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Abstract

Can Kant’s philosophy of cognition be useful for computer vision? Kant explored how humans progress
from subjective perception to objective understanding. Modern computer vision models, despite excelling
at tasks like object detection, struggle with high-level visual reasoning, such as interpreting relationships
between objects. Gary Marcus attributes this limitation to the reliance on deep learning, which fails to
generalize beyond training data. This work extends Marcus’ critique by arguing that pure deep learning-
based vision models lack coherent object representations and cannot learn abstract, domain-general
invariances from visual data. To address these limitations, I propose integrating Kantian principles into
vision models, leading to neuro symbolic vision models. Specifically, I draw on Kant’s notion of intelligence
as a faculty of combination, enabling the transition from perception to understanding, due to its coherent
object representations. I argue this concept can guide the development of systems capable of improved
visual reasoning. However, neuro symbolic Al for vision is a young research field and a big challenge here
is how to combine discrete and continuous representations. As such, to test the possible usefulness of
these models, I conduct an experiment which focuses on data representation challenges. For this, I will
use the neuro symbolic Apperception Engine, due to its close proximity to Kantian philosophy and its
proven success on rudimentary vision tasks. My findings reveal that grid-based data representations are
unsuitable for these models due to high information loss during the conversion from continuous to discrete
data and the excessive complexity introduced by grid-size-dependent background knowledge. This suggests
the need for alternative data representations in neuro symbolic vision models. Ones which better support
relational reasoning from visual scenes. As such, this research contributes to the emerging field of neuro
symbolic Al, offering insights into designing systems that bridge perceptual and conceptual understanding.

Keywords: Computer Vision, Visual Understanding, Kantian Intelligence, The Apperception Engine,
Logic Program Complexity
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Chapter 1

Introduction

The rise of deep learning in artificial intelligence (AI) research has greatly improved the performance of
computer vision models on low-level tasks like object detection, object tracking, and object segmentation
[79]. However, purely deep learning-based computer vision models still do not perform well in higher-level
computer vision tasks, such as when out-of-distribution generalization or learning complex concepts about
objects is necessary [51], [42], [70].

In order to combat these problems, researchers have moved to neuro symbolic AT [18], [69], [29].
Neuro symbolic Al aims to combine the advantages of logic-based Al with deep learning. In theory, this
should enable deeper understanding of a given scene, like learning complex concepts on noisy data and
out-of-distribution tasks through compositionality [55], [50]. However, neuro symbolic Al is a relatively
new and underdeveloped field and, as such, it is challenging to implement. This is especially the case for
computationally intensive data like videos. This raises the question as to how we can implement neuro
symbolic AT in such a fashion that allows for models to gain a deeper understanding of visual scenes.
More broadly, what does it mean for any intelligent system to have a deep understanding of scenes?

In fact, this is not a new question. Philosopher Immanuel Kant has written extensively about human
cognition. Namely, in his Critique of Pure Reason [32], he described a cognitive architecture aimed at
explaining how humans see, or make sense of the world. He proposed a hybrid architecture of concurrently
interacting faculties, specifying how humans make sense of a sensory sequence. As such, it can be said
that he provides a “blueprint for neuro symbolic AI” [22]

With that in mind, can Kant’s theory of cognition be useful for solving computer vision tasks,
specifically? Work has already been done on answering this question. Richard Evans developed the
a working model of Kantian perception in 2022, known as the “Apperception Engine” [22], which has
already been applied to sequences of small binary images. However, it remains an open question as to
whether the Apperception Engine is a robust model for tackling higher-level computer vision tasks.

1.1 Contributions

To this end, I first show that neuro symbolic Al is most aligned with Kantian intelligence as a combination
of faculties, and vice versa. This gives us strong theoretical backing as to why we ought to take Kantian
understanding as a legitimate framework for implementing computer vision. I then test the Apperception
Engine empirically by running a computer vision experiment which seeks to examine whether the model
is a good candidate for higher-level computer vision tasks.

1.2 Thesis Structure

In order to get there, Chapter 2 acts as the theoretical background. First, I describe current paradigms
in artificial intelligence generally. I then narrow our scope to the question of computer vision, wherein I
give a technical explanation, and cover crucial difference between low-level and high-level tasks. Guided
by this distinction, we are able to see how current Al paradigms fall short of deeper understanding of
visual scenes, which leaves us with the open question as to how we are able to achieve this goal. Chapter
4 seeks to answer this question, wherein we discuss foundational ideas that drive the motivation behind
this thesis, namely, of how Kant has already given us the blueprint as to how intelligent systems are able
to move from visual awareness to understanding, and that neuro symbolic AT is the closest realization



of this abstract idea. Chapter 4 covers its implementation in the form of the Apperception Engine and
discusses in depth how it works. Then, in Chapter 5, I present my experiment, wherein I test whether the
Appercpetion Engine in its current implementation is indeed suitable for computer vision tasks. These
findings are discussed in Chapter 6, after which I conclude in Chapter 7.



Chapter 2

Background

2.1 Paradigms in Artificial Intelligence

In this section, I will outline current paradigms to approaching the development of Al.

2.1.1 Symbolic AI

Symbolic Al also known as Good Old-Fashioned Artificial Intelligence (GOFAI), is an approach to
artificial intelligence that relies on explicitly defined rules, logic, and symbolic representations of knowl-
edge. It operates under the assumption that human intelligence can be represented using symbols and
manipulated using formal logic rules. Its main approaches include logic-based Al systems, expert systems
and semantic networks. [7]

Logic Programming. Logic programming, a subset of symbolic Al, relies on clearly defined logi-
cal structures (better known as ’expert knowledge’) to encode and process knowledge. This approach
uses symbolic, localist representations where knowledge is explicitly encoded into (abstract) concepts. In
localist representations, each concept or entity is represented by a single, dedicated symbol or predicate.
For example, 'triangle(X)’ represents the concept of a triangle, and 'red(X)’ directly represents the
property of being red. This one-to-one mapping between symbols and concepts makes the representations
explicit and interpretable, but less flexible than distributed representations. [52]

The manipulation of these symbols through logical rules allows the system to infer new knowledge or
make decisions based on a set of predefined rules. As such, logic-based Al is well suited for deductive
reasoning and exhibits a form of transparent decision-making. However, they also face some drawbacks:
due to the high complexity of the data, running time can be very high. Additionally, these systems can
struggle with uncertainty and incomplete information, leading to brittleness in real-world applications
where perfect knowledge is often unavailable. [7]

Syntax of Logic Programs. I follow Richard Evans in characterizing the basic concepts and standard
notation from logic programming. I shall use a, b, c, ... for constants, X, Y, Z, ... for variables, p, r, q, ...
for predicate symbols, and £, g, h, ... for function symbols. [22]

A logic program consists of rules and facts expressed in formal logic. Below, I will cover a list of basic
concepts necessary to understand logic programs. For a more exhaustive list, see [13]).

e Term: A term that can be simple or complex. A simple term is a constant or variable. A complex

term is of the form f(t1,...,t,), where t1,...,t, are terms.
e Atom: A logical statement of the form p(¢y,...,t,), where p is a predicate symbol, and t1,...,¢,
are terms.

e Function-free atom: An atom where all terms are simple. If a is an atom, then vars(a) denotes
the variables in a. For example, vars(p(X, f(X,Y),Z)) ={X,Y, Z}.

e Ground: An atom or term that contains no variables. An atom a is ground if vars(a) = {}.

e Literal: An atom (positive literal) or its negation (negative literal, written as not A).



e Clause (or Rule): A clause with head and body literals of the form hy,...,h, : - b1,..., b, where
each h; and b; is a literal and the symbol ’,” denotes conjunction. The symbols h; are called the
head of the clause. The symbols b; are called the body of the clause.

e Horn Clause: A clause with at most one positive literal. For example, p(X) : - ¢(X),r(X).

e Definite Clause: A clause with exactly one head literal of the form h : - by, bo,...,b,. A definite
clause states that the head is true if all of the body literals are true. For example, in the definite
clause p(X,Y) : - ¢(X),r(Y) , p(X,Y) is true if ¢(X) is true and r(Y) is true.

e Clausal Theory: A set of clauses.

e Constraint: A clause with no head of the form : - by, bs,..., b,

e Unit Clause: A clause with no body. For unit clauses, we usually omit the : - symbol, e.g., p(X,Y).
e Fact: A ground unit clause with no body, e.g., p(a,b).

e Substitution: A function that maps variables to terms, represented by o. When applying
a substitution to variables, we write it as pairs of variable/term mappings. For instance, if
o ={X/a,Y/b}, then X is replaced by a and Y by b. To show that a substitution ¢ is applied
to an atom a, we write ao. For example, when applying ¢ = {X/a,Y/b} to p(X,Y), we get
p(X,Y)o = p(a,b). Multiple substitutions can be combined, written as oco’. A special case is the
empty substitution ¢ = {}, which leaves any atom unchanged: ae = ea = a.

Semantics of Logic Programs. The semantics of logic programs is based on the concepts of the
Herbrand universe, Herbrand base, and interpretation [22, p.23]:

e The Herbrand universe is the set of all ground terms that can be formed using the constants and
function symbols in a program.

e The Herbrand base is the set of all ground atoms that can be formed using the predicate symbols
and terms in the Herbrand universe.

e A Herbrand interpretation is a subset of the Herbrand base, representing the set of ground
atoms that are true.

A logic program defines a set of possible interpretations. An interpretation is a model of a program if
it satisfies all the rules in the program. A model satisfies a rule if, whenever all literals in the body of the
rule are true in the interpretation, the head of the rule is also true. [22, p.23], [13]. I will now cover some
prevalent paradigms for logic-based Al.

Prolog. Prolog [36], one of the earliest logic programming languages, provides a practical frame-
work for symbolic computation and natural language processing through Horn clauses and SLD-resolution
(an inference rule that sacrifices expressibility for efficiency).

Despite its logical foundations, Prolog is not purely declarative. The order of clauses and the presence
of control structures like cuts means that understanding a Prolog program requires procedural knowl-
edge—how the interpreter will execute the code—rather than just the logical meaning of the clauses.
This makes program behavior highly dependent on clause ordering, affecting both execution efficiency
and results. [37], [13].

Datalog. Datalog is an extension of Prolog which limits the complexity of logical expressions. As
such, it offers a more restricted, yet more efficient, approach. Although it is less expressive than full logic
programming, it guarantees termination and provides decidable inference. This makes it particularly
suitable for database applications and certain types of analysis. Furthermore, unlike Prolog, Datalog is
also fully declarative, meaning that clause ordering does not effect program execution. [13]

Datalog€ Datalog€ is defined by Richard Evans in [22] in order to express causal theories. Specifically,
it is designed for modeling dynamics between states. As such, it extends Datalog with causal rules and
constraints, such as frame inertia (”each atom remains true at the next time-step unless it is overridden by
a new fact which is incompossible with it.”) [22, p.32] and incompossibility (" Two facts are incompossible
if there is a constraint that precludes them from both being true”)[22, p.32]. It also extends the type of
rules. Rules are either arrows rules or causal rules.



e Arrow Rules:
ar N... Nay, = ag

This states that if aq, ..., a, all hold, then ag also holds at the same time-step.

e Causal Rules:
art N... Nay, = Qg

This states that if aq,...,a, all hold, then «g also holds at the next time-step.

Answer Set Programming Answer Set Programming (ASP) [27] extends the foundation of Prolog
by introducing non-monotonic reasoning. As such, it allows systems to handle common-sense reasoning
and complex constraint satisfaction problems more effectively. [40]

ASP extends logic programming by allowing normal logic rules, which include negation as failure
(not). The semantics of ASP are based on stable models or answer sets, which represent consistent
solutions to the program. [45, 53] A normal logic rule has the form:

a :- bl, ..., bn, not c1, ..., not cm.
This means a is true if all b1, ..., bn are true and none of c1, ..., cm are true. For instance:
p :- not q.
q :- not p.

This program has two stable models: one where p is true and q is false, and another where q is true and
p is false. Stable models are computed by grounding the program (replacing variables with all possible
constants) and iteratively deriving conclusions.

ASP also supports choice rules and constraints, which enhance its expressive power [72]. For
example:

e Choice Rule:
{a, b} :- c.

Allows subsets of {a, b} to be true if c is true.

e Constraint:
:—a, b.

Prevents models where both a and b are true.

ASP is often used for combinatorial optimization, knowledge representation, and reasoning tasks, due
to its ability to represent complex problems declaratively. However, it can also be used as meta-interpreter
for other logic languages [15], as is done by Evans [22, p.27].

Complexity. The computational complexity of logic programming depends on the specific frame-
work:

e Datalog: Polynomial-time data complexity but exponential-time (EXPTIME) program complexity
due to the grounding process. [21]

e Datalog€: Polynomial-time data complexity (like Datalog), but potentially PSPACE-hard
program complexity due to reasoning over temporal extensions and dynamic state transitions. [22,
p.23-24]

e ASP: NP-complete for finding stable models; X1’ -complete for optimization problems involving
weak constraints or preferences. [17]

Inductive Logic Programming. Inductive Logic Programming (ILP) [13] generates interpretable
hypotheses in the form of logical programs. As such, it bridges the gap between traditional logic
programming and machine learning. Unlike traditional logic programming, which merely tests the
satisfiability of data by defining pre-defined rules, ILP can learn logical rules and relations from data.
Unlike conventional machine learning models, ILP learns relations and logical patterns from structured
data (like graphs). This makes it highly suited for symbolic induction tasks.



