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Abstract—Background parenchymal enhancement (BPE) is
defined as the amount of enhancement observed in normal
fibroglandular tissue (FGT) after contrast administration in
breast MR protocols. This phenomenon has been associated
to sensitivity reductions, as a consequence of lesion occlusion,
and most recently described as a potential imaging biomarker
for breast cancer prediction. Thus, a standardized automated
methodology for its categorization may be of utmost impor-
tance. Nonetheless, the lexicon utilized as a gold-standard by
radiologists is associated to large variability and susceptibility in
BPE assessment between readers. This study aims to perform
a review that recollects the most recent methodologies in the
literature for BPE categorization, which entails three different
frameworks: BPE quantification, radiomics and deep learning
models. Findings indicated that, while the former is widely
utilized, its applicability for four-way categorization by discretiza-
tion is associated with lower correlations to the reference than
that of radiologists, thus limiting its applicability to the task
under study. Furthermore, machine learning (ML) approaches
provided substantially better results towards standardized auto-
mated categorization. The potential superiority of ML techniques
is shown to be associated with higher correlation coefficients than
those achieved by quantification techniques. Within this group,
radiomic architectures, which rely on the manual selection of
features for proper representation of the tissue, presented an
advantage against deep learning architectures. However, their
natural dependence on segmentation techniques must be taken
into account, as it may be significant of error propagation and
a reduction in BPE estimation and categorization. Therefore,
although the goal of standardized BPE categorization is still far,
this review presents some important observations that may guide
future efforts. Additionally, the relevance of balanced data in the
development of ML techniques, and the limitation attributed to
the wide variability of breast MR protocols among institutions,
is highlighted. Future outlooks may focus on differentiations
between symmetrical or asymmetrical BPE breasts, and two-way
classifications towards more clinically relevant BPE categoriza-
tion methodologies.

Index Terms—breast MR, BPE, categorization, classification,
quantification, ML, radiomics, DL

I. INTRODUCTION

Breast cancer is one of the most prominent types of cancer
worldwide as stated by the World Health Organization in 2024,
who attributed over 670.000 deaths solely to the disease [1].
Deductions in incidence and mortality rely on screening and
imaging diagnosis, commonly performed by mammography or
breast magnetic resonance (breast MR), among others [2].

Breast MR relies on the administration of a contrast agent
and the subsequent follow-up on the dynamic enhancement

patterns of the tissue for lesion identification. Malignant re-
gions present rapid peak enhancement after the contrast agent
enters the bloodstream, which allows its kinetic differentia-
tion from benign lesions and normal tissue [3]. Nonetheless,
normal fibroglandular tissue (FGT) also suffers partial en-
hancement, a phenomenon known as background parenchymal
enhancement (BPE); it typically appears on the periphery of
the breast, it is characterized by symmetric or asymmetric
patterns and it has been associated in the literature with
menstrual cycles [4].

Moreover, while higher BPE values have been attributed
to reductions in sensitivity of breast MR due to a possibility
of lesion occlusion, it has also been increasingly associated
with a higher risk for breast cancer development. There-
fore, its identification and proper classification are of utmost
importance. BPE is usually assessed by radiologists on the
first T1-weighted post-contrast series of dynamic contrast-
enhanced MR (DCE-MR) protocols, which corresponds to
the first acquisitions after contrast administration [4]. This is
the standard practice for an improved categorization, as the
delayed enhancement of BPE (210-320 seconds) to that of ma-
lignant lesions (60-90 seconds) allows for better differentiation
of contrast uptake from regions of normal FGT enhancement
[3], [4]. Moreover, the assessment is commonly performed
following the Breast Imaging Report and Data System (BI-
RADS) by the American College of Radiology lexicon, based
on increasingly ordered enhancement levels: minimal, mild,
moderate and marked.

This protocol provides a series of guidelines for its proper
interpretation. Still, it is limited by inter and intraobserver
variability as a consequence of the intrinsic subjectivity of
radiologists during qualitative clinical assessments. Although
training has been shown to significantly improve agreement
between radiologists, research on the matter has shown it to be
characterized by ’fair’ accordance [4]. To this end, automatic
and semi-automatic approaches have been studied in the litera-
ture, which aim to provide standardized methodologies for lon-
gitudinal investigations between institutions. Such approaches
may include techniques that involve the delineation of a region
of interest (ROI), FGT segmentation, BPE quantification or the
utilization of machine learning (ML) techniques. Due to the
significant variability in methodologies found in the literature,
automated standardization for BPE categorization has not yet
been achieved in the clinical practice.
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This review aims to collect the latest publications on BPE
categorization in the literature to perform a comprehensive
analysis that describes the specifications and requirements of
each approach. With that, create a discussion that differentiates
the advantages and limitations of every methodology and con-
cludes on future outlooks that should be further investigated
towards an automated and standardized categorization. Such
methodologies will include both traditional approaches and
ML techniques in between 2020-2024.

