Towards a more Robust and Efficient Failure
Prediction in Cloud Systems

Master Thesis
Ignacy Skrzeczek (0116408)
Graduate School of Natural Sciences (GSNS)

Utrecht University

§!}% Utrecht
E—

{{m&%’ University

Dr. Nishant Saurabh Dr. A.A.A. (Hakim) Qahtan
First supervisor Second supervisor

Diogo Landau, MSc
Daily supervisor

19 November 2024

Abstract

Cloud systems have become crucial computing infrastructure, delivering
services to diverse applications. The data center which is home to this
infrastructure is prone to failure, due to dynamic nature, complexity and
scale. This paper explores failure prediction systems which help to offset
damage caused by such a failure. With help of machine learning techniques
combined with low level monitoring data we propose a predictive solution
that identifies failed jobs based on granular hardware performance data.
We compare various machine learning models and test potentially novel
features to find the best solution in terms of precision, accuracy, fl-score
and recall. We examine how GPU metrics contribute to a prediction of
jobs which make use of them. Better failure detection leads to superior
failure management, reduces resource wastage and provides better service
reliability:.

Contents

1__Introduction| 1
(1.1 Problem Statement| 2
(1.2 Research questions| 3
(1.3 [aterature Review Proceduref. 4
[L4 Research methodl 5
(1.5 Threats to validity] 6
(1.6 Timeline and milestonesl 7

2 Backgroud| 8
[2.1 Anomaly as a needle in a haystack| 9
2.2 Types of anomalies| 10
2.3 Performance anomalied 10
[2.4 Monitoring and data collection|. 11
2.5 Cloud Performance Datasets 12
2.6 lisadatasetsl L. 12
[2.7 Performance Analysis|. 14
2.8 Cloud Mitigation techniques| 17

3__Related workl 18
(3.1 lLimitations of the related worksl 23

4__Architecturel 25

5 Method 28
[>.1 Feature separation| 28
[>.2 Grouping and structuring of performance metrics| 31
5.3 Granularity setting|o 32
[>.4 Feature Selection Techniquesf. 33
[>.5 Machine Learning classification| 33

6 Results] 36
[6.1 Results for feature groups| 36
[6.2 Results tor Machine Learning Classifiers| 39

i

List of Figures

4.1 High-level architecture overview| 26
6.1 Data transformation 1| o000 29
.2 Data transformation 2|o 30
[>.3 Machine Learning Classification| 34
[6.1 Tests for standard jobs with no aggregation| 38
[6.2 Tests for standard jobs with aggregation| 38
[6.3 Tests for GPU jobs with no aggregation|. 39
6.4 Visualization of results for different ML classifiers| 40
6.5 ROC curve for the standout solutionl 41

v

Chapter 0

Skrzeczek i

Chapter 1

Introduction

Data centers are at the heart of modern IT applications. They enable
both cloud-based and on-premise solutions across various scales. Emerg-
ing resource-intensive workloads (e.g. Big Data and Al-based) test the
limits of existing computing facilities, already operating at an immense
scale. Performance of many of such application workloads rely not only on
higher throughput but also lower response time, high fault tolerance and
scalability. What makes things even more obscure are the many layers of
computing systems that deploy and execute diverse application workloads.
While comparing high-level application key performance indicators (KPIs)
gives us an idea about overall performance, uncovering some operational
inefficiencies can only be achieved with fine-grained analysis of low-level
metrics. Available data about low level metrics is scarce. Commercial data
centers typically do not share their data, presumably for competitive and
security reasons. However, scientific infrastructure such as Lisa|61] and
CloudLab[15] can provide insight into data center operations.

Recently, some of the recent research has focused on understanding
and analyzing operational efficiency of data centers. Ousterhout (2018)[4§]
delved into common pitfalls like making use of superficial measurements
(looking at a CPU as a whole instead of at separate cores and threads) or
confirmation bias (when measuring performance you are hoping for a cer-
tain outcome) encountered when measuring or instrumenting performance.
Ousterhout further claims that the data center measurements should always
run one level deeper to better understand the underlying factors behind
performance. Versilius et al.(2022)[61] conducted a study utilizing a fine-
grained Lisa dataset and documented a data center’s performance over an
8-month period at 15-second intervals. They highlight differences between
ML dedicated infrastructure and standard infrastructure (with standard
infrastructure not having a dedicated GPU). ML nodes are more likely to
fail their jobs and are more power-hungry. According to them, longer jobs
in general have higher failure rate and this results in a waste of a significant

Chapter 1

amount of resources, time and energy.

Another study by Maricq et al.(2018)[39] highlighted hardware perfor-
mance variation using CloudLab infrastructure dataset. One of the main
takeaways of their work is that the coefficient of variance of hardware per-
formance of up to 10% can be attributed to hardware variability. They
advise, whenever possible, to choose lower variance hardware when looking
for statistically meaningful conclusions. Such conclusions refer to outlier
servers with metrics such as disk or CPU usage which stand out among
other servers.

The aforementioned research does not exhaust the potential of all datasets.
More intensive researches can shed light on the job failures in the cloud.
Perhaps some of those failures could be attributed to anomalies like a fail-
slow hardware causing a timeout. These performance anomalies could help
us to understand what contributed to the failure in job completion. Servers
that executed jobs which encountered failure could also be highlighted, and
fine-grained details from them can be extracted, such as number of jobs be-
ing executed on that machine at the time of failure or usage of particular
resources (GPU, CPU, Memory, Disk). The subsequent submissions and
re-submissions of jobs and how they act in unison has not been considered
as well. The previous research [50][39][35] makes use of a very narrow set
of features (CPU, Disk, Memory usage). They have proven to be good pre-
dictors of failure and performance anomaly but we believe there is room for
improvement. For example many data-centers are adding GPUs to their
pool of resources, and the GPU usage could support failure prediction.

In this thesis, I aim to apply machine learning, feature selection algo-
rithms and non-parametric statistics to obtain a better understanding of
the above-mentioned phenomena. The data exploration will allow us to
narrow down the objectives for the datacenter operational analysis. Non-
parametric statistics will attempt to draw more global conclusions about
the observations made in cloud infrastructure and subsequent performance
anomalies. Feature selection algorithms will help to evaluate metrics that
support predicting job failures. Machine learning classification methods
will attempt to validate the use of new features. To achieve the thesis
goals, we will look for datasets that would validate our ideas. Execution
failures have a negative impact on the services provided by a data center;
this thesis will try to come up with new metrics that are good predictors
of a failure.

1.1 Problem Statement

Unpredictable behaviour caused by performance anomalies can be a cause
of serious problems for both cloud user and provider. They make cloud

2 Skrzeczek

Chapter 1

computing among other less reliable and more costly. Limiting anomaly
impact would improve many services that make use of the cloud. They
are often responsible for job failures in the cloud environment. Finding
metrics that represent performance anomalies would also support failure
prediction. There are many approaches to tackle the problem of perfor-
mance anomaly detection. The first problem is in which hardware-level
metrics could enable perform efficient anomaly detection, and how to find
them. Some of these metrics could become new meaningful predictors of
future job failures. The second problem is what statistical, machine learn-
ing or deep learning method to choose for those metrics to gain the most
accurate failure prediction. There seems to be no consensus about this,
and this work will not definitively answer those questions. Instead, we will
focus on one promising approach and apply it in the context of a real-world
dataset.

1.2 Research questions

In the context of problem statement discussed above, this thesis aims to
answer the following main research question (MRQ):

MRQ: How can we design and develop an efficient failure pre-
diction technique for cloud-native applications and platforms ?

To efficiently answer the main research question we further divided
MRQ into three research questions (RQ) and sub-questions (SRQ).

RQ1: What are the state-of-the-art (SOTA) failure prediction
techniques in the cloud?

SRQ1.1: What features are commonly used by SOTA cloud failure
prediction techniques and what are their limitations?

SRQ1.2: What datasets were previously used to test failure prediction
techniques in the cloud, using the features identified in SRQ1.27

To answer RQ1 we will embark on a literature search for novel and
traditional approaches to predict failure in the cloud. We will look at
among others, statistical, deep learning and machine learning approaches.
For SRQ1.1 the preliminary analysis displayed limitations of current failure
prediction models in the cloud. Jassas and Qusay H. Mahmoud [35] used
SelectKBest, Feature Importance, Recursive Feature Elimination to choose
the best features for cloud failure prediction model. They chose: job ID,
task index, machine ID, RAM usage, CPU usage, disk usage, priority, and
scheduling class as possible predictors. The work of Ren et al. [50] also
selected CPU, memory and disk usage as features but added number of
spawned containers and a number of co-located workloads on the machine
as additional predictors. We believe that there are more features that
could be used to enhance failure prediction in the cloud. For SRQ1.2 we

Skrzeczek 3

Chapter 1

will look for performance related datasets that offer fine-grained insights
into the operations of a data-center. Ideally we would like to find a dataset
offering identical metrics to those we decided to focus on. This would allow
us for a better validation of the chosen approach. If such data is not found,
we will focus on a single dataset.

RQ2: How can we identify relevant features for cloud failure
prediction that overcomes limitations of the features identified by
the SOTA techniques?

SRQ2.1: Which feature selection methods, are appropriate for iden-
tifying features relevant for cloud failures based on the datasets found in
SRQ1.37

SRQ2.2: What data-granularity (based on timestamp) is necessary to
accurately represent a feature for cloud failure prediction ?

To answer RQ2 we will try to find possible reasons behind job failures
and features that correspond with them. We believe that literature about
performance anomaly will offer us some guidance. Discovered features will
have to be available in one of the datasets found in SRQ1.2. SRQ2.2 will be
about determining how large can the intervals of time be, between different
data-points to both efficiently and accurately represent the features. It
could be that different features require various amount of time intervals for
accurate representations.

RQ3: How do the new features contribute to the accuracy of
a failure cloud prediction model ?

SRQ3.1: What are the outcomes of applying different ML classification
techniques using the features identified in RQ2 ?

Answering RQ3 will help us to determine whether we have been success-
ful in our search for new features used for failure prediction in the cloud.
SRQ3.1 will apply various ML classification techniques based on a model
created from features discovered in RQ2. We will compare those classifiers
in terms of time, accuracy, precision, ROC curve to select the best one for
a given dataset. If the features discovered in SRQ2.1 appear in multiple
datasets used for failure prediction we could go one step further. Test-
ing our failure prediction technique on multiple datasets would give it a
stronger validation.

1.3 Literature Review Procedure

For the purpose of literature review procedure we decided on backward
and forward snowballing, to find relevant advice, frameworks and stud-
ies. A lot of the papers in the field of performance anomaly detection is
relatively new, especially those that make use of deep-learning methods.
We looked for them by filtering google scholar by the year of publishing.

4 Skrzeczek

Chapter 1

The papers that had the biggest impact on the literature review procedure
were two taxonomies by Tanja Hagemann and Katerina Katsarou(2020)[2§]
and Moghddam et.al(2019)[45]. They were both found thanks to google
scholar’s search engine. Those papers collect relevant sources on perfor-
mance anomaly detection, and offer a structure with which one can look
at other sources. Research on the LISA dataset conducted by Verluis et
al.(2023)[61] was the most recent paper found. This made it a good source
for finding other relatively recent papers. Most of the papers included in
the bibliography have a significant number of citations, that is above 50.
There were two problems encountered while looking for sources. Some pa-
pers focused on attack like DDoS as a source of an anomaly. While this
can lead to performance anomaly, and the detection mechanisms used are
the same, most dataset do not support this type of research. The second
problem was connected to the application layer, a lot of papers make some
use of this layer either to minimise its impact or to look at the problem
from the application perspective. Many dataset offers very little in terms
of application information, look at the performance from a different per-
spective and collect different metrics. This makes research replication and
comparison difficult. Literature review gave us a better overview of avail-
able methods. It also created some confusion due to the abundance of
possible approaches, making the decision making process complicated.

1.4 Research method

For RQ1 we will look for traditional and novel approaches that successfully
predict failure in the cloud. Among them, statistical, deep learning and
machine learning approaches. For SRQ1.1 We will look at various features
used in previous research to predict failure in the cloud environment. This
will be a focus point of our literature review process. For SRQ1.2 We will
look for and compare all recent datasets used for the purpose of failure
prediction in the cloud. We will look at their similarities, how they differ
and what features they offer.

