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Abstract

The black hole information paradox has been troubling the minds of physicists since the
discovery of Hawking radiation. The contradiction between Hawking’s result and the unitarity
postulate of quantum mechanics, reached a potential resolution in favor of unitarity, with the
discovery of AdS/CFT, which promised that black holes in AdS must evolve unitarily due to
their dual description being manifestly unitary.

However, studying the black hole information paradox in AdS can be tricky, with black
holes above a certain mass being unable to evaporate due to the usual reflective boundary
conditions. One particular paper that sparked hope for resolving both this evaporation issue
and the information paradox, proposes a method for black hole evaporation via different
boundary conditions, which allow the emitted Hawking radiation to be absorbed into an
auxiliary bath. This evaporation process is shown to be unitary in the gravitational theory,
with the innovative incorporation of regions behind the event horizon, which contribute to the
entropy of the Hawking radiation. However, the dual description of this evaporation model is
not as well-understood.

In this work, we motivate the need for an auxiliary absorbing system by verifying that
radiation cannot be absorbed into the holographic boundary. We review the previous work on
why coupling the bath to one side of the double-sided black hole does indeed lead to one-sided
black hole evaporation, and motivate why the method is unitary, at least in the gravity theory.

A simple toy-model for the black hole evaporation in the dual theory is then proposed,
which mimics the proposed evaporation protocol in the bulk. We show that if the bath, which
is described as a local operation, acts as a unitary operator, it cannot achieve the claimed
one-sided black hole evaporation. However, a non-unitary local operation of the bath has
been used to derive an LOCC (Local Operations Classical Communication) operation that
can achieve the one-sided black hole evaporation.
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1
Introduction

1.1 Black Hole Thermodynamics

The notion of black hole entropy is at the heart of black hole thermodynamics. Its discovery is
mostly accredited to Jacob Bekenstein, who is associated with the famous Bekenstein-Hawking
entropy formula. However, it should be noted that this realization was greatly motivated by
his PhD supervisor John Wheeler who was first to raise the question about the effect of black
holes on the entropy of the Universe. It was in the early 70s when Wheeler started pondering
what happens to the entropy of the Universe when matter falls into a black hole and disappears
forever. This so-called Wheeler’s demon, named by Bekenstein, was responsible for a violation
of the second law of thermodynamics. Every time matter fell into a black hole, its entropy,
however high, would disappear behind the horizon, hence lowering the entropy of the Universe.

This concern was a consequence of the black hole no-hair theorem, also named by Beken-
stein1, which states that black holes can be described entirely only by their mass, charge and
angular momentum, so any specific properties of matter that falls into a black hole are lost to
an outside observer. The no-hair theorem was a consequence of the uniqueness theorems de-
veloped by Brandon Carter and Werner Israel [1, 2], which led to the Carter-Israel conjecture.
It stated that the solution, exterior to an event horizon, formed from gravitational collapse
in a flat spacetime, eventually approaches the Kerr-Newman solution, which is, in turn, en-
tirely described by the mass, charge and angular momentum parameters. It is a generalization
which followed from work done in the late 60s by Israel, who showed that this is true for the
simplified case of the Schwarzschild metric [3].

Soon (merely several months) after it originated, Bekenstein proposed a resolution to
Wheeler’s demon [4]. His revolutionary idea, however instinctive to physicists now, was that
black holes have entropy themselves. When matter falls in, its entropy is not lost from the
Universe, but gets added to the black hole, whose entropy increases.

It was in that same year (1971) that Steven Hawking developed the black hole area theorem,

1It is commonly believed that Wheeler coined the name, though in an interview he revealed it was indeed
Bekenstein who did.

1



Chapter 1. Introduction 2

according to which the area of a black hole is never decreasing, i.e. dA/dt ≥ 0 always holds
true[5]. This is now referred to as the second law of black hole thermodynamics.2He considered
the merging of two black holes to form one bigger Kerr black hole, and showed that the area of
the event horizon of the resulting Kerr black hole is at least as big as the sum of the areas of the
event horizons of the two individual black holes that were used to form it; i.e. AKerr ≥ A1+A2.

It is interesting to note that around the same time, Sir Roger Penrose and Roger Floyd
also reached a somewhat similar result, although via a different route. They studied if it
would be possible to extract energy from a black hole - a puzzle which Penrose had already
proposed mechanisms for, though it was later that him and Floyd showed that it was indeed
possible for the case of the Kerr black hole solution[6]. They considered a test particle entering
the ergosphere, which is the region between the event horizon of the Kerr black hole and the
so-called ergosurface, defined as the radius at which particles remain stationary to an outside
observer if they travel at the speed of light. Because this region is outside the event horizon,
particles can enter and escape it. If a test particle enters the ergosphere, it can split into two
particles, one of which must have negative mass, as required by energy conservation. It is this
particle that falls into the black hole, while the positive mass particle escapes with energy
greater than the energy of the original test particle. Penrose and Floyd showed that although
the mass of the black hole decreases in this so-called Penrose process, the area of its event
horizon cannot decrease, hence recovering the area theorem.

Having ascribed entropy to black holes, and motivated by Hawking’s area theorem, Beken-
stein suggested that the black hole entropy is proportional to the area of its event horizon such
that

SBH ∝ kBA

ℓ2P
, (1.1)

with a proportionality constant (credited to Wheeler) of O(ℓ−2
P ), where ℓP is the Planck length,

given by ℓP =
√

ℏG/c3, and kB is Boltzmann’s constant [7]. This is in great contrast to the
familiar entropy of ordinary matter, which scale with the volume of the system, rather with
its surface area. Furthermore, this law implied a deep connection between different theories
in physics, namely thermodynamics (due to SBH), gravity (due to A) and quantum mechanics
(due to ℓP), which breaks in the classical limit of ℏ → 0. Combined with Hawking’s area
theorem, this implied that the entropy of a black hole is increasing monotonically since

dA

dt
≥ 0 ⇒ dSBH

dt
≥ 0 . (1.2)

Bekenstein later (1973) interpreted this entropy as Shannon entropy, meaning it quantified the
level of uncertainty, or the lack of information about the internal structure of black holes [8].
He conjured that the required increase in the entropy of the Universe (including black holes and
any matter falling into them) is a direct consequence of the loss of information about the initial
conditions of any infalling matter. When it falls into a black hole, any information about the
properties of the matter gets lost as the black hole evolves into a thermodynamic equilibrium,
due to the no-hair theorem, hence increasing the entropy of the black hole. Despite the loss

2To avoid confusion, note that this law was derived before the discovery of Hawking radiation and no black
hole evaporation was taken into account. The law was purely classical, hence only matter falling into the black
hole was accounted for, and did not take into account any quantum effects, such as the existence of Hawking
radiation.



3 1.1. Black Hole Thermodynamics

of entropy of the black hole exterior due to the matter crossing the event horizon, the loss of
information associated with the initial conditions being irrecoverable to an outside observer,
is reflected in an greater increase of the black hole entropy. Although the black hole entropy
increases in the process, for this to lead to an overall increase in the entropy of the Universe,
it needs to be able to compensate for the decrease in the entropy outside the black hole, which
occurs once the matter has crossed the event horizon, making its entropy inaccessible to the
rest of the Universe.

Bekenstein raised a further question which seemed to violate Hawking’s area law, namely
that the black hole entropy is always increasing; i.e. dSBH/dt ≥ 0. He suggested that it would
be possible to gain information about the black hole, hence lowering its entropy, by simply
obtaining information about any infalling matter prior to its fall into the black hole. This
would lower the entropy of the black hole, while increasing the entropy outside of it. To
reconcile this with Hawking’s area theorem, Bekenstein proposed that both the black hole
and matter entropies need to be taken into account in properly defining an entropy law in
accordance with the second law with thermodynamics[8]. In this way, Wheeler’s demon was
resolved by generalizing the area law, such that the change in the entropy of a black hole,
combined with the change in the entropy of the outside matter, must never decrease, such
that

dStotal
dt

=
dSBH

dt
+

dSmatter

dt
≥ 0 . (1.3)

This is known as the generalized second law of black hole thermodynamics and meant that
even though the entropy of matter gets lost when falling into a black hole, the increase in the
area of the event horizon causes the entropy of the black hole to increase sufficiently so as to,
overall, increase the entropy of the Universe.

Bekenstein’s work faced a step back, following the realization that an earlier (1971) thought
experiment proposed by Robert Geroch (another one of Wheeler’s PhD students) violated the
generalized second law, which meant that Bekenstein had to reconsider his equation. Geroch’s
thought experiment, known as Geroch’s heat engine, considered a heat engine, which made
use of a Schwarzschild black hole as an energy sink. It involved a massless box and a massless
rope used to slowly lower the box very close to the event horizon of a black hole. The box,
filled with radiation, is opened once close to the event horizon, releasing the radiation into the
black hole. The weight of the radiation in the box was used to do work on the box, generated
by the gravitational field. Geroch showed that the amount of work that can be extracted
is precisely the energy of the radiation dropped, meaning that the energy of the black hole
remains unchanged, while the energy of the radiation is converted to energy in the reservoir.
The main concern arose with the result that this process can be used to run a Carnot cycle
with perfect efficiency, in which case the temperature of the black hole was zero. Geroch’s
belief that black holes are systems of zero temperature violated the generalized second law of
black hole thermodynamics, which assigned a positive entropy to black holes. It meant that
the entropy of matter falling into a black hole would be lost; i.e. dSmatter/dt < 0, while the
entropy of the black hole would remain unchanged; i.e. dSBH/dt = 0, which would, naturally,
lead to a violation of the second law of thermodynamics if the generalized law of black hole
thermodynamics (1.3) was to hold true.

In attempt to salvage the situation, Bekenstein imposed that the proportionality constant
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of the entropy-area formula contained an additional factor of 1/ℏ, so

SBH ∝ kB
ℏ
A

ℓ2P
, (1.4)

This implied a that black holes have enormous entropies and raised concern among the physics
community, with most physicists objecting to Bekenstein’s entropy law (including Hawking),
except for his supervisor Wheeler. It seemed counterintuitive for an objet containing no atoms
or molecules, but just a singularity, to have such an enormous entropy.

In 1973, in response to Bekenstein’s claim of an entropy-area relation[7], Hawking and
Carter, together with James Bardeen formulated the laws of black hole thermodynamics, in
accordance with the ordinary laws of thermodynamics[9], given by

The zeroth law : For a stationary black hole, the event horizon has a constant surface
gravity, κ.
The first law : Perturbations of stationary black holes can be quantified via

dE =
κ

8π
s dA+ΩdJ +ΦdQ , (1.5)

where E is the total energy of the black hole, A is the area of the event horizon, Ω is the
angular velocity, J is the angular momentum, Φ is the electrostatic potential and Q is the
electric charge.
The second law : The area of the event horizon is never decreasing; i.e.

dA

dt
≥ 0 . (1.6)

The third law : A black hole cannot be formed with a zero surface gravity, so all black
holes must have κ > 0.

There was, indeed, a strong analogy with the ordinary laws of thermodynamics, but the paper
still contained some flaws, one of which was about the temperature of the black hole, which
was at absolute zero, implying they had no thermodynamic entropy.3 This was based on the
classical result that a black hole could not be in a thermodynamic equilibrium with radiation
at any non-zero temperature, because although radiation can always enter the black hole, no
radiation can be emitted from it (at least in the classical picture). This issue was soon to be
fixed with the incorporation of quantum mechanics.

A progress followed with Bekenstein’s proposal, in response to Hawking, Carter and
Bardeen, that black holes have temperature and hence also a thermodynamic entropy. He
was first to assign a temperature to black holes, which was proportional to the surface grav-
ity[8]. However, the notion of black hole temperature kept baffling physicists, such as Hawk-
ing, who were faced with the choice that either black holes have no temperature and hence
no thermodynamic entropy, which violated the second law of thermodynamics, or they had a
temperature, meaning they could emit particles - an idea just as silly at the time, since no

3Note that the entropy that Bekenstein ascribed to black holes was Shannon entropy and should not be
confused with the thermodynamic entropy. These different notions of entropy and their distinctive property
under unitary evolution will be reviewed in Chapter 3.
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particles were expected to be able to escape the gravitational pull of a black hole once behind
its event horizon.

Things took a turn the following year (1974), when Hawking discovered that black holes can
indeed radiate[10], and hence do have a temperature, as previously proposed by Bekenstein.
Hawking’s approach involved studying a massless scalar field in an asymptotically flat space-
time around a spherically symmetric collapsing star, and using quantum field theory on the
spacetime before and after a black hole forms. The basic idea behind his calculation involved
taking a positive-frequency wave on the future null infinity I+, corresponding to a particle
at late times, and propagating it backwards through spacetime. Hawking showed that the
curvature of the Schwarzschild spacetime will cause part of the wave to scatter back towards
the past null infinity I− with the same positive frequency, while the other part propagates
backwards into the star, through the origin and again out towards the past null infinity I−. He
wrote the scalar field in terms of solutions representing ingoing and outgoing waves crossing
the horizon, and obtained an expression for the number of particles that would be created (and
emitted) to the future infinity of the collapsing star, which was shown to be infinite in some
frequency range. Hawking identified this infinite number of particles with a steady emission
rate at late times, implying that the black hole will emit particles and eventually evaporate
completely. Comparing absorption and emission, Hawking was able to show that the radiation
was thermal, with a temperature proportional to the surface gravity, namely

T =
ℏ
ckB

κ

2π
. (1.7)

Following his discovery of the quantum nature of black holes, in the following year of 1975,
Hawking showed that the black hole temperature is inversely proportional to the mass M of
the black hole for the case of the Schwarzschild solution, such that

T =
c3ℏ
GkB

1

8πM
, (1.8)

deeming these black holes thermodynamically unstable[11]. However, it was another equation
that stole the spotlight in Hawking’s paper, namely the famous Bekenstein-Hawking entropy
formula

SBH =
kBc

3

Gℏ
A

4
. (1.9)

While in accordance with the entropy equation proposed by Bekenstein, namely the pro-
portionality to the area, Hawking had now fixed the proportionality constant. The main
difference between their approaches was that Hawking tried to incorporate quantum mechan-
ics into general relativity, while Bekenstein’s approach was to combine general relativity and
thermodynamics. Although Bekenstein’s generalized second law was valid is many thought
experiments, there was no proof of the law, and there were also cases (more gedanken exper-
iments), in which it appeared to be violated. These violations occurred precisely due to the
assumption that black holes do not radiate, which was immediately resolved with the discovery
of the thermal emissions by Hawking, who also provided a proof of the generalized second law.

The formulation of Hawking’s radiation only became more precise in the following years.
Several months after his original proposal, Hawking worked on providing an explanation as to
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how a black hole can actually emit these particles, which were not allowed to escape it clas-
sically. Being a quantum process, Hawking interpreted the emission of Hawking radiation as
the quantum tunneling of particles across the event horizon[12]. A black hole could evaporate
if a spontaneous creation of a pair of particles and anti-particles occurred in the gravitational
field of the black hole, such that the particle with negative energy fell back into the black
hole, while the other one escaped out to infinity as Hawking radiation. It was soon after that,
that Hawking used quantum field theory to show that vacuum fluctuations cause such pairs
of particles and anti-particles to be continuously created and annihilated. It is only when
the pair is produced in the vicinity of a black hole event horizon, it is possible for it to be
separated, with one of them falling into the black hole, while the other one escapes[13].

The discovery of Hawking radiation immediately seemed to have a direct implication on the
area law (1.6), which appeared to be violated. In the process of emitting Hawking radiation,
a black hole would evaporate, decreasing the area of its event horizon[14]. What is more, the
generalized second law of black hole thermodynamics (1.3) now also faced a problem, since
once completely evaporated, the entropy of the black hole would vanish, causing the Universe
to lose entropy. Since the black hole evaporation is inherently a quantum mechanical process,
while both the area law and the generalized second law were, so far, purely classical results,
it meant that they had to be modified.

The key was, as pointed out by Bekenstein[15], to assign entropy to the Hawking radiation,
such that the entropy of the emitted radiation is enough to overcompensate for the loss in
entropy of the black hole, as seen in the decrease of its surface area. The final (quantized)
version of the generalized second law of black hole thermodynamics hence required that the
total entropy of the black hole, together with the total entropy of the Hawking radiation,
should be non-decreasing, hence increasing the entropy of the Universe.

Although a lot of the basics of black hole thermodynamics had been well-established at
this point, a Pandora’s box had been opened as soon as Hawking radiation was discovered,
leading to the famous black hole information paradox.4

1.2 The Information Paradox

The Information paradox began with the discovery of Hawking radiation. If one were to
imagine a black hole formed from the gravitational collapse of matter in a pure state, then
this initial black hole, being in a pure state, would have a vanishing von Neumann entropy.
5 However, as Hawking discovered, black holes emit thermal radiation, which is not pure.
This means that after the complete evaporation of the initially-pure black hole, one would
be left with only thermal radiation, which is in a mixed state. However, the evolution from
a pure to a mixed state is not a unitary process since the von Neumann entropy, which is a
quantum entropy, is invariant under a unitary evolution. For the black hole evaporation to be
a unitary process, the final entropy of the Hawking radiation needs to somehow be purified, so
that the von Neumann entropy of the system is brought back to zero. But why is the entropy
of the Hawking radiation non-zero? The reason lies with the fact that Hawking modes are
entangled, with a combined von Neumann entropy of zero. However, with the creation of

4A much more comprehensive review of the history of black hole thermodynamics can be found in [4].
5This is just a definition for the von Neumann entropy of a pure state. Properties of the von Neumann

entropy will be discussed in Chapter 3.
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each Hawking pair, one of the Hawking modes remains trapped behind the horizon, while the
other one escapes to infinity. This leads to a continuously increasing von Neumann entropy
of the emitted Hawking radiation, as illustrated by the green line in Figure 1.1. As the
black hole evaporates, its mass decreases and the area of its event horizon shrinks, causing its
thermodynamic entropy to decrease. This has been illustrated by the black curve in Figure
1.1, where a the blue curve has been used to illustrate what a unitary evolution would look like
for the von Neumann entropy of the Hawking radiation. Such unitary evolution curve, namely
one bringing the von Neumann entropy back to its original value is called a Page curve.

Figure 1.1: (green) The monotonically increasing entanglement entropy of the emitted
Hawking radiation due to the increasing number of unpaired hawking modes. (black)
The thermodynamic black hole entropy, which decreases as the black hole evaporates,
due to the area of the event horizon getting smaller. (blue) A Page curve for the
entropy of the Hawking radiation, which would bring the entropy back to its initial
value, expected from a unitary evaporation model.

This discrepancy between the unitary evolution expectation in quantum mechanics and the
non-unitary result following Hawking calculations established the Information paradox. There
have been multiple attempts to resolve the paradox, such as the black hole Complementarity
[16], which was later shown to be self-contradicting by [17], which introduced the so-called
AMPS or Firewall paradox, hence bringing the information paradox the back to the drawing
boards.

In recent years, there has been a lot of progress in the context of AdS, following the
development of the AdS/CFT correspondence, which settled the issue in favor of unitarity
and conservation of information. It meant that black hole evaporation in AdS must be a
unitary process, since its dual description, namely the CFT that lives on the holographic
boundary, is inherently a unitary theory. However, as we will see in this thesis, studying black
holes in AdS, despite resolving some ambiguities about the expected unitary evolution, present
other issues.
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Structure of Thesis

The aim of this thesis is to review recent developments in resolving the Information Paradox,
as well as raise some potential questions about their description.

In Chapter 1, we introduced the history of black hole thermodynamics, which gave rise
to the Information Paradox. The paradox was explained, as well as how the discovery of
AdS/CFT helped resolve some debates surrounding it.

In Chapter 2, we review aspects of the AdS/CFT correspondence. After describing the
basic features of AdS spacetimes, the dynamics of a scalar field in AdS is reviewed, which
is shown to depend on the signature of the metric. We show that while in Euclidean AdS,
there does not exist a normalizable solution, in Lorentzian signature, one of the solutions is
normalizable. We then review some features of CFTs, such as the state-operator map, and
we give an example, in which we summarize some results for the massless free boson. After
describing both AdS and CFT, the AdS/CFT duality is reviewed.

In Chapter 3, we introduce entanglement entropy in quantum mechanics, which is then
derived for a general quantum field theory. We show how the AdS/CFT correspondence can
be applied to the entanglement entropy, and introduce the RT prescription, as well as a short
review of its derivation. Subsequent generalizations of the RT formula are stated, including
the latest version of the generalized gravitational entanglement entropy.

In Chapter 4, we use the theoretical background from Chapter 2 to study black holes
in AdS. We explain the motivation for studying black holes in AdS, as well as the issues
surrounding these solutions, due to the nature of the AdS geometry and its reflective boundary
conditions. We explain why large black holes do not evaporate in AdS, with all the Hawking
radiation bouncing off the AdS boundary, and why making them smaller presents further issues.
With that in mind, we show that changing these boundary conditions to being absorptive into
the holographic boundary is not possible, since any particle that escapes the bulk will no
longer have a description at the holographic boundary. This is used to motivate the need for
an auxiliary system, where the Hawking radiation could be absorbed, hence allowing the black
holes to evaporate.

In Chapter 5, we review one such recent model in the context of JT gravity [18], which
proposes the attachment of an auxiliary bath to the AdS boundary, making one-sided black
hole evaporation into the bath possible. To explain this model, we first review features of JT
gravity, and use its semiclassical description to review how coupling to the bath achieves the
evaporation protocol. The discussion in Chapter 3 is then used to explain how the proposed
black hole evaporation model was used to produce a unitary Page for both the evaporating
black hole and the emitted Hawking radiation, hence leading to a possible resolution to the
Information paradox. We then look for a way to describe this one-sided black hole evaporation
model, but using a toy-model for the boundary theory, namely working in the TFD formalism.
We model the bath in the gravity theory as an operator in the dual theory, and we find such an
operation which successfully reproduces all the expected results in the dual theory. However,
this operation is shown to be non-unitary and we argue that a unitary bath operation may
not be possible, at least with the way the bath is described to act on the bulk. As will be
explained, this does not exclude the possibility for a global unitary bath operation, although
the way that the bath is coupled to the bulk might have to be different. We also show that
the one-sided evaporation can be modeled via an LOCC protocol, which uses the bath as a
way to transfer classical information.



2
AdS/CFT

The AdS/CFT duality provides a powerful tool for studying the Information paradox. Due to
the unitary evolution of the CFT on the holographic boundary, AdS/CFT also guarantees a
unitary evolution inside the bulk, where one could choose to study how black holes evaporate.
In this chapter, we will discuss aspects of the AdS/CFT correspondence, which will be used
later in the thesis. In Section 2.1, we will review the basic features of AdS spacetimes, such as
the dynamics of a scalar field in AdS, which will be shown to depend on the signature of the
metric. We show that while in Euclidean AdS, there does not exist a normalizable solution, in
Lorentzian signature, one of the solutions is normalizable. In Section 2.2, we will review some
features of CFTs, such as the state-operator map, and review the massless free boson theory.
In Section 2.3, we will review the correspondence between these two descriptions. Although it
will not include any new calculations, the results in this chapter will be used for calculations
later on in the thesis.

2.1 Anti-de Sitter Spacetime

2.1.1 Coordinates

Anti-de Sitter (AdS) spacetime is a maximally symmetric spacetime and a solution to Ein-
stein’s equations with a negative cosmological constant. A (d+1)-dimensional AdS spacetime,
namely AdSd+1, can be obtained from a submanifold of (d+2)-dimensional Minkowski space-
time with a (2, d) signature Rd,2, described by

ds2 = −dT 2
1 − dT 2

2 + dX2
1 + . . .+ dX2

d . (2.1)

AdSd+1 is then defined as the submanifold

T 2
1 + T 2

2 −X2
1 − . . .−X2

d = ℓ2AdS , (2.2)

9
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where ℓAdS is referred to as the AdS radius (i.e. radius of curvature). The cosmological
constant depends on the AdS radius, such that Λ = −d(d+1)

2ℓ2AdS
. There are different sets of

coordinates that can be used to describe the AdS spacetime[19]. A common choice are the
so-called global coordinates (τ, ρ̃,Ωi), defined as

T1 = ℓAdS cos τ cosh ρ̃ ,

T2 = ℓAdS sin τ cosh ρ̃ ,

Xi = ℓAdSΩi sinh ρ̃ , (2.3)

where the Ωi with i ∈ {1, . . . , d} parameterize the Sd−1 sphere and
∑

iΩ
2
i = 1. The global

coordinates cover the entire AdSd+1 spacetime. In these coordinates, the AdSd+1 metric (2.1)
can be written as

ds2 = ℓ2AdS(− cosh2ρ̃dτ2 + dρ̃2 + sinh2ρ̃ dΩ2
d−1) . (2.4)

Here 0 ≤ τ < 2π, ρ̃ ≥ 0 and dΩ2
d−1 is the sphere metric on Sd−1. The periodicity of the τ

coordinate indicates the presence of closed timelike curves. To resolve this issue, we “unwrap”
the time circle and take −∞ < τ <∞ to obtain the so-called universal cover of AdS without
closed timelike curves[19].

The metric (2.1) is also often written in terms of the coordinates (t, r,Ωi), which are also
often referred to as global coordinates due to their full coverage of the AdS spacetime. They
are defined as

T1 =
√
ℓ2AdS + r2 cos(t/ℓAdS) ,

T2 =
√
ℓ2AdS + r2 sin(t/ℓAdS) ,

X2 = X2
1 + . . .+X2

d = r2 , (2.5)

in which case it takes the form

ds2 = −
(
1 +

r2

ℓ2AdS

)
dt2 +

(
1 +

r2

ℓ2AdS

)−1

dr2 + r2dΩ2
d−1 . (2.6)

Here r ∈ [0,∞), t ∈ (−∞,∞) and the two sets of coordinates can be related via r = ℓAdS sinh ρ
and t = ℓAdSτ .

To study the causal structure of AdSd+1, it is useful 6 to make a further change of variables
r = ℓAdS tan ρ, where ρ ∈ [0, π/2], in which case the metric becomes

ds2 =
ℓ2AdS

cos2 ρ
(−dt2 + dρ2 + sin2ρdΩ2

d−1) . (2.7)

The causal structure is invariant under a conformal scaling of the metric. A scaling trans-
formation to remove the Weyl factor ℓ2AdS/ cos

2 ρ shows that AdSd+1 has R × Sd−1 topology
and hence the same causal structure as a cylinder, as illustrated in Figure 2.1 (left). In these
coordinates, the boundary is located at ρ = π/2 (r = ∞). 7

6For example, in Section 4, we will focus on the AdS3/CFT2 duality and use this metric because the
cylindrical structure of AdS3 makes it easier to see that the metric of the boundary CFT2 is just the flat
Minkowski metric.

7As we will see later in this chapter, this is the so-called conformal boundary, which plays an important
role in the AdS/CFT correspondence, being the boundary where the CFT lives.
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Another convenient set of coordinates are the Poincaré coordinates, defined via

T1 =
ℓ2AdS

2r

(
1 +

r2

ℓ4AdS

(
ℓ2AdS + x⃗2 − t2

))
,

T2 =
r

ℓAdS
t ,

T2 =
r

ℓAdS
xi ,

T1 =
ℓ2AdS

2r

(
1− r2

ℓ4AdS

(
ℓ2AdS − x⃗2 + t2

))
. (2.8)

The coordinates cover only a portion of the AdS spacetime, called the Poincaré patch. This
can be seen in Figure 2.1 (right) which shows that the Poincaré patch covers only half of the
spacetime covered by the global coordinates. In these coordinates, the metric (2.1) can be
written as

ds2 =
r2

ℓ2AdS

(
−dt2 + dx⃗2

)
+
ℓ2AdS

r2
dr2 . (2.9)

A further change of variables z = ℓ2AdS/r allows us to write the metric as

ds2 =
ℓ2AdS

z2
(
dz2 − dt2 + dx⃗2

)
=
ℓ2AdS

z2
(
dz2 + ηµνdx

µdxν
)
, (2.10)

where xµ = (t, x⃗) and ηµν = diag(−,+, . . . ,+). In these coordinates, the conformal boundary
is located at z = 0. In what follows we will set ℓAdS = 1 for simplicity.

Figure 2.1: (left) In the Poincaré Patch (grey), the holographic boundary is at z = 0,
which is equivalent to ρ = π/2 in the global coordinates. right) A slice through the
AdS3 spacetime, showing that the Poincaré Patch covers half of the full spacetime.

2.1.2 Scalar field theory in Poincaré AdS

In this section, we will study the dynamics of a massive scalar in AdSd+1. We will see that
in the Euclidean case there exist normalizable and non-normalizable bulk solutions, but the
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normalizable solution blows up at the centre of the bulk and is hence not physical. This issue is
not present in the Lorentzian case, where the normalizable solution is also regular everywhere
in the bulk [20]. The notion of normalizability will be explained in more detail later, but it
has to do with the regularity of the action, when evaluated on the particular solution. In what
follows, we will derive these results, starting with the Euclidean case.

A. Dynamics in Euclidean signature

For convenience, we will work in the Poincaré patch with metric defined in (2.10) and set
ℓAdS = 1. Since we are considering the Euclidean case, we will Wick-rotate from Lorentzian
time t to Euclidean time τ by setting t = −iτ , in which case the metric becomes

ds2 =
1

z2
(
dz2 + dτ2 + dx⃗2

)
=

1

z2

(
dz2 + δabdx

adxb
)
, (2.11)

where xa = (τ, x⃗) with a ∈ [0, d] and δab = diag(+, . . . ,+). In these coordinates, the action
for a scalar field ϕ of mass m is given by

S =
1

2

∫
dd+1x

√
g (∂µϕ∂νϕg

µν +m2ϕ2)

=
1

2

∫
ddxdz z−d+1

(
(∂zϕ)

2 + (∂aϕ)
2 +

m2

z2
ϕ2
)
, (2.12)

where we have used that g = det(gµν) and in Poincaré coordinates, g = z−2(d+1). To obtain
the equation of motion for ϕ, we vary the action with respect to ϕ and set δS/δϕ = 0 to get

1√
−g

∂µ(
√
−ggµν∂νϕ) = m2ϕ , (2.13)

which gives

z2∂2zϕ− (d− 1)z∂zϕ+ z2∂2aϕ = m2ϕ . (2.14)

To solve the above equation, it is convenient to perform a Fourier decomposition in the xa

directions and use a plane-wave ansatz of the form ϕ(z, x) = eik.xfk(z), where k.x = δabk
axb

[21]. The equation can now be written as

z2∂2zfk − (d− 1)z∂zfk − (k2z2 +m2)fk = 0 , (2.15)

where k2 = δabk
akb. This is can be written in the form of the modified Bessel equation by

doing a change of variable fk = zd/2gk, which yields

z2∂2zgk + z∂zgk −
(
d2

4
+ k2z2 +m2

)
gk = 0 . (2.16)

Taking gk = gk(kz), where k = |k| =
√
k2, one finds two independent solutions in terms of the

modified Bessel functions of the first and second kind, given by

gk(kz) = akKν(z|k|) + bkIν(z|k|) , (2.17)
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where ak and bk are integration constants, and we have defined ν =
√
d2/4 +m2[22]. Hence,

we arrive at

fk(z) = akz
d
2Kν(z|k|) + bkz

d
2 Iν(z|k|) . (2.18)

Note that since each mode depends on the parameter k, the full solution for the scalar field is
obtained by the superposition of all of them, and so takes the form

ϕ(z, x) =

∫
ddk

(2π)d
eik.xfk(z) , (2.19)

where ϕ(z, x) is the Fourier transform of fk(z). We have to impose that the solution remains
regular everywhere in the bulk, including the centre of the bulk at z → ∞ and boundary,
located at z → 0. To check this regularity, we will use the asymptotic behaviour of the Bessel
functions for ν > 0, given by

Kν(z|k|) ∼
Γ(ν)

2

(
2

z|k|

)ν

, (2.20)

Iν(z|k|) ∼
1

Γ(ν + 1)

(
z|k|
2

)ν

, (2.21)

which allow us to write the solution (2.18) near the boundary behaves as

fk(z) ∼ Akz
∆− +Bkz

∆+ , (2.22)

where we have defined

∆± =
d

2
± ν =

d

2
±
√
d2

4
+m2 (2.23)

and

Ak = ak
Γ(ν)

2

(
|k|
2

)ν

, (2.24)

Bk = bk
1

Γ(ν + 1)

(
2

|k|

)ν

. (2.25)

In position space, one can therefore write the full scalar field solution near the boundary
(z → 0) as

ϕ(z, x) → A(x)z∆− +B(x)z∆+ , (2.26)

where A(x) and B(x) and the Fourier transforms of Ak and Bk respectively.8 The ∆+ is
the so-called normalizable mode, while ∆− is a non-normalizable mode. This normalizability
criterion will be discussed in more detail later on. Having checked the behaviour near the
boundary, it remains to check the behaviour of the solution near the centre of the bulk, where
z → ∞. Using the asymptotic behaviour of the Bessel functions, one finds that

Kν(z|k|) ∼ e−z|k| , (2.27)

Iν(z|k|) ∼ ez|k| . (2.28)
8Note that we can deduce these scalings much quicker from (2.14) with an ansatz ϕ(z, x) = f(z)g(x) and

ignoring terms of O(z2) since we are only interested in the behaviour of the field near the boundary at z = 0.
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While the first solution Kν(z|k|) remains regular at the centre of the bulk, the second solution
Iν(z|k|) diverges exponentially. Hence, in order to impose regularity in the interior, we need
to omit this solution by setting bk = 0. Hence, B(x) = 0 and near boundary

ϕ(z, x) → A(x)z∆− , (2.29)

meaning that in the Euclidean signature only the non-normalizable solution is admissible. This
is not the case in Lorentzian spacetime. In what follows, we will repeat the above analysis to
Lorentzian signature, and show that in this case, there exists a solution which is normalizable
at the boundary, while also being regular everywhere in the bulk.