II. BACKGROUND

A. BI-RADS Lexicon

The BI-RADS lexicon is a guideline originally developed
for standardized reporting of mammography imaging patterns,
and extended to other modalities such as breast MR [5].
The lexicon includes several aspects for exam acquisition
and interpretation; for instance, indications for reporting, MR
imaging techniques, and descriptors of overall breast com-
position. These are utilized to assign to each exam a final
assessment category using a scoring system that ranges from
0 to 6; 0 - incomplete assessment in need of further imaging,
1 - normal, 2 - benign, 3 - probably benign, 4 - suspicious, 5 -
highly suggestive of malignancy and 6 - known biopsy-proven
malignancy [6].

More specifically, the BPE categorization descriptor is vi-
sually selected based on the quantity and intensity of the FGT
enhancement on the breast volume. Its interpretation must
be performed on the breast with the highest apparent FGT
quantity in case of asymmetry between the two breasts, and
an exam label should then be assigned, categorizing the BPE
as minimal, mild, moderate or marked, in increasing order.
[6]. An example representing the four subcategories is shown
in Fig. 1.

B. Methodologies for BPE Categorization

The inter-reader variability associated with BPE rating has
been previously described in the literature. Consequently, sev-
eral studies have been published for the purpose of automating
this classification task and towards an improved assessment of
BPE.

In a review by Liao et al. [4], a summary of the most
commonly utilized approaches for BPE quantification is de-
scribed up to its publication, in 2020. Such methodologies
utilize in a great majority ROI delineation approaches or
segmentation techniques. On the one hand, the former involves
the manual definition of ROIs of small-dimensions on pre
and post-contrast series; the approach is consequently limited
by the accuracy of the reader, as the definition of the ROI
is inherently subjective. On the other hand, segmentation
methodologies aim to reduce human error through the de-
velopment of algorithms that perform the delineation task
automatically. These typically involve several processing steps,
including skin, chest wall, breast or FGT segmentation (to
differentiate from fatty tissue in the latter case), enabling the
identification of enhanced voxels/pixels [4].

Fig. 1: BPE categories (a) minimal, (b) mild, (c) moderate,
and (d) marked based on BI-RADS lexicon assessment. From
[7].

After FGT segmentation, BPE quantification is carried
through the application of mathematical computations related
to percentage enhancement or signal enhancement ratios, as
described in the aforementioned review by Liao et al. [4].
Following this computation technique, the BPE becomes quan-
tifiable and may be discretized into each of the BI-RADS
categories. This is a practice previously performed in a work
presented in 2017 by Pujara et al. [8], who utilized BI-
RADS lexicon enhancement percentages as the cut-off values
of their four-way categorization; minimal: 25%, mild: 26-
50%, moderate: 51-75% and marked: 75%. Nonetheless, it
is important to note the statement in the most recent BI-
RADS lexicon (5th edition), which advises against utilizing
these values for BPE assessment [6].

Moreover, the applicability of artificial intelligence in the
medical field is constantly growing. Consequently, several
techniques are to be enclosed within this review, more specif-
ically regarding radiomics and deep learning (DL) algorithms.
Radiomics consists of a series of processing techniques that
allow the recognition of features that are not visible to the
common eye. These techniques rely on mathematical compu-
tations that extract characteristics retained within the intrinsic
spatial distribution of intensities within an image. Nonetheless,
processing of these quantifiable properties requires image
segmentation in all cases; radiomic studies are uniquely per-
formed within the delineated regions under study. Furthermore,
it has been proven the importance of processing steps such as
normalization or interpolation for a more robust output [9]

Other ML approaches rely on the utilization of DL frame-
works, a technique that makes use of characteristics of the
data to perform tasks such as segmentation or classification
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Fig. 2: Workflow representing commonly applied frameworks
for BPE categorization enclosed in this review. ROI seg-
mentation of skin/chest/breast/FGT structures is a procedure
typically required for quantitative BPE and radiomic method-
ologies (solid arrow), whereas it establishes as a potential
option for deep learning approaches (dotted arrow).

through convolutional neural networks (CNNs). A series of
convolutional layers, pooling and fully connected layers are
commonly organized in structured architectures in an order
specific to the tasks to perform; in the case of classification,
the focus relies on a final decision-making layer to perform the
categorization of the data [10]. VGG models are commonly
utilized classifiers. These are described as transfer learning-
based deep models, a type of shallow architecture that utilizes
pre-trained parametric values to address new tasks, such as
medical image classification [11].

A workflow representing the previously described frame-
works for BPE categorization is shown in Fig. 2.

