,1

dr+1
ex.cpl.

ϕr+1 ϕr,...,1

commutes. We can combine the information above in a commutative diagram

πn
X(s)

X(s+r+1 πn
X(s)
X(s+r) πn

X(s−r+1)
X(s+1 πn

X(s−r)
X(s+1

. . . . . .

πn
X(s)
X(s+2) πn

X(s−1)
X(s+1)

πn
X(s)
X(s+1) πn

X(s)
X(s+1)

πn−1
X(s+r+1)
X(s+2r+2) πn−1

X(s+r+1)
X(s+2r+1) πn−1

X(s+2)
X(s+r+2) πn−1

X(s+1)
X(s+r+2)

. . . . . .

πn−1
X(s+r+1)
X(s+r+3) πn−1

X(s+r)
X(s+r+2)

πn−1
X(s+r+1)
X(s+r+2) πn−1

X(s+r+1)
X(s+r+2) .

yr+1 xr=σ(x)
τr+1
n,s

er+1
n,s

ern,s

dr+1

e2n,s

τ2n,s

σ

∋x

τr+1
n−1,s+r+1

er+1
n−1,s+r+1

g

ern−1,s+r+1

e2n−1,s+r+1

τ2n−1,s+r+2

Page 36 of 54



Julie Creemers � January 22, 2025

Then for [x] ∈ Zr
n,s

Br
n,s

we have that

ϕr,...,1δr+1ψr,...,1[x] = ϕr,...,1ϕr+1dr+1er+1
n,s (y

r+1)

= ϕr,...,1ϕr+1er+1
n−1d

r+1(yr+1)

= [τ2n−1,s+r+1 ◦ g ◦ dr+1(yr+1)].

Recall that we can factor dr+1 : πnX(s, s+ r + 1)→ πn−1X(s+ r + 1, s+ 2r + 2) as

πnX(s, s+ r + 1)
κs,s+r+1−−−−−→ X(s+ r + 1)

As for the base case, note that js+r+1,s+2r+2 ◦ τ2n−1,s+r+1 ◦ g is simply the map js+r+1,s+r+2. Therefore

ϕr,...,1δr+1ψr,...,1[x] = [τ2n−1,s+r+1 ◦ g ◦ dr+1(yr+1)]

= [js+r+1,s+r+2κs,s+r+1(yr+1)].

Furthermore, we have commutative diagrams

πnX(s, s+ r + 1) πnX(s− r + 1, s+ 1)

πn−1X(s+ r + 1) πn−1X(s+ 1)

yr+1 xr

τr+1
n,s

κs,s+r+1 κs−r+1,s+1

and

πnX(s, s+ 1) πnX(s− r + 1, s+ 1)

πn−1X(s+ 1)

x=x1 xr

σ

κs,s+1
κs−r+1,s+1

This means that κs,s+r+1(y
r+1) is in fact a lift of κs,s+1(x) along πn−1X(s+ r + 1)→ πn−1X(s+ 1).

Therefore, by de�nition of dr+1
ex.cpl. we have that

ϕr,...,1δr+1ψr,...,1[x] = [js+r+1,s+r+2κs,s+r+1(yr+1)]

= dr+1
ex.cpl.[x].

This completes the proof.

5.2 Method III and relation to the Décalage spectral sequence.

We will now discuss Lurie's method of constructing a spectral sequence and the link with the décalage
functor. Antieau proves the following result [1, Thm. 4.13]. He proves it for general stable∞-categories
with sequential limits and colimits. We will only discuss it for Sp .

Theorem 5.2. Let X ∈ Tow(Sp); write Ẽrn,s(X) for the spectral sequence obtained via Lurie's method
in Section 5.1. Then for all r ≥ 1 we have

Ẽr+1
n,s (X) ∼= Ẽrn,n+s(Déc(X)),

compatible with dr and dr+1 respectively.

We will brie�y give an overview of Antieau's proof.
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Proof sketch. First, we will show that Ẽr+1
n,s (X) ∼= Ẽrn,n+s(Déc(X)) are isomorphic. For this, we intro-

duce the following notation. Let i ≤ j and let Gr[i,j)(X) be the co�ber of X(j)→ X(i), which can be
�ltered by the tower

· · · → 0→ X(j − 1)/X(j)→ · · · → X(i)/X(j) ≃ X(i)/X(j) ≃ . . . .

Similarly, we write Gr[i,∞)(X) for the co�ber of X(∞)→ X(i), which we can also �lter by

· · · → X(i+ 2)/X(∞)→ X(i+ 1)/X(∞)→ X(i)/X(∞) ≃ X(i)/X(∞) ≃ . . . ,

and we write Gr(−∞,j](X) = cofib(X(j)→ X(−∞)), which we can �lter by

· · · → 0→ X(j − 1)/X(j)→ X(j − 2)/X(j)→ . . .

Note for i ≤ j ≤ k that we have a �ber sequence

Gr[j,k)(X)→ Gr[i,k)(X)→ Gr[i,j)(X).

Then we also have a �ber sequence of towers

Déc(Gr[j,k)(X))→ Déc(Gr[i,k)(X))→ Déc(Gr[i,j)(X)).

This is a non-trivial fact, which Antieau shows in [1, Lemma 4.20, 4.21].
For notational convenience we consider only the isomorphisms Er+1

0,0 (X) ∼= Er0,0(Déc(X)) and cor-
responding di�erentials. There is a commutative diagram

π0Gr[0,r+1)(X) π0Gr[0,∞)(Déc(Gr[0,r+1)(X)) π0Gr[0,r)(Déc(Gr[0,r+1)(X)) π0Gr[0,r)(Déc(Gr[0,∞)(X)) π0Gr[0,r)(Déc(X))

π0Gr[−r,1)(X) π0Gr[−r+1,∞)(Déc(Gr[−r,1)(X)) π0Gr[−r+1,1)(Déc(Gr[−r,1)(X)) π0Gr[−r+1,1)(Déc(Gr[−r,∞)(X)) π0Gr[−r+1,1)(Déc(X))

1
∼=

2 3
∼=

4

5 6
∼=

7 8
∼=

Here, when we take the décalée of the associated graded, we mean that we take the décalée of the
corresponding tower as discussed above. Furthermore, the vertical maps on the far left and the far
right respectively determine Ẽr+1

0,0 (X) and Ẽr0,0(Déc(X)). So if we can show that the maps in the above

diagram have the properties stated, then we indeed have an isomorphism Ẽr+1
0,0 (X) ∼= Ẽr0,0(Déc(X)).

Antieau discusses all maps separately; we will discuss the �rst three to give an idea of the proof
techniques he uses and to demonstrate where the maps actually come from. For (1), note that we have
a (co)�ber sequence

τBei≥0 (Gr[0,r+1)(X))→ Gr[0,r+1)(X)→ τBei≤−1(Gr[0,r+1)(X)).

Here we again view Gr[0,r+1)(X) as a �ltration. Then we can take the colimit, which yields a co�ber
sequence

Gr[0,∞)(Déc(Gr[0,r+1)(X))→ Gr[0,r+1)(X)→ Gr[−∞,−1](Déc(Gr[0,r+1)(X)).

