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Abstract

We look at n-dimensional rational projective spaces. On these spaces we define a height function
and we count the number N(B) of points with height smaller than or equal to a bound B. In
particular we are interested in the growth rate of N(B) for large B. We give two different methods
to solve this problem. We will generalize the second method to specifically chosen subsets of n-
dimensional rational projective spaces.
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1 Introduction

The interest in rational points stems from Elliptical Curve Cryptography, ECC for short.
The safety of these ECC algorithms depends on the number of rational points of an elliptic
curve on a projective space[1]. This is why we are interested in finding algebraic varieties
and other subsets of RPn with many rational points[2][3].

In this thesis we look at rational projective spaces of dimension n, denoted QPn. We
define a height function H : QPn → Z>0, which assigns a positive integer to each point on
such a space and our aim is to count the number N(B) of points with height smaller than or
equal to an arbitrary value called the bound B. Specifically, we are interested in the growth
rate of N(B) for large bounds B. The number of points with height at most B will only
depend on the space we work with and on the value of B. In this thesis we want to find the
exponent E such that limB→∞ B−EN(B) = C ̸= 0 for QPn and specific subsets of QPn. We
will not calculate the constant C explicitly as this constant also depends on the space QPn

or, if applicable, its subset.

The first goal of this thesis is to find the exponent E for QPn. The first main theorem
we aim to prove states that E = n+ 1 for QPn.

Theorem 1. Let n ∈ Z>0. The number N(B) of points in QPn with height at most B
satisfies

lim
B→∞

B−(n+1)N(B) = C ̸= 0

for a non-zero constant C.

The second goal of this thesis is to expand Theorem 1 to subsets of QPn. These subsetsXS

are constructed using sets S ⊂ Z≥0 with the requirement that 0 ∈ S. The exact definition of
XS can be found in Section 5. The second main theorem of this thesis states that E = n+1/v
for XS ⊂ QPn, where v = min{x ∈ S \ {0}}.

Theorem 2. Let S ⊂ Z≥0 with 0 ∈ S, let v = min{x ∈ S \ {0}}. The number N(B) of
points in XS ⊂ QPn with height at most B satisfies

lim
B→∞

B−(n+1/v)N(B) = C ̸= 0

for a non-zero constant C.

In the Section 2, we describe the main problem more rigorously. We explain what QPn

is, and we define the height function. In the Section 3, we give the first method of solving
the problem for QPn. This first method uses a different way of thinking about the problem
which allows us to solve it using functions from analytic number theory. This method works
for QPn and allows us to prove Theorem 1. This method even works for some subsets of
QPn, but we do not show this in this thesis. For more general subset of QPn this method
becomes too complicated and we need a different method. In the Section 4, we develop a
second method to prove Theorem 1. For this second method, we first need to introduce
p-adic number and fields, which we do in Section 4.1. Next, in Section 4.2 we explain how
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integration works on p-adic fields and we choose a measure. In Section 4.3, we introduce and
prove a Tauberian theorem, which in the end will give the exponent we are looking for. In
Section 4.4, we introduce and prove the Poisson Summation Formula. Finally, in Section 4.5,
we use both of these theorems along with our knowledge of p-adic fields and integration to
prove Theorem 1. This second method can relatively easily be expanded to certain subsets of
QPn. In Section 5, we introduce the aforementioned subsets XS of QPn. We start, in Section
5.1, by proving Theorem 2 for subsets XS ⊂ QPn with S = {0, v} for any v ∈ Z>0. In the
next subsection, Section 5.2, we prove Theorem 2 for XS ⊂ QPn with S = {0}∪Z≥v for any
v ∈ Z>0. In Section 5.3, we prove Theorem 2 for sets XS ⊂ QPn for arbitrary S ⊂ Z≥0 with
0 ∈ S. Finally, we give a short outlook on further research that could be done in this field.

2 Problem description

As mentioned in the introduction we will be working with a rational projective space. The
rational projective space of dimension n, denoted QPn, is a subset ofRPn where we only allow
points which have some representation consisting of n + 1 rational numbers. This can also
be thought of as lines through the origin passing through at least one point of Qn+1 ⊂ Rn+1.
The height function mentioned in the introduction, denoted H(x) for x ∈ QPn, is defined as
follows:

Let us use some representation for x by n+ 1 rational numbers (x0 : x1 : . . . : xn). There
exist integers pi, qi such that xi = pi/qi for every 0 ≤ i ≤ n. Then (Px0 : Px1 : . . . : Pxn)
where P =

∏n
j=0 qj is a representation of x consisting of integers. Then (y0 : y1 : . . . : yn)

with yi = Pxi/ gcd(Px0, Px1, . . . Pxn) is a representation of x of coprime integers. Now we
define H(x) = max{|yi| : 0 ≤ i ≤ n}. Note that this procedure always leads to a rep-
resentation of x consisting of coprime integers. Furthermore, note that any x ∈ QPn has
only two representations consisting of coprime integers, these will differ by a factor of −1.
This means that the height function always gives the same value independent of the chosen
representation of x by coprime integers. This means that the height function is well-defined.
Now the main problem we want to solve in this thesis is to find the number of x ∈ QPn for
which H(x) ≤ B for some bound B. In particular, we want to find its dependence on B for
large B.

3 The first method

The first solution to this main problem comes from noticing that any ordered set of n + 1
coprime integers (y0 : y1 : . . . : yn) is a representation for one unique x ∈ QPn, additionally
every x corresponds to two of these ordered sets of coprime integers. This means that the
problem reduces to counting ordered sets of coprime integers (y0, y1, . . . yn) such that yi ≤ B
for all i and dividing this by 2. To start the proof, we will look at the case when n = 1
which means we need to count how many pairs of coprime integers (y0, y1) exist such that
|y0|, |y1| ≤ B for some bound B, for this we will introduce a few functions from analytic
number theory.
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Definition 1 (Möbius function). The Möbius function of an integer m, denoted µ(m), is
either 0 or ±1 depending on the prime factors of m in the following way:

µ(m) =

{
(−1)#prime factors of m if m is square-free

0 otherwise.

Here m being square-free means that m is not divisible by any square apart from 1. In
other words, all of its prime factors only appear once in its prime decomposition. We will
also introduce something we will creatively call the χ-function given as follows:

Definition 2 (χ-function). The χ-function of an integer is given by χ(m) =
∑

d>0 µ(d)χd(m)
where the functions χd(m) for integers d are given by

χd(m) =

{
1 if d|m and m ̸= 0

0 otherwise.

We need two results about these functions which we will put in the following lemmas:

Lemma 1. The Möbius function is multiplicative, meaning that for coprime integers a, b, we
have that µ(ab) = µ(a)µ(b).

Proof. Given two coprime integers a and b, assume that one of them is not square free and let
it be a without loss of generality. This means that a is divisible by some square greater than 1,
but this means that ab is divisible by the same square. Hence, we have that µ(a) = µ(ab) = 0,
so clearly µ(a)µ(b) = µ(ab).

Now assume both a and b are square-free, since they are coprime, they do not share any
prime factors, so the product ab will still be square free. In fact the primes dividing ab will
be exactly those dividing a and those dividing b with no overlap, so the number of prime
factors of ab is the sum of the number of prime factors of a and the number of prime factors
of b, hence we get:

µ(ab) = (−1)#prime factors of ab

= (−1)#prime factors of a+#prime factors of b

= (−1)#prime factors of a(−1)#prime factors of b

= µ(a)µ(b).

This shows that µ is indeed a multiplicative function.

Lemma 2. The χ-function has values χ(1) = 1 and χ(m) = 0 for m ̸= 1.

Proof. Note that we can rewrite the definition for χ(m) to be χ(m) =
∑

d|m µ(d). We use

induction on the number of prime factors of m. First of all, we can quickly see that µ(1) = 1,
so χ(1) = 1 and χd(0) = 0 for all d, so χ(0) = 0. Next, we see that for any prime p, we
have χ(p) = µ(1) + µ(p) = 1 − 1 = 0. Now we will show that for any m > 1 and prime p,
χ(pm) = 0 whenever χ(m) = 0. To achieve this, we need to look at the prime factors of m
and distinguish two different cases, the first being the case where p|m, the second being the
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case where p ∤ m.

Case 1: p|m:
In this case notice how every divisor d of pm also divides m or is divisible by p2, this means
that µ(d) = 0 for every divisor d of pm that is not a divisor of m as d is not square-free.
Hence,

χ(pm) =
∑
d|pm

µ(d) =
∑
d|m

µ(d) +
∑

d|pm,d∤m

µ(d) =
∑
d|m

µ(d) = χ(m).

Hence we have shown that in this case χ(pm) = χ(m), and by the assumption that χ(m) = 0,
we get χ(pm) = 0.

Case 2: p ∤ m:
In this case we can split the divisors of pm into two sets, those divisible by p and those not
divisible by p. The latter set is the set of divisors of m. Since p and m are coprime, these
two sets have the same number of elements. Indeed, if we consider some divisor d of pm with
p ∤ d, then pd will be a divisor of pm with p|d and vice versa. This means that we can write
the following:

χ(pm) =
∑
d|pm

µ(d) =
∑
d|m

µ(d) +
∑
d|m

µ(pd) =
∑
d|m

(µ(d) + µ(p)µ(d)) =
∑
d|m

(µ(d)− µ(d)) = 0,

where we used the fact that for the prime p, µ(p) = −1. This shows that in this case we also
have χ(pm) = 0.

We have shown that for m > 1, if χ(m) = 0 then χ(pm) = 0 for every prime p. Now we
can complete the proof by induction. Assume that we have some number k > 1 and some
prime p|k assume that for all 1 < k′ < k we have χ(k′) = 0, then we have that either k/p = 1
or χ(k/p) = 0 since k/p < k. In the first case, we have that k = p for which we already
showed that χ(p) = 0. For the second case we use the fact that k = pk/p to see that χ(k) = 0
because χ(k/p) = 0. We conclude that χ(1) = 1 and χ(m) = 0 for m > 1.

These two lemmas are all we need to solve our main problem for the case n = 1. From
the way we rephrased this problem, it is easy to see that as B goes to infinity, so does the
number of points x with H(x) ≤ B. This leads us to the following proposition.

Proposition 1. The number N(B) of points x ∈ QP1 with H(x) ≤ B for some integer B
satisfies

lim
B→∞

N(B)/(2B2) =
∑
n>0

µ(n)/(n2).

Proof. As mentioned before, counting these points will be the same as counting pairs of
coprime integers (y0 : y1) such that |y0|, |y1| ≤ B and dividing the total by 2. We will
call such a pair (y0 : y1) with |y0|, |y1| ≤ B a valid pair. Now we only have to consider
positive integers y0 and y1, since if (y0, y1) is a valid pair, then so are (−y0,−y1), (−y0, y1)
and (y0,−y1). However, this breaks when y0 or y1 is 0, but since this only gives four pairs,
(0,±1) and (±1, 0), all of which have height 1, we can count them separately. Writing this
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down in terms of the χ-function, with the notation that χ(gcd(0, 0)) := 0, gives

B∑
i=−B

B∑
j=−B

χ(gcd(i, j)) = 4 + 4
B∑
i=1

B∑
j=1

χ(gcd(i, j)).

As we mentioned earlier, what we have found here is not exactly the number N(B) we are
looking for, but it is precisely 2N(B), so we have to divide it by 2. This can be done in the
following way:

N(B) =
1

2

B∑
i=−B

B∑
j=−B

χ(gcd(i, j))

= 2 + 2
B∑
i=1

B∑
j=1

χ(gcd(i, j))

= 2 + 2
B∑
i=1

B∑
j=1

∑
d>0

µ(d)χd(gcd(i, j))

= 2 + 2
∑
d>0

µ(d)
B∑
i=1

B∑
j=1

χd(gcd(i, j))

= 2 + 2
∑
d>0

µ(d)
B∑
i=1

χd(i)
B∑
j=1

χd(j)

= 2 + 2
∑
d>0

µ(d)

(
B∑
i=1

χd(i)

)2

,

where in the second to last step, we used that d| gcd(i, j) if and only if d|i and d|j. We would
like to analyse the behaviour of this function for large B. Since

∑B
i=1 χd(i) is the number of

integers smaller than B which are divisible by d, it always lies between B/d − 1 and B/d.
By dividing this by B, we can see that the proportion of positive integers below B divisible
by d lies between 1/d and 1/d− 1/B. So in the limit as B → ∞, this fraction becomes 1/d.
This means that, if we divide both sides by 2B2 and take the limit B → ∞, we get

lim
B→∞

N(B)

2B2
= lim

B→∞

1

2B2

2 + 2
∑
d>0

µ(d)

(
B∑
i=1

χd(i)

)2
 =

∑
d>0

µ(d)/d2.

This is what we needed to prove.

Now that we have done the one-dimensional case, we can quite easily see how it generalizes
to n dimensions. The only thing that changes is the number of sums we have in the proof as
we show in the following theorem.

Theorem 3. For an n-dimensional rational projective space QPn, we have that the number
N(B) of points x such that H(x) ≤ B satisfies

lim
B→∞

N(B)/(2B)n+1 =
∑
d>0

µ(d)/(2dn+1).
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Proof. The proof is very similar to the 1-dimensional case, the only difference is that we are
now interested in a quantity with n+ 1 sums:

1

2

B∑
i0=−B

. . .
B∑

in=−B

χ(gcd(i0, . . . in)),

where we again define gcd(0, 0 . . . , 0) = 0. In this case however it is easier to skip the step
where we only consider the positive part of the sum to find:

N(B) =
1

2

B∑
i0=−B

. . .
B∑

in=−B

χ(gcd(i0, . . . in))

=
1

2

B∑
i0=−B

. . .

B∑
in=−B

∑
d>0

µ(d)χd(gcd(i0, . . . in))

=
1

2

∑
d>0

µ(d)

(
B∑

i0=−B

χd(i0) . . .
B∑

in=−B

χd(in)

)

=
1

2

∑
d>0

µ(d)

(
B∑

i=−B

χd(i)

)n+1

.

We can see that, as for large B, the number of integers between −B and B divisible by d lies
between 2(B/d−1) and 2B/d. So the proportion of integers between −B and B divisible by
d lies between 1/d and 1/d− 1/B. Taking the limit as B → ∞ gives us that this proportion
becomes 1/d. Hence, we can divide by (2B)n+1 and calculate the limit:

lim
B→∞

N(B)

(2B)n+1
= lim

B→∞

1

2(2B)n+1

B∑
i0=−B

. . .
B∑

in=−B

χ(gcd(i0, . . . in))

= lim
B→∞

1

2(2B)n+1

∑
d>0

µ(d)

(
B∑

i=−B

χd(i)

)n+1

=
∑
d>0

µ(d)

2dn+1
.

These constant terms in the form of
∑

d>0 µ(d)/(2d
n+1) can be calculated but we will not

show that here, what is important for us however is that they converge. This is quite easy

to check as |µ(d)| ≤ 1, so
∑

d>0

∣∣∣ µ(d)
2dn+1

∣∣∣ ≤ ∑
d>0

1
dn+1 , which is famously known to converge

for n > 0, the proof of which can be found in theorem 1.59 of [4]. As we can see this method
gives us the behavior of N(B) for large B. However, we want to expand on this by taking
various subsets of QPn and this method relies on the fact that we use all points of QPn. This
is the reason we will introduce another method to get the same answer for N(B) when we
allow all x ∈ QPn, but this new method will be expandable to certain subsets of QPn.
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4 The second method

The second method that we will discuss hinges on two main theorems, one is called the
Poisson Summation Formula and the other one is a special version of the so-called Tauberian
Theorems. Before we use these theorems, we need to set up the mathematical framework
using p-adic numbers and p-adic fields, both of which we will refer to as p-adic spaces. This
will be done in the following section.