III. METHODS

This review aimed to compile all automated or semi-
automated methodologies described in the literature the recent
years (2020-2024) for BPE categorization. More specifically,
the study entails a search for all papers including direct classi-
fication of the DCE-MR data or quantification and discretiza-
tion of BPE levels after image processing. Thus, the following
elements were utilized as search query in Scopus, Pubmed and
Google Scholar: (( "background parenchymal enhancement"
OR "BPE" ) AND automat* AND "MR*")[Title, Abstract,
Keywords] and (("background parenchymal enhancement" OR
"BPE" ) AND quantif*)[Title] AND (("background parenchy-
mal enhancement" OR "BPE" ) AND ("machine learning" OR
"deep learning")[Title].

From this search, only articles detailing BPE quantifi-
cation/classification methodologies were included, requiring
either a full description of the process or its application
within a broader research context. Ineligible studies included
those based on other imaging techniques, literature reviews
or categorization based on clinical reports rather than on
the imaging data. It is important to note that no filtering
was performed based on patient characteristics, breast MR
protocols or imaging parameters.

IV. RESULTS

The described search query led to a collection of 18 papers
for the subsequent review. These were differentiated based on
the methodologies applied in their work for BPE categoriza-
tion, as shown in Fig. 2. Thus, the consequent sections will be
divided based on the nature of the applied approaches: BPE
quantification and ML, the latter consisting of radiomics and
DL architectures.

The applicability of breast and FGT segmentation or image
correction are preprocessing methodologies commonly utilized
for BPE categorization, among others. Nonetheless, these not
being the main focus of the paper, the applicability of such
techniques will be mentioned only for context purposes.

A. BPE Quantification

The first results presented relate to BPE quantification
and discretization frameworks. A collection of twelve papers
included such methodologies in their research, which were
categorized into signal intensity-based and volume-based mod-
els, following the structure presented by Müller et al. [12].
The aforementioned model differentiation will serve to define
the base equation, while specifications from each publication
will be presented for a more comprehensive study. Moreover,
out of the complete set, six papers described methodologies
based on the former, four utilized the latter and two papers
described both quantification algorithms in their research [13],
[14]. A compilation of all publications in this section is shown
in TABLE I, which provides general information about the
utilized approaches, input data and other specifications.

It must be noted, that most of the methodologies required
the combination of DCE-MR series with FGT or breast masks
for simplification of subsequent procedures. For instance, BPE
segmentation relies on FGT to apply varying contrast enhance-
ment cut-offs within the defined ROI, that differentiate the
BPE pixels/voxels from the rest of the tissue. This is a practice
applied in four out of the twelve enclosed publications [13],
[15], [16], including that by Niell et al. [17], who investigated
multiple thresholds across intensity-ranges between 0-100% of
the FGT volume for BPE estimation.

• Signal Intensity Based: Different approaches were ob-
served in this quantification framework [13], [14], [17]–
[20], [23], [24]. The baseline equation mostly relied on
the following expression:

BPE =
S1 − S0

S0
(1)

where S0 corresponds to the signal in the pre-contrast
series, and S1 to that in the post-contrast. The time
point utilized relative to the post-contrast series varied
depending on the publication under research. While a
grand majority utilized all DCE-MR series [13], [14],
[17], [19], others focused on specific time-phases, such
as that at 2.5 minutes [18] or the first acquisition after
contrast injection [23]. One of the enclosed publications
performed the computations directly over the 2nd post-
contrast subtraction maximum intensity projection (MIP)
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TABLE I: Summary on BPE quantification literature differentiated between signal intensity (SIB) and volume (VB) based
models, as described by Müller-Franzes et al. [14]. Each column describes the specifications per paper; in those papers where
no unilaterality was stated, bilateral examinations were assumed as input. LR: lesion removal, MTP: maximum enhancement
time point.

Paper Approach Purpose Segmentation Laterality LR Input Data

Nguyen et al. [18] SIB Neoadjuvant therapy response FGT Contralateral No DCE-MR

Hu et al. [13] SIB/VB Risk of breast cancer FGT Bilateral No DCE-MR

Niell et al. [17] SIB Risk of breast cancer FGT Bilateral No DCE-MR

Wei et al. [15] VB BPE quantification FGT Bilateral No Pre- and 1st post-contrast

Zhang M. et al. [19] SIB Tumor behaviour prediction FGT Contralateral No DCE-MR

Goodburn et al. [20] SIB Risk of breast cancer FGT Unilateral No Pre-contrast and MTP

Nowakowska et al. [21] VB BPE quantification Breast Bilateral No DCE-MR subtraction

Zhang J. et al. [22] VB BPE quantification FGT Bilateral No Pre- and 1st post-contrast

Zhang B. et al. [23] SIB BPE quantification FGT Bilateral No Pre- and 1st post-contrast

Douglas et al. [24] SIB BPE with lesion removal Breast Unilateral/Bilateral Yes 2nd subtraction MIP

Müller-Franzes et al. [14] SIB/VB Comparative study FGT/Breast Bilateral No DCE-MR

Arefan et al. [16] VB Risk of recurrence FGT/Breast Unilateral Yes DCE-MR

volume, a quantification precessed by a normalization of
pixel intensities between 0-1 [24]. It must be noted that
this is also the only publication in the signal intensity-
based quantification category that does not utilize FGT
segmentation as an input for subsequent computations
on BPE. Another approach made use of the so-called
maximum enhancement time point (MTP), described as
the post-contrast series in the DCE-MR protocol with the
highest mean FGT pixel value [20].

