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Abstract

This thesis addresses the Stochastic Job-Shop Scheduling Problem, incorporating uncer-
tainty in the processing time. Efficiently creating robust schedules is computationally
challenging due to the complex search space and stochastic variables. In this work, we
adapt an approximation method previously used for Parallel Machine Scheduling, where
normal approximation techniques are used as heuristic in a Simulated Annealing frame-
work. By approximating the expected makespan, the algorithm significantly reduces the
computational burden compared to traditional Monte Carlo simulations. We conducted
a series of experiments on benchmark instances to evaluate the performance of the ap-
proximation method, assessing the percentiles of the resulting distribution together with
the computation time. The results show that the method outperforms sampling-based
methods in both solution quality and computational effort when there is much variability
in the distributions and show comparable results with lower variability. This work ad-
vances heuristic scheduling methods by integrating probabilistic approximations into a
metaheuristic framework, offering a scalable solution for large and uncertain scheduling
environments.
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1. Introduction

Scheduling is a decision-making process that involves the allocation of limited resources
over time to perform a set of tasks. This abstract concept finds its place in many
aspects of our lives. In computation, scheduling is needed to allow for multitasking on
a processor or by the operating system to prioritize tasks. It finds use in logistics and
planning, where resources such as personnel, equipment, and transportation must be
efficiently assigned to meet deadlines and reduce costs. In manufacturing, scheduling
helps streamline the flow of materials and production processes to maximize efficiency
and minimize delays. Similarly, in healthcare, scheduling ensures the optimal use of
medical personnel, facilities, and equipment, in order to improve patient care and reduce
waiting times. There are countless examples where scheduling can increase efficiency and
reduce cost. Constructing these schedules can become computationally difficult when
the set of requirements increases, and therefore our focus lies on efficiently and effectively
computing these schedules for complex problems.

We restrict ourselves to the Job-Shop Scheduling Problem (JSSP), an abstract model
that describes a set of scheduling problems in which tasks must be executed on machines
in a specified order. Consider, for example, a manufacturing floor where a product
requires processing across multiple machines. (e.g., the following job sequence: {drill
hole, apply plate, fasten screw}. These three operations must be performed by different
machines and executed in this specific order, with each operation having a distinct
processing duration. This can be generalized by stating that there are n jobs, each
consisting of m operations, that need to be executed on m machines. The ordering of
operations on the machines is to be determined. A theoretical upper bound for the
total number of possible sequences is given by (n!)™. To illustrate this scale of this
problem, observe that the number of possible sequences for just 6 jobs and 6 machines
is approximately 1.39 - 10'7. This number is so large that verifying 1 million schedules
per second would still require over 4000 years to verify all schedules individually for
optimality. In practice, efficiently solving scheduling problems can lead to significant
cost and time savings, where delays and resource constraints can have a large impact
on overall productivity. These problems are characterized by much higher values for
n and m, and stress the need for algorithms that solve these problems efficiently and
effectively.

We expand upon this definition of JSSP with the Stochastic Job-Shop Scheduling
Problem (SJSSP), including uncertainty by introducing one or more stochastic variables
in parts of the model. This is important since uncertainty models real-world scenarios
more accurately; for instance, trucks may be delayed, machines may break down or
personnel becoming unavailable. Different causes of delay can exist in different parts
of the model. By incorporating uncertainty in the processing time we will be able



to construct robust schedules that are less sensitive to these disturbances. However,
including this uncertainty increases the computational burden. Both the uncertainty and
the combinatorial difficulty of the problem require us to explore sophisticated methods
to find high-quality schedules within a reasonable time.

To solve SJSSP efficiently, we will use local search algorithms. The objective of this
set of algorithms is to approximate the optimal solution by iteratively improving the
current solution using local information. Consequently, these algorithms have better
results exploring the large search space and potentially converge to a global optimum.
Local search methods are particularly suitable for complex scheduling problems like
JSSP because they balance solution quality with computation times, especially in cases
where exact methods would be impractical due to the large solution space. For example,
local search has been successfully applied to problems in logistics, such as vehicle routing
and manufacturing, where robust schedules are needed to handle unexpected delays.

In this thesis, we will extend the work of Passage (2016), which used an approximation
method for the normal distribution to compute the maximum completion time in the
context of Parallel Machine Scheduling. We adapt this method for job-shop scheduling
and compare this approximated distribution with traditional Monte-Carlo simulations
(van den Akker et al., 2013). Both these methods compute the quality of a given sched-
ule, needed by the local search algorithm. The performance of the algorithm is compared
between these methods and different simulation numbers. We expect that the approxi-
mation methods perform significantly faster than the simulations while maintaining at
least the same, if not better, quality approximations. We also compare different levels
of stochasticity in well-known job-shop instances in literature and assess the robustness
of the produced schedules by evaluating their quality variance.

Outline

The structure of this thesis is organized as follows: Chapter 2 provides a formal definition
of JSSP, including its mathematical notation and a precise computational method. This
chapter subsequently introduces the stochastic variation of this problem along with the
relevant stochastic notation. This is followed by a review of the literature in Chapter
3, which covers deterministic methods for JSSP, followed by the exploration of methods
applicable to the stochastic variant covering both exact and heuristic search methods.
In Chapter 4 the algorithmic methods are described, particularly focusing on Simulated
Annealing and Iterated Local Search. The results of these methods are discussed in
Chapter 5. Lastly, Chapter 6 concludes the research and presents the final observations,
along with recommendations for future research.



2. Problem Description

The job-shop scheduling refers to the scheduling of jobs in a shop environment. In this
chapter, we will formally define the Job-Shop Scheduling Problem (JSSP) in Section
2.1, introduce its Disjunctive Graph Notation and Mixed Integer Programming (MIP)
formulations. Finally, in Section 2.2, we will extend these definitions to include stochastic
variables and present the objective function expected makespan.

2.1. Job-Shop Scheduling

The Job-Shop Scheduling Problem is a fundamental problem in operations research and
management theory, with numerous practical applications. This theoretical model can
be formalized as follows. Given a set of n jobs and m machines, our objective is to
determine a schedule that minimizes the makespan, which is defined as the completion
time of the last job. Each job consists of m operations that must be executed in a
specified order, with each operation scheduled on a different machine. There is no
predefined ordering between different jobs. An operation cannot be preempted and a
machine can handle only a single operation at a time. Every operation has a processing
time associated with a machine and a machine at which it must be executed. Given
the start time of an operation, we can calculate its completion time. Creating these
schedules is closely related to project scheduling, which employs the notion of a critical
path. The critical path is the sequence of tasks in a project that directly determines its
minimum completion time. Any delay in tasks on the critical path will delay the overall
project timeline, as they have no slack time. The completion time of the critical path is
the same as the makespan in scheduling.

Minimizing this makespan is one example of a metric used to optimize the search
process; however, other metrics also exist, including mazimum lateness, total weighted
completion time, total weighted tardiness, weighted number of tardy jobs (Pinedo, 2008).
Lateness is defined as the difference between the completion time of an operation and
its due date. Tardiness is equal to the maximum of 0 and the lateness. In this research,
we will focus on the makespan as the quality measure for schedules.

The Job Shop Scheduling Problem (JSSP) is a variation of several scheduling prob-
lems, each with unique constraints and requirements. Starting with the simpler Paral-
lel Machine Scheduling Problem (PMSP), this problem involves scheduling jobs across
multiple machines that operate in parallel. In PMSP, jobs can be assigned to any avail-
able machine. In contrast, JSSP introduces stricter requirements, focusing on a set of
jobs where each job has an ordered sequence of operations that must be performed on
specific machines. Each machine has a capacity of one and must execute operations



in a fixed order for each job. More complex than PMSP but related, the Open-Shop
Scheduling Problem (OSSP) and Flow-Shop Scheduling Problem (FSSP) involve addi-
tional constraints on the order and allocation of jobs. The OSSP allows operations to be
scheduled on a prespecified machine without a fixed sequence, while the FFSP enforces
a specific order of operations across all jobs. At a more general level, these problems
are all specialized cases of the broader Resource-Constrained Project Scheduling Problem
(RCPSP). RCPSP allows resources, such as machines, to be flexibly allocated to tasks
across various jobs, but this flexibility also expands the search space and complexity.
While shop scheduling and PMSP are concerned specifically with machines, RCPSP
deals with a wider range of resources and constraints, offering even greater versatility in
scheduling, but at the cost of increased computational complexity.

2.1.1. Mathematical Representation

To describe JSSP, we will introduce the notation as seen in Table 2.1. Stochastic variables
will be elaborated on in Section 2.2. Using the objective function and the constraints, we
can introduce the scheduling notation introduced by Graham et al. (1977) in Equation
(2.1). The three fields «, §, v in Equation (2.1), separated by the pipe, can describe

Symbol || Description

J; Job j, where j € {0,...,n — 1} for n jobs
M, Machine k, where k € {0,...,m — 1} for m machines
oF Set of operations for job j
Oi; Operation 4 of job j
N Number of total operations (n - m)
m~(O;j) || The machine predecessor of operation O;;
my(0;;) || The machine successor of operation O
5ij Deterministic start time of operation O;;
Dij Deterministic processing time of of operation O;;
Cij Deterministic end time of operation O;j, ¢;; = si; + pij
M Denotes the machine that will perform operation O;;

Cmaz(T) || Deterministic makespan of a given schedule 7

Table 2.1.: Mathematical notation

many variations of the scheduling problem. Job-shop problems are defined by a J for «,
no additional constraints for # and v defines the objective function to optimize over -
in this case minimizing the makespan or ¢;,q,. Here, ¢pqz is the maximum completion
time for all operations, as we can see defined in Equation (2.2).

J||maz (2.1)



Formal Definition

Using the notation of the previous section, we will now declare a more formal statement.
Let there be a set of jobs J with n elements, where J; denotes the 4% job in that set.
There is also a set of machines M with m elements, where M;, denotes the k** machine
in that set, with each machine having a capacity of exactly 1 (that is, one operation
simultaneously). Each J; is a set of exactly m operations, given by O;. Operation i of job
J is given by O;;. We can include jobs with less than m operations by including operations
with processing time 0. There exists an order such that Oq; < O;; < O(i+1)]~ < Onj Vi €
Oj, Vj € J. This states that operation O;; precedes O(;41);. This ordering within a job
is called job sequence. The operation sequence on a machine, called machine sequence, is
unknown. The goal of JSSP is to find an ordering in this sequence such that it is optimal
given the metric over which it is optimized over. Each operation has a processing time
pij, that is zero or more. A feasible solution is called a schedule and is defined as an
ordering of operations per machine such that no cycles exist in the machine cliques, the
execution order of the operations per machine. We will see a graphical representation
of these precedence constraints in Section 2.1.2. The start times are chosen in such a
way that each operation is started as soon as possible. We assume that no blocking can
occur due to operations waiting to be processed, effectively simulating infinite machine
buffers. Summarizing the machine requirements:

- A machine can handle a single operation at the time;
- An operation cannot be interrupted during execution, i.e. no preemption;

- An operation cannot start if its predecessors have not yet been completed.

With as goal to construct a schedule with minimal makespan, using our newly introduced
notation we can now formally define this in Equation (2.2).