B. Dynamics in Lorentzian signature

In Lorentzian spacetime there are, again, two possible solutions - a normalizable and a non-
normalizable one, but unlike the Euclidean case, where the normalizable mode was not physical
at the origin, the normalizable mode is now well-defined throughout the whole bulk. In this
case, the metric is

ds2 =
1

z2
(
dz2 − dt2 + dx⃗2

)
=

1

z2

(
dz2 + ηabdx

adxb
)
, (2.30)

where ηab is the standard Minkowski metric. Following the same procedure as before, we find
that the equation of motion for fk is the same as in (2.18), but now k2 = ηabk

akb. Now
the solution depends on whether k2 > 0 or k2 < 0[23]. For the case k2 > 0, the results are
the same as the Euclidean case, and there is no regular normalizable solution. However, for
the case when k2 < 0, the situation is more complicated and we have a regular normalizable
solution appearing as well. Again, there are two independent solutions, but now they are
in terms of the Bessel functions {Jν(z|k|), J−ν(z|k|)} if ν is a non-integer, and in terms of
{Jν(z|k|), Yν(z|k|)} otherwise. Hence,

fk(z) =

dkz
d
2Jν(z|k|) + ckz

d
2J−ν(z|k|) if ν /∈ Z

dkz
d
2Jν(z|k|) + ckz

d
2Yν(z|k|) if ν ∈ Z .

(2.31)

Let’s consider the case when ν is an integer. At the centre of the bulk (as z → ∞), the Bessel
functions with ν > 0 are regular, so both sets of solutions remain regular. Approaching the
boundary as z → 0, the Bessel functions with ν > 0 behave as

Jν(z|k|) ∼
1

Γ(ν + 1)

(
z|k|
2

)ν

, (2.32)

Yν(z|k|) ∼ −Γ(ν)

π

(
2

z|k|

)ν

, (2.33)

so the boundary limit of (2.31) becomes

fk(z) ∼ Ckz
∆− +Dkz

∆+ , (2.34)



15 2.1. Anti-de Sitter Spacetime

where

Ck = −ck
Γ(ν)

π

(
2

|k|

)ν

, (2.35)

Dk = dk
1

Γ(ν + 1)

(
|k|
2

)ν

. (2.36)

In position space, the scalar field solution near the boundary is

ϕ(z, x) → C(x)z∆− +D(x)z∆+ , (2.37)

where C(x) and D(x) are the Fourier transforms of ck and dk respectively. Similar discussion
follows for the case when ν is not an integer. Hence, unlike the Euclidean case, now there is an
additional solution which is both normalizable and regular. This solution will be important in
Chapter 5.3, where it’ll be used to model the radiation from a black hole in an asymptotically
AdS spacetime. We will want to use a solution which is both normalizable near the boundary
and regular everywhere in the bulk. Hence, for future bulk calculation we shall use the
Lorentzian signature.

We wish to clarify the notion of normalizability of the bulk scalar solutions. In what
follows, we will focus on the Lorentzoan signature. We claimed that ∆+ is a normalizable
mode, while ∆− is a non-normalizable mode. This normalizability criterion comes from the
normalizability requirement for the action when evaluated using the particular solution. One
can check that the action (2.12) remains finite when the integral over z is evaluated from z = 0
to some cut-off z = ϵ using ϕ ∼ z∆, provided that ∆ > d/2. Hence, the action is finite if
∆ = ∆+ and so it seems as if this is the only admissible mode.

However, there exist examples of the correspondence, where the boundary theory allows
for operators of scaling dimension ∆ < d/2. Hence, in order to preserve the duality, there
must be an oversight in the conclusion that ∆ = ∆+ is the only allowed solution. It turns out
that in the range

−d
2

4
< m2 ≤ −d

2

4
+ 1 , (2.38)

the action is also finite for ∆ = ∆−. This can be shown with the following further analysis of
the action. By performing integration by parts, the action (2.12) becomes

S =
1

2

∫
dd+1x

√
g ϕ(−∂µ∂µ +m2)ϕ+

1

2

∫
dd+1x

√
g ∂µ(ϕ∂

µϕ) , (2.39)

where the second term is a boundary term, which does not contribute to the equations of
motion for ϕ. By ignoring the boundary term, the restriction on ∆ changes [24]. In this case,
the action becomes

S =
1

2

∫
ddxdz

√
g ϕ(−z2∂2z + (d− 1)z∂z + z2∂2aϕ+m2)ϕ , (2.40)

where we can recognize the equation of motion for ϕ. Using ϕ ∼ z∆ and evaluating the
integral over z from z = 0 to z = ϵ, it can be seen that the boundary term in is non-zero,
and in fact diverges, if ∆ ≤ d/2 [25]. However, ignoring the boundary term, the action
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converges for ∆ ≥ d/2− 1.9 This modified bound implies that there can exist solutions with
d/2 − 1 ≤ ∆ < d/2, in which case ∆ = ∆− is also an admissible solution. In this case, the
requirement ∆ ≥ d/2− 1 corresponds to the upper bound for the mass in (2.38)). The lower
bound arises from requiring that the scaling dimension ∆± ∈ R, which imposes a further
restriction on the mass of the scalar field, namely that

m2 ≥ −d
2

4
. (2.41)

This is known as the Breitenlohner-Freedman bound (BF). It implies that bulk particles of
negative mass can have stable solutions.10 Hence, in the range (2.38), both ∆± are allowed
solutions, while for m2 above this range, only ∆+ is allowed.

Having described the dynamics in the bulk, in the next section, we will quickly review a
few of the properties of conformal field theories, while focusing only on the parts which will
be important in future calculations in the thesis.

2.2 Conformal Field Theory

A conformal field theory (CFT) is a relativistic quantum field theory with some additional
symmetries. We will consider a CFT with a metric tensor gµν in d spacetime dimensions.
Under a coordinate transformation xµ → x′µ, the metric transforms as

gµν(x) → g′µν(x
′) = Ω2(x)gµν(x) . (2.42)

A conformal field theory is invariant under this transformation and we say that a conformal
transformation is one that leaves the metric invariant up to some factor Ω2(x). An important
feature of this invariance in Minkowski spacetime is that conformal transformations preserve
the angles between curves crossing each other. This has an important consequence, namely
that conformal transformations preserve the causal structure, so null/timelike/spacelike inter-
vals remain null/timelike/spacelike separated.

2.2.1 CFT Algebra

The group of transformations that satisfies this property is called the conformal group. The
conformal group in Minkowski spacetime contains as a subgroup the Poincaré group, which in-
cludes translations and Lorentz transformations. The conformal group contains two additional
transformations[27], namely dilatations and the so-called special conformal transformations.
The conformal group transformations and their respective generators are

9This is identical to a unitarity bound arising from the properties of the CFT. The CFT unitarity bound can
be derived from demanding that matrix elements are positive definite, which yields that for a CFTd, ∆ ≥ d−2

2

[26].
10This is not the case in flat spacetime, where negative mass solutions are unstable.
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translations : x′µ = xµ + aµ Pµ = −i∂µ (2.43)
rotations : x′µ =Mµ

νx
ν Lµν = i(xµ∂ν − xν∂µ) (2.44)

dilatations : x′µ = λxµ D = −xµ∂µ (2.45)

SCTs : x′µ =
xµ − bµx2

1− 2b.x+ b2x2
Kµ = −i(2xµxν∂ν − x2∂µ) . (2.46)

A special conformal transformation can be thought of as an inversion xµ → xµ/x2, followed
by a translation xµ/x2 → xµ/x2 − bµ, which is in turn followed by another inversion like the
first one such that the full transformation can be expressed as

x′µ

x′2
=
xµ

x2
− bµ . (2.47)

The metric scale factor introduced from the special conformal transformation is given by

Ω2(x) = (1− 2b.x+ b2x2)2 . (2.48)

The conformal group generators Pµ, Lµν , D and Kµ satisfy a set of commutation relations,
which define the conformal algebra. If one defines a new set of generators, defined as

Jµν = Lµν (2.49)
J−1,0 = D (2.50)

J−1,µ =
1

2
(Pµ −Kµ) (2.51)

J0,µ =
1

2
(Pµ +Kµ) , (2.52)

then the conformal algebra can be written as

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) , (2.53)

where Jab = −Jba and ηab is the usual Minkowski metric with a, b ∈ {−1, . . . , d}. The confor-
mal group is isomorphic to the group SO(d, 2). For the remaining part of Section 2.2, we will
focus on CFT2 theories.

2.2.2 The state ↔ operator map

It is operators and (local) states in the CFT that we primarily interested in, and in CFTs,
there is a way to relate them, known as the state-operator map. While in a general QFT, local
states and operators are very different objects, with states living on an entire spatial slice,
while local operators being localized on a single spacetime point, in a CFT, there exists an
isomorphism between these objects [28].

To make the state-operator correspondence more precise, we will use the notion of ra-
dial quantization. We can parameterize the CFT2 theory in terms of the Cartesian plane
coordinates (τ, x), which denote the time and space coordinate. One can also parameterize
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the theory in terms of the complex cylinder coordinates (w, w̄), defined as w = x − iτ and
w̄ = x+ iτ , such that x ∈ (0, 2π]. The states live on spatial slices of the cylinder.

Another convenient way to parameterize the theory is to do a map from the complex
cylinder to the complex plane (z, z̄) via z = eiw and z̄ = eiw̄. While on the cylinder, the
states lived on constant time slices, in the complex plane, they live on circles of constant
radius [28]. This can be seen from the Hamiltonian generating time evolution on the cylinder,
given by H = ∂τ , which is the dilatation operator in the complex plane coordinates, given by
D = z∂z + z̄∂z̄. 11 Hence, the state in the infinite past τ = −∞ of the cylinder is mapped
onto the complex plane at z = z̄ = 0. The state-operator map states that

|O⟩ = lim
z,z̄→0

O(z, z̄)|0⟩ . (2.54)

It should be noted that the state is defined by acting on the vacuum state with an operator at
z = z̄ = 0, which means that the state on the cylinder is defined at τ = −∞. This is illustrated
in Figure 2.2, where the state on the cylinder at τ = −∞ corresponds to an operator insertion
at the origin of the complex plane.

Figure 2.2: Constant time slices on the cylinder corresponding to constant radius circles
on the complex plane. The state-operator map, states that operators inserted at the
origin z = z̄ = 0 of the complex plane get mapped to stated at τ = −∞ on the
cylinder. As states evolve on the cylinder, they correspond to circles of bigger radius
on the complex plane, as shown in blue. Adapted from [29]

A nice derivation of the state-operator map can be found in [28], in terms of the path integral
formulation of the wavefunction.

2.2.3 Operator product expansion

A concept of particular importance in CFTs is the operator product expansion (OPE). Even
though it is also a concept in a general quantum field theory, the notion of a “field” in CFT is
slightly more general, since the term also includes any operations (such as derivatives) of the
usual fields.

11This has rather interesting implications for the dynamics in the complex plane. The Hamiltonian in the
complex plane is the dilatation operator. Since [D,Pµ] = Pµ and [D,Kµ] = −Kµ, comparing to the usual
commutation relations between the Hamiltonian and the ladder operators, Pµ acts as a raising operator, while
Kµ acts as a lowering operator [27].
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The OPE is a statement about what happens when operators are very close to each other.
For local operators Oi, and only within time-ordered correlation functions, the OPE is defined
as

Oi(z, z̄)Oj(w, w̄) =
∑
k

Ck
ij(z − w, z̄ − w̄)Ok(w, w̄) , (2.55)

where the functions Ck
ij(z − w, z̄ − w̄) depend only on the separation between the operators,

due to translational invariance. We will not go into the derivation of the OPE, but one can
see from its definition that it diverges for z → w (or z̄ → w̄).

A particular type of operator in CFT, called a primary operator is defined as an operator,
whose OPE with the stress-energy tensor truncates at (z−w)−2. Hence, the OPE of a primary
operator O with the stress-energy tensor is defined as

T (z)O(w, w̄) = h
O(w, w̄)

(z − w)2
+
∂wO(w, w̄)

z − w
(2.56)

T̄ (z̄)O(w, w̄) = h̄
O(w, w̄)

(z̄ − w̄)2
+
∂w̄O(w, w̄)

z̄ − w̄
, (2.57)

where h, h̄ are called the weights of the operator. These are related to the scaling dimension
of an operator, which can be written as ∆ = h+ h̄. Note, h, h̄ ∈ R and h, h̄ ≥ 0 for a unitary
CFT. Under a general finite conformal transformation, namely z → z′(z) and z̄ → z̄′(z̄),
primary operators transform as

O(z, z̄) → O′(z′, z̄′) =

(
∂z′

∂z

)−h(∂z̄′
∂z̄

)−h̄

O(z, z̄) (2.58)

The significance of the primary operators is that the spectrum of the weights h, h̄ of primary
operators is related to the spectrum of the masses of the particles in the field theory.

In the next section we will quickly review some basic aspects of an example CFT theory,
namely that of the massless free boson, without preforming any derivations.

2.2.4 Example: The Massless Free Boson

The dynamics of the free boson is governed by the action

S =
1

2
g

∫
d2x ∂µφ∂

µφ , (2.59)

where g is a normalization parameter, which will be specified later [27]. The correlation
functions are given by

⟨φ(x)φ(y)⟩ = − 1

4πg
ln |x− y|2 , (2.60)

which can be written in terms of the complex plane coordinates, introduced in the previous
section, to give

⟨φ(z, z̄)φ(w, w̄)⟩ = − 1

4πg

{
ln |z − w|2 + ln |z̄ − w̄|2

}
. (2.61)
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Taking partial derivatives of (2.61), it can be split into holomorphic and anti-holomorphic
contributions, given by

⟨∂zφ(z)∂wφ(w)⟩ = − 1

4πg

1

(z − w)2

⟨∂z̄φ(z̄)∂w̄φ(w̄)⟩ = − 1

4πg

1

(z̄ − w̄)2
. (2.62)

Recall that to test if an operator in a primary operator, one needs to calculate its OPE with
the stress-energy tensor. The stress-energy tensor for the theory under consideration can be
written in terms of the complex plane coordinates as [27]

T (z) = −2πg : ∂zφ(z)∂zφ(z) :

T (z̄) = −2πg : ∂w̄φ(w̄)∂w̄φ(w̄) : . (2.63)

It has been shown in [27] that by canonically quantizing the scalar field on the cylinder, the
partial derivatives of the scalar field, appearing in the expression for the stress-energy tensor,
can be written as

∂zφ(z, z̄) = − i√
4πg

∑
n

anz
−n−1

∂z̄φ(z, z̄) = − i√
4πg

∑
n

ānz̄
−n−1 , (2.64)

where an and ān are ladder operators for left- and right-moving excitations, and obey the
following commutation relations

[am, an] = [ām, ān] = mδm+n

[am, ān] = [ām, an] = 0 , (2.65)

where

δm+n =

{
m if m = −n
0 otherwise .

(2.66)

The creation/annihilation operators act on the CFT vacuum state, such that

an|0⟩CFT =

{
= 0 if n > −1

̸= 0 if n ≤ −1
(2.67)

and similarly for ān. 12

These features of the massless scalar boson CFT2 theory will be used later in Chapter 4,
to study the dual description of a massless scalar in AdS3.

12Note that this action of the creation/annihilation operators is specific to the operator, and in particular
to its weight h, h̄. In the above example, namely the mode expansion of the operator ∂zφ, the weight of that
operator was h = 1, hence the factors of −1 in (2.67). For the mode expansion of a general operator of weight
h, such that ϕ(z, z̄) = −

∑
n bn,m z−n−hz̄−m−h̄, one must impose bn,m|0⟩ = 0 for n ≥ −h and m ≥ −h̄. The

reason for this requirement is the otherwise the state generated by the state-operator map will be non-singular
(and hence not well-defined) at z = z̄ = 0 [30].
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2.3 AdS/CFT Correspondence

2.3.1 Statement of the correspondence

The map between observables on both sides is given by the so-called AdS/CFT dictionary.
There are two versions of the dictionary, namely the differentiate and the extrapolate dictio-
nary. The differentiate dictionary is stated in terms of the equivalence between the bulk and
boundary partition functions

ZBulk[ϕ0] = ZCFT[ϕ0] , (2.68)

where ϕ0(x) is the boundary condition on the fields. Correlation functions of the CFT op-
erators are then computed, as per usual, by differentiating the partition with respect to the
sources

⟨O(x1) . . .O(xn)⟩CFT =

[
δ

δJ(x1)
. . .

δ

δJ(xn)
ZBulk[J ]

]
J=0

, (2.69)

where we set the sources J = 0 at the end. On the other hand, the extrapolate dictionary
evaluates the CFT correlators by first computing the bulk correlators and then pulling them
to the boundary via

⟨O(x1) . . .O(xn)⟩CFT = lim
z→0

z−n∆⟨ϕ(x1, z) . . . ϕ(xn, z)⟩Bulk . (2.70)

It has been shown in [31] that (up to some proportionality constant) the two dictionaries
compute the same CFT correlators i.e.[

δ

δJ(x1)
. . .

δ

δJ(xn)
ZBulk[J ]

]
J=0

≈ lim
z→0

z−n∆⟨ϕ(x1, z) . . . ϕ(xn, z)⟩Bulk . (2.71)

The AdS/CFT correspondence gives a relation between the mass m of the AdS bulk scalar
field and the scaling dimension ∆ of the operator O on boundary CFT theory, given by the
roots of m2 = ∆(∆− d), which are

∆± =
d

2
±
√
d2

4
+m2 . (2.72)

Hence, for a general massive scalar field in the bulk, there exist two solutions for the scaling
dimensions of the dual operator O living on the boundary. These are the normalizable and
non-normalizable solutions of the bulk field and have different interpretations in the CFT
theory, as will be explained in the next section.

2.3.2 Boundary behaviour : the field ↔ operator map

We wish to use the AdS bulk scalar field solution and the AdS/CFT duality to explain what
it corresponds to in the CFT theory. To do that, it is convenient to consider the boundary
limit of the scalar field solution, which behaves as

ϕ(z, x) = A(x)z∆ +B(x)zd−∆ , (2.73)
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where we found that there are two possible solutions for the scaling dimension, namely the
roots ∆± of ∆(∆− d) = m2. Choosing a particular solution for ∆ implies a different physical
interpretation of the functions A(x) and B(x).

If we choose ∆ = ∆+, the term ∼ zd−∆+ = z∆− is the dominant term in the limit z → 0,
since ∆− < ∆+. Hence, near the boundary, we find that

B(x) = lim
z→0

z−∆−ϕ(z, x) . (2.74)

By dimensional analysis [21], the function A(x), corresponding to the normalizable mode, is
identified with the vacuum expectation value of the dual field operator O, of scaling dimension
∆+, while B(x) is identified as the source for this operator. In accordance with the extrapolate
dictionary, this suggests that B(x) sources the bulk field ϕ(z, x).

If we, instead, chose ∆ = ∆−, the roles of the functions A(x) and B(x) will be reversed,
with B(x) being identified as the vacuum expectation value of O, and A(x) as its source.

2.4 Conclusion

The AdS/CFT duality provides a powerful tool for studying the Information paradox. Due to
the unitary evolution of the CFT on the holographic boundary, AdS/CFT also guarantees a
unitary evolution inside the bulk, where one could choose to study how black holes evaporate.
In this chapter, we discussed some aspects of the correspondence, which will be used in later
chapters. In the next chapter, we will review the concept of entanglement and entanglement
entropy in both quantum mechanics and quantum field theory. The results from Chapter 2
will be used in deriving the RT prescription for the holographic entanglement entropy.



3
Holographic Entanglement Entropy

In this chapter, we review aspects of the entanglement entropy. In Section 3.1, we introduce
entanglement entropy in quantum mechanics, which is then derived for a general quantum field
theory. In Section 3.2, we show how the AdS/CFT correspondence introduced in Chapter 2
can be applied to the entanglement entropy, and introduce the RT prescription, the derivation
of which was reviewed in Section 3.3. Subsequent generalizations of the RT formula are men-
tioned in Section 3.4, including the latest version of the generalized gravitational entanglement
entropy.

3.1 Entanglement Entropy

3.1.1 Basics

One of the, undoubtedly, coolest features of quantum field theory, absent in its classical coun-
terpart, is the non-zero correlation between spatially separated field operators, arising from
the superposition of quantum states [32]. This correlation can be explained as entanglement
between distant regions, and it is this feature that presents one of the fundamental differences
between quantum and classical physics. Before diving into the discussion on entanglement, it
is helpful to recall and distinguish the different notions of entropy.

In classical statistical physics, entropy is often met in the form SB = kB lnΩ, where kB
is the Boltzmann constant and Ω is used to denote the number of available microstates for a
system in a particular macrostate. This is the so-called Boltzmann entropy and assumes that
each microstate is equally probably. For the case where miscrostates appear with different
probabilities {pi} with

∑
i pi = 1, the Boltzmann entropy is generalized to the so-called Gibbs

entropy, defined as SG = −kB
∑
pi ln pi.13 When pi = 1/Ω (for an equal probability distribu-

tion), SG reduces to SB. In information theory, the so-called Shannon entropy entropy H(p)
is defined in the same way; i.e. for a discrete random variable X with probability distribution

13The dimensionless entropy is obtained by dropping the Boltzmann constant kB .

23
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p(x), such that P(X = x) = p(x), Shannon’s entropy is defined as14

H(p) =
∑
x∈X

p(x) log p(x) . (3.1)

The von Neumann entropy (or quantum entropy) of a quantum state ρ ∈ H is a natural
generalization of the Shannon entropy, defined as

H(ρ) = −Tr[ρ log ρ] . (3.2)

Some of the properties of the von Neumann entropy include:

Non-negativity : H(ρ) ≥ 0 with H(ρ) = 0 iff ρ is pure
Upper bound : H(ρ) ≤ log dimH

Invariance under isometries : H(ρ) = H(V ρV †) for any isometry V . (3.3)

We will be interested in evaluating the entropy in a QFT, where the dimensionality of the
Hilbert space is infinite. Hence, for a QFT, the upper bound for the von Neumann entropy is
H(ρ) ≤ ∞.15 We should also note that the last property has the important consequence that
the von Neumann entropy is invariant under a unitary time evolution, namely i.e. H(ρ) =
H(UρU †). This is different from the thermodynamic entropy, which obeys the second law of
thermodynamics and hence increases under a unitary time evolution. The distinction between
the von Neumann (also referred to as fine-grained) entropy and the thermodynamic (also
referred to as coarse-grained) entropy will be important later in Chapter 4 when discussing
the entropy of an evaporating black hole and its Hawking radiation.

To quantify entanglement, we can consider a system at zero temperature, divided into two
subsystems, namely A and B, where the latter is often referred to as the complement of A
and written as B = Ā, as illustrated in Figure 3.1 below.

A

B

Figure 3.1: A bipartite system with two subsystems, A and B, where B is the comple-
ment of A, namely B = Ā.

If the total system, described by a ground state |Ψ⟩, is in a pure state, the density matrix is
defined as16

ρAB = |Ψ⟩⟨Ψ| . (3.4)

To define the entropy of the subsystems A and B, it is assumed that the total Hilbert space
factorizes into a direct product of the Hilbert spaces of the subsystems; i.e. HAB = HA⊗HB.

14Note, in information theory, the log denotes the logarithm to base 2., whereas the definition in physics
uses the natural logarithm ln.

15One should really think of the entropy as being UV sensitive and dependent on the cut-off scale, rather
than being infinite.

16Recall that for a pure state ρ, Tr[ρ] = 1 so we have assumed the state is normalized such that ⟨Ψ|Ψ⟩ = 1.



25 3.1. Entanglement Entropy

The system A is described by the reduced density matrix ρA, obtained by tracing over the
Hilbert space HB, such that

ρA = TrB[ρAB] . (3.5)

The entanglement entropy of the subsystem A with the subsystem B, which provides a measure
of the entanglement between these two subsystems, is the von Neumann entropy of the reduced
density matrix and is hence defined as

SA = −TrA[ρA log ρA] , (3.6)

which for a pure state ρAB is independent of which subsystem we pick; i.e. SA = SB.17 The
entanglement entropy vanishes for a pure state, so SAB = 0.
Any bipartite (one that consists of two subsystems) pure state |ΨAB⟩ ∈ HAB = HA ⊗HB can
be written as

|ΨAB⟩ =
min(dA,dB)∑

i=1

√
pi |ψi⟩A ⊗ |ψi⟩B , (3.7)

where dA = dim HA and dB = dim HB. The pi > 0 satisfy
∑

i pi = 1 and the basis
vectors {|ψi⟩A} ∈ HA and {|ψi⟩B} ∈ HB form orthonormal basis for the subsystems A and B
respectively. This is known as the Schmidt decomposition. A state is called separable if it can
be written in the form |ΨAB⟩ = |ψi⟩A ⊗ |ψi⟩B. A separable state has pure reduced density
matrix ρA and hence a vanishing entanglement entropy. Hence, separable states are also
referred to as unentangled. A state is called entangled (or inseparable) if it cannot be written
in the form |ΨAB⟩ = |ψi⟩A ⊗ |ψi⟩B and has the form of (3.7). In the Schmidt decomposition,
the reduced density matrix becomes

ρA =

dA∑
i=1

pi |ψi⟩AA⟨ψi| (3.8)

and in this case, the entanglement entropy becomes the Shannon entropy

SA = −
dA∑
i=1

pi log pi . (3.9)

Thus, evaluating the entanglement entropy requires computing the reduced density matrix
ρA and diagonalizing it to obtain its eigenvalues pi. This is generally difficult to calculate,
particularly in a quantum field theory with infinite degrees of freedom [34, 35]. Instead of
having to deal with this diagonalization, a more convenient approach makes use of the so-
called replica trick, first introduced in the context of entanglement entropy in [36]. This
involves using another entanglement measure, namely the Renyi entropy, which is a one-
parameter generalization of the entanglement entropy, defined as [37]

Sn(A) =
1

1− n
log TrA[ρ

n
A] , (3.10)

17Note, this equality is no longer true of the total system is no longer a pure state. If the total state is mixed
(e.g. at finite temperature), SA ̸= SB [33].



Chapter 3. Holographic Entanglement Entropy 26

where n is an integer, commonly referred to as the replica parameter. The replica trick is a
method for calculating the entanglement entropy, by utilizing this new type of Renyi entropy,
which contains n copies of the density matrix. Indeed, in the limit n → 1, the Renyi entropy
reduces to the entanglement entropy; i.e.

SA = lim
n→1

Sn(A) . (3.11)

This can be seen from [38]

lim
n→1

Sn(A) = lim
n→1

1

1− n
log TrA[ρ

n
A]

= lim
n→1

1

1− n
log
∑
i

pni

= lim
n→1

log
∑

i p
n
i

(1− n)

(1 + n)

(1 + n)

= lim
n→1

log
∑

i p
n
i + (1 + n)

∑
i p

n
i log pi

log
∑

i p
n
i

−2n

= −
∑
i

pi log pi

= SA , (3.12)

where in the fourth line we have applied L’Hôpital’s rule, defined as lim
x→c

f(x)
g(x) = lim

x→c

f ′(x)
g′(x) ,

together with the logarithmic derivative, defined as d
dx log f(x) =

1
f(x)

df
dx . Another way that

the entanglement entropy can be written as as SA = − limn→1 ∂nTr[ρ
n
A], which can be shown

from

− lim
n→1

∂nTr[ρ
n
A] = − lim

n→1
∂n
∑
i

pni = − lim
n→1

∑
i

pi log pi = S(A) (3.13)

In literature, both result from (3.12) and (3.13) are often combined to define the replica trick
as one that utilizes the following step:

SA = lim
n→1

1

1− n
log TrA[ρ

n
A] = − lim

n→1
∂n log TrA[ρ

n
A] , (3.14)

where the density matrix is normalized such that TrA[ρA] = 1. Note, in the definition of the
Renyi entropy, n ∈ Z+, but an analytic continuation to n ∈ R+ is assumed in taking the limit
n→ 1.

The entanglement entropy at finite temperature T = β−1 is defined by replacing (3.4) with
the thermal density matrix defined as ρthermal = e−βH/Z, where Z = Tr[e−βH ] is the thermal
partition function and H is the total Hamiltonian of the system. The thermodynamic entropy
is defined in terms of the thermal partition function via

S(β) = (1− β∂β) logZ(β) . (3.15)

The thermodynamic entropy will be used in Section 3.3 to evaluate the thermodynamic black
hole entropy from the gravitational path integral.
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3.1.2 Entanglement Entropy in a QFT: Euclidean Path Integral Represen-
tation

Obtaining the entanglement entropy is not that straightforward in QFT, as it was in the quan-
tum mechanical description, since one needs to take into account the path integral formalism
and the interpretation of what n copies of the density matrix signify is not that obvious. In this
section, we will provide the schematic derivation of the QFT entanglement entropy, following
closely the work in [37]. If we consider a d−dimensional QFT, the ground state wavefunctional
Ψ[ϕ0(x⃗)] = ⟨ϕ0(x⃗)|Ψ⟩ has the following Euclidean path integral representation

Ψ[ϕ0(x⃗)] =

∫ τ=0,ϕ(0,x⃗)=ϕ0(x⃗)

τ=−∞
Dϕ e−IE [ϕ] = (3.16)

which is obtained by integrating from τ = −∞ to τ = 0 and ϕ0(x⃗) = ϕ(τ, x⃗) is the eigenvalue
of the field operator ϕ̂(τ, x⃗) at τ = 0 [37]. Similarly, the conjugate of the wavefunctional,
namely Ψ∗[ϕ′0(x⃗)] = ⟨Ψ|ϕ′0(x⃗)⟩ has the following path integral representation:

Ψ∗[ϕ′0(x⃗)] =

∫ τ=∞

τ=0,ϕ(0,x⃗)=ϕ′
0(x⃗)

Dϕ e−IE [ϕ] = (3.17)

Assuming the system is at zero temperature and in a pure state, which is not necessarily
normalized, the density matrix is given by

ρ =
1

Z
|Ψ⟩⟨Ψ| , (3.18)

where Z is the partition function obtained via integrating over the entire space, namely

Z =

∫
Dϕ0(τ = 0, x⃗)⟨ϕ0|Ψ⟩⟨Ψ|ϕ0⟩ . (3.19)

For a general bipartite state ρAB, the reduced density matrix of the A subsystem is obtained
by tracing over its complement Ā = B, which will be equivalent to connecting along the
B subsystem. In terms of the path integral representation, this is equivalent to gluing the
wavefunctional (3.16) and it conjugate (3.17) along a boundary in the B subsystem; i.e. by
integrating over ϕB(τ = 0, x⃗ ∈ B), where x⃗ is only in the B subsystem. The reduced density
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matrix is then given by

ρA =
1

Z
TrB[|Ψ⟩⟨Ψ|] = 1

Z

∫
DϕB(τ = 0, x⃗ ∈ B)⟨ϕB|Ψ⟩⟨Ψ|ϕB⟩ . (3.20)

The reduced density matrix has two indices, specifying the boundary conditions at τ = 0+ and
τ = 0−. This is more easily explained by solving for the elements of the reduced density matrix
schematically [37]. A reduced density matrix with boundary conditions ϕA(τ = 0+) = ϕAb and
ϕA(τ = 0−) = ϕAa (where ϕAa , ϕAb ∈ A), can be written as

[ρA]ab = ⟨ϕAa |ρA|ϕAb ⟩

=
1

Z

∫
DϕB(τ = 0, x⃗ ∈ B) (⟨ϕAa | ⊗ ⟨ϕB|)|Ψ⟩⟨Ψ|(|ϕB⟩| ⊗ |ϕAb ⟩)

=
1

Z

∫
DϕB(τ = 0, x⃗ ∈ B)

=
1

Z
(3.21)

where tracing over the B subsystem just glues the wavefunctional and its conjugate together
along the B subsystem, resulting in a path integral with a cut along the A subregion. To find
TrA[ρ

n
A], requires taking n copies of (3.21), which involves a matrix multiplication, and hence

the contraction of the matrix indices. One needs to remember that each of these n copies has
different independent boundary conditions ϕAi± ∈ A at τ = 0±. Taking the trace over this
product of n copies is done by connecting the copies cyclically along the cuts (along A) such
that

TrA[ρ
n
A] = [ρA]ϕA

1 ϕA
2
[ρA]ϕA

2 ϕA
3
. . . [ρA]ϕA

nϕA
1
. (3.22)

This decreases the number of independent boundary conditions, since now the boundary con-
dition at τ = 0− of any one sheet (representing the reduced density matrix (3.21)) is identified
as the boundary condition at τ = 0+ of its adjacent sheet, such that all sheets are connected
cyclically. This has been illustrated in Figure 3.2, where this n-fold cover is defined as Zn, in
terms of which we can write

TrA[ρ
n
A] =

1

Zn

∫
(τ,x⃗)∈Rn

Dϕ1Dϕ2 . . .Dϕn e−IE [ϕ1]−IE [ϕ2]−...−IE [ϕ1] =
Zn

Zn
, (3.23)
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where the partition function of the n-fold cover Mn, namely Zn should not be confused with
the nth power of the partition function Z of the original manifold M.

Figure 3.2: The partition function Zn of the n-fold cover, which is often denoted as
Mn, consisting of n sheets, each representing the elements of one of the n copies of
the reduced density matrix. The sheets are glued cyclically along their cuts (along A),
which are labeled by the boundary conditions of the fields of A at the τ = 0±. Each line
in the diagram shows a connection between consecutive sheets, which always connects
regions of A with the same boundary conditions, such that the boundary condition of
any one sheet at τ = 0− (such as the ϕA2 boundary condition at τ = 0− of the second
sheet) is identified as the boundary condition at τ = 0+ (such as the ϕA2 boundary
condition at τ = 0+ of the first sheet) of its adjacent sheet. Figure adapted from [37].

