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Abstract 
Quantitative vegetation reconstruction aims to provide information about past vegetation cover. 

One method is using pollen diagrams that are supposed to reflect the relative abundance of taxa in 

the surrounding vegetation. However, the relationship between pollen and vegetation is affected by 

production and dispersal bias. Therefore, a need for methods arose that could correct for these 

biases. To quantify the effect of production bias, estimates for pollen productivity (PPEs) were 

developed. Secondly, to account for dispersal bias, accurate pollen dispersal models that described 

the movement pattern of pollen grains with different physical characteristics were needed.  

 This review first presents an overview of the development of dispersal and deposition 

models from the basic idea of the R-value model by Margaret Davis to the Extended R-value model 

by Colin Prentice that was further developed by Shinya Sugita. It continues with a reconstruction of 

the development of PPEs and dispersal models that should correct for production and dispersal bias 

is given. Lastly, three current quantitative vegetation reconstruction approaches (the Landscape 

Reconstruction Algorithm (LRA), the Multiple Scenario Approach (MSA) and the Extended 

Downscaling Approach (EDA)) are compared in the context of a theoretical intermediate scale 

landscape reconstruction in the Netherlands for the Lateglacial and the Holocene.  

 While the LRA has been often applied on regional-continental scales and sporadically on 

local scales, the MSA and EDA have been only applied on local scale reconstructions. The LRA 

reconstructs regional landscapes based on the pollen assemblages of large lakes (REVEALS) and local 

landscapes on the pollen assemblages of small lakes (LOVE). The MSA and EDA reconstruct 

landscapes based on the input of abiotic landscape parameters and the simulation of theoretical 

pollen assemblages that are then compared to the empirical assemblage. The MSA can yield multiple 

likely landscape scenarios, whereas the EDA only reconstructs one scenario using an optimization 

key. 

 In the light of a potential landscape reconstruction of the Dutch Lateglacial and Holocene, 

application of the LRA could be impractical due to the low availability of large lakes (100-500ha). The 

availability of high-quality abiotic landscape information makes the application of the MSA, and the 

EDA seem quite suitable, but both methods have not yet been applied on intermediate scales and 

scaling up may be bothered by high simulation times, especially for the MSA. 
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Layman summary 
Quantitative vegetation reconstruction is a field within palaeoecology that aims to obtain 

information about plant abundances for time periods in the past and quantify this information, 

which may be used in maps of past vegetation cover. The main method for this is the analysis of 

pollen grains deposited in lake or bog sediments. Pollen grains can be identified under a microscope 

into different taxonomic groups of plants. Counting the grains to a fixed number and tallying the 

counts of the separate groups yields proportions for each pollen group and therewith, a general 

estimation of the vegetation cover can be made by constructing a pollen diagram, in which the 

relative abundances of all pollen groups are displayed. However, the pollen proportions do not equal 

vegetation proportions, because plant species produce pollen in different rates and disperse them 

with varying effectiveness. To reconstruct whole landscapes, we need models that correct for these 

differences. For that, we need measurements of pollen production for different species, and we 

need models that are able to describe the pollen dispersal pattern. We also need information about 

the area for which the pollen found in the sediment are representative.  

 In the first section of this review, the development of correction models for these pollen 

percentage models is outlined. The second section more closely reviews methods to deal with 

differential pollen production and dispersal. The last section then reviews three current models that 

make quantitative reconstructions of past vegetation.  

 One of the models (the Landscape Reconstruction Algorithm (LRA)) reconstructs the 

vegetation based on the pollen assemblages of both large basins (coarse scale) and small basins (fine 

scale). The other two models (the Multiple Scenario Approach (MSA) and the Extended Downscaling 

Approach (EDA)) first reconstruct one (EDA) or more (MSA) possible landscape(s) and simulate 

theoretical pollen compositions for these theoretical landscapes. Then they compare their simulated 

pollen compositions with the actual pollen composition for that time and select landscapes based on 

the highest similarity.  

 For a landscape reconstruction in the Netherlands, the LRA may not be the best choice, 

because there are few large basins available for the first step of this approach. On the other hand, 

there is a lot of environmental data available that can be used as input for both the MSA and EDA. 

The main bottleneck for these methods is that they have only been applied on smaller scales, and 

upscaling may be hindered by computational performance of the simulations.  
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Introduction 
Modern pollen analysis was developed approximately 100 years ago by Lennart von Post. Originally a 

geologist, through contact with botanist Rutger Sernander von Post became interested in peat 

stratigraphy and Holocene climate development (Birks & Berglund, 2017). Inspired by pioneering 

work in quantitative palynology (Weber, 1893, in: Birks & Berglund, 2017) and pollen observations in 

peat (Lagerheim, 1902, in: Birks & Berglund, 2017), Von Post decided to use fossilized pollen 

material preserved in peat as a tool for synchronizing the local stratigraphies of peatlands in Sweden 

by calculating pollen percentages over the stratigraphic series (Birks & Berglund, 2017). He 

concluded that the changes in fossil pollen percentages must reflect changes of the regional 

vegetation over time (Davis, 1963).  

 The first pollen diagrams were presented during his lecture at the Scandinavian Meeting of 

Natural Scientists (von Post, 1916). He visualised the stratigraphic developments as ‘closed’ 

percentage data, meaning that the pollen percentages are calculated as the pollen counts from each 

taxon1 divided by the pollen sum - the total of counts - and then plotted against the sample depths. 

The interpretation of the diagrams led to a discussion. von Post argued that the changes in pollen 

percentages over a stratigraphic series corresponded with vegetational changes, both in direction as 

in magnitude. Henrik Hesselman, a forester attending the meeting, countered that this linearity 

could not be assumed, because the pollen percentages are relative representations of abundance; 

any changes in them could be caused by interdependence (Hesselman, 1916, in: Davis, 1963). In 

other words, a change in the abundance of taxon B also affects the abundance of taxon A in a 

percentage diagram, even though the absolute abundance of taxon A does not necessarily have to 

be changed (Davis, 1963). 

 While the problem of interdependence is only inherent to pollen percentage data, two other 

biases are fundamental to pollen analysis in general; production bias and dispersal bias (Prentice, 

1985). Production bias is caused by differential pollen production between plant species related to 

i.e. the pollination syndrome. Plants that disperse their pollen primarily through wind often produce 

large quantities of pollen, whereas plants who use animals as a vector for pollination have a lower 

pollen production (e.g. Rempe, 1937). But even within species, pollen production can differ 

substantially depending on environmental conditions; for instance free standing trees often produce 

more pollen than trees in closed stand (e.g. Iversen, 1941). Dispersal bias is associated with 

differences in pollen grain morphology. Factors such as grain shape, size and weight influence the 

fall speed and thus the distance a pollen grain can travel before being deposited (Tauber, 1965). As a 

result, production and dispersal bias can cause over- and underrepresentation of certain pollen taxa 

in a pollen diagram in comparison to the actual vegetation cover. To maximize the representativity 

of pollen taxa in a pollen diagram to the (past) vegetational abundance, production, and dispersal 

bias need to be accounted for (Tauber, 1965).  

 One possibility for this is through pollen deposition models that aim to correct for biases in 

pollen deposition (Birks & Berglund, 2017). The R-value model by (Davis, 1963) incorporated both 

production and dispersal bias into a single representativity factor, the R-value. The Extended R-value 

model (ERV; Prentice, 1985), enabled production and dispersal biases to be accounted for 

separately. Production and dispersal bias can be accounted for in different ways. Production bias is 

often measured by the calculation of pollen productivity estimates (PPE’s), but the process is 

laborious, and the estimates are not easily generalized (e.g. Fang, 2019). There are various ways to 

 
1 Pollen identification is based on morphological types that are often only identifiable on the genus or family 
level, therefore the term ‘taxon’ or ‘pollen type’ is most appropriate.  
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measure dispersal bias, for instance with dispersal models such as the Gaussian Plume model 

(Prentice, 1985; Sutton, 1947, in inter alia: Tauber, 1965) or the Langrangian Stochastic model (e.g. 

Kuparinen et al., 2007), but also other methods such as following gene flow through paternity 

assignment are possible (Butcher et al. (2020). 

 Present day, multiple models and techniques are available for quantitative vegetation 

reconstruction. However, their application so far has been limited, especially on intermediate 

landscape scales such as small countries like the Netherlands. This paper aims to review three 

approaches: (1) the Landscape Reconstruction Algorithm (LRA) (Sugita, 2007a, b), (2) the Multiple 

Scenario Approach (MSA) (Bunting & Middleton, 2009) and the Extended Downscaling Approach 

(EDA) (Theuerkauf & Couwenberg, 2017). First, an overview of the development of pollen deposition 

models based on the R-value model of Davis (1963) will be presented. Secondly, the most important 

biases causing differential pollen deposition, production, and dispersal bias, will be highlighted. 