Cmaz = max {s;; + pi;} (2.2)
i=m—1
0<j<n



Illustrative Example

Consider a 3-3 problem, as seen in Table 2.2. With the job sequence visualized in Figure
2.1a, the different lines indicate the different jobs the operations belong to. Figure 2.1b
displays two potential schedules as Gantt charts, where the operations are plotted with
time on the horizontal axis and assigned machine on the vertical axis. Operations are
moved to the left as far as possible to make a compact schedule.

| Oo; Oy O
OiO (0a4) (17 1) (273)
Oil (07 3) (17 2) (27 5)
Oi2 (2a3) (074) (17 1)

Table 2.2.: Example problem instance with tuples (m;;, pij)

Given the two schedules in Figure 2.1b, we find that the second schedule has a shorter
makespan than the first. In the second schedule, Oy defines the makespan. Here Oo;
defines the start time as its machine predecessor. This is in turn defined by O as
its preceding job operation. Oj1; has a single predecessor, Og1, from which we start at
the beginning T' = 0. This path we have followed from the back towards the start of
the schedule is the critical path and is visualized in Figure 2.2. A critical path can
be decomposed into critical blocks, which defines sequence of operations on the same
machine; these critical blocks change when a machine finishes an operation and another
operation starts.
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(a) Three jobs with three operations (b) Two potential schedules

Figure 2.1.: Example problem with two example schedules

Schedule types

JSSP is N'P-hard in the strong sense, proven by Garey et al. (1976) with a reduction
from 3-partition. Looking at the previous example, it is difficult to see how this problem
explodes when n and m increase. We have seen previously that for a small number of
six jobs and six machines, the number of combinations is tremendous. Although (n!)™
is seen as a weak upper bound, it gives a good estimate of the order of magnitude. In

10



Makespan

Mg Opy ] :
My l Oy O1s
Mz ‘ Oz4 Ozg

Figure 2.2.: One of the two critical paths of second schedule in Figure 2.1b

our example, there will be a total of 216 possible combinations given machine and job
sequences assuming operations are started as soon as possible. It becomes evident that
we are only interested in schedules where there is no unnecessary delay between machine
operations - without this characteristic the search space would include infinitely many
options since we can always introduce some slack somewhere. This subset of solutions
we will look at are called active schedules (Conway et al., 1967).

Firstly, semi-active schedules ensure that no operation can be moved earlier by a
limited-left-shift, where each operation is shifted left as far as possible without altering
the order of operations on a machine or a job (Figure 2.3a). Narrowing further, active
schedules allow no operation to be shifted earlier by any left-shift move, meaning no
unnecessary idle time between operations (Figure 2.3b). Both types reduce the search
space, but active schedules are more constrained. We will find that in our implementation
of the search process, the constructed schedules will always meet the active schedule
criteria.
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(a) Limited left-shift operation (b) Left-shift operation

Figure 2.3.: Shift operators on schedules

This allows us to consider a finite set of active schedules, since there exists only one semi-
active schedule for each ordering of operations, and there are finitely many orderings.
However, this set is still extremely large and an exhaustive enumeration and comparative
evaluation are not feasible.

11



2.1.2. Disjunctive Graph Representation

It is common to model a problem instance as a disjunctive graph, as proposed by Roy and
Sussmann (1964). The graph will express both job precedence constraints and machine
precedence constraints in the form of conjunctive arcs and disjunctive edges respectively.
These definitions are symmetric to the job sequence and the machine sequence. A
conjunctive arc (4, ) in scheduling corresponds to the logical AN D operator; this arc
means that the operation cannot commence before the preceding operation is complete.
The undirected disjunctive edge corresponds to the logical OR operation and can be
interpreted as the fact that either of the two operations can start and sequentially the
other, but not both simultaneously. Which operation will precede the other has yet to
be decided by the search procedure.

We define the graph as G = (V, A, E) where V consists of a start vertex Vj, a sink
vertex V., and for each operation O;; a vertex V;;. The vertex set is described in Equation
(2.3).

m—1n—1
=(U Uwpuviuv (233)

i=0 j=0
The weight of the vertex will be set as its corresponding processing time p;;, and set to
0 for the dummy vertices. To construct the paths between the vertices, we include arcs
and edges with the sets A and E. The conjunctive arcs are all the arcs from the start
vertex to the first operation in a job; the arcs between operations in the same job; and
arcs from the last operation in a job to the sink vertex. For the start vertex to all the
first operations of all jobs, we have: (Vj, Vo;) Vj € [n]. The same is done for every last
operation of the job to the sink vertex: (Vi,;,Ve) Vj € [n]. Finally, all the arcs between
operations within a job can be added, specifically: (V;, Viy1;) Vj € [n],Vi € [m]. This

concludes A as described in Equation (2.4).

n—1 n—1 m—1n—1
A= JWevij)u J Vg, V) U U U (Vig, Vis1s) (2.4)
J=0 j=0 i=0 j=0

Disjunctive edges will initially be undirected. Every pair operation planned to be sched-
uled on the same machine will receive a disjunctive edge: {Vi;, Virj} if mij = my .

E= {{‘/ij?‘/;/j’} | i?i, € [m]a j?j, € [n]v mg; = mi’j/} (25)

Longest Path

Finding a feasible schedule means converting all edges from F in such a way that all
cliques that represent a machine become acyclic. After this we end up with a Directed
Acyclic Graph (DAG) where the edges in the graph are directed and no cycles exist.
The longest path in the DAG will represent the critical path of the schedule, and the
final operation of that critical path will define the makespan and therefore the quality
of the schedule. This critical path is defined in the graph using critical arcs. We can
find such a longest path using known algorithms such as Bellman-Ford, which finds the

12



Figure 2.4.: Disjunctive graph representation from example in Table 2.2.

longest path in O(V - E’) if a topological sorting of the graph is not possible (where
E' = E+ A, in this case). A topological sorting sorts the vertices of the graph in a linear
ordering such that all the precedence constraints of the DAG are maintained. With such
a sorting, a linear-time complexity algorithm can be used, such as a topological-based
dynamic programming method that can compute the longest path in O(V + E’). In this
research, we will use a variation of the topological-based method together with a linked-
list formulation. We make use of the fact that, for job-shop scheduling, any operation can
have at most two predecessors in the graph, simplifying the graph traversal significantly.
This formulation also computes the longest path in O(V + E').

2.1.3. Mixed Integer Programming Notation

Using the disjunctive graph representation introduced in Section 2.1.2 we can continue
to define a Mixed Integer Programming (MIP) model. The conjunctive and disjunctive
edges allow us to construct the constraints for the model. We refer to the following
definition for the MIP formulation of JSSP by Broek, van den (2009). An operation k
here is defined by its start time Sy and their disjunctive edges V{i,k} € D. The decision
variable x is then defined as follows.

1 if ¢ is scheduled before j on same machine
T —
“ 0 otherwise

The MIP will minimize the start time of the dummy vertex V., as seen in (MIP.1).
The constraints correspond to the conjunctive and disjunctive constraints introduced in
the graph representation. M equals the sum of all processing times, Equation (2.6).
Equation (MIP.2) depicts the interoperation constraints within a job as conjunctive
constraints where an operation cannot start until its predecessor is finished. Equations
(MIP.3) and (MIP.4) show the disjunctive constraints. Finally, (MIP.5) and (MIP.6)
denote the domains of the variables.
m—1n—1

M= pj (2.6)

i=0 j=0

13



minimize Se (
subject to Sk > Si + pi V(i, k) e E (
Sk > Si+pi — M(1—xi) V(i,k) e A (
i+ 1 =1 V{i,j} € A (MIP.4
i € {0,1} V{i,jl € A (
S; e RT (

Although this model describes an optimal solution exactly, in practice it is infeasible to
calculate it due to the number of constraints. From Equation (2.7) and Equation (2.8)
we find that the number of edges and arcs increases significantly for large instance sizes
and therefore the number of constraints in the MIP.

Al =n+ (n-m) (2.7)

n n-(n—1)
|E]—m~<2>—m-2 (2.8)
Given the use of decision variables, a branch-and-bound algorithm can be implemented,
but even so this formulation leads to long computation times for small instances. In
Chapter 4 we will instead look at local search methods that can quickly navigate this
vast search space and find objective values near the optimum, whereas MIP formulations
often strictly find global optimal objective values given the constraints. Variations of
MIP exist, such as moving the strict constraints into the objective function using the
Lagrangian relaxation. Even so, these exact methods will have an increased difficulty
navigation the increased search space of the stochastic variant of job-shop.

2.2. Stochastic Job Shop Scheduling

Let us turn our attention to the stochastic version of job-shop, Stochastic Job-Shop
Scheduling Problem (SJSSP). This generalization of the JSSP incorporates uncertainty
by introducing stochastic variables for one or more elements of the deterministic problem.
To see why this is useful, let us look at the concrete implementations of job-shop. More
often than not, the schedule can experience delays due to machine breakdowns, late
deliveries, human error, etc. If we can include these uncertainties in the schedule, the
schedule will be more robust and more applicable to real-world scenarios.

This uncertainty can be incorporated into different aspects of the model. Disruptions
can occur at a job level, e.g. when preconditions for a job are not met when the first
operation commences, affecting all the operations in the job. Disturbances can occur
across jobs, e.g. for all operations being handled on the same machine if it becomes
unavailable or breaks down. With all these uncertainties in potentially various different
aspects of the model, it becomes challenging to determine the makespan of the schedule,
since this depends on multiple stochastic variables. In this Section, we will extend the

14



SJSSP model from the previous Section to adequately justify the methods employed in
Chapter 4.

2.2.1. Stochastic Processing Times

For this research, we will limit the domain of uncertainty to the processing duration of
the operations. Although different probability distributions can be employed to better
represent the uncertainty concerning the execution of an operation, we will limit our-
selves to the normal distribution. Other options as probability distributions include the
Uniform, Exponential, 4-Erlang and Log-normal distributions. We refer to the thesis of
Passage (2016) for a conversion between these distributions and experiments on SJSSP
for different distributions.

We can introduce a stochastic factor in existing deterministic instances to include some
arbitrary variation in the problem instances. For deterministic instances, all operations
are defined by some processing time p;;. To introduce variability, we set the variance to
be some factor a of p;; and p;; as the mean, which results in Equation (2.9).

Py ~ N(p = pij,0® = a-pij) (2.9)

In the rest of this research we will assume that the probability distributions are known
and mutually independent. Having stochastic processing times also implies that all other
properties related to the processing times are also stochastic.

2.2.2. Expected Makespan

We extend the notation from Table 2.1 with the stochastic variables in Table 2.3. Since
the makespan, the start time of the sink vertex, now is a stochastic variable we need to
reformulate the makespan as the expected value of this variable, as depicted in Equation
(2.10) we now maximise over the start time of an operation including its stochastic
processing time.
Crnaz = E[il_nn?iil{Sij + P;;}] (2.10)
0<j<n

This lets us define the problem using Graham'’s three-field notation in Equation (2.11), as
we have seen for the deterministic version. We include the stochastic processing duration
P;;(0) for some probability distribution ¢ and minimize over the expeced makespan.

J‘Pij(a)‘cmam (2.11)

One of the methods to evaluate the expected makespan is called result sampling (van den
Akker et al., 2013). With result sampling, we sample from each probability distribu-
tion and calculate the start and completion times of all operations in order to find the
makespan. This makespan can be erratic based on the samples drawn from the different
distributions. To mitigate this, we repeat this procedure multiple times to average out

15



Symbol H Description

P Stochastic processing time of O;;

Sij Stochastic start time of operation O;;

Cij Stochastic end time of operation O;;, Ci; = S;j + Pj;
Chaz Expected makespan

Table 2.3.: Additional stochastic notation

this variability, where each repetition is a simulation. This Monte-Carlo-based proce-
dure is accurate for high simulation numbers but also computationally intensive, since
for every iteration the graph has to be traversed. A more detailed examination of result
sampling is presented in Section 4.2.2.

16



3. Literature Review

In this section we will explore existing methods that authors have used to address this
NP-hard problem. In Section 3.1 we will look at exact approaches and metaheuristics
used to solve the deterministic problem, after which we will look at the less-researched
stochastic problem in Section 3.2. Subsequently, we will explore work on the dynamic
makespan method as an alternative to Monte Carlo simulations in Section 3.3. We
conclude our review of the literature in Section 3.4.

3.1. Job-Shop Scheduling

Algorithms that can find good schedules for the Job-Shop Scheduling Problem (JSSP)
have been investigated for quite some time. Since Fisher and Thompson (1963) intro-
duced their famous JSSP problem instance with n = 10 and m = 10, there has been
a 25-year competition to solve this optimally, using mainly branch-and-bound methods
(Carlier and Pinson, 1989). More recently, methods such as heuristic rules and shift-
ing bottleneck procedures have taken favor over exact computation methods, as their
approximation nature allows for efficient searching. The shifting bottleneck procedure
is an iterative scheduling algorithm that sequentially identifies the machine causing the
most delay (the bottleneck) and optimally schedules it to improve the overall production
schedule. Today, other metaheuristic approximation algorithms, such as Simulated An-
nealing (SA), Tabu Search (TS), or Genetic Algorithms (GA), are the preferred method
of choice (Boukedroun et al., 2023).

