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Abstract

Large Language Models (LLMs) consume significant amounts of energy during inference, espe-

cially for computationally expensive tasks like code generation, which leads to environmental con-

cerns. This work aims to reduce the energy consumption during inference without compromising

model performance. The energy consumption of Qwen2.5-Coder-7B-Instruct, Meta-LLaMA 3.1-

8B-Instruct, and DeepSeekCoder-V2-Instruct-16B was evaluated on BigCodeBench, a benchmark

that consists of 1,140 diverse coding tasks, using a software-based energy measuring approach. The

relations between task nature, batch size, model size, fine-tuning, Activation-Aware Weight Quan-

tization (AWQ), and GPTQ with 8-bit and 4-bit precision were investigated for a variety of models

including the Qwen2.5 models. Results indicate that task nature significantly affects energy con-

sumption across all tested models, while batch size has a minor effect. Notably, the Meta-LLaMA

model consumed 130.77% more energy than the DeepSeekCoder model while achieving lower ac-

curacy. Fine-tuning, AWQ, GPTQ-INT8, and GPTQ-INT4 quantizations reducing energy consump-

tion by up to 19%, 67%, 40% and 67%, respectively. GPTQ-INT8 models achieved these reductions

without significantly reduced accuracy, whereas GPTQ-INT4 models showed slight decreases and

AWQ showed substantially lower pass@1 scores. This work demonstrates that energy consumption

of LLMs can effectively be reduced without significant performance loss, which demonstrates the

importance and contributions of innovative research for sustainable AI practices.
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Chapter 1

Introduction

Sustainability is increasingly becoming a focus in the ICT sector because of its rapidly growing

demand for energy. It is recognized that hardware is not the only factor affecting the energy con-

sumption of ICT systems. The software that controls the hardware also has a major influence on the

total energy consumption of these systems [1, 2, 3]. Currently, the ICT sector faces a vast increase

in energy demand due to the adoption of energy-demanding hardware and software alike [4]. With

the rise of AI, this process is further reinforced [5, 6].

Large Language Models (LLMs) have become a significant factor in AI-related energy con-

sumption. LLMs use deep learning architectures with billions of parameters, which are trained on

large datasets to generate natural language [7]. These models are used in various applications such

as machine translation, question answering and code generation. The widespread adoption of LLMs

by the general public after the introduction of LLM-driven tools such as ChatGPT, DALL-E, and

GitHub Copilot has led to an increased demand for data centers worldwide [8]. The training and

inference processes of LLMs are computationally expensive and require substantial resources [9].

The size and complexity of these models have grown in recent years to improve model performance.

However, this trend has also led to a significant increase in energy consumption during both training

and inference [10].

In 2020, the ICT sector was responsible for 3.9% of worldwide energy consumption [11], with

data centers accounting for 1% of worldwide energy consumption [6]. Furthermore, the ICT-related

energy consumption is not expected to halt anytime soon [12]. The greenhouse gas (GHG) emis-

sions related to data centers not only place a burden on the electricity grid but also pose a threat

to the environment [13]. The increasing demand for energy in the ICT sector has been ongoing

for a considerable period of time, and with the rapid adoption of AI and other energy-demanding

software applications this trend has accelerated.

Despite recognition of their high energy consumption, the model size of LLMs has increased

steadily, growing five-fold from 2018 to 2022 [14]. Considering that the worldwide electricity mix

12
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is predominantly dependent on fossil fuels such as coal, gas, and oil [15], this directly leads to a

higher carbon footprint of LLMs because larger models generally require more energy. Currently,

the ICT sector is estimated to be responsible for around 1.4% [11] to 1.8–2.8% [16] of global GHG

emissions. Besides the direct consequence of higher energy consumption and a higher footprint,

inefficient software may also impact the lifespan of hardware [17]. Given that 36% of the ICT

sector’s carbon footprint consists of embodied emissions [11], inefficient software can lead to sig-

nificant indirect CO2 emissions. Moreover, hardware production often requires rare metals which

lead to faster depletion of natural resources [18].

The economic implications of inefficient software are also impactful and have become a major

topic for owners and users of computational facilities such as data centers [19], simply because

increased energy consumption leads to higher energy-related costs. Furthermore, early breakdown

of hardware not only leads to more e-waste [20] but also results in higher maintenance costs and

capital expenditures for the organization that exploits the hardware. In turn, higher costs can lead to

lower profitability, which can weaken a company’s market position.

Writing code that runs fast is considered an energy-efficient coding practice because the rela-

tionship between speed and energy efficiency in code is well-known for particular use cases like

sorting [21, 22, 23]. However, writing fast code is still a challenging task that requires skilled de-

velopers [24]. Optimizing the execution speed of code while considering software energy efficiency

can be beneficial. However, currently available code generation tools lack the accuracy and effi-

ciency to compete with skilled human developers [25]. Another reason for the lack of attention

to energy efficiency in code is the absence of ready-to-use platforms that measure the energy con-

sumption of code. If it is not possible to measure energy consumption and identify the causes of

increased energy usage, then it is hard for developers or code generation tools to tweak software in

such a way that it becomes energy efficient.

A promising set of models in the field of code production are LLMs. However, the recent

introduction and widespread adoption of LLMs has further increased software-related energy con-

sumption [26]. LLMs not only pose a threat, they also offer an opportunity to make software

more sustainable by optimizing code for energy efficiency. Next Generation Software Development

(NGSD) tools [27] such as Meta Llama, QwenCoder2.5, and DeepSeekCoder enable such automatic

code generation. These tools have demonstrated fast code generation [24], raising questions about

their energy efficiency and potential areas for optimization. In addition, it is shown that LLMs are

able to solve simple coding tasks but might fail in solving more complex and challenging tasks [28].

The rapid development of LLMs toward larger and task-specific models has significantly increased

their performance and applicability [29], but the energy efficiency of these models remains to be

quantified.
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The improved performance of coding LLMs has gained interest in both academia and the IT

industry [30, 31]. In the IT industry, multiple applications could benefit from energy-efficient code

generation, such as cloud computing, embedded devices and IoT devices. Higher energy efficiency

of software leads to longer battery life in resource constrained environments such as in mobile and

embedded technology [32, 33]. In energy-demanding environments such as cloud computing, not

focusing on energy efficiency becomes a costly operation because a small percentage decrease in

energy consumption can lead to large absolute energy savings.

From a societal and environmental perspective, energy-efficient code leads to lower CO2 emis-

sions, resulting in a reduced carbon footprint. This work aims to contribute to the energy-efficient

production of code in a fast, cost-effective and sustainable manner that is accessible to a wide public.

Optimizing one line of code is not going to make much of a difference, but adopting energy efficient

LLMs for code generation tasks on a large scale may help combat climate change. This aligns with

important policies and regulations concerning the mitigation of climate change, such as the Euro-

pean Green Deal, which targets reducing GHG emissions by 55% by 2030 compared to 1990 levels

[34]. On a global scale, reduced software-related energy consumption and GHG emissions are in

line with the Paris Agreement, which aims to limit global warming to 1.5 degrees Celsius [35].

1.1 Research Challenges

Optimizing the energy efficiency of LLMs comes with various challenges with regard to the mea-

surement of energy consumption, model selection, the energy-accuracy trade-off and ensuring the

functional correctness of generated code. First, accurately measuring the energy consumption of

LLMs is complex due to variability in hardware configurations and the lack of standardised mea-

surement tools. Additionally, the feasibility of a measurement method is largely determined by the

specific hardware and software environments. In cloud computing, users typically lack access to

metadata about the cloud environment, making it extremely difficult to accurately collect and report

individual energy consumption data. Also, making sure that the generated code is correct and usable

in production is a challenge for LLM-generated code, often because of the lack of suitable testing

frameworks and the artificial nature of LLM-based code generation that can suffer from hallucina-

tions. Selecting the right LLM architecture for optimization is a crucial part of this process. Each

LLM varies in accuracy and computational requirements for specific tasks. This trade-off has to be

analysed depending on the specific context. Third, The size and complexity of the training dataset

impacts the computational complexity of a task and the resources that it requires. This translates di-

rectly into energy consumption during training and inference. Carefully selecting and reducing the

training dataset to a minimum without compromising the generalisability of the results is difficult.

Finally, ensuring that optimised LLMs remain accurate and preserve the functionality of code is nec-

essary for widespread adoption in automated code generation tools. The accuracy loss of a model

should be acceptable for end-users of the generated code. Therefore, developing methods to opti-
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mise LLMs for energy efficiency while preserving their performance is still an open problem [36].

The overall complexity lies in integrating accurate energy measurement, defining and implementing

LLM optimisation strategies, selecting suitable architectures, and ensuring model correctness into

an approach that results in energy-efficient LLMs without degrading the coding capabilities of the

model significantly.

1.2 Problem Statement

The rapid rise of AI has driven up energy consumption of data centers, networks and end-users

because of increased hardware requirements, data transport and user activity [11]. This increase in

energy use is accompanied by increased carbon dioxide emissions, contributing to climate change.

The significance of AI in worldwide energy consumption has increased the importance of energy

efficient computing [37].

One of the most direct ways to decrease the energy consumption of AI, is to ensure that popu-

lar AI tools like LLMs are energy efficient in tasks such as code generation. While methods exist

for minimizing memory and computational requirements, their relationship to energy consumption

during code generation tasks remains unclear, as they primarily focus on speed and memory op-

timizations. However, these metrics do not provide direct insight in the energy consumption of

ICT-systems, which makes the carbon footprint of these systems opaque. To effectively tackle cli-

mate change, a reliable quantification of energy consumption and carbon emissions is necessary

which is currently lacking [5]. Moreover, ensuring the correctness and functionality preservation of

optimised code is challenging but necessary for saving resources [38]. The inadequacy of current

methods requires new solutions that are able to optimise the energy efficiency of code.

LLMs are an emerging technology capable of optimizing code and scaling to large codebases.

While early LLMs like GPT-2 have limited code optimization capabilities, newer LLMs like GPT-4

and Github Copilot reach accuracies of up to 85% on a variety of coding tasks [39]. Research has

shown that the size of LLMs can be reduced without significantly impacting its performance with

techniques like quantization [40, 41]. However, these insights have not yet been analysed in relation

with energy consumption data, partly due to the difficulty in measuring the energy efficiency of

code. Furthermore, selecting an LLM so that it is optimal with regard to energy consumption, is

a challenging task. Additionally, ensuring code correctness and functionality preservation is non-

trivial [38].

Solving these problems will provide insight in software-based energy consumption measure-

ment methods and the ability of LLMs to efficiently produce code. If LLMs are able to efficiently

generate code, this will lay the groundwork for a cost-efficient and scalable solution for automated

code generation while minimising the environmental footprint of the software industry.
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1.3 Research Objectives

The main goal of this work is to investigate to what extent various LLMs can be optimised to reduce

their own energy consumption during code generation tasks, while preserving functionality and

ensuring code correctness. The objective can be divided into the following sub-objectives:

• Hypothesis 1: Software-based energy monitoring tools can accurately measure and evaluate

the energy consumption of LLM inference during code generation tasks. Lack of standardised

measuring tools and variability in hardware make this a challenging task. To overcome this

challenge, a software-based ensemble of tools is created that provide detailed GPU power

consumption information during inference.

• Hypothesis 2: Techniques like fine-tuning and quantization can significantly reduce the en-

ergy consumption of LLMs without substantial accuracy loss. This is difficult because fine-

tuning and quantizing models is a lengthy and energy intensive process. Also, it is unknown

what the effect of these techniques will be on the accuracy and energy consumption. The

energy consumption and model accuracy will be systematically evaluated to determine which

configurations lead to minimal energy consumption but maintain accuracy.

• Hypothesis 3: There exists an optimal configuration of LLMs that minimises energy con-

sumption and maintains model accuracy. Several variables have to be weighed and consensus

has to be reached on the concept of optimality with regard to energy efficiency and accu-

racy. Exploring various LLM variants and configurations gives insight in the energy-accuracy

trade-off and the concept of optimality.

• Hypothesis 4: Evaluation frameworks such as benchmarking and unit testing can ensure code

correctness and functionality preservation for LLM-generated code. Ensuring code correct-

ness and functionality is difficult due to the erroneous and hallucinative behaviour of LLMs.

In addition, there is a lack of evaluation frameworks. The BigCodeBench benchmark will

be used to employ benchmarking and unit testing for LLM-generated code and evaluate the

correctness and functionality of the generated code.

The findings of this study have the potential to impact the field of artificial intelligence by laying

the groundwork for incorporating sustainability in the performance analysis of LLMs. By focusing

on sustainability as well as on traditional metrics like latency and throughput, this could ensure a

minimal carbon footprint of AI while facilitating technological progress.

This work will use several open-source LLMs, which can be tweaked with the model opti-

mization techniques to ensure minimal energy consumption. A software-based energy measuring

approach is used to measure the energy consumption, using NVIDIA hardware data in combination

with energy profiling tools to ensure accurate measurements. To evaluate the coding abilities of sev-

eral LLMs, a widely accepted coding benchmark will be used. Code correctness and functionality
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preservation will be ensured through unit testing. Code correctness is defined as passing all of the

unit tests of the BigCodeBench suite. This study focuses on both efficiency and correctness as an

LLM’s utility is limited if it produces incorrect code.

The structure of the thesis is as follows: chapter 2 provides an overview of related work and

consists of four sections that each focus on one of the hypotheses. Chapter 3 delves deeper in the

methodology which includes the selection of LLMs as well as optimization techniques, energy mea-

surement methods and the evaluation framework. Chapter 4 presents the results of this work which

includes quantitative analyses of energy consumption, model accuracy, code correctness and the

efficiency-accuracy trade-off. This chapter also discusses the implications, limitations and sugges-

tions for future work. Finally, in chapter 5 the work is summarised and addresses the significance

of the study in a broader academic context.



Chapter 2

Related Work

The literature related to the energy efficiency of LLMs has multiple facets that provide insights for

optimizing these models during code generation tasks. Optimizing LLMs is defined here as im-

proving their performance while maintaining code correctness and functionality. Firstly, accurately

measuring the energy consumption of LLMs during inference is necessary before reducing it. Fur-

thermore, it is important to define the concept of energy efficiency and the available methods for

improving it should be clarified. Also, the code correctness and functionality preservation must be

ensured since this is not guaranteed with purely generating code. Finally, exploring the connections

between energy measurement, LLM optimization techniques, code correctness and functionality,

and the efficiency-accuracy trade-off will provide insight into the current state of research in this

field.

The first aspect of improving the energy efficiency of LLMs is the ability to accurately mea-

sure the energy consumption of LLMs during inference [42]. Energy measurement methods can

be broadly classified into hardware-based and software-based approaches [42, 43, 4]. Recent ad-

vancements have introduced software tools that can accurately measure the energy consumption of

LLMs during inference [44, 45]. When hardware access is limited, such as in most cloud computing

environments, software-based methods may be the only feasible option.

Various optimization techniques such as fine-tuning, pruning, model compression, distillation,

and quantization are applied to improve the ability of a model on specific tasks or to reduce the

memory requirements of LLMs. Recently, LLMs such as ChatGPT and Copilot have shown to rival

human programmers on simple coding tasks [46]. While code generation has mainly focused on

creating correct code that takes into account time and space complexity measures, it did not neces-

sarily focus on creating energy-efficient code [47]. Optimizing LLMs for energy efficiency requires

specialized techniques that balance reduced energy consumption with model accuracy.

The data used for LLMs is crucial because it largely determines how capable models will be in

performing a task [48]. However, the training process of LLMs is typically also energy-intensive,

18
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making it crucial to focus on energy efficiency both in the training and inference phases. Various

methods have been proposed to reduce the energy consumption of LLMs that target both the train-

ing and the inference phase.

Additionally, the functionality and the correctness of the optimised code also have to be guar-

anteed. However, the correctness is not always ensured, as even the state-of-the-art LLMs achieve

accuracies of up to 56% on a challenging coding benchmark such as BigCodeBench. This indicates

that LLM-generated code does not always produce correct results and still requires a human in the

loop to ensure correctness [49].

This chapter situates this work within the broader field of LLM energy efficiency by examining

the available methods and approaches in the literature. Finally, the chapter highlights how this

work contributes to bridging the gap between LLM code generation accuracy and energy efficiency.

This is achieved by focusing on four key aspects: measuring the energy consumption of LLMs,

exploring optimization techniques for energy efficiency, analysing the energy efficiency-accuracy

trade-off, and assessing the correctness of LLM-generated code.

2.1 Measuring the Energy Consumption of LLMs

Measuring the energy consumption of LLMs is necessary to quantify how much energy is required

for a task such as code generation. If it is unknown, it is challenging to identify factors that con-

tribute to higher energy use in LLMS and consequently apply strategies to optimise the energy

efficiency of LLMs. Therefore, energy measurement is a crucial aspect in improving the energy

efficiency of LLMs during both training and inference.

Energy measurement methods can be divided into hardware-based and software-based approaches

[42, 43, 50]. Measuring the energy consumption of LLMs might not always be feasible although

they are renowned for their accuracy for low-granular measurements [43]. Continuous advance-

ments in software-based methods have made them reliable enough to measure the energy consump-

tion of LLMs during training and inference [51].

Measuring energy consumption of LLMs is a complex task because of the many interactions

between software and hardware components. LLMs often use both CPUs and GPUs and the en-

ergy consumption differs significantly between idle and active states [52]. Additionally, attributing

energy consumption to specific tasks, algorithms or workloads is challenging because modern tech-

niques like Dynamic Voltage and Frequency Scaling (DVFS) adjust hardware parameters based on

workload [53]. Fine-grained methods are required to address these challenges. Understanding the

characteristics of both LLMs and the underlying hardware is essential in the energy measurement

and the optimization process. The following sections explore the most common and reliable meth-
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ods for measuring the energy consumption of LLMs which forms the basis for strategies aiming to

enhance the energy efficiency of LLMs during code generation tasks.