4.1 p-adic spaces

We will start with the definition of p-adic spaces. To understand this definition we need to
understand what the completion of a metric space M with respect to its norm || . . . || is. The
completion of M is given by the following

{(xn)n∈N is a Cauchy sequence}/ ∼,

where for two Cauchy sequences (xn)n∈N and (yn)n∈N, (xn)n∈N ∼ (yn)n∈N if and only if
limn→∞ ||xn − yn|| = 0. This allows us to write down the definition.

Definition 3. The ring of p-adic numbers and the p-adic field are the completions of Z and
Q, respectively, with respect to the norm || . . . ||p.

This norm || · ||p : Q → R>0 is defined in the following way. For some nonzero integer
n ∈ Z, which can be written as pen′ for some e ∈ N and n′ such that p ∤ n′, we define
||n||p = p−e. Additionally, we have that ||0||p = 0. For some rational number x ∈ Q, which
can be written as n/m with n,m integers, which can again be written as n = pen′ and
m = pe

′
m′ with again p ∤ n′ and p ∤ m′, then the norm of x will be ||x||p = pe

′−e. Note that
this is well-defined since if we take a different representation for the fraction, we multiply
both n and m by λ for some integer λ. If p ∤ λ, it is clear that this will not change the norm.
If p|λ, let ϵ be the largest integer such that pϵ|λ, then we can see that e turns into e+ ϵ and e′

turns into e′ + ϵ. So we see that e− e′ will remain e− e′ so the norm will stay the same. For
completeness we will show that || · ||p is actually a norm on Q which will then immediately
imply that it is also a norm on Z. The definition of a norm can be found in [5], where it is
definition 1.1.

Lemma 3. The function || · ||p is actually a norm.

Proof. For || · ||p to be a norm, we have to show that ||x||p = 0 if and only if x = 0, which
is trivial from the definition since p−e ̸= 0 for every e ∈ Z. Next we have to show that
||x||p ≥ 0, which again we always have since p−e > 0 for every e ∈ Z.

Then we also need to show that ||x+y||p ≤ ||x||p+ ||y||p for all x, y ∈ Q, but we will show
something stronger instead. We will show that ||x + y||p ≤ max{||x||p, ||y||p}. Let us write
x = n1/m1 and y = n2/m2 with ni,mi integers for i ∈ {1, 2}. We write these as ni = pein′

i

and mi = pe
′
im′

i with p ∤ n′
i and p ∤ m′

i for again i ∈ {1, 2}. We can easily see now that
||x||p + ||y||p = pe

′
1−e1 + pe

′
2−e2 , and
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x+ y =
pe1n′

1

pe
′
1m′

1

+
pe2n′

2

pe
′
2m′

2

=
pe2+e′1m′

1n
′
2 + pe1+e′2m′

2n
′
1

pe
′
1+e′2m′

1m
′
2

.

Note that p ∤ m′
1m

′
2. We can assume without loss of generality that (e1+ e′2)− (e2+ e′1) =

δe ≥ 0. Then we can write

x+ y =
pe2+e′1(m′

1n
′
2 + pδem′

2n
′
1)

pe
′
1+e′2m′

1m
′
2

.

From this and the fact that p ∤ m′
1n

′
2, we get that if δe ̸= 0, then p ∤ m′

1n
′
2 + pδem′

2n
′
1,

and hence ||x + y||p = p(e
′
1+e′2)−(e2+e′1) = ||y||p, while if δe = 0, we have that ||x + y||p ≤

p(e
′
1+e′2)−(e2+e′1) = ||y||p. If δe < 0, a similar calculation shows that ||x + y||p = ||x||p. As we

can see in all cases we have that ||x+ y||p ≤ max{||x||p, ||y||p}.

Lastly, we need to show that ||xy||p = ||x||p||y||p which can be seen as follows using the
same notation as for the previous point:

||xy||p =
∣∣∣∣∣∣∣∣ pe1n′

1p
e2n′

2

pe
′
1m′

1p
e′2m′

2

∣∣∣∣∣∣∣∣
p

= pe
′
1+e′2−e1−e2 = ||x||p||y||p,

where we used that since n′
1, n

′
2,m

′
1 and m′

2 are not divisible by p, neither are n′
1n

′
2 and

m′
1m

′
2.

Next we want to find better representations for the elements of Zp and Qp, since the
definition using Cauchy sequences is not easy to work with. The easiest way to do this
is by noticing that any Cauchy sequence in Qp and Zp can be written as (xn)n∈N with
xn =

∑n
i=0 aip

i with ai ∈ Q and ai ∈ Z respectively. This is clearly a Cauchy sequence as
pn|xm − xn for any n,m ∈ N with n < m, so ||xm − xn||p ≤ p−n. Furthermore, in section 4.4
of [6], it is proven that all elements of Qp and Zp are of the form

∑∞
i=0 aip

i with ai ∈ Q and
ai ∈ Z respectively. But we can do even better than this and give a nicer representation,
since there are multiple representations of this form that give the same elements in Qp or Zp,
for example in Z3 we have 5 · 30 = 2 · 30 + 1 · 31.

Proposition 2. All elements in Zp can be represented by
∑∞

i=0 xip
i with 0 ≤ xi < p for all

i ≥ 0, and every element of Qp can be represented by
∑∞

i=−m x′
ip

i for some integer m and
0 ≤ x′

i < p for all i ≥ −m.

Before we prove this proposition, we require one small lemma.

Lemma 4. Let p, q be two distinct prime numbers, then we have that 1/q ∈ Zp.

Proof. All we have to do is to show that 1/q will have a representation of the form
∑∞

i=−m xip
i

for any prime number q ̸= p. We can use the fact that p and q are coprime to see that q is
invertible in Z/piZ for every i ≥ 1. Write ai ≡ 1/q mod pi with 0 < ai < pi, so pi|aiq − 1.
This means that pi|q(ai − ai+1), and, since q and pi are coprime, pi|(ai − ai+1). Let us now
look at

∑∞
i=0 xip

i where xi = (ai+1− ai)/p
i for i > 0 and x0 = a1. Then

∑n
i=0 xip

i = an+1 for
all n ≥ 0, and hence, pn+1| (1− q

∑n
i=1 xip

i). This means that ||1/q−
∑n

i=0 xip
i||p ≤ p−(n+1).

So taking the limit as n → ∞, we get ||1/q−
∑n

i=0 xip
i||p → 0. This means that the Cauchy

sequence (
∑n

i=0 xip
i)n∈N converges to 1/q, and implies that 1/q ∈ Zp for all q ̸= p.
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We can now prove Proposition 2.

Proof. For Zp the statement is obvious, since every element of Zp is a Cauchy sequence,
which is of the form

∑∞
i=0 xip

i with xi ∈ Z. For every i such that xi ≥ p or xi < 0, we can
write xi = r ∗ p+ b with 0 ≤ b < p, we can adjust our representations to

∑∞
i=0 x

′
ip

i by setting
x′
i = b, x′

i+1 = xi+1 + r and x′
j = xj for all j ̸= i, i + 1. If we first do this for i = 0 and

keep doing it for increasing i we will find a representation we want. We can do this since
if we generate a new representation by doing this starting from i = 0 until i = N for some
integer N , the difference of the first N terms of both of these representations will be divisible
by pN , so the norm will be smaller or equal to p−N . So if we set x′

i = 0 for i > N and let
N → ∞, we obtain the representation we want. This limit exists because

∑N
i=0(x

′
ip

i − xip
i)

is a Cauchy sequence with limit 0.

For Qp, we will use the fact that any element of Zp has a representation of the form we
want. Note that for any prime number q, 1/q has a representation of the form

∑∞
i=−m xip

i

for some integer m and 0 ≤ xi < p for all i ≥ −m. For q ̸= p, this follows from the fact that
by Lemma 4, 1/q ∈ Zp and for q = p, we have x−1 = 1 and xi = 0 for i ̸= −1. Next we can
see that for any a/b with a, b ∈ Z, we can use the prime factorization of b. We know a has
a representation of the form

∑∞
i=−m xip

i and so will 1/q for any q in the prime factorization
of b. Next we notice that the product of two these representations will be again of the same
form, which can be shown as follows

∞∑
i=−n

xip
i

∞∑
j=−m

x′
jp

j =
∞∑

i=−n

∞∑
j=−m

xix
′
jp

i+j =
∞∑

i=−(n+m)

x′′
i p

i

with x′′
i =

∑i+m
j=−n xjx

′
i−j. This representation only has the flaw that x′′

i might not be between
0 and p − 1, but as we saw in the proof for Zp, we can change the representation to solve
this problem. All of this together shows that a/b will also have a representation of the form
in the proposition.

This representation becomes especially useful when we perform integration which we will
introduce in the next subsection. Finally in this section we will calculate the set of unit
elements of Zp, which we will denote Z∗

p.

Proposition 3. The set of unit elements of Zp, denoted Z
∗
p ⊂ Zp are exactly those elements

with representation
∑∞

i=0 xip
i, with 0 ≤ xi < p for all i, where x0 ̸= 0.

Proof. First of all we note that the prime p ∈ Zp is not invertible. Next note that for any
element of Zp with representation

∑∞
i=0 xip

i, the sum
∑n

i=1 xip
i for some n ∈ N is just an

integer. Furthermore since x0 ̸= 0,
∑n

i=0 xip
i is coprime with pk for all 1 ≤ k ≤ n. This means

it has an inverse in Z/pkZ, let us define ak−1 ≡ (
∑n

i=0 xip
i)
−1

mod pk. We can see that
pk|(ak − ak−1) since p ∤

∑n
i=0 xip

i, but pk|(ak−1 − ak)
∑n

i=0 xip
i and p is prime. Furthermore

since ak ≤ pk+1, we have that 0 ≤ (ak − ak−1)p
−k ≤ p. Let us now define yk = (ak − ak−1)p

−k

and y0 = a0. Then we see that
∑n

j=1 yjp
j
∑n

i=0 xip
i ≡ 1 mod pn+1. If we now let n go to ∞,
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we get that
∑n

i=0 yip
i is the inverse of

∑n
i=0 xip

i. This shows that if x0 ̸= 0,
∑n

i=0 xip
i is a

unit of Zp. If however x0 = 0, let r > 0 be the smallest integer such that xr ̸= 0, then we
can write

∑n
i=0 xip

i =
∑n

i=r xip
i = pr

∑n
i=0 xi+rp

i. This is now a product of a unit and pr,
which is not a unit for r > 0, so this will not be a unit. Hence every unit of Zp is of the form∑n

i=0 xip
i with x0 ̸= 0.

4.2 p-adic integration

We will choose to use the Haar Measure, the definition of which can be found in section 2.2
of [7], normalized such that

∫
Zp

dx = 1, which makes sense in both spaces Zp and Qp as

Zp ⊂ Qp. This leads to the following lemma.

Lemma 5. The set of unit elements Z∗
p ⊂ Zp has volume 1− 1/p. The volume of piZ∗

p ⊂ Qp

is (1− 1/p)p−i for every i ∈ Z.

Proof. The proof follows directly from the fact that
∫
Zp

dx = 1. Since Z∗
p = Zp \ pZp, the

volume of pZp can be calculated in the following way:∫
x∈pZp

dx =

∫
y∈Zp

d(py) =

∫
y∈Zp

||p||pdy = 1/p

∫
y∈Zp

dy = 1/p.

In the second equality we used a property of the Haar measure, which is d(ax) = ||a||pdx and
can be found in section 2.2 of [7]. This means that the volume of Z∗

p = Zp \ pZp is 1− 1/p.
Next we calculate the volume of piZ∗

p ⊂ Qp using a similar substitution:∫
x∈piZ∗

p

dx =

∫
y∈Z∗

p

d(piy) =

∫
y∈Z∗

p

||pi||pdy = p−i

∫
y∈Z∗

p

dy = p−i(1− 1/p).

4.3 Poisson Summation Formula

To understand what the Poisson Summation Formula is and where we can use it, we will
use the integration to define Fourier transformations on p-adic spaces. The space where we
will perform these Fourier transformations is not Qp, instead it will be a restricted product
of copies of Qp for different primes, which we will call V . For notation we write P for the set
of all prime numbers, and we write Q∞ = R and Z∞ = Z. Then we define:

V =

{
(xp)p∈P∪∞ ∈

∏
p∈P∪∞

Qp : xp ∈ Zp for all but finitely many p ∈ P ∪∞

}
.

As we mentioned, we want to perform Fourier transformations in this space. Intuitively
this should work similar to Fourier transformations over the field R, where we would have:

f̂(ξ) =

∫
f(x)e2πιξxdx.
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The theory behind this in R can be found in [8]. We want to do this for V , so we need to
take x ∈ V and ξ ∈ Q. We cannot just fill this in since multiplying elements from Q and V
is not yet defined, but we can define it as follows as Q ⊂ Q∞ and Q ⊂ Qp for every prime
p. For ξ ∈ Q and x = (xn)n∈P∪∞ ∈ V , xξ = (xnξ)n∈P∪∞. So we multiply every element of
the sequence x by the rational number ξ. This solves most of our problems, but not all of
them, since raising e to the power of xξ is not yet defined. To fix this, we will insert an extra
function which will send xξ to a real number, by taking what we will call the fractional part:

Definition 4. The fractional part of a number x ∈ R, denoted by {x}∞ ∈ [0, 1), is the
unique number on this interval such that x ≡ {x}∞ mod 1. On Qp the fractional part
{x}p of x =

∑∞
i=−m xip

i is the unique rational number ξ ∈ Q ⊂ Qp such that ξ has the

representation
∑−1

i=−m xip
i. Note that this means that we can see {x}p as an element of R

since it is a finite sum of rational numbers.

We call this the fractional part of a number since {·}p is a function from Qp to R that is
periodic with period 1 in the sense that {x}p = {x+1}p. We can easily extend this function
to V by defining for any x = (xn)n∈P∪∞ ∈ V , {x} =

∑
p∈P∪∞{xp}p ∈ R. Note that this

sum indeed gives an element of R, because by definition xp ̸∈ Zp for only finitely many p, so
{xp}p ̸= 0 for only finitely many p ∈ P . And since {x} ∈ R, e{x} is defined.

The next thing we need to discus is how the integrals work on V . This is just as we
would expect, where for x = (xn)n∈P∪∞ ∈ V , dx =

∏
n∈P∪∞ dxn. Lastly we have to define

the domain of integration of the Fourier transform. If we look for inspiration at the Fourier
transform over R again when we have periodic functions, we set the integration bounds to 0
and 1 since the period is 1. We will be interested in periodic functions, where for any ξ ∈ Q
and x ∈ V , f(x) = f(x+ (ξ)p∈P∪∞). Naturally it would make sense to choose our domain of
integration D such that if x ∈ D, x + ξ ̸∈ D for any ξ ∈ Q. So if we denote the integration
region by D ⊂ V , then we require that if x ∈ D, x + ξ ̸∈ D for all 0 ̸= ξ ∈ Q. This defines
the following set:

D = V/ ∼ with x ∼ y ⇐⇒ ∃z ∈ Q such that (x− y)n = z ∀n ∈ P ∪∞.