Van Laarhoven et al. (1992) implemented Simulated Annealing for JSSP and proved
some fundamental properties about the neighborhood structure and convergence of the
algorithm. They showed, for example, that reversing a critical arc in a DAG can never
result in a cycle. The convergence of the annealing process was also described here using
Markov chains. A Markov chain describes a sequence of possible events in which the
probability of each event depends on the previous state. The performance of SA was
compared to the shifting bottleneck heuristics and showed significant improvements.
Simulated Annealing was also implemented by Yamada and Nakano (1996), enhancing
it with a shifted bottleneck procedure, experimentally showing that the proposed method
found near-optimal schedules for difficult benchmarks.

Zhang et al. (2008), more recently, implemented a Hybrid Simulated Annealing with
Tabu Search resulting in high-quality solutions in very short computation times, es-
tablishing 17 new upper bounds among the then unsolved problems in a short time.
Tabu Search is a metaheuristic optimization technique that guides local search methods
to escape local optima by keeping track of recently visited solutions, called the ”tabu
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list,” to avoid cycling back to them. It uses a memory structure to record and prevent
moves that would undo recent changes, allowing the search to explore new regions of the
solution space. With methods such as Tabu Search, Taillard (1994) stated that their
method is typically more efficient than shifting bottleneck procedures and outperforms a
recent Simulated Annealing approach. Moreover, Nowicki and Smutnicki (2005) showed
promising results with Tabu Search based on the big valley phenomenon, including new
theoretical properties of neighborhoods, showing unprecedented performance and qual-
ity.

Recently, Neural Networks are explored as an optimization technique for JSSP. Neural
networks, such as Graph Neural Networks (GNNs) that learn structural representations
of job-shop graphs, have been investigated to predict effective moves or to approximate
optimal schedules. A survey by Smit et al. (2024) examines how GNNs, particularly in
combination with deep reinforcement learning (DRL), are applied to various job-shop
scheduling problems (JSSPs). GNNs offer a flexible approach by representing scheduling
tasks as graph structures, allowing algorithms to capture complex relationships among
tasks and resources.

For a comprehensive review of recent advances and methodologies in deterministic
JSSP, including developments in hybrid algorithms and emerging artificial intelligence
applications, we refer to Boukedroun et al. (2023).

3.2. Stochastic Job-Shop Scheduling

For the Stochastic Job-Shop Scheduling Problem (SJSSP), different methods have been
used to deal with both the large search space and the added uncertainty. Ideally, opti-
mal schedules are to be found within reasonable time, and since we established that for
the deterministic variant this is already difficult, it is no surprise that many implemen-
tations in the literature use local search in one form or another, as exact methods are
practically infeasible. These metaheuristics are often combined with other techniques to
further speed up the search or decrease the search space such as Optimal Cost Budget
Allocation (OCBA), which is a statistical technique concerning the evaluation of the
candidate solution, which intelligently allocates the computational budget among can-
didate solutions by assigning more simulation runs to those with a higher likelihood of
being optimal (Yang et al., 2014). Another technique is Indifference Zone (1Z), where
the difference in quality of two solutions is significant if it is within a given parameter
range; otherwise, the decider is indifferent about the new solution (Lee et al., 2010). In
this section, we will look at how different metaheuristic approaches are applied in the
context of job-shop.

Evolutionary Optimization

Evolutionary Algorithms are widely applied to tackle SJSSP due to their effectiveness
in exploring large and complex search spaces. These algorithms are inspired by natural
evolution, simulating mechanics such as selection crossover and mutation to evolve a pop-
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ulation of candidates. For example, in the work by Horng et al. (2012), an Evolutionary
Strategy Ordinal Optimization (ESOQO) method is used to minimize the expected sum
of storage expenses and tardiness penalties in SJSSP with stochastic processing times.
In their approach, each candidate solution represents a possible schedule of jobs on ma-
chines. The algorithm begins with an initial population of randomly generated schedules.
During the selection phase, schedules are evaluated based on their performance under
uncertainty and the best performers are selected as parents. The crossover operator then
combines pairs of parent schedules to produce offspring by exchanging sequences of op-
erations, thereby inheriting features from both parents that may contribute to a better
schedule. Mutation introduces random changes to offspring schedules, i.e. by altering
the machine orderings, which helps maintain diversity in the population and prevents
premature convergence to local optima. Ordinal optimization is a technique used in
optimization to efficiently identify good enough solutions rather than the absolute best.
By focusing on selecting a high-ranking subset of options based on order rather than
precise numerical values, it reduces computation time and resources needed to reach the
desired results.

Yang et al. (2014) integrates (OCBA) into the ESOO algorithm to further enhance
performance. OCBA improves the efficiency of simulation-based optimization by allo-
cating more simulations to the most promising candidates. Their approach aimed to
minimize the expected sum of earliness and tardiness and showed improved convergence
rates and solution quality compared to strictly ESOO.

More recently, Horng and Lin (2022) proposed an Artificial Immune System integrated
with Ordinal Optimization (AISOO), combined with OCBA. The Artificial Immune Sys-
tem is supported by a rough estimate to determine a selected subset, after which OCBA
is utilized to look for near-optimal schedules. This was tested on medium-sized (6x6)
and large-sized (10x10) instances with a truncated normal, exponential, and uniform
probability distribution.

Yoshitomi (2002) designed a GA algorithm to approach SJSSP, where job processing
times are uncertain and follow probabilistic distributions. The GA is implemented to
handle variability by evolving schedules that can adapt to these uncertainties, with the
aim of minimizing job completion time and improving schedule robustness. Experimental
results demonstrate that the GA approach outperforms traditional methods, offering
more reliable schedules under stochastic conditions.

Lei (2011) extended the use of Genetic Algorithms and incorporated machine break-
downs using exponential processing times and non-presumable jobs, this work high-
lighted the importance of considering additional stochastic factors into the search pro-
cedure to generate more robust schedules.

In more recent work, Boukedroun et al. (2023) proposed a hybrid approach combining
Tabu Search with Genetic Algorithms. They study perturbations that affect the pro-
cessing times of jobs and show that a high value of the number of critical operations
is linked to a high variation of the makespan of perturbed schedules, making critical
operations not only good targets for optimizing but also a clue of the goodness of a
schedule considering stochastic and robustness measures. Additionally, they conducted
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an extensive literature review on both the deterministic and stochastic job-shop domain.

These Evolutionary Optimization techniques demonstrate the effectiveness of com-
bining metaheuristic algorithms with methods such as ordinal optimization, OCBA, and
genetic programming to tackle the complexities of SJSSP. By addressing uncertainties in
processing times and incorporating mechanisms to focus on computational efforts, these
methods offer promising solutions to the challenges inherent in stochastic scheduling
problems.

Ant colony / particle swarm optimization

Other metaheuristics have also been explored for the SJSSP, such as Ant Colony Opti-
mization (ACO) and Particle Swarm Optimization (PSO). These algorithms are inspired
by natural processes and have been adapted to address the uncertainties in scheduling
problems. ACO simulates the foraging behavior of ants by having artificial ants con-
struct solutions incrementally, guided by pheromone trails that represent the collective
learning of the colony; in SJSSP, ants probabilistically select the next operation to sched-
ule based on pheromone intensity and heuristic information. PSO, on the other hand,
mimics the social behavior of swarms like bird flocks or fish schools, where each particle
represents a potential schedule and adjusts its position in the solution space based on
its own experience and the best experiences of neighboring particles; in SJSSP, particles
share information to find robust schedules that perform well under uncertainty.

Horng and Lin (2015) introduced an Ant Colony System integrated with Ordinal Op-
timization (ACSOO). This method utilizes the multidirectional search capabilities of
ACO and the goal-softening approach of ordinal optimization to efficiently search for
high-quality schedules. By formulating the SJSSP as a constrained stochastic simula-
tion problem, ACSOO aims to find acceptable solutions within reasonable computation
times. In a subsequent study, Horng and Lin (2020) enhanced this approach by incor-
porating OCBA into the exploitation phase of the two-stage ACSOO algorithm, further
improving its performance and efficiency.

Zhang et al. (2012) proposed a two-stage PSO method for the SJSSP. The first stage
involves a performance estimate to guide the search, while the second stage employs
Monte Carlo simulations combined with OCBA to refine the solutions. This approach
takes advantage of the global search capabilities of PSO and the efficiency of OCBA to
handle the stochastic nature of the problem. This is extended by Araki and Yoshitomi
(2016), combining it with an uncertain environment, using Monte Carlo simulations to
address the stochastic programming aspects. Their method enhanced the PSO algorithm
by integrating stochastic evaluations directly into the particle update mechanisms. By
incorporating Monte Carlo simulations, they effectively estimated the expected perfor-
mance of schedules under uncertainty, allowing particles to adjust their positions based
on more accurate assessments of solution quality. This method outperformed the prior
implementation in terms of solution quality and computational efficiency, demonstrating
the potential of PSO in stochastic scheduling contexts.

20



Simulated Annealing

Simulated Annealing (SA) was introduced in around 1983 as a new approach to calculate
approximate solutions of combinatorial optimization problems. Simulated Annealing is
a metaheuristic technique inspired by the annealing process in metallurgy and finds its
approach from the Metropolis method, which calculates equilibrium states in systems
composed of interacting molecules. (Steinhofel et al., 1999).

Tavakkoli-Moghaddam et al. (2005) proposed a nonlinear mathematical programming
model for SJSSP, where a SA approach was used to improve the quality and performance
of an initial solution generated by a neural network. This hybrid approach allowed for
a more robust exploration of the solution space and improved the chances of finding
high-quality schedules.

van Blokland (2012) performed an extensive study on job-shop and blocking job-shop
scheduling using Simulated Annealing as local search procedure to determine an efficient
objective function, named result sampling which is based on Monte Carlo simulations.
Van Blokland implemented a variation of Simulated Annealing where a different cool-
down metric is used. They argued that including the quality difference of the two states in
the probability of acceptance, the behavior of accepting solutions will be unstable. They
opted to using solely the temperature as probability metric in accepting or rejecting
neighboring states. We will use the result sampling as the baseline in this thesis to
compare the method discussed in the next section. van Blokland (2012) also introduced
a Waiting left shift neighborhood operator for JSSP, where the aim is to reduce the
waiting time of the operation that causes the largest waiting time. This neighborhood
operator is not guaranteed to produce an acyclic disjunctive graph and has to be followed
by a feasibility check. They also incorporate cutoff sampling to better guide the local
search by removing schedules, comparing them with the lowest and highest makespan,
removing potentially erratic schedules from the search. This research was formalized
and published by van den Akker et al. (2013).

Our own Simulated Annealing framework and its implementation for (stochastic) job-
shop will be further elaborated on in Section 4.2.

3.3. Dynamic Makespan

Evaluating the objective function in a stochastic scheduling problem requires exten-
sive simulation, as we have seen. This quickly becomes a computational burden if you
want to accurately simulate by sampling the distributions, or when the problem in-
stances increase in size making the graph traversal slower. Passage (2016) addressed
this computational challenge in his thesis on Stochastic Parallel Machine Scheduling by
proposing methods to approximate the distribution of C,,4, using normal approximation
techniques. The key idea is to iteratively estimate the expected value and variances of
the maximum of two normally distributed random variables. This is then done itera-
tively to find the distribution for all starting times of the operations, assuming that the
resulting distribution from the maximization is also normally distributed. By adding
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the processing duration, which is also normally distributed, to this derived start time
we can calculate the completion time for every vertex in the graph.

This approximation method, coined dynamic makespan, significantly reduces compu-
tational effort compared to traditional simulation approaches. Instead of performing
numerous simulations to estimate the distribution of ¢4z, the normal approximation
provides arithmetic expressions to estimate the expected makespan and its variability.
Passage demonstrated that this method yields better results than using 1000 indepen-
dent simulations per iteration and consistently outperforms using 300 simulations per
iteration, all while requiring a fraction of the computational time. Furthermore, Pas-
sage provided methods for approximating a normal distribution from other types of
distribution, such as the uniform distribution, the Erlang distribution, and the expo-
nential distribution. The results of their research are the product of a local search
algorithm Variable Neighborhood Descent (VND). This method dynamically switches
between neighborhoods when local minima are encountered, increasing the chances of
finding a global optimum.