Indeed,

Gr[0,∞)(Déc(Gr[0,r+1)(X)) :=
Déc(Gr[0,r+1)(X)(0)

Déc(Gr[0,r+1)(X)(∞)

≃
τBei≥0 Gr[0,r+1)(X)(−∞)

0

≃ τBei≥0 Gr[0,r+1)(X)(−∞)

and

Gr(−∞,−1](Déc(Gr[0,r+1)(X)) =
Déc(Gr[0,r+1)(X))(−∞)

Déc(Gr[0,r+1)(X))(0)

≃ Gr[0,r+1)(X)

τBei≥0 Gr[0,r+1)(X)(−∞)

≃ τBei≤−1Gr[0,r+1)(X)(−∞).
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Then (1) is the map induced by Gr[0,∞)(Déc(Gr[0,r+1)(X))) → Gr[0,r+1)(X). Furthermore, by the
above discussion on �ltering the associated graded, we can �lter Gr[−∞,−1](Déc(Gr[0,r+1)(X)) as

· · · → 0→ Gr[r,r+1)(X)

Déc(Gr[r,r+1)(X))(0)
→ · · · → Gr[0,r+1)(X)

Déc(Gr[0,r+1)(X))(0)
≃ Gr[0,r+1)(X)

Déc(Gr[0,r+1)(X))(0)
≃ . . . ,

with associated graded pieces

Gr[s,r+1)(X)

Déc(Gr[s,r+1)(X))(0)
/

Gr[s+1,r+1)(X)

Déc(Gr[s+1,r+1)(X))(0)
∼=

Grs(X)

Déc(Grs(X))(0)
.

Since Déc(Grs(X)(0)) ∼= τ≥−s(Grs(X)) by [1, Lemma 4.24], it follows that

Gr(−∞,−1]Déc(Grs(X)) ≃ τ≤−s−1Grs(X).

The objects in the �ltration have 0 ≤ s ≤ r, hence it follows that Gr[−∞,−1](Déc(Gr[0,r+1)(X)) is
an iterated extension of objects in Sp≤−1 . Since Sp≤−1 is closed under extensions, we have that

Gr[−∞,−1](Déc(Gr[0,r+1)(X)) ∈ Sp≤−1 . Therefore π0,1(Gr[−∞,−1](Déc(Gr[0,r+1)(X))) ∼= 0, so indeed by
exactness the map (1) is an isomorphism.

Secondly, the map (2) is induced by the canonical map

Gr[0,∞)(Déc(Gr[0,r+1)(X)))→ Gr[0,r)(Déc(Gr[0,r+1)(X))).

Similarly as in (1); we can �lter both the source and the target of this map. The �rst one as

0→ Gr[0,∞)(Déc(Gr[r,r+1)(X)))→ · · · → Gr[0,∞)(Déc(Gr[0,r+1)(X)) ≃ Gr[0,∞)(Déc(Gr[0,r+1)(X)) ≃ . . .

and the second one as

0→ Gr[0,r)(Déc(Gr[r,r+1)(X)))→ · · · → Gr[0,r)(Déc(Gr[0,r+1)(X))) ≃ Gr[0,r)(Déc(Gr[0,r+1)(X))) ≃ . . . .

Using Lemma 4.24 again, we have for 0 ≤ s ≤ r that the associated graded of these �ltrations is given
by

Gr[0,∞)(Déc(Grs(X))) ∼= τ≥−sGrs(X) and Gr[0,r)(Déc(Grs(X))) ∼= τ<−s+rτ≥−sGrs(X).

Hence the �ber of (2) has a �ltration with associated graded objects τ≥−s+rGrs(X). Therefore, the
�ber is in Sp≥0, by analysing the long exact sequences induced by taking the associated graded. In
particular, π−1 of the �ber of

Gr[0,∞)(Déc(Gr[0,r+1)(X)))→ Gr[0,r)(Déc(Gr[0,r+1)(X)))

is 0, so (2) is indeed an epimorphism.

Next, map (3) is the �rst map where the isomorphism from Theorem 4.18 comes into play. In particular,
we can �lter the �ber Gr[0,r)(Déc(Gr[r+1,∞)(X))) of the map that induces (3) by

0→ · · · → Déc(Gr[r+1,∞)(X))(r − 1)

Déc(Gr[r+1,∞)(X))(r)
→ · · · → Déc(Gr[r+1,∞)(X))(0)

Déc(Gr[r+1,∞)(X))(r)
≃ Déc(Gr[r+1,∞)(X))(0)

Déc(Gr[r+1,∞)(X))(r)
,

with associated graded pieces GrsDéc(Gr[r+1,∞)(X)) ∼= τBei≤s τ
Bei
≥s (Gr[r+1,∞)(X)), which is precisely

πBeis Gr[r+1,∞)(X)[s]. By Theorem 4.18 we can view πBeis Gr[r+1,∞)(X) as the chain complex

. . . 0→ π−r−1+sGrr+1(X)→ π−r−2+sGrr+2(X)→ . . .

with π−r−1+sGrr+1(X) in homological degree (−r − 1). Note, then H−b(πBeis Gr[r+1,∞)(X)) ∼= 0 for
b < r + 1. It follows that the homotopy groups π−b of π

Bei
s Gr[r+1,∞)(X) are zero for b > r + 1, hence
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π−bπ
Bei
s Gr[r+1,∞)(X)[s] ∼= 0 for b < r + 1 − s. It follows in particular that the associated graded

objects of the �ber have zero homotopy groups π−b for b < 2. Via several long exact sequences, it
then follows that the �ber itself must also have zero homotopy groups π−b for b < 2, so (3) is an
isomorphism. Similar arguments yield the remaining maps and their corresponding properties. The
commutativity of this diagram yields isomorphic epi-mono factorizations of all vertical maps; hence
Ẽr+1

0,0 (X) ∼= Ẽr0,0(Déc(X)).

Next, he shows that the isomorphisms Ẽr+1
0,0 (X) ∼= Ẽr0,0(Déc(X)) induced by the 2x5-diagram above

are compatible with the maps dr and dr+1. This involves more complicated diagrams than before.
Firstly, there is a commutative diagram

Gr[r+1,2r+2)(X) Gr[r,∞)Déc(Gr[r+1,2r+2)(X)) Gr[r,2r)Déc(Gr[r+1,2r+2)(X)) Gr[r,2r)Déc(Gr[r+1,∞)(X)) Gr[r,2r)(X)

Gr[r+1,2r+2)(X) Gr[0,∞)Déc(Gr[r+1,2r+2)(X)) P Gr[r,2r)Déc(Gr[0,∞)(X)) Gr[r,2r)(X)

Gr[0,2r+2)(X) Gr[0,∞)Déc(Gr[0,2r+2)(X)) Gr[0,2r)Déc(Gr[0,2r+2)(X)) Gr[0,2r)Déc(Gr[0,∞)(X)) Gr[0,2r)(Déc(X))

Gr[0,r+1)(X) Gr[0,∞)Déc(Gr[0,r+1)(X)) Gr[0,r)Déc(Gr[0,r+1)(X)) Gr[0,r)Déc(Gr[0,∞)(X)) Gr[0,r)(Déc(X))

where the bottom 3x5-diagram consists of co�ber sequences in the columns and where P is the co�ber
of

Gr[0,2r)Déc(Gr[0,2r+2)(X))→ Gr[0,r)Déc(Gr[0,r+1)(X)).

