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1 Abstract

In this research, we employ machine learning techniques to predict the age of
onset of rare genetic diseases using the Human Phenotype Ontology. Provid-
ing age of onset information to rare genetic diseases may assist clinicians in
differential diagnosis of patients, by narrowing down results.

We first employed a random forest regression model, followed up by a graph
convolutional network in an effort to capture temporal traits and nuanced re-
lationships within the dataset. While both models performed well above the
baseline with a top-1 accuracy of 85 and 84%, respectively, we failed to identify
a significant increase in performance of the neural network over the random
forest model.

With this research, we highlight the potential of machine learning in differ-
ential diagnostics by capturing the relationship between phenotypic traits and
disease progression.

2 Layman’s summary

When a patient with a rare disease comes to a doctor’s office, it is difficult for
the doctor to diagnose this patient. There are thousands of diseases this patient
could be suffering from, and many of these diseases present in similar ways.
Trying to diagnose this patient is akin to finding a needle in a haystack. This is
where the Human Phenotype Ontology (HPO) comes in. This is a large library,
containing many rare diseases and their symptoms. To assist with diagnosing
such a patient, a doctor can use the HPO database to help narrow down which
disease ails the patient, by searching for diseases that fit the description of the
patient.
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With so many diseases, every bit of information that helps narrow down the
possible diseases for the doctor helps. One consistent piece of information that
the doctor will have is the age of the patient. However, only around half of the
recorded diseases in the HPO have recorded information of the age of patients
at the start of the disease. We aimed to provide this data, by making computer
models that learn from the existing data and associate an age with each disease.

In this study, we show that these computer models can accurately predict
the age of onset of rare diseases based on their symptoms. This can help doctors
in diagnosing patients, leading to faster and more effective treatments.

3 Introduction

The Human Phenotype Ontology (HPO) aims to standardise the vocabulary
of phenotypic abnormalities observed in hereditary diseases [robinson-2008,
gargano-2023]. The HPO is under continuous development, using medical lit-
erature and online databases such as Orphanet, DECIPHER, and OMIM. Each
disease is annotated with Human Phenotype (HP) terms, providing a com-
prehensive database of phenotypic characteristics associated with rare genetic
diseases.

Clinicians utilise the HPO as a differential diagnostic tool to assist in diag-
nosing patients by filtering the ontology for diseases matching the phenotype of
the patient [kohler-2020]. Given the expanding size of the HPO, which now
contains over 10,000 HP terms and annotations for more than 12,000 hereditary
diseases, it is imperative to include as much information as possible to narrow
down results. One key piece of information that clinicians often have is the age
of onset; however, only about half of the diseases in the HPO database include
this annotation.

The goal of this research is to append age of onset annotations to more
diseases, by employing machine learning algorithms. Accurately predicting the
age of onset of rare genetic diseases is crucial, as it can aid clinicians in making
differential diagnoses by narrowing down the possibilities based on the patient’s
age. This can lead to faster and more effective treatments, as early diagnosis
is often critical for managing rare diseases [long-2022, rareportal]. This re-
search can moreover contribute to a better understanding of the relationship
between phenotypic traits and disease progression, potentially leading to the
development of new treatments and prevention strategies.

We hypothesise that the HPO term annotations of a disease can be leveraged
as a predictive factor for the age of onset of a disease since certain phenotypical
traits are primarily found within a specific age group. To investigate this, we
employ two machine learning models: a random forest regression model
and a graph convolutional network.

The random forest model uses decision trees to predict the age of onset
of a disease based on presence or absence of HPO terms. The output of the
decision trees is aggregated into the final prediction of the model. In contrast,
the GCN learns associations between diseases based on HPO term similarity and
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the relative predictive power of these HPO terms, enabling the neural network
to make associations that may be missed by the simpler regression model. We
hypothesise that the GCN model, with its ability to capture these intricate
relationships between the diseases, will outperform the RF model.

We therefore propose the following two hypotheses:

• H1: Machine learning approaches may be employed to predict the age of
onset of OMIM diseases based on HPO terms.

• H2: The GCN model will outperform the RF model.