There is an easier way to describe the set D as shown in the next proposition.

Proposition 4. Every equivalence class in the set D has precise one representation [x] with
x ∈ D′ := [0, 1)×

∏
p∈P Zp.

Proof. Since D′ ⊂ V , we have to show that for any two different x′, y′ ∈ D′, we cannot have
that x′ ∼ y′, and that for every y ∈ V , there exists an x ∈ D′ such that x ∼ y. First of all
let us take x′, y′ ∈ D′. Then (x′ − y′)p ∈ Zp for all p ∈ P as (x′)p, (y

′)p ∈ Zp, additionally
−1 < (x′ − y′)∞ < 1. Now let us assume that there exists some z ∈ Q such that for all
p ∈ P ∪ ∞, (x′ − y′)p = z. Write z = a/b with a, b coprime integers and let q be a prime
factor of b. Then (x′ − y′)q =

∑∞
i=−m xiq

i with m > 0, hence (x′ − y′)q ̸∈ Zq, so we have a
contradiction. This means that b cannot have any prime factors, and hence z will have to be
an integer. This means that (x′ − y′)∞ = z is an integer, and hence z = 0. So we get that
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x′ = y′. Hence we cannot have two distinct x′, y′ ∈ D′ such that x′ ∼ y′.

Now let us take y ∈ V . We can write yp =
∑∞

i=−m xip
i. Since y ∈ V , m > 0 for only

finitely many p, hence, {yp}p ̸= 0 for only finitely many p, and so
∑

p∈P{yp}p is finite. Next
we can use Lemma 4 to see that if p and q are distinct primes, 1/p ∈ Zq. This means that
{yp}p ∈ Zq for any prime q ̸= p, as {yp}p =

∑0
i=−m xip

i and pi ∈ Zq for any −m ≤ i ≤ 0.
Additionally if we look at {yp}p ∈ Q as element of Qp, we see that yp − {yp}p ∈ Zp, which
gives us yp −

∑
p′∈P{yp′}p′ ∈ Zp for every prime p. If we now take a look at

∑
q∈P{yq}q, we

can view this sum as element of V using the fact that we can view any element x ∈ Q as
element of Qp for any p ∈ P ∪ {∞}. This also means we can view it as element of V under
the map Q → V given by x 7→ (x)p∈P∪{∞}. Using this sum we can construct the element
y −

∑
q∈P{yq}q ∈ V which is equivalent to y under the relation ∼, however it does not quite

lie in D′ yet, for this we need to have that (y −
∑

q∈P{yq}q)∞ ∈ [0, 1), but this is quite easy
to fix, since we can just take:

x = y −
∑
q∈P

{yq}q − ⌊(y −
∑
q∈P

{yq}q)∞⌋.

Where we again bring both sums from Q to V using the same map as before. We can see
that x ∈ V as the sum

∑
q∈P{yq}q only has a finite number of non-zero terms. Furthermore,

we clearly have that x ∼ y and we see that x ∈ D′ as argued above.

This proposition means we can use the definition D′ instead of more abstract definition
of D for any calculations. The first thing we can easily compute using this new description
for D is its volume.

Corollary 1. The volume of D is 1, meaning that
∫
D
dx = 1.

Proof. The proof becomes easy when we write D as D′:∫
D

dx =

∫
D′

dx =

∫ 1

0

dx∞
∏
p∈P

∫
Zp

dxp = 1.

This last step comes from the fact that
∫
Zp

dxp = 1 for all p ∈ P .

With this we are almost ready to introduce the two lemmas we will need for the Poisson
Summation Formula, but first we need to define the Fourier transform of a function f on V .
To introduce the Fourier transform, we need to be able to define continuous functions V and
D, so we need a topology on V and D. The spaces Qp are metric spaces and as such get
their topology from the norm. The space V inherits the product topology from R and the
spaces Qp, and finally the space D inherits the quotient topology from V .

Definition 5. Let ϕ : D → R be a continuous function, periodic with period ξ for all ξ ∈ Q.
The Fourier transform of ϕ, denoted ϕ̂ is given by:

ϕ̂(ξ) =

∫
D

ϕ(x)e−2πι{ξx}dx.
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For non-periodic but still continuous functions f : V → R, we have that the Fourier
transform is given by:

f̂(ξ) =

∫
V

f(x)e−2πι{ξx}dx.

This definition is well-defined, taking a different representation of D ⊂ V gives the same
result. The way to check this is to check if the integrant is invariant under addition of ξ for
all ξ ∈ Q. This clearly does not change ϕ, since it is periodic, so ϕ(x) = ϕ(x + η), however
we have to check if e2πι{ξx} = e2πι{ξx+ξη}. For this we have the following proposition.

Proposition 5. For every rational number η ∈ Q, {η} ∈ Z.

Proof. Let us first write η = a/b with a, b coprime. Note that we can assume 0 < η < 1.
Indeed, any integer k ∈ Z has the property that k ∈ Zp for every p ∈ P . This means that if
we look at the definition of {η}p, we can see that {η+ k}p = {η}p for all p ∈ P , additionally
{k + η}∞ = {η}∞, so we have that {k + η} = {η} for every integer k. This means that we
can assume that a, b > 0 and a < b. Let the prime factorisation of b be given by b =

∏n
i=1 q

ei
i

for primes qi and integers ei. Note that if p ̸= qi for all i, then a/b ∈ Zp, so {a/b}p = 0. This
means that:

{η} =

{
a

n∏
i=1

q−ei
i

}
∞

+
n∑

j=1

{
a

n∏
i=1

q−ei
i

}
qj

= a
n∏

i=1

q−ei
i +

n∑
j=1

{
a

n∏
i=1

q−ei
i

}
qj

.

If we look back at the proof of Proposition 2, we can see that:{
a

n∏
i=1

q−ei
i

}
qj

= bjq
−ej
j where bj ≡ aq

ej
j

n∏
i=1

q−ei
i mod q

ej
j .

With 0 ≤ bj ≤ q
ej
j for all 0 < j ≤ n. This means that bjq

−ej
j

∏n
i=1 q

ei
i ≡ a mod q

ej
j .

Combining this all we get that:

{η} = −a

n∏
i=1

q−ei
i +

n∑
j=1

{
a

n∏
i=1

q−ei
i

}
qj

= −a

n∏
i=1

q−ei
i +

n∑
j=1

bjq
−ej
j

=

(
−a+

n∑
j=1

bjq
−ej
j

n∏
k=1

qekk

)
n∏

i=1

q−ei
i .

Note that qeii |bjq
−ej
j

∏n
k=1 q

ek
k when i ̸= j, and qeii |bjq

−ej
j

∏n
k=1 q

ek
k − a when i = j. These

two together mean that qeii | − a +
∑n

j=1 bjq
−ej
j

∏n
k=1 q

ek
k for all 0 < i ≤ n. This means that

{η} is an integer.

Proposition 5 has shown that for any rational number η, {η} is an integer, so e2πι{η} = 1.
The next lemma shows the Fourier inversion formula holds and behaves as expected.
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Lemma 6. Given a continuous function ϕ : V → R, periodic with period ξ for all ξ ∈ Q,
assume that

∑
ξ∈Q |ϕ̂(ξ)| < ∞, then:

ϕ(x) =
∑
ξ∈Q

ϕ̂(ξ)e2πιξx.

Proof. The proof requires more measure theory than we would like to go into in this thesis,
it can be found in theorem 4.21 of [7] or Lemma 4.2.2 in [9].

Lemma 7. If f : V → R is continuous with an existing Fourier transform f̂ and
∑

η∈Q f(x+
η) is uniformly convergent for all x ∈ D, then ϕ(x) =

∑
η∈Q f(x + η) is a periodic function

from V → R and has the property that ϕ̂(ξ) = f̂(ξ).

Proof. The proof is quite straight-forward and involves just calculations and a few small
substitutions:

ϕ̂(ξ) =

∫
D

ϕ(x)e−2πι{ξx}dx

=

∫
D

∑
η∈Q

f(x+ η)e−2πι{ξx}dx

=
∑
η∈Q

∫
D

f(x+ η)e−2πι{ξx}dx

=
∑
η∈Q

∫
D+η

f(x)e−2πι{ξx−ξη}dx

=
∑
η∈Q

e2πι{ξη}
∫
D+η

f(x)e−2πι{ξx}dx.

The exchange of sum and integral is justified because
∑

η∈Q f(x+ η) is uniformly conver-
gent, so the sum inside the integral is also uniformly convergent. This justifies the exchange
as for every ϵ > 0, we can find some finite subset Q(ϵ) of Q such that

∑
η∈Q\Q(ϵ) f(x+η) ≤ ϵ,

and uniform convergence makes Q(ϵ) independent of x. This means that∑
η∈Q\Q(ϵ)

∫
D

f(x+ η)e−2πι{ξx}dx <

∫
D

ϵdx = ϵ.

Next we note that ξη is a rational number, so {ξη} is an integer, so e−2πι{ξη} = 1, this gives
us:

ϕ̂(ξ) =
∑
η∈Q

∫
D+η

f(x)e−2πι{ξx}dx =

∫
V

f(x)e−2πι{ξx}dx = f̂(ξ).

Now we have all we need to prove the Poisson Summation Formula which says the fol-
lowing.
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Theorem 4 (Poisson Summation Formula). Let f : V → R be a continuous function with
Fourier transform f̂ . Let

∑
ξ∈Q f(x+ ξ) be uniformly convergent for all x ∈ D, furthermore

let
∑

ξ∈Q |f̂(ξ)| be convergent. Then:∑
ξ∈Q

f̂(ξ) =
∑
ξ∈Q

f(ξ).

Proof. The main difficulty of this proof lies in the two the previous lemmas which we have
already proven. Let ϕ(x) =

∑
ξ∈Q f(x + ξ). Since it is absolutely convergent, we can use

Lemma 7 to see that ϕ̂(ξ) = f̂(ξ), so we have
∑

ξ∈Q f̂(ξ) =
∑

ξ∈Q ϕ̂(ξ). We also have∑
ξ∈Q |f̂(ξ)| =

∑
ξ∈Q |ϕ̂(ξ)| and since the left hand side converges, so does the right hands

side. Now we can use Lemma 6 on ϕ with x = 0 to see that ϕ(0) =
∑

ξ∈Q ϕ̂(ξ). Combining
these with the definition of ϕ we get:∑

ξ∈Q

f̂(ξ) =
∑
ξ∈Q

ϕ̂(ξ) = ϕ(0) =
∑
ξ∈Q

f(ξ).

This proves the theorem.

4.4 Tauberian Theorem

There are several slightly different theorems called Tauberian theorems. All of these start
with some function f(z) :=

∑
n≥0 anz

n with z being complex and this sum being convergent
on some region of the complex plane. These theorems then tell us some properties of the
constants an given some restrictions on f . For example the original theorem by Tauber,
found in chapter II.7 of [10], states that

∑
n≥0 an = l if f(z) has radius of convergence 1,

limz→1 f(z) = l, f is real valued on the interval [0, 1), and
∑

n≤x nan → 0 as x → ∞. While
it is interesting, this theorem will not be useful for us. Instead we will look at a slightly
modified version of the so-called Ikehara-Ingham-Delange theorem, which is Theorem 7.13 in
[10].

Theorem 5. Let A(t) be a non-decreasing function from R to R such that the function
F (z) := z

∫∞
0

A(t)e−ztdt converges for Re(z) > a > 0. Let there be real numbers c ≥ 0 and
b > 0 such that the function

G(z) =
F (z + a)

z + a
− c

zb

satisfies, for real x,

lim
x→0+

xb−1

∫ T

−T

|G(2x+ ιy)−G(x+ ιy)|dy = 0

for every fixed positive real number T . Then

lim
t→∞

A(t)e−att1−b =
c

Γ(b)
.
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To prove this theorem we first need two lemmas, their use will become clear when we
start proving the theorem.

Lemma 8. Let g : R→ R be an integrable and bounded function on R. Assume there exist
real numbers T and K such that

sup
x≤y≤x+1/T

(g(y)− g(x)) ≤ K, ĝ(τ) = 0,

for every x ∈ R and |τ | ≤ T . By ĝ we mean the usual Fourier transform of g, the definition
of which can be found in the Appendix. Then

||g||∞ = sup
x∈R

|g(x)| ≤ 16K.

Proof. Given g, T and K that satisfy the conditions in the statement, if we take the func-
tion h(x) = g(x/T ), we find that the function h along with T = 1 and K also satisfies the
conditions, since ĝ(τ) = ĥ(τ/T )/T . Hence, we can assume that T = 1, as the general case
would follow from the inverse of this substitution.

Let us start by looking at the function

β(t) =
1

2π

sin(t/2)2

(t/2)2
.

This function is normalised such that
∫∞
−∞ β(t)dt = 1 and it has the Fourier transform

β̂(τ) = max(1− |τ |, 0), which can be found in Appendix 7.1.2. This means that outside the
interval [−1, 1], β̂(τ) = 0, but this means that ĝ(τ)β̂(τ) = 0, since ĝ(τ) = 0 on [−1, 1]. We
can write out exactly what this means:

0 = ĝ(τ)β̂(τ)

=

∫ ∞

−∞

∫ ∞

−∞
e−ιτxg(x)e−ιτyβ(y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
e−ιτ(x+y)g(x)β(y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
e−ιτzg(z − y)β(y)dzdy.

This is the Fourier transform of the function

f(x) =

∫ ∞

−∞
g(x− t)β(t)dt.

Since the Fourier transform of f is 0 for every τ and f is continuous, we get that f has
to be 0. Next we define σ to be the a function of ||g||∞, with σ ∈ {−1, 1} such that
||g||∞ = supx∈R σg(x). In the case where this holds for both σ = 1 and σ = −1, we just set
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σ = 1. For every 0 < ϵ < 1, there exists some x0 such that σg(x0) ≥ (1 − ϵ)||g||∞, then for
x = x0 − 5σ we have:

0 = σ

∫ ∞

−∞
g(x0 − 5σ − t)β(t)dt

= σ

∫ 5

−5

g(x0)β(t)dt− σ

∫ 5

−5

(g(x0)− g(x0 − 5σ − t))β(t)dt+ σ

∫
|t|>5

g(x0 − 5σ − t)β(t)dt

≥ (1− ϵ)||g||∞
∫ 5

−5

β(t)dt− σ

∫ 5

−5

(g(x0)− g(x0 − 5σ − t))β(t)dt− ||g||∞
∫
|t|>5

β(t)dt

Next recall that supx≤y≤x+1(g(y) − g(x)) ≤ K for all x from the assumption in the lemma.
Hence, for t ∈ [−5, 5] and σ = 1 we have:

g(x0)− g(x0 − 5σ − t) ≤ sup
x0−5σ−t≤y≤x0−5σ−t+10

(g(y)− g(x0 − 5σ − t))

≤
10∑
i=1

sup
x0−5σ−t+(i−1)≤y≤x0−5σ−t+i

(g(y)− g(x0 − 5σ − t)) ≤ 10K.