Note that

Gr[r,2r)Déc(Gr[r+1,2r+2)(X))→ Gr[0,2r)Déc(Gr[0,2r+2)(X))→ Gr[0,r)Déc(Gr[0,r+1)(X))

is zero, so the top vertical map into P indeed exists. This in turn induces a diagram

Ẽr+1
0,0 (X) π0Gr[0,r+1)(X) π0Gr[0,∞)Déc(Gr[0,r+1)(X)) π0Gr[0,r)Déc(Gr[0,r+1)(X)) π0Gr[0,r)Déc(Gr[0,∞)(X)) π0Gr[0,r)(Déc(X)) Ẽr0,0(Déc(X))

π−1Gr[r+1,2r+2)(X) π−1Gr[0,∞)Déc(Gr[r+1,2r+2)(X)) P π−1Gr[r,2r)Déc(Gr[0,∞)(X)) π−1Gr[r,2r)(Déc(X))

Ẽr+1
−1,r+1(X) π−1Gr[r+1,2r+2)(X) π−1Gr[r,∞)Déc(Gr[r+1,2r+2)(X)) π−1Gr[r,2r)Déc(Gr[r+1,2r+2)(X)) π−1Gr[r,2r)Déc(Gr[r+1,∞)(X)) π−1Gr[r,2r)(Déc(X)) Ẽr+1

−1,r(Déc(X))

dr+1

∼= ∼=

dr
B

∼=

A ∼=
∼=

where it is shown that the maps A and B have the desired properties by similar arguments as for the
maps (1)-(8); for details see the full proof. The bottom row and the top row come from the diagram
that de�nes the isomorphisms Ẽr+1

0,0 (X) ∼= Ẽr0,0(Déc(X)) and Ẽr+1
−1,r+1(X) ∼= Ẽr−1,r(Déc(X)). Next, by

chasing this diagram, it follows that the two maps from π0Gr[0,∞)Déc(Gr[0,r+1)(X)) to Ẽr−1,r(Déc(X))
are the same. Here the �rst map is the top row composed with dr and the second one comes from
following the inverse of A and the bottom row. This then implies that indeed the isomorphisms are
compatible with the di�erentials.

This has the following immediate consequence [1, Cor. 4.14].

Corollary 5.3. Let X ∈ Tow(Sp). For r ≥ 1, we have

Ẽrn,s(X) ∼= Ẽ1
n,(r−1)n+s(Déc

r−1(X))

compatible with the d1 and dr di�erentials respectively.

Note that the Ẽ1
n,(r−1)n+s(Déc

r−1(X)) is precisely the de�nition of the Er-page of the décalage spectral
sequence. Hence combined with Theorem 5.1 this yields the following important result.

Corollary 5.4. Let X ∈ Tow(Sp); write Ern,s(X) for the spectral sequence obtained via exact couples.
Then for r ≥ 1, we have

Ern,s(X) ∼= E1
n,(r−1)n+s(Déc

r−1(X))

as sub-quotients of the abelian group πnGrs(X), compatible with the d1 and dr di�erentials respectively.
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In particular, this means that the Ern,s(X) := πnGr(r−1)n+sDécr−1(X) is isomorphic to the sub-
quotient of E1

n,s(X) = πnGrs(X):

Zr−1
n,s

Br−1
n,s

=
{a ∈ πnGrs(X) : κ(a) lifts to πn−1X(s+ r)}

{a ∈ πnGrs(X) : a lifts to ker(πnX(s)→ πnX(s− r + 1))}
.

Since the spectral sequence via décalage and the one obtained by Lurie's method are the same, it follows
that Luries convergence statement also holds for the décalage spectral sequence, as was conjectured by
De Potter in his master thesis [7, Conjecture 4.23]. It is formulated as follows.

Theorem 5.5. Let X ∈ Tow(Sp) such that X(k) ≃ 0 for some k >> 0. Then the spectral sequence
obtained via Lurie's method converges strongly. In particular, we have

Ẽrn,s(X) =⇒ πn colimZX,

with �ltration on the target given by F sπn colimZX := im(πnX(s)→ πn colimZX).

A more general convergence statement is discussed by Antieau in [1, Chapter 6].
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6 Massey Products and Toda Brackets

In this section, we will discuss Massey products and de�ne them on the resulting spectral sequence
from Section 4.3. We will also discuss multiplicative Toda Brackets on homotopy groups of spectra.
Moss showed that under certain conditions elements in the Massey product on the Adams spectral
sequence converge to elements in the Toda Bracket on homotopy groups [20]. As was also mentioned
in the introduction, a generalization of this was given by Belmont and Kong, see [4]. In the following
section we will formulate and provide a proof strategy for a similar statement for the spectral sequence
obtained via décalage. Before doing so we will de�ne Massey products and discuss the 'crossing
di�erential hypothesis', one of the conditions Moss, Belmont and Kong used in their proofs.

6.1 Massey Products and the Crossing di�erential hypothesis

We will de�ne Massey products on the spectral sequence analogous to the de�nition in [19, p. 302,303]
and [4, Def. 3.6]. Consider the following setting. Let X be an associative algebra object in Tow(Sp).
This yields a pairing µ : X ⊗ X → X, which is unital and associative up to coherent homotopy.
By Theorem 4.28, this yields a corresponding pairing of spectral sequences µ : E∗

∗,∗(X) ⊗ E∗
∗,∗(X) →

E∗
∗,∗(X), with Ern,s(X) = πnGr(r−1)n+s(Décr−1(X)). This is again associative. For convenience, we

will often write simply write xy for µ(x⊗ y).

De�nition 6.1 (Massey Product). Suppose r ≥ 1. Let [a] ∈ Er+1
n,s (X), [a′] ∈ Er+1

n′,s′(X) and [a′′] ∈
Er+1
n′′,s′′(X). Here we view [a] as a class of H(Ern,s(X), dr) ∼= Er+1

n,s (X). Let [a][̇a′] = 0 and [a′][̇a′′] = 0.
Then the Massey product is de�ned as the set

⟨[a], [a′], [a′′]⟩ := {[ā · b′ + b̄ · a′′] with dr(b) = āa′ and dr(b
′) = ā′a′′},

which is a subset of Er+1
n+n′+n′′+1,s+s′+s′′−r(X). Here we de�ne x̄ = (−1)|x|+1x, where |x| is the total

degree of x in Er+1(X), see Remark 1.2.

Note that as a consequence of the Leibniz rule

dr(ā · b′ + b̄ · a′′) = dr(ā · b′) + dr(b̄ · a′′)

= dr(ā) · b′ + (−1)|ā|ā · dr(b′) + dr(b̄) · a′′ + (−1)|b̄|b̄ · dr(a′′)

= 0 + (−1)|ā|(−1)|a|+1a · (−1)|a′|+1a′a′′ + (−1)|b|+1(−1)|a|+1aa′ · a′′′ + 0

= (−1)n(−1)n+1(−1)n′+1a · a′a′′ + (−1)n+n′+2(−1)n+1aa′ · a′′

= (−1)n′
a · a′a′′ + (−1)n′+1aa′ · a′′

= 0

So elements in the Massey product indeed de�ne homology classes in Er+1(X) as claimed.