3.1 HPO

The Human Phenotype Ontology contains standardised terms describing hu-
man phenotypical traits. The HPO is a hierarchical graph: the further down
the graph is traversed, the more specific the HPO terms become. Any term
above an HP term in the hierarchy are called the ancestor terms. Likewise,
all HPO terms below a term are called the descendant terms. There can be
multiple degrees of ancestry and descendancy. For illustrative purposes, let us
take the term for polydactyly (HP:0010442). In our example, the first level an-
cestor for polydactyly is Abnormal digit morphology (HP:0011297). Polydactyly
has multiple descendant terms, including hand polydactyly and foot polydactyly.
Going down six more descendants, we eventually end up at Partial duplication
of the proximal phalanx of the 4th finger. This term does not have any descen-
dants. Ancestry for all HPO terms in the graph eventually leads to the top
term: All (HP:000001). Between Partial duplication of the proximal phalanx of
the 4th finger and All are fourteen HP terms.

Logically, certain HPO terms are more predictive of an age of onset than
others. For example, polydactyly (HP:0010442) can only be congenital, whereas
a bone fracture (HP:0020110) can occur at any age. This logic serves as the
base of the research.

3.2 Random forest

At the core of random forest models are the decision trees [breiman-2001].
Multiple decision trees are trained using bootstrap aggregating and the final
output of the model is the leaf or node selected by the most trees. In our case
we employ a random forest regression model, where the output is an aggregate
of the predictions of all trees, rather than the most predicted class as is the case
in classification models.

3.3 Bagging and random subspace method

Bagging or bootstrap aggregating is the general method of training for decision
trees [breiman-1996]. A subset of the training data is used to train a single
tree. Following the training, all the trees receive the same input datapoint, and
the class predictions are aggregated as a result.
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The random subspace method is an extension to bagging, where, if during
training a feature is identified as a strong predictor, this feature will be included
in many of the trees in the next training iteration, causing correlation [ho-1998].
This is especially important in our case, where certain HPO terms will be highly
correlated to a certain age of onset, whereas other HPO terms will be noisy.

3.4 Graph convolutional network

The graph convolutional network (GCN) is a type of graph neural network
(GNN): an adaptation of convolutional neural networks (CNN) to graph-like
data [kipf-2016]. GNNs, as the name suggests, are optimised for processing
data represented in graphs. CNNs, on the other hand, are optimised for grid-
like data [zhang-2019, sanchez-lengeling2021a]. We utilise a neural network
here, hoping to capture relationships that the random forest model is unable to
capture.

3.4.1 Forward function

The data from the batch is then passed to the forward function. The forward
function defines how the data is passed through the GCN layers, and returns
the onset category predictions for the batch.

The data is first passed to the GCN input layer. After that, the ReLU
activation function is used to introduce non-linearity in the model [hara-2015].
To prevent overfitting during training, a percentage of neurons are dropped out
[baldi-2013].

The resulting activations are subsequently fed to the second GCN layer, after
which the output is returned.

3.4.2 Back-propagation

Back-propagation is the core of neural network training. It utilises the the chain
rule from calculus, to propagate the loss L backward through the network, layer
by layer. The following gradients computed by the back-propagation process,
instruct the optimiser on how to adjust the network’s parameters to minimise
the loss [rojas-1996]. The model’s parameters are then updated with the cal-
culated gradients. Following this process, the calculated gradients are removed
to avoid accumulating gradients from previous, and make each training routine
independent from the last.

3.5 Application in this research

The random forest model predicts the age of onset of each disease separately,
using the aggregated results of the decision trees, while the GCN predicts the age
of onset of diseases by learning associations between diseases based on shared
HP terms. A basic overview of the machine learning models used in this research
is shown in Figure 1.
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Figure 1: Basic overview of the machine learning models. The random forest
model is described on the left side (A, B, C, D, E), while the GCN model is
described on the right side (A, F, G, H, I, J). A: Data input as a table, with
diseases as rows and HPO terms as columns. B: The random forest model
processes each disease seperately. C: Multiple decision trees predict the onset
of the disease. D: The results of all the trees are aggregated and averaged. E:
This is repeated for every disease until the data is exhausted, providing onset
predictions for every disease. F: The data is split into batches. G: The similarity
between diseases is calculated. H: The graph is built using the similarity as
connection strengths. I: Graph convolution is performed. J: This is repeated
for every batch until the data is exhausted, providing onset predictions for every
disease. 5



4 Methods

4.1 Data obtaining

The initial dataset was obtained by filtering the HPO database for all OMIM
diseases [hpo-toolkit, gargano-2023]. There are a total of 8182 OMIM dis-
eases in the HPO database, of which 4184 had age of onset annotations.