For RQ2 we will delve into the reasons behind failure occurrence in the
cloud. Problems such as bad scheduling, noisy neighbor problem, resource
contention or insufficient resources. We will try to come up with a way to
explain them in terms of features offered by the datasets found in SRQ1.2.
For SRQ 2.1 Feature selection algorithms like SelectKBest[1], Feature Im-
portance[66] or Recursive Feature Elimination[11] could help to determine
whether the new features will aid the failure prediction. If it turns out that
none of the new features are valid predictors, we will conduct failure pre-
diction on tried and tested features. For SR(Q2.2 selecting the right data
granularity to correctly represent but not provide too much information

Skrzeczek 5

Chapter 1

will be a challenge. To overcome it we plan to make us of multiple different
granularity settings creating models with different characteristics. If the
newly selected features allow for it, the failure detection could be tested on
a different dataset.

For RQ3 we will train multiple a failure detection machine-learning
models with the features chosen in SRQ 2.1. The models will be different
in terms of data-granularity selected in SRQ2.2. For SRQ3.1 multiple dif-
ferent Machine Learning classifiers will be tested. These would include: De-
cision Tree[56], Random Forest[5], Naive Bayes[51], Gradient Boosting[1§],
XGB Boosting|8] and K-nearest-neighbour[10] and iForest|38]. They will
be compared in terms of accuracy, precision and training time to highlight
the classifier which works best in the context of this dataset.

1.5 Threats to validity

1. There number of studies about hardware performance measured over
a long period of time is limited. Often there are many papers based
on just one dataset, without the possibility to replicate the results
on different data. The data either does not exist, is not available,
or has different metrics. Moreover, the hardware components of the
data-center change ever couple of years with totally new equipment
that could produce different results. Studies from early 2010s that
show hard-drive as the most anomaly prone hardware [6] could no
longer hold true. All of this means that we could have serious issues
with replicating our results on different datasets.

2. The inherent limitations of datasets obscure our understanding of
reasons behind job-failure. In one of the datasets we came across
an issue, when multiple jobs were being executed on a single ma-
chine, we did not always know how many resources are being used
by any particular job. We only knew the total resource usage of that
machine.

3. In the work of Marciq et al.2018[39] information about the application
helps them to understand the variance that is caused by it and take
it into account when measuring hardware performance. Most of the
dataset do not support us with enough information to do that. This
means that sometimes a failure will happen for application-specific
reasons and we will not know that it did.

6 Skrzeczek

Chapter 1

1.6 Timeline and milestones

The thesis project began with initial literature review on performance
anomaly detection. Datasets containing metrics used in relevant research
were discovered and explored. The Ethics and Privacy Quick Scan of the
Utrecht University Research Institute of Information and Computing Sci-
ences was conducted. This research was classified as low-risk with no ethics
review or privacy assessment required. The next stage of the project will in-
clude applying Machine Learning approach to the dataset, after identifying
key variables. The following timeline is proposed:

1.

Preparing the datasets, including data wrangling and removing infor-
mation that is irrelevant form the perspective of this research. The
current size of the data, being over 126GB makes it cumbersome and
removing some of it would support further analysis. [2 weeks]

. The datasets proposed for this research offers many metrics and pos-

sible ways to gather meaningful insights. Most of these metrics need
to be excluded, to avoid over-fitting and limit the computing power
requirement. Techniques like best-first feature selection might aid
the search for the most statistically powerful metrics. At this point
we will have to decide how much data is necessary to represent the
features. [3 weeks]

Applying the machine learning methods to answer the research ques-
tions and evaluating the results. [3 weeks]

Visualizing the results, will support the conclusions reached in the
previous step.[1 week]

. Writing the thesis, ideally it will be conducted during the whole du-

ration of the project. This stage will also include making final refine-
ments to the previous sections. [1 month]

Skrzeczek

Chapter 2

Backgroud

Cloud computing is a model for enabling convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interac-
tion.[46] Cloud computing is the backbone of modern society. The word
cloud itself implies something see-through, abstract and available any-
where. The reality of the cloud is more complicated, it is a network of
interlinked data centers where geography and political borders matter. It
is a tremendously lucrative business, where scale and know-how matter.
Cloud is at it’s heart a business of borrowing computers, making an existing
in data-center hardware an abstraction to the user. Since it’s inception the
offerings of cloud providers have been growing. These solutions are often
labeled by the amount of control they give to the user through three ser-
vice models, i.e. Software as a Service(SaaS), Platform as a Service(PaaS),
Infrastructure as a Service(laaS). To ensure the quality of service, a Service
Level Agreement(SLA) is signed between user and the cloud provider. The
specifics of SLA depend on the type of services the user is trying to access,
where SLAs can include information about availability, data consistency,
response time, security, payment, usage policy, backup and disaster recov-
ery. One of the key reasons for occurrence of SLA violations are anomalies.

A performance anomaly in the cloud is a deviation from application or
infrastructure normal performance. A Virtual Machine in a cloud center
that is under utilizing its resources could produce an anomaly. This work
will focus on performance anomalies, those are anomalies that impact qual-
ity of service. We will attempt to tie the performance anomaly to hardware
resources at the exact moment of occurrence. We hope that approach will
help us find new unique features for failure prediction in the cloud. Un-
derstanding different types of performance anomalies will support finding
different features that support prediction of job-failures. In the business
context failures can lead to a violation of the SLA usually leading to some

Chapter 2

sort of monetary compensation. If a cloud provider knows that the job has
a high chance of failure, he may attempt to prevent it with one of many
failure mitigation policies.

2.1 Anomaly as a needle in a haystack

The size of the modern cloud infrastructure is vast and continually expand-
ing. The amount of information about the resources resembles a haystack
while the anomalies can be perceived as needles, almost impossible to find.
The needle in the haystack metaphor highlights how difficult it is to find
the source of poor performance within a complex system such as Cloud.
The title of this subsection was inspired by a book Systems Performance:
Enterprise and the Cloud by Brendan Gregg[23]. His many works pro-
pose a different approaches to troubleshooting and analyzing performance
of distributed systems. Utilization, Saturation and Errors(USE)[24] is one
such approach used to gain performance insights about a system. The idea
behind the method is quite simple, for any given resource look for errors,
utilization and saturation to better understand performance bottlenecks.

The traditional metrics such as RAM and CPU usage can be difficult
to comprehend the context of such complex systems due to amount of
available information in time. In one of his other works Gregg advocates
for more data visualization-centered approach usage of heat maps and flame
graphs|22]. All of these proposed solutions highlight that our understanding
of performance data of a distributed systems is limited. This is especially
true in the vastness of a cloud environment.

There are several reasons why performance and anomaly analysis in
cloud has proven difficult. The secretive nature of cloud providers lim-
its the information that are available to us. Heterogeneity of service, the
multitude of offerings in the cloud makes anomalies context dependent.
Multitenancy, the sharing of the same hardware between different users
complicates anomaly detection. Virtualization, creating additional layers
of abstraction between hardware and software can mean that the infrastruc-
ture anomalies do not manifest themselves in the virtualized environment
and vice versa. The last reason, is the scale of the available data and the
scaling offered by the cloud means that anomalies can sometimes be cap-
tured for a very short period of time. Detecting anomalies can lead to the
development and implementation of mitigation policies or their removal.
There are tangible benefits of reducing the impact of the anomalies. It
helps the provider maintain the SLA and makes the data-center operations
more energy efficient.

Skrzeczek 9

Chapter 2

2.2 Types of anomalies

A survey conducted by Chandola et al.(2009)[7], anomalies are differenti-
ated by types. There are point anomalies, where individual points of data
are considered anomalies in the context of the rest of data. The above men-
tioned work mentions that this is the focus of majority of anomaly related
research. Contextual anomalies, sometimes called conditional anomaly
means that data is considered anomaly within a certain context. This
context is defined by establishing contextual and behavioural attributes.
Contextual attribute takes into consideration the neighbourhood of the
data-point for example a month in which the temperature measurement
took place. Behavioural are more broad and lack the specific context,
for example average temperature on planet earth irrespective of the time
and place. A collective anomaly is a group of data-points that by them-
selves might not be considered anomaly but as a collective present unusual
behaviour. Chandola et al.(2009) [7] note that while point anomalies can
occur in any dataset, contextual anomalies require context information and
collective anomalies require data instances to be related.

2.3 Performance anomalies

Performance anomalies, are anomalies that impact the performance of a
given task. These anomalies can manifest themselves at every layer that
is involved in delivering the solution. The source of the anomaly could
be hardware, application code, OS, the cloud platform’s management of
resources or some combination of those. The source of the issue is not
always obvious due to many above-mentioned layers involved and dynamic
nature of the problem. This is apparent with works such as that of Dean
et al.(2015)[12] proposing a diagnostic tool that distinguishes between ex-
ternal and internal sources of anomalies.

There are many possible sources of performance anomalies, they are
explored by Moghddam et.al(2019). Hardware malfunction is one of them,
this means that a piece of hardware is behaving out of the ordinary and
should be repaired or replaced. A resource shortage could lead to perfor-
mance degradation. A system has not been provided with enough resources,
due to resources being unavailable or business policy. This often leads to
unexpected and unreliable behaviour. A bottleneck problem is somewhat
similar to resource shortage but it is more specific. There is a single source
of performance issues, for example a CPU hungry application not receiv-
ing enough processing power while all other resource requirements are met.
The consequence is once again performance degradation, and unreliable
and unexpectable behaviour. Resource contention could be behind some
performance anomalies. Multiple users sharing physical hardware can lead

10 Skrzeczek

Chapter 2

to unexpected behaviour. This can lead among others to increased latency
or a performance degradation. Finally the source of a performance anomaly
can be an external attack. An attack against the cloud service can disrupt
part or the service with consequence to performance, availability or data
integrity.

The performance anomalies can be further broken down by their be-
haviour pattern into fail-stops and fail-slows. A fail-stop anomaly is a task
has been terminated prematurely, such failures are easier to recognize due
to their binary nature. A fail-slow anomaly is more difficult to tackle, the
task has not been terminated but the time of execution is significantly ex-
tended. To combat this applications are written to turn fail-slow, another
option is to set an execution time limit after which the job automatically
fails.

This work will focus on performance related anomalies, specifically
under-performing hardware and resource contention. Any given piece of
hardware can encounter anomalies that are unique to its purpose and
model. For example due to malfunctioning fans the CPU could be overheat-
ing, another reason could be simple performance degradation. The CPU
could also be slowing down while not being faulty. There are many inter-
dependencies between different pieces of hardware, lack of RAM memory
could be slowing otherwise healthy CPU down [65]. This further com-
plicates localisation of the actual source of the issue. This research will
attempt to uncover some of the characteristics of underperforming and
shared hardware in a cloud environment.

2.4 Monitoring and data collection

Monitoring is a safety-net of a system, it allows to evaluate systems per-
formance and react to the changing circumstances that could undermine
the user experience. By collecting various system traces, key performance
indicators, workload metrics we can monitor the health of our system. The
collected metrics can be anything from downtime, % of memory used or
number of requests over time. Some monitoring tools are built into the
cloud, Microsoft Azure Monitor[43] is an example of such a service. There
are also open-source tools like Prometheus that allow for monitoring of
distributed systems. Tools like Microsoft Azure Monitor and Prometheus
provide us with system-level metrics, if configured they can also offer in-
sights into application-level and network-level insights. There is a lot of
customization involved, from creating a dashboard that focuses on metrics
that are of interest to the user, to choosing a time-interval at which the data
is collected. Both cloud-provider and open-source monitoring solutions can
alert the user based on rules that the user has defined. For example if a

Skrzeczek 11

Chapter 2

number of requests reaches a certain threshold the user receives an email in-
forming him about that event. Monitoring can happen at multiple layers of
the cloud. Applications, infrastructure, networking and the data-center all
offer separate insights into the performance of the cloud and generate their
own data. This data can be combined to give us a deeper understanding
of the impact of anomalies on cloud performance.

2.5 Cloud Performance Datasets

Although all cloud providers monitor and collect data about the perfor-
mance of their data centers, they are not keen on sharing it. Works like
that of Chen et al.(2014)[9] about failures in the Google cluster, and based
on a Google dataset are a rarity. One possible explanation is cloud providers
trying to keep a competitive advantage, over their adversaries. Scientific
community has access to educational data-centers created for the purpose
of cloud research.

In United States an example of such infrastructure is CloudLab opera-
tional since 2014, during the first four years of its existence it served nearly
4000 users to run over 79000 experiments on 2250 servers |15]. CloudLab
infrastructure is behind generating a large dataset based on 835 servers that
were collecting fine-grained performance data over a period of 10 months
[39]. The research tried to capture hardware performance variability, they
tested all hardware configurations for normality and checked variance be-
tween different components. Multiple benchmarks were used to evaluate
the servers. They admit that the method applied is not perfect and the
application layer could still explain some of the variability.