There are different ways if thinking about what the arrows in Figure 3.2 mean. One way is in
terms of boundary conditions on the quantum fields, living on each of the sheets. There are
boundary conditions on each of the cuts (at τ = 0±), with the arrows connecting regions with
the same boundary conditions, and these boundary conditions are summed over. Another way
to think about it as as simply gluing the manifold together along the cuts, which is invariant
under the cyclic permutation of the fields. To find the entanglement entropy one can now use
the result in (3.23) and apply the replica trick (3.14), which yields

SA = − lim
n→1

∂n log TrA[ρ
n
A]

= − lim
n→1

∂n log
Zn

Zn

= − lim
n→1

∂n(logZn − n logZ) . (3.24)

This is the formula used to calculate the entanglement entropy in a QFT. An example of this
is the evaluation of the entanglement entropy in a flat CFT2 [39], which has been shown to
have an entanglement entropy across an interval of length l, given by

SA =
c

3
log

l

ϵ
, (3.25)

where c is the central charge of the CFT2 and ϵ is a UV cut-off that needs to be imposed
across the region A (where the interval l is located) and its complement Ā, since there is
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an infinite amount of entanglement across any boundary 18. In this case, there would be an
infinite amount of entanglement between the A and Ā, so a cut-off is imposed at the interface
between them.

The von Neumann entropy of a CFT is an important tool in the study of the black hole
information paradox in the context of AdS/CFT, where the it is used to study the entanglement
entropy of the Hawking radiation, with the hope of obtaining a Page curve and resolving the
paradox. This thesis does not perform any calculations of CFT entanglement entropies, so
a derivation of (3.25) will not be provided. However, in Section 5.2.4, (3.25) will be used to
review the way the the CFT entanglement entropy can be used to calculate the entanglement
entropy of the Hawking radiation, which will involve using an interval across spacetime regions
with different metrics.

3.2 Ryu-Takayanagi conjecture

The Ryu-Takayanagi (RT) formula, named after Ryu and Takayanagi, was conjectured in the
context of AdS/CFT, giving an expression for the entanglement entropy of a region in the
CFT with the help of holography [40]. Since it assumes holography, the RT formula is referred
to as a holographic entanglement entropy formula. This section will simply introduce the RT
formula. A review of its later proof by Lewkowycz and Maldacena [41] will be presented in
the next section.

As introduced in Section 2.3, one way to write the AdS/CFT correspondence is in terms
of the differentiate dictionary (2.68), according to which the partition functions of the two
theories are equivalent; i.e. ZBulk[B] = ZCFT[∂B], where B is the bulk spacetime and the CFT
lives on its boundary ∂B. One can write the CFT partition function ZCFT[∂B] in terms of the
bulk action IBulk[B] by using the semiclassical (also known as saddle point) approximation,
which assumes that the partition function is dominated by the contribution from the on-shell
bulk action; i.e.

ZBulk[B] = e−IBulk[B]+... ≈ e−IBulk[B] , (3.26)

where IBulk[B] is the on-shell gravitational action in the bulk. Substituting into the differentiate
dictionary, one obtains the so-called GKP-W relation [42, 43], given by

ZCFT[∂B] = e−IBulk[B] (3.27)

In order to use (3.27) to write the entanglement entropy (3.24) in terms of the bulk action,
also requires an n-fold cover bulk solution Bn, with a boundary ∂Bn. Assuming the existence
of such a spacetime, such that ZCFT[∂Bn] = e−IBulk[Bn], one can re-write the replica trick
entanglement entropy (3.24) for the case of the bulk theory, which yields

SA = lim
n→1

∂n(IBulk[Bn]− nIBulk[B]) . (3.28)

18One can think of this as arising from the way the correlation functions behave across a boundary. Since
they are inversely proportional to the separation between the two points, correlation functions diverge at
small distances, such as across a boundary. This high correlation across a boundary is indicative of the high
entanglement between the two regions across the boundary.
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This holographic entanglement entropy is a formula for the von Neumann entropy associated
to a subregion on the dual CFT boundary of the bulk AdS theory. Ryu and Takayanagi
conjectured that the formula takes the form

SA =
A

4GN
(3.29)

where A is the area of a static surface γA in the bulk that ends on the boundary of region A,
as illustrated in Figure 3.3. The surface γA is homologous to the region A and is such that it
extremizes the area A; hence being called a minimal surface. In the case there exist multiple
extremal surfaces γA, the one with the least area is chosen to compute the entropy.

Figure 3.3: The RT formula states that the entanglement entropy of a region A in the
CFTd theory can be calculated via the area of a static minimal surface (one with the
minimum area) γA, which extends from the holographic boundary into the AdSd+1

bulk. Figure adapted from [37].

The RT formula can be used to reproduce the entanglement entropy (3.25) of for a flat
CFT2 theory [37]. However, a more interesting example of using the RT formula is for cal-
culating the black hole entropy. The entropy appearing in the RT formula seems to resemble
the black hole entropy area law, which can indeed be derived from the RT formula. Since
the RT formula applies to static spacetime, one could use it to calculate the entropy of the
usual Schwarzschild eternal black hole; i.e. one not formed by a gravitational collapse. If the
black hole is placed in an asymptotically AdS spacetime, and the region A is chosen to cover
the entire spacetime, it can be shown via the RT formula, that the surface γA, which both
minimizes the area and is homologous to A, is precisely the black hole event horizon.

Following the RT conjecture, a derivation of the RT formula was provided by Lewkowycz
and Maldacena (LM) [41], with a simpler, more heuristic version later provided by Dong [44].
In the next section we will outline the key steps of the proof, following the work in [44], without
going into details, since this thesis does not deal any explicit entropy calculations.
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3.3 Generalized gravitational entropy

Lewkowycz and Maldacena (LM) provided a derivation of the RT area law for entanglement
entropy in a general Euclidean spacetime, entirely from the Euclidean path integral formalism
[41]. An earlier attempt to derive the RT conjecture was proposed in [45], which was later
proved to be incorrect [46]. Before looking at the approach used in [44], it is nice to review
an earlier work by Hawking and Gibbons (HG) [47], which used the Euclidean path integral
formalism and correctly arrived at the black hole entropy area law. The LM proof was a
generalization of the work done in the HG paper. While the HG paper used the assumption
of a general U(1) symmetry, LM provided a result for a general Euclidean spacetime without
a general U(1) symmetry.

3.3.1 Introduction to the gravitational path integral

The usual path integral in QFT is represented by the partition function

Z =

∫
Dϕ e−IE [ϕ] (3.30)

where IE [ϕ] is the Euclidean action and we integrate over all fields ϕ (except for the metric
gµν). In particular, the thermal partition function is defined as the Euclidean path integral
with the boundary condition that the Euclidean time is periodic; i.e. τ ∼ τ + β, so

Z(β) = Tr[e−βH ] =

∫
ϕ(τ)∼ϕ(τ+β)

Dϕ e−IE [ϕ] (3.31)

The periodicity β of the Euclidean time is related to the temperature of the QFT and is given
by β = 1/T .19

The (quantum gravity) argument by Hawking and Gibbons was based on the idea of adding
gravity to the path integral. In this case, the partition function has contributions from both
gravity, via the Euclidean Einstein action, and also from the quantum fields. The gravitational
path integral in d spacetime dimensions is given by (3.30), but now requires also to integrate
over the geometry itself, which gives20

Z =

∫
DgDϕ e−IE [g,ϕ]

IE [g, ϕ] = − 1

16π

∫
M

ddx
√
gR+ (boundary term) + (coupling to ϕ) , (3.32)

where ϕ is used to denote a set of matter fields and M is a manifold with a boundary. It is
important to note that in performing the integral, the manifold is not specified. Instead, the
metric is treated as a field, which is integrated over. Since the manifold M has a boundary,
a cut-off is imposed at some large constant r = r0, which is where the manifold boundary
∂M is located. In the presence of a boundary, a boundary term, commonly known as the

19Recall the thermal partition function Z = Tr[e−βH ], where β = 1/T . There are multiple ways to see
why this is identified with the periodicity of the Euclidean time coordinate. One way is to consider the time
evolution of the thermal Green function, Gβ(τ, x) = −Tr [ρthermalO(τ, x)O(0, 0)], which can be shown to be
periodic in Euclidean time, with periodicity β; i.e. Gβ(τ, x) = Gβ(τ + β, x).

20We have implicitly set Newton’s constant GN = 1 here for simplicity.
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Gibbons-Hawking-York (GHY) term needs to be added to the action. This was first shown by
York in [48] and later by Gibbons and Hawing in [47]. Writing the GHY term explicitly, the
Euclidean action (3.32) becomes

IE [g, ϕ] = − 1

16π

∫
M

ddx
√
gR− 1

8π

∫
∂M

dd−1x
√
hK + (coupling to ϕ) , (3.33)

where h = det(hij) is the induced metric on the boundary and K = hijKij is the trace of the
extrinsic curvature, defined as Kij = ∇(inj). The vector ni is a unit inward-pointing normal
to ∂M, so hijn

j = 0. The GHY term arises from requiring the variation of the Euclidean
action to be stationary around the classical solutions. Although the geometry is not fixed, the
boundary conditions are specified. In analogy with the thermal partition function in QFT,
the quantum gravity thermal partition function is subject to the boundary condition that the
Euclidean time is periodic21

Z(β) =

∫
τ∼τ+β

DgDϕ e−IE [g,ϕ] (3.34)

The periodicity of the Euclidean time; i.e. τ ∼ τ + β for all β ∈ R is the underlying U(1)
symmetry of the spacetime, represented by the U(1) operator eβH where H = ∂τ is the time
translation generator. The Euclidean action is invariant under the translation τ → τ + β, i.e.
IE [g, ϕ] → IE [g, ϕ]. It is this U(1) symmetry which is the key assumption of the Gibbons-
Hawking paper which was later neglected by the LM paper.

This path integral is difficult to compute, but one can use the saddle point approxima-
tion, which assumes that the path integral is dominated by the extrema. The semiclassical
approximation states that

Z(β) ∼
∑

saddles

e−IE [g0,ϕ0]+I(1)+I(2)+... , (3.35)

where IE [g0, ϕ0] is action on the saddle point; i.e. the on-shell Euclidean action, with (g0, ϕ0)
obeying the classical equations of motion. This gives the leading approximation and is of order
O(G−1

N ).22 The next terms are the 1-loop, 2-loop and the subsequent higher-loop contributions,
which are subleading corrections, including fluctuations (δg, δϕ) of the quantum fields around
their classical values; i.e. g = g0+δg and ϕ = ϕ0+δϕ. These terms are of order O(G0

N ), O(G1
N ),

etc. In what follows we take the leading contribution of the semi-classical approximation of
the path integral and only use the first term; i.e. Z(β) ∼ e−IE [g0,ϕ0].

In order to evaluate the partition function, we need to evaluate the Euclidean action. The
particular solution to the Euclidean Einstein action that Gibbons and Hawking focused on
is the Euclidean Schwarzschild black hole solution. We will focus on the d = 4 case. The
Euclidean black hole metric can be obtained from the Lorentzian Schwarzschild metric by
doing a Wick rotation to Euclidean time. The Schwarzschild metric is

ds2E = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2dΩ2

2 , (3.36)

21(Spoiler Alert) The reason we are talking about the thermal partition function in the first place is because
we would like to use it to compute the entropy later.

22That is since the gravitational action is of order O(G−1
N ).
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so performing a Wick rotation to Euclidean time via t → −iτ gives the Euclidean black hole
metric

ds2 = gµνdx
µdxν =

(
1− rs

r

)
dτ2 +

(
1− rs

r

)−1
dr2 + r2dΩ2

2 , (3.37)

where rs = 2M and M is the black hole mass. The Euclidean time coordinate is now an
angular coordinate which is periodic, with period β, so τ ∼ τ + β. Unlike the more familiar
Lorentzian black hole solution, which has a horizon at r = rs and a singularity at r = 0,
the Euclidean black hole has no interior and no singularity. Instead, the radial coordinate
is restricted to r > rs, with the black hole origin being located at r = rs. To avoid the
conical singularity at r = rs, we need to fix the periodicity of the Euclidean time coordinate
to β = 4πrs, so τ ∼ τ + 4πrs, or equivalently, τ ∼ τ + 8πM .23 This periodicity is precisely
the inverse of the black hole temperature; i.e. T = 1/8πM .

Figure 3.4: Euclidean black hole cigar geometry, periodic in Euclidean time; adapted
from [49]

Now we wish to evaluate the action. The black hole solution is a vacuum solution, so we need
to set ϕ̄ = 0. The spacetime of the Euclidean black hole, as described by the metric in (3.37)
has no boundary and is thus infinite. However, since in this case R = 0, we see that in the
absence of a boundary, the action will vanish. Adding a boundary does fix this issue, because
the GHY term in the action is no longer zero. Since only the GHY term contributes to the
action in (3.33),

logZ(β) =
1

8π

∫
∂M

dd−1x
√
hK . (3.38)

We imposed a radial cut-off at r0, so the boundary hypersurface ∂M is at some fixed r = r0
so dr = 0. The metric on the boundary is thus

ds2E

∣∣∣
∂M

= hijdx
idxj =

(
1− rs

r0

)
dτ2 + r20 dΩ2

2 . (3.39)

23To see this, we can consider the simple metric ds2 = dr2 + r2dθ2, which has a coordinate singularity
at r = 0. Unlike a physical curvature singularity, a coordinate singularity can be removed via a coordinate
transformation. By defining x = r cos θ and y = r sin θ, we can rewrite the metric as ds2 = dx2 + dy2. For
the coordinate transformation to be well defined, θ has to be periodic in 2π, or we end up with a conical
singularity, instead of the Euclidean spacetime manifold. Now we wish to see how this works for the Euclidean
black hole. We can do a coordinate transformation to the coordinate ρ, defined as dρ2 = (1− rs

r
)dr2, in which

case the metric (3.37) becomes ds2 = dρ2 + ρ2 dτ2

(2rs)2
+ r2dΩ2

2. In analogy with the previous example, imposing
regularity at the ρ = 0 origin, τ

2rs
needs to have a period of 2π. Hence, τ ∼ τ + 4πrs.
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Figure 3.5: Euclidean black hole with a boundary at r0 and the inward-pointing normal
vector n; adapted from [49]

To evaluate the extrinsic curvature, we need to find the unit normal vector to the boundary.
Since n is along the r direction, n = nµ∂µ = nr∂r. Imposing the unitarity condition nµnµ = 1,
leads to nr = 1/

√
grr. Using the components of the induced metric, namely hij = diag(1 −

rs/r0, r
2
0, r

2
0 sin θ

2), the determinant of the metric is given by h = det(hij) = (1−rs/r0)r40 sin θ2.
Hence, the extrinsic curvature can hence obtained via

K = ∇µn
µ

= ∇rn
r
∣∣∣
r=r0

=
1

r2
∂r(r

2nr)
∣∣∣
r=r0

= − 2

r0

√
1− rs

r0
− rs

2r20

1√
1− rs

r0

(3.40)

The GHY term can now be evaluated via

− 1

8π

∫
∂M

dd−1x
√
hK = − 1

8π

∫ β

0
dτ

∫ 2π

0
dϕ

∫ π/2

0
dθ

√
hK

= −β
(
r0 −

3rs
4

)
. (3.41)

As pointed out before, in the absence of a boundary, the action vanished, so a boundary was
placed at some fixed r = r0. The end goal of this calculation will be to compute the entropy
of the Euclidean black hole. To do this only the black hole geometry needs to be taken into
account without any of the asymptotically flat spacetime at large r ≫ r0. This requires taking
the limit r0 → ∞. However, we can see from (3.41) that the GHY term → ∞ as r0 → ∞.
Hence, if we add a fixed boundary and we then take that cut-off to infinity, the action will
go to infinity. To regulate this divergence and ensure that the action remains well-defined at
large r, a further counterterm needs to be added to the action, given by [50]

1

8π

∫
∂M

√
hK0 = β

(
r0 −

rs
2

)
, (3.42)

where K0 is the extrinsic curvature of ∂M embedded in a flat spacetime manifold with the
flat metric

ds2E =

(
1− rs

r0

)
dτ2 + dr2 + r2dΩ2

2 (3.43)
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In the evaluation of (3.42) terms of O(1/r0) are neglected since we have take the limit of
r0 → ∞. This counterterm acts as to cancel out the flat spacetime contribution to the
integral. Hence,

IE [g] =
βrs
2

=
β2

16π
(3.44)

To obtain the entropy, one can use the standard relation from thermodynamics (3.15)

S(β) = (1− β∂β) logZ(β) = 4πM2 =
A
4
, (3.45)

where we have used that the area of the event horizon is A = 4πr2s = 16πM2. This is precisely
the black hole entropy area law!

The work by Lewkowycz and Maldacena [41] is a generalization of the above computation,
without the U(1) symmetry assumption, and it provided a proof of the RT formula. It should
be noted that while the RT formula was motivated by the AdS/CFT duality, the derivation by
Lewkowycz and Maldacena was gravitational. The outline of the derivation will be discussed
in the next section, following the approach presented in [44].

3.3.2 Gravitational entanglement entropy - no U(1)

To proceed with the review of the derivation, we should recall some results in Section 3.2 from
the semiclassical approximation, namely the expression for the entanglement entropy in terms
of an n-fold cover bulk manifold Bn, with a boundary ∂Bn, given by

SA = lim
n→1

∂n(IBulk[Bn]− nIBulk[B]) . (3.46)

Note that the case we are considering now is a spacetime without a general U(1) symmetry.
Instead, we consider a bulk manifold B, whose boundary has just one U(1) symmetry, namely
τ ∼ τ + 2π, as illustrated in Figure 3.6 (left).

Figure 3.6: (left) A bulk manifold B with a boundary that has τ ∼ τ + 2π symmetry.
(right) A bulk n-fold cover manifold Bn with a boundary that has τ ∼ τ+2πn symmetry.
adapted from [41]

With a boundary of the original manifold, invariant under τ ∼ τ + 2π, the boundary of the
n-fold cover manifold must have periodicity of τ ∼ τ+2πn, as illustrated in Figure 3.6 (right).
This can be motivated using Figure 3.7 and Figure 3.2 by considering the n-fold cover and
following the arrows as before. Starting from one of the sheets, a period of 2π will takes us
to the sheet above it. Similarly, another period of 2π will take us to the next sheet above
that one. To reach the original sheet, one needs to repeat this process n times, hence the
periodicity of the n-fold cover boundary being 2πn. This means that the boundary ∂Bn of the
n-fold cover manifold Bn has a Zn symmetry.
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Figure 3.7: The single-sheet cover B with a cut along the A region; adapted from [37]

To derive of the entanglement entropy expression (3.46), we used the Renyi entropy, which
is where the n copies of the n-fold cover came from. Recall that although the n-fold cover
assumes that the parameter n ∈ Z+, in the evaluation of the right-hand side of (3.46), due
to the partial derivative with respect to n, one needs to analytically continue to n ∈ R [37].
However, it is not immediately clear how deal with an n-fold cover partition function in the
case where n ∈ R. To circumvent this issue, the key assumption in [41] is that the Zn symmetry
of the boundary ∂Bn of the n-fold cover manifold Bn, also extends into the bulk, such that Bn

also has a Zn symmetry. This analytic continuation into the bulk means that we can focus on
the bulk orbifold

B̂n := Bn/Zn , (3.47)

which is illustrated in Figure 3.8 (right). Note that although the boundary of this orbifold
is the same as the boundary of the original manifold, namely ∂B̂n = ∂B, the bulk is not the
same, due to the conical singularity along the cut, which means that B̂n ̸= B.

Figure 3.8: (left) Original manifold B with a boundary ∂B; (center) n-fold cover Bn

with a boundary ∂Bn for the case of n = 4, where the dotted line is used to represent
the Zn (in this case Z4) symmetry; (right)

It is this continuation of the boundary symmetry into the bulk which is a key step in the (LM)
proof of the RT formula. However, since this thesis does not go into explicit QFT entropy
calculations, we will not proceed further with more details about the proof.

The RT formula refers to the case of a static spacetime (and in the absence of quantum
corrections). In the next section, we will provide a bit of a history on the generalizations of
the RT formula. We will not go into any details, but we will explain the current version of the
generalized entanglement entropy formula and how to use it.

3.4 Generalized Entanglement Entropy

Following the conjecture of the RT formula, there have been several generalizations it. Al-
though it provided a simple geometric way of calculating the entanglement entropy, the RT
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formula was only applicable to static spacetimes and could not be used for time-dependent
spacetime solutions. Even though, as mentioned in Section 3.3, the RT formula can be used to
calculate the entropy of the eternal black hole, this is not sufficient to study the information
paradox, which deals with evaporating black holes, and hence non-static solutions.

A generalization of the RT formula that resolved this issue was done by Hubeny, Rangamani
and Takayanagi (HRT) [51]. In the HRT prescription, the minimal area surface, which we will
now refer to as χ, extending from the holographic boundary and into the bulk, is no longer
defined on a constant time slice.

The next important generalization to the gravitational entanglement entropy was done by
Faulkner, Lewkowycz and Maldacena (FLM) [52], who still focused on static spacetimes, but
incorporated the contributions from quantum corrections. The new formula still contained the
previous term proportional to the area A(χ) of the minimal area surface, but also included a
contribution from the entanglement entropy across the minimal surface χ due to the quantum
fields in the bulk. Note, in the FLM proposal the area of the surface is extremized before the
addition of the quantum corrections.

The final, and most recent, generalization to the gravitational entanglement entropy, was
done by Engelhardt and Wall (EW) [53], who generalized the FLM proposal to non-static
spacetimes. Hence, the final formula included both the incorporation of dynamics, and also of
quantum corrections into the original RT formula. The formula is given by

S = Minχ

[
Extχ

{A(χ)

4GN
+ Ssemi-cl(Σχ)

}]
= Minχ

[
ExtχSgen(χ)

]
, (3.48)

where the surface χ is now referred to as a quantum extremal surface (QES), the Σχ is a region
bounded by the QES and a cut-off surface (which depends on the situation considered) and
Ssemi-cl(Σχ) is the von Neumann entropy of the quantum fields on Σχ. The formula works
by first extremizing the generalized entropy Sgen(χ) respect to the position of the QES χ, in
order to find its location. The resulting entropy is then minimized over all possible choices
of χ. Note, a key difference between the EW and FLM a method is that in the EW formula,
the area of the surface is extremized in relation to the whole entanglement entropy, including
the quantum correction term. The formula also allows for disconnected regions Σχ, which can
sometimes provide a global minimum of the generalized entropy.

In Chapter 5, where a specific black hole evaporation model will be discussed, this formula
will be used to explain the evolution of the black hole entropy, as well as the evolution of the
Hawking radiation entropy.

3.5 Conclusion

In this chapter, we reviewed some key features about the entanglement entropy. We reviewed
entropies in quantum mechanics, in quantum field theories, and the subsequent generalization
of gravitational entanglement entropy formula. The results from this chapter will be important
in Chapter 5, where the thermodynamics of a particular black hole evaporation protocol will
be studied.



4
Black holes in AdS

In this chapter, we use the theoretical background from Chapter 2 to study black holes in AdS.
In Section 4.1, we motivate the reason for studying these black hole solutions, even though our
Universe is not AdS. In Section 4.2, we compare the thermodynamic stability of the AdS black
hole solution to black holes in an asymptotically flat spacetime. In Section 4.3, we explain the
issues surrounding these AdS black holes, arising from, the nature of the AdS geometry and
its reflective boundary conditions. We explain why large black holes do not evaporate in AdS,
with all the Hawking radiation bouncing off the AdS boundary, and why making them smaller
presents further issues. With that in mind, in Section 4.4, to resolve the problem with the
boundary conditions, we show that changing these boundary conditions to allow absorption
into the holographic boundary is not possible, since any particle that escapes the bulk will no
longer have a description at the holographic boundary.

4.1 Why AdS?

Based on the fact that an extensive amount of experimental data from cosmology points
towards evidence that the Universe is asymptotically de-Sitter (dS), it is not too far-fetched
for members of the community to keep asking themselves why bother studying a Universe which
is asymptotically AdS at all. The possible pure-to-mixed state evolution of an evaporating
black hole pointed towards a discrepancy between the evaporation mechanism (leading to a
thermal radiation in a mixed state) and the laws of quantum mechanics (requiring unitary time
evolution). Either the Hawking radiation was not exactly thermal and had subtle correlations
or quantum gravity was not a unitary theory.

The motivation for using AdS has to do with the development of the AdS/CFT corre-
spondence, which settled the issue in favor of unitarity and conservation of information. The
fact that a gravitational theory in AdS spacetime is dual to a quantum field theory, namely
a CFT, that lives on its boundary, has strong implications for black holes in AdS. Since AdS
black holes can be, equivalently, described by a quantum field theory, which is manifestly uni-
tary, means that black hole evaporation must be a unitary process (at least for asymptotically
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AdS spacetimes). This consequence of the duality shifted the general opinion on black hole
evaporation, including famously that of Hawking [54], since it implied that the continuous
monotonic increase in entropy of the Hawking radiation could not be the full story.

However, AdS black holes present certain challenges as well. In the following section we
will review some key differences in the behaviour of black holes in asymptotically flat and
asymptotically AdS spacetimes. We will explain why the current focus is on large, rather than
small, AdS black holes, as well as why they make it difficult to study the information paradox.

4.2 Black hole evaporation in AdS

The Schwarzschild black hole, i.e. the black hole in an asymptotically flat spacetime, has a
negative specific heat and a temperature given by

T =
1

8πM
, (4.1)

as derived in Section 3.3.1. This shows that smaller black holes have higher temperatures.
That is why this black hole solution is not thermodynamically stable. Small fluctuations that
decrease the temperature outside the black hole will cause it to lose some extra energy to
the outside. This will cause the black hole’s mass to decrease, making its temperature rise,
since T ∝ 1/M . This will in turn cause the black hole to lose energy to the outside and get
hotter again. The black hole will keep getting hotter and hotter until it has shrunk all the way
down to zero. If we, instead, introduce a fluctuation of higher temperature outside the black
hole, this will get absorbed by the black hole. The black hole’s mass will increase and it’s
temperature will drop. Again, this is a runaway process, if we keep supplying energy to the
black hole. The black hole will keep consuming the radiation and get infinitely large. That’s
why the asymptotically flat black hole is not thermodynamically stable. As we will see, the
black hole in an asymptotically AdS spacetime, is much better-behaved!

Hawking’s effort to make the solution stable involved putting the Schwarzschild black hole
in a finite box of a positive heat capacity [11]. He found that that, provided the energy of the
radiation in the box ERad ≤M/4, there can exist a stable solution, where the black hole is in
thermodynamic equilibrium with the radiation. A nice derivation of this can be found in [55].

Although not physical, Hawking’s model yielded a thermodynamically stable solution.
A perhaps more natural model is placing the black hole in a “fancier” box, namely in an
asymptotically AdS spacetime. As opposed to the asymptotically flat case, the asymptotically
AdS black hole has a positive specific heat. The derivation of the temperature profile of AdS
black holes follows the same approach as the Schwarzschild case derived in Section 3.3.1. We
will again focus on the d = 4 case, in which case the AdS-Schwarzschild metric is given by

ds2AdSS = −
(
1− 2M

r
+

r2

ℓ2AdS

)
dt2 +

(
1− 2M

r
+

r2

ℓ2AdS

)−1
dr2 + r2dΩ2

2 . (4.2)

In the limit of small r, the metric approaches the Schwarzschild solution, while for large r, it
approaches the AdS metric. The horizon r+ is given by the vanishing of the g00 component of
the metric, which is the largest root of the three solutions to [55]

r3+ + ℓ2AdSr+ −Mℓ2AdS = 0 . (4.3)
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To find the temperature of this black hole, one can either use the extrinsic curvature, or the
Euclidean method, which will be used here. Performing a Wick rotation to Euclidean time
via t→ −iτ , and using the periodicity β = T−1, the black hole temperature is given by

T =
ℓ2AdS + 3r2+
4πℓ2AdSr+

. (4.4)

This is the temperature at which the black hole exists in stable thermodynamic equilibrium
with the evaporated thermal radiation[56]. The temperature of the black hole can be written
as a function of its mass M by using the relation between the radius of the event horizon r+
and the mass in (4.3). This has been illustrated in Figure. 4.1, which shows that, unlike the
Schwarzschild case (left), the temperature of the AdS black hole (right) no longer decreases
monotonically as the black hole evaporates. In fact, the temperature has a minimum of
T0 =

√
3/2πℓAdS at r0 = ℓAdS/

√
3, when the mass of the black hole is M = 2ℓAdS/3

√
3.

At temperatures T < T0, there are no black hole solutions, but only Hawking radiation. At
temperatures T > T0, there are two black hole solutions. One of the solutions has a negative
specific heat, namely the one that has a negative gradient (dT/dM < 0), which occurs whenM <
M0. These smaller black holes, just as the Schwarzschild black hole, are thermodynamically
unstable. The other solution has a positive specific heat, namely the one with the positive
gradient (dT/dM > 0), which occurs when M > M0. Hence these larger black holes, unlike the
Schwarzschild black hole, are thermodynamically stable.

Figure 4.1: (left) The temperature of the Schwarzschild black hole decreases mono-
tonically with its mass, demonstrating a thermodynamically unstable solution. (right)
Small AdS black holes show the same thermodynamic instability as Schwarzschild black
hole. However, large AdS black holes are thermodynamically stable solutions, as can
be seen by their positive specific heat behaviour. Adapted from [55].

While they resolve the stability issue, large AdS black holes introduce another problem, namely
their evaporation. Above a certain size, black holes in asymptotically AdS spacetime, do not
evaporate since they reach a thermodynamic equilibrium before they have had the chance
to emit all the Hawking radiation. This is due to the AdS reflective boundary conditions,
which cause all radiation that reaches the boundary to reflect back into the black hole, hence
preventing it from evaporating. This is not an issue for small AdS black holes which do
manage to evaporate completely before reaching a thermodynamic equilibrium. The AdS
reflective boundary conditions will be discussed in the next section.
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4.3 Reflective Boundary Conditions

Even though the AdS boundary is infinitely far away, massless particles follow null geodesics,
which take a finite affine parameter (proper time) to reach the AdS boundary from within the
bulk [57]. One would compute this time from the AdS metric, and any choice of coordinates
could work. Supposing there is no black hole, using global coordinates (2.6), null geodesics
satisfy

ds2 = 0 = −
(
1 +

r2

ℓ2AdS

)
dt2 +

(
1 +

r2

ℓ2AdS

)−1

dr2 + r2dΩ2
d−1 (4.5)

Radial null geodesics would therefore satisfy

dt2 =

(
1 +

r2

ℓ2AdS

)−2

dr2 , (4.6)

which can be integrated to find that the proper time for a photon to go from r = 0 to r = ∞
is given by

∆t =

∫ ∞

0

(
1 +

r2

ℓ2AdS

)−1

dr =
π

2
ℓAdS , (4.7)

which is finite. The finite amount of time it takes null geodesics to reach the boundary at
infinity precisely the reason for reflective boundary conditions to be usually imposed at the
AdS boundary. Since energy must be conserved, there could be no net flux of energy across
the AdS boundary, so these waves must reflect back into the interior [58, 59]. In this sense,
the spacetime acts as a box, as illustrated in Figure. 4.2.

Figure 4.2: Null geodesics reach the AdS3 boundary in a finite amount of time, where
reflective boundary conditions are imposed to ensure energy conservation.

Since a large enough black hole in AdS is thermodynamically stable, and any Hawking radiation
from it is reflected from the boundary back into the black hole, these black holes do not
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evaporate, but rather bathe in their radiation. Considering that evaporation is a key aspect
to the information paradox, being the reason it started in the first place, large black holes in
AdS make it difficult to resolve it.

One might ask the obvious question, namely: Why not simply study small black holes in
AdS, which would indeed be able to evaporate completely? These black holes are expected to
behave similarly to black holes in asymptotically flat spacetime, since they both have negative
heat capacity. This is because small black hole do not exist in lower dimensions [60]. As we
will discuss in the next chapter, due to the non-renormalizability of 4d Einstein gravity, it is
prefferable to work in lower dimensions.

Besides considering smaller AdS black holes, the other way to tackle the problem with
their evaporation is to change the boundary conditions at the holographic boundary. This will
be discussed in the next sections, where we will focus in the AdS3/CFT2 duality and check if
it is possible to absorb a bulk field into the holographic boundary.

4.4 Absorbing Boundary Conditions

Following the discussion so far, it can be concluded that is difficult to study the information
paradox for large black holes in AdS/CFT, since large black holes in AdS do not evaporate. To
reinstate the information paradox, we need a protocol that would allow the Hawking radiation
to escape the bulk and be absorbed somewhere else. One mechanism, and the one we will
consider in this chapter, is allowing the Hawking radiation to be absorbed from the bulk into
the conformal boundary. We will focus on the case of AdS3/CFT2 and use the duality to
find out what a disappearing bulk mode means for the field operator on the boundary. To do
this we will first study the bulk field and impose that it gets annihilated when it reaches the
boundary at t = 0. We will then study its dual CFT operator in the conformal field theory
and verify that the annihilation of the bulk field also causes the CFT operator to also get
annihilated.