The foundation of this technique traces back to the work of Clark (1961), who intro-
duced the use of normal distributions to approximate the distribution of the completion
time in PERT networks. PERT (Program Evaluation and Review Technique) is a project
management tool used to plan, schedule, and control complex tasks by representing them
as a network of activities and events. It incorporates uncertainty in activity durations
by using probabilistic time estimates, allowing for the calculation of expected durations
and variances to estimate the project’s overall completion time. Clark’s method involves
calculating the mean and variance of activity durations and then using these parameters
to approximate the distribution of the project’s completion time, assuming the activity
durations are independent and normally distributed.

Pascual (2022) extended the work of Passage and performed a robustness study for
Stochastic Parallel Machine Scheduling. Here, 18 robustness measures were devised, two
of which were based on normal approximation methods, to quantify this robustness of a
schedule. These measures were categorized as quality robustness and solutions robust-
ness. The slack-based measures performed well together with the aforementioned normal
approximation. Pascual used the best performing measures in an Iterated Local Search
algorithm with as subroutine Variable Neighborhood Descent, proving the effectiveness
of the measures in a practical setting. This is especially significant given the fact that
parallel machine scheduling and job-shop scheduling have overlap in their problem def-
inition. The results found that the normal approximation quality robustness measures
performed among the best where weighted free slack measures performed overall the
worst.

3.4. Conclusion

In this chapter, we reviewed various approaches to tackle the Job-Shop Scheduling Prob-
lem (JSSP) and its stochastic variant (SJSSP), highlighting the challenges of both exact
and heuristic methods due to the combinatorial nature and computational complexity
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of these problems. For the deterministic JSSP, we observed a progression from early
exact approaches, such as branch-and-bound, to more flexible metaheuristic techniques,
including Simulated Annealing, Tabu Search, and Genetic Algorithms. These methods
have proven efficient in finding near-optimal solutions, balancing solution quality and
computational time.

In the stochastic domain, methods like Evolutionary Algorithms, Ant Colony Op-
timization, and Particle Swarm Optimization show promise in addressing uncertainty,
especially when paired with techniques like Optimal Cost Budget Allocation and Ordi-
nal Optimization to refine solution quality efficiently. We found that traditional Monte
Carlo simulations for stochastic variable calculation is difficult and explored heuristics
employed for Parallel Machine Scheduling by Passage (2016).

In summary, while metaheuristic algorithms effectively address the complexities of
stochastic scheduling, there are still improvements to be made in terms of computational
efficiency. We found that dynamic makespan was an effective method to calculate the
objective function in Stochastic Parallel Machine Scheduling. We will use this method
for the Stochastic Job-Shop Scheduling Problem to improve existing methods. This
adoption and integration with Simulated Annealing is further described in Section 4.2.2.
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4. Methodology

This chapter will detail the metaheuristic method adopted to tackle the complex nature
of stochastic job-shop scheduling. First, we will explore the method used by Passage
(2016) to approximate the expected makespan using normal distributions in Section
4.1. After which the search procedure, Simulated Annealing, will be described with its
various parts in Section 4.2.

4.1. Dynamic Makespan Approximation

Working with stochastic variables requires us to do more work in approximating the qual-
ity of the schedule. As we have seen, traditional methods of simulation (result sampling)
have proved computationally intensive as they require multiple traversals through the
graph. Having to repeat this procedure for every iteration of the local search algorithm
makes the entire search process cumbersome. To solve this, Passage (2016) proposed an
approximation procedure, called dynamic makespan. Here, the aim is to calculate the
starting times of all the vertices using a dynamic program. The start time of a vertex is
calculated by taking the maximum of the completion times of all its predecessors main-
taining the precedence relations. This maximization is over variables that are normally
distributed, and thus an approximation is done to determine the distribution of the re-
sult. Passage (2016) has implemented this method for Parallel Machine Scheduling but
is also applicable to job-shop scheduling as we will see.

The assumption that all the Probability Density Functions (PDFs) of the processing
times are normally distributed and not correlated allows for an aggregation of the ap-
proximated PDFs of all predecessors of an operation using the central limit theorem.
Specifically, for any operation O;;, we can approximate its completion time Cj; as the
maximum of both its machine predecessor and its job predecessor, which can be deter-
mined using the topological sorting, plus the processing time, Equation (4.1). If the
operation is either the first operation of the job or the first operation on the machine, its
predecessor will be the source dummy vertex, whose distribution will default to N(0,0)
as the base case of the recursion.

Cij = max{C(;_1);, Om<(oij)} + P (4.1)

4.1.1. Maximization of Normal Distributions

Suppose that we have two Normal distributions, N7, N5. We now want to calculate
the distribution X of the maximum of these two distributions, X = max{N7, N2}. We
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assume here that the random variable X is also normally distributed such that it can be
reused in further calculations. This allows us to define a method to recursively define
the start and completion times of the operation using successive maximization of the
normal distribution. We can define what the maximization of two normal distributions
looks like in Equation (4.2).

X ~ max{N(u1,0%), N (n2,03)} (4.2)

Nadarajah and Kotz (2008) propose a method to find the distribution of a min/max
of two normally distributed random variables. We use this method to compute E[X]
and E[X?2], with which we can infer 0. Let 6§ = /o] + 02 — 2pa102, also let ®(z)
and ¢(x) be the PDF and cumulative distribution function (CDF), respectively. We
assume that the correlation coefficient p is known and p = 0, defining the distributions
as uncorrelated. We find the calculation for px in Equation (4.3), the variance 03( is

calculated in Equation (4.5).

ELX] = m@(H o) + poa(BE) + (M) (43)
E[X? = (o + D)o (FE2)

+ (03 + )P H (1.4)
+ (1 + M2)9¢(%)

% = E[X?] - E[X)? (4.5)

Ilustrative Example

Consider the schedule in Table 2.2. Suppose that the processing times were to be nor-
mally distributed with a stochastic factor of a = 0.25, such that P;; ~ N (p;;,0.25 - p;;),
this updated problem definition is in Table 4.1 with tuples (1, f;j, afj).

Oy Oy Oy
O | (0,4,1.00) (1,1,0.25) (2,3,0.75)
O | (0,3,0.75) (1,2,0.50) (2,5,1.25)
Op | (2,3,0.75) (0,4,1.00) (1,1,0.25)

Table 4.1.: Stochastic problem instance with tuples (mjj, 115, agj)

Given the fOHOWing machine ordering: Mo = {0007001,012}, M1 = {010,0117022},
My = {Og2, 020,021} (top schedule of Figure 2.1b), we can calculate the start time and
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completion time of Osg as follows:

C1o =max{Cyo, 0} + N (1,0.25)
= Coo +N(1,0.25)
= N(5,1.25)

Coo = maX{O, O} + N(4, 1.00)
= N(4,1.00)

Co2 =max{0,0} + N (3,0.75) (4.6)
= N (3,0.75)

C = max{C1g, Co2} + N (3,0.75)
=max{N(5,1.25), N (3,0.75)} + N (3,0.75)
=Using Equation (4.7)
=N (5.050,1.104) + N(3,0.75)
=N (8.050, 1.854)

We expand the calculation of the maximum of the two normal distributions in Equation
(4.7). We find that the approximated normal distribution for Og is Pag ~ N (8.050, 1.854).

0= a%—i—a%—()%\/m% 1.414
p1—p2  5—3
AR 1.414
E[Og] = 5 - ®(1.414) + 3 - ®(—1.414) + 1.414 - ¢(1.414)
~5-0.9214 +3-0.0786 + 1.414 - 0.1468
~ 5.050
E[03,] = (1.25 + 5%)®(1.414) + (0.75 + 3%)®(—1.414) (4.7)
+ (5 + 3)0p(1.414)
~ 26.25 - 0.9214 4 9.75 - 0.0786 + 8 - 1.414 - 0.1468
~ 26.614
00, = E[03] — E[Og)?
~ 26.614 — 5.0507>
~ 1.104

When this calculation is performed for V51 (final operation), the procedure approximated
the following normal distribution: Ca; = N (14.469,2.667). When we compare this to 1
million Monte Carlo simulations, we find a mean of 14.241 and a variance of 3.099 from
the samples. We are approximately at 1.5% of the anticipated value and around 15% of
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the variance for this particular case. This approximated normal distribution compared
to the probability density function of the Monte Carlo simulations is visualized in Figure
4.1.

0.25¢ Dynamic Makespan

Result Sampling 1M

0.20}

0.15}

0.10}

0.05}

0.00}

8 10 12 14 16 18 20

Figure 4.1.: Probability Density Functions for Dynamic Makespan and the Result Sam-
pling simulations

This quick example hints at the advantage that this approximation method has over tra-
ditional simulation. The arithmetical approach to normal approximations allow for very
quick computation times, approximating Ci,q., as needed for the local search procedure.
In the next Section, we will explore how this dynamic makespan is incorporated as an
objective function into the Iterated Local Search / Simulated Annealing framework.

4.2. Simulated Annealing

Simulated Annealing (SA) is a powerful metaheuristic that can effectively explore large
and complex search spaces, making it an ideal candidate for the job-shop scheduling
problem. Simulated Annealing is classified as a local search algorithm, specifically a
type of improvement algorithm. These algorithms start with a random initial solution
and progressively enhance it, as opposed to constructive algorithms.

Local search algorithms usually try to find a state (e.g. a schedule) that is better
than the current state in its neighborhood. Two states are neighbors if a state can be
reached by a neighborhood operator N(G), changing a feature of the state in such a
way it impacts the quality of the state (e.g. the makespan) in a good or bad way.
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The quality of a given state is calculated using the objective function, defined by f(G).
A common local search algorithm is the Hill Climber algorithm, which simply accepts
any neighboring state that has an increased objective function (when maximizing). This,
however, often results in the algorithm converging into a local optimum in the optimality
landscape, and variations of Hill Climbing therefore allow the algorithm to escape this
local optimum.

Simulated Annealing does this by the Metropolis criterion, which introduces a con-
trolled acceptance of worse solutions based on the Temperature of the algorithm. In
this way, neighboring states with a lower objective function (i.e., representing a worse
schedule) may still be accepted with probability P, defining the Metropolis criterion in
Equation (4.8). Here, Af is the difference in the objective function and T defines the
temperature. When T' decreases, the chance of accepting delta also decreases, approach-
ing 0 for small values of T'.

P = AT (4.8)

The algorithm subsequently needs to decide whether or not this neighboring state, with
either a higher or lower objective function, is to be accepted as the new current state.
Together with the Metropolis criterion we define the acceptance function I' as follows,
with r being an uniformly distributed random variable between [0, 1]:

T(Af,T) = (4.9)

1 ifAf<OVr<e T
0 otherwise,

The temperature of the system is controlled by a cooling schedule, and in some cases also
by a heating schedule. The cooling schedule determines how quickly the temperature T
decreases over time, in turn affecting the likelihood of accepting worsening neighboring
states. Different cooling methods exist, cooling with a factor o being the most common.
This cool down factor is subsequently applied after () iterations to allow the algorithm
to explore more options with the current temperature.

Tk+1 = Osz (410)

In some variants, a heating schedule may also be used temporarily to escape challeng-
ing local optima by allowing the algorithm to "reheat” and increase T under certain
conditions. This enables SA to revisit parts of the search space it may have bypassed
due to premature convergence at a lower temperature. We find the general structure for
Simulated Annealing in Algorithm 1.