4.1.1 Onset categories

There are a total of 22 age of onset categories in the HPO database, of which four
do not have any disease associations (puerpural, embryonal, perimenopausal,
and postmenopausal onset). Of the remaining 19 onset categories, 18 have an
allocated temporal time-frame. The only onset category that does not span
a range of time is the congenital onset category. This category is specific for
phenotypic abnormalities diagnosed at birth. Five of the onset categories are
ancestors of other onset categories, and are henceforth referred to as umbrella
terms. The temporal ranges of onset categories and the hierarchy of the um-
brella terms are shown in Figure 2.

Table 1 shows the number of occurrences of onset categories in OMIM disease
annotations. The table furthermore shows the occurrence of umbrella categories.

Onset category HPO term OMIM associations
Late first trimester HP:0034199 7
Second trimester HP:0034198 42
Third trimester HP:0034197 42
Congenital HP:0003577 1203
Neonatal HP:0003623 476
Infantile HP:0003593 1419
Childhood HP:0011463 960
Juvenile HP:0003621 730
Early young adult HP:0025708 62
Intermediate young adult HP:0025709 22
Late young adult HP:0025710 46
Middle age HP:0003596 256
Late HP:0003584 99

Umbrella categories
Antenatal onset HP:0030674 54
Foetal onset HP:0011461 112
Pediatric onset HP:0410280 3
Young adult onset HP:0011462 481
Adult onset HP:0003581 261

Table 1: Occurrence of onset categories in OMIM disease annotations.
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As visible, some categories are relatively underrepresented. This is especially
true for the specific antenatal categories. These were hence grouped into their
umbrella term: antenatal onset.

Table 1 furthermore shows that umbrella categories are responsible for 911
direct annotations, rather than more specific descendant terms. Adult and
young adult onset are more often used than their descendant terms, and young
adult onset is a descendant term of adult onset. Unlike the antenatal onset
treatment described above, we instead opted to distribute onset frequency over
the descendants of the umbrella terms to the onset class in the middle of its
distribution to minimise loss of information.

(a) Onset categories from gestation to the first year of life.

(b) Onset categories from first year of life onward.

Figure 2: Temporal visualisation of HPO onset categories.

4.2 Disease data preprocessing

The HPO data went through multiple preprocessing steps to make it simpler
to use in the models. The OMIM diseases with onset annotation were used
for training and validating the model: the evaluation set. Each entry in this
dataset represents one OMIM disease, and contains the following data:

• disease_id: The OMIM identifier for the disease

• hpo_terms: A dictionary containing the HPO terms associated with the
disease, as well as the associated frequency. This also includes ancestor
terms.
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• onset: An ordered list of onset categories, with frequencies normalised to
be

∑O
c=0 c = 1 for every onset category c ∈ O.

4.3 Dataset splitting

A 70/15/15 split was performed on the evaluation set to split the data into
a training (n = 2928), test (n = 628), and validation (n= 628) set, respec-
tively. The splitting was performed using the StratifiedShuffleSplit from
the sklearn package, to obtain a representative and relatively equal number of
onset categories per dataset and thereby reduce training bias [pedregosa2011scikit].

4.4 Random forest model definition

The random forest model was defined using the RandomForestRegressor from
the Scikit-learn python package [pedregosa2011scikit]. The regression algo-
rithm was chosen over the classification algorithm, since we require the model
confidence values for evaluation. A grid search for optimal parameters was
performed, and the parameters used can be found in Supplementary Table 4.

4.4.1 Model output

Since the number of diseases per tree was set to n = 100, we obtained B = 30
decision trees. Each decision tree b makes a classification per disease, and the
output of these decision trees is subsequently aggregated and averaged:

ŷd(B) =
1

B

B∑
b=1

ŷd(b) (1)

Whereby ŷd(B) is the prediction of the random forest for one disease d, and
has a value ŷo for every onset category o ∈ O:

ŷd =
[
ŷ0, ŷ1, . . . ŷc

]
(2)

This is done for every disease d in the test dataset, thereby obtaining:

Ŷ =


ŷ00 ŷ01 . . . ŷ0c
ŷ10 ŷ11 . . . ŷ1c
...

...
. . .