Figure 4.3: Removing the reflective boundary conditions at the AdS3 boundary and
imposing absorbing boundary conditions at t = 0.
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4.4.1 Free Scalar Field Quantization in Global AdS

We will consider a scalar field theory in Lorentzian AdSd+1, described by the action

S =
1

2

∫
dd+1x

√
−g (gµν∂µϕ∂νϕ+m2ϕ2) . (4.8)

We choose to work with the Lorentzian signature, since we derived in Section 2.1.2, that only
the Lorentzian signature admits a normalizable mode solution. As explained in Section 2.3.2,
this normalizable mode is identified as the boundary operator. In what follows we will use the
metric in global coordinates, which covers the entirety of the bulk. It was defined in (2.7) and
we will set ℓAdS = 1 for simplicity. To obtain the equation of motion (2.13) for ϕ, we vary
the action with respect to ϕ and since

√
−g = tand−1ρ/ cos2ρ, the equation of motion for the

scalar field becomes

− cos2ρ ∂2t ϕ+
cos2ρ

tand−1ρ
∂ρ(tan

d−1ρ ∂ρϕ) +
cos2ρ

sin2ρ
∂2Ωϕ = m2ϕ . (4.9)

To solve this equation of motion, we assume a separation of variables and a basis of the form

ϕEℓm⃗(t, ρ,Ω) = e−iEtψEℓ(ρ)Yℓm⃗(Ω) (4.10)

where Yℓm⃗(Ω) are the spherical harmonics on Sd−1 and ℓ is the angular momentum. Yℓm⃗(Ω)
are eigenfunctions of the Laplacian with eigenvalues −ℓ(ℓ+ d− 2). The Laplacian acts on the
spherical harmonics as

∇2
Sd−1Yℓm⃗(Ω) = −ℓ(ℓ+ d− 2)Yℓm⃗(Ω) . (4.11)

Using the above separation of variables, we obtain an equation of motion for ψEℓ(ρ), given by

cos2ρ ∂2ρψ + (d− 1)
cos ρ

sin ρ
∂ρψ + ψ

(
E2 cos2ρ− ℓ(ℓ+ d− 2)

cos2ρ

sin2ρ
−∆(∆− d)

)
= 0 , (4.12)

where we have used that the mass of the scalar field can be related to the scaling dimension
of the CFT operator via m2 = ∆(∆− d). The above can be solved numerically to obtain two
possible solutions for ψ(ρ), but only one of them is regular at the origin ρ = 0 and it has the
form [61]

ψ(ρ) = (cos ρ)∆+(sin ρ)ℓ 2F1

(
∆+ + ℓ+ E

2
,
∆+ + ℓ− E

2
, ℓ+

d

2
; sin2 ρ

)
. (4.13)

The hypergeometric function is a function of sin2ρ. To study the behaviour at the boundary
ρ→ π/2, it is more convenient to express it in terms of cos2ρ. This can be achieved using the
following identity for the hypergeometric function:

2F1(a, b, c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b, a+ b− c+ 1; 1− z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−b

2F1(c− a, c− b, 1 + c− a− b; 1− z) . (4.14)

This allows us to write(4.13) as

ψ(ρ) = C+ψ+(ρ) + C−ψ−(ρ) , (4.15)



45 4.4. Absorbing Boundary Conditions

where

ψ±(ρ) = (cos ρ)∆±(sin ρ)ℓ 2F1

(
∆± + ℓ+ E

2
,
∆± + ℓ− E

2
,∆± + 1− d

2
; cos2 ρ

)
(4.16)

and we have defined

C± =
Γ(ℓ+ d

2)Γ(
d
2 −∆±)

Γ(d−∆±+ℓ+E
2 )Γ(d−∆±+ℓ−E

2 )
. (4.17)

Approaching the boundary at ρ = π/2, ψ±(ρ) ∼ (cos ρ)∆± and it can be seen, following
the same arguments as in Section 2.1.2, namely by substituting into the action and testing
its regularity, that ψ+(ρ) is a normalizable solution, while ψ−(ρ) is a non-normalizable one.
Hence, for the total solution (4.15) to be normalizable, we need to set the non-normalizable
mode ψ−(ρ) to zero, which is achieved by imposing C− = 0. This can done if a Gamma
function in its denominator has a negative integer argument, which imposes a restriction on
the allowed energies in the bulk modes. Namely, the allowed energy spectrum is

E = Enl = ∆+ + 2n+ ℓ; n = 0, 1, . . . . (4.18)

In terms of this quantized energy, the normalizable and non-normalizable solutions in (4.16)
can be written in terms of Jacobi polynomials as24

ψ±
Eℓ(ρ) = (cos ρ)∆±(sin ρ)ℓP

(ℓ+ d
2
−1, d

2
−∆∓)

n (cos 2ρ) . (4.19)

Now we can finally write the full general solution by using (4.10) and including both solutions
for ψ±

Eℓ(ρ) in (4.19). However, this will only give us the general single-particle solutions at the
classical level. To describe the field, we need to expand it in terms of those solutions using
creation and annihilation operators and summing over all possible mode energies and angular
momenta. This results in the Heisenberg solution for the scalar field given by

ϕ(t, ρ,Ω) = ϕ+(t, ρ,Ω) + ϕ−(t, ρ,Ω) , (4.20)

where

ϕ+(t, ρ,Ω) =

∞∑
n=0

∑
ℓm⃗

e−iEnℓtYℓm⃗(Ω)(cos ρ)∆+(sin ρ)ℓP
(ℓ+ d

2
−1,∆+− d

2
)

n (cos 2ρ) b+ + c.c. (4.21)

ϕ−(t, ρ,Ω) =
∞∑
n=0

∑
ℓm⃗

e−iEnℓtYℓm⃗(Ω)(cos ρ)∆−(sin ρ)ℓP
(ℓ+ d

2
−1,∆−− d

2
)

n (cos 2ρ) b− + c.c. , (4.22)

are the full general normalizable and non-normalizable modes respectively, expanded in terms
of their own sets of creation and annihilation operators, namely {b+, b†+} for the normalizable
mode and {b−, b†−} for the non-normalizable mode [61].

Since we wish to work with AdS3/CFT2, the global coordinate metric (2.7) is just

ds2AdS3 =
1

cos2 ρ
(−dt2 + dρ2 + sin2ρdθ2) . (4.23)

24One of the Gamma functions in (4.17), namely Γ( d
2
−∆±) = Γ(∓ν), depends on whether ν > 1 or ν < 1

[23]. Here we have implicitly assumed the former case.
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We wish to study what a massless scalar field corresponds to on the conformal boundary, so
we will only consider the normalizable mode (4.21). We know from Section 2.3.2 that near
the boundary, this normalizable mode is related to the conformal field theory operator. In the
case we are considering d = 2, so (∆+,∆−) = (2, 0) and the scalar field can be written as [62]

ϕ(t, ρ, θ) =
∞∑
n=0

∑
ℓm⃗

(
ϕEnℓℓm⃗bnℓm⃗ + ϕ∗Enℓℓm⃗

b†nℓm⃗

)
, (4.24)

where
ϕEnℓℓm⃗ = e−iEnℓtYℓm⃗(θ) cos2ρ sinℓρP (ℓ,1)

n (cos 2ρ) . (4.25)

The creation and annihilation operators in (4.24) act on the AdS bulk vacuum as

bnℓm⃗|0⟩Bulk = 0 (4.26)

b†nℓm⃗|0⟩Bulk = |nℓm⃗⟩ , (4.27)

where |nℓm⃗⟩ is a generic single-particle state described by the quantum numbers (n, ℓ, m⃗).
Similarly, many-particle states can be constructed by acting on the vacuum state with the
multiple creation operators such that a generic k-particle state can be written as

b†n1ℓ1m⃗1
. . . b†nkℓkm⃗k

|0⟩Bulk . (4.28)

The creation/annihilation operators satisfy the following commutation relations

[bnℓm⃗, b
†
n′ℓ′m⃗′ ] = δnn′δℓℓ′δm⃗m⃗′ , (4.29)

which come from requiring that the solutions ϕEℓm⃗ to have a unit norm

⟨ϕEnℓℓm⃗, ϕEn′ℓ′ℓ
′m⃗′⟩ = δnn′δℓℓ′δm⃗m⃗′ . (4.30)

In terms of the creation/annihilation operators, the bulk Hamiltonian can be written in the
familiar form

Hbulk =
∞∑
n=0

∑
ℓm⃗

Enℓ b
†
nℓm⃗bnℓm⃗ , (4.31)

where Nnℓm⃗ = b†nℓm⃗bnℓm⃗ is the number operator, specifying the number of particles that can
be described by the quantum numbers (n, ℓ, m⃗). The bulk state is given by

ϕ(t, ρ, θ)|0⟩Bulk =

∞∑
n=0

∑
ℓm⃗

ϕ∗Enℓℓm⃗
b†nℓm⃗ |0⟩Bulk

=
∞∑
n=0

∑
ℓm⃗

eiEnℓtY ∗
ℓm⃗(θ) cos2ρ sinℓρP (ℓ,1)

n (cos 2ρ) b†nℓm⃗ |0⟩Bulk , (4.32)

which represents a superposition of single particle states. However, what we are really inter-
ested in is the state near the boundary. The boundary value of the bulk field, which is related
to the dual field theory operator, is given by

ϕbdy(t, θ) = lim
ρ→π/2

ϕ(t, ρ, θ)

cos2ρ
=

∞∑
n=0

∑
ℓm⃗

eiEnℓtY ∗
ℓm⃗(θ)P (ℓ,1)

n (−1) b†nℓm⃗ , (4.33)
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in accordance with the extrapolate dictionary (2.74) in global coordinates.25 We can use this
to write the bulk state near the boundary |ϕ⟩bdy = ϕbdy(t, θ)|0⟩Bulk as

|ϕ⟩bdy =

∞∑
n=0

∑
ℓm⃗

eiEnℓtY ∗
ℓm⃗(θ)P (ℓ,1)

n (−1) b†nℓm⃗ |0⟩Bulk . (4.34)

Imposing absorbing boundary conditions requires a mechanism by which the bulk field vanishes
at the boundary and hence the boundary state |ϕ⟩B is returned back to the bulk vacuum
|0⟩Bulk. To study such absorption into the conformal boundary, we first check what the bulk
mode is dual to in the CFT theory.

4.4.2 Boundary Field Theory

To study the physics of the dual CFT boundary we first need the CFT metric. This can be
obtained by using the bulk metric and approaching the boundary. There are multiple ways
to do this, depending on the coordinates used, but in any case, one finds that the CFT lives
on a conformally flat manifold. This can be obtained by approaching the boundary (ρ = π/2)
at the same rate for all (t, θ) via ρ → π/2 − ϵf(t, θ), where f(t, θ) is some general regulating
function. The cut-off ϵ is small and we take ϵ → 0 at the end [26]. In this case, the metric
(79) becomes

ds2∂AdS3 =
1

(ϵf)2
(
−dt2 + [1− (ϵf)2]dθ2

)
≈ 1

(ϵf)2
(
−dt2 + dθ2

)
, (4.35)

where we have used that

cos2ρ = cos2
(π
2
− ϵf

)
≈ (ϵf)2 − (ϵf)4

3
+ . . . (4.36)

sin2ρ = sin2
(π
2
− ϵf

)
≈ 1− (ϵf)2 +

(ϵf)4

3
+ . . . . (4.37)

This is related to the flat Minkowski metric via a Weyl transformation and since null geodesics
do not care about the Weyl factor 1/(ϵf)2 of the metric, we will take the CFT metric to be

ds2CFT2
= −dt2 + dθ2 . (4.38)

Having picked a bulk scalar of a specific mass, the AdS/CFT duality imposes a restriction
(2.72) on the CFT operator. We are considering a massless bulk scalar in AdS3, so m = 0 and
d = 2, which means that there are two possible scaling dimensions for the dual CFT2 operator,
namely ∆ = 0 and ∆ = 2. The ∆ = 0 has been studied in more detail in [63]. However, for a
number of reasons explained in [64], the ∆ = 0 solution is undesirable. One of these reasons
is that the ∆ = 0 scaling dimension saturates the unitarity bound. But most importantly,
we already chose the ∆ = 2, since we chose to work with the normalizable mode solution.
Hence, we will use the ∆ = 2 solution and pick the easiest form for our CFT2 operator. As an
example, we will choose to work with the free massless boson φ and pick the CFT operator

25Note that the (−1) in P
(ℓ,1)
n (−1) is an argument of the Jacobi polynomial.
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with ∆ = 2 to be O = ∂µφ∂µφ.26 The dynamics of the massless boson is described by the
action

S =
1

2
g

∫
d2x ∂µφ∂

µφ , (4.39)

where g is a normalization parameter and the metric is the flat metric (4.38) with coordinates
xµ = (t, θ). Although we are ultimately interested in the result in the Lorentzian signature,
it is much more convenient to work in the Euclidean signature. So we Wick rotate to the
Euclidean time; i.e. t→ −iτ and use the coordinates τ, θ. It is further useful to introduce the
complex coordinates (w, w̄) on the cylinder, defined as

w = θ − iτ ,

w̄ = θ + iθ , (4.40)

in terms of which the CFT metric becomes

ds2CFT2
= dτ2 + dθ2 = dwdw̄ . (4.41)

As mentioned in Section 2.2.2, it is useful to work in terms of the coordinates on the complex
plane, defined as

z = eiw = eτ+iθ

z̄ = eiw̄ = eτ−iθ , (4.42)

The CFT operator O = ∂µφ∂µφ = ∂τφ∂τφ+ ∂θφ∂θφ can be written in terms of the complex
plane coordinates as

O(z, z̄) = 4∂zφ∂z̄φ . (4.43)

The AdS/CFT correspondence relates bulk fields to boundary primary operators. We need
to verify that the above proposed CFT operator is indeed a primary operator. This can be
done, as outlined in Section 2.2, by evaluating its OPE with the energy stress tensor. The
holomorphic energy stress tensor for the theory under consideration (4.39) is [27]

T (z) = −2πg : ∂zφ(z)∂zφ(z) : , (4.44)

so the OPE can be evaluated as

T (z)O(w, w̄) =

= −8πg : ∂zφ(z)∂zφ(z) : ∂wφ(w)∂w̄φ(w̄)

= −8πg {: ∂zφ(z)∂zφ(z)∂wφ(w)∂w̄φ(w̄) : +2 : ∂zφ(z)∂wφ(w) : ∂zφ(z)∂w̄φ(w̄)

+ 2 : ∂zφ(z)∂w̄φ(w̄) : ∂zφ(z)∂wφ(w) + 2∂zφ(z)∂wφ(w)∂zφ(z)∂w̄φ(w̄)}+ non-singular

=
O(w, w̄)

(z − w)2
+
∂wO(w, w̄)

z − w
. (4.45)

26Note, that this is not the only available choice for an operator with the desired scaling dimension. Since
the scalar field is dimensionless, one could have also picked, for example, the more “meaningful” operator
O = ∂µ(φ42)∂µ(φ

42). However, it not only will not provide the answer to “the ultimate question of life, the
Universe, and everything” [65], but will also complicate the calculations unnecessarily.
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In computing the above expression, we have used Wick’s theorem, defined as

φi . . . φn = : φi . . . φn : + all contractions , (4.46)

as well as

φ(z)φ(w) = − 1

4πg
ln (z − w) (4.47)

φ(z)φ(w̄) = 0 , (4.48)

which arise from the correlation function (2.60) More details about these calculations can be
found in [44]. One can similarly compute the OPE with the antiholomorphic energy stress
tensor T̄ (z̄) to obtain

T̄ (z̄)O(w, w̄) =
O(w, w̄)

(z̄ − w̄)2
+
∂w̄O(w, w̄)

z̄ − w̄
. (4.49)

Comparing to (??), we can confirm that O(z, z̄) = 4∂zφ∂z̄φ is indeed a conformal primary
operator with h = 1 and h̄ = 1. Hence, the scaling dimension of the operator is indeed ∆ = 2,
as expected.

Now, using the mode expansion (2.64), we can write an expression for the operator in
(4.43) in terms of the right- and left-mover ladder operators

O(z, z̄) = − 1

πg

∑
n

∑
m

anāmz
−n−1z̄−m−1 . (4.50)

The state-operator map introduced in Section 2.2.3 can be used to find an expression for the
CFT state at z, z̄ = 0, which gives

|O⟩ = lim
z,z̄→0

O(z, z̄)|0⟩CFT

= − 1

πg
a−1ā−1|0⟩CFT , (4.51)

where (2.54) was used in the last step. This state represents a pair of left- and right-moving
boundary excitations.

So far, we have found an operator O in the CFT2 theory, which is dual to the massless field
in the AdS3 bulk. We have also found the state, which this CFT2 operator corresponds to.
However, note that the state is defined at z, z̄ → 0, which is equivalent to τ → −∞, namely
|O⟩ = |O⟩τ=−∞. The boundary conditions that we will choose to impose on the bulk field is
that it gets annihilated at τ = 0, as illustrated in Figure 4.3. To find out what the CFT2 state
|O⟩τ=−∞ is at τ = 0 and what vanishing of the bulk field implies for O operator, we need to
first evaluate the state |O⟩τ=−∞ at τ = 0. This requires time-evolving the state in (4.51) by
using the CFT Hamiltonian H = ∂τ . In radial quantization, the time evolution is governed
by the dilatation operator and states live on circles of constant radius [28]. Hence, in radial
quantization, the Hamiltonian H = ∂τ becomes

H = L0 + L̄0 , (4.52)
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where L0 = z∂z and L̄0 = z̄∂z̄ are the scaling generators (2.45) in complex plane coordinates.
They act on the vacuum state as L0|0⟩CFT = 0 and L̄0|0⟩CFT = 0 and so H|0⟩CFT = 0
as expected. The Hamiltonian and the ladder operators share the following commutation
relations:

[H, a−m] = ma−m ,

[H, ā−m] = mā−m . (4.53)

Using the above commutation relations with m = 1, the time-evolved CFT state can be
evaluated as

|O⟩τ=0 = eH∆τ |O⟩

= − 1

πg
eH∆τa−1ā−1|0⟩CFT

= − 1

πg

∑
n

1

n!
(H∆τ)na−1ā−1|0⟩CFT

= − 1

πg

∑
n

1

n!
(∆τ)na−1(H + 1)nā−1|0⟩CFT

= − 1

πg

∑
n

2n

n!
(∆τ)na−1ā−1|0⟩CFT

= − 1

πg
e2∆τa−1ā−1|0⟩CFT , (4.54)

where ∆τ is the amount of time with which we have time-evolved the state. To verify this, it
can be seen that when ∆τ = 0, there is no time evolution of the state and one recovers (4.51).
The normalization g = 1/4π and Wick-rotating back to Lorentzian time,

|O⟩t=0 = −4e2i∆ta−1ā−1|0⟩CFT. (4.55)

Now we have the full description in the bulk, namely the bulk field, its boundary value and
the bulk state at the boundary at t = 0. We also have the full description in the CFT, namely
the CFT operator dual to the bulk, and the CFT state at t = 0. These results can now be
used, to show whether absorption into the holographic boundary is possible by checking what
a field leaving the bulk means for its dual operator. This will be explored in the next section.

4.4.3 Conformal boundary “absorption”?

We should recall that the reason we are looking at whether this absorption mechanism is
possible is because we are looking for a way to change the boundary conditions at the AdS
boundary to allow large black holes to evaporate. This section will use results from the previous
section to check if absorption into the holographic boundary is indeed possible.

We will consider a bulk mode that has been propagating in the bulk from t = −∞ and
vanishes once it reaches the conformal boundary at t = 0, where it gets absorbed. This requires
a function that would annihilate all of the single-particle states at the boundary. We will call
this function F and impose that

F |ϕ⟩bdy =
! |0⟩Bulk . (4.56)
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To further simplify matters, we will focus only on the s-wave, hence the ℓ = 0 mode, in which
case Enℓ = 2(1 + n), so

|ϕ⟩bdy =

∞∑
n=0

(−1)n
(2)n
n!

e2i(1+n)t b†n |0⟩Bulk , (4.57)

where we have used that the Jacobi polynomial can be written in terms of the Pochhammer’s
symbol, defined as (x)n := Γ(x+ n)/Γ(x). In this case, the function that annihilates (4.57) is
given by

F =

∞∑
n=0

(−1)n
n!

(2)n
e−2i(1+n)t bn , (4.58)

because [bn, b
†
n′ ] = δnn′ . For the simple case of a single bulk particle in the ground state

(n = 0), the above simplifies to

|ϕ⟩bdy = e2it b†0 |0⟩Bulk (4.59)

F = e−2it b0 , (4.60)

and this is the case we will focus on for now. We have found the operator that annihilates the
bulk field at the boundary at τ = 0. What we wish to examine now is how this operator acts
on its duel CFT state at τ = 0, found in (4.55), which gives

F |O⟩τ=0 = e−2it b0
(
−4e2i∆ta−1ā−1|0⟩CFT

)
. (4.61)

The first time-evolution factor of e−2it came from the time-evolution of the bulk field, which
was propagating from t = −∞ until it was annihilated at t = 0. The second time-evolution
factor of e2i∆t came from the time-evolution of the CFT state, which was also time-evolved
from t = −∞ to t = 0. Hence, the two exponentials cancel out and we obtain

F |O⟩τ=0 = −4 b0 a−1ā−1|0⟩CFT. (4.62)

Since the boundary limit of the bulk field is identified as the CFT operator, according to the
AdS/CFT dictionary, then the function F that annihilates the boundary value of the bulk
field, must also annihilate its dual, and hence bring the CFT state at τ = 0 to the vacuum
CFT state; i.e. we need to impose that F |O⟩τ=0 =

! |0⟩CFT. This is indeed satisfied if 27

b†0 = −1

4
a−1ā−1 . (4.63)

Hence, a bulk particle is dual to a left- and right-moving particle at the CFT boundary.28

This agrees (up to a normalization) to a result by [63]. The result in (4.63) implies that
any process, which leads to the annihilation of the bulk particle, would certainly lead to the
annihilation of its dual CFT operator. Due to the direct proportionality between the bulk and
boundary ladder operators, an absorption into the holographic boundary, which would imply
bringing the bulk state to the bulk vacuum state (since the bulk field will no longer be in the

27One can easily verify this by substituting a−1ā−1 = −4b†0 into (4.62), which can be used to show that
b0b

†
0|0⟩CFT = (b†0b0 + 1)|0⟩CFT = |0⟩CFT.

28Recall from Section 2.2.4 that the operators a−1 and ā−1 are not lowering operators, but raising operators.
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bulk) would inevitable lead to the left- and right-moving excitations in the CFT also being
brought to the CFT vacuum. Equivalently, higher excitations on the holographic boundary
would correspond to a higher number of particle states in the bulk.

However, in the above computation, we picked the simplified case (4.59) of a single bulk
particle in the ground state. This should also be applicable to the more generic case of (4.57).
Using the AdS/CFT dictionary as before, for the function F in (4.58) to also bring the CFT
state |0⟩CFT to the CFT vacuum state, would require identifying

F =

∞∑
n=0

(−1)−n (2)n
n!

e2i(1+n)t b†n =
1

4
a−1ā−1 , (4.64)

which can be seen as the superposition of single-particle states in the bulk being dual to a left-
and right-moving particle at the CFT boundary.

In this section we saw that we cannot have a mechanism where the radiation gets absorbed
from the AdS3 bulk into the CFT2 dual conformal boundary, since the two descriptions are
dual to each other and the a field disappearing from the bulk will have its dual also disappear
from the holographic boundary. It is precisely because of this dual description that one expect
that this result can be generalized to the case of AdSd+1/CFTd and show that the AdSd+1

radiation cannot be absorbed into the CFTd boundary.

4.5 Conclusion

In this chapter we studied AdS black holes. We began by explaining why studying black holes
in AdS is a great tool for resolving the Information paradox, namely due to the AdS/CFT
correspondence which guarantees that black hole evaporation in AdS must be a unitary process,
since its dual description is inherently unitary.

We then explained how large black holes in AdS, unlike black holes in an asymptotically
flat spacetime, are thermodynamically stable. We explained how the usual AdS reflective
boundary conditions do not allow these large AdS black holes to evaporate, since they reach a
thermodynamic equilibrium before they have emitted all of their Hawking radiation. Although
this is not an issue for small AdS black holes, which are thermodynamically unstable like the
Schwarzschild black hole, these smaller black holes do not exist in smaller dimensions. The
only way to resolve the issue with the evaporation of large AdS black holes without changing
their size, is to change the boundary conditions at the holographic boundary to allow all the
Hawking radiation to escape the bulk, way before the black holes falling into a thermodynamic
equilibrium.

However, using results from Chapter 2, we showed that allowing the Hawking radiation to
escape the bulk and be absorbed into the holographic CFT boundary is not possible, due to the
AdS/CFT duality, since both descriptions are dual to each other, and any Hawking radiation
leaving the bulk would result in its dual description on the holographic CFT boundary also
disappearing.

However, recent work [18] has proposed that the radiation can be absorbed into an auxiliary
CFT, namely a bath CFT system, described by CFTd+1 if we were to “attach” it to the
AdSd+1 bulk and introduce the appropriate transparent boundary conditions. Describing this
mechanism, and showing it allows black hole evaporation, will be the topic of the next chapter.
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Coupling black holes to a bath

In the previous chapter we found that we cannot model absorption into the holographic bound-
ary, since the AdS/CFT duality provides a description of the same physics, even though one is
computed in the bulk, while the other one is computed on the holographic boundary. Hence,
a field disappearing from the AdS bulk description will also disappear in its dual CFT de-
scription. Instead, there have been many other proposals for resolving the large black hole
evaporation issue, based on changing the AdS boundary conditions, as well as coupling the
bulk to an auxiliary system which can collect the Hawking radiation [66, 67, 68, 69].

In this chapter, we review one such recent model in the context of JT gravity [18], which
proposes the attachment of an auxiliary bath to the AdS boundary, making one-sided black
hole evaporation into the bath possible. In Section 5.1, we begin by reviewing some important
aspects of JT gravity, including why one would use it, in the first place, to study black holes,
and the black hole information paradox in particular. The semiclassical description of JT
gravity, which incorporates effects from quantum matter and can be used to study Hawking
radiation, is also reviewed. In Section 5.2, we show how coupling one side (of the double-sided
black hole) to the bath achieves the evaporation protocol. The discussion in Chapter 3 on the
generalized gravitational entanglement entropy is then used to explain how this proposed black
hole evaporation model produces a unitary Page for both the evaporating black hole and the
emitted Hawking radiation, hence leading to a possible resolution to the Information paradox.
In Section 5.3, we look for a way to describe this one-sided black hole evaporation model in
the dual theory, by using a toy-model for the boundary theory, namely working in the TFD
formalism. We model the bath in the gravity theory as an operator in the dual theory, and
we find such an operation which successfully reproduces all the expected results in the dual
theory. However, this operation is shown to be non-unitary and we argue that a unitary bath
operation may not be possible, at least with the way the bath is described to act on the bulk.
As will be explained, this does not exclude the possibility for a global unitary bath operation,
although the way that the bath is coupled to the bulk might have to be different. We also
show that the one-sided evaporation can be modeled via an LOCC protocol, which uses the
bath as a way to transfer classical information.
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5.1 Review of JT Gravity

5.1.1 Why JT?

The issue with the non-renormalizability of (3+1)-dimensional Einstein’s gravity has motivated
the study of lower-dimensional gravity models. However, this still gives rise to some issues,
including finding a suitable model to study. For example, the plain (1+1)-dimensional Einstein
gravity action for some manifold M2 (in Euclidean signature) is given by

I[g] = − 1

16πGN

∫
M2

ddx
√
gR− 1

8πGN

∫
∂M2

dx
√
hK , (5.1)

where the second term is the GHY boundary term, that needs to be added if the manifold has
a boundary ∂M2.

When d = 2, this action is purely topological. There are several ways to see this. One
way would be to see that when d = 2, the action I[g] = χ(M2)/4GN , where χ(M2) is the
so-called Euler characteristic, which is a topological invariant and hence does not give rise to
any dynamics. A way to see this is to consider the Einstein equations; i.e. Gµν = Rµν− 1

2gµνR,
which for the case d = 2 become Rµν = 1

2gµνR (due to general symmetries of the curvature
tensor), so Gµν = 0 [70]. This is simply the vacuum solution. Furthermore, if the action is
coupled to a matter action; i.e. I = I[g] + Im, one can compute the energy stress tensor via
Tm
µν = − 2√

g
δIm
δgµν . Since Tm

µν = Gµν/8πGN and we established that symmetries lead to Gµν = 0,
then Tµν = 0 [71]. The vanishing of the energy stress tensor implies there is no energy flow.
Hence, this model cannot be used to study dynamical systems such as black hole formation
or evaporation and will be of no obvious use when trying to resolve the information paradox.

Another motivation for the need of a different model is in the context of AdS/CFT. In
the case of the M2 manifold being the AdS2 spacetime, it can be described by its dual
holographic CFT1 theory, also known as conformal quantum mechanics. This is a (0+1)-
dimensional theory, and since for any CFTd, the stress energy tensor is traceless; i.e. Tµ

µ = 0,
and the only component of the energy stress tensor in CFT1 is T t

t, then Ttt = 0. But this is
precisely the Hamiltonian of the theory. Hence, the theory has zero energy and can describe
only zero-energy states. To introduce dynamics into the picture, one can consider coupling
the Ricci scalar R to a scalar field ϕ, known as the dilaton.

Another way to motivate the addition of this extra degree of freedom is to look at the
number Ndof of gravitational degrees of freedom, which is given by Ndof = d(d − 3)/2 and
hence becomes meaningless when d = 2, in which case Ndof = −1. To bring more sense into
this, we add another degree of freedom by introducing the dilaton field.
In what follows, we will follows closely the JT gravity review in [72].

A very general form of the d = 2 dilaton-gravity action takes the form

I[g, ϕ] = − 1

16πGN

∫
M2

d2x
√
g (ϕR+ U(ϕ)) + . . . , (5.2)

where U(ϕ) is the dilaton potential. Jackiw–Teitelboim (JT) gravity, first introduced by Jackiw
[73] and Teitelboim [74], refers to the special case where the dilaton potential takes the form
U(ϕ) = −Λϕ, where Λ is the cosmological constant. Hence, the JT action is given by

IΛJT[g, ϕ] = − 1

16πGN

∫
M2

d2x
√
g ϕ (R− Λ) + . . . , (5.3)
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where for a physical classical solution, we require that the effective Newton’s constantGeff(x) =
GN/ϕ(x) > 0, since the gravitational constant should remain positive everywhere.

This dilaton-gravity model was later examined for AdS spacetimes by Almheiri and Polchin-
ski [75], and is known as the Almheiri-Polchinski (AP) model. In the case of AdS spacetime,
the cosmological constant Λ = −2/ℓ2AdS < 0. For convenience one can choose ℓAdS = 1, in
which case the action becomes

IJT[g, ϕ] = − 1

16πGN

∫
M2

d2x
√
g ϕ (R+ 2)− 1

8πGN

∫
∂M2

dx
√
hϕ (K − 1) , (5.4)

where we have included the GHY term and the “−1” term is needed for the action to be
well-defined at the boundary. It is important to also add the topological contribution, given
by I[g] = −ϕ0χ(M2)/4GN in (5.1), where ϕ0 is a constant contribution to the dilaton, so the
full action can be written as

I[g, ϕ] =− ϕ0
16πGN

∫
M2

d2x
√
g R− ϕ0

8πGN

∫
∂M2

dx
√
hK

− 1

16πGN

∫
M2

d2x
√
g ϕ (R+ 2)− 1

8πGN

∫
∂M2

dx
√
hϕ (K − 1) + Im[g] , (5.5)

where we have also included a matter action Im[g] if we want to couple JT gravity to matter,
such that Im[g] couples only to the metric and not to the dilaton field. Note, adding the
topological part of the action can be thought of as a result of shifting the dilaton field in (5.4)
as ϕ(x) → ϕ0 + ϕ(x).

Of course, if the theory does not admit a black hole solution, it will be of no use. But as
we will see soon from the equations of motion of (5.5), JT gravity indeed does have a black
hole solution.

5.1.2 Equations of motion

The classical equations of motion for the metric and the dilaton field can be evaluated by
varying the action (5.5). In what follows we will work in the Lorentzian signature. Setting
δI[g, ϕ]/δϕ = 0 imposes R = −2, which in d = 2 is sufficient to find that the metric is the
AdS2 metric, up to a coordinate transformation, which would correspond to just a different
AdS patch.

To verify this, it is convenient to work in the conformal gauge (which can always be
reached by an appropriate coordinate transformation) and write the metric in terms of some
coordinates (x+, x−) as

ds2 = −e2w(x+,x−)dx+dx− , (5.6)

where the Weyl factor e2w(x+,x−) is still unspecified. Solving for the Ricci scalar of this metric
yields

R = 8e−2w∂x+∂x−w . (5.7)
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Imposing R = −2 gives that e2w = −4∂x+∂x−w, which is just the Liouville’s equation with a
solution given by

e2w(x+,x−) =
4

(x+ − x−)2
. (5.8)

The coordinates {x±} are precisely the AdS2 lightcone coordinates. One can arrive at the
more familiar AdS2 Poincaré patch coordinates (t, z) via x± = t± z, which yields

ds2 = − 4dx+dx−
(x+ − x−)2

=
−dt2 + dz2

z2
. (5.9)

The asymptotic boundary, where the holographic boundary dual theory lives, is timelike and
located at x+ = x− = t, where t is the proper time in the boundary dual theory and will be
referred to as the boundary proper time.
To study the dilaton dynamics requires varying the action with respect to the metric and
setting δI[g, ϕ]/δgµν = 0, which yields the following equation of motion for the dilaton field

∇µ∇νϕ− gµν∇2ϕ+ gµνϕ = −8πGNTµν , (5.10)

where Tµν appears from varying the matter action with respect with the metric; i.e. δIm/δgµν .
Using that ∇2ϕ = (

√
−g)−1∂µ (

√
−ggµν∂νϕ), together with form of the conformal gauge in

(5.6), and using (5.8)), then (5.10) can be written in terms of the lightcone coordinates (x+, x−)
as [72, 69, 18]

8πGN Tx+x+ = −e2w∂x+(e
−2w∂x+ϕ) = − 1

(x+ − x−)2
∂x+

(
(x+ − x−)

2 ∂x+ϕ
)

(5.11)

8πGN Tx−x− = −e2w∂x−(e
−2w∂x−ϕ) = − 1

(x+ − x−)2
∂x−

(
(x+ − x−)

2 ∂x−ϕ
)

(5.12)

16πGN Tx+x− = 2∂x+∂x−ϕ+ e2wϕ = 2∂x+∂x−ϕ+
4

(x+ − x−)2
ϕ . (5.13)

However, (5.8) is not the only solution to the equation of motion for the metric. As mentioned
before, in the d = 2 case, the constant curvature constraint R = −2 fixes the metric to be
AdS2, up to topology [76]. Hence, there are other coordinates {X±}, which can be reached
via an appropriate coordinate transformation x± → X±(x±), in terms of which the metric can
also be written in the usual ‘Poincaré’ form29. In fact, the most general solution to Liouville’s
equation is given by

e2w(x+,x−) =
4∂x+X+(x+)∂x−X−(x−)

[X+(x+)−X−(x−)]2
, (5.14)

where X+(x+) and X−(x−) are a set of chiral functions30 of the respective lightcone coordi-
nates, in terms of which the metric (5.6) can be written as

ds2 = −
4∂x+X+(x+)∂x−X−(x−)

[X+(x+)−X−(x−)]2
dx+dx− = − 4dX+(x+)dX−(x−)

(X+(x+)−X−(x−))2
. (5.15)

29

30The chirality of these functions arises from requiring that the metric is asymptotically AdS2, as will be
seen later when discussing boundary dynamics.
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Again, this can be written in the usual ‘Poincaré’ form, as illustrated in Figure 5.1, via
X± = T ± Z

ds2 =
−dT 2 + dZ2

Z2
. (5.16)

In these coordinates, the asymptotic boundary is at X+ = X− = T , but T , often referred to as
the Poincaré time or the dynamical boundary time, should not be confused with the boundary
proper time t.