Lastly, the (dis)advantages in terms of functionality and applicability of the abovementioned models 

will be discussed in the light of an (intermediate scale) potential landscape reconstruction of the 

Netherlands. 
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Chapter 1: The development of the ERV-models 

1.1 The R-value model 

1.1.1 Theory 
During the early days of pollen analysis (ca. 1920-1950), it became clear that the relationship 

between pollen percentages and vegetation abundance was often not linear and that biases were 

involved. To derive relevant interpretations on vegetation development from pollen diagrams, it was 

therefore necessary to identify and correct for these biases (Fagerlind, 1952). This ultimately led to 

the development of representation factors or R-values. Mathematically, an R-value reflects the ratio 

of pollen proportion to vegetation cover for every counted taxon in a pollen sample (Davis, 1963): 

    (1) 

One of the assumptions is that pollen percentages depend on (1) the pollen production and (2) the 

dispersal effectiveness of each individual species (Davis, 1963). However, in pollen percentage 

diagrams, the relative abundances are not only dependent on the species’ own production and 

dispersal effectiveness, but also on those of the other species (Prentice & Webb, 1986).  

 This leads to interesting considerations regarding under- and overrepresentation. The 

contemporary thought was that species with high pollen production and/or high dispersal 

effectiveness were always overrepresented in pollen diagrams (Davis, 1963). However, when 

regarding example 1 and 2 in Table 1, species c remains present at the same vegetational 

abundance, but it is proportionally more abundant in the pollen record in example 2, because the 

abundance of the massive pollen producer species a is halved. Secondly, when looking at species b, 

it is equally represented in example 1, overrepresented in example 2 and underrepresented in 

example 3, which nuances the idea of general under- and overrepresentation. Although taxa with 

high pollen productivity may appear in higher abundances in a pollen diagram than their vegetation 

abundance suggests, their eventual representation is also dependent on the other pollen 

contributors in the sample (Davis, 1963). 
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Table 1: Hypothetical comparisons of vegetational percentages and the percentages. From Davis (1963) 

 

Because of this interdependence the individual R-values could not be easily generalized for multiple 

sites. However, since it is also assumed that the number of pollen grains produced by each species 

and dispersed from the plants is directly proportional to the number of plants of that species, it 

follows that if the plants a, b & c occurred at an equal ratio, the ratio of their respective pollen types 

would be a constant ratio Ra:Rb:Rc (Table 1). The ratio Ra:Rb:Rc can be calculated by measuring 

modern forest cover and comparing the vegetation percentages with pollen percentages from 

surface samples. The ratio between the individual R-values then determines the ratio Ra:Rb:Rc (Table 

1). With the R-value ratio calculated, one now can assign vegetation cover percentages from fossil 

pollen material. By dividing the pollen counts (or pollen percentages) by the R-value ratio, one yields 

a ‘corrected percentage’ which corresponds after conversion to percentages of the vegetation 

proportions (Table 2). These relative R-values (Rrel) then are more useful for between-site 

comparisons (Parsons & Prentice, 1981).  

Table 2: Hypothetical example of objective interpretation of fossil pollen percentages by correction for differences in 
representation. From Davis (1963) 
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1.1.2 Application 
The R-value correction method was applied to a pollen diagram from Brownington Pond, Vermont, 

describing the North American ‘Pine Zone’ and a modern surface sample from the same area (Davis, 

1963). The correction method yielded vastly different conclusions on the abundance of some taxa 

than previous research. For instance, even though pine often contributed more than 50 percent of 

all tree and shrub pollen, their vegetational abundance using Davis’s R-value method was calculated 

to be only a few percent. Conversely, the abundances of larch, fir, maple, and poplar appeared to be 

strongly underestimated by previous researchers based only on their pollen percentages.  

 However, the calculation of R-values for either high pollen contributors (e.g. pine, oak) and 

low pollen contributors (e.g. larch, fir, maple) was statistically problematic, because they yielded 

extreme R-values with high standard errors that affected the reliability of the relative R-values of all 

taxa (Davis, 1963; Parsons et al., 1983). Davis manually adjusted the extreme R-values, but this made 

the R-values also more subjective. One solution for low pollen contributors (low pollen proportion 

compared to actual regional vegetation abundance) would be to omit them from the analysis. This 

significantly improved all R-value estimates in Brownington Pond (Parsons et al., 1983). The 

unusually high R-values (high pollen proportion compared to actual regional vegetation abundance) 

from e.g. pine and oak in Brownington Pond may have been caused by pollen coming from outside 

the area in which the vegetation survey was conducted. This way the surveyed vegetation does not 

match the vegetation that contributed to most of the pollen in the sample. This could be alleviated 

by calculating a source area that most accurately reflects the average regional vegetation (Parsons & 

Prentice, 1981). 

1.2 The Extended R-value model 
The Extended R-value (ERV) model builds on the theoretical R-value framework as proposed by Davis 

(1963). Rapid developments in computer science in the 1980s opened new possibilities for 

vegetation reconstructions using simulations and model building. Before the development of the 

ERV models, the ‘modern analogue’ technique was often used. Here, fossil pollen spectra are 

compared to modern pollen spectra to find a best fit (Parsons & Prentice, 1981). Some researchers 

preferred this method over the R-value model because they saw too many insuperable problems 

(e.g. Faegri, 1966). However, others identified the modern analogue method as rather qualitative, 

despite the potential application of simulations and numerical techniques (Parsons & Prentice, 

1981). The latter authors therefore advocated the further development of correction methods, 

pioneered by Davis (1963) and Andersen (1970). The basal formula for the R-value correction model 

is 

 (2) 

where yik is the pollen deposition rate of taxon i at site k, αi  a representation factor for taxon i and xik 

the quantity of taxon i in the vegetation at site k (Parsons & Prentice, 1981). However, the 

parameters in eq. 2 yield absolute values that are only applicable to pollen influx data (absolute 

pollen analysis). In percentage modelling, these parameters are relativised to 

(3) 

consisting of the representation factor Rik as the proportional value of αi. yik is displayed as pik, 

representing the pollen proportion of taxon i at site k, whereas xik is displayed as uik, being the 

vegetation proportion of taxon i at site k.  
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The Extended R-value model was designed to account for three inherent problems with R-value 

modelling (Parsons & Prentice, 1981):  

1. Estimating R-values from more than one site 

When comparing R values from many sites, one can choose to simply average the R values. 

However, while this preserves the R-value ratio, the average R-value is prone to be disproportionally 

influenced by a few sites with abnormally low vegetation percentages. On the other hand, a priori 

averaging the pollen and vegetation spectra is less sensitive for inaccuracy but fails to preserve the 

ratios of R-values (Parsons & Prentice, 1981).  

 Maximum Likelihood (ML) estimates of R-values could alleviate this problem. The ML 

estimate is based on a multinomial probability distribution and gives an estimate of the ‘underlying’ 

value that has most likely produced the observed values. In this sense, it can be considered a 

‘weighted average R-value’ because it preserves the R-value ratios, while the sites that make the 

most statistically reliable contributions are weighed the heaviest. This approach is based on the basic 

R-value model (yik = αixik ) from Davis (1963) but slightly adapted. The estimates of α that yield the 

maximum of the ML function can be extracted and represent the R-values, while through this 

method also the standard deviations of the estimates can be calculated (Parsons & Prentice, 1981).  

2. Taking account of the ‘background’ 

Vegetation is often not homogenously distributed around a sampling site, which means that the 

pollen spectra reflect the ‘averaged vegetation’ around a site. It is therefore important that the 

source area around the sampling site is appropriate. Long-distance transport can seriously inflate the 

R-value of pollen taxa that are not common in the regional vegetation composition, so the source 

area should not be too small (Tauber, 1965; Faegri, 1966). But a source area that is too large does 

not account for the less well dispersed taxa nearer to the sampling site (Parsons & Prentice, 1981) 

 The solution in the ERV model is incorporating a background component wi into a slightly 

more flexible pollen-vegetation model based on the model from Andersen (1970) (Parsons & 

Prentice, 1981; Prentice & Webb, 1986): 

 (4) 

It is built on the assumption that the amount of background pollen (wi) divided by the amount of 

immediate source pollen (yik) is a constant that is only a function of taxon i. The assumption is valid if 

the total absolute pollen deposition is constant between sites and is approximately valid as long as 

the amount of background pollen is minor compared to the amount of immediate source pollen (wi 

<< yik). The results showed that a clear differentiation between the regional and extraregional 

contribution of main pollen taxa can be established using a ML method (Parsons & Prentice, 1981). 

3. The closed sum problem 

It can be expected that there are variations in representation values from site to site, which means 

that these variations likely also occur in time. The solution of Davis (1963) and Andersen (1970) was 

to relativise the R-values to a reference taxon, under the assumption that the R-values relative to 

each other are constant. High deviations in Rrel for taxon i may then be caused by real variations in 

representation (α). However, it cannot simply be excluded that differences occur due to a certain 

amount of sampling error and/or interdependencies between taxa, because the ratios in the 

percentage diagram must add up to 100% (the closed sum problem).  