4.2.1. Neighborhood Operators

To navigate the search space of the problem, we need to be able to transform the cur-
rent state to another state that meets the requirements of the constraints. There can
be many different neighborhoods based on the type of neighborhood operator. These
neighborhood operators will strictly create neighboring states that respect the active
schedule definition from Section 2.1.
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Algorithm 1 General structure for simulated annealing

1: input: Ty, T}, = initial temperature and minimal temperature respectively

2 Q) = iterations per T’

3 a = cooling parameter «

4 G = initial state

5. G+ G > Initialize best state to G
6: T + Ty > Initialize temperature
7: while T' > T,,;, do

8 for Q; €[0,1,...,Q] do

9 n+ N(G) > select neighborhood operator
10: G+ n(G) > perform neighborhood operator
1 Af  J(G) - F(@)

12: if Af <0Vr<erf/T then

13: if f(G') < f(Gx) then

14: Gx «+ G’

15: end if

16: else

17: undo n(Q), restore G

18: end if

19: end for

20: T+ Tx«

21: end while
22: return G*

We have seen that a schedule can be seen as a graph with disjunctive and conjunctive
edges between the vertices (operations). Finding some orientation for the disjunctive
arcs directly translates to finding an ordering of operations on the machines. The neigh-
borhood operators for job-shop find their application here on this set of disjunctive arcs.
A transition to a neighboring state is generated by selecting two vertices v and w such
that v and w are successive operations on the same machine and (v, w) € A is an arc on
the critical path in G. We restrict ourselves to the swapping of arcs of vertices on the
critical path in the deterministic case, as motivated by Theorem 4.2.1 (Van Laarhoven
et al., 1992). Furthermore, Van Laarhoven et al. showed that the reversal of disjunctive
arcs on the longest path will always lead to feasible solutions.
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Theorem 4.2.1. Given a directed acyclic graph G = (V, E) and a critical path C C E,
a decrease in Cmae can only be achieved by swapping (O;,0i41) € C, where mip1 =
mi A\ Jix1 # J; 1 VO41,0; € C. In other words, the length of the critical path can only
be decreased by swapping vertices that are a subset of this critical path.

Proof. Proof by contradiction. Suppose the arc (O;, O;41), ¢ C, with length z (i.e. pro-
cessing time). There exists some other path of length y from O;41 to O;. Furthermore,
there is some length a, which denotes the sum of the weights from Vs to O;41 and length
b, the sum of the weights from O; to V.. We define the makespan as such, ¢pqr = a+y+b.
If we were to reverse the direction of (O;, O;4+1) to (O;y1, O;), we can distinguish between
two cases:

Case 1: © >y, then c,,,, =a+x+b>a+y+b = Cner. The makespan increases since
x > y because the longest path from V; to V., now includes z.

Case 2: © <y, then c,,, =a+x+b<a+y+b= cna. Butsince (0;,0;41) ¢ C
there exists some other path from O;11 to O; with a higher weight that includes y.

Therefore the longest path constitutes the makespan ¢4, and will remain to do so unless
a critical arc is reversed or an optimal ordering is already formed. This is only the case
in the deterministic setting since no single longest path exists in the graph for stochastic
processing durations. ]

Swap Operator

This allows us to formulate the neighborhood operators, given the deterministic setting,
N¥(G). This operator finds all eligible operators that can be swapped according to the
constraints by traversing the critical path and selecting adjacent pairs of operations that
are being processed on the same machine and are not part of the same job, we define
this neighborhood in Equation (4.11).

N(G) ={(Vi,Vj) € C | mi = mj A J; # Jj} (4.11)

The size of this neighborhood is dependent on the number of operations to be processed
on a machine, mg. We follow the definition of Van Laarhoven et al. (1992) to define the
size of this neighborhood in terms of N and my.

INS(@)] < i(mk—n <N-m (4.12)
k=1

Since we only have to iterate the critical path once to calculate N°(G), and the critical
path is at most N, the time complexity for this neighborhood operator is O(N).
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BlockSwap Operator

Nowicki and Smutnicki (1996) showed that N¥(G) can be limited to only the pairs of
operations at the beginning and end of each critical block. Large neighborhoods can
slow down the search algorithm since it spends more time looking at neighbors that
will not necessarily move the algorithm towards an optimum. Decreasing the size of
the neighborhood can help the algorithm converge faster, at the cost that it potentially
gets stuck in a local optimum. The blockswap-operator can be seen as a subset of the
swap-operator: NB(G) C N9(G). Specifically, having critical blocks [By, ..., B,] € C,
the first pair and last pair of every block Bs, ..., B._1 is swapped, along with the last
pair of By and first pair of B,. We then select a random candidate neighbor from this
reduced set of neighbors. The size of the neighborhood is the sum of these three parts,
determined in Equation (4.13) according to the article of Nowicki and Smutnicki (1996).

INP(G)| =min{1, B — 1}

r—1

+> min{2,|By| - 1} (4.13)
k=2

+ min{1,|B,| — 1}

We assume here that there is a single critical path; if there exist multiple critical paths
in G then N¥(G) will increase faster in size compared to N?(G). The computational
complexity of NB(G) remains O(N), since we can calculate candidate pairs for each
block in a scan over the critical path.

Stochastic Neighborhood

With stochastic variables, the notion of a critical path, and therefore the neighbor-
hoods, changes slightly. The critical path now depends on the samples taken from the
probability distributions. Consequently, for an identical topological sorting but varying
distribution samples, different critical paths can exist. To address this, we distinguish
between the two computational methods employed. For the dynamic makespan method,
we simply use the expected values of the distributions and thus compute a deterministic
critical path that is independent of the sample variations.

With result sampling, we execute the deterministic critical path operation multiple
times, sampling all processing time distributions during each iteration. For each of these
iterations, a neighborhood is calculated from the critical path found, aggregating the
results in a larger neighborhood. The advantage of this is that if a (part of a) critical
path occurs often in the different simulations, its potential swaps from the neighborhood
will have more presence in this aggregated neighborhood. If we in turn randomly pick
a random element from this aggregate neighborhood, the chances of picking a swap
occurring in multiple critical paths increase.
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4.2.2. Computational Methods Makespan

As we have seen, objective functions are essential in steering the local search algorithm
in the direction of the optimum. Since the objective function for job-shop means we
need to traverse the graph, determine the start and ending times for every operation to
find the makespan, we soon have a computationally intensive subroutine on our hands.
Especially with large problem instances that create large directed graphs. In this Section
we will look at the general structure of the objective functions, beginning with the most
basic case where we look at the deterministic makespan. Building on top of this we
introduce the result sampling objective function and the variation that incorporates the
earlier defined dynamic makespan.

Deterministic

Finding the makespan in the deterministic case is nothing more than finding the longest
weighted path from Vy to V. on the graph where the weights represent the processing
time p;;. Using a topological sorting 7 of graph G we can calculate the makespan in
linear time O(N), in terms of vertices and edges as shown by Adams et al. (1988). Topo-
logical sorting sorts the vertices of the graph in a list while maintaining the precedence
constraints set by the arcs in the graph. Finding such a sorting can be done in O(N)
by iterating over the vertices and its edges recursively until all the vertices are visited,
using for example Kahn’s algorithm (Kahn, 1962).

As we have seen in Chapter 2, we can make use of the fact that, using a machine
ordering, an operation has exactly two predecessors: a job predecessor and a machine
predecessor. Using this, we use a dynamic program to recursively walk back on these
machine and job predecessors until we reach the source. If we maintain which vertices
have already been computed using memoization, we can compute the makespan of the
graph in O(N) (Van Laarhoven et al., 1992). In addition, we maintain which predecessor
was chosen of a given vertex to reconstruct the critical path, also in O(V).

Result Sampling

With result sampling, a realization is drawn from each distribution P;;. These realiza-
tions can be used to calculate the makespan of the schedule in a deterministic fashion.
However, if you were to sample all these distributions and calculate the makespan, it
might be erratic compared to another sampling of all the distributions. The main idea
of result sampling is to perform this L times to average out this randomness. When L
approaches infinity, the mean of the makespan will approach the actual expected value
for this random variable, but this is in practice not feasible to calculate. Instead, mod-
erate values for L are chosen in search of a balance between computational speed and
accuracy.

A direct result from sampling the distributions L times is that there will also be L
critical paths in the graph. To this end, we simply store for each critical path the set of
potential neighbors. Using the aggregated set of these neighbors, we select a neighbor
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randomly, implicitly increasing the chance of a neighbor to be chosen randomly if the
pair occurred frequently in different critical paths.

Van Blokland (2012) and van den Akker et al. (2013) also incorporate methods like
cutoff sampling, to mitigate these instances that have large outliers to the expected
makespan to stabilize the local search. Here, the L different results are sorted by
makespan and a top and bottom percentage is disregarded in the acceptance function of
the local search procedure.

The complexity of result sampling then becomes O(L - N), since we perform a proce-
dure very similar to the deterministic objective function L times. This method, albeit
computationally intensive, gives a good representation of the actual probability distri-
bution of the makespan. We will use result sampling as a baseline measure to compare
the dynamic makespan method to assess its quality and computational performance.

Dynamic Makespan

As we have seen in Section 4.1, we have a method to approximate the distribution of the
makespan. This allows us to assess the quality of the schedule in O(NV) since the steps
required closely resemble that of the deterministic objective function, where instead now
we apply the normal distribution approximation method discussed.

It is this approximated normal distribution for the sink vertex that is used in the
objective function comparison Af, for this we simply take the expected values of the
distributions: Afpy = po — 1. Where f(G) ~ N(u1,03) and f(G') ~ N(uz,o3).
This method traverses the graph once and calculates the start-time distributions for all
the different operations. The expected values u of the two preceding distributions are
subsequently used to establish which of the two operations to chose as predecessor on
the critical path.

4.3. Iterated Local Search

What we will utilize for our experiments is Iterated Local Search (ILS). This is a modifi-
cation on a local search procedure that aims to escape local optima when no improving
neighbors are available. This is done by perturbing the state to some degree and sub-
sequently starting another local search procedure on that perturbed state. We employ
ILS with Simulated Annealing as the subroutine. Although SA has an exploration phase
when the temperature is high, it might still converge to a local optimum. To allevi-
ate this, we ”"reheat” the temperature to a value smaller than the original temperature
and perturb the solution by performing a random walk for some given number of itera-
tions. During a random walk, we apply the neighborhood operator and accept whatever
improving or worsening state returns. This procedure is described in Algorithm 2.
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Algorithm 2 General structure for iterated local search

1: input: 7 = rounds

2 G = initial state
3: z = Random Walk iterations per round
4: GZ —G" G

5. for r; € [0,1,...,7] do

6 G’ « SimulatedAnnealing(G;, ...)

7 if f(G') < f(G*) then

8

9

G*+ G
: end if
10: G; + RandomW alk(G*, z)
11: end for

12: return G*

4.4. Conclusion

This chapter outlined the methodology adopted to address the stochastic job-shop
scheduling problem using metaheuristic approaches. First, we explored the dynamic
makespan approximation method used in the work of Passage (2016) for Parallel Machine
Scheduling. This leverages normal distribution properties to estimate the makespan effi-
ciently. This technique offers a computational advantage over traditional result sampling,
which requires extensive Monte Carlo simulations for an accurate representation of the
expected makespan. We then describe the simulated Annealing approach, detailing the
neighborhood operators and objective functions used in the search process. Finally, we
introduced the Iterated Local Search framework, combining Simulated Annealing with
perturbation techniques to escape local optima.
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5. Experiments and Results

5.1. Experimental Setup

To conduct the experiments and perform the analysis consistently, we define the ex-
perimental setup in this section. To this end, we introduce stochasticity in existing
deterministic instances from the literature. Using these stochastic instances, we will test
three different types of objective functions: Deterministic (D), Dynamic Makespan (DM)
and Result Sampling (RSn), where n denotes the number of simulations. The two pro-
posed neighborhood operators Swap and BlockSwap are selected with equal probability
within each iteration of the search process.

The experiments will be conducted three times to average the stochasticity of the local
search and the average values will be reported. After the search procedure has finished,
the final schedule will be simulated using one million Result Sampling simulations. We
report per instance the mean p and standard deviation o, along with the 50", 70" and
90" percentile to assess the distribution of these simulations. Finally, the processing
time of the Iterated Local Search algorithm will be reported on in minutes.

The experiments are run on an Intel® Core" i7-13700H, performing at most five
experiments concurrently.

5.1.1. Problem Instances

In the literature, there are well-known JSSP problem instances, with numerous attempts
made to solve these instances optimally and efficiently. Some larger instances do not
have a known optimum, being bounded below and above by specific values. It is crucial
for the algorithm to perform adequately in various problem sizes. Different well-known
instances were used in this research and are presented in Table 5.1. A subset of these
instances are used to determine the parameters and are marked with x. We will group
these instances into three different sizes: small < 100, medium (100,225), and large
> 225.