An example of this kind of infrastructure and the main focus of these
thesis is the Lisa dataset. Lisa itself just like CloudLab is a data-center
that was setup for the purpose of research. The infrastructure is located
in the Netherlands, where scientists from multiple different fields made use
of it while it was collecting performance data. Their identity and the type
of experiments and applications they run is not disclosed. This obscures
the application layer, the insights gathered include hardware, network and
data-center level. It is worth noting that the metrics on Lisa and CloudLab
are different making a direct comparison complicated if not impossible.

2.6 Lisa datasets

The Lisa data center is composed of 349 nodes that exist within 20 racks.
There are two different type of racks, 4 machine learning rack in which
every node has both a CPU and GPU. All the other racks consist of node

with only CPUs. The machine learning racks can have up to 7 nodes

12 Skrzeczek

Chapter 2

while the generic ones up to 32. Some of these nodes are used for entry,
administration or compilation. They do not however, appear in the dataset.
[61].

Over 800 distinct users made use of the data center during the mon-
itoring. The jobs are related to the fields like bio-informatics, physics,
computer science, chemistry and machine learning.[61] A job can only have
one user submitting it, with a unique UserID and a GroupID that users can
share. Multiple monitoring tools have been employed to gather over 350
different metrics. SLURM monitored jobs and usage of nodes. Prometheus
gathered all the fine grained performance data with several additional li-
braries from Intel and Nvidia for additional GPU and CPU metrics.[61]

Surf-dataset has the approximate size of 126GB, stored in an efficient
Apache Parquet format. It contains more than 300 fine grained metrics
containing information about GPUs, CPUs, memory, network or power
usage and more of the monitored machines. All of the metrics were la-
beled with the exact time of their capture. Time is presented as unix time
stamp, with 1577660400 being the earliest timestamp and translating to
Monday December 30 2019 00:00:00 CET. This data was captured with
15 second intervals meaning the next timestamp is 1577660400 + 15. The
last available timestamp is 1596837585 translating to Friday August 07
2020 23:59:45 GMT CET. A lot of the metrics were not being gathered
throughout all of this time, but all of them can be encapsulated between
1577660400-1596837585. This would be in total about 19177185 seconds
almost 222 days, but on a rare occasion data center would stop capturing
metrics. More information about this dataset can be found in the work of
Versilius et al.(2023)[61].

Job-dataset has the approximate size of 601MB, stored in a csv format.
It contains information about jobs that have been submitted to the data
center. Columns like JobID, GroupID and UserID help to distinguish who
submitted a job. Submit, Start and End establishes when a job has been
submitted, when it started and when it finished. The time format is en-
tirely different from the surf-data, 2019-12-27T09:09:30 is an example of a
time given in the job-dataset. State determines whether the job has been
completed successfully or an issue has occurred. Those other failed states
are Cancelled, Failed, Out of memory, Node Fail and Timeout. Node-List
allows us to identify what to what node a certain job was assigned. A job
with r11n14 has been assigned, to the eleventh rack, and within it four-
teenth node. A job can have more than one node assigned to it. Users
can set a timelimit, that can be no longer than 5 days, if the job exceeds
the timelimit it is stopped and gains a timeout status. Other columns are
mostly redundant information, available for the sake of convenience.

To match the two datasets, time format in one of them has to be con-
verted. Since the surf-data is so much larger, it is more convenient to

Skrzeczek 13

Chapter 2

convert the job data time into unix-time format and not the other way
around. A lot of consideration involves partitioning the data into chunks
that are large enough to approximate the behavioral pattern of the ma-
chines but small enough to account for computing limitations and model
creation.

One of the limitations of the Lisa dataset stems out of the separation
of jobs and surf-data. A single machine can execute multiple jobs simul-
taneously, but in those cases we cannot tell how many resources does a
particular job take up. The surfs dataset has information about the overall
resource usage of a machine but not of a particular job. Information about
collocated workloads a machine is executing could still prove to be a mean-
ingful predictor of a failure, and the datasets offers information about that.
Unlike some other datasets[53] Lisa and CloudLab do not have a predefined
number of anomalies. Knowing exactly how many anomalies exist within
a dataset and where they are would allow for a much deeper analysis of
performance anomaly discovery approaches.

2.7 Performance Analysis

The amount of collected data often means that monitoring itself is insuffi-
cient to find performance anomalies. It can tell us that something out of
the ordinary is happening, but what exactly and why can be more diffi-
cult to explain. To obtain insight from the performance monitoring data,
several analysis techniques can be employed, as discussed next.

One of the common method is using Signature Based Analysis. It is an
approach that first captures a behavior pattern of a application. When-
ever performance metric in the application environment or the application
itself changes, it can be compared to the original behavior pattern. This
approach was proposed and tried by Mi et al.(2008)[42]. They measured
latency of different combination of transactions. These different values
were then turned into signatures, that allowed for performance compari-
son between different versions of the application. It is possible to create
a library of different signatures that represent abnormal behaviors. Later
these anomalies can be classified and detected based on their signature.
The main limitations of this approach is that it is difficult to capture all
abnormal behavior and that this approach requires tailoring signatures for
different applications. This is because good performance depends on the
specific context of the system. For example important metric could be
throughput or latency both need different signatures to detect performance
degradation.

Threshold Based Approach is oriented about reaching certain pre-defined
thresholds. Performance anomalies often significantly increase or decrease

14 Skrzeczek

Chapter 2

the resource usage, when this happens an action can be triggered. Ap-
proach like this, while very basic can offer a baseline that we can compare
other solutions with. It can be combined with other types of approaches.
This was the case with the work of Hong et al.(2015)[30] where they pro-
pose a solution for automatic detection of anomalies in a cloud computing
system. While the solution is based on a machine learning technique called
Hidden Markov Models (HMM) it also makes use of threshold-based ap-
proach. Virtual Machines monitor their own performance and send metrics
to the host machine only when a certain threshold is reached. This thresh-
old for sending samples can dynamically adjust depending on performance
metrics. Combination of the HMM and threshold based approach allows to
make use of both historic as well as present data to determine an anomaly.
According to researchers, making use of just threshold based approach
would have a higher rate of False Positives.

Control Theory is an approach grounded in mathematics, it analyses
and corrects the system based on certain rules. These corrections can hap-
pen within an open loop where the changes are made based on the input,
or a closed loop where changes are only proposed but not executed. In
case of the closed loop controller oversees the whole process, and acts on
proposed decisions. Control Theory is applied in cloud resource manage-
ment for example to reduce the cost of the deployments. The work of
Al-Shishtawy et al.(2013)[55] proposes ElastMan elasticity controller for
Cloud-based key-value stores. The stated goal of ElastMan is to achieve
Service Level Objectives (SLO) at a minimal cost by resizing service based
on workload. The system uses both feedforward and feedback control. In
feedback control, the current metrics are compared with specified desired
metrics. Feedforward control makes use of a model that takes into ac-
count current system metrics to anticipate future. In the case of ElastMan
feedforward control attepmts to anticipate future workload while feedback
control corrects modeling errors. The model behind feedforward controler
is binary classifier built using logistic regression[59].

Statistical Approaches or in other words probability based methods are
perhaps the most varied of all the approaches. This makes them somewhat
difficult to generalize. In the context of this research time series analysis is
one approach that seems fitting, the data is often collected with timestamps
that inform us about when an event has happened. It can help us to under-
stand various patterns and trends within a dataset. Guigo et al.(2017)[27]
made us of this approach for the purpose of anomaly detection. Another
popular approach is making use of the regression analysis|16] to find cor-
relation between different metrics. It makes use of the interdependencies
between different pieces of hardware. The already mentioned in Threshold
Based Approach Markov model[30] is also considered to be a statistical
approach. This section does not exhaust the available statistical meth-

Skrzeczek 15

Chapter 2

ods used for performance anomaly analysis, there are also approaches that
make use of Bayesian statistics, logistical regression, principal component
analysis and many more.

Machine Learning is different from statistical approaches in that they
are not based on deterministic rules but instead devise the rules themselves
from the dataset. Random forest|14] approach is one of the most commonly
used . It splits the data into decision trees that trains its own model to
make a prediction, at the end those predictions are merged through average
or voting to find the most common outcome. Another popular machine
learning approach that is more commonly used in intrusion detection then
anomaly detection are decision trees. Decision trees splits possible decisions
into branches, partitioning data based on the decision taken. The end
of a branch is a possible prediction, this approach has been utilized for
performance anomaly detection by Tuncer et al.(2017)[60]. Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) is a clustering
algorithm that groups data based on density. Density in the context of
DBSCAN is the number of data points within a certain radius. Data points
that don’t belong to a radius are considered noise. Perflnsight|64] is an
example of a performance anomaly detection system based on DBSCAN.
There are many more methods used for performance anomaly detection
that are cosidered Machine Learning based, Support Vector Machines, k-
means, Fuzzy clustering are some of the examples.

Deep Learning methods while being very similar to Machine Learning
methods make use of neural networks. These are trained to understand
patterns within the given data, and are able to predict output data based
on a given input. Multi-layer perceptron is one of the most popular meth-
ods, making use of neural networks to understand even a complex pat-
tern. Ahmad Alnafessah and Giuliano Casale made use of this method to
find performance anomalies in Apache Spark|[3], a distributed computing
system. Autoencoder approach tries to reconstruct a given dataset and
put back into it’s original form after a compression. Neural network is
being trained to minimize the difference between the two data representa-
tions before and after encoding. Mohammad Islam and Andriy Miranskyy
tried to detect anomalies within the cloud environment by making use of
Gated-Recurrent-Unit-based autoencoder. Another method called Self or-
ganizing map, creates and trains a multidimensional map. Some regions
of the map are associated with normal and some with abnormal perfor-
mance. Stephanakis et al.(2019)[57] applied this method in the field of
cloud anomaly detection. This does not exhaust the Deep Learning meth-
ods that were applied to performance anomaly detection Recurrent neural
network, Convolutional neural network or Adaptive neuro-fuzzy inference
system. This family of methods is perhaps the most fashionable currently.

16 Skrzeczek

Chapter 2

2.8 Cloud Mitigation techniques

Cloud providers adopt policies that allow them to mitigate performance
related issues in the cloud that might be caused by anomalies. In this
section, we briefly discuss some of the mitigation techniques.

Overprovisioning[54] provides more resources then is actually needed
for a given task. This is especially effective when a heavy load is ex-
pected, ensuring higher reliability and latency. The obvious downside to
this approach is resource wastage, and increased costs. Another technique
called Horizontal Scaling[44] refers to policy of adding or removing addi-
tional servers, depending on the current needs of a workload. The issue
with horizontal scaling, is that it increases all available resources without
specifically addressing the bottleneck. This could lead to serious resource
and cost wastage. In contrast, Vertical Scaling[44] is a policy of adding
or removing resources from a server, depending on the current needs of a
workload. The scalability that can be achieved with just one machine is
limited, and there is only single point of failure.

Load Distribution[21] ensures that no single server becomes overloaded,
by allocating workload according to server’s capabilities. The downside to
this policy is that the load balancer can become a single point of failure
and additional latency. On the contrary, Load Shedding|17] is a policy
that drops or delays some of the incoming requests to maintain the overall
performance of a distributed system. This comes at the cost of reduced
availability, and loss of some data making the system in general less pre-
dictable.

Another common approach is using VM Migration[47], a process of
transferring VMs between servers. A migration can be live, promising no
disruption to the application. This is achieved by maintaining the previous
infrastructure running, until the process is complete. A cold migration does
not maintain the application running. A migration could be beneficial if
for example the target of the migration is less utilized or the current server
needs to be taken down. This process impacts the performance of both of
the servers, making use of additional resources during the time of migration.

All of the aforementioned measures come with some kind of trade-offs,
they might help mitigate the effects of anomalies but it comes at a cost.
This cost can be reduced performance, increased costs, lower availabil-
ity, loss of data etc. Anomaly detection promises to remove some of the
unpredictability by addressing specific issues directly, rather then finding
workarounds. Once the source of anomaly is detected, measure can be
taken that fix or cover the issue. Those can be both software as well as
hardware improvements. In the context of the Lisa dataset we do not know
which if any of these policies were used. This could contribute to a higher
failure rate and limits the scope of our research.

Skrzeczek 17

Chapter 3

Related work

This section discusses performance anomaly detection based related works.
We used snowballing approach with the main starting points being the
works of Versluis et al.(2022) [61] and taxonomies by Tanja Hagemann and
Katerina Katsarou(2020) [28] and Moghddam et.al(2019) [45]. Together
they provide the basis of this research, and show that the subject is relevant.