 To quantify spatial differences between R-values, a multivariate analysis (e.g. cluster analysis 
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or principal component analysis) can be applied where the entirety of R-values at a certain site (an R-

spectrum) is compared with R-spectra of other sites based on their similarity. This method was able 

to identify geographic variations in R-spectra and identify taxa that profoundly determined the 

grouping pattern (Parsons & Prentice, 1981). 

 The closed sum problem relates to the expectation of nonlinearity caused by 

interdependencies among taxa, also called the Fagerlind effect (Prentice & Webb, 1986). 

Nonlinearity here means that changes in the pollen diagram are not always linearly (or even 

monotonously) related to vegetational changes (Fagerlind, 1952). Figure 1 shows that this effect is 

expected to be especially strong for either very strong or very weak pollen contributors. If the α-

diversity2 of contributing taxa is high (no single taxon exceeds 20-30% abundance) the Fagerlind 

effect is expected to be negligible (Webb et al., 1981). Nevertheless, the ERV-model implements a 

parameter to correct for the Fagerlind effect: 

(5) 

where zi is the background component and fk is a site-specific term that is dependent on abundance-

weighted slope coefficients (αjvjk) of all taxa represented in the vegetation, which is used for 

modelling the Fagerlind effect (Prentice & Webb, 1986; Jackson et al., 1995). In a theoretical and 

empirical exploration, it was found that the Fagerlind effect indeed caused tendencies to 

nonlinearity for taxa with extreme relative representation coefficients (Prentice & Webb, 1986). 

However, the overall magnitude of the Fagerlind effect was found to be rather moderate (Prentice & 

Webb, 1986) and the expected nonlinearity was not seen in weak pollen producers (Calcote, 1995). 

Nevertheless, ERV models allow for the identification of the Fagerlind effect and its magnitude and 

separating it from other sources of variation in pollen spectra (Jackson et al., 1995) 

 

Figure 1: The Fagerlind effect with two taxa. The graph shows that the relationship between the pollen and vegetation 
proportion starts to deviate from linearity if a taxon 1 produces K times as much pollen as a taxon 2 (in this example 
graphed for K = 10, 1 and 0.1). If the number of taxa increases, the relationship becomes less straightforward, because the 
different abundances of all taxa cause scatter. Nevertheless, high pollen producers should yield curves similar to K=10, 
whereas low pollen producers should show curves more similar to K=0.1, unless the proportion of the taxon in the 
vegetation remains below 30%; then the curves deviate only minimally from linearity. From Prentice & Webb (1986) 

 
2 Not to confuse with the pollen representation factor (α). α-diversity is a biological metric of diversity that 
includes the number of taxonomic groups as well as the distribution of their abundances (Willis, 2019). 
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1.3 Pollen source area and basin size 
Jacobson & Bradshaw (1981) defined the pollen source area as the area from which a fixed 

percentage of the pollen sampled at a site originate from. Due to differential dispersion 

effectiveness of different pollen types, the range of dispersal varies per taxon. Prentice (1985) 

simulated the source area for individual taxa by varying the pollen deposition velocity vg (which in 

general is higher for heavier and/or larger pollen types). It followed that increasing deposition 

velocities decreased the potential dispersal area. When pollen types with various deposition 

velocities occur in the same pollen spectra, one can assume that these taxa have different source 

areas (Theuerkauf et al., 2013). Prentice (1985) also reasoned that the pollen source area was 

dependent on the basin size of the sampling point. Both assumptions are exemplified in the 

simulation shown in Figure 2. Here, the lake radius is plotted against the percentage of pollen 

originating from different distances under different deposition velocities (vg/u). It is shown that light 

pollen types (upper panel) have larger source areas compared to heavy pollen types (lower panel). 

For instance, when the lake radius is 100m, about 75% of pollen from a pollen type with vg/u = 0.005 

originate from beyond a 2km radius from the lake, whereas this proportion is about 50% with vg/u = 

0.01, about 25% when vg/u = 0.02 and less than 10% when vg/u = 0.04. Furthermore, Figure 2 shows 

that the individual source areas are expected to increase with basin size and that this effect is more 

pronounced for heavy pollen types than for light pollen types (Prentice, 1985). Simulations by Sugita 

(1993) predict that the differences in deposition velocity between pollen types could lead to 

differences in source radius between the light and heavy pollen types by a factor 100 (Figure 5). 

 

Figure 2: Simulated pollen source areas for individual taxa. The graphs form a series from light pollen types (vg/u = 0.005) to 
heavy pollen types (vg/u = 0.04). The graphs show the proportion of pollen (left y-axis) originating from given distances 
(right y-axis) under different basin radii (x-axis). It is shown that source area for light pollen types is much larger than for 
heavy pollen types. For instance in the upper graph, the proportion of pollen originating from within 2km is around 30% 
(basin radius = 100m), whereas for the heaviest pollen type (lower graph) and the same basin radius this is more than 90%. 
From Prentice (1985) 

A typical pollen assemblage of course consists of multiple taxa with different source areas. If light 

pollen types become progressively better represented in larger basins compared to heavy pollen 

types, the ‘average’ source area also increases with basin size (Prentice, 1985). Jacobson & Bradshaw 

(181) predicted that pollen influx in small lakes would be dominated by trunk space transport and 
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gravity transport (Figure 7; Tauber, 1965). However, even in small lakes (radius < 20m), most of the 

pollen appeared to have a regional origin, supporting the sole consideration of above canopy flow in 

the Prentice model (Jackson, 1990). Figure 3 illustrates that the effect of basin radius on the pollen 

assemblage quickly reaches an asymptote (Prentice, 1985). Jackson (1990) elaborates that only moss 

pollsters or humus samples under closed canopy accurately represent mainly (extra)local pollen 

origins and that even small openings in the canopy cause significant fluxes of pollen with a regional 

origin. 

 

Figure 3: Simulated effect of basin size on the pollen assemblage in a Fennoscandian boreal forest. The simulation shows 
that even in small basins, pollen percentages from grains with different deposition velocities quickly reach asymptote 
values. Relative source strengths were modelled in a way to give 60% Pinus. 30% Betula. 6% Picea, and 4% Alnus (site radius 
= 400m), comparable to a typical pollen spectrum of a Finnish bog. Vg/u values were rounded to 0.03 for Picea and 0.01 for 
the other taxa. From Prentice (1985) 

1.4 Pollen source area and basin type 
The Prentice model (Prentice, 1985) calculates source areas on a point at the centre of a basin 

(Prentice, 1985). While this may be accurate for bogs, where pollen become immobile after being 

deposited, pollen in lake basins behave differently, being mixed in the water before sedimentation 

and being susceptive to resuspension afterwards (Sugita 1993). Consequently, for lakes the Prentice 

model needs to be slightly adapted so that the entire lake surface is regarded as the deposition area 

instead of only the centre of the lake (Sugita, 1993). To obtain the basin area, one first needs to 

draw two concentric circles from a certain pollen point source (A) and calculate the area of (Z + R) – 

(Z – R) (Figure 4). If it is then assumed that the ratio of pollen deposition over the lake surface is 

equal to the ratio of pollen deposition over the area between Z+R and Z-R, the pollen deposition on 

the lake from point A can be estimated. Integrating this for the source area between the edge of a 

lake and distance z gives: 

 (6) 

This formula is equivalent to the ERV model from Prentice (1985) for the centre of a basin. 
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Figure 4: Schematic diagram of a lake and the pollen source. The lake radius is denoted by R; Z represents the distance 
between the lake centre and a given pollen source A and is also the radius of a circular pollen source. The pollen deposition 
on the lake from source A can be approximated by calculating the ratio of surface area between the lake area and the 
remaining area between the concentric rings of Z-R and Z+R, assuming that the ratio of pollen deposition is equal to the 
surface area ratio. From Sugita (1993). 

In Figure 5 simulations of pollen deposition are displayed for four different categories of pollen 

grains (A = heavy, B = relatively heavy, C = relatively light, D = light). Furthermore, four basin radii are 

considered (R = 2m (forest hollow), R = 50m (small lake), R = 250m (medium lake), R = 750m (large 

lake). The simulations compare the pollen source radii (Zcenter for measuring over a point at the 

centre of the basin and Zlake for measuring over the entire basin) and the ratio of pollen originating 

from outside that radius. The simulations show that the source radius over a basin surface is 10-30% 

shorter compared to the source radius over a basin centre. This difference in source radius is larger 

for heavy pollen types than for lighter pollen types and for larger basins compared to smaller basins. 

The pollen deposition patterns also suggested that the pollen deposition on an entire lake surface is 

more strongly influenced by local pollen dispersers than the deposition at the centre of the basin. 

Again, heavier pollen types here show a stronger trend than lighter pollen types (Sugita, 1993).  
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Figure 5: The relationship between the pollen source radius and the proportion of pollen of species i coming from beyond 
the source distance to the total pollen of species i. These plots show the differences in source area for zcenter  (the source 
radius for a point at the centre) and zlake (the source radius for an entire lake surface) for four different basin radii (2m, 
50m, 250m, 750m) are chosen and 4 different pollen types; A (spruce), B (sugar maple), C (oak) and D (ragweed). From 
Sugita (1993). 