...
ŷd0 ŷd1 . . . ŷdc

 (3)

4.5 Graph Convolutional Network Model definition

4.5.1 Feature engineering: HPO term weight

In this section, we define how to calculate a feature for each Human Phenotype
Ontology (HPO) term, which will be used in our GCN. This feature reflects the
predictiveness factor of each HPO term based on its relationship with disease
onset categories. Let us define the variables first:

8



• D: set of all diseases in the evaluation set.

– d : a single disease in D.

• H: set of all HPO terms in the evaluation set.

– h: a single HPO term in H.

• O: set of all onset categories for a disease.

– o: a single onset category of O.

First, we need to quantify how often each onset category occurs in the
dataset. For each disease d ∈ D, let µd be a function that maps each onset
category o ∈ O to its frequency of occurrence in disease d:

µd(o) = µ(o ∈ Od) (4)

Then, to calculate the frequency of an onset category o ∈ D, we can use:

∀o ∈ O : µD(o) =

∑
d∈D µd(o)

|D|
(5)

We do a similar calculation to calculate the frequency of an HPO term h ∈ D.
Again, let µd be a function that maps each HPO term h ∈ H to its frequency
of occurrence in disease d:

µd(h) = µ(h ∈ Hd) (6)

And:

∀h ∈ H : µD(h) =

∑
d∈D µd(h)

|D|
(7)

Now, we can continue to calculating the co-occurrence frequency between
an HPO term h and an onset category o: µ(h, o), by multiplying an HPO term
frequency in a disease µd(h) by the onset category frequency in a disease µd(o)
and dividing over the total number of diseases |D|

µ(h, o) =

∑
d∈D µd(h) · µd(o)

|D|
(8)

We can subsequently use this information to calculate the pointwise mu-
tual information (PMI) between h and o:

pmi(h, o) = log2
µ(h, o)

µD(h) · µD(o)
(9)

To normalise these values, we calculate the normalised PMI (nPMI):

nPMI(h, o) =
pmi(h, o)

− log2 µ(h, o)
(10)
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Now, for each HPO term h, we have a set of nPMI values corresponding to
each onset category:

∀h ∈ H,∃Φ = {ϕ(o) | o ∈ O} (11)

These nPMI values indicate how predictive an HPO term is for the age of
onset. A term is a strong predictor if its nPMI values are unevenly distributed.

Finally, we calculate the HPO term weight by considering:

• Φ: Set of all nPMI values for h.

• α: The maximum nPMI value in Φ.

• δ: The distance from α to each nPMI value.

• ρ: A penalty factor.

∀ϕ(o) ∈ Φ :

{
penalty← penalty + (ϕ(o) · δ)ρ , if ϕ(o) > 0,

reward← reward + |ϕ(o) · δ|ρ , if ϕ(o) ≤ 0.
(12)

Which we can then use to finally calculate the HPO term weight:

ωh =
α · reward
penalty

(13)

4.5.2 Model architecture

Following the data preprocessing and feature engineering steps, the GCN model
is initialised using Pytorch [NEURIPS2019˙9015] using the parameters shown
in Supplementary Table 5, following manual parameter optimisation.

4.5.3 HPO term vector initialisation

To convert the HPO data to a format the GCN can operate with, we create a
Pytorch tensor of length |H|, for each disease: xd. Then, the tensor is populated
with data by multiplying the HPO term frequency µh by the HPO term weight
ωh:

xd = [x1, x2, . . . , xh] (14)

with:

∀h ∈ H : xh =

{
µh · ωh, if h ∈ d,

0, if not h ∈ d
(15)
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4.5.4 Collating

The training dataset is split into batches containing N diseases each. Each
disease n at this point has a feature vector xd(h): the sparse HPO term vector
with embedded frequencies.

The similarity metric should therefore efficiently handle high-dimensional
sparse data, with a focus on orientation of the vector within this space, rather
than magnitude. For that reason, we settled on cosine similarity:

Sc(A,B) := cos(θ) =
A⃗h · B⃗h

∥A⃗h∥∥B⃗h∥
=

∑H
h=0 AhBh√∑H

h=0 A
2
h

√∑H
i=0 B

2
h

(16)

Where Sc(A,B) is the cosine similarity between disease A and disease B.
This is repeated pairwise for every disease in the batch. If the cosine similarity
is then over the similarity threshold τ , an edge is created between the disease
nodes in the batch graph, where the edge weight will be Sc(A,B). The end
result is a graph per batch, made up of HPO term vectors, edge indices, and
edge weights.