As was mentioned before, Belmont and Kong base their proof on a similar idea by Moss. Moss in
particular uses the 'crossing di�erential hypothesis', as the condition is called by Belmont and Kong,
to give a restriction on when we can �nd an element in the Massey product that converges to an
element in the Toda bracket. Here, this is de�ned the same as by Belmont and Kong [4, Def. 2.4].

De�nition 6.2. Let E∗
∗,∗ be a spectral sequence. Then E

∗
∗,∗ satis�es the crossing di�erential hypothesis

in degree (r, n, s) if every element in Es−m+1
n+1,m for 0 ≤ m ≤ s− r + 1 is a permanent cycle.

Remark 6.3. As is also explained by Belmont and Kong, for an element y ∈ Ern,s with dr(x) = y, this
means that the crossing di�erential hypothesis is satis�ed in degree (r, n, s) if there are no di�erentials
going from degree n+ 1 to n where the �ltration degree of the source is less than s− r and �ltration
degree of the target degree larger than s. That is, similar situations like the one below cannot happen.
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x

y

dr

dr+2

We will now formulate a similar theorem as Belmont and Kong, but then for the décalage spectral
sequence, see also [4, Prop. 2.6]. For this, we �rst need to assume that the spectral sequence Er(X) is
weakly convergent, see De�nition 1.7. In particular, we assume that

E1
n,s(X) =⇒ πn(X(−∞)),

where X(−∞) = colimi∈ZX(i) and πn(Y ) is endowed with the following �ltration:

F kπn(X(−∞)) = im(πnX(k)→ πnX(−∞)).

Theorem 6.4. Let X ∈ TowSp; and Ern,s(X) := πnGr(r−1)n+s(Décr−1(X)) the corresponding décalage
spectral sequence converging weakly to πn(X(−∞)). Let a ∈ πnGrs(X) = E1

n,s(X) be a dr-boundary
and suppose α ∈ πn(X(s)) is a lift of a such that α ∈ ker(πnX(s) → πnX(−∞)). If the crossing
di�erential hypothesis holds in degree (r, n, s), then α lies in ker(πnX(s)→ πnX(s− r)).

The proof needs the following lemma.

Lemma 6.5. Let Ern,s(X) be weakly convergent. Write

Rs =
⋂
r≥0

im(πnX(s+ r)→ πnX(s)).

Then the map Rs+1 → Rs is injective.

Proof. Recall that the �ltration was given by F s(πnX(−∞)) := imπn(X(s) → πnX(−∞)); which
is precisely the �ltration discussed by Boardman in [5, Lemma 5.6]. By Corollary 5.4, the décalage
spectral sequence is in fact the same as the one obtained via derived exact couples. Hence we have an
exact sequence

0→ F sπnX(−∞)

F s+1πnX(−∞)
→ E∞

n,s → Rs+1 → Rs.

Since the spectral sequence is weakly convergent, it follows that F sπnX(−∞)
F s+1πnX(−∞)

→ E∞
n,s is an isomor-

phism, hence Rs+1 → Rs is injective.

Remark 6.6. The exact sequence implies that the converse holds as well; i.e. Ern,s(X) is weakly
convergent if for all s ∈ Z the maps Rs+1 → Rs are injective.

We will now give the proof as done by Belmont and Kong [4, Prop. 2.6], with some additional expla-
nation; this proof is directly applicable to our setting.

Proof of Theorem 6.4. Firstly, we note that by Corollary 5.4, the dr-boundaries of the spectral sequence
Ern,s(X) viewed as a quotient of the E1-page are precisely the elements in

Br
n,s := {a ∈ πnGrs(X) : a lifts to ker(πnX(s)→ πnX(s− r))}.

Hence the statement of the theorem makes sense. Indeed, we can always �nd some lift of a which lies
in the kernel of πnX(s) → πnX(−∞), since this factors through πnX(s− r) and we know that there
is some lift

β ∈ ker(πnX(s)→ πnX(s− r).
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So if α = β, we are done. If not, then α− β ̸= 0, say γ ∈ πnX(s). Since

α ∈ ker(πnX(s)→ πnY ),

we can �nd a minimal k such that

α ∈ ker(πnX(s)→ πnX(s− k)).

We will proceed by contradiction. Suppose k > r. Then γ = α−β maps to α− 0 in πnX(s− r), hence
to 0 in πnX(s− k). So

γ ∈ ker(πnX(s)→ πn(X(s− k))),
but

γ /∈ ker(πnX(s)→ πn(X(s− k + 1)).

Write is−k+1,s(γ) for the image of γ in πnX(s− k + 1). By Lemma 6.5, the map

iR : Rs−k+1 → Rs−k

is injective. Hence we can conclude that is−k+1,s(γ) /∈ Rs−k+1. Indeed, if is−k+1,s(γ) ∈ Rs−k+1, then

iR(is−k+1,s(γ)) = is−k+1,s(γ) = 0.

This is a contradiction as is−k+1,s(γ) ̸= 0 and iR is injective. So is−k+1,s(γ) /∈ Rs−k+1.
But then there must be some m such that is−k+1,s(γ) lifts to some γ′ ∈ πnX(s +m) but not to

any element in πnX(s+m+ 1). In particular m ≥ 1. Indeed,

γ = α− β ∈ ker(πnX(s)→ πnGrs(X))

and therefore lifts to πnX(s+ 1). This then means that is−k+1,sγ) lifts to πnX(s+ 1) and so m ≥ 1.
We also note that since is−k+1,s = 0, we have that

is−k+1,s(γ) ∈ im(κ : πn+1Grs−kX → πnX(s− k + 1)),

say
is−k+1,s(γ) = κ(c).

Next we consider dk+m(c). By identi�cation of the décalage spectral sequence with the spectral
sequence obtained via exact couples, dk+m(c) = [j(γ′)] in Ern,s+m as sub-quotient of the E1-page. We
know that j(γ′) ̸= 0, as

γ′ /∈ im(πnX(s+m+ 1)→ πnX(s+m)).

In fact, we have that [j(γ′)] ̸= 0. That is, j(γ′) is not a di-boundary for all i < k+m. Indeed, suppose
it is a di-boundary for some i < k +m. Then j(γ′) ∈ πnGrs+m(X) has a lift

γ̃ ∈ ker(πnX(s+m)→ πnX(s+m− i)),

which then also lies in ker(πnX(s+m)→ πnX(s− k + 1)). In particular, j(γ) = j(γ′), so

γ′ − γ′′ ∈ im(πnX(s+m+ 1)→ πnX(s+m)).

Let δ ∈ πnX(s+m+ 1) be a lift of γ − γ′′. Then, since

γ′′ ∈ ker(πnX(s+m)→ πnX(s− k + 1)),

it follows that δ is a lift of ik−1(γ). But this is a contradiction with the de�nition of m. So [j(γ′)]
cannot be zero in Ek+mn,k+m.