Figure 5.1: The Poincaré patch for AdS2 and the lightcone coordinates X±, adapted
from [72].

An vital feature of JT gravity for the study of the information paradox is that it admits
black hole solutions in the first place. Black holes can be dynamically formed by throwing in
matter from the boundary. To see this, one needs to solve the dilaton equations of motion.
A particular example is the vacuum solution, defined by Tµν = 0, in which case, TX+X+ =
TX−X− = TX+X− = 0. The most general solution for the dilaton field is then given by [75]

ϕ(x+, x−) =
a+ b(X+ +X−) + cX+X−

X+ −X−
, (5.17)

where a, b, c are integration constants. This is obtained by integrating (5.11) and (5.12) and
imposing (5.13). The parameter b is not physically meaningful and can be set to zero by using
the isometry of the AdS2 metric, which can be used to rewrite the vacuum dilaton solution as
[75]

ϕ(x+, x−) =
a− µX+(x+)X−(x−)

X+(x+)−X−(x−)
. (5.18)

Note that this solution diverges at the X+ = X− = T boundary, as illustrated in Figure 5.2.
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Figure 5.2: The dilaton profile is plotted for different values of µ at a constant T = 0
slice, showing that it diverges at the holographic boundary Z = 0.

One can also consider the dilaton solution with matter; i.e. Tµν ̸= 0. For simplicity, we
will consider the case of the matter being a CFT2, in which case, TX+X− = 0, because of
the tracelessness condition for any CFT.31 Taking into account that TX+X+ and TX−X− are
non-zero, and using the dilaton equations of motion (5.11-5.13), the dilaton solution is given
by

ϕ(x+, x−) =
a− µX+(x+)X−(x−)

X+(x+)−X−(x−)
− 8πGN

X+(x+)−X−(x−)
(I+ + I−) , (5.19)

where

I+(x+) =

∫ ∞

X+

ds (s−X+)(s−X−)TX+X+(s) (5.20)

I−(x−) =

∫ X−

−∞
ds (s−X+)(s−X−)TX−X−(s) (5.21)

and Tx±x±dx
2
± = TX±X±dX

2
±. As revealed already, a black hole can be formed in JT gravity

my throwing in matter from the boundary. To prove this, one can consider starting with
the vacuum solution (5.18) and throwing an infalling energy pulse with E > 0 given by
TX−X−(X−) = Eδ(X−) (and TX+X+(X+) = 0), which describes a pulse entirely along the
X− = 0 curve.

31Ignoring quantum anomaly contributions, Tµ
µ = 0 = gµνTµν = 2gX+X−TX+X− , so TX+X− = 0.
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Figure 5.3: An inward positive-energy pulse (red) sent from the boundary, that can be
used to create a black hole in the bulk. The black hole horizon of the newly formed
black hole is shown in blue; Adapted from [72].

In this case, I+ = 0 and I− = EX+X−θ(X−), so the dilaton solution in (5.19) becomes

ϕ(x+, x−) =
a− 8πGNEX+(x+)X−(x−)θ(X−)

X+(x+)−X−(x−)
, (5.22)

where we have used the relationship between the delta function and the Heaviside step function
θ(x) =

∫ x
−∞ ds δ(s). Comparing this to the vacuum solution (5.18), one can identify the

parameter µ = 8πGNE. This is the dilaton profile around a static black hole solution, formed
as a response of an inward-falling matter pulse from the boundary, where the parameter µ is
related to the mass of a black hole, which is identified as M = E.[75]. In particular, through
the substitution

X±(x±) =

√
a

µ
tanh

(√
µ

a
x±

)
(5.23)

the metric (5.15) can be written in the form

ds2 = −µ
a

4

sinh2
(√

µ
a (x+ − x−)

)dx+dx− =
4µ

a

−dt2 + dz2

sinh2
(√

µ
a2z
) . (5.24)

This is the so-called black hole patch (or black hole exterior coordinates) and the corresponding
dilaton profile (5.22) becomes

ϕ(x+, x−) =
√
µa coth

(√
µ

a
(x+ − x−)

)
=

√
µa coth

(√
µ

a
2z

)
. (5.25)
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The black hole patch is contained within the Poincaré patch, as illustrated in Figure 5.3, as
the black hole patch, as defined in (5.23), only cover the range −

√
a
µ < X± <

√
a
µ . The black

hole horizon in these coordinates is located at z = ∞.
One can further motivate that the metric (5.24) corresponds to a black hole solution via

the further substitution r = 2
√

µ/a coth
(
2
√

µ/az
)
, in which case the metric can be written in

the more familiar Schwarzschild-like form as

ds2 = −
(
r2 − 4µ

a

)
dt2 +

(
r2 − 4µ

a

)−1

dr2 . (5.26)

This solution has a horizon at r = 2
√

µ/a.32The metric (5.24) and the dilaton solution (5.25)
are both periodic in imaginary time with a period β = π

√
a/µ. This can be used to find the

Hawking temperature of the black hole via

T0 = β−1 =
1

π

√
µ

a
=

1

π

√
8πGNE

a
, (5.27)

which is the expected scaling with temperature of the energy of a near-extremal RN black
hole [78]. As E → 0, the Hawking temperature of the black hole T0 → 0 [79]. The presence
of black hole solutions to the JT gravity action is what makes JT gravity a good contender to
study the black hole information paradox.

5.1.3 Boundary dynamics

Due to the divergent behavior of the metric (and dilaton) at the holographic boundary, it is
often convenient to express JT gravity in terms of the so-called ‘boundary particle’ dynamics,
which is a reparameterization between the Poincaré coordinates near the boundary and the
proper coordinates on the boundary. In particular, this simplifies to a reparameterization
between the Poincaré time near the boundary T and the boundary proper time t. This
is achieved via the appropriate boundary conditions and we demand that the spacetime is
asymptotically AdS2, such that in the limit z → 0,

ds2 =
−dt2 + dz2

z2
+ . . . , (5.28)

where {. . .} represents terms subleading in the limit z → 0. It can be shown that in order to
preserve this asymptotic behavior, one needs to impose that at the boundary: (1) ∂x+X− =
∂x−X+ = 0, which leads to the chirality constraint and (2) X+(x+, x−) = X−(x+, x−), which
implies X+(x+) = X−(x−).[72] Imposing that the holographic boundary x+ = x− = t coin-
cides with the AdS boundary X+(x+) = X−(x−) implies that X+(t) = X−(t) = T (t), where
the Poincaré time (or the dynamical boundary time) T (t) is a function of the boundary proper
time t[69].

32This solution clearly resembles the BTZ black hole solution, with the exception that the BTZ black hole
is a solution in a (2+1)-dimensional gravity theory. One can perform a dimensional reduction of a (2+1)-
dimensional Einstein’s gravity with a negative cosmological constant to obtain a solution similar to the (1+1)-
dimensional JT gravity solution in (5.26), which is shown to correspond to the (t, r) section of the BTZ black
hole; i.e. with the same causal structure [77].
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However, the metric (5.28) diverges at the holographic boundary (z = 0) and needs to be
regularized in order to extract the effective boundary dynamics. This is done by introducing
a small distance z = x+−x−

2 ≈ ϵ from the holographic boundary at x+ = x− = t, as illustrated
in Figure 5.4 (left), and hence regularizing the boundary by moving it slightly inwards from
z = 0 to z = ϵ via

x+ = t+ z → t+ ϵ

x− = t− z → t− ϵ . (5.29)

Figure 5.4: (left) The Poincaré patch with the location of cut-off surface. (right)
Euclidean boundary disc with location of cut-off, where the holographic boundary
(T (t), Z(t)) is parameterized in terms of the boundary time t adapted from [80].

The coordinates X±(x±) on the new boundary; i.e. where x± = t± ϵ, can be translated into
new (regularized) Poincaré time and radial coordinates (F,Z) via X± = F ± Z, such that

F (t) =
1

2
(X+(t+ ϵ) +X−(t− ϵ)) = X+(t) +O(ϵ2) ≈ X+(t) (5.30)

Z(t) =
1

2
(X+(t+ ϵ)−X−(t− ϵ)) = ϵX ′

+(t) +O(ϵ2) = ϵF ′(t) +O(ϵ2) ≈ ϵF ′(t) . (5.31)

The regularized boundary dynamics, illustrated in Figure 5.4 (right), is hence determined only
in terms of the function F (t) via the Poincaré coordinates (T = F (t), Z = ϵF ′(t)), which are
now parameterized in terms of the boundary proper time t, so the metric can be written as

ds2 =
−dT (t)2 + dZ(t)2

Z(t)2
. (5.32)

We saw that the function T = F (t) is a diffeomorphism giving the bulk Poincaré time T
near the boundary in terms of boundary proper time t. More generally, this diffeomorphism
determines X± in terms of the lightcone coordinates x± via X+ = F (x+) and X− = F (x−),
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and one can use this to rewrite the bulk AdS metric (5.15) as33

ds2 = − 4F ′(x+)F
′(x−)

(F (x+)− F (x−))2
dx+dx− (5.33)

where the cut-off is located at ϵ = x+−x−
2 .

Using the ‘boundary particle’ description, one can compute the holographic energy-stress
tensor [69], which in the (0+1)-dimensional case is just the total energy (ADM energy) in the
spacetime. It can be written in terms of the reparameterization F (t) using the Schwarzian
derivative as

E = − a

16πGN
{F (t), t} , (5.34)

where the Schwarzian derivative is defined as

{F (t), t} ≡ F ′′′

F ′ − 3

2

(
F ′′

F ′

)2

. (5.35)

Having defined the ADM energy of the spacetime, it is only natural to have to impose a
conservation of the energy within some boundary. This can be written in terms of the net
flux of energy moving across the holographic boundary in terms of the proper (dual theory)
coordinates {x±}, which yields the energy balance equation

dE(t)

dt
=
[
Tx−x−(t)− Tx+x+(t)

]∣∣∣
∂M2

=
[(dX−(x−)

dx−

)2

TX−X−(t)−
(
dX+(x+)

dx+

)2

TX+X+(t)
]∣∣∣

∂M2

= F ′(t)2
[
(TX−X−(t)− TX+X+(t))

]∣∣∣
∂M2

, (5.36)

where we have used the reparameterization X± = F (x±) to write the expression in terms of
the energy stress tensor in the Poincaré patch coordinates {X±}.

We have seen in this section that JT gravity admits black hole solutions and soon it will
be used as a model to address the issue with the evaporation of large black holes in AdS, by
adding an auxiliary system to absorb the radiation.

The energy conservation equation (5.36) will be used to calculate the change in energy as
a result of Hawking radiation. However, since it is a quantum mechanical result, involving
quantum matter, the classical JT gravity discussed so far is not sufficient to describe it. Hence,
in what follows, we will review the semi-classical regime, where quantum effects of the CFT
matter sector are taken into account, namely the trace anomaly of the stress-energy tensor.

5.1.4 Semi-classical regime

It has been shown that there exists a direct relationship between the conformal anomaly, which
governs quantum effects in the CFT matter sector, and the appearance of Hawking radiation.

33We can see this from (5.30) and (5.31), since T = F (t) = X+ implies that X+ = X− = T . This means
that dF (t)

dt
=

dX+

dt
=

dX−
dt

and dF (t)
dz

=
dX+

dz
=

dX−
dz

. Hence, dX±
dx±

=
dF (x±)

dx±
, so X± = F (x±).
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The JT gravity discussed until now was purely classical, which was sufficient to study the
classical equations of motion, governing the black hole solution and the dilaton dynamics.
However, a crucial ingredient in the study of Hawking radiation is the effect of backreaction,
namely the effect of quantum matter (such as Hawking radiation) on the classical geometry.
The backreaction of the Hawking radiation on the geometry has an important implication on
black hole thermodynamics, namely, it helps explain why the first law of black hole dynamics
is identified as the first law of thermodynamics. The classical derivation works only after
identifying a relation between the Hawking temperature and the extrinsic curvature of the
event horizon, which raises the conceptual question of how Hawking radiation is aware of
the event horizon geometry at all [81]. This is addressed in the semiclassical regime, which
takes into account the effect of backreaction and helps understand why the temperature of the
Hawking radiation is identified as the temperature of the black hole.

In this semiclassical regime, one considers quantum effects (such as the existence of Hawk-
ing radiation) to study quantum matter while still remaining in the classical gravity regime.
For this to be plausible, the classical gravitational effects need to dominate the quantum effects
of the quantum matter, which is a valid approximation for large black holes.34The semiclassi-
cal regime approximation is valid if the central charge of the CFT is c ≫ 1, with c → in the
classical limit [81].

Promoting the classical matter sources to be quantum mechanical has an effect on the
energy stress tensor, namely Tµν → ⟨Tµν⟩, so allowing for the backreaction, the net energy
flow across the holographic boundary (5.36) becomes

dE(t)

dt
= ⟨Tx−x−(t)⟩

∣∣
∂M2

− ⟨Tx+x+(t)⟩
∣∣
∂M2

. (5.37)

The Einstein equations Gµν = 8πGNTµν become Gµν = 8πGN ⟨Tµν⟩. Using the conformal
anomaly ⟨Tµ

µ⟩ = −cR/24π, together with the conformal gauge Ricci scalar in (5.7), given by
R = 8e−2w∂x+∂x−w, leads to

⟨Tx+x−⟩ = − c

12π
∂x+∂x−w , (5.38)

where we have used the conformal gauge where the only non-zero components of the metric
are guv = gvu = −e2w/2. To find the other components of the stress-energy tensor, one can
use (5.38) and substitute it into the equations of motion (5.11-5.13). It has been shown [72,
75, 69] that imposing conservation of the energy-stress tensor; i.e. ∇µT

µν = 0, yields that its
components acquire some additional contributions and take the form

⟨Tx+x+⟩ = − c

12π
((∂x+w)

2 − ∂2x+
w) + ⟨: Tx+x+ :⟩ (5.39)

⟨Tx−x−⟩ = − c

12π
((∂x−w)

2 − ∂2x−w) + ⟨: Tx−x− :⟩ (5.40)

where the additional contributions, namely ⟨Tx±x±⟩ are normal-ordered components, also often
referred to as operational. Being normal-ordered means that these contributions are frame-
dependent (i.e. measured by local observers), since the normal-ordering is always with respect
to a certain vacuum, according to

: Tx+x+ : = Tx+x+ − ⟨0x+ |Tx+x+ |0x+⟩ (5.41)
: Tx−x− : = Tx−x− − ⟨0x− |Tx−x− |0x−⟩ . (5.42)

34To be more precise, this is valid as long as the black hole is not Planck-scale sized.
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Due to the conformal anomaly, they transform between different frames {x±} and {X±(x±)}
according to

: Tx+x+ : =

(
dX+

dx+

)2

: TX+X+ : − c

24π
{X+, x+} (5.43)

: Tx−x− : =

(
dX−
dx−

)2

: TX−X− : − c

24π
{X−, x−} . (5.44)

From (5.33), one can write the conformal factor in terms of the reparameterization X± =
F (x±) as

e2w(x+,x−) = −4
dF (x+)

dx+

dF (x−)

dx−

1

(F (x+)− F (x−))2
, (5.45)

which when differentiated with respect to the holographic boundary coordinates x± yields

(∂x+w)
2 − ∂2x+

w = −1

2
{F (x+), x+}

(∂x−w)
2 − ∂2x−w = −1

2
{F (x−), x−} . (5.46)

The reason this is important is that when evaluated at the boundary, where x+ = x− = t,
these expressions become equal, so substituting them into (5.39) and (5.40) gives

⟨Tx−x−(t)⟩
∣∣
∂M2

=
c

24π
{F (t), t}+ ⟨: Tx−x−(t) :⟩

∣∣
∂M2

⟨Tx+x+(t)⟩
∣∣
∂M2

=
c

24π
{F (t), t}+ ⟨: Tx+x+(t) :⟩

∣∣
∂M2

, (5.47)

which shows that the energy conservation equation (5.37), when evaluated at the boundary,
can be written purely in terms of the normal-ordered contributions, such that

dE(t)

dt
= ⟨Tx−x−(t)⟩

∣∣
∂M2

− ⟨Tx+x+(t)⟩
∣∣
∂M2

= ⟨: Tx−x−(t) :⟩
∣∣
∂M2

− ⟨: Tx+x+(t) :⟩
∣∣
∂M2

.

(5.48)

This energy conservation equation provides an expression for the energy flow across the holo-
graphic boundary (as seen from the first equality), which is equivalent to the energy conser-
vation measured locally, by a local observer, at the holographic boundary (as seen from the
second equality). Together with the expression for the ADM energy in terms of the boundary
reparameterization, defined in (5.34), these will be the key results in the computation of black
hole evaporation. This will be seen in the next section, where the black hole is coupled to an
auxiliary bath.

5.2 Coupling the black hole to a bath

5.2.1 Setup

In this section we review the model proposed in [18] which allows large black holes in AdS
to evaporate. We will show how this is computed for one-sided black hole evaporation by
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coupling the right black hole exterior to an auxiliary bath which is allowed to absorb the
Hawking radiation.

The model is that of a 2-dimensional JT gravity coupled to 2-dimensional CFT; i.e. gravity
coupled to matter in the special case (chosen for simplicity) where the matter is a CFT. The
action describing the theory is given by

I = IJT[g, ϕ] + ICFT[g] , (5.49)

where ICFT[g] is a general CFT which couples directly to the metric, but not to the dilaton.35

This is equivalent to the action we considered in (??), with the additional constraint that the
matter sector is a conformal field theory, as discussed in the example in the previous section.
The JT gravity action is given by (5.5) and in the Euclidean signature,

IJT[g, φ] = − ϕ0
8πGN

[
1

2

∫
M2

d2x
√
−g R+

∫
∂M2

dx
√
−hK

]
− 1

8πGN

[
1

2

∫
M2

d2x
√
−g ϕ(R+ 2) + ϕb

∫
∂M2

dx
√
−h (K − 1)

]
, (5.50)

where, as before, φ = ϕ0 + ϕ is the dilaton, which has a constant contribution of ϕ0 and a
dynamical contribution ϕ. The dilaton has a boundary value of φb = ϕ0 + ϕb, where ϕb is the
boundary limit of ϕ and assuming it is constant, it has been written outside of the integral
above. Again, the first bracket in (5.50) is purely topological and equal to 2πχ(M2), where
χ(M2) = 2− 2g − b is the Euler characteristic of M2, which depends on the genus g and the
number of boundaries b. Hence, φ0 controls the topological expansion of the theory. It is in
the second bracket of (5.50) where all the dynamics ocurs.

As we saw in the previous section, the AdS2 boundary is located at X+ = X− = T (or
Z = 0) and both the metric (5.15) and the dilaton (5.19) diverge at the boundary. Hence,
boundary conditions need to be specified in order to regulate these divergences.

Metric: A boundary condition is imposed on the metric requiring that it is asymptotically
AdS2; i.e. approaching the boundary at Z = 0,

ds2 =
−dT 2 + dZ2

Z2
(5.51)

However, as discussed in the previous section, in order to regulate the divergence at Z = 0,
one can cut the geometry along some boundary curve (T (t), Z(t)), parameterized in terms of
the boundary proper time t via T = F (t), which is diffeomorphism giving Poincaré time T in
terms of boundary proper time t.36 The metric (5.51)) can then be written in terms of the
proper boundary time as

ds2 =
−dT (t)2 + dZ(t)2

Z(t)2
=

(
−dT (t)2

dt2
+

dZ(t)2

dt2

)
dt2

Z(t2)
=

−T ′(t) + Z ′(t)

Z(t)
dt2 (5.52)

35Note that ICFT[g] is a general CFT2 in the AdS2 bulk (i.e. with the same dimensionality as the bulk)
and it should not be confused with the boundary dual theory, which is a CFT1 (i.e. with one less dimension
compared to the bulk). Also, the action (5.50) is a bulk gravitational action and has boundary terms because
the manifold has a boundary. These boundary terms should also not be confused with the holographic dual
CFT1 description living on the boundary.

36To compare notation with [75], their (x+, x−) correspond to the (X+, X−), their (y+, y−) correspond to
the (x+, x−) and their t = f(u) corresponds to T = F (t) here.
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Using the boundary conditions discussed in the previous section, namely Z(t) = ϵT ′(t), where
ϵ is a cut-off distance from the boundary, the induced metric on the boundary satisfies the
following cut-off condition

ds2
∣∣
∂M2

=

(
− 1

ϵ2
+O(ϵ0)

)
dt2 ≈ −dt2

ϵ2
, (5.53)

and the only component of the metric is

g
∣∣
∂M2

= gtt
∣∣
∂M2

∼ − 1

ϵ2
, (5.54)

which is the time-time component of the metric near the boundary along the physical boundary
time t.
Dilaton: The dilaton solution blows up at the boundary, as seen in (5.19). To regulate this
divergence, a boundary condition is imposed on the dilaton, such that

ϕ
∣∣∣
∂M2

= ϕb ∼
a

2ϵ
=
ϕ̄r
ϵ
, (5.55)

where ϕ̄r is the renormalized value of the dilaton. From this boundary condition, it can be
seen that the model considers the case of a large dilaton value at the boundary.
These are the standard Dirichlet-Dirichlet boundary conditions, where the dilaton and the
boundary metric are fixed (and when the cosmological constant in JT gravity is set to be
negative). However, this is not the only possible choice of boundary conditions and the different
choices are classified in [82].
One can use this renormalized dilaton value to rewrite the dilaton profile (5.22) as

ϕ =
2ϕ̄r

X+ −X−

(
1− 4πGNE

ϕ̄r
X+X−

)
, (5.56)

which we saw is the dilaton profile for the black hole solution. Using the result for the black
hole energy in (5.27), the dilaton solution (5.56) can be written as [18]

ϕ = 2ϕ̄r
1− (πT0)

2X+X−
X+ −X−

. (5.57)

In the previous section, the temperature of the black hole was found from the periodicity of
the metric, in terms of its energy (mass), which came from the parameter µ in the vacuum
dilaton solution. This result is closely intertwined with the ADM energy of the spacetime,
which was simply stated in 5.34, but can be easily verified for this case. The ADM energy can
be written in terms of the renormalized dilaton such that

E = − ϕ̄r
8πGN

{F (t), t} . (5.58)

One can check that using the black hole exterior coordinates in (5.23) and substituting the
periodicity of the black hole solution obtained in (5.27), the static black hole reparameteriza-
tion can be written as F (t) = 1/πT0 tanh (πT0t). Using the renormalized value of the dilaton
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(a = 2ϕ̄r), this can be used to find that the energy (or mass) of the black hole (i.e. the energy
of the pulse used to create it), is related to the black hole temperature T0 via

E = − ϕ̄r
8πGN

{ 1

πT0
tanh (πT0t) , t

}
=
πϕ̄rT

2
0

4GN
=: E0 , (5.59)

where we have defined E0 to be the energy of the eternal black hole solution of temperature
T0. This result recovers the black hole energy-temperature result (5.27) from the previous
section. 37 Note, the reason this black hole solution is called static is precisely because its
energy is constant (since E0 is not time-dependent), and hence, it does not evaporate. Even
though the Schwarzian derivative parameters are time-dependent, the Schwarzian derivative
itself is not; i.e. ∂t{F (t), t} = ∂t(−2π2T 2

0 ) = 0.38

As seen before, with this reparameterization one can write the metric and dilaton in terms
of the black hole exterior coordinates as done in (5.24) and (5.25) respectively. Using the
renormalized value of the dilaton and the black hole energy-temperature relation, these can
be written as

ds2 = − 4π2T 2
0

sinh2 (πT0(x+ − x−))
dx+dx− = 4π2T 2

0

−dt2 + dz2

sinh2 (2πT0z)
(5.60)

ϕ = 2πT0ϕ̄r coth (πT0(x+ − x−)) = 2πT0ϕ̄r coth (2πT0z) , (5.61)

where the coordinates x± cover the exterior of the black hole. This black hole has two exterior
regions, namely the right exterior region and the left exterior region, as illustrated in Figure
5.6.

Figure 5.5: Double-sided black hole with locations of horizons (black), cut-offs (blue),
constant t-lines (green) and constant z-lines (i.e. constant dilaton lines) (orange).

Figure 5.5 shows the locations of the cut-offs, but most importantly, the constant time slices,
which show that time moving up in the right exterior, moves down in the left exterior.

37This result will be important later for computing the thermal entropy within the system.
38The reason for paying special attention to this is because it will be important when looking at the no-static

black hole case, namely the evaporating black hole solution. In that case, the energy becomes time-dependent
and has a time-dependent Schwarzian derivative; i.e. ∂t{F (t), t} ≠ 0, because the reparameterization, also
commonly refered to as the gluing function, is different.
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Figure 5.6: The AdS black hole has two exterior regions, called the right exterior region
and the left exterior region.

In this thesis, the focus is on the one-sided black hole evaporation. In particular, we will be
focusing only on the evaporation of the right black hole exterior, by coupling the bath to the
boundary of the right exterior region. However, since the model we will be discussing imposes
energy conservation by transferring the emitted Hawking radiation back into the bulk and the
left black hole exterior region, we really need to have transparent boundary conditions along
both the right and left holographic boundaries.

5.2.2 Eternal black hole in a bath

Since AdS spacetime acts as a box which reflects back the emitted Hawking radiation, coupling
it to an external auxiliary system which can collect the Hawking radiation is analogous to
removing this box and hence allowing the Hawking radiation to escape. The way this has
been achieved in [75] is by coupling the right-ride R of the (one-sided) eternal black hole to a
so-called bath B. The bath is chosen to be a CFT2 theory, analogous to the matter CFT2 in
the bulk 39, with the exception that the bath is chosen to live in a flat spacetime.

39The bath CFT2 should not be confused with the the AdS2 dual theory, which is a CFT1 living on the
boundary.
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Figure 5.7: Coupling the right exterior of the eternal black hole to an auxiliary flat
bath system, with tha same CFT theory as the CFT theory in the bulk region.

The bulk is still described by the AdS2 metric

ds2Bulk =
−dT 2 + dZ2

Z2
=

−4dX+dX−
(X+ −X−)2

, (5.62)

which we saw, with the appropriate reparameterizationX± = F (x±), namely F (t) = 1/πT0 tanh (πT0t),
can be written in terms of the black hole exterior coordinates as

ds2Bulk = 4π2T 2
0

−dt2 + dz2

sinh2 (2πT0z)
= −4π2T 2

0

dx+dx−

sinh2 (2πT0z)
. (5.63)

The reason for bringing up the black hole exterior coordinates is that these coordinates cover
only the region outside the black hole and, importantly, extend naturally to the coordinates
in the flat bath spacetime, which is described by

ds2Bath =
−dt2 + dz2

ϵ2
= −dx+dx−

ϵ2
. (5.64)

Figure 5.8: Constant t-lines (green) and constant z-lines (i.e. constant dilaton lines)
(orange) get naturally extended into the bath spacetime, since the black hole exterior
coordinates are extended into the bath spacetime.

So far the black hole solution discussed represented a static black hole solution (up to a repa-
rameterization), solved by a constant Schwarzian {F (t), t} = −2π2T 2

0 as seen from (5.59).
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Coupling this near-extremal black hole to the auxiliary bath, successfully incorporates evapo-
ration into the model, due to an important consequence of the coupling, namely the subsequent
injection of positive energy into the black hole, as shown in Figure. 6.13. This positive en-
ergy shockwave is required in order to prevent the wormhole connecting the two black holes
from becoming traversable, as demanded by general relativity. The initial shockwave is also
required for considerations of causality. In the absence of the positive energy impulse, it would
be possible for something that was initially behind the horizon to escape to infinity once the
black hole is coupled to the bath. The inward shockwave causes a change in the location of
the event horizon, which resolves this issue. Adding the positive-energy shockwave means that
the black hole is no longer static and does allow evaporation. Quantifying this process will be
the central theme of the rest of this section, which will rely greatly on the concepts discussed
in section 6.1.4.

Figure 5.9: The black hole with coupling at t = 0 and inward shock and change in
the location of the horizon from its initial location (dotted line) to its final location
(solid line). Note that at this point we have not yet imposed transparent boundary
conditions, so the AdS2 boundary is still reflective.

It should be noted that black hole evaporation in JT was already studied way before the
proposal of implementing absorption of the Hawking radiation via the auxiliary bath, from
simply assuming the injection of the positive-energy pulse and some (unspecified) absorption
mechanism at the boundary [69]. This is the approach that will be used here too. Along the
way, we will also compare the results to those where the absorption was achieved specifically
via the bath, hence also deriving the evaporation result in [18].

For completeness, we will further assume that the initial state (before the pulse) was just
the Poincaré patch vacuum (extremal black hole) solution. The addition of the shockwave
contributes to the energy conservation equation (5.37), namely [83]

dE(t)

dt
= ESδ(t) + ⟨Tx−x−(t)⟩

∣∣
∂M2

− ⟨Tx+x+(t)⟩
∣∣
∂M2

, (5.65)

where ES denotes the energy of the shock, which goes inwards from the holographic boundary.
The same example was depicted in Figure. 6.3, where the inward-falling pulse was used to
create the black hole solution. We will split the derivation into 3 parts, starting from the
solution before the pulse, and then moving on to study the solution after the pulse, both with
and without reflecting boundary conditions.
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t < 0: Before the pulse, the solution is a vacuum solution describing an extremal black
hole. Since extremal black holes have a temperature of absolute zero, meaning that they
emit no Hawking radiation and remain stable, nothing goes in or out of the holographic
boundary. Hence, ⟨Tx+x+(t)⟩

∣∣
∂M2

= ⟨Tx−x−(t)⟩
∣∣
∂M2

= 0, and using (5.65) gives dE/dt =

⟨Tx−x−(t)⟩
∣∣
∂M2

− ⟨Tx+x+(t)⟩
∣∣
∂M2

= 0, as expected. Using (5.34), this can also be written as
∂t{F (t), t} = 0. Furthermore, a local observer at the holographic boundary of the static black
hole solution would simply measure the Poincaré vacuum, so the normal-ordered components of
the energy-stress tensor vanish as well, such that ⟨: Tx+x+(t) :⟩

∣∣
∂M2

= ⟨: Tx−x−(t) :⟩
∣∣
∂M2

= 0.
Hence, using the result from (5.47), further implies that {F (t), t} = 0. The equations that are
left to solve are therefore

{F (t), t} = 0 and ∂t{F (t), t} = 0 , (5.66)

which are solved by F (t) = t.
The inward positive-energy pulse causes the extremal black hole solution to become a

non-extremal solution. These black holes do not have an absolute zero temperature and do
emit Hawking radiation. However, simply allowing the black hole to emit Hawking radiation
is not sufficient to allow the black hole to actually evaporate, since the boundary conditions
at the holographic boundary also need to be changed. In what follows, we will focus on
the more trivial case and we assume the boundary is still reflective, so all radiation bounces
off the boundary and falls back into the black hole. In this case, the black hole eventually
reaches a thermal equilibrium with its surroundings. This case is equivalent to coupling the
black hole to a bath, such that the black hole and bath are at the same temperature, and
hence in a thermodynamic equilibrium [84]. Although it may seem obvious, from the point
of thermodynamics, that this will not lead to actual evaporation, we will now show this more
rigorously.

It should be noted that even though it does not actually evaporate (due to the Hawking
radiation reflecting off the boundary back into the black hole), the non-extremal black hole in
thermal equilibrium keeps emitting Hawking quanta, though with no net evaporation, since
Hawking radiation keeps moving back and forth between the black hole and the AdS boundary
(or equivalently, between the black hole and the (bath).

t > 0 + Reflective boundary conditions : After the pulse has been sent, the matter
is still described by the Poincaré vacuum and since nothing else is being sent in or out of
the spacetime, ⟨Tx+x+(t)⟩

∣∣
∂M2

= ⟨Tx−x−(t)⟩
∣∣
∂M2

= 0. The net energy E ∝ {F (t), t} in
the bulk spacetime will keep being constant; i.e. ∂t{F (t), t} = 0, but due to the additional
energy of the pulse, the total energy in the spacetime is now ES . Therefore, to find the new
reparametrization, one needs to solve

{F (t), t} ∝ ES and ∂t{F (t), t} = 0 , (5.67)

which gives a reparameterization, which is the same as that of the static black hole solution
discussed in (5.59). That is because, just like this black hole, the black hole discussed in (5.59)
was precisely one formed from sending an inward pulse of energy from the boundary.