Statistical ML ILP

Examples Many Few

Data Tables Logic programs

Hypotheses Propositional/functions  First-fhigher-order relations
Explainability Difficult Possible

Knowledge transfer | Difficult Easy

Figure 2.1: Comparison between statistical machine learning and inductive logic programming. Taken
from [13]

Essential Components. ILP systems contain four main components [13]:
1. Learning Setting: An ILP task consists of:

e Positive Examples: Instances where the target relation holds true.
e Negative Examples: Instances where the relation does not hold.

e Background Knowledge (BK): Contextual information, often relational or domain-specific, that
assists in hypothesis generation. For example, BK can represent rules such as add(A,B,C) :-
C = A+B.

2. Representation Language: Just like logic programming and first order logic, ILP uses discrete
representations in order to describe hypotheses, examples, and BK. This allows ILP systems to
encode and generalize relational structures like has_angles(shape, 3) or has_sides(shape, 3)
into rules such as isTriangle(X) :- has_angles(X, 3), has_sides(X, 3). Meaning that X is
a triangle if it has three angles and three sides.

3. Language Bias: To ensure efficient learning, constraints are applied to restrict the hypothesis
space. These biases can define syntactic forms (e.g., predicate arity) or semantic properties (e.g.,
logical consistency).

4. Search Method: ILP explores a discrete hypothesis space to find rules consistent with the examples
and BK. A key feature of ILP is predicate invention, where new predicates are introduced to capture
latent relationships. This specific future add to ILPs ability for abstraction and generalization.

As shown in Figure 2.1, ILP offers several advantages over traditional machine learning approaches.
While traditional ML requires large amounts of data and learns statistical patterns, ILP can learn from
just a few examples by using logical rules and background knowledge. The figure also illustrates how
ILP’s logical nature enables both relational reasoning and explainable outputs, in contrast to the often
opaque statistical patterns of traditional ML. Furthermore, ILP’s ability to integrate learned rules back
into its knowledge base allows for continual learning and knowledge transfer. [13]

Finally, these models have shown tremendous improvement in performance on logical reasoning tasks,
compositionality problems, and out-of-distribution generalization (e.g., [14], [13]). Furthermore, they
have been applied to abstract visual scenes in order to provide abstract reasoning rules [24], [68], [69],
[70], [67]. This is interesting for this thesis, because it shows the potential advantage of applying ILP
systems to computer vision tasks.

2.1.2 Sub-Symbolic Learning

Sub-symbolic Al, exemplified by neural networks and deep learning, represents a different paradigm from
symbolic AI. We can see this in both its operational mechanism and its data representations.

Essential Components. Neural networks consist of interconnected artificial neurons organized in
layers. [28] Each connection carries a weight that determines the strength of signal transmission between
neurons. As such, the network’s knowledge is encoded in these weights. The weights, in turn, are
continuously adjusted during training.



Working Mechanism. The primary operation for weight adjustment occurs through two key processes:

e Forward Propagation: Input signals propagate through the network, with each neuron computing
weighted sums followed by non-linear activation functions:

20 — =1 4 (0 (2.1)

aV = g(z) (2.2)

where z() is the weighted input to layer I, W is the weight matrix, a(!~1) is the activation from the
previous layer, b)) is the bias vector, o is a non-linear activation function, and a®) is the activation
(output) of layer I.

e Back propagation: Errors calculated at the output layer propagate backwards through the
network, adjusting weights to minimize prediction errors using gradient descent:

s =v,C o a’(z(L)) for output layer L (2.3)

60 = (WHNT D) 6 6/ (2(D) for hidden layers (2.4)
oc 0, (=T

D = 5O (a1 (2.5)

where V,C is the gradient of the cost function C' with respect to the activations a”, ¢’ is the

derivative of the activation function o with respect to zZ, 6() is the error at layer I, ® denotes
element-wise multiplication, and % gives the gradient for weight updates. [64]

Data Representation The effect of this mechanism is that neural networks, contrary to symbolic AI's
localist representations, have distributed representations [30], [52]. As such, individual concepts are not
mapped to specific units but are represented by many different neurons and their weights. Thus, each
weight participates in representing multiple concepts. Information is continuous rather than discrete,
because values are represented as real-valued weights rather than binary values.

Inference Form Due to these distributed representations, neural networks perform well at several
forms of inference [5]. First, they can perform robust pattern recognition in noisy or ambiguous data.
This is because their distributed information representation allows the system’s performance to degrade
only marginally when inputs are imperfect. Second, they are good at learning data-specific features [28].
Third, they can generalize well across similar inputs. The continuous nature of their representations
allows for interpolation between learned examples. Finally, rather than following explicit rules, neural
networks make predictions based on learned statistical patterns in the data. [64].

As such, this distributed nature of representation [5] makes neural networks particularly effective at
handling uncertainty and noise in input data. However, this comes at the cost of reduced interpretability
and data intensiveness compared to symbolic systems.

Binary Neural Networks A special case of neural networks are Binary Neural Networks (BNNs) [10].
They have shown increasing popularity because they are more efficient than standard neural networks.
This is mainly due to their ability to represent continuous data discretely. [86]

Richard Evans, in [22, p. 30], follows [10], by constraining both weights and activations to binary
values {0,1}. His activation function is determined by comparing the sum of XNOR operations between
inputs and weights against a threshold:

n

S 1 = wy] > [g] (2.6)

i=1

Here, z; are binary inputs, w; are binary weights, and J[-] is the indicator function.

2.1.3 Neuro symbolic Al

Neuro symbolic Al represents the third wave of artificial intelligence [18], combining the strengths of
both symbolic and sub-symbolic approaches. This combination aims to make use of the complementary
abilities of each paradigm.



Essential Components. Neuro symbolic systems typically consist of a neural component for pattern
recognition and handling noisy data, and a symbolic component for logical reasoning and knowledge
representation. [18]

Modes of Integration. This integration between neural and symbolic components can occur through
several modes of integration. Adhering to Kautz’ taxonomy, we can identify the following types [34]:

Type 1 Symbolic Neuro represents a loose coupling with minimal integration. This is just deep
learning. Symbolic inputs are converted to vectors, processed by neural networks, and converted back
to symbols via softmax. The information representation is primarily distributed, with symbols being
mapped to continuous vector spaces. Feature vectors are learned from data through, for example word
embeddings, capturing semantic relationships. Symbol grounding occurs at input/output boundaries
through vector encoding/decoding, but the internal representations remain distributed.

Type 2 Symbolic[Neuro] uses neural networks as subroutines within symbolic problem solvers. An
example is AlphaGo which uses neural networks within a Monte-Carlo Tree Search algorithm [71]. This
type maintains a clear separation between localist and distributed representations, due to its use of neural
networks for pattern recognition while keeping symbolic representations for search and planning. Feature
vectors are task-specific (e.g., board positions in AlphaGo). Symbol grounding is handled by the symbolic
layer, with neural networks providing numerical evaluations.

Type 3 Neuro — Symbolic systems use neural networks to convert raw input into symbolic structures
for symbolic reasoning. This approach often contains a double movement. On the one hand, the symbolic
reasoning system can provide feedback signals to train the neural network. On the other hand, the neural
networks can provide (probabilistic) predicates, which are used by the symbolic reasoning component to
generate and test hypotheses. As such, approach can easily be combined with ILP. Examples of this are,
PROPPER [29] and the neuro symbolic Apperception Engine [24]. Thus, this approach creates an explicit
bridge between distributed and localist representations, where neural networks learn to map perceptual
input to symbolic concepts. Here, feature vectors represent perceptual patterns that correspond to
symbolic concepts. Symbol grounding is achieved through the learned mapping between perceptual
features and symbolic concepts.

Type 4 Neuro: Symbolic — Neuro uses neural networks to perform symbolic reasoning. However,
this is not due to an inherent generalization capability, but rather by training them on symbolic rules.
For example, Lample and Charton’s system learns to perform symbolic mathematics through training on
mathematical expression pairs [39]. The representation is primarily distributed, but structured to capture
symbolic rules. Feature vectors encode symbolic knowledge implicitly in the network’s weights. Symbol
grounding occurs through the training process where symbolic rules guide the formation of distributed
representations.

Type 5 Neuro_Symbolic uses embedding techniques to transform symbolic representations into vector
spaces, as seen in tensor product representations [73]. This approach creates distributed representations
of symbolic knowledge through tensorization. Feature vectors represent logical predicates and relations
in a continuous space and symbol grounding is achieved through the grounding of logical concepts onto
tensors, with logical statements acting as constraints on the vector space. For example, [73] encodes the
logical operations of compositionality into a function in the neural network. This means that the network
learns the operation of composing new classes from distinct parts. Similarly, in [81] they add a relational
bottleneck to an object-centric slot attention model, enabling it to learn relations on objects.

Type 6 Neuro[Symbolic] implements a fully integrated architecture where symbolic reasoning
engines are embedded within neural engines. Based on Kahneman’s “thinking fast and slow” model
[? ], this approach uses a neural system (System 1) that decides when to invoke symbolic reasoning
(System 2). According to Kautz, this represents the most ambitious integration of distributed and localist
representations, as it aims for combinatorial reasoning within a neural framework. Feature vectors must
support both fast pattern recognition and systematic symbolic manipulation. Symbol grounding emerges
from the interaction between the fast neural system and the deliberative symbolic system.

According to [18, p.16], these types can be roughly divided into two options. In option 1, symbols
are translated into a neural network and symbolic reasoning is being performed within the network.
Option 2, on the other hand, takes a more hybrid approach in which the neural network interacts with
a symbolic system for reasoning. Under option 1, we could classify type 1, type 4 and type 5. Under
option 2, we could classify type 2, type 3 and type 6. I believe that especially option 2 will get us closer
to visual understanding, due to the fact that it is more likely to learn symbol manipulation rather than
relying on learning structures which are build in from the start [50]. More on this in Chapter 4.

10



Interface Problem. However, option 2 also comes with a big problem: the interface problem [18; p.16].
In option 1, the symbolic representations are converted into network tensors, thus getting a continuous
character. However, in option 2, we have two interacting modules consisting of two distinct types of
representation. As such, this hybrid Al requires a bridge between localist and discrete representations
versus continuous and distributed representations. [18, p.10], [50] The interface problem is about how we
combine these representations in an efficient way.

Thus, the aim of this chapter was to provide the background knowledge containing necessary terms and
AT paradigms in order to understand the rest of the thesis. Mainly, I showed that logic-based AT and
sub-symbolic Al, also referred to as deep learning, differ from each other due to their different way of
representing information; discrete, localist and relational, versus continuous, distributed and functional,
respectively. This distinction also holds for more recent logic-based systems, such as ILP, which can learn
logical theories from data.

Finally, I showed that neuro symbolic Al aims to form a unification of these two paradigms. The main
challenge, here, is the interface problem. How to unify these distinct representations. Kautz’ taxonomy
proposes that this can be done through multiple levels of integration between the sub-symbolic component
and the symbolic component. All in all, these different ways of integration can be subdivided in two
options: option 1, where symbols are translated into a function within a neural network, and option 2,
where the neural network and the symbolic module remain two separate, interacting components.

From here on out, I will refer to neuro symbolic ILP as neuro symbolic Al
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Chapter 3

Computer Vision and Visual
Understanding

3.1 Computer Vision and Visual Understanding

Computer vision has long been an essential part of research in artificial intelligence. In general, the goal
of computer vision is to understand the scene or features in images and videos of the real world, using
methods like image processing and, more recently, pattern recognition. [79]. However, while contemporary
computer vision models have achieved high success in annotation-based tasks like object detection and
image classification, they continue to struggle with higher-level visual understanding tasks that require
reasoning about relationships, causality, and context.

This limitation becomes particularly apparent in real-world applications such as in autonomous systems
and robots when navigating their environment [57], [79], [84]. For instance, while a self-driving car might
excel at detecting pedestrians and other vehicles, it may fail to understand complex scenarios that require
reasoning about potential interactions or unusual circumstances outside its training distribution. As is
evidenced by recent news articles covering the backlash of self-driving cars [63], [33], [6].

This gap between annotation capability and visual understanding raises questions about the nature of
visual understanding and the current limitations of deep learning-based computer vision approaches. To
what extent can these models form some kind of understanding about the data? This chapter will examine
this. I will show that contemporary, deep learning-based models, although they excel at low-level tasks,
still struggle with visual understanding. In order to get here, I will first give a short history of computer
vision and the need for visual features and invariances. After this, I will distinguish more clearly between
low-level and high-level tasks, as to lay the ground work for my definition of visual understanding. Next,
I will show how some state of the art approaches still lack visual understanding due to their reliance on
deep learning, by following Marcus’ critique. As such, this chapter will show the need to move to a new
theoretical framework for understanding in computer vision models, which will be the subject of the next
chapter.

3.2 Foundations of Computer Vision

3.2.1 Image Processing

The field of computer vision has developed out of the field of image processing. Image processing focused on
operations that transform images while preserving their essential information. This focus on manipulating
and analyzing images includes techniques such as edge detection, filtering, and transformations.

As such, the field initially developed around the need to extract meaningful visual features from images
[79]. Visual features are crucial elements that help to distinguish objects and patterns within images.
These features need to be robust against various transformations and conditions. This capability for
robustness is known as an invariance. As such, the ability to detect and describe these features according
to stable, data-relevant invariances determines the success of any computer vision system.