For t ∈ [−5, 5] and σ = −1:

g(x0 − 5σ − t)− g(x0) ≤ sup
x0≤y≤x0+10

(g(y)− g(x0))

≤
10∑
i=1

sup
x0+(i−1)≤y≤x0+i

(g(y)− g(x0)) ≤ 10K.

So combining these two inequalities we get for t ∈ [−5, 5]:

σ(g(x0)− g(x0 − 5σ − t)) ≤ 10K.

We use this along with the fact that
∫∞
−∞ β(t) = 1, to get:

0 ≥ (1− ϵ)||g||∞
∫ 5

−5

β(t)dt− 10K

∫ 5

−5

β(t)dt− ||g||∞(1−
∫ 5

−5

β(t))dt

≥ ((2− ϵ)||g||∞ − 10K)

∫ 5

−5

β(t)dt− ||g||∞.

To conclude we use the fact that for t > 0, we have β(t) ≤ 2/πt−2. Since β(t) is symmetric,

we get
∫
|t|>5

β(t)dt ≤ 4/π
∫∞
5

t−2dt = 4/(5π), and hence,
∫ 5

−5
β(t)dt ≥ 1 − 4/(5π). We can

choose ϵ to be arbitrarily small, which gives us:

||g||∞ ≥ 2||g||∞
(
1− 4

5π

)
− 10K

(
1− 4

5π

)
||g||∞ ≤

10K
(
1− 4

5π

)
2
(
1− 4

5π

)
− 1

≤ 16K
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It is quite easy to get a sharper bound for ||g||∞ since we made some rough approximations
at times. However, this will not be necessary as all we need in the end is a bound for ||g||∞,
it does not matter how sharp this bound is. The next lemma uses Lemma 8, so it will have
the same rough bound which could still be sharpened but this again will not be necessary,
as we will see later.

Lemma 9. Let g : R → R be an integrable and bounded function. If we assume that there
exist real numbers T and K such that:

sup
x≤y≤x+1/T

(g(y)− g(x)) ≤ K

then

||g||∞ ≤ 16K + 6

∫ T

−T

|ĝ(τ)|dτ.

Proof. We will introduce a new function. Let ϵ > 0, then the function

αϵ(t) =
2

πϵt2
sin(ϵt/2) sin((2T + ϵ)t/2)

has Fourier transform α̂ϵ(τ) given by α̂ϵ(τ) = 1 on [−T, T ], α̂ϵ(τ) = 0 when |τ | > T + ϵ and
α̂ϵ(τ) = (T + ϵ− τ)/ϵ for T < |τ | < T + ϵ. The calculation for this can be found in Appendix
7.1.1. We use this function to define a new function f with the property that f̂ = ĝα̂. We
define f to be the convolution of g and α, defined as g ⋆α(x) =

∫∞
−∞ g(y)α(x−y)dy. Next we

note that since g is bounded,
∫ T+ϵ

−(T+ϵ)
|ĝ(τ)|dτ ≤ 2(T + ϵ)||g||∞ < ∞. We can use the inverse

Fourier transform, defined for example in section 6.2 of [8], to get the following:

||f ||∞ = sup
x∈R

f(x)

=
1

2π
sup
x∈R

∫ ∞

−∞
f̂(τ)eιxτdτ

=
1

2π
sup
x∈R

∫ T+ϵ

−(T+ϵ)

f̂(τ)eιxτdτ

≤ 1

2π

∫ T+ϵ

−(T+ϵ)

|ĝ(τ)α̂(τ)|dτ

≤ 1

2π

∫ T+ϵ

−(T+ϵ)

|ĝ(τ)|dτ.

Next we look at the function g − f . Note that

sup
x≤y≤x+1/T

((g − f)(y)− (g − f)(x)) ≤ sup
x≤y≤x+1/T

(g(y)− g(x)) + 2||f ||∞ ≤ K + 2||f ||∞,

which means we can use Lemma 8 on g − f but instead of the constant K, we have to use
K + 2||f ||∞. This gives us ||g − f ||∞ ≤ 16K + 32||f ||∞. The last step is the following:



4 THE SECOND METHOD 19

||g||∞ ≤ ||g − f ||∞ + ||f ||∞ ≤ 16K + 33||f ||∞ ≤ 16K + 6

∫ T+ϵ

−(T+ϵ)

|ĝ(τ)|dτ,

where the last step works because 33/(2π) < 6. Now all we need to do is take the limit for
ϵ → 0 to obtain the expression in the statement, which we are allowed to do since all steps
hold for all 0 < ϵ < 1.

Combining these two lemmas we can prove Theorem 5.

Proof of Theorem 5. We give this proof in four steps.

First step: We introduce a function gx(t) and use Lemma 9 to find a bound for ||gx||∞.
First of all, we can assume A(t) = 0 when t ≤ 0, because we are only interested in its behavior
as t → ∞. Let us introduce the following function

gx(t) = A(t)e−(a+x)t(1− e−xt)

for all positive real x. This has Fourier transform

ĝx(y) = G(x+ ιy)−G(2x+ ιy) + c((x+ ιy)−b − (2x+ ιy)−b).

The calculation for this can be found in Appendix 7.1.4. Note that we can write the last two
terms on the right hand side as the integral

∫ x+ιy

2x+ιy
(−b)τ−(b+1)dτ and we can bound this term

by ∣∣∣∣∫ x+ιy

2x+ιy

(−b)τ−(b+1)dτ

∣∣∣∣ = ∣∣∣∣∫ x+ιy

2x+ιy

bτ−(b+1)dτ

∣∣∣∣ ≤ bx

|x+ ιy|b+1
,

where this last inequality bounds the integrand by its supremum. This means that we can
write for x > 0,

∫ T

−T

|c((x+ ιy)−b − (2x+ ιy)−b)|dy ≤
∫ T

−T

cbx

|x+ ιy|b+1
dy

≤
∫ T

−T

cbx

max(x, |y|)b+1
dy

≤
∫ T

−T

cbx

max(x, |y|)b+1
dy

≤
∫ x

−x

cbx

xb+1
dy + 2

∫ T

x

cbx

yb+1
dy

≤ 2cb

xb−1
− 2cx

T b
+

2c

xb−1
≤ 2c(b+ 1)

xb−1
.
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Now returning to the function gx(t), we can see that for real x′, y′ > 0, we have that

gx(x
′ + y′)− gx(x

′) ≥ A(x′)e−(a+x)(x′+y′)(1− e−x(x′+y′))− A(x′)e−(a+x)x′
(1− e−xx′

)

≥ A(x′)e−(a+x)(x′+y′)(1− e−xx′
)− A(x′)e−(a+x)x′

(1− e−xx′
)

≥ A(x′)e−(a+x)x′
(1− e−xx′

)(e−(a+x)y′ − 1)

≥ gx(x
′)(e−(a+x)y′ − 1) ≥ −y′(a+ x)||gx||∞,

where the last step holds because e−x − 1 + x ≥ 0 for all x > 0, which can be seen by taking
the derivative, which is 1−e−x ≥ 0 for all x > 0 along with the fact that filling in x = 0 gives
0 ≥ 0. If we instead have x′ < 0, we get A(x′) = 0, so gx(x

′) = 0 and since gx(x
′ + y′) ≥ 0

we clearly have that
gx(x

′ + y′)− gx(x
′) ≥ −y′(a+ x)||gx||∞ (1)

still holds. This means that we can use Lemma 9 on the function −gx(t) with K = (a +
x)||gx||∞/T which gives us

||gx||∞ ≤ 16(a+ x)||gx||∞
T

+ 6

∫ T

−T

|ĝx(y)|dy,(
1− 16(a+ x)

T

)
||gx||∞ ≤ 6

∫ T

−T

|ĝx(y)|dy,

||gx||∞ ≤ 6T

T − 16(a+ x)

∫ T

−T

|ĝx(y)|dy.

In last third line we divide by T − 16(a+ x), however, since we are allowed to choose T , we
will just choose it such that T > 16(a + x) so this stays positive. Later in the proof we will
choose T arbitrarily large so this will not be a problem. If we now use the Fourier transform
of gx we obtain the final bound for ||gx||∞:

||gx||∞ ≤ 6T

T − 16(a+ x)

(∫ T

−T

|G(x+ ιy)−G(2x+ ιy)|dy + 2c(b+ 1)

xb−1

)
. (2)

Second step: We introduce a second function Bx(t), and find a bound for Bx(x
′ + y′) −

Bx(x
′).

We define the function Bx(t) to be 0 for t ≤ 0 and for t > 0 it is defined as Bx(t) =
(c/Γ(b))e−xt(1 − e−xt)tb−1, where Γ is the usual gamma function. This function has the
Fourier transform B̂x(y) = c((x+ ιy)−b − (2x+ ιy)−b) as can be seen in Appendix 7.1.3. We
want to use Lemma 9, so we look at Bx(x

′ + y′) − Bx(x
′) for y′ > 0. To do this we notice

that Bx is continuous and its derivative is, for t > 0

B′
x(t) =

c(b− 1)

Γ(b)
e−xt(1− e−xt)tb−2 − cx

Γ(b)
e−xt(1− 2e−xt)tb−1

=
c

Γ(b)
e−xttb−2

(
(b− 1)(1− e−xt)− xt+ 2txe−xt

)
.

We can use the fact that 1 − e−xt ≥ 2xte−xt − xt when xt > 0. To see why this is true
consider the function f(x) = 1 − e−x − 2xe−x + x, we can see that f(0) = 0. Now take the
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derivative of f , f ′(x) = 1 − e−x + 2xe−x which is clearly bigger than 0 when x > 0, so the
function is increasing for positive x, and hence, f(x) ≥ 0 for x > 0. Lastly consider f(xt)
and the inequality comes out. Using this fact we write:

B′
x(t) ≤

cb

Γ(b)
e−xttb−2(1− e−xt) ≤ cb

Γ(b)
e−xttb−1.

Next we consider the case t ≤ 0. In this case the derivative of Bx(t) is just 0. We can use this

to write Bx(x
′ + y′) − Bx(x

′) =
∫ x′+y′

x′ B′
x(t)dt. Now we can distinguish three cases: x′ > 0,

x′ ≤ 0 with x′ + y′ > 0 and x′ ≤ 0 with x′ + y′ ≤ 0. This last case is straightforward, since
then Bx(x

′) = Bx(x
′ + y′) = 0, so we can assume that x′ + y′ > 0. Let us first look at the

case where x′ < 0. We have

Bx(x
′ + y′)−Bx(x

′) =

∫ x′+y′

x′
B′

x(t)dt =

∫ x′+y′

0

B′
x(t)dt

≤
∫ x′+y′

0

cb

Γ(b)
e−xttb−1dt

≤
∫ x′+y′

0

cb

Γ(b)
tb−1dt =

c

Γ(b)
(x′ + y′)b ≤ c

Γ(b)
(y′)b.

In the case where x′ > 0, we get

Bx(x
′ + y′)−Bx(x

′) =

∫ x′+y′

x′
B′

x(t)dt

≤
∫ x′+y′

x′

cb

Γ(b)
e−xttb−1dt

≤ e−xx′ cb

Γ(b)

∫ x′+y′

x′
tb−1dt

≤ e−xx′ c

Γ(b)
((x′ + y′)b − (x′)b).

We can improve this bound for b ≥ 1 by considering the function

fx′(y′) = (x′ + y′)b − (x′)b − b(x′ + y′)b−1y′,

which has derivative

d

dy′
fx′(y′) = −(b− 1)b(x′ + y′)b−2y′.

This derivative is negative when y′ > 0, so we get that for every y′ > 0, fx′(y′) ≤ 0. Next
consider b < 1, in this case we just use the fact that (x′ + y′)b ≤ x′b + y′b since b ∈ [0, 1] and
x′, y′ ≥ 0. This means that in general we have:

Bx(x
′ + y′)−Bx(x

′) ≤ e−xx′ c

Γ(b)
(Θ(b− 1)b(x′ + y′)b−1y′ + (1−Θ(b− 1))y′b).
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where Θ(t) = 1 if t > 0 and Θ(t) = 0 if t ≤ 0. We want to improve this bound by making it
independent of x′ and y′ for 0 < x ≤ 1 and 0 < y′ ≤ 1/T ≤ 1. Note that this bound is an
increasing function in y′, so if we set y′ = 1/T in the bound, the inequality still holds. This
means that for b < 1, we have

e−xx′
y′b ≤ y′b ≤ 1/T b ≤ bb(1 + e2−bbb+1)

(
1

xb−1T
+

1

T b

)
We have, for y′ ≤ 1/T ≤ 1 and b ≥ 1,

b(x′ + y′)b−1y′ ≤ b(x′ + 1/T )b−1/T ≤ bb
(
x′b−1

T
+

1

T b

)
.

We used that for real a1, a2 > 0 and a3 ≥ 1, (a1+ a2)
a3 ≤ (1+ a3)

a3(aa31 + aa32 ). Now we want
to use the fact

1 + e2−bbb+1 ≥ sup
t≥0

e−ttb−1 ≥ e−xx′
(xx′)b−1.

To see this holds, we first find the value of t > 0 for which e−ttb−1 attains its maximum.
Setting the derivative equal to 0 gives t = b− 1 or t = 0. So

sup
t≥0

e−ttb−1 = e−(b−1)(b− 1)b−1 ≤ 1 +
(
e−(b−1)(b− 1)b−1

)( b

b− 1

)b−1

b2e = 1 + e1−(b−1)bb+1

as t = 0 gives a minimum. We use this fact to see that for b ≥ 1,

e−xx′
b(x′ + y′)b−1y′ ≤ bb(1 + e2−bbb+1)

(
1

xb−1T
+

1

T b

)
.

This means that we can write

Bx(x
′ + y′)−Bx(x

′) ≤ c

Γ(b)
bb(1 + e2−bbb+1)

(
1

xb−1T
+

1

T b

)
. (3)

Third step: We want to use the equalities found in the previous steps to use Lemma 9 on
the function Bx(t)− gx(t).
Using the bounds for ||gx||∞ and Bx(x

′ + y′) − Bx(x
′) from equations (1), (2) and (3), we

obtain for 0 < y′ ≤ 1/T ≤ 1

(Bx − gx)(x
′ + y′)− (Bx − gx)(x

′) ≤ c

Γ(b)
(1 + e2−bbb+1)bb

(
1

Txb−1
+

1

T b

)
+ y′(a+ x)||gx||∞

≤ c

Γ(b)
(1 + e2−bbb+1)bb

(
1

Txb−1
+

1

T b

)
+

6Ty′(a+ x)

T + 16(a+ x)(∫ T

−T

|G(x+ ιy)−G(2x+ ιy)|dy + 2c(b+ 1)

xb−1

)
≤ c

Γ(b)
(1 + e2−bbb+1)bb

(
1

Txb−1
+

1

T b

)
+

6(a+ x)

T + 16(a+ x)(∫ T

−T

|G(x+ ιy)−G(2x+ ιy)|dy + 2c(b+ 1)

xb−1

)
=: K.
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Additionally, this new function has Fourier transform

(B̂x − ĝx)(y) = G(2x+ ιy)−G(x+ ιy).