Therefore, we have a di�erential

dk+m : Ek+mn+1,s−k → Ek+mn,s+m

which is non-zero. However, since k > r, we have that s − k < s − r and s +m > s, as m ≥ 1. This
yields a contradiction with the crossing di�erential hypothesis in degree (r,n,s), so we must have that
k ≤ r, which is a contradiction. Hence indeed

α ∈ ker(πnX(s)→ πnX(s− k)→ πnX(s− r)).

This concludes the proof.
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This theorem has the following consequence, which is an analogue of Lemma 2.12 in [4].

Corollary 6.7. Let a ∈ πnGrs(X) be a dr-boundary; and let α ∈ πnX(s) be a lift of a such that
α ∈ ker(is−r,s : πnX(s) → πnX(s − r)). Then we have a null-homotopy h : is−r,s ◦ α ≃ 0, i.e. a
commutative diagram

ΣnS X(s) X(s− r + 1) 0

0 X(s− r) X(s− r) Grs−r(X).

α is−r+1,s

is−r,s

Let β : Σ1+nS → Grs−r(X) be the induced map. Write [β]r for the class in the sub-quotient Er ∼=
Zr−1/Br−1 of the E1-page. Then we have

dr[β]r = [a]

in Ern,s.

Proof. First note that for a ∈ πnGrs(X) a dr-boundary, the lift α ∈ ker(πnX(s)→ πnX(s−r)) indeed
exists by Theorem 6.4. Recall that dr is induced by

πn−1X(s) πn−1
X(s)
X(s+1)

πn
X(s−r)
X(s−r+1) πn−1X(s− r + 1)

js

is−r+1,s

κs−r,s−r+1

lift

Since α is a lift of a it remains to show that κs−r,s−r+1 ◦β ≃ is−r+1,s ◦α. Note that we can equivalently
write β as the third map in the diagram

ΣnS X(s) X(s− r + 1)

0 X(s− r) X(s− r)

Σn+1S Grs−r(X)

Σn+1S ΣX(s− r + 1)

α is−r+1,s

is−r,s

β

κ

Σ(is−r+1,sα)

Hence indeed κs−r,s−r+1 ◦ β ≃ Σ(is−r+1,s ◦ α). This means that we can lift the homotopy class
κ[β] ∈ πnX(s − r + 1) to πnX(s − r + 1 + k) for 1 ≤ k ≤ r − 1, so [β] is in fact a dk-cycle for
1 ≤ k ≤ r − 1. Also,

dr[β]r = j[α]r = [a]r,

where we write [β]r for the class in the sub-quotient Er ∼= Zr−1/Br−1 of the E1-page.

6.2 Set-up

For the remainder of this section we assume that the spectral sequence induced by X is weakly con-
vergent. Furthermore, we note that the pairing µ : X ⊗X → X induces commutative diagrams
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X(i+ k)⊗X(j) X(i)⊗X(j) X(i)⊗X(j + l)

X(i+ j + k) X(i+ j) X(i+ j + l)

and

Wi,j X(i)⊗X(j) Gri(X)⊗Grj(X)

X(i+ j + 1) X(i+ j) Gri+j(X)

Here the horizontal rows are co�ber sequences in Sp and Wi,j := X(i)⊗X(j+1)∪X(i+1)⊗X(j+1)X(i+
1)⊗X(j). For reference, see [12, p. 198,199]. Furthermore, we assume we have commutative diagrams

X(i)⊗X(j) X(i+ j)

X(−∞)⊗X(∞) X(−∞)

µ

µ

which is certainly true in the case we have a tower · · · → X(k)→ · · · → X(i) ≃ X(i) ≃ . . . .
The following conjecture is an analogue of Assumption 3.14 (5) in [4]. In particular, we claim that

we do not have to assume anything in our setting; instead the result can likely be proved with the
theory we already have. Indeed both a · a and µ(α⊗ α′) arise from taking the associated graded of a
pairing induced by µ : X ⊗X → X. We will assume this conjecture in the remainder of this chapter.

Conjecture 6.8. Let a ∈ Ern,s(X) = πnGr(r−1)n+s(Décr−1(X)) and a′ ∈ Ern′,s′(X). Let α : ΣnS →
Grs(X), α′ : Σn

′S→ Grs
′
(X) be representatives on the E1-page of a, a′ respectively. Then

µ(α · α′) : ΣnS⊗ Σn
′
S→ Grs(X)⊗Grs

′
(X)→ Grs+s

′
(X)

is a representative of a · a′ on the E1-page.

Lastly, we have the following assumption on the E∞-page of our weakly convergent spectral sequence.

Assumption 6.9. Assume the isomorphisms

E∞
n,s(X) ∼=

F sπnX(−∞)

F s+1πnX(−∞)
:=

im(πnX(s)→ πnX(−∞))

im(πnX(s+ 1)→ πnX(−∞))

are essentially given by lifting a representative α : ΣnS → πnX(−∞) of a class in F sπnX(−∞)
F s+1πnX(−∞)

to

πnX(s) and then mapping into πnGrs(X) and taking its class in E∞
n,s.

This is usually the case with spectral sequences obtained via exact couples. For the remainder of this
chapter we will work in the following setting. Let

α : ΣnS→ X(−∞), α′ : Σn
′
S→ X(−∞), α′′ : Σn

′′
X(−∞)

be maps representing elements in πnX(−∞), πn′X(−∞) and πn′′X(−∞) respectively, such that αα′ ≃
0 and α′α′′ ≃ 0. Suppose also that they are detected by permanent cycles a ∈ Ern,s(X), a′ ∈ Ern′,s′(X)
and a′′ ∈ Ern′′,s′′(X). That is, these permanent cycles have representatives

α∗∗ : Σ
nS→ Grs(X), α′

∗∗ : Σ
n′′
S→ Grs

′
(X), α′′

∗∗ : Σ
n′′
S→ Grs

′′
(X)

on the E1-page, together with lifts

α∗ : Σ
nS→ X(s), α′

∗ : Σ
n′′
S→ X(s′), α′′

∗ : Σ
n′′
S→ X(s′′)
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such that ιs(α∗) = α, with ιs : X(s) → X(−∞) and js(α∗) = α∗∗, with js : X(s) → Grs(X) and
similarly for α′, α′′. Then by Conjecture 6.8 and Assumption 6.9 we also have that

ιs+s′µ(α∗, α
′
∗) ≃ µ(α, α′) and js+s′(µ(α∗, α

′
∗)) ≃ µ(α∗∗, α

′
∗∗),

where µ(α∗∗, α
′
∗∗) is a representative of a · a′. Note that this set-up is similar to the one by Belmont

and Kong [4, 3.5.2].