BPE computations were often accompanied by averag-
ing over the total intensity of pixels in the ROI [18], [24],
or by providing a description based on percentages [17],
[20], [23]. Furthermore, Zhang B. et al. [23] included a
BPE integral calculation, shown in equation 2, a computa-
tion later on associated with the BI-RADS BPE categories
and considered the quantitative imaging biomarker.

BPEintegral =

8∑
i=3

∣∣∣∣S1 − S0

S0

∣∣∣∣× |FGT area ratio| (2)

The BPEintegral was calculated from the BPE histogram
obtained after a BPE identification procedure, that utilized
time-intensity curves in a similar manner to thresholding.
Moreover, i=3 referred to 30-40% enhancement intensi-
ties, as i=8 corresponded to an 80-90%.

• Volume Based: Six papers are included within this
section [13]–[16], [21], [22], the baseline equations con-
sisting of:

BPE =
Venhanced

VROI
(3)

VROI is the volume of interest, determined by the FGT
mask or the breast during the preprocessing segmenta-
tion step. Venhanced corresponds to the BPE, identified
through thresholding of the ROI. The utilized series
ranged between the entire DCE-MR protocol [13]–[16],

to subtraction [21] or pre-/post-contrast series [22]. Once
again, the formula was utilized directly as a BPE ratio
[16], [22], whereas some other cases obtained a percent-
age over the final result [15], [21].

A large variability in the utilization of unilateral or bilateral
examinations was observed among the listed studies enclosed
in TABLE I. More commonly, bilateral assessments were
performed in papers that investigated BPE as an imaging
biomarker for breast cancer or its quantification, whereas
unilateral/contralateral studies applied their methodologies on
cancer-patient datasets. On this regard, two studies conducted
ipsilateral lesion removal techniques, replacing malignant pix-
els in the affected breast. While Arefan et al. [16] described
a semiautomatic approach based on radiologist supervision,
Douglas et al. [24] applied fuzzy c-means clustering tech-
niques for region identification and subsequent substitution of
the malignant pixels with average intensity values. The investi-
gation developed by the latter demonstrated an overestimation
of BPE in exams with malignant regions of about 1.48% to
3.83%, a phenomenon that mostly affected those examinations
with larger lesions and lower BPE levels [24].

Hu et al. [13] utilized both methodologies, signal intensity
and volume based computations, in their study for cancer
prediction with BPE as biomarker. Although not aligned with
the focus of this review, they found a stronger correlation with
volume-based than signal intensity-based quantifications.

Müller-Franzes et al. [14] performed a study analyzing
the correlation between the two main quantitative method-
ologies previously presented, which were attributed to the
most common frameworks. Moreover, it created a comparative
study that performed discretization of BPE estimated results to
investigate the classification capabilities of such quantification
approaches.

The study encompassed 5773 examinations from 4886
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TABLE II: Müller-Franzes et al. [14] results per methodology
and approach. Literature refers to papers enclosed within
BPE quantification that utilized similar approaches to each
specific method. Quantitative Correlation (QC) is referred to
the Spearman rank correlation coefficient and the Classifica-
tion Agreements (CA) to the linear weighted Cohen kappa
coefficient. Both of these computations are performed per
methodology with respect to the expert-annotated reference.

Method Approach Literature QC CA

1 SIB [18], [20], [24] 0.56± 0.01 0.47± 0.01

2 SIB [17], [23] 0.55± 0.01 0.46± 0.01

3 VB [16], [22] 0.52± 0.01 0.46± 0.01

4 VB [15], [16], [21] 0.50± 0.01 0.38± 0.01

women, selected after eligibility assessments based on data
quality and sufficient FGT and breast volume. Although
segmentations were performed through previously evaluated
CNNs, this approach aimed to minimize error propagation
from mask outliers. Moreover, women with implants were
excluded, and only those patients without a history of breast
cancer were recruited to prevent BPE result estimation bias
from malignant lesions. Imaging was performed at a single
institution, with two different 1.5T scanners, and based of
gradient-echo DCE-MR protocols, which included a single
pre-contrast and up to four post-contrast series. Finally, FGT
segmentation was performed before quantification, and origi-
nal BPE assessments by expert radiologists, obtained during
clinical interpretation, were utilized to compare qualitative and
automated methodologies.