This means that Lemma 9 tells us that

||Bx − gx||∞ ≤ 16K + 6

∫ T

−T

|G(x+ ιy)−G(2x+ ιy)|dy. (4)

Final step: To finish the prove we use the inequalities from the previous steps an take limits
to acquire the right result.
We look at the function xb−1|(Bx − gx)(1/x)| for x → 0+. By equation (4), we have that

xb−1|(Bx − gx)(1/x)| ≤ 16Kxb−1 + 6xb−1

∫ T

−T

|G(x+ ιy)−G(2x+ ιy)|dy.

The first thing we notice is that by assumption,

lim
x→0+

xb−1

∫ T

−T

|G(x+ ιy)−G(2x+ ιy)|dy = 0,

which means this terms vanishes in the limit x → 0+. We now want to show that in this
limit the xb−1K term also vanishes. To achieve this, we look at the following:

lim
x→0+

16xb−1K = lim
x→0+

16
c

Γ(b)
(1 + e2−bbb+1)bb

(
1

T
+

xb−1

T b

)
+

6(a+ x)

T + 16(a+ x)
32c(b+ 1)

= 16
c

TΓ(b)
(1 + e2−bbb+1)bb +

6a

T + 16a
32c(b+ 1).

Let us call this constant M(T ), so we have that

lim
x→0+

xb−1|(Bx − gx)(1/x)| ≤ M(T ).

This can be rewritten using

(Bx − gx)(1/x) =

(
−A(1/x)e−a/x +

c

Γ(b)xb−1

)
e− 1

e2
,

and by substituting z = 1/x, we see that

lim
z→∞

∣∣∣∣ A(z)

eazzb−1c/Γ(b)
− 1

∣∣∣∣ < Γ(b)e2

(e− 1)c
M(T ).

The last thing to note is that we can choose T arbitrarily large, and since limT→∞ M(T ) = 0,
we can choose T such that M(T ) becomes arbitrarily small. From this we see that

lim
z→∞

A(z)

eazzb−1c/Γb
= 1.

This is exactly what we needed to prove.
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Corollary 2. Let us have a convergent sum
∑∞

i=1 ai/λ
z
i for positive integers ai, λi ∈ R for

all i ∈ N and z ∈ C. Assume there exist real numbers a, c > 0 and a function h(z) which is
holomorphic for Re(z) > a−ϵ for some ϵ > 0, with h(a)/a = c and

∑∞
i=1 ai/λ

z
i = h(z)/(z−a)b

for some integer b ≥ 0. Then limB→∞B−a log(B)1−b
∑

λi≤B ai = c/(aΓ(b)).

Proof. If we choose A(t) =
∑

λi≤et ai, which is clearly an increasing function, we get that

F (s) = s

∫ ∞

0

A(t)e−stdt = s
∞∑
i=1

∫ ∞

ln(λi)

aie
−stdt =

∞∑
i=1

ai/λ
s
i = h(s)/(s− a)b.

Now all that is left to show is that

lim
x→0+

xb−1

∫ T

−T

∣∣∣∣∣
h(2x+ιy+a)
2x+ιy+a

− h(a)
a

(2x+ ιy)b
−

h(x+ιy+a)
x+ιy+a

− h(a)
a

(x+ ιy)b

∣∣∣∣∣ dy = 0.

To achieve this, we notice that since h(z + a) is holomorphic for Re(z) ≥ 0, the function
h(z + a)/(z + a) − h(a)/a is also holomorphic on this same region, as a > 0. This means
that (h(z + a)/(z + a)− h(a)/a)z−b is holomorphic for Re(z) ≥ 0 except in the point where
z = 0. We will now decompose the integral into a sum of three integrals, let ϵ > 0, then we
have that

xb−1

∫ T

−T

∣∣∣∣∣
h(2x+ιy+a)
2x+ιy+a

− h(a)
a

(2x+ ιy)b
−

h(x+ιy+a)
x+ιy+a

− h(a)
a

(x+ ιy)b

∣∣∣∣∣ dy = I1 + I2 + I3,

with

I1 = xb−1

∫ ϵ

−ϵ

∣∣∣∣∣
h(2x+ιy+a)
2x+ιy+a

− h(a)
a

(2x+ ιy)b
−

h(x+ιy+a)
x+ιy+a

− h(a)
a

(x+ ιy)b

∣∣∣∣∣ dy,
I2 = xb−1

∫ T

ϵ

∣∣∣∣∣
h(2x+ιy+a)
2x+ιy+a

− h(a)
a

(2x+ ιy)b
−

h(x+ιy+a)
x+ιy+a

− h(a)
a

(x+ ιy)b

∣∣∣∣∣ dy,
I3 = xb−1

∫ −ϵ

−T

∣∣∣∣∣
h(2x+ιy+a)
2x+ιy+a

− h(a)
a

(2x+ ιy)b
−

h(x+ιy+a)
x+ιy+a

− h(a)
a

(x+ ιy)b

∣∣∣∣∣ dy.
Let us start with I1, define f(z) := (h(z + a)/(z + a) − h(a)/a)zb, this is holomorphic for
Re(z) ≥ 0 except for z = 0, so on this region its derivative exists. Notice that this means
that as x approaches 0+,

lim
x→0+

x−1

∣∣∣∣f(2x+ ιy)

(2x+ ιy)b
− f(x+ ιy)

(x+ ιy)b

∣∣∣∣ = |f ′(ιy)| (5)

for y ̸= 0. But for y = 0, we have that the limit as x → 0+ diverges. We can therefor
conclude that the following holds:

lim
x→0+

∣∣∣f(2x+ιy)
(2x+ιy)b

− f(x+ιy)
(x+ιy)b

∣∣∣∣∣∣f(2x)(2x)b
− f(x)

xb

∣∣∣ ≤ 1
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for any y ∈ R. This is obvious for y = 0 as it will be 1, and for y ̸= 0 we use equation (5) to
see the limit is 0. This means that for y ̸= 0, there exists a δ such that for x < δ,∣∣∣f(2x+ιy)

(2x+ιy)b
− f(x+ιy)

(x+ιy)b

∣∣∣∣∣∣f(2x)(2x)b
− f(x)

xb

∣∣∣ ≤ 1.

This clearly also holds for y = 0. we can take the integral over y to find that for all x < δ,∫ ϵ

−ϵ

∣∣∣f(2x+ιy)
(2x+ιy)b

− f(x+ιy)
(x+ιy)b

∣∣∣ dy
2ϵ
∣∣∣f(2x)(2x)b

− f(x)
xb

∣∣∣ ≤ 1.

This now allows us to write:

lim
x→0+

∫ ϵ

−ϵ

∣∣∣f(2x+ιy)
(2x+ιy)b

− f(x+ιy)
(x+ιy)b

∣∣∣ dy
2ϵ
∣∣∣f(2x)(2x)b

− f(x)
xb

∣∣∣ ≤ 1.

Next we look at the limit

lim
x→0+

xb−1

∣∣∣∣f(2x+ ιy)

2bxb
− f(x+ ιy)

xb

∣∣∣∣ = lim
x→0+

∣∣∣∣f(2x+ ιy)

2bx
− f(x+ ιy)

x

∣∣∣∣ . (6)

Since h(2x + a) and h(x + a) are holomorphic we can use a series expansion in x[11], this
will have constant term h(a). Since we can write f(x) = 1

x+a
(h(x + a) − h(a) − xh(a)/a),

f(x) will have a zero in x = 0 with a degree of at least 1. This means the limit the limit in
equation (6) converges to some limit L. This means that we can write

limx→0+ xb−1
∫ ϵ

−ϵ

∣∣∣f(2x+ιy)
(2x+ιy)b

− f(x+ιy)
(x+ιy)b

∣∣∣ dy
limx→0+ xb−12ϵ

∣∣∣f(2x)(2x)b
− f(x)

xb

∣∣∣ ≤ 1,

where the limit in the numerator converges because the limit in the denominator converges.
This leads to

lim
x→0+

xb−1

∫ ϵ

−ϵ

∣∣∣∣f(2x+ ιy)

(2x+ ιy)b
− f(x+ ιy)

(x+ ιy)b

∣∣∣∣ dy ≤ 2ϵL. (7)

For the other two integrals, I2 and I3 we will use the fact that f(z) is differentiable on
the region of integration, so for every ϵ′ > 0, there exists some δ > 0 such that 0 < x < δ
implies that ∣∣∣∣ |f(2x+ z)− f(x+ z)|

x
− |f ′(z)|

∣∣∣∣ < ϵ′,

for all z ∈ [−T,−ϵ] ∪ [ϵ, T ]. Using the product and chain rules we find that

f ′(z) =

h′(z+a)
z+a

− h(z+a)
(z+a)2

zb
− b

h(z+a)
z+a

− h(a)
a

zb+1
.
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Since h(z) is holomorphic for Re(z) ≥ 0, both it and its derivative are bounded. Hence,
|f ′(z)| is bounded by M/|z|b+1 for some constant M on the intervals [−T,−ϵ] ∪ [ϵ, T ]. This
means that in this region, |f ′(z)| is bounded by M/ϵb+1. We also have that for 0 < x < δ,

xb

∣∣∣∣∫ T

ϵ

|f(2x+ ιy)− f(x+ ιy)|
x

− |f ′(ιy)|dy
∣∣∣∣

≤ xb

∫ T

ϵ

∣∣∣∣ |f(2x+ ιy)− f(x+ ιy)|
x

− |f ′(ιy)|
∣∣∣∣ dy

≤ xb(T − ϵ)ϵ′.

Since ∫ T

ϵ

|f ′(ιy)|dy ≤ (T − ϵ)M/ϵb+1,

for x < δ, we get by the triangle inequality that

I2 ≤ xb(T − ϵ)
(
M/ϵb+1 + ϵ′

)
.

And because of symmetry, we also get

I3 ≤ xb(T − ϵ)
(
M/ϵb+1 + ϵ′

)
.

Note that we can choose ϵ′ arbitrarily small. By these two inequalities and equation (7), we
see that if we let ϵ =

√
x, in the limit as x → 0+ all three integrals, I1, I2 and I3 converge to

0. Hence we conclude that

lim
x→0+

xb−1

∫ T

−T

∣∣∣∣∣
h(2x+ιy+a)
2x+ιy+a

− h(a)
a

(2x+ ιy)b
−

h(x+ιy+a)
x+ιy+a

− h(a)
a

(x+ ιy)b

∣∣∣∣∣ dy = 0.

This means we have all the requirements for Theorem 5 and we get that as B → ∞∑
λi≤B

ai = A(ln(B)) =
c

aΓ(b)
Ba ln(B)b−1.

4.5 Solving the problem

Now that we have all the framework we need, we can take a second look at the problem
we want to solve. We will follow the same step as the interlude in [3], but we will do it in
general n-dimensions. We need to find the number of points x ∈ QPn with height H(x) ≤ B
for large B. To do this we view QPn as Qn ∪ QPn−1. Here elements of Qn are of the form
(1 : x1 : . . . : xn) for rational numbers x1 . . . xn. The elements of QPn−1 are of the form
(0 : x0 : . . . : xn−1). We will find for how many x ∈ Qk ⊂ QPk we have H(x) ≤ B, if we do
this for every k ≤ n, we can use induction to find for how many x ∈ QPn we have H(x) ≤ B.
We can calculate the height of an element of the form (1 : x1 : . . . : xn) using the following
lemma.
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Lemma 10. Let x = (1 : x1 : . . . : xn), then the height of x, introduced in Section 2, is given
by

H(x) = max{1, |xi| |0 < i ≤ n}
∏
p∈P

max{1, ||xi||p|0 < i ≤ n}.

Proof. We write N =
∏

p∈P max{1, ||xi||p|0 < i ≤ n}. It is clear since N ̸= 0, that we can
represent x as

x = (N : Nx1 : . . . : Nxn) .

In fact, all of the coordinates in this representation are integers, since for any p ∈ P , we
have that ||Nxi||p = ||N ||p||xi||p ≤ 1 since if ||xi||p ≥ 1, it divides N . Furthermore, these
coordinates are a set of coprime integers. To prove this assume that a prime q divides all
of these coordinates, let e > 0 be the largest integer such that qe|N , then there has to
be an index i such that ||xi||q = qe, but then q ∤ ||Nxi||q which is a contradiction. So this
representation is the representation of coprime integers we have to use to calculate the height.
The height of x is now given by the maximum of all of the coordinates of this representation
of x, however since N > 0 we have that

max{N,N ||xi||p|0 < i ≤ n} = N max{1, ||xi||p|0 < i ≤ n}.

This leads immediately to

H(x) = max{N, |Nxi| |0 < i ≤ n} = max{1, |xi| |0 < i ≤ n}
∏
p∈P

max{1, ||xi||p|0 < i ≤ n}.

This allows us to extend the definition of the height function to a function over V in the
following way.

Definition 6. The height function defined on V n is given by

H(x) = max{1, |x∞,i| |0 < i ≤ n}
∏
p∈P

max{1, ||xp,i||p|0 < i ≤ n}

Note that Lemma 10 means we can split the height function into a product over primes
in the following way:

H(x) =
∏

p∈P∪∞

max{1, ||xp,i||p|0 < i ≤ n} =:
∏

p∈P∪∞

Hp(xp).

We want to end up using Corollary 2 to find the number of points x with heightH(x) ≤ B.
To achieve this, we will look at the function H(x)−s for s ∈ C and the following sum∑

m∈Qn

H(m)−s =
∑
m∈Qn

Ĥ(m, s),
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for Re(s) > 0, where Ĥ(m, s) is the Fourier transform of H(x)−s with respect to x. This
equality follows from Theorem 4, which we are allowed to use as∑

ξ∈Q

H((xi + δi,jξ)1≤i≤n)

converges uniformly for all x ∈ Dn and all indices 1 ≤ j ≤ n. This is however still a sum
over Qn, which is not easy to deal with, but using the following lemma, we can write it as a
sum over Zn instead.

Lemma 11. Let f(x) =
∏

p∈P∪∞ fp(xp) : [0, 1)×
∏

p∈P Qp → R where fp(xp) has the property
that fp(xp + 1) = fp(xp) for all xp ∈ Qp and all p ∈ P ∪∞. Assume that f(x) = 0 for all

x ∈ [0, 1)×
∏

p∈P Qp \ V , then f̂(k) = 0 for all k ∈ Q \ Z.

Proof. Let us assume that k ∈ Q \ Z, we write k = a/b with a, b coprime. Let q be a prime
factor of b which has to exist since k ̸∈ Z. We get that

f̂(k) =

∫
V

f(x)e−2πι{kx}dx =

∫
[0,1]

f∞(x)e−2πιkxdx
∏
p∈P

∫
Qp

fp(xp)e
−2πι{kxp}pdxp

=

∫
[0,1]

f∞(x)e−2πιkxdx
∏
p∈P

∫
Qp

fp(xp + δp,q)e
−2πι{k((xp)i+δp,q)}pdxp,

where by δp,q we denote the usual delta function which has value 1 if p = q and 0 otherwise.
The second equality holds even though V is not equal to [0, 1]×

∏
p∈P Qp, because the function

f is zero on [0, 1) ×
∏

p∈P Qp \ V . Now since {c + d}q = {c}q + {d}q + γ for some integer γ

combined with the facts that fq(xq + 1) = fq(xq) and e2πιγ = 1 we can write this as

f̂(k) =

∫
[0,1]

f(x)e−2πιkxdx
∏
p∈P

∫
Qp

fp(xp)e
−2πι{kxp+kδp,q}pdxp

=

∫
[0,1]

f(x)e−2πιkxdx
∏
p∈P

∫
Qp

fp(xp)e
−2πι{kδp,q}pe−2πι{kxp}pdxp

= e−2πι{k}q
∫
[0,1]

f(x)e−2πιkxdx
∏
p∈P

∫
Qp

fp(xp)e
−2πι{kxp}pdxp

= e−2πι{k}q f̂(k)

Now this means that e−2πι{k}q = 1 or f̂(k) = 0. Since k = a/b with q|b and q ∤ a, we have
that {k}q ̸= 0, and since 0 ≤ {k}q < 1, we get that e−2πι{k}q ̸= 1, so f̂(k) = 0.