The problem of visual feature invariance was a recurring challenge in image processing. It is difficult
to recognize objects under changes in scale, rotation, lighting, and perspective [8]. Traditionally, these
features were handcrafted, meaning they had to be manually constructed and determined. As the field
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of image processing developed, techniques that were able to handle invariance in these features became
more sophisticated, such as color histograms [75], the Canny edge detector [9], histograms of oriented
gradients (HOG) [16], and Scale Invariant and Feature Transform (SIFT) [48]. In particular, HOG
and SIFT provided good object features that were invariant to scale, rotation, and lighting. Crucially,
however, these feature descriptors still depended on handcrafted engineering and thus were unable to
learn data-specific features.

3.3 The Shift to Learning-Based Approaches

The onset of computer vision technology marked the transition from handcrafted features to learning-based
approaches with neural networks. This paradigm shift aimed to address feature invariance by learning
features directly from data. The rise of deep learning was a pivotal moment in computer vision research
because it enabled breakthroughs in both accuracy and scalability.

3.3.1 Current Approaches in Computer Vision

In general, there are two main approaches to computer vision. Low-level features are essential aspects of
an image or video, such as contours, edges, and colors. High-level features, on the other hand, contain
more complicated details, such as causal properties and relational inferences. We can test for these types
of features in low-level and high-level tasks, respectively. These tasks reflect the layered architecture of
current vision systems, where earlier layers handle basic visual primitives, and deeper layers aim to model
semantics.

Low-Level Tasks

Low-level tasks are annotation focused [84]. These tasks include for example object detection or
segmentation. [79]. In object detection, the task is to determine ”what objects are where” [90]. Specifically,
in what patches of pixels of the input image do we find which objects? As such, the main challenge here
is how to view all the different appearances of objects (different lighting, position, translation, scale,
shadows, partially occluded, etc.) as part of the same object.

High-Level Tasks

On the other hand, high-level tasks focus on deeper understanding of the scene [84]. Specifically, this
means that systems gain an understanding of more complex relationships like the dynamics, logicality
and causality of objects in a scene. Examples of high-level tasks include visual spatial reasoning [46],
visual compositionality [50], [42], and Bongard problems [3], [81].

3.3.2 Models Driving Computer Vision

As mentioned, deep learning marked a pivotal moment in computer vision. These models incorporate
mechanisms which aim to achieve invariance. A classic example of an influential model in computer vision
is the Convolutional Neural Network (CNN). A CNN is a neural network architecture designed to process
grid-structured data like images by leveraging convolutional layers to extract spatial hierarchies of features
[41], [38]. Due to the operation of convolution, it learns translational invariance [28]. This enables it to
recognize features regardless of their spatial position in the input [12]. However, CNNs struggle with
capturing long-range dependencies and relational reasoning [80], as they lack explicit mechanisms for
modeling global context and interactions between objects [4].

On the other hand, more recent models like Vision Transformers (ViT) leverage self-attention
mechanisms to process images as sequences of non-overlapping patches, allowing it to capture global
contextual information across the entire image [20]. By treating images as sequences, ViTs learn position-
agnostic feature relationships, enabling them to model complex interactions between distant parts of an
image [78]. This approach offers significant flexibility in capturing global interactions and understanding
the overall scene context. However, despite their strength in modeling global context, ViTs often lack
the inherent inductive biases present in CNNs, such as locality and translation equivariance [20]. This
absence of inductive biases means that ViTs require large amounts of data to learn effectively and can be
less efficient for tasks that benefit from structured relational reasoning [59].

In a similar vein, Vision-Language Models (VLMs) combine visual and textual modalities to jointly
reason about images and text, often using multimodal transformers. They learn cross-modal alignments,
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such as associating visual features with corresponding textual descriptions. This allows them to achieve
invariance across modalities. Recent examples of this are GPT-4v [1] and DALL-E 3 [62]. However,
despite their large success across many tasks, they still perform poorly on multi-object visual reasoning
tasks, such as relational scene understanding [42], [77], counting [87], [61] and visual analogies [55], [74].

Recently, slot attention [47] mechanisms have been shown great achievement in decomposing visual
inputs into a set of latent slots that represent individual objects or entities in a scene. It learns object-
centric representations that are invariant to object order and occlusions. [47] This object representation
has made it a strong foundation model for compositional abilities, indicating their potential for visual
reasoning. In [81] and [56], ‘relational bottlenecks’ were added, enabling the model to learn relationships
between objects [81] and higher order relationships between objects [56].

However, slot attention models struggle to generalize beyond the training distribution, due to the
required specification of the number of slots. [47] Furthermore, while slots offer interpretability in terms
of grouping, understanding the semantics of individual slots or their learned embeddings can still be
challenging.

Thus, contemporary computer vision models, despite their great success in performing annotation-
based tasks, still perform sub-optimally at high-level tasks like visual understanding. This is especially
the case for video data.

3.3.3 Toward Richer Representations: Scene Graphs

While the question of low-level features seems to be solved by current approaches in computer vision,
work is still to be done on how to capture invariance in high-level tasks. Scene graphs act as a promising
technique to help current models drive towards scene understanding as exemplified in high-level tasks and
to move beyond raw pixel-based feature learning. Scene graphs provide a structured representation of an
image by explicitly modeling objects and their relationships in a graph[89]. In this representation, nodes
typically correspond to objects or entities in the image, while edges represent relationships or interactions
between these objects. Each node and edge can carry semantic attributes. For example, nodes can contain
object categories, attributes, and spatial information, while edges encode relationships such as spatial
("above”, "inside”), functional ("holding”, ”wearing”), or compositional (”part of”) relationships. As such,
scene graphs can be seen as a method which helps machines to understand relationships between objects,
enabling applications like image captioning, robotics, and reasoning. This may prove to be useful if the
overarching goal is to move towards richer visual representations and therefore deeper understanding of
visual scenes.

3.4 Critique of Sub-Symbolic Based Computer Vision

However, although techniques like scene graphs are a step in the right direction, they are often limited by
the sub-symbolic systems that they rely on (e.g., deep learning based scene graph models to generate
graph nodes). Why is this the case? Why do they often still perform poorly at high-level tasks? While
some have argued that deep learning based vision models’ poor performance on higher-level reasoning
tasks is contingent on finding the right technique (e.g., through the likes of slot attention or scene graphs),
this poor performance is arguably an inherent limitation of deep learning [81], [50], [49]. In other words,
it could be that deep learning techniques on the whole lack the ability to gain a deeper understanding of
visual scenes.

For example, according to Marcus, deep learning is based on statistical correlation of features [50], [49]
and this fact means multiple things. First of all, in order to achieve statistical correlations required for
computer vision tasks, deep learning models require very large amounts of labeled data to learn patterns.
Because of these correlations, it cannot perform causal reasoning, only correlations. In a similar vein, the
learned hypothesis of neural networks is not interpretable, because it is implicitly encoded in the weights.

Moreover, like statistical correlation, back propagation lies at the heart of sub-symbolic AI. Also
like correlations, back propagation is purely mathematical and does not inherently build on the broader
structure of the data — we cannot easily integrate background knowledge into the models. While effective
for pattern recognition, back propagation embodies many of the shortcomings identified in Marcus’
critique of deep learning. This is because back propagation optimizes network parameters by minimizing
the loss on training examples, learning a mapping between inputs and outputs through gradient descent
(see section 2.1.2). As such, this optimization process can only adjust weights based on observed training
data, meaning that the model can only learn patterns and relationships present in its training distribution.
Its focus on local error minimization over global understanding, its reliance on vast datasets, and its
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inability to represent abstract symbolic knowledge all underscore the limitations of sub-symbolic systems
in achieving deeper understanding of visual scenes.

Finally, deep learning models are unable to transfer knowledge to other domains. According to Marcus,
understanding requires out of distribution generalization [50], applying learned patterns to data points
beyond the training distribution. Similarly, Mitchell states that genuine understanding necessitates the
ability to form abstract representations and reason analogically, enabling systems to generalize across
diverse contexts [55]. In the words of Cropper, et al. we could call this ability “Knowledge Transfer”
[13, p.6]. Thus, generalization is necessary for understanding. However, deep learning models cannot
perform out of distribution generalization to other domains (this includes wholly different tasks, but also
unobserved variations of the same task). Even at a basic level, a deep learning object detector can only
detect ‘cat’ and ‘dog’ if it has been trained on a lot of images of cats and dogs. But if we subsequently
ask it to classify a car, then it gets stuck [50], [49], [51]. Arguably, this is a major reason why vision
models struggle with grasping deeper understanding of visual scenes.

We clearly see the relevance of these problems if we think back about the application of computer
vision models in autonomous systems. Self-driving cars use computer vision in order to engage with their
surroundings. However, these cars will unavoidably enter into new, unseen situations of which no labeled
data was available. As such, they should be able to generalize their learned patterns to new situations
[57], [84]. Furthermore, it would be desirable if the car could actually reason about relations between
the objects it detects. For example, if the car detects multiple humans on the road we would like it
to stop. Or if two object trajectories are on a collision course with the car, we would like it to avoid
them. However, as we saw, in pure deep learning systems this is impossible. Thus, despite being able to
effectively generate complex features of the data, the more recent models cannot fully bridge the gap
between perception and reasoning.

3.4.1 Toward Hybrid Approaches

But, how do we actually bridge that gap? How do we understand visual scenes? This is not a novel
question. Kant already aimed to answer this in his Critique of Pure Reason [32]. And, whether we can
actually use this for computer vision is still an open question.

Due to the fact that most computer vision models still rely solely on neural networks, this critique
can be said to extend to contemporary computer vision models as well. To that end, Marcus proposes a
move to hybrid systems: neuro symbolic AT models.

However, is this all there is to this? What does this problem really boil down to?

My claim here is that we can interpret Marcus’ critique through a Kantian lens. Using the definition
of Kantian intelligence and coherent object representations, we can see that the underlying problem is
that contemporary computer vision models do not have coherent object representations. The following
chapter will discuss this idea in more detail.
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Chapter 4

Kantian Intelligence

In his Critique of Pure Reason [32] philosopher Immanuel Kant aimed to show how we could integrate
empiricism and rationalism into one system.

Whereas rationalists such as Descartes and Leibniz held the view that reason is the chief source of
knowledge, asserting that reality has a rational structure that can be known through deduction, empiricists
such as Locke, Hume posited that knowledge comes primarily from sensory experience, emphasizing
observation and experimentation in understanding the world.

Kant, on the other hand, claimed that human intelligence consisted of applying abilities of logical
processing (the faculty of the understanding) to sense data (the faculty of the imagination) in order to
make sense of our experiences. In the words of Richard Evans, Kant’s notion of intelligence has provided
us with a cognitive architecture which helps us answer the question: ”"What, exactly, is involved in
combining low-level perception with high-level conceptual thinking?”

We find this philosophical debate about the nature of intelligence echoed in contemporary Al research:
7...perhaps the most fundamental debate in artificial intelligence has been whether Al systems should be
built on symbol manipulation — a set of processes common in logic, mathematics and computer science
that treat thinking as if it were a kind of algebra — or on allegedly more brain-like systems called “neural
networks.” [50, p. 1].

Namely, it is being increasingly acknowledged that the strengths and weaknesses of neural networks
and logic-based learning are complementary. In the previous section, I showed that neuro symbolic
AT has emerged as a way to combine both of these approaches. At the same time, I showed that the
weaknesses of deep learning neural networks also extend to the field of computer vision, which uses mostly
deep learning-based models. This raises the question whether neuro symbolic Al can solve some of the
problems of deep learning-based computer vision models.

However, although Neuro symbolic Al provides a promising approach, it is still met with a lot of
criticism. This critique mostly comes from ”Optimist” Al researchers who believe that deep learning
alone can get us to a humanlike-level of understanding. [65] Their stance is mainly predicated on the
argument that deep neural networks (DNNs) on their own can learn abstract, generalizable concepts.
This critique, then, can also be extended to computer vision models. Namely, these models should be
able to generate abstract, domain-general concepts from data alone.

In this section, contra to the claim of optimists, the claim will be defended that: Kant’s philosophy of
cognition can be beneficial to computer vision, because it: 1. helps us to redefine the underlying problem
with deep learning-based computer vision, and 2. it points us towards a new architecture: neuro symbolic
AL

In order to arrive to this claim, I will show that: 1. Kant’s philosophy of cognition provides us with a
notion of ’intelligence as a faculty of combination’. Humans learn logical categories, by applying innate
logical faculties in experience, to sense data. This process entails a combination of distinct types of
representations: intuitions and concepts. Thus, 2. the faculty of combination provides us with ”coherent
object perceptions”: the combination of distinct types of representations enables us to learn abstract
(associative and implicative) invariances from data. Next, 3. neuro symbolic Al can also exhibit this
”faculty of combination”. The end-to-end connection of inductive logic programming with deep learning,
through the combination discrete and continuous representations, can enable systems with the ability
to learn logical concepts from data. As a result, 4. neuro symbolic ILP (as a faculty of combination)
can contain ”coherent object perceptions”: the combination of distinct types of representations enables
abstract (associative and implicative) invariances to be learned from data. After which I note that,
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5. current computer vision models, often being purely deep learning-based, do not exhibit coherent
object perceptions. They can not construct abstract, domain-general invariances. Finally, I will propose
that, 6. neuro symbolic ILP can supply computer vision with ’coherent object perceptions’ because it
can learn abstract invariances due to its combined representations. After all this, it will be clear that
Kant’s philosophy of cognition can help the field of computer vision because it can help: 1. to redefine
the problem with deep learning-based computer vision models, 2. point into the direction of a new
architecture to solve this problem.