5.1.2. Initial Schedule

From these problem instances, initial schedules must be constructed before the search
algorithms can iteratively improve upon this. There have been studies to show the
impact this initial solution has on the final solution of the search procedure. In some
cases, starting from a totally random solution, compared to a greedy initial solution, can
improve the final solution.
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Problem | Jobs Machines N ‘ Optimum

Fisher and Thompson (1963)

ft06 6 6 36 95
ft10 10 10 100 930
ft20* 5 20 100 1165

Adams et al. (1988)

abz05* 10 10 100 1234
abz06 10 10 100 943
abz07 20 15 300 656
abz08 20 15 300 | 645 — 665
abz09 20 15 300 | 661 —679

Applegate and Cook (1991)

orb01 10 10 100 1059
orb02 10 10 100 888
orb03 10 10 100 1005
orb04 10 10 100 1005
orb05 10 10 100 887
orb06 10 10 100 1010
orb07 10 10 100 397
orb08 10 10 100 899
orb09 10 10 100 934
orb10 10 10 100 944

Taillard (1993)

ta01* 15 15 225 1231
ta02* 15 15 225 1244
ta03 15 15 225 1218
tall* 20 15 300 | 1323 — 1361
tal2* 20 15 300 | 1351 — 1367
tal3 20 15 300 | 1282 — 1342

Table 5.1.: Different problem instances from literature used in this research, together
with their known deterministic optimum, or lower and upper bounds.
* instances used for determining search paramters.

Due to the high temperature in the early phases of Simulated Annealing the algorithm ex-
plores different states regardless of their quality, potentially moving away from a ”good”
initial state before converging back to some optimum. We have experimented with
starting the Simulated Annealing algorithm with an instance that was optimized with a
greedy Hill Climber, but this did not have significant effect on the final quality. For the
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experiments, we generated an initial solution from the problem instances by sequentially
directing the undirected machine arcs until all machine arcs are directed. By perform-
ing this operation sequentially, no cycles can be generated. This approach results in
a feasible solution; however, it may significantly deviate from the known deterministic
optimum.

5.1.3. Stochasticity

To introduce randomness in the problem instances, we introduce variance into the pro-
cessing duration. We have seen in Equation 2.9 how a factor « creates the variances as
a factor of p;;.

- Nos = Pjj ~ N(p = pij, 0% = 0.25 - pyj)

- Nso = Pij ~ N(p = pij, 0% = 0.50 - ;)

Parameters

The parameters were demonstrated to be most effective for problem instances of varying
sizes. To substantiate the selection of these parameters, preliminary experiments were
conducted on a subset of problem instances: ft20, abz05, ta01, ta02, tall, tal2. Each
experiment was conducted with five repetitions, and the averages of the results are
reported. Figure 5.1 summarizes these findings for the various parameters.

Temperature:
The temperature is directly related to the average delta Af of the problem instances.
Initially, we found a temperature of 40 to perform best for the different problem in-
stances. This value was found by looking at the average delta for the different instances.
In practice, the algorithm performs better with a temperature parameter specific to that
instance. For this, we sample the temperature by running a SA procedure for 15.000
iterations and recording this average delta. Using this dynamic temperature and the
intended maximum number of iterations @Qq; We determine () using Q) = %
Using test instances, we found that using the dynamic temperature the average makespan
decreased from 1535.81 to 1530.45, improving approximately 0.37%. We will use this
temperature method for every instance when initializing an experiment.

Tterations:

Using the dynamic temperature, we continue to determine the optimal value for Qmqz,
which directly influences the value for ). In Figure 5.1a, we observe that the average
makespan quickly decreases with increasing number of iterations, but appears to converge
on average after 125.000 iterations. We set Qinqr = 125.000 in our experiments as a good
trade-off in quality compared to computation times.
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ILS rounds:

We found that, in general, improvement among instances significantly decreases after 3
rounds, while the computation time increases linearly with each additional round. The
average makespan with increasing ILS rounds is shown in Figure 5.1b.

Simulated Annealing:
- Initial temperature: Ty = dynamic based on first 15.000 SA iterations

- Minimum temperature: Ty, = 1

Cooling factor: a = 0.95

Nested Iterations: @ = ﬁ

- Maximum Iterations: Qq: = 125.000
Iterated Local Search:

- Rounds: r =3

- Random Walk iterations: z =5

- Simulated Annealing reheating:
-To=5
- Qmaz = 95.000

1540 - 100 Average Makespan

Average Makespan
Average Calculation Time (seconds) Average Calculation Time (seconds)

1520 1430 200
-80

1500 1428
-60

1480
1426 1258

Average Makespan
Seconds
Average Makespan

-40
1460 -100

1424

1440 -20

1422 -50

1420

50000 100000 150000 200000 250000 300000 2 4 6 8 10
Rounds

(a) Average makespan for different values of (b) Average makespan for different values of
Qmaz, using a dynamic temperature com- r, using a dynamic temperature compared
pared against calculation time in seconds. against calculation time in seconds.

Figure 5.1.: Preliminary results for the different parameters

38



5.2. Results

The experimental results for different instances, objective functions, and values for « are
described in the tables in Appendix A. The summary of these results are found in Table
5.2, where the average percentual increase over all instances is reported together with the
average time 7T in minutes. We will compare our findings with the deterministic objective
function and use these values as a baseline. We separate these findings according to the
size of the instance in Table 5.3.

5.2.1. Deterministic Performance

The results clearly show that the deterministic objective function performs well on all
problem instances. The deterministic objective function did not take the variance of the
processing durations into account but still performed relatively well compared to the
computational methods that did inlucde this variability. This allowed the deterministic
method to compute fastest compared to the other methods, where the quality of the
solutions is only around 2 percent from the average. The average makespan found is
comparable to somewhere between RS05 and RS50. The fact that the deterministic
method performs so well is possibly due to the relatively small number of variations in
the problem. Even for a = 0.50, the deviations from the probability distributions remain
fairly small. Given the fact that the average processing duration for all instances used
in the experiments is 46.59, we would on average have an average standard deviation of
3.41 and 4.83 for a = .025 and « = 0.50, respectively, which is only around 7.3% and
10.4% of this average mean.

5.2.2. Dynamic Makespan Performance

The dynamic makespan method shows a slight increase in computation time, needed
to perform the maximization calculations on the normal distributions. We find that
the solutions found by DM are less than 1% from the optimal on average. There is
also a significant decrease in this percentual average between o« = 0.25 and o = 0.50.
The increased uncertainty, in the form of larger standard deviations on the normal
distributions, results in a higher quality schedule when compared to other the other
methods. Dynamic makespan performs somewhere between RS05 and RS50 for @ = 0.25
and is superior to RS100 with o = 0.50 in all but instance types except for small
instances. DM outperforms the deterministic method and is significantly faster than
the result sampling methods. Table 5.3 gives us insight in how the method performs
on different input sizes. DM outperforms RS100 in both medium and large problem
instance sizes.

5.2.3. Result Sampling Performance

Result sampling is clearly more computationally intensive. The increase in the com-
putation time increases linearly with the number of simulations and matches the time
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complexity O(L - N). As expected, the quality of the solutions found increases when
more simulations are performed per iteration. RS100 outperforms all other methods for
a = 0.25, but takes on average 50 times longer compared to the deterministic objective.
This trade-off in computation time and simulations is visualized in Figure 5.2. The
dynamic makespan average makespan and computation time is displayed as horizontal
lines, while the result sampling average makespan and computation time is visualized for
different simulation numbers. We can see that for a larger alpha value, DM outperforms
RS100, while for the smaller alpha value, DM seems to perform comparable with RS40.

o || Po% Po% Po% T

D Nos || 238 226 210  47.70
Niso || 261 248 227  39.20
avg. || 249 249 218  43.45

DM Ny || 1.04 1.00 0.96  53.09
Nso || 055 051 046  47.90
avg. | 080 0.80  0.71  50.49

RS05 MNas || 322 323 325  158.00
Nio || 624 636 655  147.79
avg. | 4.73 473 490  152.89

RS50 Ao || 0.64  0.65  0.68 1208.56
Nso || 178 1.82 259  1093.76
avg. | 121 121  1.64 1151.16

RS100 My || 023 025  0.29 2331.93
Nio || 0.87 092 099 2093.31
avg. || 055  0.55  0.64 2212.62

Table 5.2.: Average increase in percentiles and time in seconds from the tables in Ap-
pendix A.
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v

Small Medium Large
a Pso% Pio% Poo% T Pso% Pio% Poo% T Pso % Pro%  Poo % T

D Nas 2.70 2.56 2.37 29.85 2.11 1.98 1.78 51.61 1.91 1.84 1.74 90.07
Nso 2.95 2.79 2.54 23.92 1.46 1.39 1.25 50.98 2.47 2.38 2.22 70.67
avg. 2.83 2.83 2.45 26.88 1.78 1.78 1.51 51.29 2.19 2.19 1.98 80.37

DM Nos 1.13 1.10 1.07 37.14 1.97 1.89 1.76 65.13 0.55 0.51 0.48 87.12
Nso 0.94 0.87 0.79 30.45 -0.00 0.00 0.00 66.15 0.00 0.00 0.00 81.76
avg. 1.04 1.04 0.93 33.80 0.98 0.98 0.88 65.64 0.27 0.27 0.24 84.44

RS05  Nas 2.27 2.26 2.25 103.72 | 4.35 4.39 4.46 195.27 | 4.97 5.00 5.06  273.90
Nso 5.00 5.10 5.25 89.63 7.30 7.48 7.75 199.50 8.81 8.97 9.19  265.78
avg. 3.63 3.63 3.75 96.67 5.83 5.83 6.10 197.39 6.89 6.89 713 269.84

RS50  Nas 0.47 0.47 0.49 769.86 0.67 0.67 0.68 154217 | 1.09 1.13 1.21  2133.75
Nso 0.88 0.90 2.12 667.17 1.24 1.36 1.53  1500.96 | 3.65 3.73 3.83 1943.13
avg. 0.67 0.67 1.30 718.52 0.96 0.96 1.10  1521.56 | 2.37 2.37 2.52  2038.44

RS100 Nas 0.30 0.32 0.35 1508.81 | 0.00 0.00 0.00  2987.59 | 0.15 0.17 0.23  4065.19
Nso 0.13 0.14 0.18  1283.50 | 0.69 0.84 1.09  3043.60 | 2.68 2.74 2.82 3622.69
avg. 0.21 0.21 0.26 1396.16 | 0.35 0.35 0.54 3015.59 | 141 1.41 1.52 3843.94

Table 5.3.: Average increase from percentiles found and processing time split on instance size. Percentual increases and
computation times are averaged from the tables in Appendix 4.5.
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6. Conclusion

6.1. Summary

In this thesis, we explored the Stochastic Job-Shop Scheduling Problem where the pro-
cessing times are modeled as stochastic variables. We aimed to investigate whether an
approximation heuristic could significantly decrease computation times and increase the
quality. We compare this to traditional Monte Carlo simulation, which requires multiple
graph traversals per local search iteration and becomes computationally difficult with
large simulation numbers.

To this end we extended the dynamic makespan method proposed by Passage (2016)
for parallel machine scheduling. With dynamic makespan, we approximated the normal
distribution of each operation as a maximization of both its machine and its job pre-
decessor. Using this, the distribution of the sink vertex can be calculated and thus the
makespan. We performed preliminary tests to determine the search parameters. Using a
dynamic temperature for Simulated Annealing based on the average delta of a problem
instance. We also determined which number of rounds for Iterated Local Search would
best meet the decreased makespan and increased computation time considerations. Two
different neighborhood operators were proposed, and their time and size complexity were
analyzed. The search procedure was performed on well-known job-shop instances from
literature, modified to include the uncertainty in processing durations.

6.2. Conclusion

This goal of this research was to implement a local search heuristic that could ade-
quately improve existing local search methods and deal with a stochastic environment.
We have found that the dynamic makespan method is computationally comparable to
the deterministic makespan method, while being significantly more effective, outper-
forming all other objectives when there is much deviation in the distributions. The
additional arithmetic operations to approximate the normal distributions have little ef-
fect on the computation time, showing only a slight increase. Including the variability of
the underlying distributions resulted in a lower average makespan. Computationally DM
performed faster than the result sampling methods, which showed a linear correlation in
the computation time compared to the number of simulations.