1.5 Relevant source area and vegetation heterogeneity 
Now that there are estimations of source areas of pollen with different deposition velocities and 

average source areas for differently types and sizes of basins, a question remains over how large a 

distance vegetation needs to be surveyed to accurately correlate with pollen surface data (Sugita, 

1994). The Relevant Source Area of Pollen (RSAP) is defined as the smallest area within which 

reliable estimates of parameter values and asymptotic r2 or likelihood function scores can be 

obtained (sensu Sugita, 1994). Outside this area, the linear relationship between pollen and plant 

abundance would not further improve. In other words, the RSAP is the smallest value where the r2 or 

minimum likelihood parameter plotted against the distance to the basin centre (Zc) approaches an 

asymptote (given that ωi (background pollen load) is nearly constant independent of site conditions).  

Vegetation is often heterogeneously distributed (e.g. distributed in patches of different species 

composition, see Figure 6). For studying the relationship between pollen and vegetation around a 

basin, the basin size should ideally be equivalent or smaller than the patch sizes of the vegetation. If 

the size of the basin is larger than the recorded vegetation patches, the latter will appear 

homogenous and there are no reliable estimates to be made of pollen productivity and background 

pollen load (Sugita, 1994). Additionally, patch size is a key determinant for the width of the RSAP. 

Bunting et al. (2004) simulated the importance of individual factors relevant to pollen dispersal 

within the Prentice-Sugita model under equal basin size and atmospheric conditions. They found 

that under these conditions, the RSAP is primarily an expression of the patterning of the different 

vegetation elements within the landscape. This stressed the importance of vegetation structure in 

relation to the estimation of the RSAP and formed accordance with earlier studies (e.g. Sugita, 



16 

 

1999). The more unevenly the patches are distributed, the larger the RSAP needs to be (Hellman et 

al., 2009). 

 

Figure 6: Schematic map of large patches of sugar maple (grey), hemlock matrix (black) and small patches of yellow birch 
(white) surrounding a lake, used for simulation experiments of pollen representation of patchy vegetation. Zc (black circle) is 
the distance within which distance-weighted plant abundance is calculated and compared with pollen loading on a lake. 
The figure illustrates that vegetation patchiness is a big determinant of the width of the RSAP; high patchiness requires a 
larger source area to accurately capture the surrounding vegetation. From Sugita (1994).  

Whereas Prentice et al. (1987) argued that the minimum likelihood score for the surveyed area 

coincided with a 70% pollen source area (a 30-50km radius for small to medium sized lakes), Sugita 

(1994) concludes that for a reliable estimation of parameters and high correlations between pollen 

loading and distance weighted vegetation abundance a 30-45% source area is sufficient, which 

translates into a significantly smaller RSAP (300-400m and 600-800m for small and medium sized 

lakes, respectively).  
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Chapter 2: Production and dispersal bias 

2.1 Production bias 
Pollen production bias is caused by differential pollen production between species. This means that 

a general estimate of pollen productivity for a given taxon is quite difficult to measure.  

 To deal with production bias, it is essential to quantify the pollen productivity of the most 

important species in the regional vegetation. Empirically, pollen productivity estimates (PPEs) can be 

estimated by comparing (modern) pollen surface samples with a plant cover parameter such as leaf 

cover, biomass or rooted frequency (Broström et al., 2008).3 With the development of more 

sophisticated statistical techniques since the 1980s regarding pollen deposition modelling (e.g. 

Prentice, 1985; Sugita, 1994)), it became possible to more accurately measure PPEs (e.g. Calcote, 

1995; Sugita et al., 1999; Broström et al., 2004; Broström et al., 2008)). 

 Pioneering work by Andersen (1970) estimated pollen productivity by comparing (tree) basal 

area and canopy cover with surface samples from pollen traps and/or moss pollsters, providing a 

reasonably accurate measurement of pollen production from trees growing in the vicinity of 

approximately 100m from a sampling site at closed canopy. Absolute pollen productivity is here 

defined as the number of pollen grains produced per unit crown area per time unit  

(7) 

where p is the amount of pollen deposited on a unit area per year, a represents the crown area of 

the trees and p0 the amount of pollen deposited from trees from a given species standing outside 

the source area. Ultimately, P is the degree with which the pollen deposition increases with the area 

of the species and depends heavily on the species pollen productivity.  

 When absolute pollen productivity estimates are applied on a model using relative pollen 

abundances – pollen percentage diagrams, pollen productivity estimates from taxa cannot be 

considered independently, because of the interdependence between taxa. As a result, productivity 

estimates first need to be relativized to a ‘reference’ taxon that is given a set productivity of 1, while 

the relative pollen productivity (Prel or rPPE) of the other species can then be calculated as the 

species’ pollen productivity compared to the reference species (Fang et al., 2019).  

 Distance-weighted vegetation surveys further improved the accuracy of PPEs (Broström, 

2004). It also became empirically evident that PPEs were highly regionally constrained, meaning that 

their informative value was constricted to the landscape type or area in which they were measured 

(Broström et al., 2004; Broström et al., 2008). Additionally, sampling methods play a role in different 

outcomes. For instance insect pollinated plant species are better represented in moss pollsters than 

in lake sediment due to their poor dispersal (Broström et al., 2008). Anthropogenic influences also 

possibly ‘contaminate’ the accuracy of PPE measurement of non-arboreal pollen (NAP) because the 

pollen production of grasses and other arable herbs is influenced by pesticide use and mowing 

practices, which may result in unreliable estimations of past pollen productivity (Theuerkauf et al., 

2013). 

 
3 Variation may also occur between specimens of the same species depending on environmental conditions, 
interannual variations not related to changes in plant cover (Fang et al., 2019) and whether plants are free 
standing or in closed stand (Iversen, 1941), but this is left out of consideration, because an assumption of PPE’s 
is that they are constant in space and time.  
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2.2 Dispersal bias 
Dispersal bias can be caused by a variety of factors, mainly revolving around pollen grain 

morphology and weight. Heavy and non-aerodynamic pollen grains have higher fall speeds and as a 

result are rather ill-dispersed, while light pollen grains with smooth surfaces disperse better (Rempe, 

1937; Prentice, 1985). Dispersal effectiveness correlates roughly with pollination syndromes. Insect-

pollinated plants often produce relatively large pollen with sticky surfaces, which are optimal to be 

transported by visiting insects, while wind pollinated species often produce light pollen with smooth 

surfaces or air sacs (Gymnosperms) that allow to travel large distances by wind transport.  

When measuring pollen dispersal, there are considered to be five main modes of transport (Tauber, 

1965; Jacobson & Bradshaw, 1981; Prentice, 1985):  

1. Upper canopy pollen transport (Cc) 

2. Trunk space transport (Ct) 

3. Rainout/washout pollen transport (Cr) 

4. Gravity pollen transport (Cg) 

5. Water borne transport (Cw) 

These modes are illustrated in Figure 7. The predominant mode of transport depends partly on the 

landscape structure and the type of sampling site. At sampling sites directly under the canopy (e.g. 

forest litter surface samples or moss pollsters) the influence of the gravity component is expected to 

exceed the trunk space component strongly, leading to a very local representation of pollen spectra 

from such sites (Figure 7 upper diagram; Prentice, 1985). Modes of pollen deposition in lakes or 

bogs, the sites where most fossil pollen spectra are extracted from, are more difficult to disentangle. 

There is especially a discussion about the relative contributions of upper canopy transport and trunk 

space transport, specifically related to basin size. The contributions of the different modes of 

transport are important regarding quantitative vegetation reconstruction because they represent 

pollen influx from different distances. In general, gravity transport can be considered to contain 

exclusively pollen from local origin (Prentice, 1985). Also trunk space transport is expected to 

contain predominantly pollen from local contributors, depending on the density of the vegetation. 

Upper canopy transport on the other hand contributes pollen from a regional distance of a few 

kilometres, though with decreasing efficiency at increasing distances. Pollen deposited by 

rainout/washout may have travelled very far distances and should be considered part of the 

background component. The same goes for water borne transport if the sampling site is in the 

vicinity of a river that could contain pollen from an entirely different region. However, in the case of 

an isolated lake, water borne transport probably only contains local (aquatic) species (Tauber, 1965; 

Prentice, 1985). 
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Figure 7: Components of pollen transfer from the forest canopy to a sampling site beneath the canopy (upper diagram) and 
a lake (lower diagram), after Tauber (1965, 1977) and others. Ct is the component carried in the trunk space by 0.5- 1.5 m 
sect’ winds, Cc is the component carried above the canopy by 2-6 m set t winds, Cr is the component carried at higher 
altitudes and “rained out.” Cg is “gravity” deposited, i.e., with falling leaves, raindrops, and Cw is waterborne, i.e. stream 
flow or flooding events. Cg contains large numbers of pollen grains intercepted from above the canopy (Andersen, 1974a) 
Within-forest sampling sites have highly local source areas; it is inferred that Cg “swamps” Ct (Andersen, 1974b; Jacobson 
and Bradshaw, 1981). Pollen deposition outside the forest is more complex. According to Tauber (1965) the regional 
airstream would be expected to “overshoot” small basins, where Ct would therefore be the main pollen source, but other 
work indicates that Cc dominates Ct even in small basins. The effects of Cr and Cw are mainly dependent on basin type and 
size but are overall considered to be of minor importance. From Prentice (1985). 