4.1 Kantian Intelligence as a Faculty of Combination

In his Critique of Pure Reason, Immanuel Kant aimed to address the capacities and limits of human
reason, by reconciling the seemingly conflicting branches of knowledge represented by rationalism and
empiricism [32]. T will now elucidate these concepts in order show Kant’s notion of intelligence as faculty of
combination, and that this faculty of combination leads to coherent object perceptions. Their explanation
will not cover the complete breadth, depth and complexity of the distinction, but serves our purpose.

4.1.1 The Debate of Knowing: Rationalism and Empiricism

Rationalists such as Descartes and Leibniz held the view that reason is the chief source of knowledge
and asserted that reality has a rational structure which can be known by performing logical deduction
on innate categories. Their main reason for this is the ” Superiority of Reason” thesis, which states that
”the knowledge we gain in subject area S by intuition and deduction or have innately is superior to any
knowledge gained by sense experience” [54].

Descartes provides an example of this with his account of wax in his book Meditations on First
Philosophy [19, p. 22]. In Meditations, Descartes shows that wax is not wax because of its shape, color or
texture. This is because of the fact that, were all of these qualities to change, then the substance would
still be wax. On the contrary, Descartes states that wax is perceived ”by the intellect alone” [19, p. 22].

Only when one understands the mathematical principles of the substance, such as its expansion
under heat, figure, and motion, can the knowledge of the wax be clear and distinct. Only then can it be
true knowledge. One should note here that, for Descartes, expansion under heat, figure and motion are
mathematical, innate concepts, rather than empirically learned concepts. As such, it becomes clear here
that, for Descartes, the wax can only be comprehended by the intellect a priori.

On the other hand, empiricists, such as Locke and Hume, posited that knowledge comes primarily
from sensory experience. As such, they emphasized that humans’ logical categories arise mainly from
observation and experimentation rather than rational deduction. We could roughly summarize their view
with the ” Empiricism Thesis”: ”We have no source of knowledge in S or for the concepts we use in S
other than experience” [54]. Thus, if we are to have any knowledge, it comes from experience. Notably,
this thesis makes a less strong claim to knowledge. It does not claim that we can have any knowledge at
all. It merely claims that if we can have knowledge about something, then this knowledge comes from
experience. We find an example of this in Hume’s rejection of understanding of causal relations.

According to Hume, our understanding of a causal relation between A and B cannot be grounded in
pure sensory input, because this sensory input only provides us with the temporal succession of A and B.
The sensory input does not provide us with a connection between A and B. There is no way of knowing
whether this relation will still hold tomorrow.

Thus, Hume rejects that we can have true knowledge of a causal relation between objects because
true knowledge should come from experience, however we can not get true knowledge from experience.
As such, Hume’s argument is empirical. If the real meaning of logical concepts can be attained, it can
only be attained from experience.

4.1.2 Kantian Intelligence as Faculty of Combination

Contra both rationalists and empiricists, Kant argued that human cognition arises from the synthesis of
intuitions ( received from the faculty of sensibility) and the application of innate conceptual frameworks
(given from the faculty of understanding) to these intuitions, with the faculty of the imagination mediating
between these two faculties. Said differently, ”thoughts without content are empty, intuitions without
concepts are blind” [32, A51/B76]. Consequently, it is just as necessary to make the mind’s concepts
sensible — that is, to add an object to them in intuition — as to make our intuitions understandable by
bringing them under concepts.
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In the words of Hyeongjoo Kim, we can interpret Kant’s position as that ”the key to human intelligence
is simply the conceptualization of sensible information” [35, p. 140]. As such, Kant’s position can be
seen primarily as a ”faculty of combination” [35, p. 142]. Mental concepts need to be supplemented with
empirical sense data, and vice versa, in order for humans to experience anything at all. However, how is
this any different from the rationalist position of applying a priori mental concepts to empirical data in
order to make sense of them?

Well, for Descartes, the logical concepts are innate, a priori. They are given to us independent
of experience and we can utilize them through proper logical reasoning. However, according to Kant,
following Evans’ interpretation, what is innately given is not our concepts (or categories) themselves, but
rather our faculties whose application to sense data produces those categories: “The pure unary concepts
are not ‘baked in’ as primitive unary predicates in the language of thought. The only things that are
baked in are the fundamental capacities (sensibility, imagination, power of judgment, and the capacity
to judge). The categories themselves are acquired — derived from the pure relations in concreto when
making sense of a particular sensory sequence” [23, p.74].

As such, for Kant, logical concepts are synthetic a priori. They are a priori true, but they can only
be comprehended as such when we use them to understand our experience. For example, when the
question is: "how do we form the general idea of a triangle when we have only seen a series of particular
examples?”, Descartes might respond that we form a general idea of the triangle because the triangle is
subject to mathematical truths which are universally true and a priori accessible.

For Kant, on the other hand, the concept of a triangle is grounded in our intuition of space, which
allows us to construct the figure a priori in our minds. The truths about triangles, such as the sum of
their interior angles, are synthetic a priori insofar that they extend our knowledge about reality, but do
not derive from empirical examples. Thus, for Kant, it is only by first envisioning a particular triangle
that we can come to understand the mathematical rules of any triangle as such. Thus, unlike Descartes,
Kant emphasizes that knowledge depends on the synthesis of concepts and pure intuitions, rather than
solely on logical deduction.

As such, we can frame Kant’s answer in terms of the combination of sensory and conceptual represen-
tations. Only by actively applying innate logical functions to experience, can we experience reality in a
conceptual manner. Thus, it is only by applying logical functions to raw sense data that we can learn
synthetic a priori categories. [32, A140/B179]

4.1.3 Coherent Object Representations

But then, for Kant, how does this faculty of combination provides us with coherent object perceptions?
And what do we mean by coherent object representations? Well, before, we saw that Kantian intelligence
can be seen as a faculty of combination. Synthetic a priori categories are learned by applying innate
logical faculties to experience and vice versa. These faculties (the faculty of sensibility and the faculty of
the understanding) provide the mind with distinct representations of the same object: intuitions and
concepts, respectively. [32, A19/B33]

As such, for Kant, producing coherent object perceptions becomes a process of synthesizing these
different representations: unifying the intuitions by applying the concepts. ”Synthesis is ... the action of
putting different representations together with each other and comprehending their manifoldness in one
cognition” [32, B103].

Here, an intuition is an immediate relation to an object. It presents an appearance directly to us
[32, A109]. In Evans’ words, an intuition is a representation of a particular object (e.g., this particular
triangle) or a representation of a particular attribute of a particular object at a particular time (e.g., the
red color of the particular triangle at this specific time under these specific lighting conditions). In logic
terms, we could easily denote this immediate relation as red (X), where X denotes the triangle.

The faculty of sensibility provides us with a manifold of intuitions [32, B68]. For example, the color of
the triangle can change over time if the lighting conditions change. Each new perception of the triangle
under new lighting conditions provides us with a different intuition.

Concepts, on the other hand, are a distinct type of representation. Whereas an intuition represents a
particular object, a concept is a general representation that many intuitions may fall under [32, B377].
As such, concepts serve as rules for unifying and organizing the manifold of intuitions [32, A106] which
sensibility leaves us with. The generality of concepts allows us to think about objects abstractly, beyond
their immediate appearance. As such, they only relate to an object mediated through the intuitions.

For example, according to the Triangle Inequality Theorem, three line segments form a triangle if
the sum of the lengths of any two segments is greater than the length of the third segment. This can be
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represented by the following conditions: a + b > ¢,a + ¢ > b,b+ ¢ > a. If all three conditions hold, then
something counts as a triangle. This conception of a triangle is a concept which applies to all possible
intuitions of triangles. It applies to triangle X when red(X) is an intuition, but also when yellow(X) is
an intuition.

Thus, intuitions and concepts are different representations of the same object because they have
a different relation to that object. Intuitions relate directly to an object. Concepts relate directly to
intuitions, but indirectly to an object. As such, concepts’ relation to objects is mediated by multiple
intuitions of that object.

Importantly, this combination of these distinct types of representations, following from the combination
of the faculties, enables abstract (associative and implicative) invariances to be learned from data.
Remember that in section 3.1 we defined invariances as properties of objects which do not change despite
manipulations made to the object. Following Reza Negarestani’s interpretation of Kant, we could say that
in the mere intuiting of objects, we are dealing with local variations and rudimentary invariant aspects of
particular items [58, p.158]. For instance, different shapes, colors and sizes of triangle X.

However, ”local variations (manifolds) of items (shape, [colour], etc.) supplied by the ... [faculty
of sensibility] ... are not by themselves sufficient for object-construction since object individuation,
classification, and recognition involve the construction of types of invariances which form a network of
associations and implications” [58, p.158]. The general character of concepts, their status as logical
functions, means that they provide us with (domain-)general and universal invariances of triangle X.
Effectively, these invariances are higher order associations and implications about objects. They enable us
to think about, what if I remove two sides of this triangle, would it still be a triangle? Importantly, ”such
invariances cannot be obtained without a complex interplay between the sensory intuitions ... and the
pure concepts of understanding” [58, p.159]. This is because the intuition only provides us with empirical,
visual features of the object, such as redness, brightness, position. The intuitionist representation of the
object does not provide us with categorial features of it, such as negation (not-ness), disjunction (or-ness),
universality (all-ness) or particularity (some-ness) [66, p.463].

As such, it can be stated that in order for the Kantian mind to construct coherent object perceptions,
we need to combine the distinct representations of an object X, and this combination enables the mind to
recognize intuitions of objects as coherent through the mediation of domain-general invariances.

By applying the concept of the triangle to the particular intuitions of triangles, the mind abstracts
away from the particular, local, features (size, color, exact angles) of the particular triangle, in order
to capture the general properties of triangles as such. They are domain-general, because this enables
recognition of the triangle independent of the context it is in. These invariances enable us to recognize
any triangle.

This will be highly relevant for my critique on deep learning-based computer vision models later on,
but for now, let us proceed to show that Neuro symbolic AI (ILP) can be said to exhibit some form of
Kantian intelligence, because it is also a faculty of combination; it provides us with abstract invariances
for intuitions of objects by combining these intuitionist representations with conceptual representations.

4.2 Interpreting AI Paradigms Through Kant

Thus, I tried to characterize the debate between rationalism and empiricism as the debate between the
question whether concepts are innately given, or empirically learned. Furthermore, I showed that Kant,
with his notion of intelligence as a faculty of combination, aims to find a middle ground between the
two by conceptualizing only our logical functions as innate, providing us with synthetic a priori concepts.
As a consequence, we saw that coherent object representations are those representations which exhibit
abstract and general invariances because they subsume intuitions under concepts.

This debate between empiricism and rationalism, and their consequences of object representations, can
be said to extend to the current debate in Al research, between logic-based Al and deep learning: ”the
neural network is the intellectual ancestor of empiricism, just as logic-based learning is the intellectual
ancestor of rationalism” [22, p. 19]. Likewise, Kant’s unification of empiricism and rationalism can be
said to point to a hybrid, neuro symbolic AT architecture. In, [22], Richard Evans already made this claim,
however, he does not elaborate on why this actually is the case. As such, I will elaborate on this further.

In this section, I will provide evidence to show that a) logic-based Al, like rationalism, falls short
of Kantian intelligence because it relies solely on innate concepts (pre-defined symbolic rules without
meaningful connection to sensory experience), b) Deep learning, like empiricism, falls short of Kantian
intelligence because it attempts to derive all knowledge from data alone, without innate logical capacities
for combining and structuring that information, and ¢) Neuro symbolic Al approaches Kantian intelligence
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more closely. It functions as a faculty of combination. As such, it can, in theory, learn abstract invariances
from data leading to more coherent object representations.

4.2.1 Logic-Based AI as Rationalist Al

In section 2.1.1, we saw that logic-based AT is well-suited for deductive reasoning, due to its ability to
check logical rules for satisfiability. We also saw that it operates on discrete, relational data like logic
programs as opposed to noisy, continuous data, like an image or video.

Let us return to the triangle example that we saw earlier. We can construct a logic-based Al system
in order to determine whether a discrete input is a triangle. The task of a logic-based system would
be to determine if three line segments with lengths a, b, and ¢ can form a triangle. Remember the
Triangle Inequality Theorem from before. To reiterate: three line segments form a triangle if it satisfies
the following conditions: a +b > ¢,a+ ¢ > b,b+ ¢ > a. Using logic programming, we could provide the
conditions as knowledge base and the sizes of the three line segments as input. We could then check
whether substitution of the variables makes these conditions true (’satisfiable’; in logic terms) and, thus,
if something satisfies as a triangle.

This discrete representation in logic-based Al parallels Kant’s notion of concepts in an important
way. Just as Kantian concepts are general rules that can apply to multiple instances (like the concept
”triangle” applying to all possible triangles), discrete representations in logic are symbolic abstractions
that capture general properties. For example, the logical predicate isTriangle(X) could represent the
rules that can be applied to any input X, much like how Kant’s concept of a triangle provides rules for
recognizing any triangle independent of its context.

However, there’s a crucial difference. While Kant’s concepts are meant to be actively synthesized with
intuitions through the faculty of combination, logical discrete representations remain purely symbolic and
disconnected from sensory experience. They do not combine with continuous sensory data. As such, the
discrete concepts are innate ideas; predefined rules that exist independently of experience.