This lemma also works in n dimensions as we can see in the following corollary.

Corollary 3. Let f(x) =
∏

p∈P∪∞ fp(x) : [0, 1)n ×
∏

p∈P Q
n
p → R be a function with the

property that fp(xp) = fp(yp) when xp − yp ∈ Zn for all p ∈ P ∪∞. Assume that f(x) = 0

for x ∈ [0, 1)n ×
∏

p∈P Q
n
p \ V n. Then we have that f̂(m) = 0 if m ∈ Qn \ Zn.
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Proof. This proof follows straight from Lemma 11. Since m ∈ Qn \ Zn would mean that
there exists an index i such that mi ∈ Q \ Z and we can use Lemma 11 on the function
f(m1 . . .mi−1, x,mi+1, . . . ,mn).

We now show that the function H−s(x) has the required properties to use Corollary 3.
Let us write xi = pea/b for some a, b, e ∈ Z such that p ∤ ab. We have that ||xi||p = −e, while
we have xi+1 = (pea+ b)/b = pe(a+ bp−e)/b. From this we see that if e > 0, ||xi+1||p = 0,if
e < 0, ||xi + 1||p = −e = ||xi||p and if e = 0, ||xi + 1||p ≤ 0. Note that for e = 0 we do not
get ||xi + 1||p = 0 when p|(a+ b). This means that

Hp(x) = max{1, ||xi||p|0 < i ≤ n} = max{1, ||xi + 1||p|0 < i ≤ n} = Hp(x+ 1).

This shows that if xp−yp ∈ Zn, we have Hp(xp)
−s = Hp(yp)

−s for every s ∈ C and p ∈ P ∪∞.
Additionally, if for some i, xi ∈ [0, 1) ×

∏
p∈P Qp \ V , there are infinitely many p ∈ P such

that xi ∈ Qp \ Zp. Let us call Q the set of these p. We have vp(xi) ≥ 1 for every p ∈ Q,
and as such Hp(x) ≥ p. This gives |Hp(x)

−s| ≤ |p−s| for all s ∈ C with Re(s) > 0. From
this follows that

∏
p∈Q |Hp(x)

−s| ≤ |(
∏

p∈Q p)−s| = 0 as there are infinitely many primes p in

Q. This means that we can use Corollary 3 to see that Ĥ(m, s) = 0 for m ∈ Qn \ Zn. This
means that we can write ∑

m∈Qn

Ĥ(m, s) =
∑
m∈Zn

Ĥ(m, s)

for all s ∈ C with Re(s) > 0. In this sum, we can calculate every term separately. We start
with the special case m = 0. By using that H(x)−s = 0 for x ∈ [0, 1)n ×

∏
p∈P Q

n
p \ V n, we

can write

Ĥ(0, s) =

∫
V n

H(x)−sdx

=

∫
[0,1]n

max{1, |xi′ | |0 < i′ ≤ n}−s

n∏
i=1

dxi

∏
p∈P

∫
Qn

p

max{1, ||(xp)i′ ||p|0 < i′ ≤ n}−s

n∏
i=1

d(xp)i

=
∏
p∈P

∫
Qn

p

max{1, ||(xp)i′ ||p|0 < i′ ≤ n}−s

n∏
i=1

d(xp)i.

Let us now focus on these integrals for one prime p at a time and define

Ĥp(0, s) =

∫
Qn

p

max{1, ||(xp)i′ ||p|0 < i′ ≤ n}−s

n∏
i=1

d(xp)i.

Note that this is not the Fourier transform of Hp(x)
−s. Additionally, we can write the integral

as
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Ĥp(0, s) =

∫
Qn

p

max{1, ||(xp)i′ ||p|0 < i′ ≤ n}−s

n∏
i=1

d(xp)i

=
∞∑

j1,...,jn=−∞

∫
(Z∗

p)
n

max{1, ||pji′xi′ ||p|0 < i′ ≤ n}−s

n∏
i=1

p−jidxi

=
∞∑

j1,...,jn=−∞

∫
(Z∗

p)
n

psmin{0,ji′ |0<i′≤n}
n∏

i=1

p−jidxi

=
∞∑

j1,...,jn=−∞

psmin{0,ji′ |0<i′≤n}(1− p−1)n
n∏

i=1

p−ji .

The way we evaluate this expression is by considering k = min{0, ji′ |0 < i′ ≤ n}, if k = 0,
we have that ji ≥ 0 for all 0 < 1 ≤ n, if k < 0 and (ji)0<i≤n ∈ [k,∞)n \ [k + 1,∞)n ⊂ Zn.
Now we can sum over all possible values of k to get:

Ĥp(0, s) =
−1∑

k=−∞

∑
(ji)0<i≤n∈

[k,∞)n\[k+1,∞)n

psk(1− p−1)n
n∏

i=1

p−ji +
∞∑

j1...jn=0

(1− p−1)n
n∏

i=1

p−ji .

Using the fact that
∑∞

i=0 p
−i = 1/(1− p−1), we get

Ĥp(0, s) =
−1∑

k=−∞

∑
(ji)0<i≤n∈

[k,∞)n\[k+1,∞)n

psk(1− p−1)n
n∏

i=1

p−ji + (1− p−1)n
1

(1− p−1)n

=
−1∑

k=−∞

psk(1− p−1)n
∑

(ji)0<i≤n∈
[k,∞)n\[k+1,∞)n

n∏
i=1

p−ji + 1.

Similarly, for any k ∈ Z, we have
∑∞

i=k p
−i = p−k/(1 − p−1), which we can use when we

split the sum over [k,∞)n \ [k+1,∞)n into a sum over [k,∞)n minus a sum over [k+1,∞)n

to get:
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Ĥp(0, s) =
−1∑

k=−∞

psk(1− p−1)n
∑

(ji)0<i≤n∈
[k,∞)n\[k+1,∞)n

n∏
i=1

p−ji + 1

=
−1∑

k=−∞

psk(1− p−1)n

 ∑
(ji)0<i≤n∈[k,∞)n

n∏
i=1

p−ji −
∑

(ji)0<i≤n∈[k+1,∞)n

n∏
i=1

p−ji

+ 1

=
−1∑

k=−∞

psk(1− p−1)n
(
p−nk − p−n(k+1)

(1− p−1)n

)
+ 1

=
−1∑

k=−∞

p(s−n)k(1− p−n) + 1

=
∞∑
k=0

p−k(s−n)(1− p−n)− (1− p−n) + 1

=
1− p−n

1− p−(s−n)
+ p−n,

where this last equality only holds when Re(s − n) > 1, otherwise this sum may diverge.
Now what we really want to know is for what s ∈ C the function Ĥ(0, s) converges. More
specifically we want to know the largest real number a > 0 such that for all s ∈ C with
Re(s) > a, Ĥ(0, s) converges. Clearly it diverges for real s with s ≤ n since then Ĥp(0, s)
diverges. To see that it converges for real s > n+ 1, we will write it in the following way:

Ĥ(0, s) = Ĥ∞(0, s)
∏
p∈P

Ĥp(0, s) (8)

=
∏
p∈P

(
p−n +

1− p−n

1− p−(s−n)

)
(9)

=
∏
p∈P

(
1− (1− p−n) +

1− p−n

1− p−(s−n)

)
(10)

=
∏
p∈P

(
1 + (1− p−n)

p−(s−n)

1− p−(s−n)

)
. (11)

Note that if this product converges if it converges absolutely. And because the term 1−p−n

1−p−(s−n)

is positive for real s > n, convergence of the product and absolute convergence of the product
are the same for real s > n. To figure out how to deal with this product we will need one
more theorem from chapter II.1 of [10] and one more lemma.

Lemma 12. Let f : Z>0 → R, then the product
∏

p∈P (1 + |f(p)|) converges if and only if
the sum

∑
p∈P |f(p)| converges.

Proof. Let us first define the set Pn for n ∈ Z>0 as the set of the n smallest primes. We will
first show that if the product converges, the sum also converges.
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Let us take a look at the product
∏

p∈Pn
(1 + |f(p)|) for some n > 0. We get

∏
p∈Pn

(1 + |f(p)|) = 1 +
n∑

j=1

∑
k∈P j

n :
ki=ki′ =⇒ i=i′

1

j!

j∏
i=1

|f(ki)|.

The 1
j
term is there to avoid double counting. This equation follows from expanding the

product on the right had side.
Note that all terms in this sum are positive since we take absolute values, which means

that the following holds:

1 +
∑
k∈Pn

|f(k)| ≤ 1 +
n∑

j=1

∑
k∈P j

n :
ki=ki′ =⇒ i=i′

1

j!

j∏
i=1

|f(ki)|,

as the left side is just the right side for j = 1. This then means that for every n ≥ 1

0 ≤
∑
k∈Pn

|f(k)| <
∏
p∈Pn

(1 + |f(p)|).

And since limn→∞
∏

p∈Pn
(1+|f(p)|) converges, so does limn→∞

∑
k∈Pn

|f(k)| =
∑

k∈P |f(k)|.

Let us now assume that
∑

k∈P |f(k)| converges, and let Mn =
∑

k∈Pn
|f(k)|. We again

use

∏
p∈Pn

(1 + |f(p)|) = 1 +
n∑

j=1

∑
k∈P j

n :
ki=ki′ =⇒ i=i′

1

j!

j∏
i=1

|f(ki)|,

but now we want to use

∑
k∈P j

n :
ki=ki′ =⇒ i=i′

1

j!

j∏
i=1

|f(ki)| ≤
1

j!
(
∑
k∈Pn

|f(k)|)j.

This is clearly true for j = 1 since both sides will be equal to
∑

k∈Pn
|f(k)|. We use

induction to show that it is true for every j. Assume that it is true for j = m ≥ 1, we can
multiply both sides of the inequality by

∑
k∈Pn

|f(k)| to get:

∑
k′∈Pn

∑
k∈Pm

n :
ki=ki′ =⇒ i=i′

1

m!
|f(k′)|

m∏
i=1

|f(ki)| ≤
1

m!
(
∑
k∈Pn

|f(k)|)m+1.

If we now take a closer look at the left hand side, we can see we have all terms in∑
k∈P (m+1)

n :
ki=ki′ =⇒ i=i′

1
(m+1)!

∏m
i=1 |f(ki)| exactly m + 1 times and some additional positive terms.

This means that we can write
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∑
k∈P (m+1)

n :
ki=ki′ =⇒ i=i′

1

(m+ 1)!

m∏
i=1

|f(ki)| ≤
1

m+ 1

∑
k′∈Pn

∑
k∈Pm

n :
ki=ki′ =⇒ i=i′

1

m!
|f(k′)|

m∏
i=1

|f(ki)|

≤ 1

m+ 1

1

m!
(
∑
k∈Pn

|f(k)|)m+1

≤ 1

(m+ 1)!
(
∑
k∈Pn

|f(k)|)m+1.

And hence we have shown by induction that

∑
k∈P j

n :
ki=ki′ =⇒ i=i′

1

j!

j∏
i=1

|f(ki)| ≤
1

j!
(
∑
k∈Pn

|f(k)|)j.

Taking into account that Mn =
∑

k∈Pn
|f(k)| ≤

∑
k∈P |f(k)| = M , we can write:

∏
p∈Pn

(1 + |f(p)|) ≤ 1 +
n∑

j=1

1

j!
M j

n

≤ 1 +
n∑

j=1

1

j!
M j.

Taking now the limit as n → ∞, we get

∏
p∈P

(1 + |f(p)|) = lim
n→∞

∏
p∈Pn

(1 + |f(p)|) ≤ lim
n→∞

1 +
n∑

j=1

1

j!
M j = eM .

Lastly since
∏

p∈P (1 + |f(p)|) > 0, this means it converges when
∑

p∈P |f(p)| converges.

With this we have shown that
∏

p∈P (1 + |f(p)|) converges if and only if
∑

p∈P |f(p)|
converges.

Theorem 6. Let f : Z>0 → R be a function with the property that for coprime integers a, b,
f(ab) = f(a)f(b). Then ∏

p∈P

(
1 +

∑
u≥1

f(pu)

pus

)

converges absolutely if and only if
∑

m∈Z>0

f(m)
ms converges absolutely. Furthermore if they

converge absolutely, both expressions converge to the same function.

Proof. The proof can be found in chapter II.1 of [10] where it is theorem 1.3, however, in
this proof the author assumes the result from Lemma 12 but does not prove it.
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By choosing f(pu) = (1− p−n)pnu, we can immediately use Theorem 6 to see the product
in equation (11) converges absolutely if and only if

∑
k∈Z>0

∣∣∣∣∣∣k−(s−n)
∏

p∈P, p|k

(1− p−n)

∣∣∣∣∣∣
converges. Note that we have

∏
p∈P, p|k(1 − p−n) < 1, so we get that this sum converges if

and only if ∑
k∈Z>0

∣∣k−(s−n)
∣∣

converges. We know this converges when Re(s) > n+ 1, but it diverges for s = n+ 1. This
means that if the product in equation (11) converges absolutely for Re(s) > n + 1, which
means it converges for Re(s) > n+ 1. However, since for s = n+ 1, all terms in the product
in equation (11) are positive and it diverges absolutely, the sum itself diverges.

Next we look at the case m ̸= 0 with m ∈ Qn. This means there is an index 0 < k ≤ n
such that mk ̸= 0, we will do the same integral but this time we have to consider the extra
term e2πι{mx}.

Ĥ(m, s) =

∫
V n

H(x)−se−2πι{mx}dx

=

∫
[0,1]n

max{1, |xi′ ||0 < i′ ≤ n}−s

n∏
i=1

e−2πι{mixi}∞dxi

∏
p∈P

∫
Qn

p

max{1, ||(xp)i′||p|0 < i′ ≤ n}−s

n∏
i=1

e−2πι{mixi}pd(xp)i

=
n∏

i=1

∫ 1

0

e2πι{mix}∞dx
∏
p∈P

∫
Qn

p

max{1, ||(xp)i′ ||p|0 < i′ ≤ n}−s

n∏
i=1

e−2πι{mxi}pd(xp)i

= 0.

This last equality holds because
∫ 1

0
e2πι{mkx}∞dx = 0. From this we gather that our

original expression
∑

n∈Z Ĥ(n, s) has a pole at s = n+ 1 and no poles when Re(s) > n+ 1.
Furthermore this pole at s = n+1 has degree 1 as can be seen by Theorem 6 along with the
fact that ∑

k∈Z>0

k−(s−n)
∏

p∈P, p|k

(1− p−n)

has a pole of order 1 at s = n+ 1. Furthermore because

(s− (n+ 1))
∑

k∈Z>0

k−(s−n)
∏

p∈P, p|k

(1− p−n)
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is holomorphic for Re(s) ≥ n + 1, the function (−(n + 1))Ĥ(0, s) is also holomorphic for
Re(s) ≥ n+ 1.