The techniques for measuring the energy consumption of LLMs can roughly be divided into

two categories: hardware-based and software-based methods. Hardware-based methods use phys-

ical power meters or sensors to measure the energy consumption of software. This typically in-

volves placing a physical device between the hardware running the LLMs and the power source.

Consequently, the device measures the energy that flows from the power source to the computer.

Software-based methods use models and tools to estimate the energy consumption based on log-

files or information that is available via the performance monitoring tools of hardware [51].

2.1.1 Hardware-Based Methods

Hardware-based methods use specific physical power meters (e.g. Kill-a-Watt meters) to measure

the energy consumption of the hardware running the LLMs. These device provide real-time data but

usually offer low-granularity information which makes it difficult to attribute energy consumption to

specific processes or tasks within an LLM inference task. Moreover, physical access to the hardware

is needed which is often impractical in cloud computing environments which is nowadays a fairly

common practice.

2.1.1.1 On-Chip Power Monitoring

Hardware like CPUs and GPUs sometimes have on-chip power monitoring which uses built-in sen-

sors to measure the energy consumption of workloads. Tools like Intel’s Running Average Power

Limit (RAPL) [54] and NVIDIA’s NVML library [55] provide real-time power draw data with

higher granularity. These methods are useful for determining the energy consumption of LLMs

during both training and inference because they offer detailed insights on the process level. It must

be noted that the accuracy of these methods depends on the precision of the built-in sensors which

are often platform specific. This limits the applicability across different hardware setups.

2.1.1.2 Hardware-Based Profiling

Hardware manufacturers also have provided energy profiling tools that can be used to determine

the energy consumption of LLMs. For instance, NVIDIA’s nvidia-smi tool allows users to monitor

GPU power usage during LLM inference [56]. Similarly, AMD and other manufacturers provide

tools that allow for energy profiling of their hardware platforms. However, they are usually platform

specific so changes in hardware may require different tools for fine-grained energy measurements,

which complicates cross-platform analysis.

2.1.2 Software-Based Methods

When hardware access is limited or impractical, software-based methods are crucial for measuring

the energy consumption of LLM workloads. These methods provide valuable insights without the
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need for additional hardware while they can be faster and more cost-effective [54]. Software-based

methods include performance counters and profiling tools, energy estimation models, power profil-

ing libraries and APIs, simulation and emulation tools, and application-specific energy monitoring

tools.

2.1.2.1 Performance Counters and Software-Based Profiling Tools

During LLM workloads, performance counters and profiling tools can collect utilization data from

CPUs and GPUs. Tools like Linux’s perf, Intel VTune, and AMD uProf can be used to profile LLM

workloads [42]. These tools help to identify energy spikes in code and understand the hardware

utilization patterns of LLMs. However, these tools are often hardware-specific and may not pro-

vide direct energy measurements but require additional modeling to accurately estimate the energy

consumption of workloads.

2.1.2.2 Energy Estimation Models

Energy estimation models use statistical methods to estimate the energy consumption of LLMs

based on several software performance metrics. Applications like Microsoft’s Joulemeter [57] and

the PowerAPI toolkit [58] allow estimation without directly accessing the underlying hardware. The

advantage of these methods is that they are platform independent. However, their accuracy heavily

depends on the quality of the underlying model and the assumptions made about the hardware,

which can be challenging given the complexity of LLM workloads.

2.1.2.3 Simulation and Emulation Tools

Simulation and emulation tools like gem5 [59] and QEMU [60] can model energy consumption of

hardware that run LLMs under different conditions. In addition to the energy estimation models

these simulation and emulation tools can test these models under various conditions to observe

how changes in the environment affect energy consumption. However, these simulations can be

computationally expensive and the models may not fully capture the real-world dynamics of running

LLMs, which may limit their practical applicability.

2.1.2.4 Application Specific Energy Monitoring Tools

Certain applications sometimes have their own energy monitoring tools to measure their energy

consumption. Tools like MySQL Power Consumption Monitoring [61] and the energy Profiler in

Android Apps [62] are not directly applicable to LLMs but they do illustrate have specialized tools

can be developed for LLM workloads. Developing tools for LLMs could provide detailed insights

on the interaction between various LLM components and their effect on energy consumption. How-

ever, this remains an area for future research.
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2.1.2.5 Recent Energy Measurement Developments

With increasing interest in the energy efficiency of LLMs, new tools and frameworks have been

presented to accurately measure the energy consumption of software. For instance, CodeCarbon

[63] is an open-source software package that estimates the energy consumption and carbon footprint

of code, including LLMs. Additionally, the EnergyVis framework provides [64] visualization tools

to improve the accuracy of measurements.

2.1.2.6 Insights on Energy Measurement

Hardware-based methods offer accurate measurements but their applicability is limited with regard

to LLM energy measurement because of their low-granularity. Besides, the need for physical ac-

cess to the hardware makes these methods infeasible to use for cloud-based deployments which is

fairly common for LLM training and inference. Tools like NVIDIA’s nvidia-smi and Intel’s RAPL

provide valuable energy consumption data but are platform-specific hence lacking cross-platform

compatibility. The scale on which LLMs are used nowadays often requires energy consumption

measurement across multiple nodes or GPUs, which further limits the use of hardware-based mea-

surements. Therefore, while hardware-based methods are valuable, they may not always be feasible

to use for the LLM energy consumption measurement in real-world scenarios.

Software-based methods offer flexibility and are often more practical for energy measurement

of LLMs, especially in environments where access is restricted. However, many tools are platform-

specific which limits their generalizability. In addition, accurately modeling the energy consumption

of LLMs can be challenging due to their complexity and the scale of resources used. Despite these

challenges, software-based methods offer valuable insights to researchers and developers that aim

to minimise the energy consumption of LLMs.

In summary, measuring the energy consumption of LLMs requires careful assessment of the

available methods and their applicability to a specific use case. The choice between either hardware-

based and software-based methods depends on a number of factors such as hardware accessibility,

required measurement granularity, and the deployment environment of the LLMs. Given the pop-

ularity of cloud-based LLM deployments, software-based methods seem to be the most feasible

option. However, a combination of hardware-based and software-based methods may be necessary

to achieve high-granularity insight in the energy consumption of LLMs and arrive at accurate and

reliable measurements. Understanding the available methods is crucial to develop effective mea-

surement strategies to improve the energy efficiency of LLMs, which is a key focus of this work.
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2.2 Code Generation Efficiency

To optimise the energy efficiency of LLMs during code generation tasks, it is essential to under-

stand how the inference processes of these models work. Energy efficiency in this context refers

to the minimal use of energy for LLMs during inference, and specifically during code generation

tasks. Several factors influence the energy consumption of LLMs such as model architecture, com-

putational complexity, and inference optimisations. Metrics used to determine the energy efficiency

of LLMs can be energy consumption per generated line of code, latency, memory utilization and

throughput.

Optimising the energy efficiency of LLMs during code generation can be approached at multiple

levels and includes fine-tuning, model compression techniques, efficient architectural design and

inference optimisations [65]. Techniques such as pruning, quantization, and knowledge distillation

have been explored to minimise the size of LLMs without affecting their performance significantly

[41, 40].

2.2.1 Fine-tuning

Fine-tuning methods show promising results for improving the coding performance of LLMs while

reducing energy consumption [66]. The fine-tuning process focuses on adjusting certain parameters

in the LLM that are associated with a specific tasks such as coding. The advantage of such an

approach is that only a limited amount of parameters need to be adjusted which saves time and

energy while the performance of the model improves on that task.

2.2.2 Model Compression Techniques

Compression techniques are essential for minimising the size and computational requirements of

LLMs, which increases the energy efficiency during inference [67]. Key methods include fine-

tuning, quantization, pruning and knowledge distillation.

2.2.2.1 Quantization

Quantization is the process of reducing the precision of numerical representations of a model’s pa-

rameters or aspects of parameters. Precisions typically range from 32-bit floating-point to lower-bit

representations such as 8-bit, 4-bit integers or even lower precisions [40]. Reducing the precision

decreases the computational load and memory usage during LLM inference. Recent works like

GPTQ [40] and AWQ [41] have demonstrated methods to shrink model size by adjusting the preci-

sion of parameters with minimal effect on model accuracy.

Activation-aware Weight Quantization is a quantization method that focuses on the optimisa-

tion of deep neural networks by reducing the precision of the weights while taking into account
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the behaviour of the weight activations within the networks. The precision of parameter weights

ranges from FP32 where a 32-bit floating point number is used to store the weights, to INT4 where

a 4-bit integer is used to store the weights and sometimes goes even lower to 1-bit numbers. This ap-

proach is used to minimise the performance loss of the model by adjusting weight precision based

on the specific distribution of activations in a layer. The precision of the weights is not changed

uniformly but instead based on activation ranges and patterns. By adjusting the quantization lev-

els dynamically, AWQ reduces computational requirements while maintaining accuracy. Research

demonstrates AWQ significantly reduces model size with minimal performance [41].

A more rigorous approach to compress LLMs in size is GPTQ which applies quantization to

all tensor types, weights, activations, gradients, and feature maps within a model. This approach

aims to balance between computational efficiency and model accuracy by applying quantization

across multiple facets of a tensor. Often applied precisions are 8-bit and 4-bit, which can reduce

the memory usage and the corresponding computational requirements without substantial model

degradation [40].

2.2.2.2 Pruning

Pruning techniques aim to identify less important weights or connections in a model and conse-

quently removing them to minimise the size of the model [68]. By making models sparse, pruning

reduces the number of computations during inference which in turn can reduce the energy consump-

tion. However, there is a balance between pruning and model performance since it could decrease

model performance.

2.2.3 Knowledge Distillation

The process of a larger model ”teaching” a smaller model by transferring information, is known

as knowledge distillation. The smaller ”student” model is trained to replicate the outputs of the

larger model to achieve similar performance with significantly less parameters and computational

requirements. This in turn can lead to reduced energy consumption. This techniques is mainly used

to ensure that they are deployable on devices with limited resources [69].

2.2.4 Model Architectures

Designing efficient model architectures is another strategy that can be taken to improve the en-

ergy efficiency of LLMs. Innovations in architecture can reduce the computational complexity and

thereby reduce the energy requirements of models.

2.2.4.1 Transformer Variants

The original Transformer architecture [70] has been adapted multiple times to create more com-

putationally efficient variants. Models like Albert [71] and Reformer [72] introduce architectural
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adjustments that reduce memory consumption and computational requirements. Albert uses param-

eter sharing and factorizes embeddings while Reformer replaces full attention with locality-sensitive

hashing, that both decrease computational requirements. Also, Decoder-only models such as GPT-

3[7], have been used to optimise the inference process in text generation tasks and do not use the

encoder part of the Transformer architecture.

2.2.4.2 Mixture of Experts (MoE)

Mixture of Experts models bundle multiple neural network architectures connected by multiple

experts. Together with a gating mechanism these models determine to which submodel input is

directed [73]. The advantage of these models is that the computational requirements do not increase

linearly increase with the number of parameters because only a subset of parameters is active during

inference [74].

In code generation tasks these models offer additional advantages since multiple experts can

specialise in different languages, techniques or domains which can lead to higher performance [75].

The sparse activation mechanism present in MoE models ensures that computational resources are

focused where they are most needed which minimises computational resources.

2.2.4.3 Sparse Attention Mechanisms

Reducing the quadratic complexity of standard attention mechanism to computationally less de-

manding variants that limit the attention to a subset of tokens, is what sparse attention mechanisms

do in practice [76]. Models like Sparse Transformer and Longformer [77] use these sparse attention

mechanisms to handle longer sequences more efficiently.

2.2.5 Inference Optimisation

Optimising the inference process of LLMs is crucial to decrease the overall energy consumption

of LLMs, especially for LLMs that are being frequently used. Strategies to improve this process

involve efficient batching, parallelization, and leveraging hardware accelerators.

2.2.5.1 Batching and Parallelization

Batching input sequences together allows for parallel processing, which increases hardware utiliza-

tion and reduces the per-sample energy consumption [78]. Efficiency can be further improved by

parallelize across multiple GPUs or using multi-threading. It must be noted that these techniques

should take into account throughput and latency constraints to ensure optimal performance.
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2.2.5.2 Hardware Acceleration

Specialised hardware accelerators like Tensor Processing Units (TPUs) [79] or newer GPUs opti-

mised for AI workloads can significantly improve the energy efficiency of LLMs. These accelerators

are designed to efficiently handle matrix operations compared to general-purpose CPUs.

2.2.6 Energy Measurement and Evaluation Metrics

As elaborately discussed in 2.1, accurate energy measurement and appropriate evaluation metrics

are essential in determining the energy efficiency of LLMs during code generation.

2.2.6.1 Energy Consumption per Token

The energy consumption per token is a metric that measures the average energy required to generate

each token during inference [80]. This metric provides a standardised way to compare the energy

efficiency of different LLMs. With estimation model the total code generation time can be calculated

per token which can then be translated into energy consumption per token based on the energy

consumption of the underlying hardware.

2.2.6.2 Carbon Footprint Estimation

Based on metrics like the energy consumption per token, the carbon footprint associated with LLMs

can provide insight in the environmental impact of deploying these models [81]. Tools like Code-

Carbon [63] allow researchers to estimate and track the carbon emissions of code which can also be

applied to the LLMs deployed during code generation tasks.

2.2.7 Insights on Efficient Code Generation

Integrating and using these techniques and strategies before running LLM workloads can signifi-

cantly decrease the computational requirements of models during code generation tasks. By focus-

ing on techniques like model compressions, efficient architectures and inference optimizations, it is

possible to reduce the computational load without substantially compromising the performance of

LLMs. This integrated approach of combining multiple methods is essential for sustainable AI in

which the environmental impact of LLMs is minimised.

2.3 The Efficiency-Accuracy Trade-Off

The introduction of LLMs for code generation tasks has already disrupted software development

since they are widely used by developers. However, these models are computationally demanding

which leads to significant energy consumption during training and inference [39]. From a sus-

tainability perspective, finding efficient or even optimal configurations for LLMs with regard to

energy efficiency and accuracy can greatly reduce the energy consumption of these models. This
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section further explores the opportunities to find the optimal configuration for LLMs, focusing on

techniques and strategies that balance energy efficiency and performance.

2.3.1 Understanding the Trade-Off

Optimising LLMs involves navigating the space of energy efficiency and model accuracy. Reducing

energy consumption often means simplifying the model to ensure it uses minimal computational

resources which can result in performance loss. On the other hand, enhancing accuracy may increase

necessary computational resources and corresponding energy consumption. Therefore, finding an

optimal configuration is necessary to balance these sometimes conflicting goals. [9].

2.3.2 Factors Influencing the Trade-Off

Several factors influence the energy consumption and accuracy of LLMs such as model size and

architecture. Larger models with more parameters typically achieve higher accuracy but require

more computational resources [7]. Furthermore, the settings of a model influence the trade-off such

as learning rate, batch size and the number of layers [82]. Methods like fine-tuning, quantization,

and pruning can alter the computational requirements of the model [65].

2.3.3 Optimal Configurations

2.3.3.1 Hyper Parameter Optimisation

Hyper parameters involve the settings that are provided to a model instead of being learned by the

model, which is also part of the optimal configuration of LLMs. Techniques such as grid search,

random search, and Bayesian optimisation can be applied to explore the hyper parameter space ef-

ficiently [83].

Incorporating energy consumption as an objective in hyper parameter tuning allows for the iden-

tification of the balance between energy consumption and accuracy. Multi-objective frameworks can

be used to to optimise for both objectives simultaneously [84].

2.3.3.2 Multi-Objective Optimisation

In multi-objective optimisation, multiple objectives are being optimised at the same time such as

minimising energy consumption and maximising accuracy. In multi-objective optimisation, Pareto

optimality is a key concept, where a solution is considered optimal if no other solution can optimise

one of the objective without worsening another.

By applying multi-objective optimisation to LLM configurations, it is possible to generate a

Pareto front of potential optimal solutions, offering a range of trade-offs between energy efficiency

and accuracy. The place on the Pareto optimal front can be determined based on the requirements

of the user. Leveraging AutoML tools can automatically search for optimal configurations [85].
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2.3.3.3 Combining Optimisation Techniques

Integrating multiple optimisation techniques such as fine-tuning, quantization, pruning and knowl-

edge distillation can lead to new Pareto optimal configurations. For instance, fine-tuning can be

combined with quantization. Applying techniques like AWQ and GPTQ adjusts the model to lower

precisions without significant accuracy loss [86]. Furthermore pruning and knowledge distillation

can be combined. Pruning reduces model size while knowledge distillation transfers knowledge to

a smaller model which could lead to improved performance [87]. Careful calibration and analysis

is needed to determine which optimisations could be suitable for optimising LLMs.

2.3.4 Experimental Approaches

2.3.4.1 Empirical Evaluation

Besides a theoretical basis for the experiments conducted for optimal configurations, empirical data

will provide the eventual evidence for applicability of these methods. Measuring metrics such as

Wh per generated token and pass@k rate help in comparing different configurations. A study that

might help finding optimal configurations can train different models with various levels of quanti-

zation. Consequently, the energy consumption of the models can be measured by using tools like

CodeCarbon [63] during code generation tasks. Afterwards, the generated code can be evaluated on

coding benchmarks such as HumanEval [88] and BigCodeBench [89].

2.3.4.2 Theoretical Modeling

The empirical results can in turn steer new research into the right direction and based on theoretical

frameworks the search space of optimal configurations can be narrowed down.