In each training cycle, the batches are randomly sampled again. Since there
is a class imbalance in the onset categories, weighted random sampling is de-
ployed using resampling. This ensures that each onset category is equally rep-
resented in the training loop, to reduce bias introduced by over-representation
of some onset categories.

4.5.5 Model output

The model output is a logit for each onset category for each disease in the batch.
Therefore, the model output Ŷ is a torch tensor of size [N, C], where N is the
number of diseases in the batch and C the number of onset categories:

Ŷ =


ŷ00 ŷ01 . . . ŷ0c
ŷ10 ŷ11 . . . ŷ1c
...

...
. . .

...
ŷn0 ŷn1 . . . ŷnc

 (17)

Logits can be converted to probabilities and the total probabilities over all
categories C in one disease n should sum to one. For that reason, the method
of converting a logit to a probability is with the following softmax function:

σ(ŷ)n,c =
eŷn,c∑C
i=0 e

ŷn,i

(18)

Where ŷn,c denotes one output logit at position [n, c] in Ŷ. Each probability
is normalised to the sum of the probabilities, where:

∀ŷn ∈ Ŷ,

C∑
c=0

σ(ŷ)n,c = 1 ∧ 0 ≤ σ(ŷ)n,c ≤ 1 (19)
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4.5.6 Loss calculation

After obtaining the model output predictions Ŷ, these are compared to the
ground truth; the true onset category probability distribution Y:

Y =


y00 y01 . . . y0c
y10 y11 . . . y1c
...

...
. . .

...
yn0 yn1 . . . ync

 (20)

Where any yn,c is an actual probability of onset category c in a disease n
from the HPO dataset. Therefore, any yn,c follows much the same rules as any
ŷn,c:

∀yn ∈ Y,

C∑
c=0

yn,c = 1 ∧ 0 ≤ yn,c ≤ 1 (21)

Choosing the correct loss function for machine learning prediction optimi-
sation is vital. In this case, we have a classification task based on probability
distributions, where the ordinality is important. No one previously defined loss
function captures this relationship perfectly. Therefore, we opted to combine
two existing ones: cross-entropy loss (Lc)and earth-mover distance(Le).
The cross-entropy measures the overall similarity between the probability dis-
tributions, whereas the earth-mover distance, rather, is a measure of distance.
This way, we capture the similarity, the distance, and outliers. Both loss func-
tions are multiplied by a weighting factor, supplied by the user.

The cross entropy loss is defined as:

Lc =

∑N
n=0 ln
N

, ln = −
C∑

c=0

log [σ(ŷ)n,c] · yn,c (22)

And the earth-mover’s distance is defined as:

Le =

∑N
n=0 ln
N

, ln =

C∑
c=0

|σ(ŷ)n,c − yn,c| (23)

Note that for both of these equations, the softmax equation eq. (18) was
substituted in for legibility.

As is shown here in both eq. (22) and eq. (23), ln is the loss for one disease

n. the sum of all
∑N

n=0 ln is divided over the batch size N , thereby effectively
taking the mean loss over the batch.

Using ωc and ωe as user-defined weighting factors for the cross-entropy and
earth-mover’s distance loss, respectively, the final weight calculation then be-
comes:

L = ωc · Lc + ωe · Le (24)
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Combining these equations and simplifying then gives us the complete loss
function for one batch:

L =
1

N

[
−ωc

N∑
n=0

C∑
c=0

log σ(ŷ)n,c · yn,c + ωe

N∑
n=0

C∑
c=0

|σ(ŷ)n,c − yn,c|

]
(25)

4.5.7 Overfitting prevention

Early iterations of the model showed a high proclivity for overfitting. To prevent
this, we employed the following machine learning techniques: early stopping
and a learning rate scheduler, as well as a high drop-out rate.

In case the loss value during the training phase increases, the learning rate of
the model will halve. In the occurrence of a stagnation of the loss value during
the training phase for at least three iterations in a row, the model will move to
the validation phase and skip further training iterations.

4.6 Key model differences

Both models use a form of quantifying the predictive power of HPO terms: the
RF model obtains it as feature importance using the random subspace method
while the GCN model obtains this as a feature with the method described above.