We have concluded from the results that the amount of uncertainty introduced could
have been higher to further distance the performance of DM from other methods, this
by applying the stochastic factor to the standard deviation, for example (Pascual, 2022).

We have successfully shown the potential of normal approximation heuristics for local
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search algorithms in the context of stochastic job-shop scheduling. Including such a
heuristic will significantly decrease computation times compared to traditional sampling
methods.

6.3. Future Research

Predecessor selection with DM

Within Simulated Annealing, the predecessor for a given operation is chosen depending
on what objective function is selected. These predecessors are then used to reconstruct
the critical path after the graph has been traversed from the sink to the source. For the
deterministic objective function, we simply look at which of the two completion times
of the predecessors is higher and store that operation. For Result Sampling we perform
the same technique multiple times with different samples from the distributions. For
Dynamic Makespan we look at the expected values of the normal distributions, which
neglect the information given by the variance. Including this variance in the predecessor
decision process can potentially increase the robustness of the final schedule, and it would
be interesting to explore methods to include this using methods like the KL-divergence,
for example, as a measure of how different a distribution @ is from another distribution
P.

Result Sampling optimization

Result Sampling is a computationally intensive method to calculate the quality of a
given schedule. When simulating a neighboring state within the Simulated Annealing
procedure, we can determine the A value needed in advance to accept the state with
the Metropolis criteria. Given a neighboring state G’, we could already get a sense of
f(G") and what value it will converge to with smaller iteration numbers. If this number
significantly deviates from the required value needed by the Metropolis criteria, we can
cancel the simulation entirely and mark the neighbor as not accepted (de Bruin et al.,
2023). This will especially speed up Result Sampling with higher simulation counts, i.e.
RS100.

Partial graph traversal

After the application of a neighborhood operator, the start and end times of operations
are recalculated by traversing the graph or linked-list data structure, this is because the
change in machine order can have effect on the start times of other operations. However,
it can never have an effect on the operations that precede these changed operations in
the topological sorting. Since the graph is recalculated for every iteration of the search
algorithm and potentially many different times for Result Sampling per iteration, it can
be very effective to recalculate parts of the graph instead of the entire graph. Especially
if the graph has a large number of vertices, this pruning step can significantly increase
performance.
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Stochastic sources

Currently we only work with processing durations that are normally distributed in the
model. Passage (2016) also proposes methods to approximate uniform, exponential,
and Erlang distributions, and it would be interesting to examine the effects of these
distributions on the performance of the dynamic makespan objective function. It may
additionally be interesting to measure the robustness of a schedule given different types
of uncertainty such as machine breakdown, delaying all the operations for that machine.
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A. Tabulated Experimental Results For
All Problem Instances

The following tables show the experimental results of the Iterated Local Search algo-
rithm. These are the result of one million Result Sampling simulations performed on
the most optimal schedule found by the search algorithm. The experiment was repeated
five times. We report 50, 70*" and 90" percentiles of the results in Table A.1, A.2 and
A.3, together with the computation times in seconds in Table A.4.
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D DM RS05 RS50 RS100
o Ps Pro Py Pso Pro Poo Ps Pro Pyo Ps Pro Py Pso Pro Py
abzb  MNas 1352.54 1382.10 1426.60 1340.34 1371.46 1418.33 | 1354.34 1386.76 1435.72 1338.92 1370.86 1419.16 1333.58 1365.82 1414.50
+1.42% +1.19% +0.85% | +0.51% +0.41% +0.27% | +1.56% +1.53% +1.50% +0.40% +0.37% +0.33% | — — —
Nso 1508.10 1564.22 1648.61 1502.39 1559.76  1646.39 | 1518.48 1577.60 1666.96 1498.54 1556.93  1645.06 1484.34 1542.28 1630.24
+1.60% +1.42% +1.13% | +1.22% +1.13% +0.99% | +2.30% +2.29% +2.25% +0.96% +0.95% +0.91% | — — —
abz6  MNas 1062.86 1086.91 1123.01 1031.18 1056.99 1095.99 | 1040.94 1066.83 1105.67 1024.04 1050.03 1089.19 1022.88 1049.09 1088.61
+3.91% +3.60% +3.16% | +0.81% +0.75% +0.68% | +1.77% +1.69% +1.57% +0.11% +0.09% +0.05% | — — —
Nso 1201.36  1248.14 1318.18 1155.96  1204.06 1276.48 | 1185.04 1235.12 1310.91 1137.95 1186.51 1260.12 1136.94 1185.74 1259.76
+5.67% +5.26% +4.64% | +1.67% +1.54% +1.33% | +4.23% +4.16% +4.06% +0.09% +0.07% +0.03% | — — —
abz7  MNas 757.59 768.95 786.19 745.93 757.18 774.38 780.40 793.07 812.49 756.82 768.83 787.28 749.08 760.83 778.91
+1.56% +1.55% +1.53% | — — - +4.62% +4.74% +4.92% +1.46% +1.54% +1.67% | +0.42% +0.48% +0.59%
Nso 860.98 882.37 914.88 842.84 864.71 898.42 921.52 947.01 985.98 872.24 894.80 929.39 862.09 884.95 920.13
+2.15% +2.04% +1.83% | — — - +9.34% +9.52% +9.75% +3.49% +3.48% +3.45% | +2.28% +2.34% +2.42%
abz8 MNas 766.37 777.78 795.06 763.25 774.92 792.73 805.78 818.41 837.70 776.85 789.70 809.49 766.87 779.06 797.60
+0.41% +0.37% +0.29% | — — — +5.57% +5.61% +5.67% +1.78% +1.91% +2.11% | +0.47% +0.53% +0.61%
Nso 873.61 895.12 927.73 868.90 891.28 925.36 935.35 960.72 999.32 902.69 926.68 963.28 892.85 916.97 953.89
+0.54% +0.43% +0.26% | — — — +7.65% +7.79% +7.99% +3.89% +3.97% +4.10% | +2.76% +2.88% +3.08%
abz9  MNas 801.16 813.28 831.63 791.36 803.91 822.98 815.83 828.79 848.56 790.11 803.39 823.66 782.89 795.56 814.85
+2.33% +2.23% +2.06% | +1.08% +1.05% +1.00% | +4.21% +4.18% +4.14% +0.92% +0.98% +1.08% | — - —
Nso 908.53 930.98 965.24 871.16 893.76 928.24 972.28 999.82 1041.84 917.01 941.62 979.14 902.32 926.03 962.20
+4.29% +4.17% +3.99% | — — — +11.61% +11.87% +12.24% | +5.26% +5.36% +5.48% | +3.58% +3.61% +3.66%
ft06 Nas 59.32 61.30 64.26 59.01 61.01 64.05 59.75 61.79 64.85 59.13 61.12 64.10 58.91 60.92 63.92
+0.69% +0.62% +0.52% | +0.16% +0.15% +0.19% | +1.42% +1.43% +1.45% +0.37% +0.33% +0.28% | — - —
Nso 65.77 69.63 75.40 65.42 69.35 75.24 66.39 70.48 76.63 65.59 69.56 75.54 65.31 69.18 75.01
+0.71% +0.65% +0.53% | +0.17% +0.24% +0.31% | +1.65% +1.88% +2.17% +0.44% +0.55% +0.72% | — - —
ft10 Nas 1077.94 1101.72 1137.44 1061.65 1085.43 1121.50 | 1050.44 1074.06 1109.70 1032.88 1056.94 1093.14 1026.74 1050.64 1086.60
+4.99% +4.86% +4.68% | +3.40% +3.31% +3.21% | +2.31% +2.23% +2.13% +0.60% +0.60% +0.60% | — - —
Nso 1211.32  1256.81 1325.20 1166.84  1210.87  1277.65 1221.00 1268.75 1340.45 1175.48 1222.30 1293.66 1157.88 1203.85 1273.49
+4.62% +4.40% +4.06% | +0.77% +0.58% +0.33% | +5.45% +5.39% +5.26% +1.52% +1.53% +1.58% | — - —
t20 Nas 1317.88  1344.15 1383.45 1251.14  1278.55  1320.77 | 1286.85 1313.79 1354.69 1255.51  1281.68 1321.69 1246.65 1272.75 1312.84
+5.71% +5.61% +5.38% | +0.36% +0.46% +0.60% | +3.23% +3.22% +3.19% +0.711% +0.70% +0.67% | — - —
Nso 1464.09 1515.05 1591.32 1393.00  1441.97 1516.00 | 1465.14 1520.62 1604.88 1401.18  1452.80 1531.36 1386.33 1437.51 1515.51
+5.61% +5.39% +5.00% | +0.48% +0.31% +0.03% | +5.68% +5.78% +5.90% +1.07% +1.06% +1.05% | — — —

Table A.1.: Computational results for different instances, objective functions and alpha values.