This now means we can use the Corollary 2 on
∑

m∈QH(m)−s = Ĥ(0, s). More specif-
ically since Qn is bijective to N, we can choose a bijective function ϕ : N → Qn such that∑

k∈NH(ϕ(k))−s =
∑

m∈Qn H(m)−s, for which Corollary 2 then gives us that

lim
B→∞

B−(n+1)
∑

H(ϕ(k))≤B

1 = C

for a nonzero constant C, this is done by setting λk = H(ϕ(k)) and ak = 1. Alternatively we
can sum over Qn instead to get

lim
B→∞

B−(n+1)
∑

m∈Qn:H(m)≤B

1 = C. (12)

If we now return to the observations made at the start of this section, we have viewed
QPn as Qn ∪QPn−1, we discovered that the number of points x ∈ Qn satisfies equation (12).
We can now write QPn = Qn ∪Qn−1 ∪ . . . ∪Q0 to see that

lim
B→∞

B−(n+1)N(B) = C.

This proves Theorem 1.

5 Expanding to subsets

Now that we have this new method for calculating the number of points of QPn with height
below some bound B, we can expand it to certain subsets of QPn. We will denote these
subset XS and they will depend on a set S. The way we will choose these subsets is by
considering some x ∈ QPn represented as a sequence of n+ 1 coprime integers (x0 : . . . : xn)
and imposing restrictions on x0. The restrictions we will put on x0 is that we limit its p-
adic valuation vp(x0). More specifically we take the set S ⊂ N with 0 ∈ S and only allow
points x ∈ QPn with vp(x0) ∈ S for all p. In the calculations we will not want to use this
representation of coprime integers. Instead, similarly to in the previous section, we will look
at the elements of the form (1 : x′

1 : . . . : x′
n) with x′

i ∈ Q for all 1 ≤ i ≤ n. On these
elements, the restriction is equivalent to stating that max(0,−vp(xi)|1 ≤ i ≤ n) ∈ S for all
p ∈ P .

We will start with two specific cases, S = {0, v} and S = {0} ∪ {n ∈ Z : n ≥ v} for
some v > 0. For both of these cases we will prove Theorem 2 and the general case will follow
straight from these two cases.

5.1 The first case.

The first case will be the easiest, we will pick S = {0, v} for some 0 < v ∈ N. If we
go back to the sum

∑
m∈Qn H(m)−s, we now only want to consider m ∈ Qn such that
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max(0,−vp(mi)|1 ≤ i ≤ n) = 0 or max(0,−vp(mi)|1 ≤ i ≤ n) = v for all p ∈ P . However,
if we no longer sum over Qn we can no longer use Theorem 5, so instead we will sum the
function H(m)−sδv(m) with δv(m) = 0 when max(0,−vp(mi)|1 ≤ i ≤ n) ̸∈ S for all p ∈ P
and 1 otherwise. Note that we can write δv(m) =

∏
p∈P δv,p(m) where δv,p(m) = 0 when

max(0,−vp(mi)|1 ≤ i ≤ n) ̸∈ S and 1 otherwise. The next steps are similar to what we
already did in the previous chapter.

First we use Theorem 4 to write:∑
m∈Qn

H(m)−sδv(m) =
∑
m∈Qn

∫
V

H(x)−sδv(x)e
2πι{mx}dx.

We can again use Lemma 11 to see that the part of the sum where m ∈ Qn \Zn vanishes.
To use this lemma, we have to show that H(m)−sδv(m) is periodic over the integers, we
already know from the last chapter that H(m)−s is periodic over Zn, so all we have to show
is that for x ∈ Zn and m ∈ Qn, δv(m + x) = δv(m). To do this, notice that if vp(mi) ≥ 0,
then vp(mi + xi) ≥ 0 for any i, since if vp(mi) ≥ 0, mi is an integer, so mi + xi is an integer
and we get vp(mi + xi) ≥ 0. If vp(mi) < 0, then we can write mi = p−vp(mi)a/b, with a, b
integers coprime to p, this means we can write mi+xi = pvp(mi)(a+ bp−vp(mi)xi)/b, and since
xi is an integer and vp(mi) < 0, a + bxip

−vp(mi) is an integer coprime to p. This means we
get that vp(mi + xi) = vp(mi). Both of these facts together mean that δv(m) is periodic over
Zn, which means we have H(m)−sδv(m) = H(m+ x)−sδv(m+ x) for all x ∈ Zn.

This means that by Lemma 11, the sum over Qn becomes a sum over Zn as all other
terms are 0. This means we are left with the following:∑

m∈Qn

H(m)−sδv(m) =
∑
m∈Zn

∫
V

H(x)−sδv(x)e
2πι{mx}dx.

Now we can explicitly calculate the integrals in the same way as in the previous chapter.
Note that similarly to last chapter, for m ̸= 0, the integral is 0, as there is some i such that
mi ̸= 0, so

∫ 1

0
max{1, |x∞|}−se2πιx∞midx∞ =

∫ 1

0
e2πιx∞midx∞ = 0. In the case where m = 0,

the integral becomes

∫
V

H(x)−sδv(x)dx =

∫
[0,1]n

max{1, |xi| : 0 < i ≤ n}−s

n∏
i=1

dxi

∏
p∈P

∫
Qn

p

max{1, ||xi||p : 0 < i ≤ n}−sδv,p(x1, . . . , xn)
n∏

i=1

dxi

=
∏
p∈P

∫
Qn

p

max{1, ||xi||p : 0 < i ≤ n}−sδv,p(x1, . . . , xn)
n∏

i=1

dxi.

We will again calculate this for one specific prime p and take the product later. This will
be done in a similar way to the previous chapter:
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∫
Qn

p

max{1, ||(xp)i′ ||p|0 < i′ ≤ n}−sδv,p(x1, . . . , xn)
n∏

i=1

d(xp)i

=
∞∑

j1,...,jn=−∞

∫
(Z∗

p)
n

max{1, ||pji′xi′ ||p|0 < i′ ≤ n}−sδv,p(p
j1x1, . . . , p

jnxn)
n∏

i=1

p−jidxi

=
∞∑

j1,...,jn=−∞

∫
(Z∗

p)
n

psmin{0,ji′ |0<i′≤n}δv,p(p
j1 , . . . , pjn)

n∏
i=1

p−jidxi

=
∞∑

j1,...,jn=−∞

psmin{0,ji′ |0<i′≤n}(1− p−1)nδv,p(p
j1 , . . . , pjn)

n∏
i=1

p−ji

So we get the same except for this extra term δv,p, which is 0 for min(ji|1 ≤ i ≤ n) < 0
and min(ji|1 ≤ i ≤ n) ̸= −v and 1 otherwise. This allows us to rewrite the sum into three
different sum and remove the δv,p in this way:

∑
j1,...,jn≥0

(1− p−1)n
n∏

i=1

p−ji+

∑
j1,...,jn≥−v

p−sv(1− p−1)n
n∏

i=1

p−ji −
∑

j1,...,jn≥1−v

p−sv(1− p−1)n
n∏

i=1

p−ji ,

where the first sum deals with the case where min(ji|1 ≤ i ≤ n) ≥ 0 and the second two
sums together deal with the case where min(ji|1 ≤ i ≤ n) = −v. Using the fact that for
Re(s) > 1, we have that

∑∞
i=0 p

−s = 1/(1− p−1), we get the following expression:

(1− p−1)n
n∏

i=1

1

1− p−1
+ p−sv(1− p−1)n

n∏
i=1

pv

1− p−1
− p−sv(1− p−1)n

n∏
i=1

pv−1

1− p−1

=1 + p−sv
(
pnv − pnv−n

)
=1 + p(n−s)v

(
1− p−n

)
.

So we find that for Re(s) > 1, the final product will be:∫
V

H(x)−sδv(x)dx =
∏
p∈P

(
1 + p(n−s)v

(
1− p−n

))
.

We proceed in the same way as in the Section 4.5, this time we choose f(pu) = 0 for u ̸= v
and f(pv) = (1 − p−n)pnv. This allows us to use Theorem 6 which tells us this product
converges absolutely if and only if∑

x∈Z>0

f(k)/ks =
∑

x∈Z>0

f(kv)/kvs =
∑

x∈Z>0

k(n−s)v
∏

p∈P, p|k

(1− p−n)
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converges absolutely. Similarly in Section 4.5, this converges absolutely if Re(s) > n + 1/v,
but it diverges absolutely for s = n + 1/v. This means the product diverges absolutely for
s = n + 1/v, but for this value of s, all terms in the product are positive, so the product
diverges for s = n+ 1/v. Furthermore because the function∑

x∈Z>0

k(n−s)v
∏

p∈P, p|k

(1− p−n)

has a pole of order 1 in s = n+ 1/v, so does
∑

m∈Qn H(x)−sδv(x). Additionally, since

(s− (n+ 1/v))
∑

x∈Z>0

k(n−s)v
∏

p∈P, p|k

(1− p−n)

is holomorphic for Re(s) ≥ n+ 1/v, the function (s− (n+ 1/v))
∑

m∈Qn H(x)−sδv(x) is also
holomorphic for Re(s) ≥ n+ 1/v. This means we can use Corollary 2 on

∑
m∈Qn H(m)−s =

h(s)/(1 + v(n− s)) and again use a bijection ϕ between Qn and N to get that

lim
B→∞

B−(n+1/v)
∑

m∈Qn:H(m)≤B

δv(m) = C

for a nonzero constant C. And once again this sum is the number of points in our subset of
QPn \QPn−1 ∩XS, this time however, we can use Theorem 1 that

lim
B→∞

B−(n+1/v)
∑

x∈QPn−1:H(x)≤B

1 = 0.

This means we have

lim
B→∞

B−(n+1/v)
∑

x∈XS⊂QPn:H(x)≤B

δv(m) = C ̸= 0.

This proves Theorem 2 for S = {0, v}.

5.2 The second case

For the second case we will pick S = {0} ∪ {v + k : k ∈ Z≥0}. The approach is very similar
to the first case in the sense that we still want to calculate

∑
m∈Qn H(m)−s but we again add

a function δv defined by δv(m) = 0 if for some p ∈ P , −min(0, vp(mi) : 1 ≤ i ≤ n) ̸∈ S and
1 otherwise. We want to calculate∑

m∈Qm

H(m)−sδv(m) =
∑
m∈Qn

∫
V

H(x)−sδv(x)e
−2πι{mx}dx. (13)

This equality follows from Theorem 4.
By the same argument as in the previous case, we can again see that if vp(mi) ≥ 0, then

vp(mi+x) ≥ 0 for all primes p, x ∈ Z and mi ∈ Q and if vp(mi) < 0 then vp(mi+x) = vp(mi).
Hence we can again conclude that δv(m) = δv(m+x) for all x ∈ Zn and m ∈ Qn. We already
know that the height function has the property that H(m) = H(m+ x) for all m ∈ Qn and
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x ∈ Zn, as we showed this in Section 4.5. So we get that H(m)−sδv(m) also has this property.
This means that we can use Lemma 11 to see that, on the right hand side of equation (13),
the sum over Qn becomes a sum over Zn as the other terms are 0. Hence, we get:∑

m∈Qm

H(m)−sδv(m) =
∑
m∈Zn

∫
V

H(x)−sδv(x)e
−2πι{mx}dx.

We can evaluate these integrals, we do this for general m but we quickly see that they
are 0 for all nonzero m ∈ Qn. We get:

∫
V

δv(x)

H(x)s
e−2π{mx}dx =

∫
[0,1]n

max{1, |xi| : 0 < i ≤ n}−s

n∏
i=1

e−2πιmixidxi

∏
p∈P

∫
Qn

p

max{1, ||xi||p : 0 < i ≤ n}−sδv,p((xi)1≤i≤n)
n∏

i=1

e−2πι{mixi}pdxi

=
n∏

i=1

∫ 1

0

e−2πιmixidxi

∏
p∈P

∫
Qn

p

max{1, ||xi||p : 0 < i ≤ n}−sδv,p((xi)1≤i≤n)
n∏

i=1

e−2πι{mixi}pdxi,

If there exists an index i such that mi ̸= 0, then
∫ 1

0
e2πιmixidxi = 0. Hence, the whole

expression is 0. This means that we only have to consider the case m = 0. This gives us:

∑
m∈Qm

H(m)−sδv(m) =
∏
p∈P

∫
Qn

p

max{1, ||xi||p : 0 < i ≤ n}−sδv,p((xi)1≤i≤n)
n∏

i=1

dxi.

We can compute all of these integrals for an arbitrary prime p and we take the product
afterwards. Expanding the integral gives:

∫
Qn

p

max{1, ||xi||p : 0 < i ≤ n}−sδv,p((xi)1≤i≤n)
n∏

i=1

dxi

=
∞∑

j1,...,jn=−∞

∫
(Z∗

p)
n

max{1, ||pji′xi′||p|0 < i′ ≤ n}−sδv,p((p
jixi)1≤i≤n)

n∏
i=1

p−jidxi

=
∞∑

j1,...,jn=−∞

∫
(Z∗

p)
n

psmin{0,ji′ |0<i′≤n}δv,p((p
ji)1≤i≤n)

n∏
i=1

p−jidxi

=
∞∑

j1,...,jn=−∞

psmin{0,ji′ |0<i′≤n}(1− p−1)nδv,p((p
ji)1≤i≤n)

n∏
i=1

p−ji
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The way we solve this integral is by defining Ik ⊂ Zn such that for (ji)0<i≤n, we have
min{0, ji′|0 < i′ ≤ n} = −k. Note that Ik = ∅ for k < 0. This allows us to rewrite the sum
to

∞∑
k=0

∑
(ji)0<i≤n∈Ik

psmin{0,ji′ |0<i′≤n}(1− p−1)nδv,p((p
ji)1≤i≤n)

n∏
i=1

p−ji . (14)

Note that the δv,p((p
ji)1≤i≤n) term is 0 if max(0, vp(p

ji) : 1 ≤ i ≤ n) ̸∈ S and 1 otherwise.
This means that it is 1 if and only if there exists an index i such that ji ≥ v or for all
indices i, ji ≤ 0. We can write this in terms of k, we have that δv,p((p

ji)1≤i≤n) = 0 if k ̸∈ S
and δv,p((p

ji)1≤i≤n) = 1 if k ∈ S. Next, we can see that for k > 0, we have (ji)1≤i≤n ∈
([−k,∞)n \ [1 − k,∞)n) ∩ Zn, while for k = 0, we have (ji)1≤i≤n ∈ [0,∞)n ∩ Zn. We will
now calculate the sum in equation (14) by calculating the summand for all values of k. For
k = 0, the summand becomes:

∞∑
j1,...,jn=0

psmin{0,ji′ |0<i′≤n}(1− p−1)n
n∏

i=1

p−ji =
∞∑

j1,...,jn=0

(1− p−1)n
n∏

i=1

p−ji

= (1− p−1)n

(
∞∑
j=1

p−j

)n

= 1.