2.2.1 Dispersal models 
Pollen dispersal is commonly modelled using Sutton’s equations for eddy diffusion, a special form of 

the Gaussian Plume Model (GPM) (Sutton, 1947, in: Tauber, 1965). This model was originally 

designed to model atmospheric diffusion of pollution particles but proved to be applicable to 

dispersion modelling in a broader sense. This model is appropriate for modelling the mass behaviour 

of 10-100μm particles (the size range of most pollen grains) released from a point source above or at 

ground level (Tauber, 1965; Prentice, 1985; Sugita, 1994, 2007a, b). There has been discussion 

whether a tree should be considered an elevated source. If a tree is considered an elevated source, 

it emits pollen from a height h, which would cause a ‘skip distance’ of ~10h before the particles start 

being deposited (Prentice, 1985). However, according to Prentice (1985), trees cannot be considered 

true elevated sources, because in free stand, pollen deposition follows a monotonous path down 

and in closed stand, the canopy causes pollen to be either pulled down by gravitational transport or 

moved through upper canopy transport. Most authors followed the reasoning of Prentice (1985) and 

consider a ground level source the best approximation for the largest fraction of pollen transport 

(the combined upper canopy and gravitational transport). As there is evidence of a skip distance in 

at least a few taxa (Jackson & Lyford, 1999), some studies did incorporate a moderate elevation to 

create a small skip distance (Sjögren et al., 2008). Figure 8 panel B shows the effect of elevation on 

the pollen dispersal. The optimal elevation assignment, however, is ultimately subjective. Jackson & 

Lyford (1999) conclude that both Gaussian models with and without skip distance probably 

inadequately reflect the actual dispersion pattern of pollen.  
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Figure 8: The effect of different parameters on Sutton's (1953) dispersal function for air borne particles. Default settings are 
wind speed of 5 ms-1, height of pollen release (injection height) at 1 m, and a fall-speed of 0.04 ms-1. These parameters are 
varied individually in the different graphs: A) Wind speed, B) Injection height, and C) Fall speed. From Sjögren et al. (2008). 

An alternative to the GPM is a Langrangian Stochastic dispersal model (LSM). Diffusion models such 

as the GPM approximate the entire dispersal pattern which makes them less suitable to incorporate 

irregular airflows that likely strongly influence pollen dispersal (Kuparinen et al., 2007). The LSM on 

the other hand primarily describes wind and turbulence patterns in the atmosphere, based on which 

individual particle trajectories can be simulated (Figure 9; Theuerkauf et al., 2013). There is no 

unambiguous evidence which model works best. Some studies show that the LSM works better in 

determining PPE’s than the GPM (Theuerkauf et al., 2013; Mariani et al., 2016). Theuerkauf & 

Joosten indicate that the LSM is a more accurate dispersal model for long-distance pollen transport 

because it is more regulated by convective airstreams, instead of the neutral atmospheric conditions 

the GPM model works best for. Theuerkauf et al. (2013) indicated that the GPM model tended to 

underestimate the pollen contribution from > 10km away and to overestimate the dispersal 

differences between light and heavy pollen grains. Fang (2018) points out that both models describe 

the general patterns of arboreal pollen quite well, but that the LSM might work slightly better on 

small and medium-sized lakes. 

 

Figure 9: Basic approaches in pollen dispersal modelling. Gaussian plume models (a), such as the Prentice model, 
approximate the entire dispersal pattern at once. Lagrangian stochastic models (b); e.g. Kuparinen et al., 2007) simulate 
the trajectory of a single pollen grain within the atmospheric boundary layer (ABL) by calculating the three-dimensional 
position of that pollen grain for consecutive time steps from the moment the grain is released until it lands on the surface. 
Final dispersal pattern is produced by simulating a large number of individual pollen grains. From Theuerkauf et al. (2013). 
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Chapter 3: Comparing the reconstruction models 

3.1 Landscape Reconstruction Algorithm 
The Landscape Reconstruction Algorithm (LRA) is a multistep method to assess both regional and 

local vegetation dynamics (Figure 10; Sugita, 2007a, b). The first step of the LRA is REVEALS (Regional 

Estimates of VEgetation Abundance from Large Sites) and can be used for regional vegetation 

reconstruction (104-105 km2). The second step is LOVE (LOcal Vegetation Estimates) and uses the 

estimated background pollen signal generated by REVEALS for the reconstruction of local vegetation 

change (<104 km2) (Sugita, 2007a, b). 

 

Figure 10: Framework of the Landscape Reconstruction Algorithm (LRA). The first step (REVEALS) uses large basins (> 102 
ha), and PPE estimates to assess the regional vegetation composition which is then used as input for the second step (LOVE) 
that uses small sites (< 10-102 ha) together with the estimated RSAP of these sites in a region and PPE’s. From Sugita 
(2007b) 

3.1.1 REVEALS 
Prentice (1985) hypothesized that pollen samples from a network of sites in a region could represent 

regional vegetation estimates if local variation could be filtered out. The idea behind it is that the 

pollen assemblages from large lakes or mires tend to be similar among sites in a region (Sugita, 

1994). Therefore, REVEALS requires pollen counts from multiple ‘large basins’. Figure 11 shows that 

lakes with a radius of 390m or larger do not show significant site-to-site differences (α = 0.05) and 

are therefore suitable for REVEALS modelling (Sugita, 2007a). Ideally, even larger lakes (radius > 

650m) are used to minimize the effect of local differences (Sugita, 2007a).  
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Figure 11: (A) Example of the landscape design to simulate pollen deposition on lakes. Three types of vegetation patches are 
randomly distributed in the matrix of a Poaceae-dominated vegetation type. Each stand type has a distinctive species 
composition. (B) Simulated variations of pollen assemblages among 30 lakes of different sizes. In this landscape, when lakes 
are > 48 ha (radius > 390m), pollen assemblages can be regarded as homogeneous among sites at the significance level α = 
0.05 using the likelihood ratio statistic G2. From Sugita (2007a). 

Assumptions and potential sources of error 

The REVEALS model is quite robust for violations of its assumptions. The first assumption is that 

basins are a circular opening in the canopy and that no source plants grow on the basin surface 

(Sugita, 2007a). Lake shape irregularity may violate the assumption in the Prentice-Sugita model that 

pollen loading in the lake is eventually evenly mixed in the water before being deposited (Bunting & 

Middleton, 2005). However, empirical evidence suggests that irregularly shaped basins still provide 

reliable estimates (Soepboer et al., 2010). Source plant growth on the basin surface is mostly a 

problem related to bogs and mires, even though Sugita (2007a) states that REVEALS should work for 

both lakes and mires. However, when small bogs are used, source plants (mainly heath, cypergrasses 

and birch) may cause systemic differences in output compared to lake basins (Mazier et al., 2012; 

Trondman et al., 2016). 

Furthermore, the REVEALS model requires large lakes. Based on the scenario depicted in Figure 11, it 

requires lakes with a radius of at least 390m (48ha), but optimally the lake size should be between 

100-500ha to reduce the effect of large patches of vegetation and because at that point the 

homogeneity of pollen assemblages across sites does not further increase (Sugita, 2007a). However, 

not in every situation this requirement can be met due to absence of such large basins. If that is the 

case, a large number of small basins could provide reasonable estimates, but the standard errors will 

be larger (Sugita, 2007a; Trondman et al., 2016). Increasing the number of sites could improve the 

estimates of regional vegetation cover and reduce standard error (Sugita, 2007a; Mazier et al., 2012; 
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Trondman et al., 2016). When bogs or mires are studied instead of lakes, the required minimal basin 

size may be lower than 48ha, because the pollen source area is larger for bogs and mires than for 

lakes (Sugita, 1993), but this has not been formally simulated.  

 In general, the estimates for vegetation reconstruction improve with higher pollen counts. 

Under the simulation of Sugita (2007a), pollen counts of 1000 per sample were assumed, but if 

pollen counts are lower (e.g. 300-500), the standard errors for vegetation composition could be 10-

20% larger (Sugita, 2007a). Increasing the pollen count decreases the standard error of REVEALS 

estimates for multiple small sites (Trondman et al., 2016).  

 The dispersal model that has been most frequently used in REVEALS is the Sutton equation 

derived from the Gaussian Plume Model (GPM) (Sugita, 2007a). Like the Prentice-Sugita model, it 

assumes neutral atmospheric conditions, no specific directionality in wind flow and only upper 

canopy transport is considered; all other modes of transport as described by Tauber (1965) are 

disregarded. However, several studies have indicated that these assumptions can often not be met 

(e.g. Theuerkauf & Joosten, 2009; Theuerkauf et al., 2013).  