Results are presented in TABLE II, where each paper en-
closed in TABLE I is connected to its counterpart in the study
by Müller-Franzes et al. [14]. It consists of four methods, two
of which were based on signal-intensity computations (1 and
2) and the other two (3 and 4) on volume-based formulas. The
results showed a moderate correlation between quantitative
and qualitative assessments by radiologists, regardless of the
approach used, with the highest Spearman rank coefficient of
0.56±0.01 attributed to method 1 and the lowest of 0.50±0.01
to method 4. Furthermore, discretization of examinations
per BI-RADS category (minimal/mild/moderate/marked) was
performed utilizing ROC curves and an optimization process
based on maximal agreement. The subsequent linear Cohen
kappa coefficients showed once again moderate correlation to
the assessments performed by radiologists; the highest results
corresponding to a 0.47±0.01, and the lowest to a 0.38±0.01
for methods 1 and 4, respectively.

B. Machine Learning

Machine learning methodologies included both the utiliza-
tion of radiomics and DL for BPE classification, shown in
TABLE III.

Firstly, the work by Nam et al. [26] applied radiomics
on a dataset enclosing 794 patients between the ages of
26 and 89, who had undergone preoperative MR. Bilateral

imaging was performed with 3 types of MR scanners, and
the utilized protocol was based on DCE-MR acquisitions.
The pipeline considered several automated applications of
ML architectures; V-Net segmentation of FGT, followed by
radiomics for BPE classification. 59 features were processed
for radiomics classification based on the intensity, shape and
texture properties of the images, a process that required prior
BPE voxel identification from the FGT masks applied to the
subtraction series of the DCE-MR protocols. Moreover, three
classification models were analyzed, which aimed to classify
the exams either based on the four categories of the BI-RADS
lexicon or creating a model that would differentiate minimal
versus mild/moderate/marked or minimal/mild versus moder-
ate/marked. Results showed statistical analysis with similar
results in classification between the manual and the DL seg-
mentation under study, which ensured good agreement and low
error propagation for subsequent steps. More importantly, it
showed the highest performing model to be that differentiating
between minimal/mild versus moderate/marked classes, with
an accuracy of 91.5% for the manual segmentation, and 90.5%
for the deep learning approach. In the case of the four BI-
RADS categories, the corresponding accuracies were 66% and
67%, respectively, while the remaining model retrieved values
of 72.5% and 72%.

Another work by Wang et al. [28] equally utilized radiomics
for their BPE classification study. The dataset included exami-
nations from 3705 patients originally recruited for the DENSE
trial, consisting of women between the ages of 50-75 with
extremely dense breasts. In this case, imaging acquisitions at
8 different institutions made use of 3.0T scanners, and DCE-
MR series with presence and absence of fat-suppression tech-
niques. FGT segmentation was similarly performed through a
nnU-Net architecture, and the subsequent mask was applied
onto the radiomics algorithm for feature extraction. In this
case, volumetric density, morphologic, and enhancement char-
acteristics were used as such, which summed up to a total of
15 features, and a combination of random forest, Naïve bayes
and k-NN classifiers were utilized for BPE categorization.
As this was an inter-institutional study, accuracy results were
computed per hospital, leading to majority voting values
that ranged between 56% to 84%. More importantly, a lack
of significant differences in results between institutions was
observed, despite the use of a variety of scanners and imaging
parameters. Moreover, while sensitivities were found to be
higher for the minimal BPE category (95%) when compared
to the rest (mild: 16%; moderate: 13%; marked: 36%), its
corresponding specificity showed to be significantly lower than
the other 3 categories (minimal: 46%; mild: 95%; moderate:
96%; marked: 97%).

Furthermore, two publications did not make use of FGT
segmentation for BPE classification, but rather deployed CNN
architectures to perform BPE categorization from the DCE-
MR inputs. In 2020, Borkwoski et al. [25] utilized two VGG-
16 models with densely connected layers; one to perform an
initial breast-slice recognition from the complete volume, and
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TABLE III: Summary on the literature for BPE categorization, differentiated between radiomics and deep learning (DL) based
models. Dataset describes the number of patients per study. DA: Data Augmentation.