We clearly see this in our example. It applies the a priori concept of a triangle to interpret sensory
data and leaves no room for the concept of triangle to be formed by the data. The logic-based Al’s a
priori concept of a triangle is fixed and predefined. It lacks the capacity to dynamically learn the concept
by applying the rules in experience and, thus, it does not synthesize the a priori concepts with empirical
experience. Consequently, the concept of a triangle is not formed through application of the concept to
sense data, as was the case for Kant.

What this effectively means is that logic-based Al’s object representations are incoherent. The concepts,
because they are not dynamically related to the object, are empty: brittle and static. Small changes or
noise in the input data can make the model unable to find a satisfiable solution. Thus, unimportant
changes made to the object do not keep the conceptual representation of the object consistent (the object
can become unsatisfiable). As such, the concepts applied by logic-based Al, although abstract and general,
are not invariant. Superficial changes in the object can easily change the conceptual representation of
the object (from true to false and vice versa). As such, this form of rationalistic AT does not exhibit
Kantian intelligence as a faculty of combination and, consequently, also does not exhibit coherent object
representations.

4.2.2 Deep Learning and Neural Networks as Empiricist Al

Conversely, take the case of determining whether an image exhibits a triangle using a CNN. Here, we
would train the CNN on a lot of variations of images where a triangle occurs. The images could contain
weirdly shaped triangles, edges with different colors, different background, different lighting conditions,
etc. Including as many of these variations would increase the generalizable capability of the model [41]. It
is important to provide as much data as possible, because the CNN does not have any innate conception
of what a triangle is. It does not contain an a priori representation of the Triangle Inequality Theorem.

Given this fact, it becomes clear how neural networks can be seen as empiricist Al. Earlier, we showed
that empiricism learns a posteriori concepts to make sense of sense data and that the only knowledge we
can have comes from experience (the ”Empiricism Thesis”). As such, the concepts which empiricist Al
learns are completely determined by experience or the input data.

The object representations of this empiricist approach to learning align with Kant’s notion of
intuitions. Just as Kantian intuitions provide immediate, particular representations of objects through
sensory experience (like seeing this specific triangle under these specific conditions), neural networks learn
to represent objects through their distributed, continuous representations of sensory data. The activation
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patterns in a CNN’s layers can be seen as analogous to intuitions. They directly represent particular
features of the input, like edges, textures, and shapes, without any predetermined conceptual framework.
For example, when processing an image of a triangle, the early layers capture immediate visual features
(edges, corners) much like how our sensory intuitions first encounter particular aspects of objects.

This is exactly what happens in our example: the models build their understanding of the world
purely through exposure to examples of images containing triangles, without any pre-programmed rules
or concepts of what constitutes a triangle. Providing a completely different training data set would give
the model a completely different representation of a triangle.

What this means for their object representations is that these are highly invariant to visual features.
CNNg, for example, are invariant to changes in object position in the image, meaning that the triangle
position in the image does not negatively effect the models ability to recognize it as one. [41], [26]

However, as such, similar to logic-based AI, neural networks also do not align with Kantian intelligence
because they do not learn abstract concepts as a result of combining the faculties. They do not combine
symbolic representations with distributed representations, nor do they have some form of innate ’spatio-
temporal manifold’; an internal world model guiding their concept learning [51, p.145].

This is made even more apparent with the problem of ’spurious correlations’ in neural networks which
we already saw before [49]. According to Marcus, the decisions of neural networks are often based on
nonsensical correlations. For example, a model could detect something as a triangle, just because there
is a patch of grass in the left-upper corner. As such, these models seem far from a level of Kantian
intelligence.

4.2.3 Neuro Symbolic AI as a Faculty of Combination

Thus, we saw that neither logic-based AI, nor neural networks approximate Kantian intelligence well,
because neither one respects the condition of being a faculty of combination: learning synthetic a priori
concepts by applying innate logical processes to make sense of experience. Because of this, they also do
not exhibit coherent object representations: abstract, domain-general invariances.

I will now show that neuro symbolic AT (which we defined in section 2.1.3 as neuro symbolic ILP)
approximates this intelligence more closely, because it can learn such synthetic a priori concepts from
data by using innate logical processes. As a result, it exhibits more coherent object representations.

Neuro symbolic AI brings us closer to Kantian intelligence. In logic-based Al , we saw that the logical
rules which are defined are often very task-specific rules [18]. For example, when trying to recognize a
triangle in images, we have to define a priori what a triangle looks like and then train a neural network
to recognize that in an image.

With neuro symbolic AI, on the other hand, we only have to define very general logical rules. For
example, all objects are connected in space, and all objects, when not interacted with, persist through
consecutive time steps [23]. These general logical rules guide the neural network learning in such a way
that the logical representation of the triangle can be learned from raw visual data. Furthermore, the
model can itself learn new, latent logical rules and predicates needed to make sense of a sensory sequence.

These learned logical rules and predicates are not purely relative to the data, as we saw with CNNs.
On the contrary, the idea is that the learned logical concepts are generalizable beyond the training data
to new, unseen data and that they can even help humans in learning higher-order concepts [22], [13]. As
such, it could be stated that the learned logical concepts are a priori true, at least to some degree: they
are also applicable to situations independent from the models’ experience.

However, they are also synthetic, because they are learned by applying the innate logical functions of
the model (the abstract rules about space) in order to make sense of the experience. As such, the learned
logical concepts can be said to be synthetic a priori. This is in contrast to the a priori concepts applied
in logic-based Al and to the data-relative concepts learned by deep learning models. In this way, we can
see that this second form of Neurosymbolic Al, ILP, brings us closer to Kantian intelligence.

All in all, neuro symbolic Al models seem to bring Al research closer to exhibiting Kantian intelligence,
due to the fact that both are characterized by a ’faculty of combination’. We saw that logic-based Al
exhibits a form of rationalism because it defines a priori concepts and applies these to sense data, without
the option to update the concept itself. Neural networks, on the other hand, aim to learn abstract
concepts purely from data. As such, the concepts become highly subjected to the training data, which is
highlighted by the problem of spurious correlations.
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4.3 From Awareness to Understanding: Applying Kantian In-
telligence to Computer Vision

In section 3.1, we saw that contemporary computer vision models, despite their great success in performing
annotation based tasks, are still bad at high-level tasks like visual understanding. This is especially the
case for video data. For example, CNNs only learn translational invariance, ViTs need large amount of
data to be trained on, VLMs still struggle with higher-order tasks like scene understanding, counting and
visual analogies, all of which are essential tasks for measuring the ability to generalize, and, thus, for
visual understanding. Even OCRA (Object-Centric Relational Abstraction) [81], which imbued a slot
attention model with a relational bottleneck, so that it can, arguably, learn relations and higher-order
relations between objects and, thus, claims to be able to generalize to new domains, does not exhibit
visual understanding in the Kantian sense. Their relational bottleneck computes pairwise relations and
struggles to capture complex higher-order interactions that involve multiple objects simultaneously. Many
complex relationships emerge not from direct pairwise relations but from the interaction of multiple
pairwise relationships. For example, in a circular arrangement of objects, we could say that the overall
structure is defined by the collective contribution of all pairwise distances (for example, object A is the
same distance from object B as object C is from object D). This cannot be fully captured by independent
comparisons. Detecting such patterns requires explicit higher-order relational operators or reasoning
mechanisms capable of processing all objects collectively. Since OCRA lacks such mechanisms [81], it
struggles to represent and reason about these relationships.

Fractured Perceptions: Interpreting Marcus’ Critique Through a Kantian Lens. Computer
vision models do not exhibit visual understanding because, through a Kantian lens, visual understanding
requires coherent object representations. These are representations of objects which are both intuitive
and both conceptual, they both have a direct relation to the object and an immediate relation to the
intuitions of the object. These representations, as we saw for Kant, can only arise through the process
of combining the faculties. Intuitions need to subsumed under concepts, represented to the mind as
conceptual perceptions.

However, contemporary computer vision models, due to their dogmatic reliance on deep learning
for concept learning, purely exhibit distributed representations of objects. They only exhibit intuitions;
representations of objects based merely on their visual invariances. They can deal well with perturbations
in object position, size, brightness or rotation, however they can not explain why. As such, they are
unable to learn abstract domain-independent invariances.

4.4 Counterarguments

However, there are some clear points of critique we could make against this view. We will treat them,
and their rebuttals, in turn.

1. Are we justified in viewing Kantian intelligence as human intelligence? In the field
of cognitive science and philosophy of mind, there are countless views on intelligence. Why do we not
just choose another view of intelligence? Although the Kantian view of intelligence is only one but
many, it is a very influential one. It has been shown that Kant’s theory of cognition has been very
influential for contemporary paradigms in cognitive science, such as Predictive Processing, Functionalism
and Enactivism [65].

These cognitive paradigms, in turn, are still very influential in AI development. As such, I believe
Kantian intelligence provides a foundational view in intelligence, which has a lot of connection to current
theories and practices, yet can still be critical enough, due to the fact that it is not a predominant
paradigm itself.

2. Can we not jut encode logical abilities into neural networks? In their seminal paper,
Neurocompositional computing: From the Central Paradox of Cognition to a new generation of Al systems,
Smolensky et al. make the claim for neurocompositional computing, as opposed to neuro symbolic Al
[73].

Basically, their claim is that we can encode logical functions, like compositionality, into neural network
tensors, which would enable them to learn higher-level abstractions of concepts. Arguably, this would
absolve the need for logical modules connected to neural networks in order to get to more human-like
levels of understanding in AI, and thus for hybrid neuro symbolic Al in general. Their stance is predicated
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on the idea that deep learning models have inductive biases enabling them to learn better. For example,
in the case of CNNs, this is the bias towards textures [26].

Although this is a valid point of critique, it should be noted that this is, in fact, not any different
than Descartes’ rationalist stance. Although the model learns compositional concepts, these concepts are
already predefined in their implementation in the DNN. Smolensky and colleagues define compositionality
as the tensor product and integrate this in the layers of the DNN. However, as such, they still define
the concept of compositionality a priori and they still subject sense data to this pre-defined concept.
Furthermore, the structural operations of the DNN itself do not change in learning, only the value for
the parameters. This is different from neuro symbolic Al, where the operations themselves can change
(the concepts through which the intuitions are unified). So, in the Kantian sense, Neurocompositional
computing does not bring us any closer to intelligence than Descartes’ naive rationalism.
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Chapter 5

The Apperception Engine

However, this was all still very theoretical. In practice, how can we envision a neuro symbolic AT model
which can be applied to computer vision tasks? How can we envision a model which can learn abstract,
domain-general invariances from visual intuitions, produced by the deep learning component, thereby
unifying those intutions? The Neuro Symbolic Apperception Engine seems to be a potentially suitable
model.

Specifically, The neuro symbolic Apperception Engine seems like an interesting model to apply to
video tasks. This is mainly due to the fact that: 1. the model is specifically meant as a machine learning
implementation of Kant’s theory of cognition, 2. the model is meant as an unsupervised sequence model,
aimed at making sense of sensory sequences and videos are themselves sequential data, because they
are build up of sequences of frames, 3. Evans himself already applied the model very successfully to
rudimentary sequential image tasks, like the sequential MNIST task and the Sokoban task. [24] As such,
initially, the model would seem a good fit. [22] However, it has not yet been applied to actual video data
or video understanding tasks. This raises the question as to what extent we could apply the model to this.

In its entirety, Evans’ project can be said to consist of three contributions: 1. A formalization of
Kant’s aim in the Critique of Pure Reason to unify the intuitions: 'making sense’ of a sensory input
sequence, 2. A logic-based machine learning system ”The Apperception Engine” aimed to implement
the necessary conditions of this notion, 3. A hybrid, neuro symbolic architecture which connects the
Apperception Engine to a Binary Neural Network (representing the perception module) in order to make
sense of noisy data. [22], [24], [25].

5.1 A Computational Framework of Making Sense

Doomed to generalise... the only rules that the system is allowed to produce are general rules that
quantify over all objects and all times. [24, p.31]

In general, the Apperception Engine aims to 'make sense’ of a temporal input sequence. A theory 6
makes sense of a sensory sequence S: 1. if the trace of 6 explains S, and 2. if the trace of  satisfies the
four conditions of unity.

A theory 6 explains a sensory sequence S if its trace 7(0) covers S, written as S C 7(#). This means
that for a finite sequence S = (S, ..., St), each element S; C A, where 7(6) = (A1, Ag, ...). As such, the
trace can be said to provide a complete and determinate description of the infinite time-series, while S
represents only a partial view. [25] Thus, the trace is the regeneration of the input sequence and serves
to evaluate the potential theories generated by the system.

However, making sense of a sequence requires more than just coverage of the input sequence. The
theory must also be unified. Unity is required at four distinct levels corresponding to the fundamental
elements of a trace: objects, predicates, ground atoms (grouped into states), and the sequence of states
itself. These conditions ensure that the theory isn’t just a collection of disconnected elements but forms a
coherent, integrated whole where each part relates meaningfully to the others.

Unifying intuitions means combining them using binary relations to form a connected graph, in
such a way as to satisfy various unity conditions [23]. The four unity conditions are:

1. Spatial unity: objects are united in space by being connected via chains of relations

2. Conceptual unity: predicates are united by constraints
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3. Static unity: atoms are united in a state by jointly satisfying constraints and static rules
4. Temporal unity: states are united in a sequence by causal rules

For their logical description, see [25, p.12-15]. According to Evans, the four unity conditions represent
both a strong inductive bias and domain-independent prior knowledge. As such, the Apperception Engine,
in theory, should be able to make sense of any sequence [22].