 Theuerkauf et al. (2016) argue that REVEALS performs better if the GPM is replaced by a 

Langrangian Stochastic Model (LSM), mainly because the estimation of PPE’s is more accurate using 

the LSM compared to the GPM. Additionally, the LSM does not need to assume atmospheric neutral 

conditions, which might be inaccurate for pollen dispersal (Theuerkauf & Joosten, 2009). Case study 

evidence by Mariani et al. (2016) supports a more accurate estimation of PPE’s using the LSM. 

 Implementing a wind rose for modelling wind directionality is not possible in the simulation 

program used by Sugita (2007a, b), but other programs such as HUMPOL (Bunting & Middleton, 

2005) offer a more flexible handling of these parameters.  

Applicability 

REVEALS is only applicable on large vegetational scales (104-105 km2). Because it represents the 

pollen assemblage of a 100-200km radius around the lake (Sugita, 2007), it cannot account for 

abrupt vegetational changes caused by geomorphology, hydrology, elevation etc. It assumes a 

considerable homogenous ring of vegetation around the basin, which is inappropriate for cultural 

landscapes or landscapes with strong regional variation (Bunting & Middleton, 2005). Additionally, 

the suitability of REVEALS in mountainous areas is limited because the elevation differences require 

modelling pollen dispersal from different deposition heights (Bunting et al., 2008). Some of these 

problems might be alleviated using the LSM instead of the GPM as the dispersion model, because 

the LSM models individual particle trajectories instead of the entire dispersal pattern (Theuerkauf et 

al., 2013).  

3.1.2 LOVE 
The second part of the LRA as proposed by Sugita (2007a, b) is the LOVE model: LOcal Vegetation 

Estimates. Whereas REVEALS subtracts site-specific vegetation elements to measure regional-scale 

vegetation composition dynamics, the goal of LOVE is to calculate the vegetation composition within 

a reconstructed relevant source area of pollen of past vegetations (Figure 10). This RSAP of past 

vegetation works slightly different than the RSAP mentioned above. In the LOVE model, the RSAP is 

back calculated by prediction modelling under the assumption that all other parameters are known 

(see Figure 12).  The LOVE model makes use of a regional vegetation factor Si a parameter 

estimated by the ratio between the total sum of distance-weighted plant abundance of all taxa 

within the relevant source area of pollen (RSAP) at site k and the distance-weighted regional plant 

abundance of species i. Si is important in the LOVE model, because it represents the regional 

vegetation that is estimated by REVEALS and needs to be subtracted in order to identify the local 
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vegetation. To obtain Si, the regional vegetation composition estimate Vi must be yielded from large 

lakes using the REVEALS model (Sugita, 2007a). This estimate, together with the relative pollen 

productivity, is then used in the LOVE model equation. For LOVE, it is not necessary to use large size 

lakes, it is preferable to use pollen counts from smaller lakes (radius = 50m sensu Sugita, 2007b).  

Assumptions and potential sources of error 

The most difficult part of the LOVE model is the reconstruction of past RSAP, a crucial parameter for 

the estimation of Si. Sugita (2007b) proposed that backward modelling of LOVE could provide an 

accurate estimation of the relevant source area. Figure 12 illustrates how this backward modelling 

works. First, it is assumed that all parameters for the LOVE equation are known, except for the past 

RSAP (ZRSAP). If ZRSAP is then iterated, a threshold value is eventually yielded where the estimated 

ratio of every taxon in the landscape can be considered a realistic value (> 0 and < 1) (Sugita, 2007b). 

The threshold is in this case defined by 150 predictions for the vegetation estimates of 5 taxa in 30 

lakes used in the simulation by Sugita (2007b). In panel (a) of Figure 12, first a past RSAP of 150m is 

predicted (C). This results in 32 ‘wrong’ vegetation composition values (where abundances are < 0 or 

> 1; B). By iteratively increasing the past RSAP, the amount of wrongly predicted estimates reaches 

0. The point where this happens can be considered the ‘real’ past RSAP according to Sugita (2007b).  

 

Figure 12: Effects of the selection of the relevant source area of pollen on the accuracy of vegetation reconstruction using 
the LOVE model. In both (a) and (b), graph A shows changes in log-likelihood of ERV submodel 3 with distance, and the 
relevant source area of pollen (open arrow); graph B shows changes in the total number of unrealistic predictions of 
vegetation proportions (i.e., < 0.0 or > 1.0) for all taxa at all sites; graphs C, D and E show the LOVE-based prediction of 
Poaceae proportions at 30 sites plotted against its abundance within the areas much smaller than, equal to and larger than 
the ‘real’ relevant source area of pollen, respectively. (a) Vegetation composition of Poaceae predicted by LOVE, assuming 
the area within 150 m, 700 m, and 1950 m to be the relevant source area of pollen (Landscape 1). The ‘real’ relevant source 
area of pollen in Landscape 1 is the area within 700 m from the lake shores. (b) Vegetation composition of Poaceae 
predicted by LOVE, assuming the area within 150 m, 3700 m, and 4450 m to be the relevant source area of pollen 
(Landscape 3). Landscape 3 includes very large (ie,10 000 ha) patches of Patch type 1 (Table 2), and the ‘real’ relevant 
source area of pollen is the area within 3700 m from the lake shores. Examples in (a) and (b) show that differences in spatial 
structure of vegetation affect the size of the relevant source area of pollen. From Sugita (2007b).  
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However, this method is cumbersome because a lot of assumptions must be met to be able to 

perform the backward calculation (Sugita, 2007b). Recently, an R package for the LOVE model 

(LOVEoptim) has been developed in which past plant abundances can be estimated by numerical 

optimization (Theuerkauf & Couwenberg, 2024). This method makes fewer assumptions and is 

therefore mathematically less complex for vegetation reconstruction on a local scale.  

Applicability 

In terms of spatial scale, the applicability of the LOVE model sensu Sugita (2007b) depends on the 

RSAP, which mainly depends on vegetation patchiness. Figure 12 illustrates that a highly patchy 

landscape (panel (b) Landscape 3) has a much higher RSAP than Landscape 1 in panel (a). If 

Landscape 3 can be considered as extremely patchy, the spatial scale of the LOVE model should be 

>5km around a small (50m radius) site. The LOVEoptim model on the other hand makes use of the 

Necessary Source Area of Pollen (NSAP) (sensu Theuerkauf & Couwenberg, 2024) and is defined as 

the smallest local area for which LOVE does not produce vegetation cover estimates < 0 and > 1 

(comparable to Figure 12). The advantage of the NSAP is that it is not mainly dependent on 

vegetation patchiness but rather on the pollen dispersal pattern.  

 The applicability of the LOVE model sensu Sugita is heavily hindered by the complexity of 

back calculating the past RSAPs. If one of the assumptions of the LOVE model is violated, back 

calculating is not informative (Sugita, 2007b). Additionally, reliable back calculation requires many 

similarly sized sites that may not always be available (Sugita, 2007b). Perhaps this is why the LOVE 

model, in comparison to REVEALS, has not been applied often. In studies that have applied LOVE 

(e.g. Hjelle et al., 2015; Fredh et al., 2019) the estimation of past RSAP proved indeed to be 

cumbersome. The applicability of the LOVEoptim model by Theuerkauf & Couwenberg (2024) has 

not yet been thoroughly tested, but it appears to be easier, because less assumptions have to be 

made.  

3.2 Multiple Scenario Approach 
The Multiple Scenario Approach (MSA) aims to reconstruct vegetation based on the landscape 

instead of the pollen assemblage (as does the LRA), whilst accounting for equifinality, the fact that 

multiple scenarios may result in a similar pollen assemblage (Bunting & Middleton, 2009). In a GIS 

environment multiple ecologically distinct landscape possibilities are simulated. Using a model of 

pollen deposition and dispersal (e.g. the Prentice-Sugita model), a pollen assemblage is simulated 

from each landscape scenario at a known sampling point. These assemblages are then compared to 

an actual pollen assemblage from the same sampling point to determine the likelihood of the 

possible vegetation compositions. The MSA works for single pollen records but becomes more 

robust when multiple sites with a strong chronological framework are included (Bunting & 

Middleton, 2009). It follows three steps (see also Figure 13): 

1. Identify the to be reconstructed area and acquire data on (paleogeographic) invariant 

physical aspects of the landscape. Then identify relevant plant taxa based on e.g. PPE 

availability and identify their overall auto/synecological habitat. The combination of physical 

and ecological requirements generates different scenario maps. There are many 

combinations of landscape rules that can each generate a multitude of different scenario 

maps. Scenarios are ordered by landscape rule combination, which is called a scenario family 

(Bunting & Middleton, 2009).  

2. For multiple members of each scenario family a pollen assemblage is simulated. These 

pollen assemblages are then compared to an actual pollen assemblage from the site. 
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Depending on the comparison mode, simulated assemblages should be within certain limits 

to be considered a ‘good match’. 