2.3.5 Insights on the Energy-Accuracy Trade-Off

Identifying optimal configurations of LLMs that minimise energy consumption while maintaining

model accuracy is a challenging due to the multidimensional nature of the problem. Due to the

complexity of the size of the search space it is infeasible to do an exhaustive search in the (hyper)

parameter space of LLMs. Besides, optimal configurations can also vary depending on the nature

of the workload. Hardware constraints can also limit the options and put constraints on the com-

patibility of certain optimisation techniques. By understanding the components of the problem it is

possible to gain insight in the factors affecting energy consumption and accuracy in LLMs. Besides,

techniques like hyper parameter optimisation, multi-objective optimisation, and combining several

model compression methods, it is possible to find configurations that satisfy these criteria. This does

not only enhance the sustainability of LLM inference but can be applied in general in the broader

context of sustainable AI practices.
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2.4 Code Correctness and Functionality Preservation

LLMs are powerful tools for developers in programming tasks. However, LLM-generated code also

raises concerns about correctness and functionality due to potential errors or unintended behaviours

present in the code [88]. Code correctness and functionality preservation are essential for the reli-

ability and energy efficiency of code. Incorrect code can lead to additional computing cycles and

resources spent on debugging and re-running programs which increases energy consumption [90].

This section further explores how evaluation frameworks such as benchmarking and unit testing can

ensure code correctness and functionality preservation for LLM-generated code.

2.4.1 Code Correctness

LLMs can generate faulty code that is syntactically correct but semantically flawed which can lead

to bugs or security vulnerabilities [88]. These issues arise when LLMs hallucinate, which is fairly

common in LLMs [91]. Therefore, robust frameworks are required to ensure that generate code is

correct and preserves functionality.

2.4.2 Evaluation Frameworks

Evaluation frameworks are important in verifying the code correctness and functionality of LLM-

generated code. Techniques such as unit testing, regression testing [92], static and dynamic analysis

tools [93] and benchmarking [88, 89] can identify issues and provide insight in the quality of LLM-

generated code.

2.4.2.1 Unit Testing

Unit testing involves the isolation and testing of individual code components to verify if each part

operates as intended in isolation [94]. Unit tests can validate whether each module or function

behaves as expected and catch errors that are not directly apparent in most use cases. There exist

automated unit testing tools that can be utilized to create test case for generated code [95].

2.4.2.2 Regression Testing

Regression testing ensures that new code does not distort the functionality of the code. In the

context of LLM-generated code this method can test whether integrating LLM-generated code does

not introduce bugs or break existing features [96].

2.4.2.3 Static Analysis Tools

Executing code to test for errors and energy efficiency is a computationally demanding task. There-

fore, static analysis tools exist to examine code without executing it. These tools can identify errors,
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code smells and security vulnerabilities [97]. Tools like SonarQube and Pylint can analyse LLM-

generated code to test it for coding standards and detect issues in an early stage [98]. These tools

are essential for code quality and minimising the number of errors.

2.4.2.4 Dynamic Analysis Tools

Dynamic analysis tools involves executing code and consequently monitoring its behaviour to detect

issues such as memory leaks, performance bottlenecks and concurrency issues [99]. Dynamic anal-

ysis can uncover runtime errors that static analysis might miss which complements static analysis

tools [100].

2.4.2.5 Benchmarking

A standardized way to evaluate the performance and correctness of code is provided by benchmark-

ing tools [101]. Frameworks like HumanEval [88], MBPP (MultiPL-E Benchmark for Program-

ming Problems) [102] and BigCodeBench [89] were designed to assess and compare the capacities

of LLMs on programming tasks. Models can be evaluated on these benchmarks which often also

have built-in testing suits to assess the correctness and functionality of the generated code.

2.4.3 Functionality Preservation

Functionality preservation ensures that the generated code is not only syntactically correct and com-

pilable but also maintains its functionality as stated in the prompt or code that needs to be optimised.

This component is crucial for LLM-generated code as it can be difficult to translate a prompt, with

potential ambiguous or unclear instructions, to correct and functional code. Techniques like unit

testing testing and formal verification can be used to ensure that the correctness and functionality

remain intact after integration or optimisation [103].

2.4.4 Insights on Code Correctness and Functionality Preservation

Ensuring code correctness and functionality preservation are necessary components to enable auto-

matic code generation and incorporate machine generate code in software development processes.

Frameworks and techniques like unit testing, regression testing, static and dynamic analysis tools

and benchmarking play an important role in verifying the quality of code. By applying these tech-

niques developers can reduce the errors in LLM-generated code and improve sustainability by min-

imising the computational resources required to take correct and functional code in production.

2.5 Gaps in the Literature

The literature review has exposed several gaps in the literature in understanding and improving the

energy efficiency of LLMs. These gaps align with the hypotheses formulated in the introduction

of this study. First of all, the accuracy and effectiveness of software-based energy measurement
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methods are not yet fully established for LLM inference [42, 51]. Most existing tools either lack

the ability for high-granularity measurement or are platform- and application specific and might

not be suitable for the energy measurement during LLM inference tasks. Second, methods like

fine-tuning, quantization, pruning and model distillation have shown to decrease computational re-

quirements significantly without substantial accuracy loss [40, 41]. Nonetheless, there is a lack of

studies quantifying the energy savings as a result of these methods, even in the field of LLMs. In

addition, the trade-offs between energy and accuracy are not yet well understood, which stresses the

importance of further research to quantify the effects of these methods on the energy consumption of

LLMs. Moreover, the concept of configuring LLMs to minimise energy consumption while main-

taining model accuracy remains under explored [104]. Existing studies often focus on maximising

the accuracy of a model or on one optimisation method instead of focusing on energy consump-

tion. There is a need for research that incorporates energy efficiency as part of the multi-objective

optimisation problem. Finally, evaluation frameworks such as benchmarking and unit testing are

commonly used in software development. Although research on code correctness and functionality

preservation is gaining traction, in-depth research for LLM-generated code is still scarce and not

thoroughly investigated yet [88, 93]. Taking into account that LLMs can produce syntactically and

compilable code but are semantically flawed shows the need for these methods for LLM-generated

code. To conclude, literature shows increased interest in improving the energy efficiency of LLMs

but significant gaps exists for energy measurement, understanding the energy-accuracy trade-off,

finding optimal trade-offs and ensuring the code correctness and preserving the functionality of

LLM-generated code.

2.6 Insights

The literature provides valuable insights in the challenges associated with energy efficient use of

LLMs in code generation tasks. They have the potential to disrupt the software development in-

dustry further if the accuracy in code generation tasks increases, but their energy consumption still

raises sustainability concerns.

Accurate energy measurement of LLM inference is essential to optimise these models with re-

gard to energy efficiency. However, existing tools may not yet be able to accurately measure the

energy consumption of LLMs on a high-granular level during code generation tasks which stresses

the need for more fine-grained measurement methods. Optmisation methods such as fine-tuning,

quantization offer promising results for the energy reduction in LLMs without significantly impact-

ing their accuracy [40, 41]. Nonetheless, these methods also consume energy and require evaluation

to determine their effectiveness. Striking the right balance between energy efficiency and accuracy

is here of importance. This involves a detailed analysis of model architecture, hyper parameters,

and necessary computational resources. However, available methods in the field of multi-objective

optimisation can play a role in finding this balance. The accuracy of LLMs to produce correct and
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functional code is here an essential aspect to prevent additional energy consumption of LLMs. Eval-

uation frameworks such as benchmarks, and unit testing, are suitable tools to assess the reliability

of LLM-generated code.

These insights show the importance of a comprehensive frameworks that integrates these four

aspects to ensure that code can be produced with minimal energy by LLMs. This aligns with the

broader vision of Sustainable AI which seeks to strike a balance between technological progress

and environmental responsibility [105].
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Framework and Methodology

While speed and space complexity are well-known metrics for evaluating the efficiency of LLMs,

the energy efficiency of code generation is rarely incorporated into such evaluations [47]. This

work aims to address the gaps in the literature presented in the previous chapter and focuses on

accurate energy measurement and optimisation of energy consumption in LLM code generation

tasks while maintaining code correctness and preserving functionality. Open-source LLMs are used

to enable modifications to parameters and be able to run these models in isolation which is not

typically possible with commercial models that often restrict access to the underlying structure of

an LLM [106]. By leveraging open-source models, techniques like fine-tuning and quantization can

be applied to optimise for energy efficiency while aiming for minimal accuracy loss.

3.1 Energy Measurement

A software-based approach is taken to measure the energy consumption of the LLMs, consistent

with findings in the literature that such methods are practical and effective for energy measure-

ment in LLMs. The energy consumption is measured in isolation by ensuring that the LLMs are

fully run on a single GPU. For the NVIDIA L40S GPUs, the energy consumption of a process run-

ning on a GPU can be monitored via nvtop, which provides access to queries and kernel execution

details [55]. This software-based approach enables users to read hardware information in near real-

time, which makes it possible to identify how running an LLM affects the energy consumption of

a GPU. Additionally, the Multi-Threaded Synchronized Monitoring approach is used to verify the

initial measurement. This method identifies the window of kernel execution. Consequently, POSIX

threads (Pthreads) are used for synchronization, dedicating one thread to recording the power con-

sumption. The power consumption during model inference minus the idle state power consumption

represents the total energy consumption, as illustrated in Figure 3.1.

33
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Figure 3.1: Energy consumption of the GPU cluster during code generation

3.2 Data

The data used in this work comes from the BigCodeBench benchmark, which is a diverse set of

1,140 programming tasks designed to test the real-world coding capacities of LLMs in as diverse

ways as possible [89]. BigCodeBench builds on other benchmarks such as HumanEval, MBPP, and

DS-1000 which each focus on specific qualities of coding expertise. BigCodeBench aims to bundle

these quality measures into one benchmark. The LLMs are prompted to generate code solutions for

particular programming tasks. Subsequently, the correctness of the generated code is assessed by

calculating the pass@k metric, which provides the chance that at least one of the top k generated

samples is correct [88]. The power consumption of a programming task is calculated by adding the

energy consumed during code generation and code evaluation. The LLMs are compared based on

power consumption and model performance for code generation tasks.

3.3 Materials

The experiments are run on LLMs from the Qwen2.5 model family [107] and range in size from

0.5B to 14B. All models are run on a single Nvidia L40S GPU within a four Nvidia L40S GPU

cluster. Each Nvidia L40S GPU has 48GB of Graphics Double Data Rate 6 (GDDR6) memory with

Error-Correcting Code (ECC). This means that the GPU offers faster data transfer rates and higher

reliability. The energy consumption of an Nvidia L40S GPU is 350 watt at 100% utilization. An

AMD EPYC 9354 32-Core Processor is used to handle essential functions like task management
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and data transfer between the CPU and GPU memory. The CPU has a managing function in running

a workload and therefore also consumes some energy but this is minimal compared to the energy

consumption of the GPU and the CPU energy consumption is more complex, hence this aspect is

excluded from this work.

Figure 3.2: Visual representation of a 32-
core CPU

Figure 3.3: Visual representation of a 1024-
core GPU

3.4 Model Characteristics

To accurately estimate the power consumption of an LLM it is necessary to understand the inter-

actions and relationships between variables of an LLM. Nowadays, LLMs often use a transformer

architecture that consists of an encoder and a decoder part. Decoder-only models are mostly used

for text generation or code completion. The architecture, model size and computational complexity

directly influence the computational resources needed during inference [104]. Key variables that

impact the computational requirements of LLMs are the number of layers (I), model dimension-

ality (m), number of attention heads (h) and the vocabulary size (v). Table 3.1 summarises the

most important variables of LLMs. This work focuses on several decoder-only models with vary-

ing model sizes and a Mixture-of-Experts (MoE) model to see how model characteristics relate to

energy consumption during code generation tasks
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Table 3.1: Explanation of Model Variables

Variable Description

Model Name The name of the model (e.g., Qwen2.5-3B-Instruct, Meta-

LLaMA 3.1-8B-Instruct)

nparams(n) The number of parameters in the model which refers to the total

learnable weights in the model.

llayers(l) The number of layers in the model. This is the total number of

transformer blocks stacked in the model.

mmodel(m) The dimensionality of the model, representing the size of each

input and output vector in the transformer layers.

hheads(h) The number of attention heads in each transformer block. Each

head is responsible for capturing different aspects of attention.

dhead(d) The dimensionality of each attention head. This is usually equal

to mmodel/nheads.

nvocab(v) The size of the model’s vocabulary, i.e., the total number of

unique tokens the model can recognize.

nctx(c) The maximum context length or the maximum number of tokens

the model can process for a single input.

3.5 Model Architecture

The architecture is a determining factor for the eventual computational complexity of the model,

which is closely related to the power consumption of a model [10]. Except for the DeepSeekCoder-

V2-Lite-16B model, ll of the models used in this work are Decoder-only models. This means that

they do not make use of the entire encoder part of the original encoder-decoder architecture [70].

It must be noted that models that use a decoder-only architecture also require some steps that are

normally part of the encoder. Figure 3.4 depicts a visual representation of a decoder-only model

and the steps necessary for code generation.
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Encoder

1. Input embedding

2. Positional encoding

3. Multi-head attention (self-attention)

4. Feed-forward networks

5. Layer normalization

Decoder

1. Masked multi-head attention (self-attention)

2. Cross attention (optional)

3. Feed-forward networks

4. Layer normalization

5. Output generation

3.5.1 Decoder-Only Architectures

Decoder-only models such as Qwen2.5-Coder-Instruct and Meta-LLaMA 3.1-8B-Instruct only use

the decoder component of the Transformer architecture for tasks like code generation [107, 108].

As shown in Figure 3.4, the model processes input sequences through an embedding layer and

adds positional encodings to capture the order of the input tokens. The core component of the

decoder model is the multi-head self-attention mechanism, which allows the model to attend to pre-

vious tokens in a sequence while preventing access to future tokens to ensure causality [70]. After

the multi-head attention mechanism, the feed-forward networks and layer-normalization layers are

placed. Directly after this phase, the tokens are generated one-by-one whereby each tokens depends

on previously generated tokens.

Decoder-only models handle resources more efficiently compared to encoder-decoder models.

This makes it a suitable option in environments where resources are limited. Understanding the

interactions in an LLM architecture is essential to be able to accurately estimate the computational

requirements of running a model. Model architecture directly relates to memory usage and energy

consumption during inference. By gaining insight in the number of layers, attention heads, and other

model parameters, it is possible to predict the resource demands and optimise the energy efficiency

of models without degrading the performance of the model.
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Figure 3.4: Decoder-only architecture based on the Transformer architecture [70]
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3.5.1.1 Memory and Energy Consumption Estimation

As concluded from the decoder-only architecture analysis, memory requirements are influenced by

the size of the model parameters and the key-value (KV) cache used during inference. The keys and

values of the previously generated tokens are stored in the KV-cache. This techniques allows for

more efficient computations. The size of the KV-cache grows linearly with the sequence length and

the number of attention heads on which will be elaborate further in the scaling laws section.

The energy consumption during inference can be estimated by considering both the computa-

tional operations (e.g. FLOPs) and memory accesses. The number of FLOPs are in turn determined

by the model size and the sequence length. Memory access patterns on the other hand also contribute

significantly to energy usage.

By integrating these factors, it is possible to establish a cost model to estimate the energy con-

sumption of the model during inference, which crucial in effectively planning LLM workloads.

3.5.2 Mixture of Experts (MoE) Architectures

The DeepSeekCoder-V2-Lite-16B model is a so-called Mixture of Experts model which trains mul-

tiple experts to which an input can be assigned. Based on the ”specialisation” of the expert an input
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is assigned to it and each expert has its own specialisation [109]. This generally results in cheaper

inference since an input does not interact with all the parameters in a model. A MoE model also

has a gating layer that directs the input to an expert. To obtain the probabilities of directing it to an

expert a softmax function is used:

pi(x) =
eh(x)i∑N
j eh(x)j

(3.1)

where h(x)i is the gating function’s output for expert i, and N is the total number of experts.

The output of the MoE layer is the convex combination of the weighted sum of the expert

outputs:

y =
∑
i∈T

pi(x)Ei(x) (3.2)

Typically, only the top-k experts with the highest gating probabilities are considered, where k < N .

Shaping a formula that estimates the number of parameters for every MoE model is challenging

due to variations in their architectures. In this case our approximation model will take into account

the architecture of the DeepSeekCoder-V2 model.

3.6 Inference

Inference of an LLM can roughly be divided into the prefill and the decode parts. The prefill part is

defined as the part in which the context used by the LLM is processed. The output tokens are only

generated after the prefill stage is completed. The decode part determines the speed of code gener-

ation. Import metrics during the inference part of running an LLM are time-to-first-token (TTFT),

time-per-output-token (TPOT) and total-generation-time (TGT) [110].

Roughly speaking, two aspects influence the memory requirements of an LLM: the parameter

weights and KV-cache. The KV-cache holds the key-value embeddings of the input context and

earlier generated tokens. Consequently, the VRAM usage is influenced by the batch size and the se-

quence length. A thorough understanding of the model architecture and characteristics is important

to effectively estimate the power consumption of an LLM.

3.6.1 Parameter Calculation

The number of parameters is usually stated on the model card for an LLM, but it can also be calcu-

lated based on the architecture of an LLM. This is not only useful for situations in which only the

characteristics of a model are known but it can also be used to make accurate estimations of mem-

ory requirements and desired resource capacities before developing or running models. The process

of estimating the number of parameters is based on the steps taken in Table 3.4. To arrive at an
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accurate estimate of the number of parameters, memory requirements and the power consumption

of an LLM, the number of parameters are counted for each part of the decoder transformer.