This highlights the difference between supervised ILP models, like POPPER [14] which require positive
examples, negative examples and background knowledge, as shown in section 2.1.1. Contrary to this, the
Apperception Engine is an unsupervised model. It takes as input a sensory sequence and background
knowledge. As output it will provide us with causal dynamic rules. These are rules which define the steps
needed for changes between the input states. They are in the form of Datalog€ causal rules.

Thus, as output, the Apperception Engine produces a causal theory, defined in a first-order logic
program, which aims to explain: 1. the initial conditions of-, 2. the evolution dynamics (how the states
change over time) of- and 3. constraints of the sequence of observations.

5.2 The Algorithm

In section 2.1.1, I already touched on the fact that the search method in ILP systems consists of a
discrete search in the hypothesis space. What this means is that finding a good theory becomes a search
problem [22].} However, in this space, contrary to continuous vector spaces in neural networks, good
solutions do not necessarily lay close together. See figure 5.1 for a visualization.
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Figure 5.1: A visualization of the Apperception Engine search space. Image taken from [11].

Furthermore, the hypothesis space is infinitely large, because there can be infinitely many ways to
represent the solution to a problem. We could for example add dummy predicates ad infinitum which
would neither disprove the hypothesis, nor make it satisfiable. As a consequence, a brute force approach,
trying the calculate all the possible hypotheses, will not work [22]. In, [11] the authors use multiple
heuristics to cut down the complexity of the search space, at the risk of lower accuracy. I, however, follow
Evans’ Apperception Engine for scientific consistency.

As such, the search algorithm works as follows, see figure 5.2 for a visualization.

1Although, it might sound strange to view the Kantian process of unifying intuitions as a computational search space, this
view has more proponents. For example, Reza Negarestani following Wilfrid Sellars states that ”In this sense, transcendental
logic, as that which supplies concepts with sensory intuition and applies classificatory concepts to intuitions, can be
understood as a computational search space.” [58, p.162]
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Figure 5.2: A visualization of the Apperception Engine search algorithm. Image taken from [11].

The Apperception Engine employs a search strategy which partitions the infinite search space into
manageable regions. This partitioning is based on how ”imaginative” a causal theory can be (how
much predicate invention on the hypothesis is allowed). Specifically, it is based on the extent to which
unobserved objects, properties, and relations can be added to the vocabulary.

The search process involves two main tasks. First, the engine iterates through templates, starting
with a base template and progressively increasing template complexity. Each template defines its own
vocabulary (extended from the base vocabulary) and sets limits on the number and size of static and
causal rules, in accordance with the vocabulary’s richness. Second, within each template, the engine
searches for successful causal theories that are expressed in the template’s vocabulary and do not exceed
a maximum complexity threshold.

The algorithm follows a systematic approach: it begins with the simplest (base) template and iteratively
increases template complexity until either a good solution is found or a time limit is reached (Evans
set his time limit at 4 hours). This approach ensures that simpler solutions are considered before more
complex ones.

While this partitioning strategy has the great advantage of ensuring that searches can terminate, it
comes with a notable limitation: a satisfactory causal theory needed in order to explain the sequence
might exist, but not be found within the allotted time if it lays in an unexplored partition of the search
space. As such, the systems’ search algorithm contains a trade-off between completeness and efficiency.
22]

5.3 Implementation Language and Complexity

The Apperception Engine uses a combination of Datalog, Datalog€, and ASP to model and reason
about static and dynamic systems. Specifically, ASP is used as a meta-language to implement a Datalog
interpreter. This enables the declarative encoding of the semantics of Datalog and its temporal extension,
Datalog€ [22, p.22]. This design makes use of ASP’s capabilities to define and enforce constraints, explore
program spaces, and optimize solutions [22, p.27].

The integration of these languages has significant implications for expressivity, decidability, and
computational complexity. Datalog supports static reasoning with polynomial-time (P) data complexity,
but its program complexity grows exponentially (EXPTIME) due to grounding. Datalog€ extends
Datalog with temporal reasoning. Although this enables dynamic modeling, it also increases computational
costs, potentially reaching PSPACE-hard complexity. ASP supports optimization and dynamic reasoning
via stable model semantics, where finding solutions is NP-complete, and optimization problems rise to
Y _complete. This point will be important for my discussion point about my complexity analysis.
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5.4 The Apperception Engine in Action

As stated in the introduction of this chapter, Richard Evans has himself already applied a neuro symbolic
variant of the Apperception Engine to rudimentary computer vision tasks (the sequential MNIST and
Sokoban task). These tasks both consist of low-dimensional binary image sequences. The task of the
Apperception Engine is to find a causal theory which can make sense of the sequence. What these tasks
both have in common is that they test the causal theory by prediction. The tasks consist of asking the
engine whether it can predict the next states.

I will not treat these into further detail here. The Sokoban task will be explained in more depth in
Chapter 4. For the sequential MNIST task, see [24]. Evans has shown that the Apperception Engine can
score well on these tasks with only one training sample (one sequence) [22], [24].

However, the main reason for treating these here is to show how Evans implemented the neuro
symbolic architecture. As shown in, 2.1.3, a big problem in hybrid neuro symbolic architectures is how to
deal with the interface problem. How do we combine the discrete, localist module with the continuous,
distributed module? The way Evans solves this is by implementing a constrained version of a BNN as a
single logic program in ASP. As such, "the state of the network can be represented by a set of atoms, and
the dynamics of the network can be defined as a logic program” [22, p. 107]. Thus, Evans avoids the
interface problem by making the neural network a binary logic program, meaning that the raw data itself
will also be processed as a logic program. This raises the question whether the Apperception Engine as is
is suitable for computer vision tasks on videos. The next chapter will explore this further.
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Chapter 6

Experiment

6.1 Introduction

As we saw in the previous chapter, the neuro symbolic Apperception Engine has shown promising results
in learning causal theories from sequential data using grid-based representations through predicting the
next time step[22], [24], [25]. However, the data for these tasks was still very low dimensional, thus in
order to see if the Apperception Engine could be applied to computer vision tasks, I wanted to test for
higher dimensional data: grids representing object states in videos. In [82], [60] they test the capability
of their unsupervised models for frame prediction in videos. Evans’ achieved success with Sokoban-style
grids suggests that similar grid-based approaches could be effective for understanding object dynamics in
video data with the Apperception Engine. Due to the high complexity of the task, focus will be laid of the
data complexity of the task ' The CLEVRER dataset [85], with its focus on in vitro object interactions
and causal relationships, provides a good testbed for this.

As such, this chapter will examine the feasibility of using grid-based representations for processing
CLEVRER videos with the Apperception Engine. I investigate two critical aspects: the spatial accuracy
of grid representations and their computational scalability.

6.1.1 Research Questions

As stated in the introduction, the main research question of the thesis is:

e R.M: How can Kant’s philosophy of cognition be useful for computer vision?
In order to answer this question, an important sub question is:

e R.2: How can we test the Apperception Engine on computer vision tasks?

As we saw in 5, the Apperception Engine is specifically meant to make sense of a sensory sequence.
As such, the Apperception Engine is a sequence model which explains temporal object dynamics. At
the same time, [82] [60] test object dynamic modeling by asking the question whether the models can
accurately predict the next n states of a video. As such, my operational research question becomes:

e R.0O: Can the apperception engine accurately predict the next n state of object relations in a video?

Specifically, this means whether the Apperception Engine can successfully predict if objects in the
next unobserved state are left or right from each other.

In order to answer this question, it is necessary to understand what the best data representation is for
the Apperception Engine. This necessity comes from the fact that the Apperception Engine uses logic
programming, which can be very computationally expensive and hard to apply to noisy data like videos.
As such, a sub question necessary to answer the operational research question and the main question of
this chapter, is:

e R.0.1: Is it feasible to use a Sokoban-style grid representation for CLEVRER videos, when they
are provided as input to the Apperception Engine?

INote that I did actually tried running the data on the Apperception Engine, but that it would never yield a solution.
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6.1.2 Main Contribution

As such, the main contribution of this chapter will be that it shows that a Sokoban-inspired grid
representation is not a good way to represent CLEVRER videos for the Apperception Engine. Although
the grid representation works for Evans’ simple data set, does not work well for for CLEVRER  videos
due to scaling limitations of the Apperception Engine. The main reasons for this are:

1. Loss of spatial information: In the conversion from CLEVRER videos to 2D grid we lose a lot
of spatial information. First of all, we lose the z-axis. Secondly, the representation of the grids
needs to large enough in order to correctly represent the CLEVRER object dynamics, however they
also need to be small enough too handle for the Apperception Engine. Furthermore, it is hard to
represent the top view correctly. Objects are often flipped alongside axes, without an immediate fix
available.

2. Line count analysis: The line count analysis shows a quadratic increase in the number of lines
needed to represent the background knowledge of the data: the grid. This means that we can not
easily increase the grid size beyond Evans’. Evans uses grids of 4x4 and this already takes the
Apperception Engine approximately 4 hours to solve. As such, increasing the grid size does not
seem a viable option.

The rest of this chapter will treat both of these studies in turn, treating the used methodology for the
analyses, their results and a discussion of the results.
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6.2 Study: CLEVRER Transformation

6.2.1 CLEVRER Dataset

CLEVRER (Collision Events for Video Representation and Reasoning) [85] is a diagnostic video dataset
designed to evaluate the ability of computational models to perform temporal and causal reasoning.
Unlike other video reasoning benchmarks that focus on complex visual pattern recognition, CLEVRER
emphasizes understanding the temporal and causal structures behind simple object interactions [85]. As
such, it is widely used as an evaluation method for neuro symbolic vision models [69].

The dataset consists of 20,000 synthetic videos (10,000 training, 5,000 validation, 5,000 test) showing
objects colliding on a flat surface, along with over 300,000 questions and answers. Each video is 5 seconds
long and features objects with different shapes, materials, and colors interacting through physics-based
collisions. The videos have a resolution of 480 x 320 pixels. See figure 6.1 for the distribution of videos
dependent on the number of objects present in the video.
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Figure 6.1: Distribution of videos in the CLEVRER dataset based on the number of objects in the videos.

CLEVRER aims to tests four types of reasoning: Descriptive: Understanding what happens in the video
(e.g., ?what color is the object?”) Explanatory: Understanding cause and effect (e.g., ”what’s responsible
for X event?”) Predictive: Anticipating future events (e.g., ”what will happen next?”) Counterfactual:
Reasoning about hypothetical scenarios (e.g., ”what if X object wasn’t there?”) Each question comes
with a functional program representing its underlying logic, and the dataset includes ground-truth motion
traces and event histories. The controlled environment allows for systematic evaluation of AT models’
reasoning capabilities while minimizing biases in visual recognition and language understanding.

When testing the visual causal reasoning capabilities of a model, it is more desirable to use a dataset
like CLEVRER, which contains videos of in witro object interactions, as opposed to a dataset like
SUTD-TrafficQA [83], which contains real world videos of object interactions. In testing neuro symbolic
based visual reasoning, faulty reasoning can occur because of two main reasons: 1. it can be the case that
relevant objects are not detected properly, 2. assuming that all relevant objects are properly detected,
the reason itself fails. [14], [70], [69] It is this second reason which we want to test. The CLEVRER
dataset facilitates this better, because its objects only contain simple shapes and colors, whereas the
objects in SUTD-TrafficQA are complex and harder to recognize for visual models. Consequently, using
CLEVRER to test visual causal reasoning eliminates the possibility that faulty reasoning occurs due to
the fact that the visual recognition component of the model is not able to detect objects properly.

30



6.2.2 Sokoban Task

I followed Richard Evans in using the Sokoban task as the domain. This is a puzzle game where the player
controls a man who has to move around a two-dimensional grid world, pushing blocks onto designated
target squares. I chose the Sokoban task because the format of this task came closest to the existing
video understanding datasets, like CLEVRER.

Evans’ Sokoban task consists of two variants. The discrete Sokoban task and the neuro symbolic
Sokoban task. The discrete Sokoban task takes as input 1. a sequence of logical grid representations
containing cells and objects, and 2. exogenous player actions. The sequence of grids serve as the data to
be explained, whereas the exogenous actions help the system in coming to a solution, but do not need
to be explained themselves. [22] On the other hand, the neuro symbolic Sokoban task takes as input
20x20 binary pixel images, one exogenous player action per time step, and uses held-out data in order to
evaluate the binary neural network. See the figures 6.2 and 6.3 below for an example of each task.
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Figure 6.2: A Sokoban sequence showing five time steps with player moves. Each grid is 4x4 and shows
the positions of the man (m) and blocks (b), with corresponding actions below. This particular sequence
is based on Richard Evans’ code.

acceptable

unacceptable

east north west west
- — / - T ~
raw Sensory sequence held-out

Figure 6.3: A Sokoban sequence with raw sensory input and held-out test cases. Figure reproduced from
[22].

6.2.3 Converting CLEVRER to Grid Format

The conversion of CLEVRER videos into Sokoban grids proved a challenging exercise. On the hand, the
grids need to be small enough in order for the Apperception Engine to find a solution in viable time
(for more details, see section 6.3). On the other, if the grids are too small object dynamics can not be
correctly represented. This section will elucidate this discussing a possible conversion implementation.

The conversion of CLEVRER videos into a grid format involved several key steps to transform the
continuous 3D space of the videos into a discrete 10x10 grid representation suitable for Sokoban-style
environments. For technical details such as Python version and packages used for grid conversion, see
appendix B.