3. For each ‘likely’ family, a larger number of replicates is run to identify ‘best fit’ members. In 

terms of reconstruction, the family can be seen as a representative for broad-scale 

vegetation patterns, while the best-fit models shed light on the possible vegetations in the 

vicinity of the basin. 

When one wants to reconstruct a timeline of vegetation development, one needs to form realistic 

successions between scenarios of different time slices. 

 

Figure 13: Schematic comparison of the Multiple Scenario Approach and the Landscape Reconstruction Algorithm. Oval 
boxes contain information to be input into the process, and labels along arrows (REVEALS, LOVE) indicate the software used 
during particular steps of the LRA. From Bunting & Middleton (2009). 

Assumptions and potential sources of error 

The MSA makes the following assumptions: 

1. A palynomorph4 represents a set of plant taxa that is ecologically consistent over time. 

2. It is possible to define the auto/synecology5 of the set of plant taxa and these are uniform 

over time. 

3. The model of pollen deposition and dispersal is correct and invariant through time. 

Assumptions about the ecological consistency of species and their interactions can be dangerous 

because it is known that these ecological requirements and interactions can temporarily change over 

time. However, the timespan over which these changes are likely to be conserved exceed the 

timespan Quaternary palynologists are interested in (Lososová et al., 2020). Therefore, it is relatively 

safe to consider these assumptions valid for ‘recent’ studies of past environments.  

 
4 General term for pollen, spores and other microremains of plants, animals and Protista that give information 
about the landscape structure. 
5 Autecology refers to the interaction of a single organism/species with its environment, whereas synecology 
describes the interaction between multiple organisms/species with each other and with the environment. 



27 

 

The robustness of the third assumption depends on the model for pollen deposition and dispersal 

that is used. Bunting & Middleton (2009) use the Prentice-Sugita model, but model is flexible to 

incorporate other deposition and dispersal models, even though up to present, there is no record of 

studies implementing the LSM in the MSA.  

Applicability 

Bunting et al. (2018) showed that the application of the MSA offered information on the landscape 

somewhere on a scale between REVEALS and LOVE. A large advantage of the MSA compared to 

algebraic reconstruction methods such as the LRA is that the MSA can incorporate (changes in) 

wetland vegetation instead of needing to omit wetland taxa from the calculations. Furthermore, the 

MSA, unlike the LRA, does not assume a uniform regional landscape, which opens many more 

possible landscape scenarios. Lastly, the MSA performs well in landscapes with different elevation 

levels (hills or mountains) and is through the modelling environment HUMPOL able to incorporate 

(multiple) wind roses, which enhances the realism of model outputs (Bunting et al., 2008). 

 However, reconstruction of paleoenvironments remains difficult from a map-based 

approach such as the MSA if palaeogeographical information such as sea level and lake/moor size is 

unknown (Bunting et al., 2018). Another weakness of the MSA is that some palynomorphs are only 

detectable on a high taxonomic level, which means a palynomorph could contain plant species living 

in very different ecological habitats. This makes it hard to assign ecological groups to such pollen 

taxa.  

 Currently, the application of the MSA is particularly related to the development of cultural 

landscapes and archaeology (Bunting et al., 2018, 2022). Theoretically, the MSA should be able to 

perform landscape reconstructions on a larger scale comparable to REVEALS, but the number of 

scenarios that are created if many sites are included increases exponentially, which means that 

eventually the computation process likely becomes a bottle neck (Bunting et al., 2018).  

3.3 The Extended Downscaling Approach 
The Extended Downscaling Approach (EDA) (Theuerkauf et al., 2014, 2017) is a combination of the 

downscaling approach (DA) (Theuerkauf & Joosten, 2009) and a simulation approach using a 

Lagrangian Stochastic dispersal model (LSM) (Theuerkauf et al., 2013). The DA aims to relate past 

pollen assemblages to present modern day landscape parameters. Like the MSA, the DA first creates 

the landscape in which abiotic soil controls are defined (Theuerkauf & Joosten, 2009). The area 

around each basin within a certain radius is divided in concentric circles of a certain size (Theuerkauf 

& Joosten (2009) use a radius of 50km and 1km wide rings). The substrate composition is then 

averaged per circle and distant rings are downweighed under the assumption that vegetation from 

distant rings contributed increasingly less pollen to the basin. Now the correlations between pollen 

taxa in past pollen assemblages and the present-day soil substrate are tested. This is visualized in 

Figure 14. The left panel shows the expected (ideally linear) relationship between the pollen loading 

and the vegetation representation of pine. The right panel shows that if the abundance of pine is 

predominantly determined by sandy soils, their pollen abundance would increase with the area of 

sandy soils. The results show a strong correlation between present-day substrate cover and past 

pollen deposition (Figure 14), which indicates that present-day landscape parameters may prove a 

valuable proxy for determining past vegetation cover.  

 Combined with the simulation approach, a vegetation composition is randomly assigned to 

each landscape parameter category (e.g. landscape parameter = soil substrate, categories = sand, 

loam, clay) (Theuerkauf et al., 2013). From this vegetation cover, pollen deposition is then simulated 

in an iterative process for every distance-weighted concentric ring around the basin. Simulated 
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pollen assemblages are then compared to empirical assemblages and the vegetation composition 

per landscape parameter category is being adjusted until an optimal fit between the modelled and 

empirical assemblage is reached (Theuerkauf et al., 2014, 2017) 

 

 

Figure 14: An illustration of the approach: a basic observation in pollen analysis is that with increasing abundance of a 
species, the abundance of its pollen also increases. Thus, in a landscape (a) with a central lake and two species, Betula 
(elliptical) and Pinus (triangular), the proportion of Pinus pollen in sediments of that lake increases (ideally linearly) with the 
proportion of Pinus in the surrounding vegetation (b). If the occurrence of Pinus is determined by that of an environmental 
factor, e.g. the presence of sand (c, grey shading), the proportion of Pinus in the vegetation and thus the proportion of Pinus 
pollen increases with the total proportion of areas with sand (d). A strong correlation between sand and Pinus pollen (d) 
thus indicates a strong substrate dependency of Pinus. This correlation can also be tested using fossil pollen data and 
modern substrate distribution. Close correlation then indicates that the distribution of species in the past might also have 
been determined predominantly by the substrate, provided the pattern of abiotic conditions has remained constant over 
time. From Theuerkauf & Joosten (2009) 

Assumptions and potential sources of error 

Like the MSA, the EDA also assumes that the landscape parameters that are studied are stable over 

time (Theuerkauf & Joosten, 2009) and that the relationship between landscape parameters and 

past vegetation cover is equal with the relationship between these parameters and present 

vegetation cover (Abraham et al., 2023). However, some landscape parameters (soil unit, soil 

wetness and soil nutrients) may have been more variable over time. This means that it is less certain 

whether the relationships between present landscape units and past vegetation cover is directly 

indicative for past landscape units. For example, Theuerkauf et al. (2013) associated the expansion 

of hazel after the Late glacial with present day high soil wetness, but it is doubtful if under drier 

climatic conditions, soil wetness was as high as it is today (even though the relative soil wetness may 

still have been higher than in the surrounding area).  

 Other assumptions depend on the dispersal model that is used. The EDA is flexible for the 
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implementation of multiple dispersal models, although the LSM provides the most accurate results 

(Theuerkauf & Couwenberg, 2017). 

 Like the MSA, the EDA defines landscape units based on invariant physical properties of the 

landscape and it compares empiric pollen deposition with simulations, but because the MSA 

produces multiple landscape scenarios, forward modelling for multiple sites exponentially increases 

the amount of possible scenarios and therewith the simulation time. The EDA is designed to use 

multiple sites and simulates only one ‘optimal’ match with the empirical pollen assemblages, which 

makes forward modelling aiming to determine the vegetation cover associated with landscape units 

more convenient (Theuerkauf & Couwenberg, 2017).  

Applicability 

The EDA is mostly applicable for scenarios with sharply contrasting substrates; with intermediate 

substrates the correlation between pollen type and substrate cover may become faded (Theuerkauf 

& Joosten, 2009). Additionally, when running complex EDA scenarios, the model may yield false-

positive results of two landscape units are closely correlated but inhabited by very different 

vegetation types (Theuerkauf et al. (2017) give the example that oak and grasses were predicted to 

be present on stagnosols, while in fact, they are vegetation dominant on gleysoils, likely because 

stagnosols and gleysoils both occur frequently in flat morainic areas and thus are ‘neighbouring’ 

landscape types. The EDA can have difficulties assigning the correct vegetation cover to closely 

related landscape types.  

 The EDA is also less applicable for understorey plants, who are more dependent on light 

availability than to substrate cover. Lastly, Theuerkauf et al. (2014) emphasize that the EDA works 

best with landscape parameters that are as invariable as possible. The method is therefore less 

applicable for correlations with landscape parameters that varied strongly over time.  
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Discussion  
The goal of this paper was threefold: First, I aimed to present an overview of the main developments 

in quantitative vegetation reconstruction through pollen analysis from roughly 1950-2000. It shows 

how the idea of R-value models gained shape and how the eventual Extended R-value Model (ERV) 

from Prentice (1985) cumulatively developed over the following decades with additions from e.g. 