Since the holographic boundary has reflecting boundary conditions, all the incoming energy
that a local observer would measure at the boundary will be balanced by the energy that they
would measure to be going backwards into the black hole after being reflected at the boundary.
Hence, the local observer would still not measure any influx of energy; i.e. ⟨: Tx+x+(t) :⟩

∣∣
∂M2

=
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⟨: Tx−x−(t) :⟩
∣∣
∂M2

. However, the observer would no longer measure a vacuum at the boundary;
i.e. ⟨: Tx±x±(t) :⟩

∣∣
∂M2

̸= 0, since the black hole is no longer extremal and does emit Hawking
radiation. In fact, due to ⟨Tx+x+(t)⟩

∣∣
∂M2

= ⟨Tx−x−(t)⟩
∣∣
∂M2

= 0, their measurement will be
governed by the conformal anomaly, according to (5.47), which yields

⟨: Tx+x+(t) :⟩
∣∣
∂M2

= ⟨: Tx−x−(t) :⟩
∣∣
∂M2

= − c

24π
{F (t), t} (5.68)

As viewed from the black hole, i.e. using the black hole frame reparameterization (5.23), this
gives

⟨: Tx+x+(t) :⟩
∣∣
∂M2

= ⟨: Tx−x−(t) :⟩
∣∣
∂M2

=
cπ

12β2
. (5.69)

This is known as the Unruh heat bath.40To emphasize again, even though the black hole is
emitting Hawking radiation, it is not evaporating because of the reflective boundary conditions.
To make the black hole actually evaporate would require introducing transparent boundary
conditions for the Hawking radiation.

Figure 5.10: (left) The static two-sided black hole with reflective boundary conditions;
(center) coupling the one-sided black hole to a bath with reflective boundary condi-
tions; (right) coupling the one-sided black hole to a bath with transparent boundary
conditions.

5.2.3 Evaporating black hole in a bath

To have an evaporating solution requires a mechanism that takes away the Hawking radiation.
Removing the reflecting boundary conditions, and imposing absorbing boundary conditions
for the matter fields, allows the black hole to evaporate. The case we are interested in the one
where the absorption is achieved via the coupling to an auxiliary bath, again accompanied
with an inward flux of energy. Before deriving the evaporation, which is almost identical to
the one derived above, we should explain what these absorbing (or equivalently transparent)
boundary conditions really mean for the black hole-bath system.

The transparent boundary conditions are imposed at the boundary between the right
exterior region of the black hole and the flat bath. Since the bulk solution considered is a black
hole solution, and hence a vacuum solution, the stress-energy tensor in the right exterior region
vanishes; i.e. ⟨Tx±x±⟩AdS2 = 0. To model absorption by the bath requires imposing transparent

40This result is equivalent to the result in [84], where an eternal black hole was coupled to a bath of the
same temperature, and radiation was allowed to flow between the black hole and bath. In the same way as
discussed in the example here, there is no actual evaporation of the black hole and the gravitational system
reaches a thermodynamic equilibrium, with the black hole bathing in its radiation.
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boundary conditions and determining the stress-energy tensor in the flat bath region. This is
achieved via a Weyl transformation of the right black hole exterior from an AdS2 spacetime to
a flat spacetime. This transformation causes the, otherwise vanishing energy stress tensor for
the right exterior, to pick up a contribution from the conformal anomaly according to (5.44)
and (5.44), which means that ⟨Tx±x±⟩Flat ̸= 0. The resulting non-zero energy-stress tensor
in the now flat region is able to freely flow into the flat bath region and is hence identified
as the energy stress tensor in the bath. Another way of looking at this is that this non-zero
stress-energy tensor in the bath is the stress-energy tensor needed to support the eternal black
hole, which has a vanishing stress-energy tensor in AdS2. So, the energy in the black hole
region determines the energy in the bath region. If the temperature of the bath is lower than
the temperature of the black hole, positive stress energy will leave the black hole until they
system has reached a thermodynamic equilibrium.

Figure 5.11: Transparent boundary conditions are achieved by first performing a Weyl
transformation of the right exterior AdS2 spacetime to a flat spacetime, and then
identifying the stress-energy tensor in this spacetime as the stress-energy tensor in the
bath.

t > 0 + Transparent boundary conditions : Before the bath model was proposed, it
was already shown that the black hole evaporates in the case of a general transparent boundary,
without specifying where the Hawking radiation went after the evaporation [69]. Without
specifying the precise absorption method, one can imagine an observer at the holographic
boundary, collecting all the Hawking radiation that reaches it. From the perspective of this
boundary “collector”, assuming they are perfectly efficient at their job, no Hawking radiation
is going back into the black hole, so the normal ordered inward component of the stress-energy
tensor vanishes; i.e. ⟨: Tx−x−:⟩

∣∣
∂M2

= 0. While the outward component ⟨Tx+x+⟩
∣∣
∂M2

= 0, now
we need to take into account the inward pulse, which means that ⟨Tx−x−⟩

∣∣
∂M2

̸= 0. Hence,
from (5.47),

⟨: Tx+x+ :⟩
∣∣
∂M2

= − c

24π
{F (t), t} and ⟨Tx−x−⟩

∣∣
∂M2

=
c

24π
{F (t), t} , (5.70)

which, when substituted into the energy conservation equation (5.48), yields

dE

dt
=

c

24π
{F (t), t} . (5.71)

From the other energy equation (5.58), by differentiating, one can write another energy con-
servation equation, namely

dE

dt
= − ϕ̄r

8πGN
∂t{F (t), t} . (5.72)
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Combining both energy conservation conditions yields the differential equation

− ϕ̄r
8πGN

∂t{F (t), t} =
c

24π
{F (t), t} , (5.73)

which, when solved, yields an energy decay profile, given by

E(t) = ESe
− cGN

3ϕ̄r
t
. (5.74)

This energy decay is analogous to a decay in the mass of the black hole, hence describing an
evaporating black hole solution. To re-emphasize, this black hole evaporation was achieved by
forming a black hole by means of throwing a pulse of energy from the holographic boundary
into the bulk and imposing transparent boundary conditions, without specifying where the
Hawking radiation went.

The aim is now to incorporate the bath into this result, and hence derive the result in
[18]. To do this, we need to first impose that the initial state was not the Poincaré vacuum
state, but an already formed static black hole of some energy E0. Then we need to use that
the addition of the bath also leads to an inwards positive-energy pulse ES . The last difference
between the model discussed here and the one in [18] is that the bath absorbs the Hawking
radiation, rather than some unspecified perfect “collector” living at the holographic boundary,
though this last detail does not affect the evaporation calculation. Incorporating these changes
into the result (5.74) is simple and results into an energy decay given by

E(t) = E0θ(−t) + (E0 + ES)θ(t)e
− cGN

3ϕ̄r
t
, (5.75)

where E0 is the energy (mass) of the initial black hole, defined in (5.59), before the coupling
to the bath. The black hole is then coupled to the bath at t = 0, via the additional pulse
injection, leading to a solution of total energy E0 + ES , which decays at the same rate as in
(5.59). Hence, this model starts with a black hole of some energy E0, and after the injection
of the positive energy pulse ES , it evaporates until it reaches its original energy.

For the evaporation-via-bath model in (5.75), reparameterization F (t) before the pulse is
simply the one for the black hole solution, given by F (t) = 1/πT0 tanh (πT0t), which we found
was the solution to the constant Schwarzian {F (t), t} = −2π2T 2

0 . However, after the pulse,
the total energy is E0+ES =: E1 with temperature T1, evolving according to the exponential

decay in (5.75), so the Schwarzian becomes {F (t), t} = −2π2T 2
1 e

− cGN
3ϕ̄r

t. This can be solved to
find that the new reparameterization after the pulse is given in terms of the modified Bessel
functions [18]

F (t) =
1

πT1

I0(
2πT1
k )K0(

2πT1
k e−

kt
2 )− I0(

2πT1
k e−

kt
2 )K0(

2πT1
k )

I0(
2πT1
k e−

kt
2 )K1(

2πT1
k ) + I1(

2πT1
k )K0(

2πT1
k e−

kt
2 )

, (5.76)

where k := cGN/3ϕ̄r was defined for convenience.
In this section, we have shown that, via an injection of a positive-energy pulse (such as

by coupling to the auxiliary bath), and by imposing transparent boundary conditions are the
holographic boundary, black holes evaporate at an exponential rate. However, just because
the large AdS black hole evaporation issue has been resolved, that does not mean that In-
formation paradox has been resolved. In the next section, we review some aspects of black
hole thermodynamics and explain how a unitary Page curve was achieved for the black hole
evaporation model.
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5.2.4 Thermodynamics: Review

The bath evaporation model, just as any other proposed evaporation model, needs to be uni-
tary if it is to resolve the information paradox successfully, so we need to be able to recover
unitary evolution of both the black hole and the Hawking radiation individually. This section
will provide a review of the way the entanglement entropy is calculated, but will not go into
too much detail.

Calculating the gravitational entanglement entropy
Before calculating any entropies for the black hole bath evaporation model, one should begin
with studying entropy in JT gravity for a simpler model, such as the eternal black hole, whose
temperature was calculated in (5.59). Using the second law of thermodynamics, relating the
change in entropy to the amount of heat transfer (familiarly written as ∆S(β) = δQ/T ), the
entropy of the eternal black hole system can be found from

dS(β)

dE
=

1

T
=

√
πϕ̄r

4GNE
, (5.77)

which can be integrated and gives an expression for the thermodynamic entropy, given by

S(β) =

√
πϕ̄r
4GN

∫
dE

1√
E

= S0 +

√
πϕ̄rE

GN
= S0 +

πϕ̄r
2GN

T . (5.78)

It can be shown that this thermal entropy matches the Bekenstein-Hawking black hole entropy

SBH =
A

4Geff(x)
=
ϕ0 + ϕh
4GN

. (5.79)

One way to motivate why the last equality in (5.80) is true is by using that the volume of
Sd−2 is VSd−2 = 2π

d−2
2 /Γ(d−1

2 ). This leads to the area of the event horizon being A = 1 for
the d = 2 case. The effective Newton’s constant is related to the value of the dilaton, as
explained in Section 5.1.1 and this is evaluated at the location of the horizon (z → ∞), where
ϕ(z)|z→∞ = ϕh[72]. The reason this is evaluated at the event horizon can be seen from the
RT entropy formula. As discussed in Chapter 3, for the AdS black hole, the surface which
minimizes the entropy, is the event horizon itself. It has been shown that the RT formula for
the JT black hole yields

S = Minz
ϕ0 + ϕ(z)

4GN
, (5.80)

which is minimized at the location of the event horizon where z → ∞.
A more formal way to derive (5.80) is to use the definition of the thermal entropy in terms

of the thermal partition function (3.15), and then follow the same approach as in Section 3.3.1
for finding the entropy of the Euclidean Schwarzschild solution. To do this, we need to use the
Euclidean JT gravity action in 5.50 and evaluate it on-shell. The on-shell JT action in d = 2
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with coordinates x ∈ {t, z} is given by

IJT[g, φ]
∣∣
on−shell

= − ϕ0
8πGN

[
1

2

∫
M2

d2x
√
−g R+

∫
∂M2

dx
√
−hK

] ∣∣∣∣
on−shell

− 1

8πGN

[
1

2

∫
M2

d2x
√
−g ϕ(R+ 2) + ϕb

∫
∂M2

dx
√
−h (K − 1)

] ∣∣∣∣
on−shell

= − ϕ0
8πGN

(2π)− ϕb
8πGN

∫
∂M2

dt
√
gtt (K − 1)

∣∣∣∣
on−shell

= − ϕ0
4GN

− ϕ̄r
8πGN ϵ

(
β
1

ϵ

4π2ϵ2

2β2

)
= − ϕ0

4GN
− ϕ̄r

4GN

π

β
, (5.81)

where we have used that the first square bracket on the first line is simply related to the Euler
characteristic and it evaluates to 2π, and the first term on the second square bracket goes to
zero, since R = −2 on-shell. We have also used the boundary conditions, (5.54) and (5.55),
and that the extrinsic curvature at the boundary ∂M2 (at z = ϵ) can be evaluated to give
K = 4π2ϵ2/2β2.41 The on-shell JT action IJT[g, φ]

∣∣
on−shell

is really the action evaluated for the
eternal black hole solution at temperature β−1; i.e. IJT [Eternal Black hole (β)].

Hence, the thermal entropy can be evaluated by using the saddle point approximation
(3.35), which gives42

S(β) = (1− β∂β) logZ

≈ −(1− β∂β) IJT[g, φ]
∣∣∣
on−shell

= (1− β∂β)
( ϕ0
4GN

+
ϕ̄r

4GN

π

β

)
=

1

4GN

(
ϕ0 + ϕ̄r

2π

β

)
=
ϕ0 + ϕh
4GN

. (5.82)

Comparing this to the Bekenstein-Hawking entropy, we can see that the area of the event
horizon in d = 2 JT gravity is given by the dilaton value at the horizon. It was claimed above
that this entropy can be related to the thermal entropy in (5.78). This can be easily shown
by substituting the expression for dilaton profile of the eternal black hole (5.56) into the RT
formula (5.80).

41This can be (more easily) evaluated using that the extrinsic curvature at the boundary can be written in
terms of the way we choose to parameterize the boundary curve. This has been derived in Section 2.3.4 in
[72] and the result is that K = 1 + ϵ2{F (t), t}+O(ϵ4). Substituting the reparametrization for the black hole
solution, namely F (t) = 1/πT0 tanh (πT0t) gives that K = 4π2ϵ2/2β2.

42To avoid confusion, in what follows, ϕ̄r ̸= ϕh. ϕ̄r is the renormalized value of the dilaton at the holographic
boundary, while ϕh is the value of the dilaton at the black hole event horizon. The latter can be evaluated
from the black hole dilaton profile in (5.61) by taking the limit z → ∞, where the black hole horizon is, which
gives that ϕh = 2πϕ̄r/β.
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As introduced in Chapter 3, the gravitational fine-grained entropy contains a von Neumann
entropy contribution. The formula is given by

S = Minχ

[
Extχ

{A(χ)

4GN
+ Ssemi-cl(Σχ)

}]
= Minχ

[
Extχ

{ϕ0 + ϕ(χ)

4GN
+ Ssemi-cl(Σχ)

}]
, (5.83)

where χ is the codimension-2 QES, Σχ is the region bounded by the QES and the cut-off
surface (located at the AdS2 boundary) and Ssemi-cl(Σχ) is the von Neumann entropy of the
quantum fields on Σχ. The formula works by first extremizing with respect to the position
of the QES χ in order to find its location. The resulting entropy is then minimized over all
possible choices of χ. This method has been used to reproduce a Page curve for the black hole
[18] and a Page for the Hawking radiation [85]. The outline of the approach will be reviewed
for completeness, though without showing any details of the calculation.

The matter sector in both the bulk and the bath is the same CFT2 theory. For a CFT2

with a flat metric, the von Neumann entropy of a region A (with a complement B = Ā) was
introduced in (3.25). For an interval between the points w1 and w2, it is given by [86]

SA =
c

3
log

|w1 − w2|√
ϵ1ϵ2

=
c

6
log

(w+
1 − w+

2 )(w
−
1 − w−

2 )√
ϵ+1 ϵ

−
1 ϵ

+
2 ϵ

−
2

, (5.84)

where in the second line we have used the lightcone coordinates (w+, w−) and the ϵ1 and ϵ2
are the UV cut-offs at the interface between A and B as shown in Figure. 5.12 below.

Figure 5.12: An interval A and its complement B, with the locations of the cut-offs ϵ1
and ϵ2 at the interfaces between them, namely w1 and w2.

Note that if the CFT2 interval is such that the end-points are no longer described by a flat
metric, then there is a contribution from the conformal factor needed to transform the metric
to the flat CFT2 metric, in order to use (5.84). To be more precise, if the CFT2 metric is not
flat, but given by ds = −Ω−2dw+dw−, then the von Neumann entropy of a region A between
the interval {w+

1 , w
−
1 } and {w+

2 , w
−
2 } is given by

SA =
c

6
log

(w+
1 − w+

2 )(w
−
1 − w−

2 )√
ϵ+1 ϵ

−
1 ϵ

+
2 ϵ

−
2 Ω(w1)Ω(w2)

, (5.85)

where Ω(w1) and Ω(w2) are the conformal factors needed to transform the metrics at the
end-points (w1 and w2 respectively) to the flat metric. If the interval being considered is
such that the two endpoints are in different space-times, hence described by different metrics,
the conformal factors that the metrics receive, namely Ω(w1) and Ω(w2), will be different.
This has been illustrated in Figure 5.13 below, showing two different (unspecified) spacetime
metrics, and the middle interval has one endpoint in each.
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Figure 5.13: A spacetime with two distinct regions (blue and red), which are described
by different metrics (not necessarily flat), but have the same CFT2 matter sector. The
three intervals (black lines), each have a different von Neumann entropy (5.85), since
their endpoints are at different locations and hence the conformal factors Ω(w1) and
Ω(w2) will be different. The left interval has its endpoint in the same spacetime, so the
Ω(w1) and Ω(w2) will be the same. The same applies for the right interval. However,
the middle interval has each endpoint in a different spacetime, so Ω(w1) and Ω(w2) will
be different.

This is important when calculating the entropy of the Hawking radiation, in which case the
entanglement entropy is calculated across an interval with one end-point in the AdS2 bulk and
the other in the flat bath region.

One could then pick intervals in the bulk, the bath or across both regions, and calculate
the von Neumann entropy across the intervals in each case. The locations of the quantum
extremal surfaces are then found by extremizing the generalized entropy. Minimizing across
all possible χ then gives the entanglement entropy in the region.

Using this approach, it has been found that the black hole entropy has contributions from
two sets of quantum extremal surfaces, both located in the bulk, while the entanglement en-
tropy of the Hawking radiation has not only quantum extremal surfaces in the bath (where
the Hawking radiation is collected), but also quantum extremal surfaces behind the horizon
of the black hole, which also extremize the entropy of the radiation. These quantum extremal
surfaces will be discussed in more detail in what follows.

Entropy of the evaporating black hole
Despite not having derived the locations of the quantum extremal surfaces, in this section we
will use them to motivate the entropy evolution without having to mathematically calculate
it. We will follow closely the review in [87] and refer to the gravitational entanglement entropy
formula

S = Minχ

[
Extχ

{A(χ)

4GN
+ Ssemi-cl(Σχ)

}]
. (5.86)

After the black hole has formed from the initial inward shock of energy E0, it has some
initial entropy SBH(E0). This is the eternal black hole solution, which has not yet began to
evaporate, so at this early time, no Hawking radiation escapes the black hole region. There
are no quantum extremal surfaces and the region Σχ extends all the way down to the bifurcate
horizon, where χ has zero size. Hence, this surface is commonly referred to as the vanishing
surface. The bifurcate horizon is illustrated in Figure 5.14 as a green circle. Note that the
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bifurcate horizon in question is the original one (drawn with a dashed line); i.e. before the
spacetime has been coupled to the bath, which introduces the inward positive-energy shock
and hence causes the location of the event horizon to move outwards (drawn with a solid line).
Since the vanishing surface has a vanishing area, then all contribution to the entanglement
entropy comes from the von Neumann entropy of the quantum fields on Σχ. Note that if we
were to consider a black hole which formed from the gravitational collapse of matter that was
initially in a pure state, then the von Neumann contribution will also vanish at this early time.
However, the black hole we are considering has a non-zero initial entropy entropy S(E0+ES).
This has been illustrated by the dotted line in Figure 5.17, which is located at some S > 0.

Figure 5.14: Location of the quantum extremal surfaces, adapted from [18], where the
green line is the vanishing QES and the pink line is the non-vanishing QES. The green
dot is at the location of the initial bifurcate horizon. The initial and final location of
the event horizon are indicated by a dashed and solid line respectively. Due to the close
proximity of the vanishing QES to the original bifurcate horizon, it can be expected
that the area contribution to the entanglement entropy from this QES will be very
little. This will not be the case for the non-vanishing surface, whose area contribution
to the entanglement entropy will be large.

The coupling to the bath introduces a pulse of energy ES causes a sharp increase in the black
hole entropy, which becomes SBH(E0+ES). Following this inward pulse, the black hole starts
evaporating. It has been illustrated in Figure 5.14, that the location of the QES χ changes,
forming a locus of quantum extremal surfaces (drawn in green) still very close to the bifurcate
horizon. This locus of quantum extremal surfaces is often referred to as the early time branch.
This causes the region Σχ to evolve such that it moves up, as shown in Figure 5.15 (left), where
the Σχ regions at different times are drawn as black lines starting from the AdS2 boundary.
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Figure 5.15: (left) The locus of vanishing quantum extremal surfaces (green line) and
the respective extremal surfaces Σχ (black lines), each of which has one of their end-
points on the quantum extremal surface χ, and the other located at the AdS2 boundary.
With time, the extremal surfaces Σχ move upwards, with the right endpoint moving up
the AdS2 boundary. (right) Entangled Hawking pairs of the same color cross different
extremal surfaces Σχ, showing that the late time extremal surfaces capture mostly the
region inside the horizon, and hence contribute to an increasing entanglement entropy
over time.

As the black hole evaporates, the entropy of the black hole increases, since the pile-up of
unpaired Hawking modes across the Σχ region causes its von Neumann entropy to increase.
This has been illustrated in Figure 5.15 (right), where the entangled Hawking modes have the
same color. It can be seen that at earlier times, when Σχ covers a bigger region outside the
horizon, there will be less unpaired Hawking modes, and hence a lower increase in Ssemi-cl(Σχ).
As the location of χ moves up, so does the Σχ region. At later times, the endpoint of Σχ

moves up the AdS2 boundary but also gets closer to the event horizon, so it covers less of the
region outside the event horizon. This means that there are more unpaired Hawking modes
contributing to the black hole entropy. This has been illustrated in Figure 5.15 (right), where
both entangled modes of the blue Hawking pair contribute to the von Neumann entropy of the
early Σχ, while only one of them (namely the one that goes into the black hole) crosses the
later Σχ. Hence, as the black hole evaporates, the contribution from this QES causes the black
hole entropy to keep growing. This has been illustrated in Figure 5.17, where the green line
represents the increase in the black hole entropy due to the QES discussed above. It should
be noted that Figure 5.17 also shows an initial drop in the black hole entropy. This is because
once the black hole starts evaporating, it takes some time until it recovers the information
about the emitted Hawking modes. This time is known as the scrambling time, tscr [88].

As illustrated in Figure 5.17, the increase in the black hole entropy due to the increasing
von Neumann entropy of the outgoing radiation (drawn in green), eventually surpasses the
thermodynamic entropy of the black hole (drawn in black), which decreases due to the decrease
in the area of the event horizon. As discussed in the Introduction, for the evaporation to be
unitary, it needs to follow the Page curve, which is bounded from above by the thermodynamic
entropy. Hence, there needs to be a process which lowers the black hole entropy.
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Figure 5.16: (left) The locus of non-vanishing quantum extremal surfaces (pink line),
located very close to the event horizon, and the respective extremal surfaces Σχ (black
lines), each of which has one of their endpoints on the quantum extremal surface χ, and
the other located at the AdS2 boundary. With time, the extremal surfaces Σχ move
upwards, with the right endpoint moving up the AdS2 boundary. (right) Entangled
Hawking pairs of the same color cross different extremal surfaces Σχ, showing that the
late time extremal surfaces capture barely any Hawking modes and the contribution
from the non-vanishing surfaces to the gravitational entanglement entropy is dominated
by the area term, hence causing the entanglement entropy to decrease.

This is resolved by the appearance of another QES, referred to as the non-vanishing surface,
which appears soon after the black hole starts evaporating. Its location is also time-dependent,
and the locus of these quantum extremal surfaces, often referred to as the late time branch, is
very close to the event horizon, as illustrated in Figure 5.14 by the pink line. As it evolves,
the Σχ also move up, with their endpoint along the AdS2 boundary, as illustrated in Figure
5.16 (left). Although the generalized entropy now gets a contribution from both the area term
(since now the QES is not at the bifurcate horizon) and the von Neumann entropy across Σχ,
the contribution is greatly dominated by the area term. This can be explained with the aid of
Figure 5.16 (right), which shows that due to the proximity to the event horizon, the regions Σχ

do not capture many Hawking modes, especially at later times. Hence, the contribution from
this QES simply follows the evolution of the thermodynamic black hole entropy and decreases
as the black hole evaporates, as illustrated in Figure 5.17 by the pink line.

Since the gravitational entropy formula requires taking the minimum over all quantum
extremal surfaces, the entropy does indeed follow a Page curve as illustrated in Figure 5.17 by
the blue line. There are two quantum extremal surfaces to consider. The entropy increases
at early times, since the contribution from the vanishing surface (green) is smallest. However,
at some later time, namely the Page time, the contribution from the non-vanishing surface
(pink) is smaller, so the entropy starts decreasing.

Although the entropy of the black hole has been shown to follow the Page curve, this is
not sufficient to resolve the information paradox, which is concerned with the entropy of the
Hawking radiation. Hence, one needs to show that the entropy of the radiation also follows a
Page curve. This will be discussed next.
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Figure 5.17: The contribution to the gravitational entanglement entropy from the van-
ishing QES (green), from the non-vanishing QES (pink) and the thermodynamic black
hole entropy (black). It can be seen that the gravitational entanglement entropy of
the non-vanishing QES, being dominated by the area of the event horizon, closely fol-
lows the evolution of the thermodynamic black hole entropy. A Page curve (blue) is
achieved by minimizing the gravitational entropy over all quantum extremal surfaces.
At early times the entropy is minimized by the vanishing QES, while at later times it
is minimized by the non-vanishing QES. Figure adapted from [89].

Entropy of the Hawking radiation
The Hawking radiation is absorbed into the flat bath region. Even though there is no black
hole present in this spacetime, and the gravitational effects are very small beyond the AdS2
boundary cut-off, the generalized entanglement entropy can still be used. However, although
the regions Σχ considered so far were all connected, this is not a necessary condition for the
formula. As will be explained in this section, for the case of the entropy of the Hawking radi-
ation, it is a disconnected region which minimizes the generalized entropy. This disconnected
region consists of two intervals. One of the intervals, called ΣRad, is in the flat bath region,
starting from the AdS2 boundary, as illustrated in Figure 5.18 (left), where the endpoint of
this region is shown to move up along the AdS2 boundary as time evolves. The other interval,
called ΣIsland, is a region behind the black hole horizon, such that one of its endpoints is at
the original bifurcate horizon, while the other one is very close to the final horizon.43 As
illustrated in Figure 5.18 (right), the endpoint of this region is close to the final horizon and
also moves up with time. This region, known as the Island, becomes important at late times.
Since the gravitational entropy will include contributions from two disconnected regions, ΣRad

and ΣIsland, it needs to be modified such that the region Σ is the union of the two disconnected
surfaces, which gives the so-called Island formula

SRad = Minχ

[
Extχ

{A(χ)

4GN
+ Ssemi-cl(ΣRad ∪ ΣIsland)

}]
. (5.87)

We will begin by discussing how the radiation entropy evolves without the Island contribution.

43Note that any number of islands is allowed in the computation, including no islands.
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Figure 5.18: (left) The regions ΣRad in the bath region, which have one of their end-
points on the AdS2 boundary. With time, these extremal surfaces evolve to move up,
with the endpoint moving up along the AdS2 boundary. (right) The regions ΣRad, each
of which starts at the bifurcate horizon and ends at a region very close to the event
horizon (pink dashed line). These regions evolve such that the bifurcate end point does
not move, but their other endpoint gets closer to the event horizon.

As time evolves, the endpoint of ΣRad moves up along the AdS2 boundary. As illustrated
in Figure 5.19 (left), the early regions capture less Hawking modes than the later ones. This
can be demonstrated with the purple Hawking mode, which only crosses the later regions,
and not the early ones. Hence, without the Island contribution, the entropy of the Hawking
radiation in the bath increases with time. This has been illustrated by the orange curve in
Figure 5.20.

However, the contribution from ΣRad is not always the global minimum of the generalized
entropy and one needs to take into account the contribution from an island which forms soon
after the black hole has formed, and also extremizes the entropy. The island causes a decrease
in the entropy because for any time slice, the Hawking modes captured by the ΣRad region have
their entanglement partner captured by the ΣIsland region. Hence, the incorporation of the
island causes the Hawking modes which contributed earlier (i.e. without the island) to become
purified. Instead of looking at ΣRad ∪ ΣIsland, another way of explaining the entanglement
evolution of the union between the island and radiation regions is to look at the complement
region. One can see from Figure 5.19 (right) that the complement region of ΣRad ∪ ΣIsland

gives the same contribution as that from the non-vanishing QES in Figure 5.16 (left), namely
starting very close to the horizon and ending on the AdS2 boundary. Hence, the entanglement
entropy of the region ΣRad ∪ ΣIsland decreases with time, as illustrated in Figure 5.20 by the
red curve.
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Figure 5.19: (left) Entangled Hawking pairs of the same color cross different ΣRad

regions, which contribute towards an increase in the entanglement entropy, since more
unpaired Hawking modes cross the regions at later times. (right) The disconnected
region ΣRad∪ΣIsland, which contributes towards a decrease in the entanglement entropy,
since the island purifies most of the Hawking modes that are collected by the ΣRad

region. The complement of the ΣRad is the region between the AdS2 boundary and the
near-horizon region endpoint of the island region (pink dashed line).

Figure 5.20: An increasing contribution to the gravitational entanglement entropy of
the radiation due to the radiation region ΣRad (orange) and a decreasing contribution
from the disconnected region ΣRad ∪ ΣIsland containing the island contribution. Since
the gravitational entanglement entropy requires minimizing over all surfaces, a Page
curve is achieved, by considering only ΣRad at early times and only ΣRad ∪ ΣIsland at
later times [89].

This section reviewed how a Page curve was achieved for both the evaporating black hole and
the Hawking radiation, indicating that the proposed evaporation model is unitary. Thinking
back on how it was the AdS/CFT conjecture which motivated that AdS black holes should
evolve unitarily due to their dual being described by a quantum field theory, which is a
unitary theory, it makes sense that the dual description of the evaporation model discussed so
far should have a dual description which also evolves unitarily. This will be discussed in the
next section, where a toy model will be used for the dual of the black hole evaporation.
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5.3 One-sided evaporation of the eternal black hole in the dual
theory

The black hole bath evaporation model [18] was shown to be unitary via entropy calculations
in the gravity theory, i.e. without examining how the dual CFT1 theory evolves. Transparent
boundary conditions were imposed at the AdS boundary, in contrast to the usual reflective
AdS boundary conditions, which were required for energy conservation. However, the issue
with energy conservation has now returned, since the auxiliary bath spacetime has absorbed
energy from the bulk. The bath model employs energy conservation by imposing that after
the evaporation of the one-sided black hole in the right exterior into the bath, all the collected
radiation is transferred back into the bulk, into the left black hole exterior. In this section, we
will study this process in the dual theory and try to find out if this transfer of radiation can
be achieved unitarily. Although JT gravity is dual to an SYK model at the boundary, in this
section we will employ a simplified toy model which uses the dual of the eternal black hole
solution, namely the thermofield double state (TFD) [90].

5.3.1 Review of the TFD formalism

It has been shown that the eternal black hole in AdS is dual to a thermofield double state on
the boundary [90], which is an entangled state of two copies of the CFT theory, which will
be labeled as CFTL and CFTR. The state on the boundary before coupling to the bath (i.e.
while the black hole is still eternal) is hence

|TFD⟩ = 1√
Z

∞∑
i=0

e−
β
2
Ei |i⟩L ⊗ |i⟩R , Z =

∞∑
i=0

e−βEi (5.88)

where |i⟩L are the energy eigenstates of a single copy of the CFT living on the boundary of
the AdS, namely the CFTL, and Z is the thermal partition function. The set {|i⟩L} forms
an orthonormal basis spanning HL and the set {|i⟩R} forms an orthonormal basis spanning
HR, which can be arbitrary, but have been chosen to represent the energy eigenstates of the
theory.

Figure 5.21: The eternal AdS2 black hole is dual to two entangled copies of CFT1,
labeled as CFTL and CFTR.



Chapter 5. Coupling black holes to a bath 86

The density matrix for the TFD state is hence

ρLR = |TFD⟩⟨TFD| = 1

Z

∞∑
i=0

∞∑
j=0

e−
β
2
(Ei+Ej)

(
|i⟩LL⟨j| ⊗ |i⟩RR⟨j|

)
(5.89)

such that the reduced density matrices of the subsystems, obtained via a partial trace of (5.89),
are

ρL = TrRρLR =
1

Z

∞∑
i=0

∞∑
j=0

e−
β
2
(Ei+Ej) |i⟩LL⟨j| Tr

[
|i⟩RR⟨j|

]
=

1

Z

∞∑
i=0

e−βEi |i⟩LL⟨i| (5.90)

ρR = TrLρLR =
1

Z

∞∑
i=0

∞∑
j=0

e−
β
2
(Ei+Ej) Tr

[
|i⟩LL⟨j|

]
|i⟩RR⟨j| =

1

Z

∞∑
i=0

e−βEi |i⟩RR⟨i| , (5.91)

where we have used that Tr[|i⟩⟨j|] = ⟨i|j⟩ = δij . The Hamiltonian, also sometimes called
modular Hamiltonian, satisfies HL|i⟩L = Ei|i⟩L and HR|i⟩R = Ei|i⟩R, so the reduced density
matrices can be written as the more familiar Gibbs states

ρL =
1

Z

∞∑
i=0

e−βEi |i⟩LL⟨i| =
e−βHL

Z

∞∑
i=0

|i⟩LL⟨i| =
1

Z
e−βHL (5.92)

ρR =
1

Z

∞∑
i=0

e−βEi |i⟩RR⟨i| =
e−βHR

Z

∞∑
i=0

|i⟩LL⟨i| =
1

Z
e−βHR , (5.93)

where we have used that
∑

i |i⟩⟨i| = I. The TFD state is a pure state, so the von Neumann
entropy S(ρLR) = 0. A further property of a pure bipartite state is that the entropy of any
of the subsystems is the same; i.e. S(ρL) = S(ρR), and the entanglement entropy is given by
S(ρR) = S(ρL). This can be evaluated using the definition (3.6) of von Neumann entropy, but
since the reduced density matrix is diagonal (hence in a Schmidt decomposition), it is easier
to use the eigenvalues and the definition (3.9) of the Shannon entropy. This yields

S(ρR) = −Tr[ρR log ρR]

= −
∞∑
i=0

λi(ρR) log λi(ρR)

= −
∞∑
i=0

eβEi

Z
log

eβEi

Z

=
1

Z

∞∑
i=0

eβEi (βEi + logZ) (5.94)

where λi(ρR) are the eigenvalues of ρR and we have used that log ρR =
∑∞

i=0 log λi(ρR) |i⟩RR⟨i|.44

Evaluating the entanglement entropy using ρL would yield the same result, by definition, but
it is also obvious from (5.90), since both reduced density matrices have the same eigenvalues.