Paper Approach Segmentation Laterality Input Data Dataset DA Institutions

Borkwoski et al. [25] DL - Bilateral 1st subtraction 124 Yes 1

Nam et al. [26] Radiomics FGT Contralateral DCE-MR 794 No 1

Eskreis-Winkler et al. [27] DL Breast Unilateral 1st subtraction MIP 3705 Yes 1

Wang et al. [28] Radiomics FGT Bilateral DCE-MR 4553 No 8

another for a direct BPE classification into minimal, mild,
moderate and marked. For that, a data collection of 9902
examinations from 794 patients, was utilized for training,
validation and testing. Moreover, their methodology described
the utilization of T1-weighted DCE-MR subtraction series
differentiated into 2D images as an input, obtained on a 3T
MR scanner at a single institution, and to which cropping
and normalization preprocessing was applied. The training of
the network on more than a thousand examinations led to
an accuracy of 75% on the test set for BPE classification.
These results were found to be related to class activation maps,
which imaged the model’s decision making in those areas with
the most relevant information, thus strengthening the model’s
performance. Furthermore, a majority of misclassifications
were found to occur between adjacent categories, and it was
discovered that the inter-rater reliability expressed through
Cohen’s Kappa coefficient was highest for the model (0.815)
than for the assessment of either of the two experienced
readers (reader 1: 0.68, reader 2: 0.78) obtained for clinical
validation. Limitations such as lower recurrence of low BPE
categories were averted through transfer learning and data
augmentation.

Eskreis-Winkler et al. [27] similarly utilized a VGG-19 for
the same purpose. While Borkwoski et al. [25] utilized a slice-
wise subtraction input approach, this most recent work aimed
to compare the performance of two different approaches of
their model on subtraction series (T1-weighted pre-contrast
and first post-contrast). A collection of 5224 images were
obtained from 3705 patients, in imaging acquisition protocols
that obtained at their institution with 3T and 1.5T MR scan-
ners. Each DCE-MR was normalized, divided into unilateral
breasts, and processed either as standard 2D MIPs or within
a slab framework (Slab AI), which divided the breast tissue
into upper, middle and lower 2D MIPs. Furthermore, while
the model was trained in a four-way classification, testing was
performed in pooled groups that divided the categories into
high (moderate/marked) and low (minimal/mild) BPE label.
Their results showed that, the so-called, Slab AI methodology
managed to outperform the standard 2D MIP throughout all
statistical analyses. Similarly, area under the curve (AUC)
analysis retrieved values of 0.84 for the former, while that
of the latter was 0.79. Moreover, they underscore the model’s
5.8% greater tendency to assign exams with a higher prob-
ability of malignancy (as indicated in the radiology reports
by the BI-RADS assessment value) to moderate or marked
labels, when compared to radiologists. On the contrary, those

high BPE categories were 6.9% less likely to be assigned to
non-suspicious exams, suggesting the clinical relevance of the
study towards breast cancer prediction.

V. DISCUSSION

The importance of standardized and automated categoriza-
tion for BPE has been previously highlighted, with a primary
focus relying on its impact on decreased breast MR sensitivity
and its hypothesized connection to breast cancer prediction
[4]. In the case of the latter, for instance, comparable BPE
categorization methodologies may allow clinically relevant as-
sociations between BPE and breast cancer risk among various
institutions, and thus validate its applicability [14]. This paper
intends to perform an exhaustive study of the most recent
frameworks in the literature, that generates a comprehensive
overview of these developments, and provides an understand-
ing of the benefits associated with each methodology.

In the selected time frame, 2020-2024, three main BPE
categorization pipelines were investigated; BPE quantification,
radiomics and DL. BPE quantification methodologies stand
out for its simplicity in development and low computational
demands when compared to ML techniques, attributed to
complex architectures and large dataset requirements. This
may be considered a key point in the selection of the most
appropriate methodology towards standardization, however
important findings were described in this review.

BPE quantification techniques may be described through
signal intensity and volume based equations, which typically
make use of the complete DCE-MR protocol or the first post-
contrast and pre-contrast series. Müller-Franzes et al. [14]
provided a comparative study on the capacities of both ap-
proaches, highlighting the significant limitations associated of
this categorization pipeline. Correlation with ground truth was
moderate in all four automated examined, for both quantitative
and discretized results. The low variability in the qualitative
assessment by radiologists, rules out poor-quality references
as a factor to the inferior performance of the methodologies.
Thus, it indicated the limited capability of BPE quantifica-
tion techniques to perform highly accurate and comparable
assessments. Moreover, no major differences were found in the
number of publications that applied one method or the other,
reflecting the lack of consensus on the superior approach.
This is further emphasized by the absence of guideline for
methodology selection when considering the purpose of the
study, as shown in TABLE I.
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Furthermore, the investigation on ML frameworks included
both radiomics and DL architectures. Two publications applied
radiomic frameworks to their data after FGT segmentation,
Nam et al. [26] and Wang et al. [28]. Such algorithms
extract features from the images, instead of solely analyzing
voxel/pixel intensities, that include volumetric morphology,
dissimilarity or enhancement properties of the data, among
others [9]. This approach directly deals with the complications
in classification associated with the large heterogeneous dis-
tribution of BPE [26], a limitation observed in quantification
methodologies as described by Müller-Franzes et al. [14].