Versluis et al.[61] describe the data center and it’s operations over a
period of 8 months in the Lisa dataset. They elaborate on the structure
of the data center, characterizing hardware resources that were measured.
Over 300 different types of measurements were taken, various CPU and
GPU related metrics such as their temperature, or the energy consumed.
The jobs that the machines worked on are described, with information
such as average completion time or job submission dates. They looked
for differences between Machine Learning (ML) and traditional racks for
example by comparing the number of unsuccessful jobs. The authors looked
for relationships between metrics by applying Spearman|2] and Kendall[19]
statistical measures. One of the correlations that the authors highlight
is that server swap memory, network receive fifo, TCP open socket all
correlate with GPU temperature. They explain that the data they worked
with often does not meet the normality assumption, making a case for use
of non-parametric statistics.

Mohammad S. Jassas™ and Qusay H. Mahmoud|35] analyses job failure
and prediction models in the cloud by applying machine learning tech-
niques. The prediction model was created with help of multiple feature
selection techniques (SelectKBest, Feature Importance, Recursive Feature
Elimination (RFE)). The selected features for the task of predicting job
failures included: job ID, task index, machine ID, RAM, CPU, disks space,
priority, and scheduling class. Next step looked for the best performing ML
classification algorithm considering Random Forest (RF), Decision Trees
(DTs), K-Nearest Neighbours (KNN), Quadratic Discriminant Analysis
(QDA), Gradient Boosting, XGBoost and Naive Bayes (NB). They tested

18

Chapter 3

their approach on three different datasets: Google cluster, Mustang, and
Trinity applying different combination of feature selection technique and
classification algorithm. For every dataset they measured training time,
testing time and accuracy. In every dataset RF and DT achieved the
highest accuracy. RF had the best accuracy and recall while DT had a
significantly shorter training time suggesting a more scalable solution.

A systematic review conducted by Tanja Hagemann and Katerina Kat-
sarou(2020)[28] looks into anomaly detection in cloud environments. They
reviewed over 215 publications from the 2010s, and divided methodologies
into three distinct categories, machine learning, deep learning, statistical
approach. Some of the approaches follow none of these methodologies,
and have their own separate category. They give multiple examples of
methods and scientific research that made us of them in each category.
They mention that the main challenges when detecting anomalies in the
cloud environment are heterogeneity of services, multi-tenancy, virtualiza-
tion and dynamic scaling. They believe that application of methods such
as reinforcement learning, generative adversarial networks, attention mech-
anisms, graph-based approaches, active learning, adversarial learning and
explainable AT are interesting directions of further research. The increasing
popularity of using neural-network based performance anomaly detection
methods is apparent in the work.

Ghiasvand et al.(2019)]20] propose a novel mechanism that uses vicinity-
based statistical anomaly detection to detect node anomalies. This vicinity
could be understood as similarity between different nodes. This resem-
blance takes into account variables such as hardware architecture, resource
allocation, physical location, and time of failures. They tested how good
these metrics were at anomaly detection. None of the variables were dis-
counted, but resource allocation did not support identification of anomalies
with their data. The failure detection mechanism was tested and it achieved
precision of 62% and a recall of 89%.

Resource degradation can lead to the violation of SLA in the cloud
environment. A taxonomy by Moghddam et.al(2019)[45] looks at how
workloads-driven and anomalies-driven performance management address
the challenge of efficient cloud resource management. A system that makes
use of reinforcement learning and workload prediction to scale the VMs with
SLA in mind is given as an example of workload driven performance man-
agement. A different approach making use of naive Bayes classifier to iden-
tify the anomalies and come up with fixes is an example of a anomaly-driven
performance management. The researchers note that cloud providers have
many tools at their disposal such as over-provisioning, auto-scaling or load
shedding to mitigate performance issues. The paper describes downsides
that those mitigation policies come with, such as increased costs or sacri-
ficing quality of service. The authors describe how different data sources

Skrzeczek 19

Chapter 3

from various layers of the cloud are distinguished and explain how to ex-
tract insight from them.

Maricq et al.(2018) [39] work based on Cloudlab infrastructure[15] tries
to improve our understanding of reasons behind hardware performance
variability. They wanted to understand how much does a performance of
the same hardware running the same software repeatedly varies. They
designed a testing framework that was applied to create a dataset in the
CloudLab environment. Their dataset includes information about the OS
as well as hardware layer helping to mitigate variance caused by OS. We
know that every machine was running on Ubuntu 16.04 with Linux kernel
release 4.4.0-75-generic. Data was gathered over a period of 10 months
based on 835 servers. The dataset was split into three parts based on the
tested hardware: CPU, Memory and Disk. To compare the performance
of different servers they use non-parametric Mann Whitney U[41] test and
MMD test|25] to devise a method for discovery of outlier servers, that
give unrepresentative results. The researchers estimated that a coefficient
of variance of up to 10% can be attributed to hardware variability, while
higher values indicate a problem with measuring. They mention that one of
the limiting factors of research conducted in the cloud is the so called noisy
neighbour problem. This means that the workloads run by one tenant can
affect other tenants in a shared environment.

Ren et al.(2018)[50] looked into anomalies in co-located datacenter
workloads. The research was conducted based on Alibaba dataset. Al-
ibaba is among others a large scale cloud provider in China. They applied
Dynamic Time Warping (DTW)[52] to understand how similar the nodes
are. The DTW algorithm measures similarity between two sequences that
might have happened at a different time or with a different speed. For
the anomaly analysis and diagnosis they made us of Machine Learning ap-
proach called Isolation Forest or iForest. Isolation Forest is an approach
tailored for anomaly detection. It is a decision tree that makes use of
anomaly score, the idea behind it is that the anomalies are unique and few
in numbers. The authors discovered that performance disparity between
different machines in the cluster was substantial. System failures, unrea-
sonable scheduling and workload imbalance were mentioned to be the main
causes of performance anomalies.

Some of the recent research also focused on understanding and ana-
lyzing operational efficiency of data centers. Ousterhout (2018)[48] delved
into common pitfalls like making use of superficial measurements or con-
firmation bias encountered when measuring or instrumenting performance.
Measurements such as server request are crucial but do not answer an im-
portant question, what is the key bottleneck. Ousterhout further claims
that the data center measurements should always run one level deeper to
better understand the underlying factors behind performance. He gives an

20 Skrzeczek

Chapter 3

example of a latency measurement for remote procedure calls, one could
measure deeper by breaking down that latency determining how much time
is spent where. This work of his serves as a guideline, of how to make this
type of research successful.

Salman et al.(2017)[53] applies Random Forest and Linear Regression
for the purpose of anomaly detection in the cloud. They found a UNSW
dataset that included nine different types of attacks that often occur in the
cloud. They decided to exclude some of the 49 features, by using best-first
feature selection technique[33]. The algorithm looks for the features that
are best at a given task, this was done to reduce complexity and overfit-
ting. They used linear regression and random forest to see how effective
those methods would be at finding the attacks within the dataset. Linear
regression estimates the most fitting linear function for a given dependent
variable with the information from independent variables. Random forest
divides the data into decision trees that trains each tree to make a predic-
tion, at the end those predictions are taken into account through average
or voting. Random forest has outperformed linear regression at all the
metrics (overall error, precision, recall) in anomaly detection. Overall the
detection rate had accuracy of about 99%. Classification proved more chal-
lenging with only 80% accuracy, researchers explain this by similar patterns
between different types of attacks.

Ibidunmoye et al.(2017)[32] propose a system for black box anomaly
detection. The proposed solution analyses data center node performance,
based on unsupervised prediction mechanism. It looks at the metrics of
some of the components of a node, establishing what is a normal behaviour
based on a VAR model. If metrics deviate from the model they are con-
sidered anomalies. They evaluated the system on dataset based on 100
production-level virtual machines as well as a testbed. They also devised
a different approach to compare it with VAR model. The proposed VAR
solution successfully detected on average 88% anomalies explaining 62%
SLA violations and outperformed the alternative.

Another work by Ibidunmoye et al.(2015)[31] distinguishes performance
anomalies into latency and throughput related. They provide a description
of various types of anomalies, such as point, collective, contextual and
pattern. They describe bottlenecks by types such as, resource saturation,
resource contention and behaviours such as single, multiple and shifting.
There are few examples of application-related issues like memory leak and
CPU hogging. They give examples of statistical and machine learning
methods used to discover anomalies like ANOVA or Decision Tree and give
examples of research that used them for performance anomaly discovery.

Dean et al.(2015)[12] explains why it can be difficult to point to the
source of an anomaly happening in the cloud. The origins of an issue can
be traced to hardware, application, or improper resource allocation. To

Skrzeczek 21

Chapter 3

address this issue they designed a PrefCompass, a diagnostics tool capable
of pinning down the source of a fault in a TAAS cloud. It is based on a
kernel-tracing tool to extract low level information. The information is
then analysed, with metrics that are more than two standard deviations
apart from the mean, being considered anomalies. This system has been
tested with some popular software such as Hadoop, Cassandra or MYSQL
successfully identifying both internal and external issues.

Chen et al.(2014)[9] analysed failed jobs on Google cloud cluster. Re-
searchers highlight the amount of computing resources being wasted on
failed jobs. For example a job that had either high or low priority had a
three time higher chance of failure. At least 34,8% of all jobs have a con-
siderably different resource usage depending on whether they succeeded or
failed. Techniques such as k-means clustering or Mann-Whitney U test to
support failure analysis were employed. They present information about
the failed jobs. Researchers speculate that, by limiting the amount of pos-
sible job re-submissions they could limit the waste of resources.

Do et al.(2013)[13] describe effects of limpware, that is hardware that is
performing well below its specification on resources running in the cloud.
A benchmark was designed, being comprised of data intensive protocols,
load stress, fault injection and general white-box metrics. They evaluated
fault tolerance, on platforms such as Hadoop, Cassandra or HBase. They
elaborated on how one failing component can cascade into an effective fail-
slow. The predominant issues with disks that lead to slowdown failure were
weak head, vibration, firmware bugs and bad sector remapping. When it
comes to network infrastructure, the most common problems were broken
module or adapter, corrupt packets, network driver bugs, power fluctuation.
To address limplock problems the authors advocate for converting fail-slow
to fail-stop, and to design application that avoid cascading.

Guan et al. (2013)[26] designed adaptive anomaly identification system
in cloud data center. This solution makes use of principal component anal-
ysis, performing a linear transformation and mapping a set of data points
onto a new axis. A prototype of this solution was tried on various hardware
components of a Google data centers, outperforming similar systems. This
difference in performance was displayed as a set of ROC curves. They men-
tion several reasons why spotting anomalies within cloud infrastructure can
be challenging. Those are dynamics of runtime cloud states, heterogeneity
of configuration, non-linearity of failure occurrences and the sheer volume
of data.

Javadi et al.(2013)]36] proposes a public Failure Trace Archive (FTA)
for all kinds of data produced by distributed systems. With the archive
they designed a toolbox and a simulator that allows for a comparative
analysis between systems. This toolbox has been implemented in Matlab,
and offers features such as MySQL for querying or DataTable. All of the

22 Skrzeczek

Chapter 3

datasets included in FTA come from the 2000s, with the last update on
the website of the archive dating back to 2020. The authors discussed
how failures may be classified differently between the available datasets. It
makes drawing robust conclusions and replicating them between datasets
difficult.

A survey by Birke et al.(2012)[6] looks into performance of several cloud
data centers with a particular focus on hardware over a period of two years.
They compare workloads and resource utilization. Data visualization tech-
niques are employed, to display trends in resource usage. They focused
particularly on resources such as cpu, memory and storage. An economic
analysis is introduced comparing supply and demand for types of hardware.
This is done to avoid potential resource bottlenecks. By showcasing, that
the demand for certain resources is increasing, their work intended to help
with capacity planning of future data centers.

Research conducted by Vishwanath et al. (2010)[62] characterizes cloud
computing hardware reliability. They looked at the data about inventory of
machines, and the stored information about machine repairs from a data-
center. They discovered that reliability of machines on a server that has
already experienced a failure is completely different from the ones that did
not. The machines that already experienced a failure were more prone to
further failures. Researchers observed that HDD disks were the component
that were most unreliable, and most often in need of a replacement. They
calculated that on average over a span of a year any given server had a
chance of 8% to experience a hardware failure.

3.1 Limitations of the related works

During the literature review, we came across several issues with cloud re-
lated research. Perhaps the biggest issue stems from the secretive nature
of cloud providers. We came across only two datasets provided by large-
scale cloud providers Alibaba[50] and Google|26]. The Google cloud trace
is at this point over 10 years old, and the infrastructure that produced it
is at this point ancient. The datasets created by the scientific community
like LISA[61] or CloudLab [15] have their own limitations. A fundamen-
tal difference between commercial cloud and these scientific test-beds is
the visibility (monitoring, modifying, instrumenting) of raw hardware re-
sources for every user. Some features of a commercial cloud are missing.
For example, there is little insight into cloud-mitigation techniques which
are at the core of a lot of successful cloud solutions. There is no up or
out scaling involved, which in the context of this research could help shine
some light on job failures.