Having reviewed the TFD state, the goal of the next section will be to model the one-sided
evaporation of the eternal black hole, which is dual to the TFD. Recall the result from Chapter

44This comes from the more general property that a function of a Hermitian operator with a decomposition
ρ =

∑
i λi(ρ) |i⟩⟨i| takes the form f(ρ) =

∑
i f(λi(ρ)) |i⟩⟨i|.
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2, where we found that absorption from the bulk into the holographic boundary is not possible
due to the two descriptions being equivalent, and hence describing the same physics, hence
the need for the auxiliary bath. In the next section we wish to incorporate this bath into the
evolution of the TFD state, expected from the black hole evaporation into the bath.

To avoid having to write CFTL/R every time, since the discussion will be primarily about
the dual theory, we will refer to the CFTL/R subsystems as simply the L/R subsystems.

5.3.2 On a quest for a unitary evaporation toy model

The paper [18] goes into great detail as to how the one-sided evaporation is achieved on the
gravitational side of the theory, while also mentioning what should be expected in the dual
theory. The evaporation in the dual theory is claimed to begin with the R and L subsystems
in a pure entangled TFD state and result in another pure state, where the ADM energy in the
right exterior is lower than that in the left exterior, with smaller entanglement between the
R and L subsystems. In this section, we will establish the evolution in the dual theory, based
closely on these claims, and argue if this can be achieved unitarily. We need to emphasize that
we will NOT be looking for an operator that transfers the radiation from the right exterior
into the bath, and then from the bath into the left exterior, while acting on the WHOLE
(AdS bulk + bath) system. Instead, we will try to model the bath itself as an operator that
transfers the radiation from the right to the left exterior. The reasoning behind this choice
will be explained in the following section.

Mimicking the claimed one-sided evaporation protocol
Coupling the eternal black hole to the bath at t = 0 can be modeled as

|ψ⟩t=0 =
{ 1√

Z

∞∑
i=0

e−
β
2
Ei |i⟩L ⊗ |i⟩R

}
⊗ |Ω⟩B , (5.95)

where |Ω⟩B represents the vacuum state of the bath. The bath is attached to the right exterior,
so the radiation will move from the right exterior to the bath. The energy of the state |i⟩R will
decrease and the bath will no longer be in the vacuum state |Ω⟩B. The bath is then decoupled
from the right exterior and attached to left exterior, so the radiation is then transferred to
the left exterior. Even though there is an effective radiation transfer from right to the left
exterior, there is no direct interaction between these two entangled subsystems, which are still
connected via a non-traversable wormhole. The claims in [18] are that the final state will have
the following properties:

1. A pure state;
2. Lower energy in the right than the left exterior (with the state of the quantum fields
on the left exterior being more excited than those on the right exterior), and lower than
the initial energy in the right exterior;
3. Smaller entanglement between the two subsystems.

These claims are naturally expected from unitary one-sided evaporation of the black hole.
If the process is unitary, Claim 1 is obviously satisfied, since the von Neumann entropy is
invariant under unitary evolution. Claim 2 also makes sense, since the transfer of radiation
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from the right to the left exterior will definitely lower the energy in the right exterior, while
lowering the energy in the left one. Although the reason for the entanglement entropy change
in Claim 3 may not be as obvious in the dual theory, it can be motivated by events in the bulk.
The two boundary theories are entangled, and being dual to a double-sided black hole in the
bulk, they are connected via a wormhole. As a result of the one-sided evaporation of the black
hole, the geometry of the spacetime, and hence of the wormhole, must have changed, hence
changing the entanglement between the boundary theories. It should be noted that this is also
expected from a double-sided evaporation; i.e. the simultaneous evaporation of both exterior
regions, since this will also cause the wormhole to shrink, hence lowering the corresponding
entanglement entropy between the boundary regions.

In our quest for a unitary evaporation model in the dual theory, we will look for one which
reproduces these claims.

Note: One way to approach the question about unitarity in the dual theory is to search
for an operator that would achieve the unitary one-sided evaporation by acting on the whole
initial system, including the bulk and the bath, described by the state |ψ⟩t=0 in (5.95). Such
an operator would need to act on the initial state in such a way, that the final state has higher
energy in the L subsystem (since the left exterior has absorbed all the radiation) and there is
a vacuum state in both the R subsystem (which is the completely evaporated right exterior)
and the bath (since all the radiation has been transferred from the bath to L).

However, instead of an operator that acts on the whole (AdS bulk + bath) system, we will
model the action of the bath as an operator acting on the AdS bulk, and hence search for such
a bath operator that achieves the one-sided evaporation unitarily. The reason why we choose
to model the bath as this operator (rather than looking for an operator that acts of the whole
bulk and bath system) is motivated by the reason these models study black hole evaporation
in AdS in the first place. It is useful to recall that this reason was due to the AdS/CFT
correspondence, which guarantees that AdS black holes must evolve unitarily, due to their
dual description being a conformal field theory, which is inherently unitary. However, having
coupled the bulk to the bath, which is an additional gravitational system, the gravity side of the
correspondence has been altered. Of course, one might argue that since the bath is described by
a flat spacetime, it should not affect to the “AdS” part of the AdS/CFT duality. However, even
though the exact metric of the bath should not make a difference to the evaporation protocol,45

45To explain this, it is helpful to recall the transparent boundary conditions between the bulk and the bath,
which allowed the black hole evaporation into the bath. They were achieved by the following steps: First,
a Weyl transformation was performed on the AdS bulk, transforming it to a flat spacetime. This caused
the originally vanishing AdS stress-energy tensor (since the black hole is a vacuum solution) to pick up a
contribution, hence resulting in a flat bulk spacetime with a non-vanishing stress-energy tensor. It was this
stress-energy tensor that was identified as the stress-energy tensor in the bath, allowing energy flow from the
flat bulk to the flat bath. Since this choice for the bath stress-energy tensor was achieved by performing a
Weyl transformation that maps the bulk and bath to the same metric, one could have, identically, just used an
AdS bath and identified the vanishing stress-energy tensor in the AdS bulk as the stress-energy tensor in the
AdS bath. However, even though an AdS bath would also achieve the evaporation, this solution to the issue
with large black hole evaporation in AdS is a bit trivial. It would be equivalent to simply considering a small
black hole in AdS, since the addition of an AdS bath would enlarge the AdS space, effectively making the black
hole smaller. This is not the approach in [18], where the effective size of the black hole is not changed (since
the size of the AdS bulk is not changed), and the issue is fixed by changing the boundary conditions. Another
way to think about why the metric in the bath does not affect the evaporation protocol, is to remember that
the evaporation protocol, as previously established in [69], and discussed in Sections 5.2.2 and 5.2.3, did not
specify where the radiation was absorbed, except that it was collected at the holographic boundary. This
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since the total spacetime is now no longer simply AdS, unitary evolution of the whole (AdS
bulk + bath) system is not necessarily guaranteed by the AdS/CFT correspondence (since
the dual description is not necessarily simply a CFT). Hence, to summarize, it is a unitary
evolution in the AdS bulk that is guaranteed by the AdS/CFT correspondence, rather than
unitary evolution of the whole (AdS bulk + bath). Therefore, in our search for a unitary dual
description of the one-sided black hole evaporation, we will not focus on the whole (AdS bulk
+ bath) system, but rather on just the AdS bulk theory, which should definitely be unitary,
since its dual is definitely a CFT theory.

Indeed, as discussed in Section 5.2.4, the black hole evolution in the bulk was shown to
be unitary, as illustrated by the black hole Page curve in Figure... And since all computation
for this black hole evolution took place in the bulk, with all quantum extremal surfaces con-
tributing to the black hole entropy being in the bulk, one should expect that the dual to this
one-sided evaporation evolves unitarily too. The aim for the rest of this section is to model the
evolution in this dual theory (which we will describe with the TFD), and check if it is unitary
indeed, as one should expect. Note that this is not necessarily true for the dual description
of the evolution of the Hawking radiation, which although was argued to be unitary in the
gravity theory (since it also resulted in a Page curve for the Hawking radiation), the gravity
theory used for the calculation was not just the AdS, but the whole (AdS bulk + bath), since
the entropy of the Hawking radiation contained contributions from extremal surfaces in the
bath region.

Hence, the question we wish to address is: Can the action of the bath on the TFD state, be
used to model the dual of the one-sided black hole evaporation unitarily, while also satisfying
the three claims about the final state? Based on Claim 2, the energy in the right exterior is
lowered, while the energy in the left exterior is raised. This can be modeled via lowering the
excitations of the energy eigenstates in R, while increasing the excitations of those in L. The
reason for this was discussed in Section 4.4, where we found that the raising operator in the
AdS3 bulk can be related to the excitation operators in the dual CFT2 theory. Although we
have not derived this specifically for the AdS2/CFT1 duality, we will assume that this still
holds true. So any radiation that has entered the left exterior will be dual to higher excitations
in the Lsubsystem (the CFTL theory). Conversely, the radiation leaving the right exterior will
be dual to lower excitations in the the R subsystem (the CFTR theory. An intuitive choice
for such a protocol is to use the ladder operators {âL/R, â

†
L/R} of the CFT theory. The energy

eigenstates can be constructed from the creation operators acting on the CFT vacuum state,
which is annihilated via the lowering operators; i.e. aL/R|0⟩ = 0. To be more precise, the
ladder operators raise and lower the excitation of the energy eigenstates according to

âL/R|i⟩ = Ci,−|i− 1⟩L/R (5.96)

â†L/R|i⟩ = Ci,+|i+ 1⟩L/R , (5.97)

where Ci,± are constants that depend on the quantum numbers i, required to ensure the
ladder operators do not commute.46The total TFD Hamiltonian depends on the individual

model, however, did not transfer the collected radiation back into the bulk.
46The precise form of these functions depends on the theory in use. Although the theory is a CFT, the

dimensionality of the theory has not been specified here, and this would have implications on the Ci,± functions.
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Hamiltonians of the subsystems, namely H = HR −HL, such that

HL = E â†LâL

HR = E â†RâR , (5.98)

where the reason both subsystems have the same energy (and temperature) is a property of
the TFD formalism, in which the subsystems are not interacting with each other. 47

Using the ladder operators, an operator that would achieve the desired lowering of excita-
tions in R, while raising the excitation in L is the operator

Â = â†L ⊗ âR , (5.99)

where for now we focus on the simplest case, in which there is a single excitation exchange
between the subsystems. The Â operator should not be confused with the number operator
which appears in the Hamiltonian and is defined as

N̂L/R = â†L/RâL/R , (5.100)

where N̂L and N̂R count the number of particles in the L and R subsystems respectively, such
that N̂L/R|i⟩L/R = nL/R|i⟩L/R. Acting on the TFD state with the Â operator yields the state

Â|TFD⟩ = 1√
Z

∞∑
i=0

e−
β
2
Ei

(
â†L ⊗ âR

)(
|i⟩L ⊗ |i⟩R

)
=

1√
Z

∞∑
i=1

e−
β
2
EiCi,+Ci,−|i+ 1⟩L ⊗ |i− 1⟩R

(5.101)

where the sum over energy eigenstates now begins at i = 1, since the lowest energy eigenstate
must be the vacuum state |0⟩. However, the operator Â is not unitary; i.e. ÂÂ† = Â†Â ≠ I,
since the ladder operators are not Hermitian. This means that modeling the evaporation in
this way will not be unitary, and hence not reversable.

The same final state can be achieved by acting on the TFD with another operator, which
we define by

Ô(1) =
∞∑
i=0

∞∑
j=1

|i+ 1⟩LL⟨i| ⊗ |j − 1⟩RR⟨j| , (5.102)

where one of the sums in the definition of the operator starts from j = 1 because the lowest
energy eigenstate is always the vacuum state |0⟩; i.e. |j − 1⟩R does not make sense if j = 0.
The operator acts on the TFD state such that

Ô(1)|TFD⟩ = 1√
Z

∞∑
i=0

∞∑
j=1

∞∑
k=0

e−
β
2
Ek

(
|i+ 1⟩LL⟨i| ⊗ |j − 1⟩RR⟨j|

)(
|k⟩L ⊗ |k⟩R

)
=

1√
Z

∞∑
i=0

∞∑
j=1

∞∑
k=0

e−
β
2
Ek |i+ 1⟩LL⟨i|k⟩L ⊗ |j − 1⟩RR⟨j|k⟩R

=
1√
Z

∞∑
i=1

e−
β
2
Ei |i+ 1⟩L ⊗ |i− 1⟩R . (5.103)

47Since the two subsystems are entangled, they are connected via a wormhole. The interaction restriction
comes from the requirement that the wormhole is non-traversable. Allowing interaction between the two
boundaries makes the wormhole traversable [91]. This will be discussed more later on.
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Note that, unlike the ladder operators, which contributed additional factors, depending on the
specific theory, when acting on the energy eigenstates, this operator is independent on any
specific properties of the theory, and does not contribute any additional factors when acting
on the energy eigenstates. The density matrix of this new state is given by

ρ
(1)
LR = Ô(1)|TFD⟩⟨TFD|Ô†

(1) =
1

Z(1)

∞∑
i=1

∞∑
j=1

e−
β
2
(Ei+Ej)

(
|i+ 1⟩LL⟨j + 1| ⊗ |i− 1⟩RR⟨j − 1|

)
,

(5.104)

where to have a properly normalized quantum state; i.e. one that satisfies Tr[ρ
(1)
LR] = 1,

we have re-defined the partition function, such that Z(1) =
∑

i=1 e
−βEi . When compared

to the partition function of the TFD state in (5.88), one can notice that the new partition
function is smaller, since it no longer has a contribution from the ground state energy E0.
This decrease in the value of the thermal partition function demonstrates a decrease in the
number of available microstates and will naturally have implications on the thermodynamic
properties of the system, some of which will be explored later. It can be seen from the density
matrix that the new L subsystem seems to have higher excitations than it did in the TFD
state. On the other hand, the new R subsystem seems to have lower excitations than it did
in the TFD state. This will be more clear when looking at the reduced density matrices later.

Besides lowering the excitation in R and raising the excitation in L, Claim 1 for the final
state in the dual theory is that it should be a pure state. One can verify that ρ(1)LR is indeed
a pure state by calculating the purity, defined as Tr[(ρ

(1)
LR)

2]. For a pure state ρ, by definition
ρ2 = ρ, so Tr[ρ2] = Tr[ρ] = 1, while for a mixed one, Tr[ρ2] < 1. Indeed, this can be shown to
be true via

Tr[(ρ
(1)
LR)

2] =

= Tr
[ 1

Z2
(1)

∞∑
i=1

∞∑
j=1

∞∑
k=1

∞∑
l=1

e−
β
2
(Ei+Ej+Ek+El)

(
|i+ 1⟩L ⊗ |i− 1⟩R

)
(
L⟨j + 1| ⊗ R⟨j − 1|

)(
|k + 1⟩L ⊗ |k − 1⟩R

)(
L⟨l + 1| ⊗ R⟨l − 1|

)]
=

1

Z2
(1)

Tr
[ ∞∑
i=1

∞∑
j=1

∞∑
k=1

∞∑
l=1

e−
β
2
(Ei+Ej+Ek+El)

(
|i+ 1⟩L ⊗ |i− 1⟩R

)
δjk

(
L⟨l + 1| ⊗ R⟨l − 1|

)]
=

1

Z2
(1)

Tr
[ ∞∑
i=1

∞∑
l=1

e−
β
2
(Ei+El)

(
|i+ 1⟩L ⊗ |i− 1⟩R

)(
L⟨l + 1| ⊗ R⟨l − 1|

) ∞∑
j=1

e−βEj

]
=

1

Z(1)
Tr
[ ∞∑
i=1

∞∑
l=1

e−
β
2
(Ei+El)

(
|i+ 1⟩L ⊗ |i− 1⟩R

)(
L⟨l + 1| ⊗ R⟨l − 1|

)]
= Tr[ρ

(1)
LR]

= 1 , (5.105)

showing that coupling to the bath does result in a pure final state. To verify Claim 2 more
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precisely, one needs to look at the reduced density matrices which are given by

ρ
(1)
L = TrRρ

(1)
LR =

1

Z(1)

∞∑
i=1

e−βEi |i+ 1⟩LL⟨i+ 1| (5.106)

ρ
(1)
R = TrLρ

(1)
LR =

1

Z(1)

∞∑
i=1

e−βEi |i− 1⟩RR⟨i− 1| . (5.107)

Looking at these expressions, it can be seen that acting with the Ô(1) operator on the TFD
state, the quantum numbers of the energy eigenstates of the R subsystem got lowered (with
1), while those of the L subsystem got raised (with 1) as required. The system R has lost
energy and the system L has gained energy, as required by Claim 2. It is interesting to also
notice that while the lowest energy eigenstate in the R subsystem is still the vacuum state
|0⟩R, the lowest energy eigenstate in the L subsystem is now the |2⟩L state.

The next claim that we need to check is Claim 3, namely whether the coupling to the
bath acts in a way that lowers the entanglement between the two subsystems. Since the
density matrix (5.104) is pure, its entropy is still S(ρ(1)LR) = 0 by definition. The system is also
still entangled, because the state (5.103) cannot be written as a product state. However, the
entanglement entropy between the subsystems, namely S(ρ(1)R ) = S(ρ

(1)
L ), could have changed.

This can be checked, as before, by using the reduced density matrices, which gives

S(ρ
(1)
R ) = −Tr[ρ

(1)
R log ρ

(1)
R ]

= −
∞∑
i=1

λi(ρ
(1)
R ) log λi(ρ

(1)
R )

= −
∞∑
i=1

eβEi

Z(1)
log

eβEi

Z(1)

=
1

Z(1)

∞∑
i=1

eβEi (βEi + logZ(1)) (5.108)

where λi(ρ
(1)
R ) are the eigenvalues of ρ(1)R . Comparing this to the entanglement entropy (5.94)

of the TFD state, it is clear that the entropy has decreased due to the new partition function
Z(1) no longer containing one of the energy eigenstates, which is contained in the original
partition function Z.

So far we have come up with an operator which reproduces all three claims made in [18]
for the properties that the dual theory state should have following the coupling to the bath.
However, we have not yet checked the most important property of the operation, namely
whether it is unitary. Using the Hermitian conjugate of the Ô(1) operator , one can show that
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the unitarity requirement yields

Ô†
(1)Ô(1) =

∞∑
i=0

∞∑
j=1

∞∑
k=0

∞∑
l=1

(
|i⟩LL⟨i+ 1| ⊗ |j⟩RR⟨j − 1|

)(
|k + 1⟩LL⟨k| ⊗ |l − 1⟩RR⟨l|

)
=

∞∑
i=0

∞∑
j=1

∞∑
k=0

∞∑
l=1

|i⟩LL⟨i+ 1|k + 1⟩LL⟨k| ⊗ |j⟩RR⟨j − 1|l − 1⟩RR⟨l|

=

∞∑
i=0

∞∑
j=1

∞∑
k=0

∞∑
l=1

δik|i⟩LL⟨k| ⊗ δjl|j⟩RR⟨l|

=

∞∑
i=0

∞∑
j=1

|i⟩LL⟨i| ⊗ |j⟩RR⟨j|

=
∞∑
i=0

|i⟩LL⟨i| ⊗
∞∑
j=1

|j⟩RR⟨j|

= ÎL ⊗ (ÎR − |0⟩RR⟨0|)
̸= ÎLR , (5.109)

where the last step follows from noticing that there is a state missing from identity operator
of the L subsystem, namely the ground state |0⟩L, so

∑∞
i=0 |i⟩LL⟨i| = ÎL ̸=

∑∞
i=1 |i⟩LL⟨i|.

Similarly, to be unitary, the operator also needs to satisfy Ô(1)Ô
†
(1) = 1, which is also violated.

Repeating the above calculation gives Ô(1)Ô
†
(1) = (ÎL − |0⟩LL⟨0|) ⊗ ÎR ̸= ÎLR. Hence, even

though it satisfies all claims we expect from the evolution of the dual theory, this operator,
just like Â, is not unitary.

Although we have used a non-unitary operation, we have still ended up with another pure
state.48 The final state is still a TFD-like state with more-excited energy eigenstates in the
L subsystem and less-excited energy eigenstates in the R subsystem formed by transferring a
single excitation from R to L. It is interesting to note that such an operator can also produce
a state that one could expect from the complete evaporation of the right exterior. A complete
evaporation of the black hole right exterior would result in a vacuum state in R. A slightly
different version of the Ô(1) operator can be used to transfer all the excitations from the R
subsystem to the L subsystem, ending up with a vacuum in R, while keeping a superposition
of excited states in L. This is achieved via the operator Ô(i), defined as

Ô(i) =

∞∑
i=0

∞∑
j=0

|2i⟩LL⟨i| ⊗ |0⟩RR⟨j| . (5.110)

Note that, unlike Ô(1), both summations starts from 0, so the partition function will not have

48Note that it is not necessary to use a unitary operator to go from one pure state to another, if one
recalls, for example, the projection operator, P . Consider a simple pure state |ϕ⟩i = α|0⟩ + |1⟩, such that
|α|2 + |β|2 = 1. Now, acting on this state with the projection operator P = |0⟩⟨0|, yields P |ϕ⟩i = α|0⟩. Of
course, this new state is not normalized yet, since Tr[Pϕ⟩i] ̸= 1. Normalizing it yields that the final state
is |ϕ⟩f = P |ϕ⟩i/

√
i⟨ϕ|P |ϕ⟩i = |0⟩, which is, again, pure. The projection operator has projected the initial

pure state onto the |0⟩ pure state. However, the projection operator is not unitary, since P † = |0⟩⟨0| = P , so
P †P = P ̸= 1.
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to be changed. The operator Ô(i) acts on the TFD state such that

Ô(i)|TFD⟩ = 1√
Z

∞∑
i=0

∞∑
j=0

∞∑
k=0

e−
β
2
Ek

(
|2i⟩LL⟨i| ⊗ |0⟩RR⟨j|

)(
|k⟩L ⊗ |k⟩R

)
=

1√
Z

∞∑
i=0

e−
β
2
Ei |2i⟩L ⊗ |0⟩R . (5.111)

The density matrix of this state is hence given by

ρ
(i)
LR =

1

Z

∞∑
i=0

∞∑
j=0

e−
β
2
(Ei+Ej)

(
|2i⟩LL⟨2j| ⊗ |0⟩RR⟨0|

)
(5.112)

One can see that the state is, in fact, a product state, since it can be written in the form
ρ
(i)
LR = ρ

(i)
L ⊗ ρ

(i)
R . Since the state is now a separable state, it is no longer entangled. It is

a general property that a pure reduced density matrix ρ
(i)
R , irrespective of the purity of the

other one, namely ρ(i)L , means that the state ρ(i)LR is not entangled. In our case both reduced
density matrices are pure and given by

ρ
(i)
L = TrRρ

(i)
LR =

1

Z

∞∑
i=0

∞∑
j=0

e−
β
2
(Ei+Ej) |2i⟩LL⟨2j| (5.113)

ρ
(i)
R = TrLρ

(i)
LR =

1

Z
|0⟩RR⟨0|

∑
i=0

e−βEi = |0⟩RR⟨0| (5.114)

Starting from the TFD state and completely evaporating one side of the black hole, we
have gone from an entangled pure state to an unentangled pure product state. One could,
again, motivate this result by considering what a complete evaporation of the one-sided black
hole would look like in the bulk. Since the right exterior has evaporated completely, resulting
in a vacuum state in R, this means that the black hole on the right side of the wormhole,
which initially connected the two subsystems, is now gone. Since the final geometry has a
single black hole, there is no wormhole connecting the two boundaries, so the entanglement
between them has been destroyed.

Besides the fact that the operator does not satisfy the unitarity condition, another way to
show why both this method and the ladder operator method are irreversible is via the following
highly simplified example. What we, effectively, want to achieve is reversibly lower and then
raise the energy eigenstates of one of the subsystems. We will focus on the R subsystem and
assume, for simplicity, that it is (d + 1)-dimensional; i.e. the energy eigenstates {|i⟩R} form
an orthonormal basis of the (d + 1)-dimensional Hilbert space, HR. Consider a generic state
in the R subsystem, given by

|ψ⟩R = α0|0⟩R + α1|1⟩R + α2|2⟩R + α3|3⟩R + . . .+ αd|d⟩R , (5.115)

such that in order for the state to be properly normalized; i.e. R⟨ψ|ψ⟩R = 1, requires to
impose a condition on the amplitudes αi, namely that

∑d
i=0 |αi|2 = 1. Acting on this state

either with the lowering operator âR or with the operator
∑

i=1 |i− 1⟩RR⟨i| (the part of Ô(1),
which acts as to lower the eigenstates), yields

|ψ′⟩R = α1|0⟩R + α2|1⟩R + α3|2⟩R + . . .+ αd|d− 1⟩R , (5.116)
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which should now be normalized, such that
∑d

i=1 |αi|2 = 1. Although this has successfully
lowered the eigenstates, one can see that the process is irreversible since we have effectively lost
one of the states (by having annihilated the vacuum state), which is not recoverable. This can
be seen by performing the reverse process, namely acting either with the raising operator â†R
or with the operator

∑
i=0 |i+1⟩RR⟨i| (the part of Ô(1), which acts as to raise the eigenstates),

which gives

|ψ′′⟩R = α1|1⟩R + α2|2⟩R + α3|3⟩R + . . .+ αd|d⟩R , (5.117)

showing that the vacuum eigenstate |0⟩R has been lost from the system. This loss of informa-
tion is expected from an irreversible and hence a non-unitary model. Additionally, one can see
that acting with the lowering operator on the state in (5.115) d times, gives simply αd|0⟩R,
which is simply the vacuum state (after normalizing). Reversing this process by acting on
this vacuum state with the raising operator d times would simply give the highly excited |d⟩R
state, rather than a superposition of states. Hence, due to the annihilation of the vacuum
states, this method would not be able to recover the initial state (5.115).

This naturally gives rise to the question: What if one lowers the energy eigenstates, but
never annihilates a vacuum state? Consider starting with the same state in the R subsystem,
namely (5.115). Suppose there exists an operator which acts on the state, such that it lowers
all energy eigenstates, except for the vacuum state, which is kept the same. An example of
such an operator is

Q̂ = |0⟩RR⟨0|+
d∑

i=1

|i− 1⟩RR⟨i| , (5.118)

such that Q̂|0⟩R = |0⟩R, Q̂|1⟩R = |0⟩R, Q̂|2⟩R = |1⟩R etc. When Q̂ acts on the state in (5.115),
it gives

Q̂|ψ⟩R =
(
|0⟩RR⟨0|+

d∑
i=1

|i− 1⟩RR⟨i|
)(
α0|0⟩R + α1|1⟩R + α2|2⟩R + α3|3⟩R + . . .+ αd|d⟩R

)
= α0|0⟩R + α1|0⟩R + α2|1⟩R + α3|2⟩R + . . .+ αd|d− 1⟩R
= (α0 + α1)|0⟩R + α2|1⟩R + α3|2⟩R + . . .+ αd|d− 1⟩R , (5.119)

which should now be normalized according to |α0 + α1|2 +
∑d

i=2 |αi|2 = 1. Although the
vacuum state was not annihilated this time, reversing the process by simply raising each of
the energy eigenstates would, again, result in losing information about this initial vacuum
state. This is because using the inverse of the Q̂ cannot only raise the vacuum state with the
α1 prefactor, while not acting on the vacuum state that has the α0 prefactor. Hence, reversing
the process would result in a state similar to (5.117), though with different amplitudes. This
is more evident if one considers acting with the Q̂d operator, which results in

Q̂d|ψ⟩R = (α0 + α1 + . . .+ αd)|0⟩R , (5.120)

which once normalized would become simply the vacuum state |0⟩R. As before, reversing this
process would not result in a superposition of states, such as in (5.115), but rather a single
excited energy eigenstate |d⟩R. In any way, these operators cause a loss of information when
acting on a state, and are hence irreversible.
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So far, we have come up with an operator which acts on the initial TFD state, satisfying
all claims in [18] for the final state. Although the final state obtained agrees with what is
expected from, either partial, or complete one-sided black hole evaporation, the bath operator
used to achieve this was shown to be non-unitary. Hence, our proposed model for the evolution
in the dual theory is not unitary. However, the evolution of the black hole inside the bulk was
shown to be unitary. The questions we need to address now are: What went wrong? What
is unitary way to model our bath operator? Is there a unitary bath operator that satisfies all
the claims expected from a one-sided unitary black hole evaporation?

What went wrong?
The goal of the previous section was to employ the claims in [18] about the dual of the pro-
posed one-sided black hole evaporation. We also motivated the reason why these claims are
indeed what should be expected from the process (if it is unitary). As claimed, a bath op-
erator was found that acted on the pure TFD state and successfully transferred excitations
from the R to the L subsystems, lowering their entanglement, resulting in a final pure state.
However, the operation found was shown to be non-unitary. The key to resolving this issue
lies in recognizing that there are different types of unitary operations, namely global unitary
and local unitary operations. A general local (unitary or non-unitary) operator ÔLocal is one
that can be written as a tensor product of local operations, such that ÔLocal = ÔL ⊗ ÔR.
A global operator is one that cannot be written as a tensor product of local operations; i.e.
ÔGlobal ̸= ÔL ⊗ ÔR. Although a global unitary should exist from a pure state of a Hilbert
space to another pure state of that same Hilbert space, this is not the type of operator that
we have considered so far. Instead, we tried to model the bath operator as a local operator,
such that both the partial evaporation operator Ô(1) in (5.102) and the complete evaporation
operator Ô(i) in (5.110) are local operators. This can be seen more clearly by rewriting them
as

Ô(1) =

∞∑
i=0

|i+ 1⟩LL⟨i| ⊗
∞∑
j=1

|j − 1⟩RR⟨j| = ÔL
(1) ⊗ ÔR

(1) = (ÔL
(1) ⊗ ÎR

(1))(Î
R
(1) ⊗ ÔR

(1))

Ô(i) =

∞∑
i=0

|2i⟩LL⟨i| ⊗
∞∑
j=0

|0⟩RR⟨j| = ÔL
(i) ⊗ ÔR

(i) = (ÔL
(i) ⊗ ÎR

(i))(Î
R
(i) ⊗ ÔR

(i)) (5.121)

One might wonder about the reason why a local operator was considered, instead of a global
one, since it is global unitarity that is required to validate the operation. The reason we
modeled our bath operator as a local operator is due to the way the bath is described to
operate in the one-sided black hole evaporation model. The bath is first only coupled to
the right exterior to absorb all the radiation from the evaporating black hole, and then only
coupled to the left exterior to release all the collected radiation back into the bulk. This is
the reason we chose to model the bath via a local operator, which first acts only on the right
subsystem via (ÎL

(i)⊗ÔR
(i)) and then acts only on the L subsystem via (ÔL

(i)⊗ÎR
(i)). To be more

precise, since the bath operator acts on each of the subsystems independently of the other
subsystem, namely first acting only on R and then acting only on L, it seems to be acting
locally.
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Figure 5.22: The action of the bath operator is local, since the bath operator acts
on each of the subsystems independently of the other subsystem. Such a local bath
operator, if unitary, will not be able to change the entanglement structure between the
two asymptotic CFT theories. The only way for this local bath to achieve the desired
lowering of the entanglement entropy due to the black hole evaporation will be if it is
a non-unitary operator.

Although the local operation achieved the desired lowering of entanglement, the reason
why it is not unitary, and most importantly, why it cannot be unitary, is because local unitary
operations cannot change the entanglement structure. We modeled the bath as a local oper-
ator, and effectively forced it to act in a way such that it lowered the entanglement, which
can only be achieved locally via a non-unitary operation. Hence, if we wish to model the
locally-acting bath as a unitary operator, we cannot expect it to change the entanglement
between the R and L subsystems. Similarly, if we with to model the bath operation as a
unitary operation that indeed changes the entanglement, it cannot be local.

Note that so far we have looked at the entanglement change at the end of the evaporation
process. However, the emission from the right exterior happens before the absorption into the
left exterior, since the transfer of the radiation is not continuous (the bath is not a traversable
wormhole connecting both exterior regions), so bath needs to first be disconnected from R
and then connected to L. However, the entanglement entropy should change even before
the radiation has been transferred to the left exterior, since the right black hole now has a
lower mass (or no mass if it was completely evaporated). This means that we would need to
already see entanglement change from the bath operation on just the right exterior. Again,
this operation was modeled as the local operator (ÎL

(i) ⊗ ÔR
(i)), which, if indeed causes an

entanglement change, cannot be unitary. If we impose it to unitary, it cannot change the
entanglement entropy, unless we make it global.