3.6.1.1 Word Embeddings

The first layer that requires parameters to operate, is the word embeddings layer, where the word

embedding matrix (We) is computed. The embedding layer embeds the input tokens whereby the

number of tokens is represented by the vocabulary size v.

h0 = UWe +Wp (3.3)

In Equation 3.3 [111], it can be seen that during the computation of the sum of token embeddings

and their positional encodings (h0), the word embedding matrix is computed and multiplied with

matrix U. U = (u−k, ..., u−1) is the context of vector tokens before the position embedding matrix

is added to it. Matrix U, which is of shape (c, v), is here transformed into h0 which is of size (c,m).

Therefore, we know that matrix We must be of size (v,m) according to the matrix multiplication

rule. Consequently, the total number of embedding parameters can be calculated by the following

formula:

nembedding params = v ·m (3.4)

3.6.1.2 Positional Encoding

The next part of the LLM that requires parameters is the position embedding matrix (Wp) [70]. Ac-

cording to matrix addition rules matrices can only be added when the number of rows and columns

is equal. Hence, the position embedding matrix (Wp) is of size (v,m). This ensures the embedding

of the positions of the input tokens. The positional encoding aim to capture the order in which

words occur in a text. The number of parameters required to store the positional encodings can be

calculated by:

npositional params = c ·m (3.5)

3.6.1.3 Multi-Head Attention

Multi-head attention is used within the initial transformer architecture [70] and allows a model to

focus on multiple positions of the input sequence:

The total number of parameters for the multi-head attention (MHA) component is calculated as:
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MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V W V
i )

(3.6)

Where the projections are parameter matrices WQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,W V
i ∈

Rdmodel×dv [70].

Each attention head has three parameter matrices: one for Q, K and V that are all of size (m, d).

Each attention head has thus size 3·(m, d). Additionally, there is the output projection matrix (WO)

that combines the attention head matrices in each layer. The number of parameters for (WO) can

be calculated by h · d · m. Now that the number of parameters for each individual attention head

and for the concatenated heads can be calculated separately, the total number of parameters for the

Multi-head attention part is:

nMHAparams = (3 ·mdh+mdh) · l = 4 ·m · d · h · l (3.7)

3.6.1.4 Feedforward Networks

In the feedforward networks (FFN) of an LLM, parameters are needed to transform the inputs of

the model. From [70] it can be learned that:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3.8)

Here W1 and W2 are weight matrices and b1 and b2 are the bias terms. The parameters in each

FFN layer are composed of W1,W2, b1, b2. Here the concept of intermediate size is introduced

which is denoted by dff . Oftentimes dff = 4m but this is not always the case. Therefore the

term dff is used instead of 4m. The weight matrices W1 and W2 are of size (m, dff ) and (dff ,m)

respectively. The bias terms are and the bias terms are of size dff and m so the total number of

parameters per weight matrix is dff + m. The total number of parameters per FFN layer is equal

to:

nFFN params per layer = (dff ·m)2 + dff +m (3.9)

The total number of parameters in the FFN layers is:

nFFN params = ((dff ·m)2 + dff +m) · l (3.10)

3.6.1.5 Layer Normalization

The layer normalization step normalizes the input before passing it on to the attention layer. The

layer normalization layer formula is [112]:
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y =
x− E[x]√
V ar[x] + ϵ

· γ + β (3.11)

The learnable parameters in this formula are λ and β which are both of size m. This holds for

every normalization layer (k) that needs to be normalized hence the formula for the total number of

parameters in the layer normalization step is equal to:

nLN params = 2 ·m · k (3.12)

3.6.1.6 Output Layer

The output layer projects the hidden states back to the vocabulary size. Hence the number of output

layer parameters can be calculated by:

noutput params = m · v + v (3.13)

3.6.1.7 Mixture of Experts Layers

In a mixture of experts model other parameters come into play, such as the intermediate size of the

MoE model which differs from the intermediate size of the larger decoder model. For simplicity the

intermediate size of a model is set to be four times the hidden size of the model. However in recent

times, the complexity of the models has increased and the architectures have become more diverse.

Therefore it does not hold to set the intermediate size of a model to be four times the hidden size.

For the DeepSeekCoder model the intermediate size is approximately 1.5 times the hidden size.

3.6.1.8 Experts (MoE)

Within the MoE model there are stil FFN layers which are structured in the following way there

are also two weight matrices W1 and W2 and two bias terms b1 and b2 [113]. When the moe

intermediate size is given we scale this with a scaling factor of 1.5 to account for overhead within

the MoE layers and denote the result as j.

j = 1.5 ·moe intermediate size (3.14)

nparams per expert = W1 +W2 + b1 + b2

= (m · j) + (j ·m) + i+m
(3.15)

To obtain the total number of experts we add the number of routed experts to the number of

shared experts in the model.
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total experts = nrouted experts + nshared experts (3.16)

Consequently the number of experts is multiplied by the number of number of parameters per

expert.

nexpert params = nparams per expert · total experts (3.17)

3.6.1.9 Gating Network (MoE)

The gating network that ensures that each input is connected to the right experts also requires pa-

rameters. This is calculated by multiplying the hidden size of the model times the number of routes

experts.

ngating params = m · nrouted experts (3.18)

3.6.2 Total Number of Parameters

To estimate the total number of parameters in an LLM the following formulas can be used. The first

formula is for a dense transformer model and the second formula is for a MoE model.

3.6.2.1 Decoder-Only

The total number of parameters can be calculated by adding all the parameters from previous steps

to each other. This boils down to the embedding layer, positional encoding, attention, feedforward

network, layer normalization and output parameters.

nparams = nemb params + nenc params + nMHAparams + nFFN params + nLN params + noutput params

= vm+ cm+ 4mdhl + (dff ·m)2l + 5ml + 2mk +mv + v

(3.19)

3.6.2.2 Mixture-of-Experts (MoE)

The total number of parameters for a MoE model is slightly different since this involves the calcu-

lation of the Mixture of Experts model parameters based on the number of experts in a layer, the

number of shared feed-forward network parameters and the gating network parameters:

nMoE params per layer = nexpert params + nsharedFFN params + ngating params (3.20)
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The number of MoE parameters is then multiplied with the number of layers in the model:

nMoE params = nMoE params per layer ·MoE layers (3.21)

Finally, the calculation is more or less similar to the number of parameters in the decoder-only

model:

nMoE params = nemb params+nenc params+nMHAparams+nMoE params+nLN params+noutput params

(3.22)

3.6.3 KV-cache

The KV-cache requires memory for the storage of the key and value for each of the attention heads

of a tensor. The KV-cache enables more efficient computation of the attention scores in an LLM

[7]. How much memory every tensor parameter requires, depends on the precision of the parameter.

Roughly speaking, there are four commonly used precision levels: full-precision (FP32) 4 bytes/pa-

rameter, half-precision (BF16, FP16) 2 bytes/parameter, quantized data (INT8, FP8) 1 byte/param-

eter and quantized data (INT4) 0.5 byte/parameter.
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Table 3.2: Explanation of KV-cache Calculation Variables (Aligned with Model Variables)

Variable Description

nparams(n) The number of parameters in the model which refers to the total

learnable weights in the model.

llayers(l) The number of attention layers in the model, corresponding to the

number of transformer blocks.

hheads(h) The number of attention heads per attention layer. Each head

performs its own self-attention calculation.

dmodel(m) The dimensionality of each attention layer, aligning with the

model’s dimensionality.

p The number of bytes required for storing a parameter. This is

typically 4 bytes (32-bit floating point), 2 bytes (16-bit), or 1 byte

(8-bit).

b The batch size, i.e., the number of input sequences processed to-

gether in parallel.

s The total sequence length, representing the number of tokens per

sequence input to the model.

2 A constant, representing each layer’s key and value cache.

The size of the KV-cache per token in bytes can be calculated with the following formula:

KVtoken = 2 · nparams · (hheads · dmodel) · p (3.23)

As a general rule of thumb we can calculate the required memory space for the parameters of an

LLM in the following way: every 32-bit parameter requires 32 bits which is equal to 4 bytes. When

we multiply this with the number of parameters in the model, we arrive at a memory requirement

of 4*1,000,000,000 = 4 GB. Also, the size of the KV-cache grows linearly with batch size and

sequence length. It is thus perfectly possible that the required memory for the KV-cache exceeds

the required memory of the model weights. The size of the total KV-cache can be calculated with

the following formula [114]:

KVtotal = 2 · b · s · nparams · hheads · dmodel · p (3.24)

The size of the KV-cache can be reduced by reducing the number of attention heads. This can be
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done by either applying multi-head attention (MHA) or multi-query attention (MQA). When these

methods are applied, the number of heads can be reduced depending on the method applied. The

parameter that determines how much groups of heads there are is given by (g). The new formula

then becomes:

KVtotal = 2 · b · s · nparams ·
hheads

g
· dmodel · p (3.25)

where b is the batch size and s is the sequence length.

Reducing the number of attention heads or using techniques like multi-query attention (MQA)

can help reduce the size of the KV-cache [115].

3.6.4 VRAM

The total VRAM usage in bytes of a GPU can be calculated by multiplying the number of parameters

by p, usually p = 2 given that there are 16-bits or 2 bytes necessary for each parameter. The second

part of the equation calculates the VRAM requirement for the KV-cache, which is multiplied by

the precision as well. The same applies here, p is 2 for half-precision. It must be noted that p for

the parameters and the KV-cache can differ, hence there are two p denotations incorporated in the

equation.

V RAM = (nparameters) · pparameters + (KV − cache · pKV−cache) (3.26)

3.6.5 Runtime

The runtime of an LLM eventually determines the energy consumption of a programming task. The

longer a machine is dedicated to running that specific task, the more energy has to be assigned to

that task to complete it. The task can roughly be divided into to parts: prefill and decode that are

both related to the FLOPs and HBM rate of a GPU. The relationships are shown in this section.

3.6.5.1 Prefill

The formula for the prefill is the number of multiplications and summations for each of the param-

eters in the model. This where 2 ·N comes from. In the prefill stage the number of tokens loaded is

equal to s hence, it is multiplied by s. The batch size determines how often this process is repeated

hence the compute is multiplied by s.

Prefill compute = 2 · nparams · b · s (3.27)

Prefill memory = 2 · nparams (3.28)
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3.6.5.2 Decode

In the decode phase, the number of tokens processed in the decode phase is equal to 1. Again the

number of parameters is multiplied by 2 since there is a multiplication and summation for each

parameter. Finally it is multiplied by the batch size since this determines how often this process is

repeated. For the decode stage:

Decode compute = 2 · nparams · b · 1 (3.29)

Decodememory = 2 · nparams (3.30)

3.6.5.3 Time-To-First-Token

The time-to-first-token meausres the latency from the moment a request is made to when the first

output token is received. In NLP applications the waiting time is important for user experience and

they aim to minimise the TTFT. The TTFT is obtained by dividing the prefill compute by the FLOPs

rate. The FLOPs rate is the total number of floating point operations per second. In addition, this

number is added to the the prefill memory divided by the high bandwidth memory (HBM) times to

each other [110]. The HBM rate gives here the data transfer speed in high-performance computing

systems such as GPUs.

TTFT =
Prefill Compute

FLOPs rate
+

PrefillMemory

HBM rate
(3.31)

3.6.5.4 Time-Per-Output Token

The TTFT is not the only aspect that determines the time it takes to generate an output. The time-

per-output token is the time necessary to generate one subsequent token. This metric is obtained by

dividing the decode compute or divided by the FLOPs rate and the decode memory divided by the

HBM rate [110].

TPOT =
DecodeCompute

FLOPs rate
+

DecodeMemory

HBM rate
(3.32)

3.6.5.5 Total Generation Time (TGT)

The total generation time represents the time to complete a code generation task. The TGT can

be obtained by taking the time to first token and multiplying the time per output token times the

sequence length as given in Equation 3.33.

TGT = TTFT + TPOT · ntokens (3.33)
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3.6.6 Energy Consumption

The energy consumption of the model is related to both computational operations and memory

accesses. Using the power draw in Watt of a machine P and the time the machine is ran t, the

energy efficiency can be expressed as:

Energy consumption = P · t (3.34)

3.7 Fine-Tuning

Fine-tuning is commonly used to increase the performance of LLMs in code generation tasks by

pre-training an LLM on a task or domain specific dataset. As such, the accuracy of a model can

be improved during inference tasks [116].This not only improves the performance of the models on

coding benchmarks, it also increases the practical use of the model since it is increasingly able to

handle user instructions. The models that will be used in the first part of the experiments are all fine-

tuned models and the DeepSeekCoder and the CodeQwen models are also fine-tuned specifically

on coding tasks.

3.8 Quantization

Quantization methods reduce the precison of a model parameters so that a lower number of bits is

required for each parameter. The effect is that the memory requirements and thus the space that a

model requires on hardware diminishes [86]. In this work two types of quantization are considered:

AWQ and GPTQ.

3.8.1 Activation-aware Weight Quantization (AWQ)

The first quantization method that is applied to the Qwen2.5 models is Activation-aware Weight

Quantization (AWQ). This method dynamically adjusts the precision of the weights and the acti-

vations. Which weights and activations it adjusts and to what extent is determined based on the

distribution of the activations in the network layers to maximise model accuracy while minimising

the size of the model [41].

3.8.2 GPTQ

The second method used in this work is GPTQ, which quantizes weights, activations and gradients

to maximise the memory reduction. The extent to which the tensor types can also be determined and

can differ from 1-bit per tensor type to 32-bits per tensor type. Here the 8-bit and the 4-bit variants

are tested. These methods balance the computational efficiency with accuracy [40].
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3.9 Performance evaluation

The performance of AI-systems can be defined in the form of throughput, latency or accuracy. How-

ever, in code generation tasks, the usefulness of a model lies in its capacity to produce correct code.

A metric that aims to evaluate the functional correctness of code is the pass@k metric [88].

This metric estimates the probability that at least one of the top k generated samples is correct.

It is assumed that there are c correct samples in the total number of generated samples. The total

number of combinations to choose k from n combinations is given by C(n, k). The number of

ways to draw from the incorrect samples is denoted by C(n − c, k). From this it follows that the

probability that a draw is incorrect is given by:

p =
C(n− c, k)

C(n, k)
(3.35)

The probability that at least one of the k generated samples is correct or the expect value of the

generated samples is denoted by [88]:

pass@k := Eproblems

[
1− C(n− c, k)

C(n, k)

]
(3.36)

Consequently, the pass@k rate is processed as well as the energy consumption in kWh to eval-

uate the pass@k rate per kWh achieved. The pass@kWh rate is calculated as follows for each

LLM:

pass@kWh =
pass@k

energy consumption(kWh)
(3.37)

3.10 Overview of Research Methods

The methodology has provided an overview of the methods and techniques used in the evaluation

and optimisation of the energy efficiency of LLMs during code generation tasks. A variety of

open-source LLMs are used for solving coding tasks. Besides, energy efficiency is incorporated

in the assessment of model performance by using methods like pass@kwh, which contributes to

Sustainable AI practices and addresses the research gaps identified in the previous chapter.

3.11 Ethics and Privacy

The Ethics and Privacy Quick Scan of the Utrecht University Research Institute of Information and

Computing Sciences was conducted (see Annex A). It classified this research as low risk with no

fuller ethics review or privacy assessment required.



Chapter 4

Experimental Evaluation

The previous chapters have provided essential information about measuring energy consumption,

LLMs, their coding abilities and available techniques to optimise their energy efficiency. This chap-

ter provides an experimental evaluation of the proposed methods to increase the energy efficiency

of LLMs. Since coding tasks are generally very diverse, it is important to evaluate the framework

on a representative benchmark. In this case the BigCodeBench was chosen, given the wide variety

of coding tasks that are incorporated in the benchmark. The experimental setup section dives deeper

into the data, metrics, software and hardware used during the experiment.

The experimental evaluation consists of experiments conducted with the LLaMA3.1-8B-Instruct,

DeepSeek-V2-Lite-Instruct-16B models and the Qwen2.5-Coder-7B-Instruct models which are used

to assess the coding performance of three of the most powerful open-source models. To further as-

sess the effects of fine-tuning and quantization, fine-tuned and quantized versions of the Qwen2.5

models are used to generate code. Since Qwen2.5 has a wide-range of models available ranging

from 0.5B to 72B models, the Qwen2.5-Coder model was selected to see how increases in model

size relate to the accuracy of a model. Figure 4.11 shows the taxonomy of the Qwen2.5 models used

to unravel how model size, fine-tuning and quantization are related to energy consumption.

4.1 Experimental Setup

4.1.1 Evaluation Metrics

To evaluate the abilities of LLMs to generate functional correct code, the pass@k metric is used. As

stated in the Methodology section, this metric gives the probability that the top k generated samples

passes the unit tests for a set of problems. In addition to the pass@k metric, the pass@kWh metric

is also used to indicate how much one kWh contributes to the pass@k rate.

Other important metrics include the prefill and decode which are required for the computation

of the TTFT and TPOT. The next step includes the total generation time which indicates how long

VRAM is used. Based on the duration of the GPU usage the total energy consumption can be calcu-

50
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lated by simply multiplying the duration with the power draw of the GPU. The energy consumption

can be used to assess the usability of these models for code generation tasks. Finally the pass@k

score is compared with the energy consumption to uncover the energy efficiency of an LLM in code

generation tasks.

The total generation time can be divided into the time-to-first-token and the time per output

token. Below is a hypothetical situation where the system outputs only one token. As one can

see the contribution of TTFT and TPOT is roughly equal. However the next Figure shows that the

largest part of the TGT is made up of token generation as the number of output tokens increases.