While for 0 < k < v, we have −k ̸∈ S, so the summand is 0. Finally for k ≥ v, we get:

∑
(ji)0<i≤n∈Ik

psmin{0,ji′ |0<i′≤n}(1− p−1)nδv,p((p
ji)1≤i≤n)

n∏
i=1

p−ji

=
∑

(ji)0<i≤n∈Ik

p−sk(1− p−1)nδv,p((p
ji)1≤i≤n)

n∏
i=1

p−ji

= p−sk(1− p−1)n

(
∞∑

j1,...,jn=−k

n∏
i=1

p−ji −
∞∑

j1,...,jn=1−k

n∏
i=1

p−ji

)

= p−sk(1− p−1)n

((
∞∑

j=−k

p−ji

)n

−

(
∞∑

j=1−k

p−ji

)n)

= p−sk(1− p−1)n

(
pnk

(
∞∑
j=0

p−ji

)n

− pnk−n

(
∞∑
j=0

p−ji

)n)

= p−sk(1− p−1)n
(
pnk − pnk−n

)( ∞∑
j=0

p−ji

)n

= p(n−s)k(1− p−n).
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Now that we have calculated the summand of equation (14) for every k, we can calculate
the whole sum:

∞∑
k=0

∑
(ji)0<i≤n∈Ik

psmin{0,ji′ |0<i′≤n}(1− p−1)nδv,p((p
ji)1≤i≤n)

n∏
i=1

p−ji

= 1 +
∞∑
k=v

p(n−s)k(1− p−n)

= 1 + (1− p−n)p(n−s)v

∞∑
k=0

p(n−s)k

= 1 +
(1− p−n)p(n−s)v

1− p−(s−n)
.

If we now return to our product over all primes, we get our expression for
∑

m∈Qn H(m)−s:∑
m∈Qn

H(m)−s =
∏
p∈P

(
1 +

1− p−n

1− p−(s−n)
p(n−s)v

)
.

We now want to check for which values of s this product diverges. We use Theorem 6 with
f(pu) = 0 for u < v and f(pu) = (1− p−n)pnk for u ≥ v, to see that it converges absolutely
if and only if ∑

k∈Z>0

f(k)/k−s

converges. Note that for real s we have∑
k∈Z>0

f(kv)k−vs ≤
∑

k∈Z>0

f(k)k−s ≤ M(v)
∑

k∈Z>0

f(kv)k−vs

for a bound M(v), this means
∑

k∈Z>0
f(k)/k−s converges if and only if∑

k∈Z>0

f(kv)k−vs =
∑

k∈Z>0

k−v(s−n)
∏

p∈P, p|k

(1− p−n).

This sum diverges for s = n+1/v, but it converges absolutely for Re(s) > n+1/v. Further-
more it has a pole of order 1 in s = n+1/v and the function (s− (n+1/v))

∑
k∈Z>0

f(k)/k−s

is holomorphic for Re(s) > n+1/v. From this we find that
∑

m∈Qn H(m)−sδv(m) has a pole
of order 1 in s = n+ 1/v and the function

(s− (n+ 1/v))
∑
m∈Qn

H(m)−sδv(m)

is holomorphic for Re(s) > n + 1/v. This means that we can use the same trick we did
in the previous chapter with a bijective function ϕ : N → Qn and use Corollary 2 on∑

k∈NH(ϕ(k))−sδv(ϕ(k)) to see that
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lim
B→∞

B−(n+1/v)
∑

m∈Qn:H(m)<B

δv(n) = C

for some constant C. Once again this sum is the number of points in our subset of
QPn \QPn−1 ∩XS, this time however, we can use Theorem 1 that

lim
B→∞

B−(n+1/v)
∑

x∈QPn−1:H(x)≤B

1 = 0.

This means we have

lim
B→∞

B−(n+1/v)
∑

x∈XS⊂QPn:H(x)≤B

δv(m) = C ̸= 0.

This proves Theorem 2 for S = {0} ∪ Z≥v.

5.3 The case for general sets

Lastly, we study the case for general sets S. For any set S ⊂ Z≥0 with 0 ∈ S, let v be the
smallest nonzero integer such that v ∈ S. Let now S ′ = {0, v} and S ′′ = {0} ∪ {n ∈ Z : n ≥
v}. Note that since S ′ ⊂ S, if we let x ∈ QPn be represented by a sequence of n+1 coprime
integers x0, . . . , xn, if vp(x0) ∈ S ′ then vp(x0) ∈ S. And since S ⊂ S ′′, if vp(x0) ∈ S then
vp(x0) ∈ S ′′. From this it follows by definition that

XS′ ⊂ XS ⊂ XS′′ .

This immediately leads to the following inequalities

|{x ∈ XS′ : H(x) ≤ B}| ≤ |{x ∈ XS : H(x) ≤ B}| ≤ |{x ∈ XS′′ : H(x) ≤ B}|.

Inserting the limits and the power B−(n+1/v) gives:

CS′ = lim
B→∞

B−(n+1/v)|{x ∈ XS′ : H(x) ≤ B}|

≤ lim
B→∞

B−(n+1/v)|{x ∈ XS : H(x) ≤ B}|

≤ lim
B→∞

B−(n+1/v)|{x ∈ XS′′ : H(x) ≤ B}| = CS′′ .

So we have limB→∞B−(n+1/v)|{x ∈ XS : H(x) ≤ B}| = CS for some constant CS and
general S where v is the smallest nonzero integer in S.

6 Outlook

We have proven Theorem 1 and Theorem 2. The logical next step is to expand The-
orem 2 to more subsets of QPn. The subsets XS ⊂ QPn restrict the first coordinate
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of (x0 : x1 : . . . : xn) ∈ QPn, we could instead restrict any other coordinate. Define
XS,i ⊂ QPn, for 0 ≤ i ≤ n, to be the subset of QPn that restricts the ith coordinate of
(x0 : x1 : . . . : xn) ∈ QPn in the same way XS restricts the first. By symmetry, Theorem 2
should still hold if we consider XS,i instead of XS. If we try to apply the method of section 5
to XS,i for i ̸= 0 we run into a problem. First we have to change the δ-function, if we do this

however, we can no longer use Lemma 11 on
∑

m∈Qn Ĥ(x, s)δ(x). This means we are stuck
with a sum over Qn which we are unable to solve.

This becomes a problem when we try to restrict multiple coordinates of QPn at the same
time, as we can no longer use symmetry to get a result. Let XS0,...,Sn ⊂ QPn be the subset
that restricts the ith coordinate of (x0 : x1 : . . . : xn) ∈ QPn using Si for all 0 ≤ i ≤ n. So if
(x0 : x1 : . . . : xn) ∈ QPn is a representation of coprime integers, (x0 : x1 : . . . : xn) ∈ XS0,...,Sn

if and only if vp(xi) ∈ Si for all p ∈ P and all 0 ≤ i ≤ n. We can no longer use the method
from section 5 to calculate the growth rate of N(B) belonging to XS0,...,Sn , however, it may
be possible to combine the method from section 3 with the results of Theorem 2 to find this
growth rate.



7 APPENDIX I

7 Appendix

7.1 Useful Fourier transforms

The Fourier transform of a function f : R→ R is given by

f̂(τ) =

∫ ∞

−∞
e−ιxτf(x)dx,

which can be found in section 6.2 of [8]. The Fourier transform of a continuous function f
has the property

f(x) =
1

2π

∫ ∞

−∞
eιxτ f̂(τ)dτ

In the following subsections, we will calculate the Fourier transforms of functions used in the
proofs in this thesis.

We will use the fact that for two functions f and g, the Fourier transforms of the product
h = fg satisfy

ĥ(x) =
1

2π

∫ ∞

−∞
f̂(y)ĝ(x− y)dy. (15)

This can be easily shown by substituting z = x− y in the following way:

h(t) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
f̂(y)ĝ(x− y)dyeιxtdx =

1

4π2

∫ ∞

−∞

∫ ∞

−∞
f̂(y)ĝ(z)eι(z+y)tdydz = f(t)g(t).

These are all the tools we need to calculate the Fourier transforms.

7.1.1 Fourier transform of αϵ(t)

The function αϵ(t) is defined as

αϵ(t) =
2

πϵt2
sin(ϵt/2) sin((2T + ϵ)t/2)

Note that we can write this as

αϵ(t) =
1

2πϵ

2 sin(ϵt/2)

t

2 sin((2T + ϵ)t/2)

t
,

so we can use equation (15) together with the Fourier transform of sin(at)/t to get the Fourier
transform of αϵ(t). Let us now define fa(t) = sin(ax)/x, this function has Fourier transform

f̂a(τ) =

∫ ∞

−∞

sin(ax)

x
e−ιxτdx

=

∫ ∞

−∞

sin(ax)

x
cos(−xτ)dx+ ι

∫ ∞

−∞

sin(ax)

x
sin(−xτ)dx.

The second of these two integrals is 0 since it is the convergent integral of an odd function
over a domain that is symmetric around 0. Using the identity sin(a + b) = sin(a) cos(b) +
cos(a) sin(b) and the fact that sin(bx)/x is an even function for all b, we can write this as:
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f̂a(τ) =

∫ ∞

−∞

sin((a+ τ)x) + sin((a− τ)x)

2x
dx

=

∫ ∞

−∞

sin((a+ τ)x)

2x
dx+

∫ ∞

−∞

sin((a− τ)x)

2x
dx

=

∫ ∞

0

sin((a+ τ)x)

x
dx+

∫ ∞

0

sin((a− τ)x)

x
dx

=

∫ σ(a+τ)∞

0

sin(x)

x
dx+

∫ σ(a−τ)∞

0

sin(x)

x
dx.

Here σ is the sign function. This immediately gives us that this integral is 0 when σ(a− τ) =
−σ(a+ τ). This means that we need to compute the integral

∫∞
0

sin(x)/xdx. We proceed as
follows:

∫ ∞

0

sin(x)/xdx =

∫ ∞

0

∫ ∞

0

e−xy sin(x)dydx

=

∫ ∞

0

∫ ∞

0

e−xy sin(x)dxdy

=

∫ ∞

0

[
−e−xy(y sin(x) + cos(x))

y2 + 1

]∞
x=0

dy

=

∫ ∞

0

1

y2 + 1
dy

= arctan(y)|∞y=0 = π/2.

Combining everything we get that f̂a(τ) = π when −|a| < τ < |a| and f̂(τ) = 0 everywhere
else. For the Fourier transform of αϵ(t), we need f̂ϵ/2(x)f̂T+ϵ/2(τ−x), which is 0 for |x| > |ϵ/2|
or |τ−x| > T+ϵ/2 and π2 otherwise. This means it is π2 on the interval x ∈ [−ϵ/2, ϵ/2]∩[τ−
(T + ϵ/2), τ +(T + ϵ/2)] and 0 outside this interval. This interval has length 0 if |τ | > T + ϵ,
it has length ϵ if |τ | < T and it has length T + ϵ− |τ | if T ≤ |τ | ≤ T + ϵ.

Using this we find

α̂ϵ(τ) =
1

π2ϵ

∫ ∞

−∞
f̂ϵ/2(x)f̂T+ϵ/2(τ − x)dx,

which is 0 for |τ | > T + ϵ, it is 1 for |τ | < T and it is (T + ϵ− |τ |)/ϵ for T ≤ |τ | ≤ T + ϵ.

7.1.2 Fourier transform of β(t)

The function β(t) is defined as

β(t) =
1

2π

sin(t/2)2

(t/2)2
.

This can we written as

β(t) =
2

π

(
sin(t/2)

t

)2

.



7 APPENDIX III

So by equation (15), we can write

β̂(τ) =
1

π2

∫ ∞

−∞
f̂1/2(x)f̂1/2(τ − x)dx.

In the previous section we calculated f̂a(τ), which is π for |τ | < a and 0 otherwise. This
means the function f̂1/2(x)f̂1/2(τ − x) is 0 for |x| ≥ 1/2 or |τ − x| ≥ 1/2 and π2 otherwise.
It is π2 on the interval x ∈ [−1/2, 1/2]∩ [τ − 1/2, τ + 1/2], which has length max(0, 1− |τ |),
and it is 0 everywhere else.

This means we get
β̂(τ) = max(0, 1− |τ |).

7.1.3 Fourier transform of Bx(t)

The function Bx(t) is defined as

Bx(t) =

{
0 if t ≤ 0
c

Γ(b)
e−xt(1− e−xt)tb−1 if t > 0.

We can calculate the Fourier transform straight from the definition. We get

B̂x(τ) =

∫ ∞

−∞
e−ιtτBx(t)dt

=

∫ ∞

0

e−ιtτ (c/Γ(b))e−xt(1− e−xt)tb−1dt

=
c

Γ(b)

∫ ∞

0

(e−t(ιτ+x) − e−t(ιτ+2x))tb−1dt

=
c

Γ(b)

(∫ ∞

0

e−t(ιτ+x)tb−1dt−
∫ ∞

0

e−t(ιτ+2x)tb−1dt

)
=

c

Γ(b)

(∫ ∞

0

e−u ub−1

(ιτ + x)b−1

du

ιτ + x
−
∫ ∞

0

e−v vb−1

(ιτ + 2x)b−1

dv

ιτ + 2x

)
=

c

Γ(b)

(
Γ(b)

(ιτ + x)b
− Γ(b)

(ιτ + 2x)b

)
= c((ιτ + x)−b − (ιτ + 2x)−b).

We used substitutions u = t(ιτ + x) and v = t(ιτ + x).

7.1.4 Fourier transform of gx(t)

The function gx(t) is defined as

gx(t) = A(t)e−(a+x)t(1− e−xt)

with a + x > 0 and A(t) a non-decreasing function which is 0 for t ≤ 0. We will calculate
the Fourier transform in terms of the function G(z) =

∫∞
0

A(t)e−(a+x)tdt− c/zb. We get



REFERENCES IV

ĝx(y) =

∫ ∞

0

A(t)e−(a+x)t(1− e−xt)e−ιtydt

=

∫ ∞

0

A(t)e−(a+x+ιy)tdt−
∫ ∞

0

A(t)e−(a+2x+ιy)tdt

= G(x+ ιy) + c/(x+ ιy)b −G(2x+ ιy)− c/(2x+ ιy)b.
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[9] J. W. S. Cassels and A. Fröhlich, Algebraic number theory, Proceedings of an instruc-
tional conference organized by the London Mathematical Society (a NATO Advanced
Study Institute) with the support of the International Mathematical Union. London and
New York: Academic Press 1967. xviii, 366 p. 100 s. (1967). (1967).

[10] G. Tenenbaum, Introduction to analytic and probabilistic number theory. Transl. from
the 3rd French edition by Patrick D. F. Ion, vol. 163 of Grad. Stud. Math. (Providence,
RI: American Mathematical Society (AMS), 2015), 3rd ed., ISBN 978-0-8218-9854-3.



REFERENCES V

[11] R. L. Goodstein, Complex functions. A first course in the theory of functions of a single
complex variable, London-New York-Toronto-Sydney: McGraw. Hill Publishing Com-
pany Ltd. VIII, 218 p. (1965). (1965).


	Introduction
	Problem description
	The first method
	The second method
	p-adic spaces
	p-adic integration
	Poisson Summation Formula
	Tauberian Theorem
	Solving the problem

	Expanding to subsets
	The first case.
	The second case
	The case for general sets

	Outlook
	Appendix
	Useful Fourier transforms
	Fourier transform of (t)
	Fourier transform of (t)
	Fourier transform of Bx(t)
	Fourier transform of gx(t)