Lemma 6.10. Suppose that E∗(X) satis�es the crossing di�erential hypothesis in degree (r, n+n′, s+s′)
and (r, n′ + n′′, s′ + s′′). Then the following compositions are null-homotopic

Σn+n
′
S α∗α′

∗−−−→ X(s+ s′)
is+s′−r,s+s′−−−−−−−→ X(s+ s′ − r)

and

Σn
′+n′′

S α′
∗α

′′
∗−−−→ X(s′ + s′′)

is′+s′′−r,s′+s′′−−−−−−−−−→ X(s′ + s′′ − r)

Proof. As a consequence of the assumptions and Conjecture 6.8 note that α∗α
′
∗ and α′

∗α
′′
∗ are repre-

sentatives of the permanent cycles aa′ and a′a′′; with lifts αα′ ≃ 0 and α′α′′ ≃ 0. Then by Moss'
theorem, see Theorem 6.4, it follows directly that both compositions are null-homotopic.

6.3 Toda brackets

We will now de�ne multiplicative Toda brackets on πnX(−∞) of a tower X ∈ Tow(Sp) analogously to
[4, �. 3]. After that, we will state our main conjecture and give an idea of a possible proof. For this,
we use the assumptions on the multiplication as stated in the previous section.

De�nition 6.11 (Toda bracket). Let X ∈ Tow(Sp) and let α, α′, α′′ be representatives of elements
in πnX(−∞), πn′X(−∞), πn′′X(−∞) respectively, with the assumptions as in Section 6.2. Suppose
0 ≃ µ(α, α′) and 0 ≃ µ(α′, α′′), via null-homotopies h and k respectively. Then this also induces
null-homotopies h : 0 ≃ αα′ ⊗ id and k : 0 ≃ id⊗α′α′′. Recall that µ : X → X → X is associative up
to coherent homotopy, hence we get a commutative diagram

0⊗ Σn
′′S X(−∞)⊗ Σn

′′S

ΣnS⊗ Σn
′S⊗ Σn

′′S X(−∞)⊗ Σn
′′S X(−∞)⊗X(−∞) X(−∞)

ΣnS⊗ Σn
′S⊗ Σn

′′S ΣnS⊗X(−∞) X(−∞)⊗X(−∞) X(−∞)

ΣnS⊗ 0 ΣnS⊗X(−∞)

h
µ(id,α′′)

αα′⊗id id⊗α µ

id⊗α′α′′ α⊗id

k

µ

µ(α,id)

Since −⊗− preserves zero objects in both variables, this induces a map g : Σ1+n+n′+n′′S→ X(−∞).
Then we de�ne the Toda bracket of α, α′ and α′′ as

⟨α, α′, α′′⟩ := {[g] ∈ πn+n′+n′′+1X(−∞) | g arises via the above construction}.

Remark 6.12. The reason why we get a set of maps is because the diagram depends on the choice
of null-homotopies h, k. In line with this, recall that for zero objects, we have that mapSp(x, 0) and
mapSp(0, y) are contractible Kan complexes for any x, y ∈ Sp . Therefore, also zero maps 0x,y : x → y

are de�ned up to contractible choice. So the class of g : Σ1+n+n′+n′′S → X(−∞) does not really
depend on the choice of zero maps.

Furthermore, we note that Fun(∆2,Sp)→ Fun(Λ1
2, Sp) is a trivial Kan �bration. Hence if we have

maps X
f−→ Y

g−→ Z, they form a �xed diagram Λ1
2 → Sp; and the possible compositions which are
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given by the �ber of X
f−→ Y

g−→ Z along Fun(∆2, Sp)→ Fun(Λ1
2,Sp) form a contractible Kan complex,

see also [14, Cor. 1.3.44]. Therefore it also does not matter much which compositions we pick in the
above diagram and the associativity of µ : X ⊗X → X speci�es the commuting square in the middle
of the diagram, so the homotopies h and k are also really the only objects which yield di�erent maps.

We will now formulate our main statement and give a proof sketch.

Pretheorem 6.13. Let X ∈ Tow(Sp) an associative algebra object. Write µ : X ⊗ X → X for the
resulting pairing. Consider the associated multiplicative décalage spectral sequence

Ern,s(X)⇒ πnX(−∞)

and assume it is weakly convergent. Assume the spectral sequence satis�es the properties in the set-up
of Section 6.2. Let

a ∈ Ern,s(X), a′ ∈ Ern′,s′(X), a′′ ∈ Ern′′,s′′(X)

be permanent cycles converging as in Section 6.2 to α, α′ , α′′ ∈ π∗(X(−∞)) such that aa′ and a′a′′

are dr-boundaries and αα′ and α′α′′ are null-homotopic. Assume the crossing di�erential hypothesis
holds in degrees (r, n+ n′, s+ s′) and (r, n′ + n′′, s′ + s′′). Then there exists an element in the Massey
product ⟨[a], [a′], [a′′]⟩ ⊂ Er+1

n−1,s+s′+s′′−r(X) converging to an element in the Toda bracket ⟨α, α′, α′′⟩.

Proof sketch of Pretheorem 6.13. The idea of the proof is to construct a map

γ : Σ1+n+n′+n′′
S→ X(s+ s′ + s′′ − r)

via a similar diagram as in the de�nition of the Toda bracket and show that its composition with

ιs+s′+s′′−r : X(s+ s′ + s′′ − r)→ X(−∞)

is an element of the Toda bracket and that it lifts to an element in the Massey-product under

js+s′+s′′−r : : X(s+ s′ + s′′ − r)→ Grs+s
′+s′′−r(X).

Indeed, by the set-up of Section 6.2 and in particular the way the spectral sequence converges, the class
of js+s′+s′′−r ◦γ in the Er+1−page converges to the class of ιs+s′+s′′−r ◦γ in πn+n′+n′′+1(X(−∞)). So if
[js+s′+s′′−r◦γ]r+1 is an element of the Massey-product ⟨[a], [a′], [a′′]⟩ and ιs+s′+s′′−r◦γ is a representative
of an element in ⟨α, α′, α′′⟩, the statement holds. We will construct γ as follows. Consider lifts

α∗ ∈ πnX(s), α′
∗ ∈ πn′X(s′), α′′

∗πn′′X(s′′)

of α, α′, α′′ as in Section 6.2. Then by Lemma 6.10 we have null-homotopies h1 : 0 ≃ is+s′−r,s+s′α∗α
′
∗

and h2 : 0 ≃ is′+s′′−r,s′+s′′α′
∗α

′′
∗ and therefore a commutative diagram:

0⊗ Σn
′′S X(s+ s′ − r)⊗ Σn

′′S

ΣnS⊗ Σn
′S⊗ Σn

′′S X(s+ s′ − r)⊗ Σn
′′S X(s+ s′ − r)⊗X(s′′) X(s+ s′ + s′′ − r)

ΣnS⊗ Σn
′S⊗ Σn

′′S ΣnS⊗X(s′ + s′′ − r) X(s)⊗X(s′ + s′′ − r) X(s+ s′ + s′′ − r)

ΣnS⊗ 0 ΣnS⊗X(s′ + s′′ − r)

h1
µ(id,α′′

∗ )

iα∗α′
∗⊗id id⊗α′′

∗
µ

id⊗iα′
∗α

′′
∗ α∗⊗id

h2

µ

µ(α∗,id)

Figure 1

Note that we supressed the indices to make the diagram less complicated. This diagram yields a map
γ : Σ1+n+n′+n′′S→ X(s+ s′ + s′′ − r). Then we �rst want to prove the following.
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Conjecture 6.14. Let ιs+s′+s′′−r : X(s+s′+s′′−r)→ X(−∞) be the colimit map. Then ιs+s′+s′′−r◦γ
represents an element in the Toda bracket ⟨α, α′, α′′⟩.