This unsurprisingly since Equation 3.33 shows that the TPOT is multiplied by the total number of

tokens generated.

Figure 4.1: Total generation time build-up for
output tokens = 1

Figure 4.2: Total generation time build-up for
output tokens = 10

4.1.2 Scaling Laws

Understanding scaling laws of LLMs is crucial to see how changes in an LLM affect the required

computational resources during inference. In Figure 4.3 it is shown how the number of parameters

in a model scales with the number of layers (I), the hidden size (m), the number of attention heads

(h), the head dimension (d), the vocabulary size (v) and the context size (c). As can be observed,

all the relationships are linear relationships but the number of parameters scales faster than the other

three parameters.
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Figure 4.3: Scaling relationships for parameters in an LLM

The relation between several variables and the size of the KV-cache is shown in Figure 4.4.

The relationships in the KV-cache are also linear but the slope differs significantly. The batch

size causes the KV-cache to increase for the Qwen2.5-Coder-7B-Instruct model with approximately

1.875 GB for every batch extra. The number of attention heads is usually determined by the attention

architecture so this cannot be scaled upwards easily. However, it can be seen that for every 10

attention heads, approximately 0.67 GB extra KV-cache space is necessary.
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Figure 4.4: Scaling relationships for parameters in the KV-cache

Similarly, the relationships between the precision, number of parameters and the KV-cache with

the VRAM requirements can be shown for the Qwen2.5-Coder-7B-Instruct model as shown 4.5.

The effects of most parameters on the required VRAM are (nearly) linear. Only when g increases,

the VRAM requirements decrease because the hidden size (h) is divided by the number of attention

heads (g) in Equation 3.25.
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Figure 4.5: Scaling relationships for VRAM requirements

4.2 Experiments

The previously mentioned metrics will utilized as a measure of performance for a range of exper-

iments that will show whether there is a relationship between batch size and energy consumption.

Additionally, the relationship between model size and energy consumption on the one hand and

the pass@k score on the other hand is assessed to see whether a linear increase in model size, also

causes a linear increase in energy consumption. The second part of the experiments focuses on the

Qwen2.5 models that are adjusted with fine-tuning, AWQ and GPTQ to see what the effects of these

techniques are on the energy consumption and pass@k rate of these models.

4.2.1 High-Granularity Analysis

Within the BigCodeBench [89] there are seven categories to which a task can belong based on the

libraries necessary to complete each task, as shown in Table 5.1 .
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Figure 4.6: Energy consumption per Big-
codebench task

Figure 4.7: Number of tasks per BigCodeBench
domain

Figure 4.8: Total energy consumption per task
by domain

Figure 4.9: Total energy consumption per token
by domain

Before testing for statistical differences between There are four factors that are important to

assess before choosing a statistical test and performing it:

• Nature of the data

• Autocorrelation

• Normality

• Homoscedasticity

The outcome variable energy consumption is continuous which is a prerequisite for some statis-

tical tests. Given that the tests in the BigCodeBench are executed so quickly after each other there

might be autocorrelation between the tasks. In addition, the normality of the data is of importance

since some tests like ANOVA or a t-test require the data to be normally distributed. Another com-

mon assumption in statistical tests is the homogeneity of variances, also called homoscedasticity. If

these assumptions are violated the tests might not be suitable for this data. Several tests are available
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to test for autocorrelation, normality and homogeneity.

First of all, the residuals of the energy consumption data are tested for autocorrelation by using

the Durbin-Watson test. The Durbin-Watson statistic can range from 0 to 4 whereby a DW-value

close to 2 indicates no autocorrelation, a value lower than 2 indicates positive autocorrelation and

a value higher than 2 indicates negative autocorrelation. In Table 5.2 the DW-statistics are shown

for the models Qwen2.5-Coder-7B-Instruct, Meta-LLaMA 3.1-8B-Instruct and DeepSeekCoder-

V2-Lite-16B and for varying batch sizes of these models. For the Qwen2.5-Coder-Instruct model

the DW-values range from 0.73 for batch size 1 to 0.80 for batch size 8 which indicates strong pos-

itive autocorrelation. The Meta-LLaMA 3.1-8B-Instruct model has DW-values varying from 0.56

for batch size 1, 0.94 for batch size 4 to 0.59 for batch size 8. Also, for the Meta-LLaMA 3.1-8B-

Instruct model this indicates the presence of strong positive autocorrelation. The DeepSeekCoder-

V2-Lite model consistently shows extremely low DW-values ranging from 0.2693 (batch size 1),

0.2098 (batch size 4) and 0.23 (batch size 8). This indicates extreme autocorrelation across all batch

sizes. Overall, all three models show strong autocorrelation for all batch sizes which indicate de-

pendencies over time for which should be taken during model selection.

Consequently, the Shapiro-Wilk test is used to test whether the data is normally distributed. This

test provides a SW-statistic and a p-value. The Shapiro-Wilk statistic gives a value between 0 and

1 whereby a value close to 1 indicates normality while a value close to 0 indicates a deviation from

normality. The Qwen2.5-Coder-Instruct Shapiro-Wilk statistics are extremely low around 0.27-0.29

with corresponding p-value below 0.05 which indicates severe non-normality in the data for all batch

sizes. For the Meta-LLaMA 3.1-8B-Instruct model the Shapiro-Wilk statistics are between 0.20 and

0.31 which also indicates strong non-normality of the data. The p-values all lie around 10−54 and

are therefore statistically signifcant. The Shapiro-Wilk statistics for the DeepSeekCoder-V2-Lite

model range between 0.8264 for batch size 8 and 0.9478 for batch size 4 which indicates that the

data is closer to normality than for the other models. However the p-values for the three batch sizes

are all < 0.001 which means that the non-normality is highly significant. These results show that

transformation of the data might be necessary before using the data in analysis and that parametric

tests might be inappropriate.

Finally, Levene’s test is used to assess whether the variances of residuals are equal over time

which would indicate homoscedasticity. For the Qwen2.5-Coder-Instruct model the Levene’s statis-

tics are 0.005, 1.77 and 1.09 with corresponding p-values, 0.95, 0.18 and 0.30 respectively which

indicates homoscedasticity for all three batch sizes. The Meta-LLaMA 3.1-8B-Instruct model Lev-

ene’s statistics are 2.44, 0.11 and 0.80. The corresponding p-values are 0.12, 0.75 and 0.37 which

are all not statistically significant hence we can conclude that these models residuals are also ho-

moscedastic across all batch sizes. The DeepSeekCoder-V2-Lite shows different results whereby

the Levene’s statistics are 125.51, 179,09 and 25.62. The corresponding p-values are all < 0.001
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which are all highly significant. These results showcase heteroscedasticity in the residuals of the

energy consumption data of the DeepSeekCoder model. A model that accounts for heteroscedastic-

ity must be used to control for this condition.

In summary, the outcome variable is continuous, the data exhibits autocorrelation, lacks tempo-

ral independence, deviates from normality but maintains homoscedasticity in the Qwen2.5-Coder-

Instruct and Meta-LLaMA 3.1 models. However, in the DeepSeekCoder there is heteroscedasticity

in the residuals. This combination of factors makes a fixed-effects OLS model with robust standard

errors the most suitable model to assess potential differences in energy consumption between the

domains given in 5.1. The advantage of such a model is that it is resilient to non-normality which

is present in all three models. The robust standard errors ensure here that the results remain reli-

able even when the data is non-normally distributed. Besides, the robust standard errors address

heteroscedasticity which is present in the DeepSeekCoder-V2-Lite model. Additionally, the com-

plexity of the OLS model is relatively low, making it simple to interpret. To ensure the handling of

autocorrelation, a lagged energy variable is included which partially addresses the autocorrelation.

Although it does not fully model temporal dependencies as is possible in an AR structure, the lagged

variable serves as a reasonably approximation for the time-related dependencies. The linmitations

of this model are mainly that it does not fully account for autocorrelation and that it does not model

task-specific effects. This may lead to reduced accuracy of the domain-level estimates.

In analyzing the Ordinary Least Squares (OLS) regression results for the three models, multiple

factors are assessed that influence the energy consumption of coding tasks in the Bigcodebench.

These models include the effects of time, number of solution tokens and the domains for each cod-

ing task. These factors collectively form the explanatory power regarding energy consumption. are

shown in Table 5.5 up until Table 5.13.

The adjusted R2 statistic is for all models around 98% (0.979 − 0.983) which indicates that

almost all variance can be explained by the factors in the model. The high F-statistic values lie be-

tween 6955 and 9500 and the p-values close to zero indicate that the model is statistically significant

and explain the variance of the energy consumption.

Given that the energy consumption is represented in logarithmic form, the coefficients can

be interpreted as percentage changes. The coefficients of the number of solution tokens is be-

tween 0.0006-0.0008 which are all positive with p-values < 0.001. This suggests that an in-

crease in the number of tokens increases the energy consumption of a coding task. Secondly, the

log energy lag1 ranges from 0.09 to 0.14 which are all significant, indicating that past energy con-

sumption has a moderately positive effect on energy consumption. Due to the autocorrelation of the

energy consumption between tasks this term is added to control for it. Furthermore, the categories

Computation, Cryptography, Network, System, Time and Visualization are added as dummy vari-
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ables to the model. The category General is left out because every task has belongs to that category

and it therefore does not add any explanatory power to the model. The coefficient for the Compu-

tation domain is positive (ranging from 0.02 to 0.05) and is highly significant p − value < 0.05.

This means that task that use libraries within the Computation domain are associated with higher

energy consumption. The 95% confidence intervals confirm the stability of these estimates since the

intervals are narrow which substantiates that the usage of libraries in the Computation domain lead

to higher energy consumption. The Cryptography domain coefficients are positive and significant

(around 0.025 to 0.03) which indicates that cryptography tasks are energy-intensive. This is also

in line with the computationally demanding nature of hashing or encryption tasks. The Network

domain shows mostly insignificant coefficients across the models. This suggests Network domain

libraries do not have a large impact on energy consumption. The System domain has coefficients

(around 0.04 to 0.12), suggesting that system-level tasks has substantial impact on energy consump-

tion. The coefficients of the Time domain are positive but smaller in magnitude (approximately 0.01)

and significant in most models. This implies that coding tasks that utilize libraries within the Time

domain have higher energy consumption. Finally, the Visualization domain shows consistently

positive and highly significant coefficients (around 0.03 to 0.05), indicating that tasks involving vi-

sualization are energy-intensive. The increased energy consumption for the Visualization libraries

can be explained because rendering graphics or displaying data often involves significant computa-

tional and memory resources.

The relationship between energy consumption and the use of specific libraries is consistent

across all three models which suggest that coefficients of the lagged log energy are robust. It can

be concluded that energy consumption in the BigCodeBench is associated with higher task dura-

tion and the use of Computational, Cryptographic, and Visualization libraries significantly impact

energy consumption. Given the lagged nature of the log energy variable it also indicates that en-

ergy consumption of previous tasks is a factor in energy consumption. These models effectively

show how energy consumption relates to the libraries required in code generation tasks of the Big-

CodeBench. By understanding these relationships, organisations can better manage energy demands

and optimise computational resources based on the required libraries in code.
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4.2.2 Batch Size and Energy Consumption With Coding LLMs

Figure 4.10: Models used for granularity and batch size analysis

LLM

Qwen2.5-Coder

7B

Instruct

1Batch size 4 8

Specialisation

Model size

Model Family Meta-Llama3.1

8B

Instruct

1 4 8

DeepSeekCoder-V2

16B

Instruct

1 4 8

Based on the model characteristics given in 3.1, the number of parameters can be calculated for

the models used during the experiments. First of all, the model characteristics of the base models

are extracted from the config.json files in the Huggingface repository of these models (see Appendix

A).

Table 4.1: LLM characteristics

Model name nparams(n) nlayers(l) dmodel(m) nheads(h) dhead(d) nvocab (v) nctx (c)

Qwen2,5-Coder 7B 28 3,584 28 128 152,064 128,000

Meta-Llama-3.1 8B 32 4,096 32 128 128,256 128,000

DeepSeek-V2-Lite 16B 27 2,048 16 128 102,400 128,000

To evaluate the abilities of LLMs to generate functional correct code, the pass@k metric is

used. As stated above, three base models are tested for their coding abilities: Qwen2.5-Coder-7B,

Llama3.1-8B and DeepSeek-V2-Lite-16B. Below the values of the prefill, decode, TTFT and TPOT

are given. Also the required VRAM requirements for running the experiment is shown. The VRAM

memory requirement are also shown in the rightmost column of 5.14.

4.2.2.1 Statistical Analysis

Following the approach in the granularity analysis, several methods are used to determine statistical

differences in energy consumption related to batch size. The main methods used are an Kruskal-

Wallis statistical test to see whether there are statistical differences in the energy consumption data

for a model and Dunn’s test that serves as a post-hoc robustness check to see where in the data these
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differences lie.

First of all, the outcome variable should be continuous which is the case since energy consump-

tion is measured on a continuous scale. Second, it is important that the data for which the statistical

test is performed are independent from each other. This means that the outcome of one does not

affect the outcome of the other. This assumption holds given that the tasks are being processed in an

isolated environment and are processed serially. In addition, all conditions are reset after each run.

Thirdly, the normality of the data is examined by using a Shapiro-Wilk test for each of the three

batch size experiments 5.15. Fourthly, the variance of the residuals influences the tests that can be

used. If the variance of residuals does not remain constant over time, it is called heteroscedasticity.

Levene’s test is used to test for heteroscedasticity.

In the granularity analysis it was shown that the Shapiro-Wilk tests indicated non-normality for

all three models and across all three batch sizes 5.3. Similarly, for Levene’s test the p-values are

well above 0.05 as stated in 5.4. This indicates homoscedasticity for each model. For the Qwen-

Coder2.5-7B-Instruct model Levene’s statistic is 0.1018 and the corresponding p-value is 0.9032

hence we fail to reject the nullhypothesis which means there is no significant difference in variance

across the three batch sizes. which indicates that variances across the batch sizes are equal (ho-

moscedasticity). For the Meta-LLaMA 3.1-8B-Instruct model Levene’s statistic is 0.0588 and the

p-value is 0.9428 which indicates no significant difference in variances across groups. The same

holds for the DeepSeekCoder-V2-Lite model for which Levene’s statistic is 0.0359 with p-value

0.9648, which shows that these model’s variances are homoscedastic across groups as well.

Based on the fact that the outcome variable is continuous, the independence of observations,

non-normality of the data and the homogeniety of variances. We can conclude that a non-parametric

test is most suitable since parametric tests like ANOVA assume that the data is normally distributed.

The Kruskal-Wallis test does not assume that the data is normally distributed which makes it more

suitable for this experiment.

The Kruskal-Wallis test is a non parametric test to determine whether there are significant differ-

ences between the medians of multiple groups. In this case, the test evaluates if there are differences

in energy consumption for different batch sizes. A higher Kruskal-Wallis test statistic indicates

greater differences. The Qwen2.5-Coder-7B-Instruct the Kruskal-Wallis statistic is 21.2995 and the

p-value 2.3707e− 5 < 0.05 which indicates significant difference in energy consumption between

groups. The Meta-LLaMA 3.1-8B-Instruct model has a Kruskal-Wallis statistic of 17.0849 and a

p-value of 0.0002 < 0.05 which also indicates significant differences across the batch sizes. The

DeepSeekCoder model has a Kruskal-Wallis statistic of 2.5155 and a p-value of 0.2843, suggesting

no significant differences in energy consumption across batch sizes.
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The Kruskal-Wallis test does only test for differences between the batch sizes but it does not

provide pairwise comparisons between batch sizes. A test that does provide such pairwise compar-

isons is the Dunn’s Post-Hoc test. This test is subsequently applied to the energy consumption data.

In Table 5.17, the pairwise comparisons between batch sizes are shown. The Qwen2.5-Coder-7B-

Instruct model shows that there is no statistical significant difference between batch sizes 1 and 4

(p-value = 0.0801). However, the p-values for batch size 1 vs. batch size 8 and batch size 4 vs.batch

size 8 are < 0.001 and 0.0494 respectively. This indicates tha there is a statistical significant differ-

ence in energy consumption between batch size 8 and the batch sizes 1 and 4. The Meta-LLaMA

3.1-8B-Instruct model has non significant p-values for batch 1 vs batch 4 and batch 1 vs batch 8. The

p-value of batch 4 vs. batch 8 has a p-value of < 0.001 so this indicates a significant difference in

energy consumption between batch sizes 4 and 8. The DeepSeekCoder model has a non-significant

Kruskal-Wallis statistic, hence performing the Dunn-test for this model does not add value to the

analysis.

The pairwise comparisons show that there is a significant difference between the energy con-

sumption of the LLM ran with batch size 8 is significantly different from the batch size 1 and

batch size 4 in Qwen2.5-Coder-Instruct. For Meta-LLaMA 3.1-8B-Instruct batch size 8 has a sta-

tistically significant higher energy consumption than batch size 4. The energy consumption of

DeepSeekCoder-V2-Lite appears to be consistent across batch sizes.

As can be seen in Table 5.18, the average energy consumption for the Qwen-coder2.5-7B-

Instruct model is 0.7913 kWh, for the Meta-LLaMA 3.1-8B-Instruct model 0.9055 kWh and DeepSeek-

Coder 0.3866 kWh for an entire run of the BigcodeBench. From these results it can be learnt that

based on the energy consumption the energy consumption of the Meta-LLaMA 3.1-8B-Instruct

model has 134.22% higher energy consumption compared to the DeepSeekCoder-V2-Lite-16B

model.