Another problem is that the research based on these scarce datasets is

Skrzeczek 23

Chapter 3

difficult to replicate, some variables might exist within one dataset and be
absent in the other. The CloudLab offers information exclusively about
CPU, Memory and Disks while Lisa also has power usage or start and end
of job executions among many others. Failure prediction based on Alibaba
trace made us of the number of containers spawned on a machine for the
purpose of failure prediction, but this information is not available with
LISA.

The most important finding, which will be the focus point of this
research are the features selected for failure prediction. In most works
[35],[50] making use of Machine Learning for failure prediction in the cloud
the features selected for the model were CPU, Memory and Disks usage.
While all of these features are successful at failure predictors, we believe
that there is space to find such features. For example, today more and more
data-centers are making use of GPUs and perhaps some of their resource
metrics could enhance future failure prediction model.

24 Skrzeczek

Chapter 4

Architecture

Failed jobs contribute to resources wastage of a data-center. This is es-
pecially true for tasks involving a GPU which often take a long time and
have a higher power consumption [61]. Previous research concerning the
failure detection systems often does not take into account the prevalence of
a GPU in a modern data-center. It uses a relatively narrow set of features
to attempt a failure prediction. These features sometimes fail to capture
various performance anomalies that can impact job success. The proposed
architecture will support addressing these concerns, as it was conceived for
that purpose.

Figure describes high level architecture of a failure prediction solu-
tion. Metric data essential for the solution is gathered during performance
monitoring which is outside of the scope of this thesis. This is the first
indispensable component of the architecture. The historical or real time
data captured in performance monitoring is the second module described
in the figure.

Next block encapsulates feature separation. Captured features need to
be separated, transformed, ordered or combined. What is needed depends
on how the performance metrics are arranged and how the data should be
structured for the purpose of Feature Selection and Predictive Modeling.

The next component describes various granularity settings which can
be selected. One of the ways to achieve coarse granularity is by increasing
time intervals between different data points. This would help create a
solution where scalability is more important than a very high accuracy of
prediction.

The ’Feature selection’ block describes the application of techniques
which help find the best features for our predictive solution. Insights about
the impact of performance anomalies on the low level hardware metrics sup-
port the selection of candidate feature groups. This can entail application
of feature selection methods such as Recursive Feature Elimination|11] or
Select K-Best[1]. The main benefit of feature selection is that it can remove

25

Performance
manitoring

r\ Performance J -

Feature
separation

Y

Granularity
selection

Feature
selection

Predictive
medelling

Chapter 4

Figure 4.1: High-level architecture overview

Skrzeczek

26

Chapter 4

the features which do not contribute to a successful prediction, leading to
a more compact solution. Moreover it can help to tackle the problem of
overfitting.

The final architecture component which concerns this thesis is called
predictive modeling. Those models can be Deep Learning or Machine
Learning classification among others. This stage concers how these mod-
els compare to each other and what are the trade-offs between them. For
example, we can compare various Machine Learning classifiers such as Ran-
dom Forest[], Gradient Boosting[18] or Logistic Regression|37] and look
for the one which satisfies the key performance indicators of any particular
solution. These indicators can be among others accuracy, precision and
computing time.

The final block of the architecture figure is called action and encap-
sulates what happens when a job failure is predicted. Mitigating actions
such as load distribution [21], horizontal and vertical scaling|44] or job can-
cellation can be applied to prevent wasting of valuable resources. How to
choose an appropriate action for a given solution is outside of the scope of
this thesis.

Skrzeczek 27

Chapter 5
Method

The aim of this master thesis was to look into other possible predictors of
job failure in the context of a large scale cloud-like data center. To test
the relevance of those features a recent low-level metric dataset originating
from a data-center has been found. A Machine-Learning failure detection
model was built based on features from the above-mentioned data center.

This chapter explains how data had to be transformed to perform Ma-
chine Learning feature selection and classification. There were more than
300 possible features to choose from in the dataset. To select the feature
sets used for the Machine-Learning from a review into the state of the art
has been conducted. This was supported by feature selection techniques
such as SelectKBest[1] or Recursive Feature Elimination(RFE)[11] which
helped to create different settings for the Machine Learning model. Dif-
ferent granularity settings were applied to highlight the trade-off between
accurate prediction and scalability of the solution. Multiple Machine Learn-
ing classifiers like Random Forest|5] or k-Nearest Neighbor[10] were trained
on different combinations of features, to look for a stand-out solution in
the context of the dataset.

5.1 Feature separation

To conduct a Machine Learning job failure prediction we needed informa-
tion about the jobs and low-level machine metrics captured during the job
execution. We chose a dataset originating from Lisa data center which met
all above mentioned requirements. Lisa datasets had the job data and met-
ric data separated. Job data included information about the job start-time
and end-time and the rack and node number which were responsible for ex-
ecution. Metric data included information about various metrics captured
in 15 second intervals, and which machines were responsible for execution.

Figure [5.1] and describe initial data transformations. The datasets

28

Chapter 5

Metrics J .

dataset.parq \ &

Merge selected

Y

parquet files

Jobs J &,

dataset.csv \

Generate unix
time values based
on existing values

Approximate generated
unix values to match
the intervals in metrics
dataset

>

Most data processing
happens with jobs
dataset because it is
more compact

Remove the
non-unixtime
columns

>

Remove
missing
values
and
duplicates

Select the
nodes

Remove
multinode jobs

Figure 5.1: Data transformation 1

29

Skrzeczek

Select
nodes

Match the data
based on nodes
and unixtime

Chapter 5

Y

Combine lists
representing
different
features

Remove all the

data with a label
"CANCELLED+"

Y

Y

Convert every
"COMPLETED"
label into 1 and
every other label

100

Create a
pandas
dataframe

Figure 5.2:

Data transformation 2

Skrzeczek

30

Chapter 5

used made use of different time formats. To align the job data with the
metric data the start and end times had to be transformed into unix time
with a support of a Python library. Multi-node jobs were removed to
reduce the initial complexity. Nodes supported by a GPU were separated
from regular jobs by filtering for GPU specific job partition. Disruptive
jobs with missing values and canceled jobs were removed. After these
operations the amount of jobs went from the initial number of 1857495 to
37449 this is about 2%. The main reason for this large loss of data is that
the job dataset starts before the metrics dataset and we can only match
the part where the time of the two datasets align. Another source of data
loss is that jobs that took less than 15 seconds could not be approximated
and had to be removed. Canceled jobs are not always jobs that would fail
and proved to be very difficult to predict, a decision was made to remove
them. Finally the dataset was updated at a later date with adjusted node
timestamp lags. At that time work has progressed too far to make use of
the update. Perhaps it was possible to retain more data, but 37449 events
seemed sufficient for the task.

5.2 Grouping and structuring of performance
metrics

The metrics dataset had 328 unique features, but some of them were cap-
tured after the job data stopped being registered and thus could not be
used. The features can be grouped into the following categories:

e Memory metrics

e Disk metrics

e Network metrics

e File system metrics
e GPU metrics

e CPU metrics

e System metrics

e Load metrics

During initial testing we found out that selecting features would prove
to be a challenge. With 328 features the number of combinations that
could be tested with feature selection techniques was overwhelming. Due

Skrzeczek 31

Chapter 5

to insufficient computing power, it would be impractical to use feature
selection techniques alone.

We decided for a hybrid approach where we would narrow down the fea-
ture pool with the help of research insights. During the process of literature
review we discovered that SoTA features used for failure detection were
disk, memory and CPU usage[35]. One of the limitations of the dataset
we used that became apparent was that the CPU usage data was missing,
limiting us to information about disk and memory. There were multiple
disk and memory related metrics and we decided to include all of them.

Research about anomaly detection [14] pointed us in a direction of net-
work metrics and we decided to include some(which) of them. Those were
features such as node forks, node netstat tcp in errs.

For the ML jobs we would test all of the GPU metrics in combination
with the state of the art to see which one performed best. The data about
Graphic cards was nested as any given node had access to at least 4 GPU’s.
The available features were:

e nvidia gpu temperature celsius

e nvidia gpu fanspeed

e nvidia gpu power usage milliwatts
e nvidia gpu memory used bytes

To make it compatible with the rest of the metric used for prediction we
only make use of the highest value among all of the cards at a particular
timestamp moment. All of the above mentioned GPU features supported
this information reduction.

5.3 Granularity setting

Lisa dataset captures metrics in 15 second intervals. In many use-cases
this might prove to be too much data to be processed. One of the ways to
make the solution more scalable was to reduce data input to every n inter-
vals. This however, came at a significant cost to the prediction accuracy.
Another approach aggregated the metrics for every instance into maximum
value, minimum value, standard deviation, and mean value. This effectively
diluted every feature into four separate ones. With this approach feature
selection looks at the aggregated values instead of features themselves. It
could for example select featurel-min and featurel-std to be relevant but
exclude featurel-max and featurel-mean. While this did impact precision
and accuracy, the decrease was relatively small.

32 Skrzeczek

Chapter 5

5.4 Feature Selection Techniques

Feature selection proved to be difficult in the context of Lisa dataset. This
was due to flattening of the features. This made feature selection tech-
niques like Recursive Feature Elimination|[l1], Random Forest[5] feature
importance, unreliable. They would credit the first feature in the data
frame with inflated importance. To overcome this issue a model agnos-
tic permutation importance|4] was applied. It mixes feature values to see
whether the model performance suffers from it. The assumption behind
this is that, if a feature is a good predictor shuffling values should degrade
model’s performance. The downside of this approach is that it is computa-
tionally heavy task in the context of a large dataset. Even after applying
permutation importance, the results were fragile. Random Forest and RFE
selection techniques like were applied to discover best performing features.

Some feature metrics had a different data-structure, with information
being nested. This was the case for GPU metrics where every GPU under
a node had his own metrics being captured. For every such case there was
a need to transform the data into something consumable by the Machine
Learning pipeline. For the GPU metrics we created a list based of the
maximal value among the graphic cards working on a job at a given time.
This was time consuming, we did this because we felt that GPU metrics
were critical to this research, but when other metrics required a unique
transformation, they were skipped.

Given a sufficient computing power we could find the optimal set of
features for failure prediction. This proved not feasible with available com-
puting power, especially since permutation importance made the task more
difficult. Instead we used permutation importance and feature correlation
ad hoc to look which features carry similar information about performance.
During this process we discovered that for standard jobs Node Memory
Mapped can be replaced by node netstat tcp inerrs and outperforms it.

5.5 Machine Learning classification

Figure[5.3|describes the data transformations leading to the Machine Learn-
ing classification. To be able to perform Machine Learning based failure
prediction we have to define what a failure and success are and turn it into
a binary 0 and 1. To determine this we looked at the column Status in
the jobs dataset. Initially everything with a status '"COMPLETED’ was a
1 and everything else a 0. During the initial testing it became apparent
that jobs with status "CANCELLED+" are difficult to correctly predict.
Their cancellation can have nothing to do with underlying hardware and
be dictated by a different factor. A decision was made to exclude them
for the dataset. The initial pandas dataframe has the following structure

Skrzeczek 33

Create a pandas
dataframe

Flatten the
features

Chapter 5

Recombine Impute Conduct

> features > missing Split the Machine

into one dataset Learning
dataframe valiss classification

Figure 5.3: Machine Learning Classification

Skrzeczek

34

Chapter 5

[label, featuresl, features2, features3]. Label contains a 1 or 0 determining
whether a job has been completed or not. Feature 1-3 contains a list of
metrics with 15 second intervals from a machine which executed a given
job.

To ensure compatibility with Machine Learning models the features
within a dataframe had to be flattened. Flattening transforms information
which was nested in the lists into a one dimensional format. Features were
separately flattened and reassembled into a dataframe. This came at a cost
to Machine Learning Feature Importance which became difficult to inter-
pret because of this operation. Some of the Machine Learning classifiers
require the data to be complete and include only numbers. This was not
always the case with the metrics data, and some of the data had to be
imputed. The values were imputed based on 'mean’ strategy. This meant
that if a value was missing, the mean value of the list would be inserted in
its place. 'Median’ and "Most frequent’ strategies were also tried but the
difference between them did not seem to impact Machine Learning Classi-
fication. For the purpose of Machine Learning data is split into a training
and testing sets. The training set contains 80% of the feature while the
testing set has 20%. This proportion is considered to be common, no tests
involving different splits were conducted. The next step defines Machine
Learning classification models these included at various points Random
Forest[5], Decision Tree[56], SVM|[34], Gradient Boosting|18|, K-Nearest
Neighbor[10], AdaBoost|63] and Logistic Regression|37]. To offset the im-
balance between the number of completed jobs and failed jobs balanced
class weight were applied. This method is based on comparing the ratio of
0’s to 1’s in the dataset, this value is then used to offset the class imbalance.
Not every Machine Learning classifier supports balancing the class weight.

n
k-n.