Reporting the 50t", 70" and 90" percentiles.
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D DM RS05 RS50 RS100
o Pso Pro Poo Pso Pro Poo Pso Pro Poo Pso Pro Py Pso Pro Pyo
orb01  ANas 1196.17 1223.63 1264.61 1216.45 1245.15 1287.97 1198.29 1226.06 1267.56 1178.18 1205.82 1247.19 1181.76 1209.78 1251.44
+1.53% +1.48% +1.40% | +3.25% +3.26% +3.27% +1.711%  +1.68% +1.63% | — — - +0.30% +0.33% +0.34%
Nso 1339.04 1391.65 1470.00 1338.30 1389.29 1465.97 1411.81 1470.17  1558.24 1324.56 1377.73 1457.38 1313.55 1366.36 1445.16
+1.94% +1.85% +1.72% | +1.88% +1.68% +1.44% +7.48% +7.60% +7.82% | +0.84% +0.83% +0.85% — — —
orb02  MNas 983.62 1006.71 1041.66 | 964.66 988.35 1025.05 | 991.96 1016.50 1054.00 | 971.79 995.74 1032.35 974.79 998.77 1035.10
+1.97% +1.86% +1.62% | — — - +2.83% +2.85% +2.82% | +0.74% +0.75% +0.71% +1.05% +1.05% +0.98%
Nso 1111.74 1156.03 1222.96 1087.11 1129.66 1194.79 | 1153.95 1204.62 1282.49 1092.38 1135.82 1202.02 1094.07 1136.57 1201.50
+2.27%  +2.33% 4+2.36% | — — — +6.15% +6.64% +7.34% | +0.48% +0.55% 4+0.61% 40.64% +0.61% +0.56%
orb03  MNas 1128.11 1152.83 1189.76 1117.63 1141.35 1177.02 | 1156.86 1183.20 1222.73 1130.57 1156.55 1195.60 1148.11 1174.92 1215.19
+0.94% +1.01% +1.08% | — — - +351% +3.67% +3.88% | +1.16% +1.33% +1.58% +2.73% +2.94% +3.24%
Nso 1268.86 1316.74  1388.17 1275.77 1326.62 1403.56 1350.78 1403.77 1483.68 1271.92 1319.85 1392.43 1257.43 1305.06 1376.77
+0.91% +0.89% +0.83% | +1.46% +1.65% +1.95% +7.42% +7.56% +7.77% | +1.15% +1.13% +1.14% — — —
orb04  MNas 1119.11 1144.07 1181.51 1100.64 1127.21 1167.45 | 1122.58 1150.22 1191.67 1103.41 1130.38 1171.04 1098.65 1126.80 1169.18
+1.86% +1.53% +1.20% | +0.18% +0.04% - +2.18% +2.08% +2.07% | +0.43% 4+0.32% +0.31% — — +0.15%
Nso 1250.83 1298.86  1371.00 1231.47 1280.62 1354.50 1307.47 1362.54  1445.73 1222.33 1273.04 1349.15 1222.43 1273.69 1350.76
+2.33% +2.03% +1.62% | +0.75% +0.60% +0.40% +6.96% +7.03% +7.16% | — — — +0.01% +0.05% +0.12%
orb05 MNas 982.28 1004.58  1038.15 | 974.08 996.58 1030.46 | 986.89 1009.69 1044.16 | 976.76 1000.14 1035.39 973.62 996.64 1031.27
+0.89% +0.80% +0.75% | +0.05% — — +1.36% +1.32% +1.33% | +0.32% +0.36% +0.48% — +0.01% +0.08%
Nso 1104.12 1146.53 1210.47 1096.86 1139.28 1203.56 | 1144.42 1190.67  1260.60 1126.18 1171.91 1440.46 1094.44 1138.98 1206.45
+0.88% +0.66% +0.57% | +0.22% +0.03% — +4.57% +4.54% +4.74% | +2.90% 42.89% +19.68% | — — +0.24%
orb06  MNas 1149.97 1174.56 1211.88 1129.24 1154.02 1191.39 1129.63 1155.11 1193.55 1102.24 1127.22 1165.17 1102.94 1128.12 1166.41
+4.33% +4.20% +4.01% | +2.45% +2.38% +2.25% 4+2.49%  +247% +2.44% | — — — +0.06% +0.08% +0.11%
Nso 1294.29  1341.39 1412.45 1247.38 1292.63 1361.46 1292.15 1341.38  1416.00 1242.83 1290.10 1361.75 1237.11 1283.05 1352.65
+4.62%  +4.55% +4.42% | +0.83% +0.75% +0.65% +4.45% +4.55% +4.68% | +0.46% +0.55% +0.67% - — —
orb07  MNas 441.73 451.65 466.78 435.39 445.30 460.51 446.58 456.98 472.76 436.36 446.42 461.80 437.38 447.64 463.32
+1.46% +1.43% +1.36% | — — — +257% +2.62% +2.66% | +0.22% +0.25% +0.28% +0.46% +0.53% +0.61%
Nso 499.46 518.29 547.10 489.15 507.92 536.48 513.64 533.64 564.43 511.88 531.78 562.74 494.39 513.70 543.17
+2.11% +2.04% +1.98% | — — — +5.01% +5.06% +5.21% | +4.65% +4.70% +4.90% +1.07% +1.14% +1.25%
orb08  Nas 1052.79 1076.58 1112.33 1018.12 1041.55 1077.79 1027.14  1051.91 1089.60 1003.11 1027.75 1065.15 996.24 1020.38 1057.12
+5.68% +5.51% +5.22% | +2.20% +2.07% +1.95% +3.10% +3.09% +3.07% | +0.69% 4+0.72% +0.76% - — —
Nso 1182.33 1227.00 1294.37 1153.94 1197.82 1264.43 1172.93  1220.31 1292.71 1133.04 1177.41 1244.78 1140.15 1185.04 1253.32
+4.35% +4.21% +3.98% | +1.84% +1.73% +1.58% +3.52% +3.64% +3.85% | — — — +0.63% +0.65% +0.69%
Table A.2.: Computational results for different instances, objective functions and alpha values. Reporting the 50th, 70" and 90" percentiles.
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D DM RS05 RS50 RS100
o Pso Pro Pyo Pso Pro Pyo Pso Pro Pyo Pso Pro Py Pso Pro Poo
orb09  MNas 1029.15 1052.54 1087.86 1016.45 1041.42 1078.90 1036.66 1062.28 1100.82 1013.48 1038.98 1077.11 1007.62 1032.39 1069.69
+2.14%  +1.95% +1.70% +0.88% +0.87% +0.86% +2.88% +2.90% +2.91% | +0.58% +0.64% +0.69% | — — —
Nso 1158.34 1202.51 1269.09 1119.84 1165.95 1236.15 | 1184.13 1234.50 1310.32 1135.69 1183.27 1255.28 1125.26 1173.70 1246.89
+3.44%  +3.14% +2.66% — — — +5.74%  +5.88% +6.00% | +1.42% +1.49% +1.55% | +0.48% +0.66% +0.87%
orb10  MNas 1053.86  1076.17 1110.22 1052.63 1075.76 1111.14 1050.57 1074.02 1109.84 1040.17 1062.89 1097.31 1035.81 1058.61 1093.22
+1.74%  +1.66% +1.56% +1.62% +1.62% +1.64% +1.42% +1.46% +1.52% | +0.42% +0.40% +0.37% | — — —
Nso 1193.23 1236.18 1301.69 1187.67 1233.03 1302.40 1216.17 1263.05 1334.25 1176.75 1220.65 1287.79 1165.23 1209.19 1276.32
+2.40%  +2.23% +1.99% +1.93% +1.97% 42.04% +4.37%  +4.45% +4.54% | +0.99% +0.95% +0.90% | — — —
ta01l Nas 1407.03  1431.63 1469.06 1403.25 1428.61 1467.07 1447.74  1475.52  1517.87 1388.26  1415.17 1456.31 1381.72 1407.97 1448.44
+1.83% +1.68% +1.42% +1.56% +1.47% +1.29% +4.78%  +4.80% +4.79% | +0.47% +0.51% +0.54% | — — —
Nso 1610.40 1657.20 1728.19 1583.34 1631.28 1704.21 | 1692.89 1746.78 1829.08 1610.72 1660.24  1735.66 1589.94 1639.54 1716.36
+1.71%  +1.59% +1.41% - — — +6.92% +7.08% +7.33% | +1.73% +1.78% +1.85% | +0.42% 4+0.51% +0.71%
ta02 Nas 1414.82  1439.94 1478.07 1403.56 1429.40 1468.79 1430.67 1458.66  1501.32 1383.51 1409.58  1449.30 1377.75 1404.44 1444.97
+2.69% +2.53% +2.29% +1.87% +1.78% +1.65% +3.84% +3.86% +3.90% | +0.42% +0.37% +0.30% | — — —
Nso 1608.01 1655.45 1727.48 1584.16 1630.70 1701.55 | 1674.35 1727.50 1808.71 1587.18 1638.12 1716.24 1584.76 1635.10 1712.24
+1.51% +1.52% +1.52% - — — +5.69% +5.94% +6.30% | +0.19% +0.46% +0.86% | +0.04% +0.27% +0.63%
ta03 Nas 1395.08  1419.69 1456.65 1404.44 1429.29 1467.22 1431.43 1458.66  1500.38 1385.85 1411.51 1450.47 1370.52 1395.57 1433.41
+1.79%  +1.73% +1.62% +2.47% +2.42% +2.36% +4.44%  +4.52% +4.67% | +1.12% +1.14% +1.19% | — — —
Nso 1595.67  1642.39 1712.53 1577.16 1625.27 1698.77 | 1723.42 1778.49 1862.05 1605.62 1655.29  1730.80 1602.86 1653.83 1731.30
+1.17%  +1.05% +0.81% - — — +9.27%  +9.43% 4+9.61% | +1.81% +1.85% +1.89% | +1.63% +1.76% +1.91%
tall Nos 1630.34 1656.43 1696.24 1574.24 1599.45 1638.03 1644.42 1672.84 1716.15 1592.30 1618.72 1659.21 1566.77 1593.45 1634.06
+4.06%  +3.95% +3.81% +0.48% +0.38% +0.24% +4.96% +4.98% +5.02% | +1.63% +1.59% +1.54% | — — —
Nso 1854.05 1903.15 1977.91 1801.73 1850.93 1926.53 | 1926.76 1980.38 2061.70 1831.88  1883.50  1962.28 1818.60 1868.43 1944.77
+2.90% +2.82% +2.67% - — — +6.94% +6.99% +7.02% | +1.67% +1.76% +1.86% | +0.94% +0.95% +0.95%
tal2 Nas 1614.87  1640.15 1678.44 1576.75 1602.11 1640.91 1661.07 1688.14 1729.23 1571.01 1597.44  1637.95 1567.21 1593.30 1633.16
+3.04%  +2.94% +2.77% +0.61% +0.55% +0.47% +5.99% +5.95% +5.88% | +0.24% +0.26% +0.29% | — — —
Nso 1848.91 1896.56 1969.14 1784.48 1831.70 1904.21 | 1943.88 1999.32 2084.32 1861.15 1912.73  1992.01 1843.19 1893.27 1970.30
+3.61% +3.54% +3.41% - — - +8.93% +9.15% +9.46% | +4.30% +4.42% +4.61% | +3.29% +3.36% +3.47%
tal3d Nos 1557.55 1583.25 1622.10 | 1574.09 1600.61 1641.11 1626.02 1655.03 1699.14 1564.69 1591.19 1631.64 1556.75 1583.73 1624.96
+0.05% — — +1.11% +1.10% +1.17% +4.45%  +4.53% +4.75% | 40.51% 40.50% +0.59% | — +0.03% +0.18%
Nso 1789.62 1838.25 1911.94 1765.83 1814.66 1889.30 | 1914.19 1969.26 2053.31 1824.19 1876.16  1955.22 1822.89 1874.17 1951.96
+1.35% +1.30% +1.20% - — - +8.40% +8.52% +8.68% | +3.31% +3.39% +3.49% | +3.23% +3.28% +3.32%
Table A.3.: Computational results for different instances, objective functions and alpha values. Reporting the 50th, 70" and 90" percentiles.
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D DM RS05 RS50 RS100

Instance Size Nos Niso Nos N0 Nos Niso Nos Nso Nas Nso
abzb small 23.80 23.58 | 36.21 29.64 | 96.19  86.97 | 1018.90 652.95 | 1859.21 1151.55
abz6 small 68.56  24.26 | 67.00 29.15 | 109.56 84.92 | 864.73  647.36 | 1598.88 1255.14
abz7 large 142.90 62.42 | 94.80 79.03 | 290.16 266.93 | 2431.62 2172.84 | 4435.96 4174.18
abz8 large 73.23  63.76 | 88.49 76.33 | 292.92 271.11 | 2308.34 2051.21 | 4394.52 3772.26
abz9 large 129.66 68.00 | 91.30 78.13 | 311.91 264.93 | 2211.15 2109.43 | 4283.85 3995.56
ft06 small 17.18  16.64 | 19.48 21.80 | 62.89  54.37 | 361.73  349.11 | 917.60  662.41
ft10 small 31.55 2447 | 33.60 30.40 | 90.58  90.09 | 925.45 701.98 | 1921.56 1347.13
ft20 small 23.12 2274 | 36.13 30.66 | 183.42 99.61 | 981.07 704.90 | 2027.74 1437.17
orb01 small 25.56  25.85 | 30.41 31.18 | 97.20 95.27 | 748.40  720.21 | 1435.17 1356.68
orb02 small 25.00 2444 | 31.80 31.69 | 95.56 91.38 | 721.91  695.55 | 1351.51 1331.69
orb03 small 26.65  25.69 | 33.39 30.43 | 97.11  87.46 | 741.67  700.98 | 1422.29 1316.38
orb04 small 25.52  25.03 | 33.93 31.95 | 101.29 100.97 | 754.88  695.29 | 1409.22 1201.05
orb05 small 31.70  25.21 | 41.09 31.90 | 104.10 95.71 | 728.21  716.66 | 1404.32 1335.94
orb06 small 30.53  25.34 | 36.37 31.82 | 98.39 89.88 | 733.33 679.56 | 1375.98 1382.34
orb07 small 31.65  29.07 | 36.15 34.16 | 110.72 98.89 | 798.27  748.16 | 1489.00 1403.37
orb08 small 28.94  24.50 | 41.66 32.46 | 106.76 92.55 | 751.66  677.05 | 1459.45 1376.77
orb09 small 29.87 2349 | 38.77 32.49 | 108.80 95.23 | 734.75  702.99 | 1521.01 1476.73
orb10 small 29.84  23.61 | 40.09 30.79 | 100.23 90.36 | 711.37  695.84 | 1419.48 1338.07
ta01 medium || 49.97  46.02 | 65.63 61.23 | 192.53 203.08 | 1584.43 1508.83 | 3013.60 3068.09
ta02 medium || 49.01  50.67 | 66.60 68.16 | 194.07 204.95 | 1554.84 1530.63 | 2993.13 3127.59
ta03 medium || 55.85  56.25 | 63.15 69.05 | 199.21 190.47 | 1487.23 1463.42 | 2956.04 2935.11
tall large 65.12  69.24 | 80.07 81.85 | 258.80 278.78 | 2010.35 2026.28 | 3852.84 3657.45
tal2 large 66.24  84.64 | 84.55 98.69 | 247.68 271.53 | 1947.07 1715.25 | 3756.75 3317.50
tal3 large 63.28  75.96 | 83.55 76.55 | 241.92 241.43 | 1893.95 1583.76 | 3667.23 2819.16

Table A.4.: Average computation time in seconds
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