The data in 5.18 provides insight in the trade-off between the energy consumption and the

pass@k score of a model. It becomes clear that higher energy consumption does not result in a

higher pass@k or in this case a pass@1 score. For example, the DeepSeekCoder-V2-Lite-16B

model with the lowest energy consumption (0.3866 kWh for batch size 8), has a notably higher

pass@1 score of 0.4947 which is notably higher than the pass@1 score of the Meta-LLaMA 3.1-

8B-Instruct which is 0.2404 for batch size 8. When looking at the latency and throughput of the

models it can be seen that lower latency and higher throughput indicate efficient processing. Energy

efficiency in relation to accuracy can be represented as the pass@k per kWh consumed. Here also

the DeepSeekCoder-V2-Lite-16B model stands out for having a high accuracy (pass@k) and low

energy consumption. This model provides better accuracy per kWh than the other models. Seen the

relatively small samples size per model, more batch sizes should be taken into account to reason

effectively about the relationship between batch size and the pass@k rate.
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4.2.3 Energy Impact of Fine-tuning, Quantization, and Model Size in Qwen2.5 Mod-
els

The effect of methods like fine-tuning, quantization and increase in model size are assessed for

the Qwen2.5 model family. This model was chosen since it has a wide-range of models available

ranging from 0.5B to 70B variants and Instruct and quantized models. To minimise the energy

consumption of the experiments and due to computational limitations, only the Qwen 2.5 models

were assessed in this work.

Figure 4.11: Qwen2.5 model family
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4.2.3.1 Impact of Increasing Model Size on Energy Consumption

In this experiment the focus lies on the relationship between model size and energy consumption.

As can be seen in 4.11, multiple model sizes are available within the Qwen2.5 Series to generate

code which were used to gain insight in this relationship. In Table 5.19 estimated VRAM require-

ments are shown for running one task from BigCodeBench, Table 5.20 provides a general overview

of distributions of the obtained energy consumption data.Tables 5.21 and 5.22 test for heteroscedas-

ticity and differences in energy consumption between models, respectively. Together these Tables

offer a insight in the energy efficiency trade-offs, memory requirements and the input processing

capacities of the Qwen2.5 Base models.

The expected computational requirements shown in 5.19 reveal that the energy consumption of

LLMs and VRAM requirements increases with size. The smallest model, Qwen2.5-0.5B, requires

only 1GB of VRAM and as such can be ran on a consumer grade computer and has only an ex-

pected total generation time (TGT) of 0.77 seconds per BigCodeBench task. In comparison, the

largest model, the 72B model in the requires 144 GB of VRAM and has a total generation time of

110.43 seconds per task. This would means that running such a model on a single state-of-the-art

LLM like an NVIDIA H200 GPU which has a VRAM of 141GB is not possible, meaning that a

cluster of industry-grade hardware is required to run LLMs of this size. The VRAM requirements

increase linearly with model size but latency increases non-linearly and throughput decreases non-

linearly with model size. These estimates suggest that larger models incur higher operational costs,

as is also substantiated by the empirical results.
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The Shapiro-Wilk test results for the GPU energy consumption of the models shows significant

non-normality in the data, suggesting variability in energy consumption across the different model

sizes. The results of Levene’s test show significant differences in energy variance (heteroscedastic-

ity). The Kruskal-Wallis test in Table 5.22 shows that there are statistically significant differences

in energy consumption between model sizes. The pairwise comparisons from Dunn’s test showcase

the significant differences per pair of models which shows that the energy consumption for each

tested model differs significantly from each other.

In conclusion, the energy consumption of Qwen2.5 models varies widely across different sizes,

whereby larger models consume significantly more energy, have higher latency and reduces through-

put. Otherwise, the insights in Table 5.24 show improved accuracy which is reflected in a higher

pass@k rate. However, they do so at diminishing energy efficiency and processing speed. Therefore,

organisations deploying LLMs must balance the trade-off between model size, energy consumption

and performance requirements associated with these models.

4.2.3.2 Energy Impact of Fine-tuning

Fine-tuning Qwen2.5 models shows a significant effect on energy consumption across different

models, with some models showing larger differences in energy consumption after fine-tuning than

others. Additionally, fine-tuned models show slight shifts in latency, throughput and pass@k scores.

The instruct LLMs are better in instruction following instructions by users to execute specific tasks.

These models are trained on instruction-response pair data so that they have a sense of how a re-

sponse on an instruction should be formatted. In this experiment it is investigated how fine-tuning

of models affect the energy consumption of the model. Consequently, the differences in accuracy

and energy consumption are investigated. In this way, insight is provided in the trade-off between

energy consumption and accuracy.

Table 5.29 shows that energy consumption remains largely constant between base and fine-tuned

models for smaller models (0.5B and 1.5B). However, for larger models there is a notable differ-

ence in energy consumption. For instance, the energy consumption of the 14B models drops from

1.68 kWh to 1.35 kWh after fine-tuning. At the same time, latency decreases, which is expected

since energy consumption and latency are highly correlated as shown in the first experiment. Also,

throughput shows improvements which indicates that fine-tuned models do not only consume less

energy but also have higher token processing speed. This contrasts the smaller models where fine-

tuning’s effects on latency are less pronounced and throughput even decreases.

To assess the required hardware and predict the energy consumption of an LLM, the VRAM

requirements for base models and fine-tuned models have been summarized in Table 5.25. Table

5.26 shows that the energy consumption data for the fine-tuned models is not normally distributed.

Furthermore, the results of Levene’s test in Table 5.27 show significant differences in energy con-



CHAPTER 4. EXPERIMENTAL EVALUATION 64

sumption variance, particularly for the 14B model (p < 0.001) which indicates that model size

is related to the energy variability after fine-tuning. The results suggest that while fine-tuning can

reduce energy consumption for larger models, the degree of reduction can depend on model size.

The Kruskal-Wallis statistical test substantiates the claim that fine-tuning impacts energy con-

sumption because all p-values for differences in energy consumption are statistically significant

(p < 0.001) as shown in 5.28. Furthermore, the pass@k rate of a model is related to the nature of

the model, For instance, the 7B-Instruct model consumes slightly less energy (0.82 kWh) than its

base counterpart (0.87 kWh). At the same time the 7B-Instruct model exhibits a higher pass@k rate

(0.45) than the 7B base model (0.31).

To summarise, fine-tuning has a significant effect on energy consumption, latency, throughput

and the pass@k rate of Qwen2.5 models. While higher models show increased pass@k rates for

fine-tuned models, smaller models do not show lower pass@k rates for fine-tuned models. This

could be caused by overfitting the model before applying it to a diverse benchmark such as Big-

codebench. All in all, fine-tuning seems to be an effective approach for optimising Qwen2.5 models,

particularly for larger architectures fine-tuning gains in both accuracy and energy consumption.

4.2.3.3 AWQ

AWQ of Qwen2.5 models provides significant improvements in energy efficiency, processing speed

and memory usage across various model sizes. Besides energy consumption, latency, throughput

and the pass@k score for each model are also evaluated. As a whole these metrics provide insight

in the suitability of AWQ models for code generation.

In Table 5.30 the estimated VRAM requirements of the AWQ models are depicted which shows

that the required VRAM requirements drop by 50% using a quantized model. This indicates that

also the energy consumption of such a model drops by 50%. This occurs because of the reduced

precision in the parameter weights.

The Shapiro-Wilk test results in 5.31 show the non-normality in all AWQ models (p < 0.001).

Similarly, Levene’s test shows the heterogeneity of variances between the Instruct and the Instruct-

AWQ models which highlights the change in energy demand by AWQ. Larger models such as the

3B and 7B models show higher differences in variance than smaller models, suggesting that AWQ

has the potential to increase resource efficiency for models with higher baseline resource require-

ments.

After applying the Kruskal-Wallis test it becomes clear that AWQ introduces statistically signif-

icant differences in energy consumption (p < 0.001) across all tested models. For instance, the 14B

AWQ model has an energy consumption of 0.66 kWh compared to 1.35 kWh for the instruct model
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which is in line with the estimated energy consumption savings. It must be noted that it does not

always decrease the precision of each number of weights equally which can explain the differences

in energy savings across models. For example, there are almost no savings in the 0.5B model but in

the 1.5B and 14B the svaings are around 50% while in the 3B and 7B models the savings are around

65%. Accordingly, the latency of the models decreases and except for the 0.5B model, throughput

increases noticeably. This suggests that AWQ provides a scalable method for reducing the energy

consumption of LLMs which is particulalry beneficial for high-performance applications such as

chatbots and code generation tools.

Finally, Table 5.34 illustrates how AWQ impacts the energy consumption, latency, throughput

and pass@k score of the Qwen2.5 models. A notable difference is the throughput of the 3B-Instruct

model sees an increase from 76.24 tokens per second to 139 tokens per second when AWQ is ap-

plied. However, while AWQ usually reduces latency and energy consumption, there are sometimes

trade-offs in model accuracy. Take for example the pass@k scores for the AWQ models for the

0.5B-Instruct model, which drops from 0.07 to 0.01 while keeping energy consumption approxi-

mately equal and increases latency. This is also visible for the 14B-Instruct model which energy

consumption is reduced by 51% but this also results in a pass@k drop from 51% to 0.27% which

suggests that AWQ conserves energy but it also impacts the accuracy in exchange for energy effi-

ciency gains.

4.2.3.4 GPTQ

The final set of experiments with Instruct models and Instruct-GPTQ models shows significant

improvements in computational efficiency, energy consumption, latency and throughput for both

GPTQ-Int8 and GPTQ-Int4 models. These effects are especially visible when comparing the quan-

tized models with the VRAM requirements for base or instruct models as can be seen in Table 5.35.

Reducing the precision of the models result in significant savings in prefill and decode compute as

well as prefill memory and VRAM. This emphasizes the potential of GPTQs role in LLM deploy-

ment in resource-constraint environments.

The results in 5.40 demonstrate GPTQs effect on energy consumption across all models, the

INT4 reductions show the largest reductions in energy consumption which was also estimated in

5.35. While in the 0.5B model this drop in energy consumption is quite limited, this becomes more

evident in larger models. In the 1.5B model the energy drop from Instruct to Instruct-GPTQ-Int8 is

33.33% it is 48% for the Instruct-GPTQ-Int4 model. These percentages further increase when model

size increases as the Instruct-GPTQ-INT8 model saves 41% and the 14B-GPTQ-INT4 model saves

66% percent compared to the 14B-Instruct model. These findings stresses the usability of GPTQ

models for applications that prioritise energy efficiency.

Regarding the statistical results of the GPTQ models the Shapiro-Wilk test 5.36 shows that the

energy consumption data of GPTQ models is not normally distributed with p-values < 0.001. A
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shift to lower bit precision in GPTQ models increases the non-normality in the data. Furthermore,

Levene’s test statistics in Table 5.37 show statistical differences in energy consumption variance for

the quantized models. This indicates that GPTQ’s impact on resource utilization is larger for larger

models, making it an effective method in resource-constrained environments.

The Kruskal-Wallis test results substantiates this by testing for statistical differences between

Instruct models and Instruct-GPTQ models. In Table 5.38 the differences in energy consumption

for all model sizes are statistically significant (p − value < 0.001). This suggests that there are

broad efficiency benefits of GPTQ across different scales and model complexities. For example,

GPTQ from Instruct to Int8 in the 7B model results in latency reduction from 191.68 ms to 109.55

ms and increased throughput from 37 tokens per second to 63.99 tokens per second. Int4 GPTQ

further reduces the latency to 72.62 ms with a throughput to 97.13 tokens per second. These results

show that GPTQ does not only improve energy efficiency but also speed and resource requirements,

making these models more responsive and scalable.

While GPTQ models enhance efficiency there are also trade-offs in model performance, partic-

ularly in pass@k scores. The 0.5B models shows a drop from 7% to 4% for the GPTQ-Int4 model.

Larger models show similar trends but the reduction in pass@k rates are limited as can be seen in

Table 5.40, for the 7B model the pass@k rate drops from 45% to 44% and for the 14B model the

pass@k rate drop from 51% to 49% while the GPTQ-INT8 models even show slight improvements

in pass@k scores. However, the trends off improved energy efficiency at the cost of lower pass@k

scores is also visible for GPTQ models.

To conclude, GPTQ proves effective for lowering energy consumption and latency for the

Qwen2.5 models. The advantages are especially visible in larger models which is advantageous

since the energy savings, speed improvements and memory optimisations can in absolute terms

save more resources. Although there might be trade-offs between accuracy and energy consump-

tion for GPTQ models, the effects on the pass@k rate remain minimal while the energy savings are

more pronounced. This makes GPTQ methods an interesting choice when models have to maintain

high performance but energy consumption or scalability is a major concern.

4.2.4 The Energy-Accuracy Trade-Off

The trade-off between energy consumption and accuracy can be visually depicted by plotting the

energy consumption against the pass@k rate of an experiment. In 4.12, this trade-off is shown for

the 25 experiments for the Qwen2.5 models, which shows that larger models have higher pass@kwh

rates and the kWh necessary for obtaining a higher pass@k rate increases exponentially. Nonethe-

less, the efficient frontier is formed by the models who minimise the pass@kwh rate for a given

combination of energy and pass@k or in this case the pass@1.
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Figure 4.12: Energy consumption for one Bigcodebench run vs Pass@1 rate for Qwen2.5 models

The models that minimize the energy consumption for a given pass@k rate lie on the efficient

frontier and are Pareto optimal in this context. As can be seen in 4.12, the GPTQ-INT4 models

and the GPTQ-INT8 models regularly lie on this efficient frontier. This indicates that these models

provide the optimal trade-off between energy consumption, accuracy and functionality preservation.

Given the exponential nature of the efficient frontier this might indicate that exponentially more

energy is required for LLMs to solve more challenging coding tasks. More research is needed to

determine whether this holds for larger models and models with MoE architectures.

4.3 Discussion

This work focused on optimizing the energy efficiency of LLMs during code generation tasks in

BigCodeBench. Since LLM training and inference is known for its significant contribution to carbon

dioxide emissions and climate change [117], it was a logical starting point for research into the

energy efficiency of AI systems. Although surprising, energy consumption is often overlooked in

the performance evaluation of AI models, where speed and accuracy where most important [5].

Additionally, accurately measuring the energy consumption of LLMs during inference can be a

challenge due to the variability in hardware environments and access levels to these environments.

The main objective of this work was to examine to what extent LLMs can be optimised for

energy efficiency without degrading their accuracy in code generation tasks. To achieve this, we

proposed a software-based energy measurement approach. During several experiments we assessed

the impact of LLM optimization techniques such as changing batch size, fine-tuning, AWQ and
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GPTQ on both energy consumption and pass@k rate (accuracy). The trade-off between energy

consumption and accuracy was further investigated to determine optimal combinations between the

two. Furthermore, we evaluated methods to ensure LLM generated code maintains its functionality

and correctness.

A software-based energy measurement method that uses energy monitoring tools during LLM

inference was used in this work. This method accurately measured the energy consumption of

LLMs, which confirms that energy consumption can effectively be quantified with readily available

open-source software. Additionally, the application of optimization techniques like fine-tuning,

AWQ and GPTQ led to significant reductions in the energy consumption of LLMs, for some meth-

ods even without significant performance loss. Also, we distinguished the effectiveness of the avail-

able optimization methods for LLMs regarding energy consumption and model accuracy. This

trade-off was simplified by the pass@kWh metric, which immediately shows the relationship be-

tween energy efficiency and the pass@k score. The evaluation framework of BigCodeBench [89]

that includes unit testing, ensured that the correctness and functionality of LLM generated code was

preserved.

These results show that LLMs can be optimised for energy efficiency with minimal accuracy and

functionality loss. The research contributes to the field of AI by providing a method to effectively

quantify the energy consumption of LLMs. Furthermore, a gap in the literature is addressed by

providing clear energy consumption data of LLM code generation tasks which shows the currently

limited ability of open-source models to solve complex programming tasks. The information on

the energy consumption difference between models and model architectures shows that there are

significant differences between models in their ability to solve coding tasks but also the energy that

they require to do so. Besides, we provide insight in the trade-off between energy consumption and

model accuracy, which is further substantiated with the introduction of the pass@kWh metric.

The implications of this study are substantial for the AI industry. It became evident that the

energy consumption well-known models can be 130.77% higher during code generation tasks while

achieving a lower accuracy on BigCodeBench. Optimizing LLMs for energy efficiency does not

only have environmental advantages but also offers financial advantages in the form of lower energy

related costs. The proposed energy measurement methodology and unit testing strategy can be used

for a wide range of LLMs, which helps the broader adoption of energy-efficient practices in AI

development.

Batching was shown to be crucial for managing energy efficiency across coding tasks. As

demonstrated in Table 5.18, models run with higher batch sizes tend to consume slightly more

energy than models with lower batch sizes. However, the differences are minimal hence future

work can research a larger number of batch sizes and a greater variety of models.

The experiments showed that the energy consumption of LLMs is closely related to the model

size and the computational complexity required to generate code. Larger models like Qwen2.5-
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14B-Instruct demand more energy but generally achieve higher pass@k scores, as substantiated

by Table 5.24. For instance, unquantized models such as Qwen2.5-14B consume approximately

1.35 kWh per BigCodeBench run, while smaller models like Qwen2.5-0.5B-Instruct consume 0.08

kWh for comparable tasks. However, this comes at the cost of model accuracy which is reflected

in lower pass@k rates for smaller models. While smaller models may be suitable for basic coding

tasks with limited complexity, larger models appear to be necessary to solve more complex tasks.

A more complex task is here more computationally complex and might need a larger number of

parameters to ’grasp’ the relations necessary to solve a task. This finding aligns with previous

research indicating that model size correlates with performance in complex tasks [10].