We =

where:

e w, is the weight assigned to class c,

n is the total number of samples,

k is the number of classes,

n. is the number of samples belonging to class c.

Skrzeczek 35

Chapter 6

Results

This chapter will contain the results of tests conducted on many failure
predicting models. It looks into the impact of using different combinations
of features and how they influence failure prediction. It delves into the
differences between standard node and GPU node and how the latter is
more difficult to correctly predict in the context of this dataset. A section
of this chapter is dedicated to comparing Machine-Learning classifiers in
terms of their accuracy, precision, recall and F1-Score. Different granularity
settings are compared, to understand how they affect the models.

All of the below mentioned experiments were executed locally on an
M1 MacBook Pro with 16GB of ram and 512GB of memory, operating
on MacOS 14.6.1. The data was stored on the disk, the format of the
data was parquet for metrics and jobs as a csv. The tests were conducted
on Python 3.11.3 with help of libraries such as Pandas[40], Numpy|[29],
Pyarrow, Datetime, Sklearn[49] and Matplotlib[58].

6.1 Results for feature groups

The following tests were conducted on different sets of compute nodes.
Table shows which nodes were used and how many jobs there were in
total.

Figure describes machine learning classification conducted on nodes
without access to GPU, without applying aggregation. Random Forest
and Histogram based Gradient Boosting classifiers were applied. They
were trained on sets of 2-3 features. Every classification included the same
set of 352 successful and 151 unsuccessful jobs. Knowing that the state of
the art solutions make use of Memory and disk usage, multiple tests on
various disk and Memory features were attempted. In terms of accuracy
and precision Node Memory Mapped has consistently outperformed metrics
like Node Memory Active, Node Memory Inactive, Node Memory Free
and Node Memory Cached. Feature importance showcased that for these

36

Chapter 6

Nodes used for ML

Nodes used for Nodes used for classifiers
GPU jobs(99) standard jobs(503) comparison(920)
r31n4 r10n23 r10n23
r30n7 r13n22 r13n22
r33n4 r10n3 r10n3
r33nd rllnd rllnd
r30nl r26n26 r26n26
r30n6 r14n26 r14n26
r31nl r14n8 r14n8
r31n2 rlln3l rlin3l
r31n3 r25n32 r25mn32
r32nl r27n7 r27n7
r32n2 r14n25 r14n25
r32n3 r10n25 r10n25
r32n4 r13nl
r32nd r12n8
r32n6 r13n28
r32n7 r12n8
r33n3 r14n29
r33n2 r14n27

r31nd

Table 6.1: Nodes used for tests and a total number of jobs among these
nodes

jobs Node Memory Active could be replaced by Node Netstat Tcp InErrs.
Again in terms of accuracy and precision Node disk Bytes Written have
outperformed Node disk Bytes Read. Node forks turned out to be the
best supporting feature, adding a little bit of extra accuracy to almost
every model. The best solution with Random Forest and Histogram based
Gradient Boosting accuracy of 0.96 consists of Node Netstat TCP InErrs,
Node disk Bytes Written and node forks.

Figure describes machine learning classification conducted on nodes
without access to GPU, when aggregation was applied. This aggregation
transformed every list of feature metrics of a job into standard deviation,
mean value, maximal value and minimal value of the list metrics. Random
Forest and Histogram based Gradient Boosting classifiers were applied.
They were trained on many sets of 2 to 3 features. Every classification
included the same set of 352 successful and 151 unsuccessful jobs. The
main takeaway from these tests was that features which were the best for
non-aggregate model did not perform best with aggregated features model.
There is a visible decrease in accuracy when compared with non-aggregate

Skrzeczek 37

Chapter 6

RF HIST GR | Featurel Feature2 Feature3
0.92 0.93 Node_Memory Mapped Node_Disk Bytes Written Node_disk_bytes_read
0.94 0.95 Node_Memory Mapped Node_Disk Bytes Written node_forks
0.93 0.94 Node_Memory Mapped Node_Disk Bytes Written surfsara_power_usage
0.93 0.94 Node_Memory Mapped Node_Disk Bytes Written node_network_receive_errs
0.93 0.94 Node_Memory Mapped Node_Disk Bytes Written node_intr
0.93 0.94 Node_Memory Mapped Node_Disk Bytes Written SKIPPED
0.92 0.93 Node_Memory Mapped node_disk_bytes_read SKIPPED
0.92 0.92 Node_Memory_Active Node_Disk Bytes Written SKIPPED
0.92 0.94 node_memory_Cached Node_Disk Bytes Written SKIPPED
0.92 0.92 node_memory_Inactive Node_Disk Bytes Written SKIPPED
0.92 0.92 node_memory_MemTotal%20-%20node_memd Node_Disk_Bytes_Written SKIPPED
0.82 0.82 node_network_transmit_errs node_memory_Dirty SKIPPED
0.92 0.93 node_memory_MemFree Node_Disk Bytes Written SKIPPED
0.93 0.94 Node_Memory Mapped Node_Disk Bytes Written node_memory_HardwareCorrupted
0.94 0.94 Node_Memory Mapped Node_Disk Bytes Written node_memory_MemTotal%20-%20node_memory._|
0.95 0.95 node_load1 node_disk_bytes_written node_forks
0.94 0.95 node_loadl node_disk_bytes_written node_netstat_Tcp_InErrs
0.95 0.96 surfsara_ambient_temp node_disk_bytes_written node_netstat_Tcp_InErrs
0.95 0.96 surfsara_ambient_temp node_disk_bytes_written node_forks
0.94 0.94 surfsara_ambient_temp node_netstat_Tcp_InErrs node_forks
0.95 0.96 node_disk_bytes_written node_netstat_Tcp_InErrs node_forks
0.95 0.96 node_disk_bytes_written node_netstat_Tcp_InErrs node_procs_blocked
0.94 0.95 node_disk_bytes_written node_netstat_Tcp_InErrs node_procs_running
0.95 0.96 node_disk_bytes_written node_netstat_Tcp_InErrs node_memory_HardwareCorrupted
0.95 0.96 node_disk_bytes_written node_netstat_Tcp_InErrs node_network_transmit_errs
0.95 0.95 Node_Memory Mapped Node_Disk Bytes Written node_forks
0.96 0.96 node_forks node_disk_bytes_written node_netstat_Tcp_InErrs
0.95 0.96 node_netstat_Tcp_InErrs node_disk_bytes_written SKIPPED
0.92 0.93 node_netstat_Tcp_InErrs Node_Memory Mapped SKIPPED
Figure 6.1: Tests for standard jobs with no aggregation
RF HIST_GR Featurel Feature2 Feature3

0.93] 0.91|node_netstat_Tcp_InErrs node_disk_bytes_written node_forks

0.94 0.93|node_memory_Mapped node_disk_bytes_written node_forks

0.94 0.93|node_memory_Inactive node_disk_bytes_written node_forks

0.93 0.91|node_memory_Mapped node_disk_bytes_written node_netstat_Tcp_InErrs

Figure 6.2: Tests for standard jobs with aggregation

models, however it was not substantial.

Figure describes machine learning classification conducted on nodes
with access to GPU without applying aggregation. Random Forest and
Histogram based Gradient Boosting classifiers were applied. They were
trained on 2-3 feature sets. Every classification included the same set of
68 successful and 31 unsuccessful jobs. The precision values are lower for
the jobs involving a GPU, they seem to be more difficult to accurately
predict. For the non-GPU jobs metrics precision values were around 0.92
while for GPU jobs the value are closer to 0.84. We did not notice a
meaningful difference between the classifiers, sometimes Random Forest
performs better and at other times Histogram based Gradient Boosting
performs better.

It is difficult to draw robust conclusions because of the low number of
data supporting the conclusions. It seems that the GPU metrics improved
the model, and it is possible that temperature of GPU is the best indicator
of failure. Final observations for these jobs is that node netstat tcp in errs
performs worse in comparison with node memory mapped while for the
normal jobs the opposite was true.

38 Skrzeczek

Chapter 6

RF HIST_GR Featurel Feature2 Feature3
0.85 0.81|node_netstat_Tcp_InErrs node_disk_bytes_written node_forks
0.86 0.86{node_forks node_disk_bytes_written nvidia_gpu_temperature_celsius
0.82 0.82|node_netstat_Tcp_InErrs node_disk_bytes_written nvidia_gpu_temperature_celsius
0.81 0.81|node_netstat_Tcp_InErrs node_disk_bytes_written nvidia_gpu_fanspeed
0.83 0.86{node_forks node_disk_bytes_written nvidia_gpu_fanspeed
0.86 0.82]|node_forks node_disk_bytes_written nwdia,&:u,power,usage,mimwatts
0.87 0.89[node_forks Node_Memory Mapped nvidia_gpu_temperature_celsius
0.85 0.8|Node_Memory Mapped Node_Disk Bytes Written SKIPPED
0.85 0.8|Node_Memory Mapped Node_Disk Bytes Written SKIPPED
0.84 0.88|Node_Memory Mapped Node_Disk Bytes Written nvidia_gpu_temperature_celsius
0.85 0.86|Node_Memory Mapped Node_Disk Bytes Written nvidia_gpu_power_usage_milliwatts
0.87 0.85|Node_Memory Mapped Node_Disk Bytes Written nvidia_gpu_fanspeed
0.84 0.85|Node_Memory Mapped Node_Disk Bytes Written SKIPPED
0.83 0.83|Node_Memory Mapped Node_Disk Bytes Written nvidia_gpu_memory_used_bytes
0.85 0.8|Node_Memory Mapped Node_Disk Bytes Written SKIPPED
0.84 0.88|Node_Memory Mapped Node_Disk Bytes Written nvidia_gpu_temperature_celsius
0.85 0.86|Node_Memory Mapped Node_Disk Bytes Written nvidia_gpu_power_usage_milliwvatts
0.87 0.85|Node_Memory Mapped Node_Disk Bytes Written nvidia_gpu_fanspeed
0.84] 0.85|Node_Memory Mapped Node_Disk Bytes Written SKIPPED
0.83 0.83|Node_Memory Mapped Node_Disk Bytes Written nvidia_gpu_memory_used_bytes

Figure 6.3: Tests for GPU jobs with no

aggregation

6.2 Results for Machine Learning Classifiers

Model Accuracy | Class | Precision | Recall | F1-Score
AdaBoost 0.91 0 0.89 0.78 0.83
1 0.92 0.96 0.94
Logistic Regression 0.80 0 0.67 0.55 0.61
1 0.84 0.90 0.87
K-Nearest Neighbors 0.92 0 0.91 0.80 0.85
1 0.93 0.97 0.95
Decision Tree 0.93 0 0.90 0.85 0.87
1 0.94 0.96 0.95
Random Forest 0.95 0 0.94 0.87 0.90
1 0.95 0.98 0.97
Hist Gradient Boosting 0.95 0 0.95 0.87 0.91
1 0.95 0.98 0.97
Gradient Boosting 0.94 0 0.94 0.82 0.88
1 0.94 0.98 0.96

Table 6.2: Comparison of Classification Metrics for Different Models

The comparison of various machine learning classifiers involved the
standout solution. This included node forks, node disk bytes written and
node netstat tcp in errs which in previous tests had 0.96 Random Forest
and Histogram Gradient Boosting accuracy. To validate the results more
jobs were added, totaling 667 successful jobs and 253 failed ones. Table
6.1 describes the results of various machine learning classifiers. It displays
accuracy, precision, recall and F1-score distinguishing the results between
the classes. Figure contextualizes these results, showing that the dif-
ferences between classifiers are slight. The results for Histogram Gradient

Skrzeczek

39

Chapter 6

Performance Metrics by ML Model

[AdaBoost

B Logistic Regression
mmm K-Nearest Neighbors
B Decision Tree

W Random Forest

mmm Hist Gradient Boosting
B Gradient Boosting

Scores

Accuracy Precision F1-Score
Metric

Figure 6.4: Visualization of results for different ML classifiers

Boost and Random Forest are the best among all classifiers and are
similar to previous results on the same metrics with fewer nodes. FEv-
ery Machine Learning classifier is better at predicting class '1’(successful
job) rather than class ’0’(failed job). Other applied classifiers included
K-nearest neighbours, Decision Tree, Logistic Regression, Ad-
aBoost[63] and Gradient Boosting|18§]. Figure shows the ROC(Receiver
Operating Characteristic) curve created with Random Forest classifier. The
Area under the Curve(AUC) can range from 0 to 1 where 1 is a perfect
model capable of always distinguishing between the classes and a 0.5 sug-
gesting a random chance. The AUC of 0.98 suggests a very capable model.