This naturally raises some confusion, since the entanglement between the boundary theo-
ries should inevitably change during a one-sided black hole evaporation, precisely because the
evaporation would change the geometry and hence the wormhole connecting the two bound-
aries. Hence, to achieve the one-sided black hole evaporation, we need an operator that is
either a local non-unitary operator or a global unitary operator. Since a non-unitary
evolution is not desirable (since it is not reversible), we will focus on the global unitary case.

Of course, as mentioned before, there should indeed exist a global unitary operator that can
achieve the one-sided evaporation, while transferring excitation and lowering entanglement,
since global purity (of the total state) has been preserved during the process. Such an operator
should enable an interaction between the two subsystems. 49 However, this does not necessarily

49Note that besides an interaction between the two subsystems, the entanglement between them can also be
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mean that this operation can be achieved via the bath, especially by the way it is described to
be acting. The questions we wish to address now are: 1) Can a bath be modeled as a global
unitary operation? and 2) Can such a global unitary bath achieve a one-sided evaporation?

One might still say that even though that is not how we defined our bath operator, when
coupled to the right exterior, the bath somehow ALSO affects the left exterior. However,
to address this possibility, one should recall that in the TFD formalism, even though the
entanglement between the two boundary CFTs is reflected in the presence of a wormhole in the
bulk, the two subsystems in the TFD are non-interacting, and the wormhole is non-traversable.
Hence, coupling the bath only to the right exterior should not affect the left exterior, unless
there is an interaction between them, and hence a traversable wormhole. Equivalently, acting
with an operator on just the R subsystem (i.e. locally), should not affect the L subsystem,
unless there is an interaction between them.

It is precisely an interaction between the subsystems that we need our global bath operator
to enable, such that it can unitarily decrease the entanglement between the two subsystems.
However, we do not seek an interaction via the traversable wormhole inside the bulk, as that
would: 1) not necessarily lead to Hawking radiation leaving the right exterior of the wormhole
into the bath; 2) defeat the whole purpose of attaching an auxiliary system to the bulk.

One scenario to consider is the coupling of the bath to both exterior regions, as illustrated
in Figure 5.23. To achieve an evaporation of only the right exterior, one would need to use
different baths (with different temperatures) on each side, such that the left exterior does not
evaporate into BL. However, this also does not imply an interaction between the regions. The
baths would need to be disconnected from the bulk, joined together so that the the radiation
collected from R into BR can now be transferred from BR to BL, and then re-attached to the
bulk again, so that the radiation can not be transferred from BL to L. This is identical to
the previous case, since the evaporation of the right exterior into BR still does not affect the
left exterior, hence acting. This model, however, has been used to study the double-side black
hole evaporation, in which case both exterior regions evaporate into the bath [92, 93]

Figure 5.23: A bath attached to both exteriors of the black hole. However, since there
is still no interaction between them, this should lead to the same issue. Furthermore,
unless the two baths are at different temperatures, this arrangement will not lead in
just a one-sided black hole evaporation, but to an evaporation of both black holes,
which is not what we require.

destroyed via a measurement on any one of them. However, this is also not a unitary process, since it causes
the collapse of the wavefunction, which is not reversible.
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Figure 5.24: A globally-acting bath that causes an interaction between the left and right
exterior regions. However, to achieve the one-sided evaporation from the right to the
left exterior, the bath would need to have a continuous temperature gradient starting
from very low temperature at the right exterior, and having a very high temperature
at the left exterior.

A bath that enables an interaction between both subsystems can be one that is coupled
to both of them, as illustrated in Figure 5.24, which resembles the traversable wormhole so-
lution. However, the bath is still described by a flat spacetime. The issue now is that if we
were to use the same evaporation protocol as the one for the one-sided evaporation, both the
right and the left exterior regions will evaporate into the black hole. To have only the right
exterior region evaporate, the Hawking radiation to go into the bath and travel to the left
exterior, there needs to be a controlled temperature gradient all the way across the bath, such
that the temperature of the bath region close to the right exterior is very low (lower than the
temperature of the right exterior), while the temperature of the bath region very close to the
left exterior is very high (higher than the temperature of the right exterior).

That being said...
It should be noted that a huge assumption was also made in the search for the bath operator,
namely the temperature was assumed to be constant. The initial state is an entangled state
between two subsystems which are at equal temperatures T = 1/β. Having moved energy
from one system to the other adiabatically; i.e. while keeping the entropy of the total system
fixed (at zero), should lead to a change in temperature in each of the two subsystems. One
way of seeing this more clearly is that evaporating the black hole, which is dual to R, its mass
has decreased, hence changing its temperature. Simultaneously, the mass of the black hole
dual to L has gained mass and hence its temperature has also changed. This needs to also
be incorporated into the model. That being said, the final state obtained from acting with
th complete evaporation bath operator was the vacuum state in the R subsystem, which is at
zero temperature, as expected.



Chapter 5. Coupling black holes to a bath 100

Although, the bath operator used to achieve the one-sided evaporation was not unitary,
the final state we achieved from acting with this operator on the TFD is indeed what we
would expect from the complete evaporation, namely: destroyed entanglement between the
previously entangled subsystems of the TFD, and a transfer of all the excitation from the
R subsystem to the L subsystem, leaving the former in a zero temperature vacuum state,
while the latter is still a superposition of energy eigenstates at some non-zero temperature.
Even though the TFD considered did not include an explicit interaction term between the
two subsystems, the transfer of classical information from the R to L subsystem, should be
possible via the bath, just as it would be possible via the traversable wormhole. This transfer
of classical information can be used to model the one-sided evaporation via an LOCC channel,
which is a type of quantum teleportation protocol.

5.3.3 Disentangling the TFD via an LOCC channel

The conformal boundaries of the TFD state, namely CFTL and CFTR, are non-interacting.
The two systems are entangled, and so the geometries associated with them are connected
via a wormhole. Since traversable wormholes are not allowed in general relativity, because
of the possible faster-than-light signal transfer, it is the non-traversability of the wormhole
that ensures there are no interactions between the two TFD subsystems [94]. Nonetheless,
due to the entanglement between the two systems, it is natural to wonder if they might
be able to somehow “communicate” with each other. Despite the restrictions from general
relativity, interactions between the two quantum systems living on the boundaries have been
shown to be possible[95]. Due to the dual nature of the eternal AdS black hole, namely
its quantum mechanical description, one could introduce an interaction term in the TFD
formalism, hence allowing the two systems to interact. This makes it possible for the transfer
of classical information between the two boundaries via the resulting traversable wormhole,
which can be modelled as a quantum teleportation protocol [91]. The interaction between
the two subsystems can be achieved via a double-trace deformation, which yields a symmetric
evolution of L and R, and hence of the left and right black hole exterior regions, such that
they both increase or decrease in size simultaneously [96]. This does change the entanglement
entropy between the L and R subsystems, but it does not describe a one-sided evaporation.
The question is: Can quantum teleportation be used to describe the one-sided evaporation
model?

In the next section we model the one-sided evaporation by exploring a different type of
quantum teleportation protocol, namely an LOCC channel, which does not rely on the double-
trace formalism that evolves both subsystems evenly. As we will see, an LOCC channel makes
use of classical communication between two entangled systems, and can be used to convert
from one pure state to another pure state with a lower entanglement entropy. Although the
LOCC channel is not invertible, and hence non-unitary, it is a model for a quantum channel
from an entangled TFD state to a disentangled state, which can be used to describe the one-
sided evaporation of the AdS black hole.
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Review of the LOCC protocol

At the heart of entanglement theory is the notion of the “distant lab”, where a multipartite
quantum system is distributed over several parties. Two parties, called Alice and Bob, can be
at a large distance from each other. They cannot perform global operations on the state they
share and are hence restricted to act only locally on their respective subsystems. However,
this local action does allow them to perform local measurements and transmit classical data;
i.e. share the results of their measurements [97].

In this section we will review this type of quantum operations, which are known as Local
Operations Classical Communication (LOCC). The name comes from the fact that these quan-
tum channels are implemented solely through local operations and classical communication.
Local operations (such as a local quantum channel) refer to operations restricted to act only
on one subsystem at a time; i.e. not on the density matrix of the multipartite system ρAB, but
only on one of the reduced density matrices (ρA or ρB). Classical communication describes
the exchange of classical data between the subsystems, such as results from a measurement.
It has been shown that entanglement cannot be increased via these processes. In particular,
if a state ρAB has been converted to a state ρ′AB via an LOCC, then ρAB must have at least
as much entanglement as ρ′AB, since it cannot be increased via the LOCC.

The basic idea is the following: Alice and Bob share an entangled state. Alice performs a
measurement and sends this classical measurement outcome to Bob (via a classical channel).
Bob then applies a quantum channel, depending on this measurement, to obtain the desired
result. The LOCC protocol can be used to achieve different tasks, such as state discrimination
(uses communication to distinguish states which have the same reduced density matrices and
cannot be distinguished with local measurements alone), entanglement distillation (uses LOCC
to convert an arbitrary number of copies of weakly-entangled state to a smaller number of
maximally entangled pairs) and others.

To properly define an LOCC channel, it is useful to first recall some important concepts
in quantum information theory, starting with the notion of a measurement, which has been
schematically represented in Figure 5.25 [98].

Definition : (Measurement) A measurement on some Hilbert space H is a function µ
that produces an outcome x in some finite set Ω such that

µ : Ω → PSD(H) and
∑
x∈Ω

µ(x) = I , (5.122)

where PSD stands for positive semidefinite. A ∈ PSD(H) if A is Hermitian and all its
eigenvalues ai are nonnegative (i.e. ai ≥ 0).

For a quantum system in a state ρ, the probability of a certain outcome x following a mea-
surement is given by Born’s rule, which states

P (x) = Tr[µ(x)ρ] . (5.123)

Indeed, using (5.122) yields
∑

x P (x) =
∑

xTr[µ(x)ρ] = Tr[
∑

x µ(x)ρ] = 1 as required.
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Figure 5.25: Measurement of a quantum state is an operation that acts on a quantum
state to produce a classical outcome x [98].

A convenient choice of measurement is the basis measurement, which is defined in terms of an
arbitrary orthonormal basis {|ψx⟩} ∈ H as µ = |ψx⟩⟨ψx|, in which case the probability of a
certain outcome x becomes P (x) = ⟨ψx|ρ|ψx⟩.50

So far the state measured was the global state of the quantum system. For a multipartite
system, one can also define a measurement on one of the subsystems. For example, for a
bipartite state ρAB, a measurement µA can be made on the subsystem A, as illustrated in
Figure 5.26.

Figure 5.26: Measurement of subsystem A, which acts on subsystem A to give a classical
outcome x, but it does not act on the other subsystem [98].

The probability of a specific outcome is then given by

P (x) = Tr[(µA(x)⊗ IB)ρAB] , (5.124)

which closely resembles Bohr’s rule above. It should be noted, for completeness, that joint
measurements of the two subsystems are also possible, as illustrated in Figure 5.27. Applying
a measurement µA(x) on the subsystem A and a measurement µB(y) on the subsystem B, the
probability of outcomes x ∈ ΩA and y ∈ ΩB is given by

P (x, y) = Tr[(µA(x)⊗ µB(y))ρAB] (5.125)

Figure 5.27: Joint measurement of subsystems A and B. The measurement µA on
subsystem A gives the classical outcome x, while the measurement µB on subsystem B
gives the classical outcome y [98].

As will be discussed later, local measurements on the subsystems play a key role in the oper-
ational principle of the LOCC channel.

Another important operation to consider is the quantum channel. As opposed to a classical
measurement outcome, the outcome of a quantum channel is a quantum state; i.e. a quantum
channel maps quantum states to quantum states, as illustrated in Figure 5.28, where Φ[ρA] =
ρB, namely the channel acts on some state ρA to give another state ρB. The more formal
definition of a quantum channel is given below.

50For example, for the qubit state ρ = |0⟩⟨0|, one can use the basis {|0⟩, |1⟩}. Then P (0) = ⟨0|ρ|0⟩ = 1 and
P (1) = ⟨1|ρ|1⟩ = 0 as expected.
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Definition : (Quantum channel) The superoperator51ΦA→B is a quantum channel; i.e.
ΦA→B ∈ C(HA,HB), if it is
(a) Completely positive: For all HR and MAR ≥ 0, ΦA→B ∈ CP(HA,HB) if (ΦA→B ⊗
IR)[MAR] ≥ 0
(b) Trace preserving: For all MA, Tr[ΦA→B[MA] = Tr[MA]].

Figure 5.28: A quantum channel Φ maps a state ρA to another state ρB , such that
Φ[ρA] = ρB [98].

The trivial quantum channel is the identity channel IA, which maps the state to itself, namely
IA[ρA] = ρA (or, equivalently, is the absence of any operation).

The concepts of a measurement (i.e. a classical outcome) and a channel (i.e. a quantum
state outcome) can be combined into the notion of an instrument. Indeed, an instrument is
an operation that produces both a classical outcome and a quantum state, as illustrated in
Figure 5.29.

Definition : (Instrument) An instrument is a set of completely positive maps, denoted
by {ΦA→B,x} ∈ CP(HA,HB), such that

∑
xΦA→B,x ∈ C(HA,HB).

Figure 5.29: An instrument is an operation which acts on a quantum state to produce
both a classical output x (as a measurement does) and a quantum state ρB,x (as a
quantum channel does) [98].

Being equipped with the above definitions, one can define an LOCC channel, illustrated in
Figure 5.30

Definition : (LOCC channel) A channel ΞAA′→BB′ is called a one-way LOCC channel
from A to B if

ΞAA′→BB′ [ρAB] =
∑
x

(ΦA→A′,x ⊗ΨB→B′,x)[ρAB] , (5.126)

where {ΦA→A′,x} is a collection of instruments acting on the subsystem A to generate a
set {x} of classical outputs and a set of quantum states, which are sent to the subsystem
B. These quantum states are then acted on by a set of quantum channels {ΨB→B′,x},
which reproduce the state required by the LOCC protocol.

51A superoperator is an operator that maps operators to operators.
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Figure 5.30: The way the LOCC protocol works is that subsystem A acts locally on
itself with a set of instruments {ΦA→A′,x}, which generate a set {x} of classical outputs
and a set of quantum states, which are then sent to the subsystem B. These quantum
states are then acted on by a set of quantum channels {ΨB→B′,x}, which reproduce the
state required by the LOCC protocol. [98].

Note, the more familiar quantum teleportation protocol is an example of an LOCC protocol.

Modeling the complete evaporation via an LOCC

In this section, we wish to check if the evolution from the TFD state (5.88) to the completely
evaporated disentangled state (5.112) can be described via an LOCC channel. Hence, we wish
to check if the following operation is possible:

ρRL
LOCC−−−−→

?
ρ′RL , (5.127)

where

ρRL =
1

Z

∞∑
i=0

∞∑
j=0

e−
β
2
(Ei+Ej)

(
|i⟩RR⟨j| ⊗ |i⟩LL⟨j|

)
(5.128)

ρ′RL =
1

Z

∞∑
i=0

∞∑
j=0

e−
β
2
(Ei+Ej)

(
|0⟩RR⟨0| ⊗ |2i⟩LL⟨2j|

)
. (5.129)

Since both states ρRL and ρ′RL are pure, one can use Nielsen’s Theorem, which provides a way
of checking if an LOCC protocol is allowed, by using just the initial and final states.

Theorem : (Nielsen) Let ρRL and ρ′RL be two pure states on HR ⊗ HL. Then the fol-
lowing statements are equivalent:
(a) ρR ≺ ρ′R.
(b) There exists a one-way LOCC channel Ξ from R to L, such that Ξ[ρRL] = ρ′RL.
Interchanging the roles of the R and L systems, the following statements are also equiva-
lent:
(c) ρL ≺ ρ′L.
(d) There exists a one-way LOCC channel Ξ from L to R, such that Ξ[ρRL] = ρ′RL.

Nielsen’s theorem makes use of majorization, denoted by “≺”.
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Definition : (Majorization) Consider two vectors x, y ∈ Rn. Then x ≺ y (“x is majorized
by y” or “y majorizes x”) if

k∑
i=1

x↓i ≤
k∑

i=1

y↓i and
n∑

i=1

xi =
n∑

i=1

yi , (5.130)

where k ∈ {1, 2, . . . , n − 1} and x↓i is used to denote the eigenvalues of x sorted in a
non-increasing order, such that x↓1 ≥ x↓2 ≥ . . . ≥ x↓n.

We wish to check if there exists an LOCC from R to L, such that Ξ[ρRL] = ρ′RL. By Nielsen’s
theorem, it is sufficient to verify that ρR ≺ ρ′R, since the statements (a) and (b) are equivalent.
This requires using the “quantum extension” of majorization, which deals with Hermitian
operators instead of real vectors.

Definition : (Majorization for Hermitian operators) For two Hermitian operators A and
B, with eigenvalues λ(A) and λ(B) respectively, A ≺ B iff λ(A) ≺ λ(B).

Using this definition for the case of the density matrices ρR and ρ′R implies that the ma-
jorization between the reduced density matrices can be written as majorization between their
eigenvalues, namely ρR ≺ ρ′R ⇐⇒ λ(ρR) ≺ λ(ρ′R). Using the majorization definition (5.130),
this gives the following requirement for the existence of the LOCC channel we require:

k∑
i=0

λi(ρR)
↓ ≤

k∑
i=0

λi(ρ
′
R)

↓ and
∞∑
i=0

λi(ρR) =

∞∑
i=0

λi(ρ
′
R) (5.131)

To validate this expression, one first needs to evaluate the reduced density matrices and their
eigenvalues, which are given by

ρR =
1

Z

∑
i=0

e−βEi |i⟩RR⟨i| with λ(ρR)
↓ =

{
e−βE0

Z
,
e−βE1

Z
, . . . ,

e−βE∞

Z

}
(5.132)

ρ′R = |0⟩RR⟨0| with λ(ρ′R)
↓ =

{
1, 0, . . . , 0

}
. (5.133)

To verify the second condition in (5.131) is sufficient to recall that Z =
∑

i e
−βEi and thus

∞∑
i=0

λi(ρR) = 1 =
∞∑
i=0

λi(ρ
′
R) (5.134)

The first condition in (5.131) can be verified by noticing that e−βEi/Z < 1 for all i. Hence,
k∑

i=0

λi(ρR)
↓ =

[
e−βE0

Z︸ ︷︷ ︸
<1

+
e−βE1

Z︸ ︷︷ ︸
<1

+ . . .+
e−βEk

Z︸ ︷︷ ︸
<1

]
≤

[
1 + 0 + . . .+ 0

]
=

k∑
i=0

λi(ρ
′
R)

↓ , (5.135)

with the equality being satisfied only when k → ∞. Hence, ρR ≺ ρ′R, and by Nielsen’s theorem,
there exists an LOCC from R to L, such that Ξ[ρRL] = ρ′RL.

Another theorem, which follows from Nielsen’s theorem is Uhlmann’s Theorem, which
states that this majorization condition implies the existence of a mixed unitary channel.
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Theorem : (Uhlmann) For two Hermitian operators A and B on some Hilbert space H,
then A ≺ B iff there exists a mixed-unitary channel Φ ∈ C(H) such that Φ[B] = A.

A mixed unitary channel is defined as a superposition of unitary channels.

Definition : (Mixed-unitary channel) A channel Φ ∈ C(H) is called mixed-unitary if

Φ[M ] =
∑
x

qxUxMU †
x (5.136)

for a probability distribution qx and a set of unitaries Ux ∈ U(H).

However, note that the action of this mixed unitary channel (implied from Uhlmann’s theorem)
is in the opposite direction to the action of the LOCC (implied from Nielsen’s theorem).
Although it might seem irrelevant, Uhlmann’s theorem will be important in the derivation of
the LOCC protocol.

Having established that an LOCC protocol is possible, the aim for the rest of this section is
to find the LOCC that converts the TFD state (5.128) into the disentangled state (5.129). This
would involve the R subsystem to use an instrument to send classical information obtained
locally to the L subsystem. The L subsystem can then apply a unitary channel, again locally,
to obtain the desired state. Using the LOCC definition, the LOCC is given by

Ξ[ρRL] =
∑
x

(ΦR,x ⊗ΨL,x)[ρRL] = ρ′RL (5.137)

We begin by finding the instrument ΦR,x. This can be done by using Uhlmann’s theorem and
the definition (5.136) of a mixed-unitary channel. Since ρR ≺ ρ′R, this means there exists a
mixed unitary channel, such that

ρR =
∑
x

qxUR,xρ
′
RU

†
R,x . (5.138)

The instrument ΦR,x is defined as

ΦR,x[M ] = YR,xMY †
R,x , (5.139)

where, using (5.138), the unitaries YR,x can be written as

YR,x =
√
qx

√
ρ′RU

†
R,x

√
ρR

−1 . (5.140)

Substituting the expressions for ρR (5.132) and ρ′R (5.133) into (5.138) yields the following
equation for the unitaries

1

Z

∞∑
i=0

e−βEi |i⟩RR⟨i| =
∞∑
x=0

qxUR,x|0⟩RR⟨0|U †
R,x , (5.141)
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which can be written in a matrix form that gives

1

Z


e−βE0 0 · · · 0

0 e−βE1 · · · 0
...

...
. . .

...
0 0 · · · e−βE∞

 =

∞∑
x=0

qxUR,x


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

U †
R,x . (5.142)

To obtain the values of qx and the unitaries UR,x one can use permutation matrices. A
permutation matrix P is a square binary matrix with a single entry of 1 on each row and
column, with the rest being 0. The unit matrix I is a special case of the permutation matrix,
with every 1 being on the diagonal of the matrix. There are n! permutation matrices of size
n×n, also known as permutation matrices of order n. For example, the permutation matrices
of order 2 and 3 are given by

n = 2 :

(
1 0
0 1

)
,

(
0 1
1 0

)
(5.143)

n = 3 :

1 0 0
0 1 0
0 0 1

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
1 0 0
0 1 0

 ,

0 0 1
0 1 0
1 0 0


(5.144)

Permutation matrices satisfy PP T = 1, hence the transpose of a permutation matrix is its
inverse; i.e. P−1 = P T . For a matrix M , PM gives a permutation of the rows of M ; i.e.
P acts as to move along the columns of M . Reversing the order of the multiplication, MP T

gives a permutation of the columns of M ; i.e. P acts to move along the rows of M . Using
this property, one can use permutation matrices to move along the diagonal of a matrix M
via PMP T . Additionally, since these matrices are real, P † = P T . This can be used in (5.142)
to move the entry 1 of ρ′R down its diagonal in order to obtain the non-zero diagonal values
of ρR.

For example, using the permutation matrices of order 2 in (5.143), the 2×2 case of (5.142),
namely the case that only includes the contribution from {E0, E1}, given by

1

Z

1∑
i=0

e−βEi |i⟩RR⟨i| =
1∑

x=0

qxUR,x|0⟩RR⟨0|U †
R,x , (5.145)

can be solved with

q0 = e−βE0/Z , UR,0 = U †
R,0 =

(
1 0
0 1

)
(5.146)

q1 = e−βE1/Z , UR,1 = U †
R,1 =

(
0 1
1 0

)
. (5.147)
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Similarly, solving the 3×3 case, namely the one that includes contributions from {E0, E1, E2},
given by

1

Z

2∑
i=0

e−βEi |i⟩RR⟨i| =
2∑

x=0

qxUR,x|0⟩RR⟨0|U †
R,x , (5.148)

requires using only some of the permutation matrices of order 3, and is solved with

q0 = e−βE0/Z , UR,0 = U †
R,0 =

1 0 0
0 1 0
0 0 1

 (5.149)

q1 = e−βE1/Z , UR,1 = U †
R,1 =

0 1 0
1 0 0
0 0 1

 (5.150)

q2 = e−βE2/Z , UR,2 =

0 1 0
0 0 1
1 0 0

 , U †
R,2 =

0 0 1
1 0 0
0 1 0

 . (5.151)

This can be generalized to the d × d case, which includes all terms {E0, . . . , Ed−1}, and is
given by

1

Z

d∑
i=0

e−βEi |i⟩RR⟨i| =
d∑

x=0

qxUR,x|0⟩RR⟨0|U †
R,x . (5.152)

This general case can be solved in the same way and the solution is given by

q0 = e−βE0/Z , UR,0 = U †
R,0 = Id (5.153)

q1 = e−βE1/Z , UR,1 =: P
(d)
1,2 , U

†
R,1 =: P

(d)†
1,2 (5.154)

...

qd−1 = e−βEd−1/Z , UR,d−1 =: P
(d)
1,d , U

†
R,d−1 =: P

(d)†
1,d (5.155)

Here we have defined the permutation matrix P (d)
1,d as a permutation matrix of order d, which

switches row 1 and row d of a d× d matrix M via P (d)
1,dM . Hence, it moves the element (1, 1)

of M to the position of the element (1, d). Similarly, its complex conjugate P (d)†
1,d = P

(d)T
1,d

switches column 1 and column d of the matrix M via MP
(d)†
1,d . Hence, it moves the element

(1, 1) of M to the position of the element (d, 1). Acting with both permutation matrices via
P

(d)
1,dMP

(d)†
1,d acts as to move along the diagonal of M and moves the element (1, 1) to the

position of the element (d, d). The trivial permutation matrix is the identity matrix, given by
P

(d)
1,1 = Id, such that P (d)

1,1MP
(d)†
1,1 does not move the element (1, 1). Hence, using the above

generalization, equation (5.142) is solved by qx = e−βEx/Z, UR,x = P
(x)
1,x+1 and U †

R,x = P
(x)†
1,x+1.
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This can be substituted into (5.140) to find an expression for YR,x, which yields

YR,x =
√
qx

√
ρ′RU

†
R,x

√
ρR

−1

= e−
βEx
2


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

P
(x)†
1,x+1


e

βE0
2 0 · · · 0

0 e
βE1
2 · · · 0

...
...

. . .
...

0 0 · · · e
βE∞

2



= e−
βEx
2


0 · · · 1 · · · 0
0 · · · 0 · · · 0
...

...
...

0 · · · 0 · · · 0



e

βE0
2 0 · · · 0

0 e
βE1
2 · · · 0

...
...

. . .
...

0 0 · · · e
βE∞

2



= e−
βEx
2


0 · · · e

βEx
2 · · · 0

0 · · · 0 · · · 0
...

...
...

0 · · · 0 · · · 0



=


0 · · · 1 · · · 0
0 · · · 0 · · · 0
...

...
...

0 · · · 0 · · · 0
Col1 Colx+1 Col∞

 , (5.156)

where we have used that the square root of a diagonal matrix is obtained by simply taking
the square root of all the eigenvalues (diagonal elements). In the third line we have used that
the permutation matrix P (x)†

1,x+1 acts on a matrix M is such that the operation MP
(x)†
1,x+1 moves

the first column of the matrix M to the location of its x+ 1 column. Hence, the YR,x unitary
matrices have only one non-zero element such that

YR,0 =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , YR,1 =


0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , . . . , YR,∞ =


0 0 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 . (5.157)

These matrices can be written, more conveniently, in the Dirac notation as

YR,x = |0⟩⟨x|

Y †
R,x = |x⟩⟨0| , (5.158)

where

|0⟩ =


1
0
0
...
0

 , |1⟩ =


0
1
0
...
0

 , |2⟩ =


0
0
1
...
0

 , . . . (5.159)



Chapter 5. Coupling black holes to a bath 110

The instrument (5.139) is hence given by

ΦR,x[M ] = YR,xMY †
R,x = |0⟩⟨x|M |x⟩⟨0| = ⟨x|M |x⟩|0⟩⟨0| (5.160)

Following the action of the instrument, the state ρRL transforms into wRL,x, given by

wRL,x = (ΦR,x ⊗ IL)[ρRL]

= (YR,x ⊗ IL)ρRL(Y
†
R,x ⊗ IL)

=
(
|0⟩⟨x| ⊗

∑
k

|k⟩⟨k|
)
ρRL

(
|x⟩⟨0| ⊗

∑
m

|m⟩⟨m|
)

=
1

Z

∑
i,j,k,m

e−
β
2
(Ei+Ej)

(
|0⟩⟨x| ⊗ |k⟩⟨k|

)(
|i⟩⟨j| ⊗ |i⟩⟨j|

)(
|x⟩⟨0| ⊗ |m⟩⟨m|

)
=

1

Z

∑
i,j,k,m

e−
β
2
(Ei+Ej)

(
|0⟩ ⊗ |k⟩

)(
⟨x| ⊗ ⟨k|

)(
|i⟩ ⊗ |i⟩

)(
⟨j| ⊗ ⟨j|

)(
|x⟩ ⊗ |m⟩

)(
⟨0| ⊗ ⟨m|

)
=

1

Z

∑
i,j,k,m

(
|0⟩ ⊗ |k⟩

)
δxiδki︸ ︷︷ ︸
δxk

δxjδmj︸ ︷︷ ︸
δxm

(
⟨0| ⊗ ⟨m|

)
=

1

Z
e−βEx

(
|0⟩ ⊗ |x⟩

)(
⟨0| ⊗ ⟨x|

)
=

1

Z
e−βEx |0⟩⟨0| ⊗ |x⟩⟨x| , (5.161)

such that

wRL,0 =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , wRL,1 =


0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 0

 , . . . , wRL,∞ =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1


(5.162)

The next step in finding the LOCC is to find a unitary channel that can act on this state to
give reproduce the state ρ′RL,x as required. This unitary channel is applied by the L subsystem
and is defined in terms of the unitary operators VL,x as

ΨL,x[M ] = VL,xMV †
L,x (5.163)

Demanding that when acted on the state wRL,x, the unitary channel correctly constructs the
state ρ′RL,x is given by

(IR ⊗ VL,x)wRL,x(IR ⊗ V †
L,x) = qxρ

′
RL . (5.164)

To find the unitary matrices VL,x is easier to first trace out the right system in (5.164), which
gives

VL,xwL,xV
†
L,x = qxρ

′
L (5.165)
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where wL,x = TrR[wRL,x] =
e−βEx

Z |x⟩⟨x|. Substituting this back into (5.165) gives

VL,x|x⟩⟨x|V †
L,x =

1

Z

∑
i

∑
j

e−
β
2
(Ei+Ej)|2i⟩⟨2j| (5.166)

To solve for the unitary matrices VL,x one can expand can first expand them as

VL,x =
∑
m

∑
n

V (x)
mn |m⟩⟨n| , (5.167)

where the basis |m⟩ do not necessarily have to be the energy eigenstates as before, but they
will be in this calculation, and the components of the unitaries are

(
V

(x)
mn

)∗
= V

(x)
nm . Using this

expansion and substituting into (5.166) gives

(∑
mn

V (x)
mn |m⟩⟨n|

)
|x⟩⟨x|

(∑
kl

V
(x)
lk |k⟩⟨l|

)
=

1

Z

∑
i

∑
j

e−
β
2
(Ei+Ej)|2i⟩⟨2j|

∑
k,l,m,n

V (x)
mnV

(x)
lk |m⟩⟨n|x⟩⟨x|k⟩⟨l| = 1

Z

∑
i

∑
j

e−
β
2
(Ei+Ej)|2i⟩⟨2j|
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β
2
En/2 , (5.168)

where in the fourth line we have contracted both side of the equation with ⟨n| . . . |k⟩. We find
that since all the x dependence is summed over, the unitary matrices VL,x do not depend on
the parameter x, so

VL,x =
1√
Z

∑
n

∑
x

e−
β
2
En/2 |n⟩⟨x| =: VL . (5.169)

The channel is hence also independent of x and given by

ΨL[M ] = VLMV †
L =

1

Z

∑
m,n

∑
x,y

e−
β
2
(Em/2+En/2)|m⟩⟨x|M |y⟩⟨n|

=
1

Z

∑
m,n

∑
x,y

e−
β
2
(Em/2+En/2)⟨x|M |y⟩|m⟩⟨n| (5.170)

We can verify that this LOCC channel indeed reproduces the required state by substituting the
instrument (5.160) and the channel (5.170) into the definition (5.137) of the LOCC channel,
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which gives
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∑
z

(ΦR,z ⊗ΨL,z)[ρRL] =

=
∑
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= ρ′RL (5.171)

where to see the last equality one can simply relabel m→ 2i and n→ 2j.

However, since an LOCC cannot be used to increase entanglement entropy, there is no
LOCC channel to model the inverse process, namely from ρ′RL to ρRL. This can also be seen
by verifying that the majorization condition in Nielsen’s theorem for the inverse process is not
satisfied. Since the channel is not invertible, the process is not unitary.
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5.4 Conclusion

In this chapter, we reviewed the recently proposed model for one-sided black hole evaporation
[18], which used an auxiliary bath and transparent boundary conditions to allow one-side
black hole evaporation. We reviewed the calculations in the bulk, which were based on results
in semiclassical JT gravity, to show that the black hole evaporates at an exponential rate,
following an inward positive-energy flux, induced from coupling it to the bath. We then
reviewed how the generalized gravitational entanglement entropy can be used to show that
the proposed black hole evaporation model produces a unitary Page for both the evaporating
black hole and the emitted Hawking radiation.

While looking for a way to model this one-sided black hole evaporation in the dual theory,
we stumbled onto some confusion as to how it would be possible. We argued that if the
action of the bath os modeled as an operator in the dual theory, one-sided evaporation can
be achieved vie either a local non-unitary bath operator or a global unitary bath operator.
The action of a global bath operator is still unclear, but we have argued that it should involve
some interaction between the two exterior regions of the black hole. However, this is not the
way we understand the bath to be acting in the original paper, where it seems to be acting
only locally.

Assuming such a local bath operator, we also modelled the one-sided black hole evaporation
via an LOCC channel, which is non-reversible and hence non-unitary, which as explained, is
expected from the operation of such a local bath.
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