Fine-tuning models for specific tasks such as code generation has shown to improve perfor-

mance without or with limited effects for the functional correctness of generated code. For example,

Qwen2.5-14B-Instruct shows decreased energy consumption after fine-tuning. An explanation for

this result could be that fine-tuned models require fewer computational resources during inference,

due to a decreased number of parameter adjustments.

Quantization techniques like AWQ and GPTQ have shown to significantly decrease the energy

consumption of LLMs. Quantization methods reduce the precision of weights, parameters or both

and thereby reduce the required VRAM and energy demand to run a model. For example, the energy

consumption of the Qwen2.5-14B model decreased by 66% from its Instruct variant to the GPTQ-

INT4 variant, and the required VRAM decreased from 28 GB to 7 GB, which is shown in Table

5.35. While quantization may cause decreased accuracy, it democratizes access to these models by

decreasing the hardware requirements which makes it available to a larger public.

This work shows the importance of both energy efficiency and model performance in the de-

ployment of LLMs for code generation tasks. The trade-offs between energy consumption, model

accuracy, and computational resources indicates that model choice is highly dependent on context

and model requirements. In sectors like healthcare or finance, where accuracy is top priority, accu-

racy loss because of quantization may be unacceptable regardless the energy savings. On the other

hand, quantization offers a scalable approach to reduce energy consumption and VRAM require-

ments in less strict environments such as day-to-day use of chatbots.

4.4 Limitations

Despite the energy consumption insights uncovered by this study, there are also limitations. For in-

stance, the energy consumption measurement was only conducted on NVIDIA L40S GPUs. Since

the energy consumption for hardware differs from machine to machine, the findings may not gener-

alize to all computing environments.

Also, the experiments were conducted on a selection of open-source LLMs, which for the gran-
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ularity and batch experiments were models from different families while for the model size, fine-

tuning and quantization experiments this were models from the Qwen2.5 model family. While the

Qwen2.5 has a wide range of models available, these results might not generalise to other model

architectures. In the batch size analysis there were no significant differences in energy consump-

tion. Since DeepSeekCoder-V2-Lite-Instruct-16B is a MoE model this might indicate that batch

size does not impact energy consumption in MoE models. Besides, it might indicate that the results

from the second part of the experiments regarding the effects of fine-tuning and quantization also

cannot directly be generalized to MoE models.

Due to computational limitations, the experiments used the pass@1 metric. Higher pass@k

rates, such as pass@5 and pass@10 were not explored, which might provide more insight in the

trade-off between energy consumption and accuracy.

The energy consumption of the GPU has been collected every 10 seconds, which might have

influenced the accuracy of the measurements for the granularity analysis. Models with short run-

times might therefore have less accurate estimates of energy consumption than models with longer

runtimes.

The experiments focused on the energy consumption of different LLMs from the moment that

they were trained. However, the cumulative energy consumption from scratch were not taken into

account. Incorporating this data might impact model choice since fine-tuning and quantization also

costs energy.

4.5 Future Work

Based on the limitations of this study, future research could focus on evaluating a broader range

of models by incorporating multiple architectures such as multiple encoder-decoder, decoder-only

and MoE models, to increase the generalizability of the findings. Furthermore, it is encouraged

to repeat these measurements across different hardware platforms such as different GPU models,

CPUs and TPUs to understand how hardware impacts energy efficiency and model performance.

Using higher pass@k scores offer another opportunity to gain insight in the energy-accuracy trade-

off. Incorporating the energy costs of the training phase would give a more complete view on the

sustainability of LLMs and provides insight on a larger part of a models life-cycle. By focusing on

these aspects in future studies, the fundament laid in this study to gain insight in the capacities of

LLMs to efficiently generate code can further be advanced.
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Conclusion

This work has explored the opportunities to decrease the energy consumption of LLMs while pre-

serving the model accuracy. Recognizing the significant energy consumption of LLMs and their

environmental impacts, this study aimed to close the gap in obtaining and reporting detailed energy

consumption information for code generation tasks during inference. With the eventual goal of pro-

ducing functionally correct code with minimal energy consumption.

Through experiments with Qwen2.5-Coder-7B-Instruct, Meta-LLaMA3.1-8B-Instruct, DeepSeekCoder-

V2-Lite-16B, energy consumption was measured for individual coding tasks in BigCodeBench,

which showed that categories like Visualization and Cryptography consumed significantly more

energy than General or Network tasks. A significant difference in energy consumption was found

across batch sizes for the Meta and Qwen2.5 models. A noticeable difference was that the Llama3.1-

8B-Instruct model had an energy consumption of 130.77% higher than the DeepSeekCoder-V2-

Lite-16B model on the BigCodeBench run while achieving a lower pass@1 score. Experiments on

model size showed that the energy consumption increases nearly linear with model size. For the

fine-tuning, AWQ, and GPTQ with 8-bit and 4-bit precision led to decreases in energy consumption

of up to 19.65%, 51.11%, 41.48% and 63.41%, respectively. Larger models tend to show larger

relative reductions in energy consumption compared to smaller models.

The introduction of the pass@kWh metric showed a novel way to gain insight in the perfor-

mance of a model both on accuracy and pass@k rate, balancing both factors in model performance

assessment.

This work shows the feasibility of software-based energy consumption monitoring during LLM

inference on tasks such as code generation. Energy consumption can be effectively measured with-

out additional hardware which increases the opportunities to map the energy efficiency and envi-

ronmental impact by a larger group of researchers and developers. Furthermore, the effectiveness

of optimisation tasks such as fine-tuning, AWQ and GPTQ has been shown to achieve energy sav-

ings, in some cases without significant decreases in model performance. Fine-tuned models not
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only increase the accuracy of models but also tend to lower the energy consumption of a model.

In addition, optimal combinations of energy consumption and accuracy were defined which guides

model choice dependent on accuracy and energy consumption requirements. The pass@kWh met-

ric captures the trade-off between these two information sources. This provides a more nuanced

view on the concepts sustainability and model performance. Finally, this work showed that in the

context of efficient computing, unit testing ensured the correctness and functionality preservation of

LLM-generated code.

Despite, there are also limitations regarding this approach. The energy measurements were per-

formed on one GPU type and due to hardware configurations, the results can be different for other

computing environments. Besides, the scope of the LLMs used was limited due to computational

constraints, so generalizing the effects of the optimisation techniques to other model architectures

requires additional research. Evaluating additional models, hardware, and BigCodeBench config-

urations is a future area of research. As well as the development of adaptive systems that balance

energy consumption with accuracy.

In conclusion, this work shows that optimising LLMs is both feasible and beneficial with re-

gard to energy efficiency and model performance. By integrating the optimisation techniques and

evaluation measures, it is possible to generate correct and functional code with significantly less

energy. The methodology and results contribute to the advancement of sustainable AI knowledge

and practices. With the rapid adoption of AI in many industries, the focus on energy efficiency is

required to minimise environmental impact and ensure responsible technological progress.



Appendix

Model: Qwen2.5-7B

The following describes the architecture and hyperparameters for the Qwen2.5-7B model.

Listing 5.1: Model Configuration Qwen2.5-7B

{
” a r c h i t e c t u r e s ” : [

” Qwen2ForCausalLM ”

] ,

” a t t e n t i o n d r o p o u t ” : 0 . 0 ,

” b o s t o k e n i d ” : 151643 ,

” e o s t o k e n i d ” : 151643 ,

” h i d d e n a c t ” : ” s i l u ” ,

” h i d d e n s i z e ” : 3584 ,

” i n i t i a l i z e r r a n g e ” : 0 . 0 2 ,

” i n t e r m e d i a t e s i z e ” : 18944 ,

” m a x p o s i t i o n e m b e d d i n g s ” : 131072 ,

” max window laye r s ” : 28 ,

” m o d e l t y p e ” : ” qwen2 ” ,

” n u m a t t e n t i o n h e a d s ” : 28 ,

” n u m h i d d e n l a y e r s ” : 28 ,

” n u m k e y v a l u e h e a d s ” : 4 ,

” rms norm eps ” : 1e −06 ,

” r o p e t h e t a ” : 1000000 .0 ,

” s l i d i n g w i n d o w ” : 131072 ,

” t i e w o r d e m b e d d i n g s ” : f a l s e ,

” t o r c h d t y p e ” : ” b f l o a t 1 6 ” ,

” t r a n s f o r m e r s v e r s i o n ” : ” 4 . 4 0 . 1 ” ,

” u s e c a c h e ” : t r u e ,

” use mrope ” : f a l s e ,

” u s e s l i d i n g w i n d o w ” : f a l s e ,
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” v o c a b s i z e ” : 152064

}

Model: Llama-3.1-8B

The following describes the architecture and hyperparameters for the Llama-3.1-8B model.

Listing 5.2: LLaMA3.1-8B-Instruct Model configuration

{
” a r c h i t e c t u r e s ” : [

” LlamaForCausalLM ”

] ,

” a t t e n t i o n b i a s ” : f a l s e ,

” a t t e n t i o n d r o p o u t ” : 0 . 0 ,

” b o s t o k e n i d ” : 128000 ,

” e o s t o k e n i d ” : 128001 ,

” h i d d e n a c t ” : ” s i l u ” ,

” h i d d e n s i z e ” : 4096 ,

” i n i t i a l i z e r r a n g e ” : 0 . 0 2 ,

” i n t e r m e d i a t e s i z e ” : 14336 ,

” m a x p o s i t i o n e m b e d d i n g s ” : 131072 ,

” m l p b i a s ” : f a l s e ,

” m o d e l t y p e ” : ” l l a m a ” ,

” n u m a t t e n t i o n h e a d s ” : 32 ,

” n u m h i d d e n l a y e r s ” : 32 ,

” n u m k e y v a l u e h e a d s ” : 8 ,

” p r e t r a i n i n g t p ” : 1 ,

” rms norm eps ” : 1e −05 ,

” r o p e s c a l i n g ” : {
” f a c t o r ” : 8 . 0 ,

” l o w f r e q f a c t o r ” : 1 . 0 ,

” h i g h f r e q f a c t o r ” : 4 . 0 ,

” o r i g i n a l m a x p o s i t i o n e m b e d d i n g s ” : 8192 ,

” r o p e t y p e ” : ” l l am a3 ”

} ,

” r o p e t h e t a ” : 5 0 0 0 0 0 . 0 ,

” t i e w o r d e m b e d d i n g s ” : f a l s e ,

” t o r c h d t y p e ” : ” b f l o a t 1 6 ” ,

” t r a n s f o r m e r s v e r s i o n ” : ” 4 . 4 3 . 0 . dev0 ” ,
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” u s e c a c h e ” : t r u e ,

” v o c a b s i z e ” : 128256

}

Model: DeepseekV2-Lite-16B

The following describes the architecture and hyperparameters for the DeepseekV2-Lite-16B model.

Listing 5.3: DeepSeekCoder-V2-Lite-16B Model Configuration JSON

{
” a r c h i t e c t u r e s ” : [

” DeepseekV2ForCausalLM ”

] ,

” a t t e n t i o n b i a s ” : f a l s e ,

” a t t e n t i o n d r o p o u t ” : 0 . 0 ,

” au to map ” : {
” AutoConf ig ” : ” c o n f i g u r a t i o n d e e p s e e k . DeepseekV2Config ” ,

” AutoModel ” : ” m o d e l i n g d e e p s e e k . DeepseekV2Model ” ,

” AutoModelForCausalLM ” : ” m o d e l i n g d e e p s e e k . DeepseekV2ForCausalLM ”

} ,

” a u x l o s s a l p h a ” : 0 . 0 0 1 ,

” b o s t o k e n i d ” : 100000 ,

” e o s t o k e n i d ” : 100001 ,

” f i r s t k d e n s e r e p l a c e ” : 1 ,

” h i d d e n a c t ” : ” s i l u ” ,

” h i d d e n s i z e ” : 2048 ,

” i n i t i a l i z e r r a n g e ” : 0 . 0 2 ,

” i n t e r m e d i a t e s i z e ” : 10944 ,

” k v l o r a r a n k ” : 512 ,

” m a x p o s i t i o n e m b e d d i n g s ” : 163840 ,

” m o d e l t y p e ” : ” d e e p s e e k v 2 ” ,

” m o e i n t e r m e d i a t e s i z e ” : 1408 ,

” m o e l a y e r f r e q ” : 1 ,

” n g r o u p ” : 1 ,

” n r o u t e d e x p e r t s ” : 64 ,

” n s h a r e d e x p e r t s ” : 2 ,

” n o r m t o p k p r o b ” : f a l s e ,

” n u m a t t e n t i o n h e a d s ” : 16 ,

” n u m e x p e r t s p e r t o k ” : 6 ,
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” n u m h i d d e n l a y e r s ” : 27 ,

” n u m k e y v a l u e h e a d s ” : 16 ,

” p r e t r a i n i n g t p ” : 1 ,

” q l o r a r a n k ” : n u l l ,

” q k no pe he ad d i m ” : 128 ,

” q k r o p e h e a d d i m ” : 64 ,

” rms norm eps ” : 1e −06 ,

” r o p e s c a l i n g ” : {
” b e t a f a s t ” : 32 ,

” b e t a s l o w ” : 1 ,

” f a c t o r ” : 40 ,

” msca le ” : 0 . 7 0 7 ,

” m s c a l e a l l d i m ” : 0 . 7 0 7 ,

” o r i g i n a l m a x p o s i t i o n e m b e d d i n g s ” : 4096 ,

” t y p e ” : ” ya rn ”

} ,

” r o p e t h e t a ” : 10000 ,

” r o u t e d s c a l i n g f a c t o r ” : 1 . 0 ,

” s c o r i n g f u n c ” : ” so f tmax ” ,

” s e q a u x ” : t r u e ,

” t i e w o r d e m b e d d i n g s ” : f a l s e ,

” t o p k g r o u p ” : 1 ,

” topk method ” : ” g r ee d y ” ,

” t o r c h d t y p e ” : ” b f l o a t 1 6 ” ,

” t r a n s f o r m e r s v e r s i o n ” : ” 4 . 3 3 . 1 ” ,

” u s e c a c h e ” : t r u e ,

” v head d im ” : 128 ,

” v o c a b s i z e ” : 102400

}



CHAPTER 5. CONCLUSION 77

High granularity analysis

Table 5.1: Occurrence percentages of categories in BigCodeBench based on library presence in the
solutions of coding tasks

Domain Usage (%) Library Function Call

Computation 64.8% pandas, numpy, sklearn,

scipy, math, nltk, statistics,

cv2, statsmodels, tensorflow,

sympy, textblob, skimage

pandas.DataFrame, numpy.random,

numpy.random.seed, numpy.array,

numpy.mean, pandas.read csv,

numpy.random.randint, pandas.Series

General 100% random, re, collections, iter-

tools, string, operator, heapq,

ast, functools, regex, bisect,

inspect, unicodedata

collections.Counter, random.seed, ran-

dom.randint, random.choice, re.sub,

re.findall, itertools.chain

Visualization 34.8% matplotlib, seaborn, PIL,

folium, wordcloud, turtle,

mpl toolkits

matplotlib.pyplot, mat-

plotlib.pyplot.subplots, mat-

plotlib.pyplot.figure

System 95.5% os, json, csv, shutil, glob, sub-

process, pathlib, sqlite3, io,

zipfile, sys, logging, pickle,

struct, psutil

os.path, os.path.join, os.path.exists,

os.makedirs, glob.glob, os.listdir,

json.load, csv.writer, shutil.move

Time 16.1% datetime, time, pytz, dateutil,

holidays, calendar

datetime.datetime, date-

time.datetime.now, time.time,

time.sleep, datetime.datetime.strptime

Network 8.2% requests, urllib, bs4, socket,

django, flask, ipaddress, smt-

plib, http, flask mail, cgi, ssl,

email, mechanize

urllib.parse.urlparse,

django.http.HttpResponse, ipad-

dress.IPv4Network, smtplib.SMTP,

requests.post, socket.gaierror

Cryptography 5.1% hashlib, base64, binascii,

codecs, rsa, cryptography,

hmac, blake3, secrets, Crypto

cryptography.fernet.Fernet.generate key,

cryptogra-

phy.hazmat.primitives.padding,

cryptogra-

phy.hazmat.primitives.padding.PKCS7
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Table 5.2: Durbin-Watson Test for Autocorrelation

Model Name and Batch Size Durbin-Watson
Statistic

Qwen-Coder2.5-7B-Instruct

Batch size 1 0.73

Batch size 4 0.77

Batch size 8 0.80

Meta Llama3.1-8B-Instruct

Batch size 1 0.56

Batch size 4 0.94

Batch size 8 0.59

DeepSeekCoder-V2-Lite-16B

Batch size 1 0.27

Batch size 4 0.21

Batch size 8 0.23



CHAPTER 5. CONCLUSION 79

Table 5.3: Shapiro-Wilk Normality Test Results

Model Shapiro-Wilk Statistic p-value

Qwen-Coder2.5-7B-Instruct

Batch size 1 0.28 < 0.001

Batch size 4 0.29 < 0.001

Batch size 8 0.27 < 0.001

Meta Llama3.1-8B-Instruct

Batch size 1 0.29 < 0.001

Batch size 4 0.21 < 0.001

Batch size 8 0.31 < 0.001

DeepSeekCoder-V2-Lite-16B

Batch size 1 0.93 < 0.001

Batch size 4 0.95 < 0.001

Batch size 8 0.83 < 0.001
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Table 5.4: Levene’s Test for Homogeneity of Variance (Homoscedasticity)