The main differences between the two studies lay in the
number of features collected for each study, 59 by Nam et
al. [26] against 15 by Wang. et al [28], and the classification
approaches; each providing different insights into the applica-
bility of radiomics. To this end, the curse of dimensionality
commonly observed in radiomics must be noted, associated
with overfitting and frequent use of irrelevant features that
reduce its efficiency [29]. Comparing the performance of the
two reports is challenging due to the intrinsic differences in
protocols and architecture; however, the highest accuracies
achieved by each study offers some valuable insight. While
that by Nam et al. [26] achieved a 67% accuracy utilizing
a four-way categorization model, that by Wang et al. [28]
reported values ranging from 56% to 84% across 8 institutions,
which might reflect the greater efficiency reached by the latter
based on the selected features. These results highlight the
importance of proper feature selection to represent properly
the characteristics of the breast when considering radiomics
for BPE classification.

Other ML approaches utilized VGG classifiers for BPE
categorization. The work by Borkowski et al. [25] provided an
initial insight into the capabilities of DL, as demonstrated by
the higher correlation coefficient of the model compared to the
two radiologists, when referenced against the dataset obtained
through their consensus. The utilization of such technologies
is recommended for standardized assessments of BPE, as it
limits the subjectivity intrinsic to human interpretation [25].
Furthermore, it introduces the utilization of 2D inputs, in
contrast to the 4D volumes typically acquired during breast
MR. This is explained by computational efficiency; 2D inputs
allow the selection of slices where the breast is depicted
and focuse the attention maps of the models into the desired
ROI, instead of wasting resources on the entire field-of-view.
For this purpose, Eskreis-Winkler et al. [27] proposes the
utilization of MIPs, against the development of slice-wise
architectures, which would ensure retention of all the spa-
tiotemporal information into computationally efficient forms
of the otherwise dense 4D DCE-MR series [27]. Therefore,
regardless of the approach used to translate the 4D volumes
into 2D images, this presents as a desired characteristic for
future ML architectures in the development of standardized
methodologies for BPE categorization.

Following the aforementioned advantages and disadvantages
for each approach, the path towards automated standardization

of BPE categorization shows to be directed towards the
utilization of ML techniques. While BPE quantification plus
discretization shows slight advantages, the potential superiority
of ML techniques for BPE categorization is observed in
this review, as demonstrated by the greater accuracy and
agreement in results. While the agreement showed by Müller-
Franzes et al. [14] peaked at 0.47, that reported in the study
by Borkowski et al. [25] reached an 0.82 in its VGG-16
classification model. The comparative study between ML
techniques becomes complicated as a consequence of the large
differences in the applicability of their methods and statistical
analysis. Nonetheless, the increased performance achieved by
the Slab AI architecture described by Eskreis-Winkler et al.
[27] enhances the importance of categorization models that
retrieve significant information from relevant areas of the
breast. To this matter, radiomics may present an advantage to
DL techniques, as it allows a selection of features tailored to
the requirements of the task. Still, this statement must consider
the need for FGT segmentation in radiomics, and the intrinsic
dependence and potential error propagation it might be linked
to.

A large majority of the techniques discussed in this paper
commonly required FGT segmentation, regardless of the na-
ture of the approach. Automated and validated frameworks for
this purpose may be of utmost importance; BPE is described
by the regions with an enhancement of normal FGT after
contrast administration, consequently becoming intrinsically
dependent on the accuracy of the segmentations. Some publi-
cations proposed pipelines that circumvented the utilization of
the FGT masks, such as in case of Nowakowska et al. [21],
that might present wide advantages in its methodology towards
improved quantifications. Nonetheless, eliminating this pro-
cessing step becomes complicated in the case of radiomics,
which is dependent of such ROI definitions. Therefore, the
importance of an appropriate selection of FGT segmentations
frameworks must be noted to ensure sufficient accuracy for
subsequent ML pipelines in the future of standardization.

Furthermore, the utilization of the first post-contrast has
been noted as the gold-standard for BPE assessment by radi-
ologists following the BI-RADS lexicon. While the utilization
of the aforementioned series allows a superior differentiation
between malignant lesions and normal tissue, Goodburn et al.
[20] hypothesized the associated quantitative error in clini-
cal assessment of cancer-free patients. Some women present
steady FGT enhancement in their examinations; this phe-
nomenon is considered to be an indicative of bias and thus
a potential cause of BPE underestimation. Consequently, they
considered the utilization of MTP series, against the common
standard, to ensure maximal enhancement for the assessment
in all types of patients. Standardization of BPE assessment
should be clinically validated for both cancerous and non-
cancerous women. Thus, employing this approach may offer
advantages compared to the alternative, which relies on the
assessment of entire DCE-MR series and is limited by the
increased workload it presents for radiologists.
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Finally, because of limitations commonly encountered
among the three approaches investigated, automated standard-
ization may be subjected to the variability in breast MR
protocols between institutions. BPE enhancement is dependent
on the pulse sequences, scanner or timing of the examination
[21]. Thus, a tailored protocol would be required per insti-
tution to account for this variations, which might limit the
longitudinal comparison of BPE categorization. In the case of
BPE quantification, the task becomes significantly complex,
as enhancement and discretization thresholds would need to
be investigated per establishment. Still, the limitation may be
averted through larger datasets for radiomics and DL, that
would include examinations from a wide variety of institutions
and acquisition protocols.