1 Keyframe Selection: First, I implemented a frame sampling system to extract key moments
from the videos. This is a widely used technique in solving computer vision problems for videos [2]. The
sampling function takes parameters for the total number of frames desired and ensures even distribution
between a start and end frame. I created four different sampling densities (5, 10, 15, and 20 keyframes)
to experiment with various temporal resolutions. See figure A.2, for an example with fifteen key frames.

2. Object Position Extraction: Next, I developed a system to extract object positions and proper-
ties from the CLEVRER annotation files. This involved loading the JSON annotation data, extracting
the object properties (color, shape), collecting the object locations for each keyframe, transforming
coordinates into a standardized format.

3. Coordinate System Transformation: The most crucial step was converting the CLEVRER
coordinate system (which uses a 3D space with coordinates roughly between -6 and 6) into a 10x10 grid.
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Importantly, I wanted a top view of the objects (similar to Evans’ Sokoban grid). As such, I dropped the
z coordinate. I implemented a conversion function that:

e Takes an object’s (z,y) coordinates in continuous space

e Normalizes them based on the coordinate bounds:

_ T — Tmin
Tnormalized =
Tmaz — Tmin (6 1)
Y — Ymin ’

Ynormalized =
Ymazx — Ymin

e Maps them to discrete grid cells:

col = I_xnormalized . UJZdthJ

6.2
row = I_ynormalized . helghtj ( )
e Ensures all positions fall within grid boundaries:
col = max (0, min(col, width — 1))
(6.3)

row = max (0, min(row, height — 1))

where:
e (z,y) are the input coordinates in continuous space

® (Tumin, Tmaz) a0 (Ymin, Ymaz) define the coordinate bounds

width and height are the grid dimensions

|-] denotes the floor function
e The max and min operations clamp the values to valid grid indices

Note that the y-coordinate calculation is inverted (Ymaqz — y) to match the conventional grid coordinate
system where (0,0) is at the top-left rather than bottom-left. The bounds of the coordinate system
were set to ((-6, 6), (-6, 6)) based on the observation of the coordinate ranges in the CLEVRER dataset.
Hoping to ensure that all object positions could be properly mapped to the grid.

4. Grid Visualization: To verify the conversion accuracy, I printed the objects on a grid in the
style of the Sokoban. It displays object IDs in their corresponding grid cells, shows empty cells with dots
and includes object properties (color, shape) for reference. See figure A.3 in the appendix for an example.
This example is based on the same video as A.2.

5. Final Output Format: As such, the final output format consisted of a sequence of grid states
for each key frame labeled with object metadata (color, shape) associated with each grid position.

6.2.4 Results

As can be seen in A.3, this conversion process does not adequately transform the continuous motion in
CLEVRER videos into a discrete grid-based representation. It does not preserve the spatial relationships
between objects well in two different ways:

e First of all, the grid does not represent the distance between the objects well. In frame 27, for
example, we see that the brown cube is much closer to the blue cylinder than the gray sphere is to
the cylinder.

e Secondly, the grid does not represent well the relative position of objects to one another. Object 3
(gray sphere) appears left-below object 1 (blue cylinder), whereas it should appear left-above the
blue cylinder. Similarly, object 2 (brown cube) appears directly above the blue cylinder, whereas it
should appear left-of, slightly above the blue cylinder.
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6.3 Complexity Analysis

This section presents an analysis of the computational complexity associated with the grid-based repre-
sentations in the Apperception Engine. The analysis shows that grid representations are not a suitable
data representation for CLEVRER videos as desired by the Apperception Engine, due to the fact tha
we can not easily increase grid size. Grid representations, while suitable for ’simple’ tasks like Sokoban,
become computationally intractable for more complex scenarios like CLEVRER videos.

6.3.1 Context

To understand why grid representation don’t scale well for CLEVRER videos, I analyzed the relationship
between grid size and rule complexity. The analysis consists of two parts: line count analysis and cell
adjacency analysis. Here, the cell adjacency is a subset of the total line count.

However, in order to properly test the increase in line count and cell adjacency I needed these values
for larger grids. This is especially motivated by the fact that the frames of CLEVRER videos consist
of 480320 pixels, so even a 100x100 grid would provide an extremely coarse spatial resolution. As
such, I set up a formula which can determine the line count based on the grid size. This allowed me to
extrapolate the line count values for larger grids.

6.3.2 Dummy Data

Although Evans, in [22], states that he tests mainly for the neuro symbolic Sokoban task, his code also
contains a discrete Sokoban task. For my purposes, the discrete Sokoban task serves as a preliminary
test to the end-to-end differentiable neuro symbolic task. This is because it is easier to input the pre-
processed data into the Apperception Engine as is, then it would be to build an end-to-end differentiable
Apperception Engine. As such, I want to analyse the complexity of the discrete grid-representation,
rather than the neuro symbolic one. I use Richard Evans’ code for the discrete Sokoban task as basis for
my complexity analysis 2.

My discrete Sokoban task takes as input a sequence of Sokoban grids, similar to figure 6.2. I wanted
to test the data complexity for the simplest object interaction: interaction between two objects. This
allows the test to focus more on the grid complexity, and thus on the usefulness of the data representation,
rather than on the object interaction itself.

However, all the CLEVRER videos contain three or more objects. As such, I decided to create a
dummy data set inspired by CLEVRER with only two objects in the grid sequence. As such, I have made
the following adjustments to Richard Evans’ discrete grids:

1. T changed the object denotations from ”b” (block) and "m” (man) to integers, in order to denote
different objects.

2. I removed the exogenous actions. This is because in our case, a Sokoban grid as representation for
CLEVRER videos, there is no player taking actions.

3. Reduced the number of objects in the grid to two. This prevents unnecessary complexity from the
number of objects at this stage.

Time 1 Time 2 Time 3 Time 4 Time 5
1 2 1 2 2 2 1 2 1
east east east east east

Figure 6.4: Sequence showing five time steps with two numbers moving in opposite directions. Number 1
moves from left to right while number 2 moves from right to left, crossing paths at Time 3.

This provided me with a grid of the form in figure 6.4. The figure only shows five time steps due to
spatial limitations of the paper. However, in reality the depicted movement happened across fourteen

2Link to Evans’ code: https://github.com/RichardEvans/apperception
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time steps. This number was chosen because Richard Evans has shown that the Apperception Engine
needs enough time steps to come up with a good enough causal theory (see appendix figure A.1) [22]

I manually comprised data for grid sizes ranging from 4x4 to 10x10. Following Evans’ Sokoban task,
the manually created files which all consisted of multiple sections:

The given sequence: Contains senses and hidden predicates documenting whether a time step
is sensed by the Apperception Engine or not. It records the positions for each of the two objects (obj_z1
and obj_x2) across the total observed time steps. It uses the format s2(c_in_1,0bj_x1, cell, timestep) and
s2(cin_2, 0bj_x2, cell, timestep). Where c_in_1 denotes the relation obj_z1 is in a cell and c_in_2 denotes
the relation obj_x2 is in a cell. It spans from time step 1 to 14, with the final positions marked as hidden.

Elements (Cells and their object declarations): This section defines each of the objects (is_object)
including: the two moving objects (obj_x1l and obj_z2) and all the grid cells (obj_cell_1_1 through
obj_cell_4_4). Furthermore, it declares all the cells (is_cell) for the 4x4 grid.

Concepts: This section defines the concepts (is_concept): in_1 and in_2. Each object in the grid
is defined by its inherency relation in space [22], therefore there must be one in_z relation for any object
x.

Time: This section declares the time range. For fourteen time steps, we have: is_time(0..14).

Logical Constraints: This section contains two uniqueness constraints per concept (at least one,
at most one), so four in total. It also contains incompossibility rules preventing objects from being in
multiple places. There is one such rule per concept.

Cell Adjacency: This section defines the cell adjacency relations between each cell in the grid. It defines
relationships between cells using p_right for horizontal connections and p_below for vertical connections.
There is no need for p_left and p_up, I can make those by negating the previous cell adjacency relations.

Walls: This section marks all the cells as not walls using p_is_not_wall.

6.3.3 Line Count Analysis

Following Richard Evans’ definition of the Sokoban grid, I assume that the grid is a square. Note, however,
that this analysis also holds for non-square grids of size w x h, as the total number of rules would still be
quadratic in terms of the total area (w x h). For simplicity of notation, I continue with the square grid
analysis. I can then derive the components that contribute to the total number of rules in the grid-based
representation.

Let us denote the grid size as n x n, where n represents the number of cells per row and column. We can
then derive the components that contribute to the total number of rules in the grid-based representation.

Elements: Each cell in the grid has one line to declare the cell as a cell and one line to declare
the cell as an object. The number of cells in the grid is simply the product of the row and column counts.
As such, the line count of cells can be calculated as follows:

Line count for cells = 2 x n x n = 2n? (6.4)

Cell Adjacency Relations: The number lines representing cell adjacencies can be calculated as follows:

e Horizontal adjacencies: There are n cells in each row, and each cell (except the last one in the row)
has an adjacency to the cell to its right. Therefore, the number of horizontal adjacencies is:

Horizontal adjacencies = n x (n — 1) (6.5)

e Vertical adjacencies: Similarly, there are n cells in each column, and each cell (except the last one in
the column) has an adjacency to the cell below it. Therefore, the number of vertical adjacencies is:

Vertical adjacencies = n x (n — 1) (6.6)
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e Total adjacencies: Summing the horizontal and vertical adjacencies, we get:
Total adjacencies = Horizontal adjacencies 4+ Vertical adjacencies
=nxn—-1)4+nx(n-1) (6.7)
=2nx(n—1)

Wall/Non-Wall Declarations: For each cell in the grid, we need to declare whether it is a wall or not.
Remembering that the grid is nzn, we get:

Wall/Non-Wall Declarations = n x n = n? (6.8)

Base Rules: In the file, the base rules consist of necessary to define the sensory sequence, constraints
and compossibility rules. We can read this value from the file.

Base Rules = 124 (6.9)

Combining these components, the total number of rules in the grid-based representation can be
expressed as:
Total Rules = Base Rules + 2n? + 2n x (n — 1) + n? (6.10)

Where:

e Base Rules: A constant number of rules, such as action definitions, incompossibility rules, and other
static elements.

e 2n?: Element declarations for the n x n grid.
e 2n x (n —1): Cell adjacency relations.
e n?: Wall/Non-Wall declarations for the n x n grid.

We can prove that this formula is quadratic. Let:

f(n) is quadratic <= 3Ja,b,c € R,a #0: (6.11)
f(n) =an®*+bn+c .

Proof. We can then show that the total number of rules is quadratic in grid size n:

Total Rules = Base Rules + Element Rules + Adjacency Rules + Wall Rules
=124 +2n% + 2n(n — 1) +n?
=124+ 2n* + 2n% — 2n +n? (6.12)
=124+ 5n* — 2n
= 5n? — 2n + 124

Since this is formula is of the form an? 4+ bn + ¢ with a =5 # 0, b = —2, and ¢ = 124 is constant, the
total number of rules is quadratic in n. O

The following section will present the result of filling in the values in the formula for larger grid sizes.
Importantly, ”Line Count” is equal to ”Total Rules”. The lines in the data file which contain white spaces
or comments (lines starting with ”%”) are not included in this number.

6.3.4 Results

Based on formula 6.12, T have extrapolated the line count to larger grid sizes. Table 6.1 shows the total
line count for the grid sizes (4x4) to (202:20) and (1972197) to (2002200) and the figure 6.5 show the
line count increase per grid size in a plot. To further dissect this growth, figure 6.6 shows the increase in
cell adjacency dependent on the grid size. Cell adjacency complexity means the number of cell adjacency
rules in the file.
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Grid Size | Grid Area (w?) | Line Count
4x4 16 191
5XH 25 234
6x6 36 287
X7 49 350
8x8 64 423
9x9 81 506

10x10 100 599
11x11 121 702
12x12 144 815
13x13 169 938
14x14 196 1,071
15x15 225 1,214
16x16 256 1,367
17x17 289 1,530
18x18 324 1,703
19x19 361 1,886
20x20 400 2,079

197%197 38,809 193,770

198x198 39,204 195,743

199x199 39,601 197,726

200x200 40,000 199,719

Table 6.1: Line count and grid area for different grid sizes

Line Count vs. Grid Size

2000
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1000

Line Count

750
500

250

2 3 4 5 6 7 8 9 10 N 12 13 14 15 16 17 18 19 20
Grid Size (n x n)

Figure 6.5: Figure shows the quadratic increase in the number of lines needed to define the cell adjacency
of the grid (y) for an increase in grid dimension size (x).

36



Cell Adjacency Complexity vs. Grid Size
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Figure 6.6: Figure shows the exponential increase in the number of lines needed to define the cell
adjacency of the grid (y) for an increase in grid dimension size (x).

Based on this, I observe several key findings:
1. Quadratic Line Count Growth:

e The results demonstrate a quadratic increase in line count as the grid size increases. This
quadratic growth can primarily be attributed to the increasing number of connections between
cells and to the growing complexity of the grid structure.

e Specifically, for a grid size of N, the line count appears to grow approximately as O(N?). This
growth pattern is inherent to grid structures because both dimensions (width and height) grow
linearly with N, and their effects multiply.