40 Skrzeczek

Chapter 6

ROC Curve for Random Forest

1.0 - -
e
7’
’
7’
7’
0.8 1 e
7
e
e
L PR
© 7
o
o 0.6 - ,,’
= R
8 ol
S 0.4 7
= L
rd
'l
' d
rd
r'd
0.2 - R
'
'
//
’ = Random Forest (AUC = 0.98)
0-0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Figure 6.5: ROC curve for the standout solution

Skrzeczek

41

Chapter 7

Discussion and conclusion

This chapter gives answer to the research questions which were posed at the
start of this work. It explores the limitations, discussing the reasons why
the scope of this thesis was reduced. Finally it delves into future works,
the directions researchers can take this topic in the future.

To answer RQ1 we conducted a literature review. With help of tax-
onomies by Tanja Hagemann and Katerina Katsarou 28] and Moghaddam
et al.(2019)[45] we have established that those were currently the most
popular performance analysis methods.

e Signature Based
e Threshold Based
e Statistical

e Machine Learning
e Deep Learning

Most of those methods offer multiple solutions for failure prediction
purpose. Signature based approaches are about capturing certain pat-
ters(signatures) and later recognizing them when they repeat. An example
of a solution which makes use of Signature Based approach is the work of
Mi et al.(2008)[42]. Threshold based approaches are often used to support
other methods, this was the case in the work of Hong et al.(2015)[30] where
it supported a Machine Learning method. They trigger certain action or
analysis based on a predefined threshold which can be static or dynamic
depending on specified conditions. Statistics based approaches like Re-
gression Analysis[33], or Hidden Markov Model[30] offer another avenue to
explore in terms of failure prediction. Neural network based Deep Learning
methods are gaining popularity over the last few years. Self-organizing map
[57] or multi-layer perceptron [3] have been used for performance analysis
purpose. Finally there are Machine Learning methods, the focus point of

42

Chapter 7

this work. Mohammad S. Jassas and Qusay H. Mahmoud|35] made use of
multiple Machine Learning techniques for job-failure prediction purpose.
Those were Decision Trees, Random Forest, XGBoost, Gradient Boost,
K-Nearest-Neighbour and Naive Bayes algorithm.

To answer SRQ1.1 we made use of snowballing as a literature review
method to identify and gather relevant studies. In the process of literature
review we established that CPU, Disk and Memory usage are the features
most commonly used for failure prediction in the cloud. This was the case
in the works of Mohammad S. Jassas and Qusay H. Mahmoud(2022)[35],
Marciq et al.(2018)[39], Vishwanath et al.(2010) [62], Birke et al.(2012)]6],
Rui Ren et al.(2018)[50] and Chen et al.(2014)[9]. None of the proposed
solutions perfected failure detection, there is still room for improvement
when it comes to predicting failure. Another serious limitation is that
the jobs which are predicted in aforementioned work do not make use of
capabilities of a GPU. The work of |61] highlights that workload including
a GPU could be more prone to failure with a large amount of resources
being wasted.

To answer SRQ1.2 we made use of snowballing as literature review
method to identify and gather relevant studies. Work o Jassas and Ma-
houd(2022)[35] made use of Google cluster, Mustang and Trinity datasets.
Work of Chen et al.(2014)[9] also made use of Google cloud cluster for
the purpose of failure prediction. The work of Vishwanath et al.(2010)[62]
makes use of multiple data sources from a Microsoft data-center. Rui Ren
et al.(2018)]50] data was sourced from a Chinese cloud provider Alibaba.

To answer RQ2 we found a dataset supporting this research which was
not previously used for failure detection purposes. It contains more than
300 hundred of low level hardware metrics and a corresponding jobs dataset.
This allowed us to make use of state of the art features as well as features
which might overcome the limitations of state of the art. To establish
which features were relevant we made use of Machine Learning for failure
prediction. Relevant features had to perform well in ML classification.

To answer SRQ2.1 we applied various feature selection methods like
RFE|11] or RF[5] on some of the features from the dataset. We encoun-
tered difficulties, feature importance seemed to depend on the order in
which the feature importance was estimated. We suspected that the is-
sue might be tied to auto-correlation but that turned out not to be the
case. At the heart of the issue was the flattening of the metric data, which
seemed to distort the feature importance. To overcome it we had to ap-
ply permutation importancel4]. This solved the initial problem, but made
feature selection resource intensive. Because of that we used it only in an
ad-hoc fashion, our most important discovery was that node netstat tcp
was a relevant feature and could replace node memory mapped. Due to
these difficulties we did not answer SRQ2.1.

Skrzeczek 43

Chapter 7

To answer SRQ)2.2 a data transformation was performed which aggre-
gated long lists into just four values. Those values were standard deviation,
mean, minimum and maximum. Machine Learning classification based on
transformed data turned out to be close but slightly worse in terms of ac-
curacy. The new aggregated metrics did not reflect the results of their
non-aggregate counterparts, the best aggregate solution could not be the
best non-aggregate solution. It seems that finer data granularity does lead
to a more precise model, but a good-enough model can be created with
relatively small amount of data being fed into the model.

To answer RQ3 we applied various Machine Learning classification tech-
niques on different sets of features. It is noteworthy that a lot of features
were successful at detecting failure. For all standard jobs the accuracy does
not drop below 0.90 regardless of the selected features. Some of this can
be explained by class 2:1 imbalance, which was being alleviated by giving
a correct prediction of a failed job more important. A different explana-
tion is that a higher usage of any given feature often signals general high
resource usage which is often indicative of failure. Another reason could
be that longer running jobs have a higher failure chance [61] and every
feature carries information about the execution time. Some unusual fea-
tures seemed to contribute to the improvement in models accuracy, those
would be node forks, various gpu metrics, node netstat tcp in errs seemed
to find failures which were previously misclassified. Another insight was
that, in the context of this dataset Node Memory Mapped outperformed
other memory metrics such as Node Memory Cached, Node Memory Ac-
tive or Node Memory Inactive. For the disk metrics Node Disk Bytes
Written outperformed Node Disk Bytes Read. Finally, the jobs involving
a GPU component proved to be much more difficult do accurately predict.
No combination of features reached an accuracy of 0.90 and instead found
themselves in the range of 0.81-0.89. The graphic card metrics seemed to
meaningfully contribute to a good model. All of this should be taken with
a grain of salt because of low sample-size for GPU jobs.

To answer SRQ3.1 we applied various Machine Learning classification
techniques on different sets of features. For AdaBoost, Logistic Regression,
K-Nearest Neighbour, Decision Tree, Random Forest, Histogram based
Gradient Boosting and Gradient Boosting we looked at Accuracy, Pre-
cision, Recall and F1 Score. We compared all of them on the standout
solution which achieved the best results for Random Forest and Histogram
based Gradient Boosting. All of them preformed remarkably similarly with
the exception of Logistic Regression. Figure displays the results.

44 Skrzeczek

Chapter 7

7.1 Conclusion

Since the models trained here make use of unique features, it is impossible
to apply it in a context of another dataset which does not offer the same
features. We can speculate about how varied the result would be. Research
by Jassas [35] applied various Machine Learning classifiers to predict failure
in 3 different datasets. In Google Trace a Random Forest classifier making
use of Select-K-Best feature importance achieved an precision of 0.98 while
in a Trinity dataset with the same setup precision dropped to 0.72. This
give us an idea about how dissimilar the results can be if we try a solution
on another data.

One of the reasons to apply job failure prediction is to reduce the waste
of data center resources. Data center capacities are growing to support
increasing demand of the Al sector. Building data centers is expensive, and
it requires a sufficient power-supply to operate. Predicting anomalies and
failures before they happen, and acting on this knowledge offers increased
data center capacity without incurring a financial cost. We believe that
better failure detection systems helps to tackle capacity challenges modern
data centers are facing.

Perhaps Machine Learning based failure detection will not prove to be
the best way to tackle this problem, but the features which were the focus
point of this thesis could be used in another performance analysis methods
and contribute to them.

In this thesis we looked into various failure predicting systems. We
delved into their limitations and constraints like using a limited set of
features or difficulty with reproducing results across the datasets. We pro-
posed our own machine learning solution based on a low level hardware
metrics dataset. We experimented with various combinations of features,
and machine learning models and compared them in terms of accuracy, pre-
cision, fl-score and recall. Our data was transformed to allow for various
granularity settings and separation of jobs which involved GPU’s to allow
for separate testing. In the end we visualized the results.

7.2 Limitations

Lisa datasets were updated while this thesis was far progressed, fixing some
of the problems with node timestamp lags. This happened when the thesis
progressed quite far and it did not make use of the update. This could
have helped with the large numbers of jobs lost during data cleaning.

One of the biggest limitations are the missing metrics for the CPU in
the Lisa dataset. They are collected but not at the same time as job data.
This is important because most of the Machine Learning failure prediction
systems make us of CPU related information. The current solution can

Skrzeczek 45

Chapter 7

accommodate another feature, it is likely that adding CPU metrics would
slightly alter evaluation of some of the metrics. To overcome this, solution
would need to be thoroughly tested on a dataset with access to CPU and
other metrics being available.

Solution as is, only uses feature importance in an ad-hoc fashion, to
compare features which seemed to perform well and understand which of
them work well together. Given a sufficient computing power and adapting
nested features, an optimal solution for this dataset could have been found.
Due to the scale of the dataset it was not possible.

Another limitation was a limited number of Machine Learning jobs
which involved a GPU. These jobs were the most likely to be cancelled
before concluding. Cancelled jobs were excluded from the analysis as they
were difficult to predict accurately. After the data cleaning, the number of
jobs viable for the analysis was around a hundred.

Reproducibility of the results can be a challenge because the metrics
captured in the data center are often different. For example, Lisa Dataset
did not contain information about the number of spawned containers. This
metrics was used for Machine-Learning prediction in the work of Ren et
al|50]. Versluis et al[61] mention in the title of their paper points out
another issue, the scientific community needs more datasets describing low-
level performance of a data center. The dataset are both scarce and have
substantial differences between one another.

7.3 Future Works

Machine Learning failure prediction proposed in this thesis defines failure
as anything which is not a successful completion of the job while exclud-
ing canceled jobs. This is represented in transforming all successful state
labels in the jobs dataset into 1’s and other states into 0’s. An alter-
native approach would look into individual states like 'OUT OF MEM-
ORY’TIMEOUT’’NODE FAIL’,FAILED’ and show how features based
on low level performance metrics predict those states. One of the poten-
tial research questions could be, "What failed state is the most difficult to
predict?’

46 Skrzeczek

Bibliography

David V Akman et al. “k-best feature selection and ranking via

stochastic approximation”. In: Fxpert Systems with Applications 213
(2023), p. 118864.

M.G. Akritas. “Spearman’s Rank Correlation Coefficient”. In: Hand-
book of Statistics, Volume 30. Ed. by J.M. Bernardo et al. Elsevier,
2011, pp. 383-401.

Ahmad Alnafessah and Giuliano Casale. “Artificial neural networks
based techniques for anomaly detection in Apache Spark”. In: Cluster
Computing 23.2 (2020), pp. 1345-1360.

André Altmann et al. “Permutation importance: a corrected feature
importance measure”. In: Bioinformatics 26.10 (2010), pp. 1340-
1347.

Gérard Biau and Erwan Scornet. “A random forest guided tour”. In:
Test 25 (2016), pp. 197-227.

Robert Birke, Lydia Y Chen, and Evgenia Smirni. “Data centers in
the cloud: A large scale performance study”. In: 2012 IEEE Fifth
international conference on cloud computing. IEEE. 2012, pp. 336—
343.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly
detection: A survey”. In: ACM computing surveys (CSUR) 41.3 (2009)
pp. 1-98.

Tiangi Chen and Carlos Guestrin. “Xgboost: A scalable tree boost-
ing system”. In: Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining. 2016, pp. 785—
794.

Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. “Failure anal-
ysis of jobs in compute clouds: A google cluster case study”. In: 2014
IEEE 25th International Symposium on Software Reliability Engi-
neering. IEEE. 2014, pp. 167-177.

47

Chapter 7

[10]

[11]

[12]

[13]

[14]

[18]

[19]

[20]

Padraig Cunningham and Sarah Jane Delany. “K-nearest neighbour
classifiers-a tutorial”. In: ACM computing surveys (CSUR) 54.6 (2021),
pp- 1-25.