Prentice & Webb (1986) and Sugita (1993, 1994).  

Production & dispersal bias 
In the second chapter, I elaborated on the importance of production and dispersal bias in pollen 

analysis and on methods to mitigate these biases. Pioneering work by Andersen (1970) and Tauber 

(1965) led ultimately to the development and refinement of pollen productivity estimates (PPEs) and 

dispersal models, respectively. The application of PPEs calls for caution, because their informativity 

is region dependent, the methodology of acquiring PPEs is not uniform (Broström et al., 2008) and 

modern estimates of pollen productivity might not always be accurate for past pollen productivity 

(Theuerkauf et al., 2013). On regional scales a solution could be to take the means of all PPEs from 

different regions while excluding clear outliers (Serge et al., 2023). However, the authors warn that 

on regional scales, the choice of the mean PPE dataset can be very determining of the eventual 

REVEALS estimates. This is because large taxonomic pollen groups (e.g. Ericaceae) can be comprised 

of region-specific species with quite different PPEs to which the REVEALS estimates are very 

sensitive (Serge et al., 2023). For smaller spatial scales, PPE estimates that have been measured in 

the concerning area should be more accurate (Mazier et al., 2012). 

 Recent studies highlight the dependency of PPEs on the chosen dispersal model. Liu et al. 

(2022) stress that the interaction between pollen productivity, pollen dispersal processes and the 

heterogeneity of the landscape is a main determinant on the representation of the vegetation 

surrounding basins. Theuerkauf & Couwenberg (2022) conclude that most errors of estimating PPEs 

are caused by the overestimation of the fall speed in the Gaussian Plume Model (GPM). Both 

authors agree that the GPM likely overestimates the contribution of local vegetation, affecting PPEs 

and that the Lagrangian Stochastic Model (LSM) could provide more accurate estimates. However, if 

pollen dispersal is driven mostly by disturbing effects (e.g. forest eddies), also the LSM may be 

unable to model the dispersal pattern accurately (Theuerkauf & Couwenberg, 2022). Liu et al. (2022) 

propose that pollen dispersal models should also make use of semi-mechanistic (statistical 

estimations of dispersal patterns based on empirical data). 

 All current dispersion models only consider the upper canopy flow Cc as mode for pollen 

transport. However, the findings by Tauber (1965) indicated that also trunk space transport Ct could 

be a considerable contributor to the pollen assemblage in case of small lakes and that also the 

density of the vegetation around the lake influences the eventual pollen deposition. Considering that 

in several areas in the world (for instance the Netherlands) the pollen record consists of mainly small 

and a few medium-sized lakes, it would be worthwhile to explore the impact of trunk-space 

transport further. If trunk space transport is indeed a significant contributor to the pollen 

assemblage, the (extra)local vegetation might be overrepresented in small lakes, which would affect 

the accuracy of regional vegetation reconstruction. 
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Intermediate scale landscape reconstruction 
Lastly, I evaluated three currently available vegetation reconstruction models: (1) the Landscape 

Reconstruction Algorithm (LRA) (Sugita, 2007a, b), (2) the Multiple Scenario Approach (MSA) 

(Bunting & Middleton, 2009) and (3) the Extended Downscaling Approach (EDA) (Theuerkauf & 

Couwenberg, 2017). It is difficult to compare the approaches due to the limited number of case 

studies for the MSA, EDA and the LOVE model in the LRA. So far, the MSA and EDA have mainly been 

applied on relatively local scales in Great Britain and northeastern Germany (e.g. Bunting et al., 

2018; Theuerkauf et al., (2013), whereas a few case studies of the LOVE model exist in Scandinavia 

and the Pyrenees (e.g. Hjelle et al., 2015; Marquer et al., 2020).  

How well would the three models perform on an intermediate scale, in this case a Lateglacial and 

Holocene landscape reconstruction of the Netherlands? 

LRA 

The first step of the LRA, REVEALS, assumes the usage of a few large basins between 100ha and 

500ha. There are few of such sites in the Netherlands with a continuous pollen record, although 

there are also only 2-5 basins required for the model to work. And according to Sugita (2007a) and 

case study evidence, the REVEALS model also works adequate when using multiple smaller sites 

instead. However, REVEALS may work less well in landscapes with frequent abrupt geomorphological 

or hydrological changes and major differences in elevation (Bunting et al., 2008). While the latter is 

not a big problem in the Netherlands, as a low altitude coastal country the hydrology is and has been 

very dynamic.  

 The second step of the LRA, LOVE, requires many small, similarly sized basins and a regional 

vegetation estimate calculated by REVEALS that then can be used in the LOVE model to back 

calculate the past RSAP (sensu Sugita, 2007b). The other newly available option is numerical 

optimization for the calculation of the NSAP (sensu Theuerkauf & Couwenberg, 2024). Both 

techniques require the regional vegetation input from REVEALS, so their applicability stands or falls 

with that. The original LOVE model furthermore assumes that the vegetation within the past RSAP is 

homogeneous and has a similar composition as the regional vegetation (Sugita, 2007b). However, as 

the Netherlands covers and covered an area with significant local environmental gradients (Cohen & 

Pierik, 2021), this assumption would not be valid. The LOVEoptim model from Theuerkauf & 

Couwenberg (2024) does not make this assumption and may therefore be more applicable in this 

setting.  

MSA 

The MSA uses environmental parameters as input to create multiple landscapes for one site in a GIS 

environment. In turn multiple potential pollen assemblages are simulated on this landscape, which 

are then compared to the ‘actual’ pollen assemblage of the site (Bunting & Middleton, 2009). The 

MSA requires detailed paleogeographic information from the to be reconstructed area as input. In 

the Netherlands, the National Geological Service (TNO, formerly RGD) has collected an extensive 

national dataset of various environmental parameters, so that would be beneficial for the usage of 

the MSA. Furthermore, the MSA, unlike the LRA, works well in patchy, cultural landscapes and does 

not have to omit wetland taxa, which means the landscape reconstruction would be completer and 

more realistic. This would be very helpful in a landscape reconstruction in the Netherlands; being in 

a coastal low altitude region and incorporating the large Rhine-Meuse delta made for the 

development of numerous and variable wetland areas during the Holocene. 

 A difficulty remains when assigning high taxonomic pollen groups to an ecological group 
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(Bunting et al., 2018). For instance Poaceae (grasses) are often not determinable on a lower 

taxonomic level, but they can inhabit both wetlands (e.g. reeds) and drylands. 

EDA 

The EDA also uses landscape parameters to simulate pollen assemblages, but the EDA sets up only 

one landscape based on the available abiotic parameters and uses a key to optimize the correlations 

between those parameters and vegetation in relation to the empirical pollen assemblage 

(Theuerkauf et al., 2014). The EDA works best with small to medium sized basins, which are 

numerous in the Netherlands. Additionally, it is mentioned that the EDA works optimal when 

landscape parameters are invariable over time (Theuerkauf & Joosten, 2009). For some 

(geomorphological) parameters, this would not be a problem, but other parameters (e.g. soil 

substrate, ground water level, distance to the sea) may have varied more strongly in a coastal region 

as the Netherlands as a result of sea level rise. While there is no case study available where this 

assumption is heavily violated, it may be more important that the pollen taxa are strongly 

dependent on an environmental parameter and to be wary for landscape parameters that are 

closely correlated but are inhabited by very different taxa, because under violation of those criteria, 

the EDA seems to generate more false-positive landscape-vegetation cover correlations (Theuerkauf 

& Couwenberg, 2017). In the Netherlands, a large part of the country has been shaped by peat 

formation and anthropogenic peat harvesting and land reclamations, which could make looking for 

correlations between the variable landscape parameters and the vegetation cover more informative 

compared to the invariable landscape parameters. 

Conclusion 
I conclude that in theory, all three models could be applicable to an intermediate scale landscape, in 

this case the Netherlands. With the LRA, the main bottleneck would be the availability of large basins 

for REVEALS, which in turn would make the execution of LOVE impossible, since the regional 

vegetation factor for REVEALS is essential input. Both the MSA and EDA benefit from the large Dutch 

database of abiotic soil parameters and are able to yield high resolution reconstructions. For the 

MSA, scaling up from a local to intermediate scale landscape reconstruction exponentially increases 

the computation times of all scenarios, so that may be an important consideration to keep in mind. 

For the EDA, it is mainly important to avoid false-positive landscape parameter-vegetation cover 

correlations and it could in that light be inconvenient that the vegetation cover in the north-western 

part of the Netherlands may have been more dependent on variable landscape parameters due to 

sea level rise from the mid Holocene onwards. Independently, all models would benefit from further 

research on dispersal models and renewed investigation towards the contributions of different 

modes of pollen transport. 
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