In the RF model, ordinality is not taken into account. Trees are only trained
on whether or not they are correct in their prediction. In the GCN, on the other
hand, the loss function is specifically weighted towards ordinality.

The parameters used for both models are shown in Supplementary Table 4
and Table 5.

4.7 Evaluation

Due to the indeterministic nature of the models, we chose to evaluate the models
on five different seeds: 1, 42, 1337, 9001 and 131415. Every evaluation metric
described in the results will be the average of the outcome of running the models
on these seeds.

To quantify the models, we compare the models to a baseline mock dataset,
which contains the average frequency over the validation set for every disease.
For every single disease entry, this mock dataset has the average onset frequency
for each onset category.
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5 Results

5.1 Test dataset analysis

The frequency of occurrence of each onset category in the test and validation
dataset, as well as in the prediction output of both models is visualised in
Figure 3. The model was run five times using different seeds as described in the
methods. The mean of these predictions over the onset categories was taken,
and the standard deviation is visualised as an error bar over the mean prediction
values.

Figure 3: An overview of the frequency and prediction confidence means for all
the onset categories. For the predictions, the mean of the results of the runs on
five seed were used, and the standard deviation is visualised as an error bar.

5.1.1 Top-1 Accuracy

The top-1 accuracy is a straightforward metric that takes the highest prediction
confidence from the model output, and compares that to the truth. In the
ground truth, however, multiple answers may be correct. In this section, if the
ground truth age of onset frequency for the predicted category is non-zero, it is
classified as correct.
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The occurrence of ordinal distances to the nearest truth label of the predic-
tions are shown in Figure 4. In the baseline, we get 220 correct predictions, as
it always predicts the most common category (Antenatal onset), with an aver-
age minimal ordinal distance to a true label of 1.35. The random forest model
achieved 394 correct predictions with an average minimal ordinal distance of
0.70. The GCN model achieved 399 correct predictions, with an average mini-
mal ordinal distance of 0.68.

To evaluate the performance difference, Welch two sample t-tests were per-
formed between each pair of the models. The predictions of the RF and GCN
model were both significantly better than the baseline (p ¡¡ 0.05). While the
GCN performed marginally better in terms of correct predictions and ordinal
distance, this effect was not statistically significant (p = 0.69). The models
shared the same top-1 prediction for 449 out of 628 diseases (71.5%).

Figure 4: Minimal ordinal distance of top-1 predictions over the test dataset.

5.1.2 ROC analysis

An ROC analysis was performed per model on each of the onset categories in
the test dataset. The results of this are shown in Figure 5. Interestingly, both
models struggled the most with the childhood onset category. DeLong’s tests
were performed on the area under the curve (AUC) of all the onset categories
between the models (Supplementary Table 2). All DeLong’s tests between the
baseline and both ML models were significant (p <0.05). None of these were
statistically significant between the RF and GCN models (p >0.05). The highest
AUC the GCN was able to attain was in the Middle Age category (AUC =
0.9012), while the RF’s highest AUC was in the Late category (AUC = 0.8835).

5.2 Precision, Recall, F1

Using the ROC analysis, we selected thresholds to use to consider a prediction
valid or not, balancing sensitivity and specificity with. The trade-off between
sensitivity and specificity is dependent on the prevalence of the onset in the
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Figure 5: Visualisation of the ROC curves for all of the onset categories.

population. In order to avoid biases, we chose to use the onset prevalence of the
validation set, rather than the test or training set.

When applying these threshold values to the predictions, we can compare
these to the ground truth and as such obtain evaluation metrics like precision,
recall, and F-1 score. However, these metrics do not take into account the
ordinality of the data nor the number of onset categories and every single onset
of every disease is taken as a datapoint. Table 2 shows the results of these
evaluation metrics.

Measure RF GCN Derivations

Sensitivity 0.5641 0.6208 TP
TP+FN

Specificity 0.9100 0.8956 TN
FP+TN

Precision 0.5893 0.5765 TP
TP+FP

Negative Predictive Value 0.9012 0.9116 TN
TN+FN

False Positive Rate 0.0900 0.1044 FP
FP+TN

False Discovery Rate 0.4107 0.4235 FP
FP+TP

False Negative Rate 0.4359 0.3792 FN
FN+TP

Accuracy 0.8455 0.8444 TP+TN
P+N

F1-Score 0.5764 0.5978 2·TP
2·TP+FP+FN

Table 2: Evaluation metrics of the test set.
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6 Conclusion

Both the random forest and the graph convolutional network models outper-
formed the baseline. This confirms our first hypothesis that machine learning
approaches can be employed in order to predict the age of onset of an OMIM
disease based on HPO terms associated with that disease. Our second hypoth-
esis, however, was not confirmed. The GCN model did not outperform the RF
model in any manner tested in this research.