Furthermore, ML approaches are restricted to the intrinsic
bias attributed to the distribution of BPE levels in the popula-
tion, commonly described by minimal or mild BPE levels [30].
Subsequently, data collections are expected to be unbalanced
if retrieved from normal clinical settings. The effect of this
limitation may be observed in the study by Wang et al. [28],
which showed the superiority in sensitivity for lower BPE
categories, 95% minimal versus 36% marked, and an opposite
effect with respect to the specificity, being that for marked
breasts the highest. These results may be explained by a higher
probability of the classifier to assign examinations with lower
BPE labels, as these were the categories most represented
in their dataset; a 75% of the examinations corresponded
to minimal BPE while that for marked was of 4%. The
unbalanced characteristics of their data potentially derived in a
bias in their classifier towards the lower BPE categories. Nam
et al. [26] averted the limitation through a direct classification
utilizing the radiomic features in a ML algorithm to prevent
DL bias towards dominant classes, this was described as one
of the main limitations in the work by Wang et al. [28].
Though the possibility of substitutes to the application of data
augmentation techniques is possible, this should be considered
of outermost importance to reduce possible bias and ensure
architectures are generalizable to the entire population.

Future outlooks could also explore determining whether
examinations exhibit symmetric or asymmetric BPE, for exam-
ple, by assigning differentiated BPE categories to each breast.
Slight variations in FGT quantity are expected with modera-
tion, nonetheless, the clinical relevance of highly asymmetric
breasts and its potential association with suspicious findings
has been stated in the literature [30]. Throughout this review,
it was observed that publications investigating the applicability
of their algorithms on datasets with cancer patients typically
focused on either unilateral or contralateral examinations. The
work by Douglas et al. [24] confirmed the association of BPE
overestimation in ipsilateral breasts as a result of the higher
intensity values attributed to tumors. New algorithms may
implement some of the discussed lesion removal approaches in
malignant exams to ensure accurate BPE estimation, followed
by BPE categorization per breast for a more comprehensive
assessment. It must be noted the standard practice described

by the BI-RADS lexicon, which recommends differentiating
between breasts and characterizing an examination with the
highest BPE result in asymmetric breasts [6]. Nonetheless,
the proposed outlook could consider this guideline through the
definition of two separate labels per exam; one that represents
the presence or absence of breast symmetry, while another
provides a definite label based on BI-RADS assessments.

Moreover, an important observation was made related to the
classification performance per BPE category. Nam et al. [26],
investigated the performance of its model in two manners;
category pooling (minimal/mild versus moderate/marked) and
(minimal versus mild/moderate/marked) against a four-way
categorization. The highest performing algorithm was that
differentiating between "high" and "low" categories, which
surpassed that for all BI-RADS categories by a 18.5%. More-
over, the work by Borkowski et al. [25] showed that most
misclassifications were attributed to adjacent categories, what
highlights the results by Nam et al. Therefore, a future outlook
towards automated standardized BPE categorization may lie
in two-way classifiers. This allows ML classifiers to prioritize
the identification of exams with a higher probability of breast
cancer risk and lesion occlusion. Radiologists would ensure
a more extensive assessment of such cases, following the
described characteristics of BPE as an imaging biomarker,
thereby effectively distributing their workload. Additionally,
more accurate models that simplify BPE categorization could
be developed, leading the way towards more reliable models
for a standardized and automated methodology.a

VI. CONCLUSION

The current state of BPE categorization is marked by the
development of a wide variety of methodologies in the recent
years, making the path towards automated standardization
in the clinical practice more complex. Though far from the
goal, some important observations from this study could guide
future efforts.

The superior accuracy and correlation coefficients of ML
techniques for BPE categorization highlights their potential as
the primary focus for future developments. More importantly,
radiomics, with its feature-selection framework, may allow
BPE categorization to be tailored to tissue characteristics of
the breast, thereby enhancing model accuracy. Still, emphasis
should be remain on validated segmentation techniques that
ensure accurate BPE assessments. Moreover, future research
towards standardized methodologies should highlight the im-
portance of balanced datasets and adaptability across variable
breast MR protocols, to achieve full generalization. Other
aspects, such as the utilization of 2D input frameworks and
variable post-contrast series time points, are discussed as
potential areas for improvements. Finally, future studies could
explore BPE symmetry between breasts and the adaptability
of two-way categorizations towards a fully comprehensive and
more efficient application of BPE categorization in the clinic.
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