The idea for proving this is as follows. Firstly,

ιs+s′+s′′−r ◦ γ : Σ(ΣnS⊗ Σn
′
S⊗ Σn

′′
S)→ X(−∞)

corresponds to a commutative diagram ∆1 ×∆1 → Sp

ΣnS⊗ Σn
′S⊗ Σn

′′S 0

0 X(−∞).

We want to show that we can be more speci�c. In particular, we want to show that ι ◦ γ comes from a
diagram as in De�nition 6.11. Note that by the assumptions in the set-up of Section 6.2, we have that

ιs+s′−ris+s′−r,s+s′α∗α
′
∗ ≃ ιs+s′α∗α

′
∗ ≃ αα′.

This yields a horn Λ3
1 : → Sp

X(s+ s′)⊗ Σn
′′S

X(s+ s′)⊗ Σn
′′S

ΣnS⊗ Σn
′S⊗ Σn

′′S X(−∞)⊗ Σn
′′S

ιs+s′

ιs+s′

αα′⊗id

h1

iα∗α′
∗⊗id

0 .

Similarly, we can �ll a second horn which results in a �lled diamond

X(−∞)⊗ Σn
′′S

X(s+ s′)⊗ Σn
′′S X(s+ s′)⊗ Σn

′′S X(−∞)⊗ Σn
′′S

ΣnS⊗ Σn
′SΣn′′S

ι
ι

ι
αα′⊗id

iα∗α′
∗⊗id

0

0

Here the left 2-simplex or null-homotopy surrounded by thick arrows is h1 and we write H1 for the null-
homotopy 0 ≃ αα′⊗ id surrounded by thick arrows on the right. Similarly, h2 induces a null-homotopy
H2 : id⊗α′α′′ ≃ 0. Furthermore, since µ : X ⊗X → X is associative up to coherent homotopy in a
way that is compatible with the �ltrations, we get a cube ∆1 ×∆1 ×∆1 → Sp obtained from:
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0⊗ Σn
′′S X(−∞)⊗ Σn

′′S

0⊗ Σn
′′S X(s+ s′ − r)⊗ Σn

′′S

ΣnS⊗ Σn
′S⊗ Σn

′′S X(−∞)⊗ Σn
′′S X(−∞)⊗X(−∞) X(−∞)

ΣnS⊗ Σn
′S⊗ Σn

′′S X(s+ s′ − r)⊗ Σn
′′S X(s+ s′ − r)⊗X(s′′) X(s+ s′ + s′′ − r)

ΣnS⊗ Σn
′S⊗ Σn

′′S ΣnS⊗X(−∞) X(−∞)⊗X(−∞) X(−∞)

ΣnS⊗ Σn
′S⊗ Σn

′′S ΣnS⊗X(s′ + s′ − r) X(s)⊗X(s′ + s′′ − r) X(s+ s′ + s′′ − r)

ΣnS⊗ 0 X(s+ s′)⊗ S

ΣnS⊗ 0 ΣnS⊗X(s′ + s′ − r)

ιs+s′−r

αα⊗id id⊗α′′ µ

ιs+s′+s′′−r
iα∗α′

∗⊗id

ιs+s′−r

id⊗α′′
∗

ι

µ

id⊗iα′α′′ α⊗id µ

ιs+s′+s′′−r
id⊗iα′

∗α
′′
∗

ιs+s′−r

α∗⊗id

ι

µ

ιs′+s′′−r

where the back diagram is

0⊗ Σn
′′S X(−∞)⊗ Σn

′′S

ΣnS⊗ Σn
′S⊗ Σn

′′S X(−∞)⊗ Σn
′′S X(∞)⊗X(∞) X(∞)

ΣnS⊗ Σn
′S⊗ Σn

′′S ΣnS⊗X(−∞) X(∞)⊗X(∞) X(∞)

ΣnS⊗ 0 ΣnS⊗X(∞).

H1
µ(id,α′′)

αα′⊗id id⊗α µ

id⊗α′α′′ α⊗id

H2

µ

µ(α,id)

This yields a map γ′ : Σ1+n+n′+n′′S → X(−∞) . By de�nition, this de�nes an element in the Toda-
bracket. Also, because H1 and H2 are constructed by composition with ι from h1 and h2, intuitively
this means that in fact

γ′ ≃ ι ◦ γ.

It still needs to be made precise when two diagrams and homotopies induce the same maps on suspen-
sion.

Next, we assume n, n′, n′′ = 0 and we will give an idea for showing that γ maps to an element in
the Massey product ⟨[a], [a′], [a′′]⟩, where a, a′, a′′ are permanent cycles detecting α, α′, α′′ as in Sec-
tion 6.2. For this, we will �rst construct an element which is in the Massey-product and we will then
show that js+s′+s′′−r ◦ γ can be written as a representative of this element, up to homotopy. Here
js+s′+s′′−r is the map js+s′+s′′−r : X(s+ s′ + s′′ − r)→ Grs+s

′+s′′(X).

Conjecture 6.15. Consider γ : ΣS→ X(s+ s′ + s′′ − r) induced by Figure 1. Then js+s′+s′′−r ◦ γ is
homotopic to a representative of an element in the Massey-product ⟨[a], [a′], [a′′]⟩.

We will now discuss a proof strategy for this second conjecture. To �ll in the details, as well as working
it our for higher degrees, is a possible subject for further research.

Proof sketch. First, we will construct an element in the Massey product ⟨[a], [a′], [a′′]⟩. Consider the
following diagram:
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S ≃ S⊗ S X(s+ s′) X(s+ s′ − r + 1) 0

0 X(s+ s′ − r) X(s+ s′ − r) Grs+s
′−r(X).

α∗α′
∗

h̃1 is+s′−r,s+s′

Write β− : ΣS → Grs
′+s′′−r(X) for the induced map. Then similarly, β+ : ΣS → Grs+s

′−r(X) is the
map induced by

S ≃ S⊗ S X(s′ + s′′) X(s′ + s′′ − r + 1) 0

0 X(s′ + s′′ − r) X(s′ + s′′ − r) Grs
′+s′′−r(X).

α′
∗α

′′
∗∗

h̃2 is′+s′′−r,s′+s′′

Here h̃1 and h̃2 are homotopies induced by h1 : 0 ≃ iα∗α
′
∗ and h2 : 0 ≃ iα′

∗α
′′
∗ by taking compositions

as in the discussion of Conjecture 6.14. We then claim that the class

[a · [β+]r − [β−]r · a′′] ∈ Er+1
1,s+s′+s′′−r(X)

is an element of the Massey product ⟨a, a′, a′′⟩. Here [β+]r refers to the class in Er(X) determined
by the dr-cycle β

+, see also Corollary 6.7. By that same corollary, we have that dr[β+]r = aa′ and
dr[β−]r = a′a′′. It follows that

dr(−[β+]r) = −aa′ = āa′

and
dr(−[β−]r) = −a′a′′ = ā′a′′.