2. Quadratic Cell Adjacency Growth:

e The cell adjacency measurements also exhibit quadratic growth. This relationship can be
explained by the fact that each new cell requires connections to its neighboring cells. This
makes the number of possible cell-to-cell interactions increase as the grid expands.
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Chapter 7

Discussion

7.1 Interpretation of Results

7.1.1 Grid Representation Scalability

The analysis of grid-based representations for video understanding shows several limitations and im-
plications for scalability. My investigation demonstrates that the relationship between grid size and
rule complexity follows a quadratic growth pattern (O(N)), as shown by the line count equation:
f(n) =5n—2n+ 124.

This quadratic growth has negative implications for computational scalability. While Evans’ imple-
mentation processed a 4x4 grid in approximately 4 hours using parallel computing on a standard unix
desktop, my complexity analysis shows that scaling to practical video resolutions is computationally
intractable. For example, processing a CLEVRER video (480x320 resolution), which still is low resolution
compared to real-world videos, would require approximately 613,724 rules. This quadratic relationship
between rule count and processing time makes the approach impractical for real-world applications. Add
to this the fact that, for all the dummy data used in my analysis, the grids contained only two objects.
Adding more objects would add even more complexity in the data file.

This is not only the case for the grids as a representation which is not end-to-end (pre-processed grids
are fed into the engine), but also when the grids are fed as input to the neuro symbolic Apperception
Engine (likely even more so).

The fundamental challenge lies in the theoretical complexity of the underlying Answer Set Program-
ming (ASP) approach. As shown by Richard Evans [22, p.64], the number of ground instances grows
exponentially with the number of variables, while the ASP solving itself is NP-complete for finding
solutions and IT5-complete for finding optimal solutions. This theoretical barrier cannot be overcome
merely through improved implementation or hardware capabilities.

Furthermore, the grid representation itself introduces significant limitations in representing spatial
object relations in videos:

1. Loss of Continuous Information: The discretization of continuous spatial coordinates into grid
cells results in a loss of precise object positions and movements.

2. Resolution Dependencies: The quality of representation becomes directly tied to grid resolution.
This creates a trade-off between accuracy and computational feasibility.

3. Spatial Relationship Distortion: The grid structure does not capture complex spatial relation-
ships between objects correctly.

These findings suggest that, while grid-based representations initially seem to offer an promising data
representation to input spatial object states into the Apperception Engine, and thus to perform visual
reasoning, in fact they are not suitable for processing real-world videos at practical resolutions with the
Apperception Engine.
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7.2 Limitations

7.2.1 One System or Two?

Richard Evans states that ”we should use one system, because the higher-order logical rules should inform
lower-level sub-symbolic learning” [23, p.93]

Currently, my test for the data complexity does not do this. I use the discrete apperception engine
to test the data complexity. Thus, I assume that the input data representation is learned by a neural
network which passes it into discrete concepts and then pass it to the Apperception Engine, in order to
make sense of the sequence. Although this is not in line with Evans’ claim, this serves merely as an initial,
isolated test. In order to understand the better data representation for the end-to-end neuro symbolic
Apperception Engine, we should first know the data complexity for the discrete Apperception Engine.

7.2.2 CLEVRER Transformation

Another possible limitation is that I based the transformation of the CLEVRER, videos on the CLEVRER
coordinate system, a 3D space with a (min,max) range of (-6,6). Another option would have been to
convert, object detection positions of the objects into a grid with manually specified grid bounds. This
could particularly be an advantage because in real world computer vision applications object detections
are often used. [29] Although it would be good to test this as well, getting correct object detections on
the CLEVRER dataset provides a whole new level of complexity. To the best of my knowledge, currently
there is no high end object detection model, like for example YOLOVS [76], which has been trained or
fine-tuned on the CLEVRER dataset. As such, this would need to be done first. Furthermore, these
detections would be in terms of confidence percentages and object tracking often poses a challenge here.
As such, in order to properly convert these object detections into positions on a grid, asides from training
the model, the data labels should be corrected for each frame. This would prove a highly cumbersome
task.

However, most computer vision models use object I based my transformation on the CLEVRER
coordinate grid, why not object detection or something?

7.3 Future Work

7.3.1 Perception Module in ASP

Evans implements the perception module of the Apperception Engine, the faculty of sensibility, as a BNN
in ASP [22, p.30]. He does this because of the same claim as mentioned in sub section 7.2.1. According to
Evans, making sense of a sensory sequence requires a single end-to-end connected system. The conceptual
symbolic realm should inform the decisions at the pre-conceptual sub-symbolic realm. The logical rules
should inform the sub-symbolic learning process; the concepts must subsume the intuitions.

I agree with Evans’ claim and reasoning that the separate components should be combined in one
system end-to-end. However, I do not agree that the implementation of perception module as a BNN in
ASP is the best way to do this. Especially not when we try to apply the neuro symbolic Apperception
Engine to real- world computer vision problems, such as visual understanding from videos.

Evans implements the perception module as a BNN in ASP, because of the interface problem [22,
p-30]. The problem is how to unify the distributed, continuous representation of back propagation with
the localist, discrete representation of logic programming. This is a notoriously hard problem [50].

However, for real world computer vision videos, this implementation will likely be highly brittle and
unscalable. It can not easily be applied to videos containing multiple objects, colors and high resolution.
Secondly, it seems like an easy hack to subvert the problem. The BNN works only when the input data is
made so simple, its dimensions are so heavily reduced, that it does not reflect real-world continuous data,
like images and videos anymore.

This is a relevant point. The whole reason why Evans implements the Apperception Engine as an
unsupervised system is because he states that “the real world does not come with labels attached to sensory
data” [23, p.39] and that "Kant’s theory is intended to be a general theory of what is involved in achieving
experience, so — if it actually works — it should apply to any sensory input” [23, p.43]. Thus, the fact
that the Apperception Engine has implemented perception module as a BNN should be reconsidered and
future work should try to connect the discrete part of the Apperception Engine to a deep learning model
for the low-level object recognition.
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One possible way to implement this could be using the Scallop language [44], [88], [43], [31]. Scallop is
a probabilistic logic programming language designed to bridge neural computation and symbolic reasoning.
It enables the integration of noisy, probabilistic inputs (from neural networks) into symbolic reasoning
processes. As such, it could serve as a wrapper with which we could connect a deep learning scene
graph model, for instance, to the Apperception engine in order to learn causal rules over a sequence
of CLEVRER scene graphs. For this, we would likely need to add background knowledge for graph
reasoning to the Apperception Engine (such as, ’visit all nodes in the graph’, ’all nodes are connected to
each other’, 'nodes do not have a spatial relation to themselves’, etc.)

7.3.2 Alternative Data Representation: Scene Graph

The main significance of the line count plot and the cell adjacency count plot is the fact that these lines
represent the background knowledge which necessary specifically for the data representation as a grid.
The line count plot and cell adjacency plot represent the spatial arrangement of the cells in the grid.

As such, a large part of the computational overhang could be solved by using a different data
representation. For example, another widely used data representation for video understanding are scene
graphs [89].

Scene graphs provide a structured representation of visual scenes by encoding objects and their
relationships as nodes and edges in a graph. Unlike the grid-based approach which discretizes space into
fixed cells, scene graphs directly capture spatial and semantic relationships between objects [89].

A scene graph counsists of nodes, which represent objects with their attributes, (position, size, color,
shape) and edges, which encode relationships between objects (spatial, semantic, temporal). [89]

For example, a scene with "a blue cylinder left of a gray sphere” could be represented as two nodes
(cylinder and sphere) connected by an edge labeled ”left-of”, with attributes encoding their exact positions
and properties.

As such, scene graphs can offer multiple benefits compared to a grid-based approach:

e Scalability: The data complexity scales with the number of objects and relationships, rather than
grid size.

e Flexibility: They can easily represent complex relationships between objects.

e Efficiency: They form a more compact representation than grids, because they only focus only on
relevant objects and relationships.

7.3.3 Apperception PROPPER

POPPER is a recent ILP model that performs well in image classification with minimal examples
and generates interpretable rules. [14] PROPPER, an extension of POPPER, introduces probabilistic
reasoning into POPPER, making it suitable for neuro-symbolic tasks, for example determining whether
the image depicts a car on a bridge. As such, it handles uncertainty in noisy inputs like visual data. [29]
Specifically, an advantage of this model over the Apperception Engine is that it is much better documented
and updated. An interesting way forward to visual understanding following Kantian principles would be
Apperception PROPPER, integrating the Apperception Engines’ conditions of unity into PROPPER. As
such, one could add a temporal reasoning component and frame inertia, enabling Apperception PROPPER
to track objects, infer causal rules between states, and handle dynamic scenes. This approach would be
easier than trying to update the Apperception Engine, due to the simple fact that the Apperception is an
old, undocumented model written in obscure coding methods.

7.3.4 Learning Background Knowledge from Data

We saw that the Apperception Engine still requires task-specific, handcrafted background knowledge,
even though Evans makes it sound like it does not. For example, the Sokoban task needs the grid, and
action exclusion rules. This is a common problem for ILP models [13] and makes the potential for their
domain-generalizable ability an implausible ideality. At the same time, it is a well known fact that ILP
models can invent predicates as part of the solving process. [13] In, [67] Shindo, et al. propose a method
to invent high-level relational predicates from visual scenes.

It would be interesting to see whether this approach could be integrated with the Apperception
Engine. Similarly to the previous sub section, the best way to implement this would likely be to add the
Apperception Engines’ unity conditions as domain-specific background knowledge in Shindo’s model.
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Chapter 8

Conclusion

All in all, this thesis aimed to shed light on the question how Kant’s philosophy of cognition can be
useful for the field of computer vision. Following in Evans’ footprints, we saw that Kant’s philosophy
can be said to provide a theoretical framework and a practical blueprint for what machine vision models
require in order to interpret sequential data as a representation of an external world composed of objects.
Where traditional logic programming produces a priori relational object representations which are
generalizable, yet brittle, and deep learning produces a posteriori distributed object representations which
are ungeneralizable, yet susceptible to noise, neuro symbolic Al could potentially provide more coherent
object representations. These are synthetic a priori representations which are learned by applying the
innate logical faculties to experience and as such, are proven to be generalizable across contexts. These
are objects which persist over time, possess attributes that change over time, and adhere to general laws.
Crucially, these laws or concepts are synthetic a priori—they are not pre-defined but emerge from the
system’s intrinsic ability to unify perceptions.

This perspective demonstrates the potential advantages of Neuro-symbolic Inductive Logic Program-
ming (ILP) models for computer vision. Kantian principles suggest that, in theory, computer vision
models could perceive objects in videos as coherent wholes, rather than as mere aggregates of statistical
correlations. This could be achievable when perceptions are unified under domain-general laws, enabling
systems to move beyond pattern recognition to a more coherent understanding of dynamic environments
in visual data.

However, while this does sound good in theory, there are practical matters that we must consider if we
want to implement this architecture in an effective manner. We saw that the CLEVRER videos were hard
to convert to grid representations and that these grid representations do not scale well. Thus, highlighting
that a different way to represent objects and their relations in videos should be found. Nevertheless,
with the right implementation, such as using a more suitable data representation and transferring the
domain-general background knowledge to other ILP models we could be well on the way to realizing some
form Kantian understanding in computer vision models.

Practically, this theoretical insight could be applied to a wide range of visual understanding tasks, such
as visual question answering, where understanding relationships between objects and their transformations
over time is critical. The architecture informed by these principles aims to bridge perceptual data and
symbolic reasoning, creating models that reason about the world in a more human-like manner.
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Appendix A

Supplementary Figures

A.1 Richard Evans Sokoban test

1

0.8

0.6

Score

0.4

0.2

Figure A.1: Figure 5.13: The results for Sokoban on ten trajectories. The horizontal axis records the
number of time-steps provided as input. The vertical axis records the mean percentage accuracy over the
held-out time-steps. Figure reproduced from [22].
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A.2 CLEVRER Frames Visualization
A.2.1 CLEVRER Keyframes

) Frame 0 ) Frame 9 ) Frame 18 (d) Frame 27

) Frame 36 ) Frame 45 ) Frame 54 (h) Frame 63

) Frame 72 ) Frame 81 ) Frame 90 ) Frame 99

) Frame 108 ) Frame 117 ) Frame 127

Figure A.2: 15 key frames from CLEVRER video 10000 showing object movements.
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A.2.2 CLEVRER Frames Transformation

Frame 0 Frame 9 Frame 18
0
0
1 1 1
3
3 3
Frame 27 Frame 36 Frame 45
2
0
1 1 1
3
3 3
Frame 54 Frame 63 Frame 72
2 2 2
0 0
1 1 1
3 3 3
Frame 81 Frame 90 Frame 99
2
2 2
0 0 0
31 3 3
Frame 108 Frame 117 Frame 127
2 2 2
0 0 0
3 1 1
3 3

Figure A.3: Grid representation of CLEVRER video 1000. Grid size is 10x10. Objects: 0 (brown cube), 1
(blue cylinder), 2 (yellow cube), 3 (gray sphere). Disappearing numbers indicates that objects are
occluded by other objects.
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Appendix B

Technical Specifications

Package Version
Python 3.12.7
aiohttp 3.10.10
beautifulsoup4 4.12.3
black 24.10.0
cloudpickle 3.1.0
contourpy 1.3.0
cryptography 43.0.3
flake8 7.1.1
matplotlib 3.9.2
numpy 2.1.2
pandas 2.2.3
pillow 11.0.0
requests 2.32.3
scikit-learn 1.5.2
scipy 1.14.1
seaborn 0.13.2
spyder 6.0.1

Table B.1: Manually Installed Python Packages and Versions
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