Burcu F Darst, Kristen C Malecki, and Corinne D Engelman. “Using
recursive feature elimination in random forest to account for cor-
related variables in high dimensional data”. In: BMC' genetics 19
(2018), pp. 1-6.

Daniel J Dean et al. “Perfcompass: Online performance anomaly fault
localization and inference in infrastructure-as-a-service clouds”. In:
IEEE Transactions on Parallel and Distributed Systems 27.6 (2015),
pp. 1742-1755.

Thanh Do et al. “Limplock: Understanding the impact of limpware
on scale-out cloud systems”. In: Proceedings of the 4th annual Sym-
posium on Cloud Computing. 2013, pp. 1-14.

Qingfeng Du, Tiandi Xie, and Yu He. “Anomaly detection and di-
agnosis for container-based microservices with performance monitor-
ing”. In: Algorithms and Architectures for Parallel Processing: 18th
International Conference, ICA3SPP 2018, Guangzhou, China, Novem-
ber 15-17, 2018, Proceedings, Part IV 18. Springer. 2018, pp. 560—
572.

Dmitry Duplyakin et al. “The design and operation of {CloudLab}”.
In: 2019 USENIX annual technical conference (USENIX ATC 19).
2019, pp. 1-14.

Mostafa Farshchi et al. “Metric selection and anomaly detection for
cloud operations using log and metric correlation analysis”. In: Jour-
nal of Systems and Software 137 (2018), pp. 531-549.

Daniel Fireman et al. “Improving tail latency of stateful cloud ser-
vices via gc control and load shedding”. In: 2018 IEEE International
Conference on Cloud Computing Technology and Science (Cloud-
Com). IEEE. 2018, pp. 121-128.

Jerome H Friedman. “Stochastic gradient boosting”. In: Computa-
tional statistics & data analysis 38.4 (2002), pp. 367-378.

C. Genest and J. Neslehov’a. “Kendall’s Rank Correlation Coeffi-
cient”. In: Handbook of Statistics, Volume 30. Ed. by J.M. Bernardo
et al. Elsevier, 2011, pp. 403-424.

Siavash Ghiasvand and Florina M Ciorba. “Anomaly detection in
high performance computers: A vicinity perspective”. In: 2019 18th
International Symposium on Parallel and Distributed Computing (IS-
PDC). IEEE. 2019, pp. 112-120.

48

Skrzeczek

Chapter 7

[27]

28]

33]

Einollah Jafarnejad Ghomi, Amir Masoud Rahmani, and Nooruldeen
Nasih Qader. “Load-balancing algorithms in cloud computing: A sur-
vey”. In: Journal of Network and Computer Applications 88 (2017),
pp- H0-T71.

Brendan Gregg. “Blazing performance with flame graphs”. In: 27th
Large Installation System Administration Conference. USENIX As-
sociation. 2013.

Brendan Gregg. Systems Performance: Enterprise and the Cloud.
Prentice Hall, 2013. 1SBN: 978-0-13-339017-4.

Brendan Gregg. “Thinking methodically about performance”. In: Com-
munications of the ACM 56.2 (2013), pp. 45-51.

Arthur Gretton et al. “A kernel two-sample test”. In: The Journal of
Machine Learning Research 13.1 (2012), pp. 723-773.

Qiang Guan and Song Fu. “Adaptive anomaly identification by ex-
ploring metric subspace in cloud computing infrastructures”. In: 2013
IEEE 32nd International Symposium on Reliable Distributed Sys-
tems. IEEE. 2013, pp. 205-214.

Fabio Guigou, Pierre Collet, and Pierre Parrend. “Anomaly detection
and motif discovery in symbolic representations of time series”. In:
arXiv preprint arXiw:1704.05325 (2017).

Tanja Hagemann and Katerina Katsarou. “A systematic review on
anomaly detection for cloud computing environments”. In: Proceed-
ings of the 2020 3rd Artificial Intelligence and Cloud Computing Con-
ference. 2020, pp. 83-96.

Charles R Harris et al. “Array programming with NumPy”. In: Na-
ture 585.7825 (2020), pp. 357-362.

Bin Hong et al. “DAC-Hmm: detecting anomaly in cloud systems
with hidden Markov models”. In: Concurrency and Computation:
Practice and Experience 27.18 (2015), pp. 5749-5764.

Olumuyiwa Ibidunmoye, Francisco Hernandez-Rodriguez, and Erik
Elmroth. “Performance anomaly detection and bottleneck identifica-
tion”. In: ACM Computing Surveys (CSUR) 48.1 (2015), pp. 1-35.

Olumuyiwa Ibidunmoye, Ewnetu Bayuh Lakew, and Erik Elmroth.
“A black-box approach for detecting systems anomalies in virtual-

ized environments”. In: 2017 International Conference on Cloud and
Autonomic Computing (ICCAC). IEEE. 2017, pp. 22-33.

Anil Jain and Douglas Zongker. “Feature selection: Evaluation, ap-
plication, and small sample performance”. In: IEEFE transactions on
pattern analysis and machine intelligence 19.2 (1997), pp. 153-158.

Skrzeczek 49

Chapter 7

[34]

[35]

[45]

Vikramaditya Jakkula. “Tutorial on support vector machine (svm)”.
In: School of EECS, Washington State University 37.2.5 (2006), p. 3.

Mohammad S Jassas and Qusay H Mahmoud. “Analysis of job failure
and prediction model for cloud computing using machine learning”.
In: Sensors 22.5 (2022), p. 2035.

Bahman Javadi et al. “The Failure Trace Archive: Enabling the com-
parison of failure measurements and models of distributed systems”.
In: Journal of Parallel and Distributed Computing 73.8 (2013), pp. 1208—
1223.

Michael P LaValley. “Logistic regression”. In: Circulation 117.18 (2008),
pp. 2395 2399.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation forest”.
In: 2008 eighth iece international conference on data mining. IEEE.
2008, pp. 413-422.

Aleksander Maricq et al. “Taming performance variability”. In: 13th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 18). 2018, pp. 409-425.

Wes McKinney et al. “pandas: a foundational Python library for data
analysis and statistics”. In: Python for high performance and scien-
tific computing 14.9 (2011), pp. 1-9.

Patrick E McKnight and Julius Najab. “Mann-Whitney U Test”. In:
The Corsini encyclopedia of psychology (2010), pp. 1-1.

Ningfang Mi et al. “Analysis of application performance and its change
via representative application signatures”. In: NOMS 2008-2008 IEEE
Network Operations and Management Symposium. IEEE. 2008, pp. 216—
223.

Microsoft. Azure Monitor overview. World Wide Web. Accessed Month
Day, Year. Accessed Year. URL: https://learn.microsoft.com/
en-us/azure/azure-monitor/overview.

Victor Millnert and Johan Eker. “HoloScale: horizontal and verti-
cal scaling of cloud resources”. In: 2020 IEEE/ACM 15th Interna-
tional Conference on Utility and Cloud Computing (UCC). IEEE.
2020, pp. 196-205.

Sara Kardani Moghaddam, Rajkumar Buyya, and Kotagiri Ramamo-
hanarao. “Performance-aware management of cloud resources: a tax-
onomy and future directions”. In: ACM Computing Surveys (CSUR)
52.4 (2019), pp. 1-37.

50

Skrzeczek

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/overview

Chapter 7

[46]

[47]

[50]

[51]

[52]

[54]

[55]

National Institute of Standards and Technology (NIST). The NIST
Definition of Cloud Computing. https : / /nvlpubs . nist . gov /
nistpubs/Legacy/SP/nistspecialpublication800-145.pdf. Ac-
cessed: [insert date of access|. Sept. 2011.

Mostafa Noshy, Abdelhameed Ibrahim, and Hesham Arafat Ali. “Op-
timization of live virtual machine migration in cloud computing: A
survey and future directions”. In: Journal of Network and Computer
Applications 110 (2018), pp. 1-10.

John Ousterhout. “Always measure one level deeper”. In: Communi-
cations of the ACM 61.7 (2018), pp. 74-83.

Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”.
In: the Journal of machine Learning research 12 (2011), pp. 2825
2830.

Rui Ren et al. “Anomaly analysis for co-located datacenter workloads
in the alibaba cluster”. In: arXiv preprint arXiv:1811.06901 (2018).

Irina Rish et al. “An empirical study of the naive Bayes classifier”. In:
IJCAI 2001 workshop on empirical methods in artificial intelligence.
Vol. 3. 22. Citeseer. 2001, pp. 41-46.

Hiroaki Sakoe and Seibi Chiba. “Dynamic programming algorithm
optimization for spoken word recognition”. In: IEEFE transactions on
acoustics, speech, and signal processing 26.1 (1978), pp. 43-49.

Tara Salman et al. “Machine learning for anomaly detection and cat-
egorization in multi-cloud environments”. In: 2017 IEEE 4th interna-
tional conference on cyber security and cloud computing (CSCloud).
[EEE. 2017, pp. 97-103.

Haiying Shen and Liuhua Chen. “Resource demand misalignment: An
important factor to consider for reducing resource over-provisioning
in cloud datacenters”. In: IEEE/ACM Transactions on Networking
26.3 (2018), pp. 1207-1221.

Ahmad Al-Shishtawy and Vladimir Vlassov. “Elastman: elasticity
manager for elastic key-value stores in the cloud”. In: Proceedings of
the 2013 ACM Cloud and Autonomic Computing Conference. 2013,
pp. 1-10.

Yan-Yan Song and LU Ying. “Decision tree methods: applications
for classification and prediction”. In: Shanghai archives of psychiatry
27.2 (2015), p. 130.

Ioannis M Stephanakis et al. “Hybrid self-organizing feature map
(SOM) for anomaly detection in cloud infrastructures using granu-
lar clustering based upon value-difference metrics”. In: Information
Sciences 494 (2019), pp. 247-277.

Skrzeczek 51

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

Chapter 7

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[66]

Sandro Tosi. Matplotlib for Python developers. Packt Publishing Ltd,
2009.

Beth Trushkowsky et al. “The {SCADS} Director: Scaling a Dis-
tributed Storage System Under Stringent Performance Requirements”.
In: 9th USENIX Conference on File and Storage Technologies (FAST
11). 2011.

Ozan Tuncer et al. “Diagnosing performance variations in HPC appli-
cations using machine learning”. In: High Performance Computing:
32nd International Conference, ISC High Performance 2017, Frank-
furt, Germany, June 18-22, 2017, Proceedings 32. Springer. 2017,
pp. 355—-373.

Laurens Versluis et al. “Less is not more: We need rich datasets to ex-
plore”. In: Future Generation Computer Systems 142 (2023), pp. 117-
130.

Kashi Venkatesh Vishwanath and Nachiappan Nagappan. “Charac-
terizing cloud computing hardware reliability”. In: Proceedings of the
1st ACM symposium on Cloud computing. 2010, pp. 193-204.

Cao Ying et al. “Advance and prospects of AdaBoost algorithm”. In:
Acta Automatica Sinica 39.6 (2013), pp. 745-758.

Xiao Zhang, Fanjing Meng, and Jingmin Xu. “Perfinsight: A robust
clustering-based abnormal behavior detection system for large-scale
cloud”. In: 2018 IEEFE 11th International Conference on Cloud Com-
puting (CLOUD). TEEE. 2018, pp. 896-899.

Xiaodong Zhang, Yanxia Qu, and Li Xiao. “Improving distributed
workload performance by sharing both CPU and memory resources”.
In: Proceedings 20th IEEE International Conference on Distributed
Computing Systems. IEEE. 2000, pp. 233-241.

Alexander Zien et al. “The feature importance ranking measure”.
In: Machine Learning and Knowledge Discovery in Databases: Fu-
ropean Conference, ECML PKDD 2009, Bled, Slovenia, September
7-11, 2009, Proceedings, Part I 20. Springer. 2009, pp. 694-709.

52

Skrzeczek

	Introduction
	Problem Statement
	Research questions
	Literature Review Procedure
	Research method
	Threats to validity
	Timeline and milestones

	Backgroud
	Anomaly as a needle in a haystack
	Types of anomalies
	Performance anomalies
	Monitoring and data collection
	Cloud Performance Datasets
	Lisa datasets
	Performance Analysis
	Cloud Mitigation techniques

	Related work
	Limitations of the related works

	Architecture
	Method
	Feature separation
	Grouping and structuring of performance metrics
	Granularity setting
	Feature Selection Techniques
	Machine Learning classification

	Results
	Results for feature groups
	Results for Machine Learning Classifiers

	Discussion and conclusion
	Conclusion
	Limitations
	Future Works