Then by De�nition 6.1,
[ā · −[β+]r +−[β−]r · a′′]

is an element of the Massey product ⟨[a], [a′], [a′′]⟩. The degree of −[β−]r is (1, s+ s′ − r), hence

[ā · −[β+]r +−[β−]r · a′′] = [−a · −[β+]r − (−1)2[β−]r · a′′]
= [a · [β+]r − [β−]r · a′′].

So indeed [a · [β+]r − [β−]r · a′′] is in the Massey product.
Now, by the assumptions in Section 6.2 and speci�cally Conjecture 6.8, we have that a representative

of [a · [β+]r] is given by the map

µ(α∗∗, β
+) : ΣS ≃ S⊗ Σ(S) α∗∗⊗β+

−−−−−→ Grs(X)⊗Grs
′+s′′−r(X)

µ−→ Grs+s
′+s′′−r(X).

By de�nition of β+, this means that µ(α∗∗, β
+) is the map induced by

S⊗ S⊗ S S⊗X(s′ + s′′) S⊗X(s′ + s′′ − r + 1) S⊗ 0

S⊗ 0 S⊗X(s′ + s′′ − r) S⊗X(s′ + s′′ − r) S⊗Grs
′+s′′−r(X) Grs+s

′+s′′−r(X).

id⊗α′
∗α

′′
∗ id⊗is′+s′′−r+1,s′+s′′

h̃2 id⊗is′+s′′−r,s′+s′′ h3

id⊗js′+s′′−r µ(α∗∗⊗id)

Note that

µ(α∗∗ ⊗ id) ◦ (id⊗js′+s′′−r) ◦ (id⊗is′+s′′−r) ◦ (id⊗α′
∗α

′′
∗) ≃ js+s′+s′′−rµ(α∗, is′+s′′−r,s′+s′′α

′
∗α

′′
∗)

by compatibility of µ with the associated graded and the fact that α∗∗ ≃ jsα∗. Similarly, the map
µ(β−, α′′

∗∗) : ΣS ≃ ΣS⊗ S→ Grs+s
′+s′′−r(X) is induced by
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S⊗ S⊗ S X(s+ s′)⊗ S X(s+ s′ − r + 1)⊗ S 0⊗ S

0⊗ S X(s+ s′ − r)⊗ S X(s+ s′ − r)⊗ S Grs+s
′
(X)⊗ S Grs+s

′+s′′−r(X).

α∗α′
∗⊗id is+s′−r+1,s+s′

h̃1 is+s′−r,s+s′⊗id h4

js+s′−r⊗id µ(id⊗α′′
∗∗)

Note that we have

µ(id⊗α′′
∗∗) ◦ (js+s′−r ⊗ id) ◦ (is+s′−r,s+s ⊗ id) ◦ (α∗α

′
∗ ⊗ id) ≃ js+s′+s′′−rµ(i′s+s′−r,s+sα∗α

′
∗, α

′′
∗)

≃ js+s′+s′′−rµ(α∗, is′+s′′−r,s′+s′′α
′
∗α

′′
∗)

where the �rst is obtained from similar reasoning as before and the second via associativity. We will
now try to relate this to the map js+s′+s′′−r ◦ γ. Note that j ◦ γ : ΣS → Grs+s

′+s′′−r(X) is the map
obtained from the diagram

0⊗ S X(s+ s′ − r)⊗ S

S ≃ S⊗ S⊗ S X(s+ s′ − r)⊗ S X(s+ s′ − r)⊗X(s′′) X(s+ s′ + s′′ − r) Grs
′+s′+s′′−r(X)

S ≃ S⊗ S⊗ S S⊗X(s′ + s′′ − r) X(s)⊗X(s′ + s′′ − r) X(s+ s′ + s′′ − r) Grs
′+s′+s′′−r(X)

S⊗ 0 S⊗X(s′ + s′′ − r).

h1 µ(id,α′′
∗ )

iα∗α′
∗⊗id id⊗α′′

∗
µ j

id⊗iα′
∗α

′′
∗ α∗⊗id

h2

µ j

µ(α∗,id)

See also Figure 1. We again suppressed indices in the maps to make the diagram more readable. To
be more precise, j ◦ γ is the map induced by the diagram

S⊗ S⊗ S 0⊗ S

S⊗ 0 Grs+s
′+s′′−r(X)

H2

jµ(α∗ ,iα ′
∗α ′′∗ )

H1

where H1 is obtained from h1 by taking compositions according to the above diagram, together with
the associativity relation, and H2 is induced by h2 by taking compositions as well.

We now want to write js+s′+s′′−r ◦ γ as µ(α∗∗, β
+) − µ(β−, α′′

∗∗). The idea is to do this similarly
as one would for topological spaces. That is, show that j ◦ γ is homotopic to a map which is zero in
the 'middle' of the suspension and therefore is homotopic to a map on ΣS⊕ΣS. This is the approach
Belmont and Kong use as well [4]. We want to translate this idea to the ∞-category of spectra. In
particular, we consider the following statement.

Lemma 6.16. Suppose we have a diagram

X 0

0

0 Z

K2

K1
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in Sp, where K1,K2 are squares ∆1 × ∆1 → Sp. Then the outer square yields a map k : ΣX → Z,
which de�nes an operation on [ΣX,Z]. Furthermore, this operation coincides with the usual addition
ΣX → Z ⊕ Z → Z. That is, k ≃ k1 + k2, where k1 and k2 are the maps ΣX → Z corresponding to
squares K1 and K2 respectively.

A proof strategy would �rst involve showing that the operation is well-de�ned; and then possi-
bly an Eckmann-Hilton argument to show that the two operations coincide. Note that the maps
µ(α∗∗, β

+), µ(β−, α′′
∗∗) and js+s′+s′′−r ◦γ are all obtained from diagrams with essentially the same map

on the diagonal. Furthermore, the homotopies h̃1 and H1 and h̃2 and H2 are nearly the same and
both h3 and h4 come from taking co�bers. For a rigid proof, one would have to show that we can
indeed relate the homotopies in the way we think they can be related, so that we can use the following
statement to write [js+s′+s′′−r ◦ γ] as

[µ(α∗∗, β
+)]− [µ(β−, α′′

∗∗)].

Lemma 6.17. Let h1, h2, h3 : ∆2 → Sp be three null-homotopies of the same map f : X → Z. Write
[h1, h2] : ΣX → Z for class of the maps in [ΣX,Z] induced by

X 0

0 Z

h2
f h1

Then [h1, h2] + [h2, h1] + [h3, h1] = 0 in [ΣX,Z].

For proving this, the idea is to use Lemma 6.16 to note that we can write [h1, h2] + [h2, h3] as the map
induced by diagram

X 0

0

0 Y

h1

h2

h2

h3

Then the goal is to show, probably by considering the homotopies as morphisms in mapping spaces,
that the middle diagram is essentially the same as taking the identity homotopy from f to itself. That
is, this induces the same map as the diagram

X 0

0 Z

h3
f h1

and therefore, since swapping diagrams is the same as inverting, see[16, 1.2.2.10], we have indeed that
[h1, h2] + [h2, h3] + [h3, h1] = 0.
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