7 Discussion

In this research, we showed that machine learning models are capable of predict-
ing the age of onset of OMIM diseases based on HPO terms. The implementation
of the work presented here may help clinicians with finding the correct diagnosis
for patients with rare genetic diseases faster, and may therefore lead to better
disease prognosis [long-2022, rareportal].

Despite the success in predicting the age of onset with both models, a
measurable difference in performance between the models was not observed.
Though, we hypothesised that the GCN would perform better than the RF due
to the ability of neural networks of finding connections within the dataset that
the simpler RF model would not. While this may indicate an absence of these
nuanced connections, it may well be due to the relatively low amount of train-
ing data. Neural networks have been shown to perform poorly on imbalanced
and small datasets [mazurowski-2007]. While we did employ resampling to
address class imbalance, we did not tackle the dataset size directly. Using dis-
eases from the other disease databases in the HPO was not a valid option, as
these have a large overlap in data with the OMIM database. One avenue to ex-
plore in the context of buffing the training dataset would be to create simulated
data from the training data. This technique is often used for neural networks
and moreover prevents overfitting for convolutional networks [odegaard-2016,
shorten-2019].

The apparent converge of both models despite different methodology may
also imply other limitations of the dataset. Some diseases may not be well-suited
for age of onset prediction. For example, if the disease lacks predictive HPO
terms. Due to the structure of age of onset HPO terms outlined in Figure 2
and the subsequent decision to treat umbrella categories as described in the
methods, nuance in the data is ostensibly lost. An option for re-assessment
would be to work with continuous age of onset, rather than categories.

Many rare genetic diseases are carried by but a few patients. Phenotypic
associations with diseases in the HPO may therefore be less reliable, as it may
be difficult to differentiate that which is caused by the rare genetic disease and
that which is unrelated.
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7.1 Application and future direction

The ROC analysis was performed and optimal thresholds per model per onset
category were chosen solely for evaluation purposes. This is not the manner in
which the output of these models should be utilised in practice. Instead, the
model confidence could influence the ordering of the differential diagnosis results
given to the clinician. The clinician may then focus on diseases predicted by
the models to be more common at that patient’s age.

The random forest and convolutional network were used completely sepa-
rately in this study. However, using a random forest model as a building block
to create a neural network has been shown to be a valid approach [wang-2017].
This may prove to be an interesting avenue for future exploration.

18



8 Supplementary

8.1 Software and packages

Module Version
hpo-toolkit 0.5.0
Pandas 2.2.2
torch 2.3.1
torch geometric 2.5.3
scikit-learn 1.5.0
numpy 1.26.4
scipy 1.13.0

Table 3: Modules and versions used in this research.

8.2 Parameters

Parameter Value
Number of trees 100
Criterion Squared error
HPO threshold 5
Minimum sample split 2
Minimum sample leaf 1
Bootstrap True

Table 4: RF parameters

Parameter Value
Optimiser AdamW
Batch size 32
Hidden channels 32
HPO threshold 5
Penalty factor 2
Dropout rate 0.70
Similarity threshold 0.05
Learning rate 0.001
Weight decay 0.001

Table 5: GCN Default parameters
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8.3 ROC, AUC, and DeLong’s tests

Category AUC(RF) AUC(GCN) DeLong’s p-value

Antenatal 0.878504 0.8468013 0.1089
Congenital 0.8485777 0.8510501 0.8371
Neonatal 0.7980007 0.7921017 0.742
Infantile 0.8371101 0.8476493 0.324
Childhood 0.7311655 0.7121622 0.3737
Juvenile 0.7967609 0.7930405 0.8314
Early YA 0.8763594 0.8781719 0.8329
Intermediate YA 0.8688562 0.8802061 0.2269
Late YA 0.8799283 0.8872728 0.4061
Middle Age 0.8775044 0.9011834 0.05326
Late 0.8834822 0.8963773 0.3473

Table 6: AUC and DeLong’s p-value results.
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