Model Levene’s Statistic p-value

Qwen-Coder2.5-7B-Instruct

Batch size 1 0.00 0.95

Batch size 4 1.77 0.18

Batch size 8 1.09 0.30

Meta Llama3.1-8B-Instruct

Batch size 1 2.44 0.12

Batch size 4 0.11 0.75

Batch size 8 0.80 0.37

DeepSeekCoder-V2-Lite-16B

Batch size 1 125.51 < 0.001

Batch size 4 179.09 < 0.001

Batch size 8 25.62 < 0.001



CHAPTER 5. CONCLUSION 81

Table 5.5: Qwen-Coder OLS regression results (batch size 1)

Variable Coef. Std. Err. z p> |z| [0.025 0.975]

solution tokens 0.0009 2.71e-05 33.030 0.000 0.001 0.001

log energy lag1 0.1336 0.013 9.931 0.000 0.107 0.160

Computation 0.0443 0.005 8.180 0.000 0.034 0.055

Cryptography 0.0545 0.008 6.557 0.000 0.038 0.071

Network -0.0029 0.009 -0.320 0.749 -0.020 0.015

System 0.0773 0.008 9.179 0.000 0.061 0.094

Time 0.0199 0.006 3.204 0.001 0.008 0.032

Visualization 0.0303 0.005 6.375 0.000 0.021 0.040

Model Statistics

R-squared (uncentered) 0.982 F-statistic 9037

Adj. R-squared (uncentered) 0.982 Prob (F-statistic) 0.00

Log-Likelihood 1404.1 AIC -2792

BIC -2752 Durbin-Watson 2.071

Omnibus 61.352 Prob (Omnibus) 0.000

Jarque-Bera (JB) 182.627 Skew 0.202

Kurtosis 4.919 Cond. No. 2460
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Table 5.6: Qwen-Coder OLS regression results (batch size 4)

Variable Coef. Std. Err. z p> |z| [0.025 0.975]

solution tokens 0.0009 2.7e-05 33.705 0.000 0.001 0.001

log energy lag1 0.1208 0.013 9.077 0.000 0.095 0.147

Computation 0.0452 0.005 8.216 0.000 0.034 0.056

Cryptography 0.0517 0.008 6.590 0.000 0.036 0.067

Network -0.0022 0.009 -0.238 0.812 -0.020 0.016

System 0.0767 0.009 8.715 0.000 0.059 0.094

Time 0.0231 0.006 3.719 0.000 0.011 0.035

Visualization 0.0309 0.005 6.276 0.000 0.021 0.041

Model Statistics

R-squared (uncentered) 0.982 F-statistic 8736

Adj. R-squared (uncentered) 0.982 Prob (F-statistic) 0.00

Log-Likelihood 1383.0 AIC -2750

BIC -2710 Durbin-Watson 2.093

Omnibus 52.664 Prob (Omnibus) 0.000

Jarque-Bera (JB) 153.116 Skew 0.138

Kurtosis 4.774 Cond. No. 2450
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Table 5.7: Qwen-Coder OLS regression results (batch size 8)

Variable Coef. Std. Err. z p> |z| [0.025 0.975]

solution tokens 0.0009 2.78e-05 32.293 0.000 0.001 0.001

log energy lag1 0.1285 0.013 9.713 0.000 0.103 0.154

Computation 0.0453 0.005 8.240 0.000 0.035 0.056

Cryptography 0.0554 0.008 6.785 0.000 0.039 0.071

Network -0.0031 0.009 -0.346 0.730 -0.021 0.015

System 0.0774 0.008 9.262 0.000 0.061 0.094

Time 0.0203 0.006 3.266 0.001 0.008 0.032

Visualization 0.0322 0.005 6.759 0.000 0.023 0.042

Model Statistics

R-squared (uncentered) 0.982 F-statistic 9099

Adj. R-squared (uncentered) 0.982 Prob (F-statistic) 0.00

Log-Likelihood 1395.7 AIC -2775

BIC -2735 Durbin-Watson 2.074

Omnibus 63.502 Prob (Omnibus) 0.000

Jarque-Bera (JB) 209.692 Skew 0.161

Kurtosis 5.076 Cond. No. 2460
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Table 5.8: Meta Llama3.1 OLS regression results (batch size 1)

Variable Coef. Std. Err. z p> |z| [0.025 0.975]

solution tokens 0.0008 2.56e-05 30.912 0.000 0.001 0.001

log energy lag1 0.1405 0.016 8.737 0.000 0.109 0.172

Computation 0.0510 0.006 8.789 0.000 0.040 0.062

Cryptography 0.0310 0.012 2.694 0.007 0.008 0.054

Network -0.0140 0.010 -1.364 0.173 -0.034 0.006

System 0.1216 0.011 11.456 0.000 0.101 0.142

Time 0.0110 0.007 1.539 0.124 -0.003 0.025

Visualization 0.0514 0.005 9.629 0.000 0.041 0.062

Model Statistics

R-squared (uncentered) 0.983 F-statistic 9578

Adj. R-squared (uncentered) 0.983 Prob (F-statistic) 0.00

Log-Likelihood 1306.9 AIC -2598

BIC -2557 Durbin-Watson 2.091

Omnibus 32.536 Prob (Omnibus) 0.000

Jarque-Bera (JB) 76.258 Skew 0.017

Kurtosis 4.267 Cond. No. 2770
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Table 5.9: Meta Llama3.1 OLS regression results (batch size 4)

Variable Coef. Std. Err. z p> |z| [0.025 0.975]

solution tokens 0.0008 2.53e-05 31.100 0.000 0.001 0.001

log energy lag1 0.1415 0.016 8.863 0.000 0.110 0.173

Computation 0.0508 0.006 8.968 0.000 0.040 0.062

Cryptography 0.0323 0.011 2.828 0.005 0.010 0.055

Network -0.0132 0.010 -1.336 0.182 -0.033 0.006

System 0.1209 0.011 11.451 0.000 0.100 0.142

Time 0.0099 0.007 1.435 0.151 -0.004 0.023

Visualization 0.0514 0.005 9.729 0.000 0.041 0.062

Model Statistics

R-squared (uncentered) 0.983 F-statistic 9507

Adj. R-squared (uncentered) 0.983 Prob (F-statistic) 0.00

Log-Likelihood 1320.7 AIC -2625

BIC -2585 Durbin-Watson 2.094

Omnibus 28.093 Prob (Omnibus) 0.000

Jarque-Bera (JB) 60.744 Skew -0.026

Kurtosis 4.130 Cond. No. 2780
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Table 5.10: Meta Llama3.1 OLS regression results (batch size 8)

Variable Coef. Std. Err. z p> |z| [0.025 0.975]

solution tokens 0.0008 2.56e-05 31.043 0.000 0.001 0.001

log energy lag1 0.1412 0.016 8.943 0.000 0.110 0.172

Computation 0.0525 0.006 9.111 0.000 0.041 0.064

Cryptography 0.0298 0.011 2.643 0.008 0.008 0.052

Network -0.0141 0.010 -1.409 0.159 -0.034 0.005

System 0.1203 0.011 11.398 0.000 0.100 0.141

Time 0.0118 0.007 1.710 0.087 -0.002 0.025

Visualization 0.0500 0.005 9.332 0.000 0.039 0.060

Model Statistics

R-squared (uncentered) 0.983 F-statistic 9500

Adj. R-squared (uncentered) 0.983 Prob (F-statistic) 0.00

Log-Likelihood 1311.8 AIC -2608

BIC -2567 Durbin-Watson 2.103

Omnibus 31.080 Prob (Omnibus) 0.000

Jarque-Bera (JB) 71.083 Skew -0.015

Kurtosis 4.223 Cond. No. 2760
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Table 5.11: DeepSeekCoder-V2-Lite OLS regression results (batch size 1)

Variable Coef. Std. Err. z p> |z| [0.025 0.975]

solution tokens 0.0006 1.77e-05 32.117 0.000 0.001 0.001

log energy lag1 0.0897 0.013 6.746 0.000 0.064 0.116

Computation 0.0191 0.003 6.086 0.000 0.013 0.025

Cryptography 0.0265 0.005 4.987 0.000 0.016 0.037

Network -0.0036 0.005 -0.733 0.464 -0.013 0.006

System 0.0395 0.005 7.925 0.000 0.030 0.049

Time 0.0111 0.004 2.939 0.003 0.004 0.018

Visualization 0.0254 0.003 8.272 0.000 0.019 0.031

Model Statistics

R-squared (uncentered) 0.980 F-statistic 6959

Adj. R-squared (uncentered) 0.980 Prob (F-statistic) 0.00

Log-Likelihood 1973.7 AIC -3931

BIC -3891 Durbin-Watson 2.184

Omnibus 46.894 Prob (Omnibus) 0.000

Jarque-Bera (JB) 119.746 Skew -0.161

Kurtosis 4.555 Cond. No. 3720

Table 5.12: DeepSeekCoder-V2-Lite OLS regression results (batch size 4)

Variable Coef. Std. Err. z p> |z| [0.025 0.975]

solution tokens 0.0006 1.77e-05 31.832 0.000 0.001 0.001

log energy lag1 0.0922 0.013 7.043 0.000 0.067 0.118

Computation 0.0189 0.003 6.193 0.000 0.013 0.025

Cryptography 0.0255 0.006 4.490 0.000 0.014 0.037

Network -0.0034 0.005 -0.694 0.487 -0.013 0.006

System 0.0404 0.005 8.357 0.000 0.031 0.050

Time 0.0135 0.004 3.752 0.000 0.006 0.020

Visualization 0.0264 0.003 8.778 0.000 0.021 0.032

Model Statistics

R-squared (uncentered) 0.980 F-statistic 7191

Adj. R-squared (uncentered) 0.980 Prob (F-statistic) 0.00

Log-Likelihood 1985.3 AIC -3955

BIC -3914 Durbin-Watson 2.250

Omnibus 49.609 Prob (Omnibus) 0.000

Jarque-Bera (JB) 112.197 Skew -0.240

Kurtosis 4.460 Cond. No. 3740
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Table 5.13: DeepSeekCoder-V2-Lite OLS regression results (batch size 8)

Variable Coef. Std. Err. z p> |z| [0.025 0.975]

solution tokens 0.0006 1.73e-05 32.364 0.000 0.001 0.001

log energy lag1 0.0928 0.013 7.092 0.000 0.067 0.118

Computation 0.0186 0.003 5.910 0.000 0.012 0.025

Cryptography 0.0269 0.005 4.957 0.000 0.016 0.037

Network 0.0006 0.005 0.112 0.911 -0.009 0.010

System 0.0408 0.005 8.294 0.000 0.031 0.050

Time 0.0138 0.004 3.790 0.000 0.007 0.021

Visualization 0.0281 0.003 8.918 0.000 0.022 0.034

Model Statistics

R-squared (uncentered) 0.980 F-statistic 6955

Adj. R-squared (uncentered) 0.979 Prob (F-statistic) 0.00

Log-Likelihood 1968.7 AIC -3921

BIC -3881 Durbin-Watson 2.235

Omnibus 44.848 Prob (Omnibus) 0.000

Jarque-Bera (JB) 128.355 Skew 0.004

Kurtosis 4.644 Cond. No. 3780

5.1 Batch size

Table 5.14: LLM Computational Requirements

Model Prefill Com-
pute

Decode
Compute

Prefill & De-
code Memory

TTFT
(ms)

TPOT
(ms)

TGT
(s)

VRAM
(GB)

Qwen2.5-Coder-7B 3.58× 1012 14.00 28.00 36.00 16.24 4.17 16.80

Meta-Llama-3.1-8B 4.10× 1012 16.00 32.00 41.14 18.56 4.76 19.20

DeepSeek-V2-Lite-16B 8.09× 1012 31.60 63.20 81.26 36.66 9.40 37.92
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Table 5.15: Levene’s Test for Homogeneity of Variance (Homoscedasticity)

Model Levene’s Statistic p-value

Qwen-Coder2.5-7B-Instruct 0.10 0.90

Meta Llama3.1-8B-Instruct 0.06 0.94

DeepSeekCoder-V2-Lite-16B 0.04 0.96

Table 5.16: Kruskal-Wallis Test for Differences in Energy Consumption

Model Kruskal-Wallis Test Statistic p-value

Qwen2.5-Coder-7B 21.30 < 0.001

Meta-Llama-3.1-8B 17.08 < 0.001

DeepSeek-V2-Lite-16B 2.52 0.28

Table 5.17: Dunn’s Post-Hoc Test with Adjusted p-values

Comparison 1 (p-value) 4 (p-value) 8 (p-value)

Qwen-Coder2.5-7B-Instruct

Batch size 1 1.00 0.08 < 0.001

Batch size 4 0.08 1.00 0.05

Batch size 8 < 0.001 0.05 1.00

Meta Llama3.1-8B-Instruct

Batch size 1 1.00 0.15 0.09

Batch size 4 0.15 1.00 < 0.001

Batch size 8 0.09 < 0.001 1.00
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Table 5.18: Energy Consumption, Latency, Throughput, and Pass@1 for various batch sizes

Model and Batch Size Energy Consump-
tion (kWh)

Latency (m) Throughput
(tokens/s)

Pass@1

Qwen-Coder2.5-7B-Instruct

Batch size 1 0.79 174.67 39.43 0.32

Batch size 4 0.79 174.62 39.44 0.21

Batch size 8 0.80 174.62 39.44 0.21

Meta Llama3.1-8B-Instruct

Batch size 1 0.90 201.23 38.14 0.24

Batch size 4 0.90 201.20 38.14 0.24

Batch size 8 0.91 201.03 38.17 0.24

DeepSeekCoder-V2-Lite-16B

Batch size 1 0.39 108.25 61.52 0.29

Batch size 4 0.39 108.33 61.47 0.29

Batch size 8 0.39 108.45 61.41 0.49

Energy impact of increasing model size

Table 5.19: Estimated Computational Requirements for Different Qwen2.5 Base Models

Qwen2.5
Model

Prefill
Compute

Decode
Compute

Prefill
Memory

Decode
Memory

TTFT
(ms)

TPOT
(ms)

TGT (s) VRAM
(GB)

0.5B 0.66 0.00 0.00 0.00 0.00 0.00 0.77 1.00

1.5B 1.98 0.00 0.00 0.00 0.01 0.00 2.30 3.00

3B 3.96 0.01 0.01 0.01 0.02 0.01 4.60 6.00

7B 9.24 0.01 0.01 0.01 0.04 0.02 10.74 14.00

14B 18.48 0.03 0.03 0.03 0.08 0.03 21.47 28.00
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Table 5.20: Shapiro-Wilk Test Statistics for Different Model Sizes

Qwen2.5 Model Shapiro-Wilk Statistic p-value

0.5B 0.75 < 0.001

1.5B 0.85 < 0.001

3B 0.92 < 0.001

7B 0.93 < 0.001

14B 0.87 < 0.001

Table 5.21: Levene’s Test for Differences in Energy Consumption by Model Size

Qwen2.5 Model Sizes Levene’s Test Statistic p-value

0.5B, 1.5B, 3B, 7B, 14B 591.13 < .001

Table 5.22: Kruskal-Wallis Test for Differences in Energy Consumption by Model Size

Qwen2.5 Model Sizes Kruskal-Wallis Test Statistic p-value

0.5B, 1.5B, 3B, 7B, 14B 5143.80 < .001

Table 5.23: Dunn’s Test for Differences Among Model Sizes

Comparison of
Qwen2.5 Models

Qwen2.5-
0.5B (p-value)

Qwen2.5-
1.5B (p-value)

Qwen2.5-3B
(p-value)

Qwen2.5-7B
(p-value)

Qwen2.5-14B
(p-value)

0.5B 1.00 < 0.001 < 0.001 < 0.001 < 0.001

1.5B < 0.001 1.00 < 0.001 < 0.001 < 0.001

3B < 0.001 < 0.001 1.00 < 0.001 < 0.001

7B < 0.001 < 0.001 < 0.001 1.00 < 0.001

14B < 0.001 < 0.001 < 0.001 < 0.001 1.00
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Table 5.24: Energy Consumption, Latency, Throughput, Pass@1, and Pass@kWh for Five Qwen2.5
Base Models

Qwen2.5 Model Energy Con-
sumption
(kWh)

Latency (m) Throughput
(tokens/s)

Pass@1 Pass@kWh

0.5B 0.08 28.77 253.00 0.10 1.25

1.5B 0.21 56.52 126.62 0.23 1.10

3B 0.39 92.15 76.24 0.35 0.90

7B 0.87 191.68 37.00 0.31 0.36

14B 1.68 369.58 19.18 0.47 0.28

Energy Impact of Fine-Tuning

Table 5.25: Expected Energy Impact of Fine-Tuning

Qwen2.5
Model

Prefill
Compute

Decode
Compute

Prefill
Memory

Decode
Memory

TTFT
(ms)

TPOT
(ms)

TGT
(s)

VRAM
(GB)

0.5B 0.66 0.001 0.001 0.001 0.003 0.001 0.77 1.00

0.5B-Instruct 0.66 0.001 0.001 0.001 0.003 0.001 0.77 1.00

1.5B 1.98 0.003 0.003 0.003 0.009 0.004 2.30 3.00

1.5B-Instruct 1.98 0.003 0.003 0.003 0.009 0.004 2.30 3.00

3B 3.96 0.006 0.006 0.006 0.018 0.007 4.60 6.00

3B-Instruct 3.96 0.006 0.006 0.006 0.018 0.007 4.60 6.00

7B 9.24 0.014 0.014 0.014 0.042 0.016 10.74 14.00

7B-Instruct 9.24 0.014 0.014 0.014 0.042 0.016 10.74 14.00

14B 18.48 0.028 0.028 0.028 0.084 0.033 21.47 28.00

14B-Instruct 18.48 0.028 0.028 0.028 0.084 0.033 21.47 28.00
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Table 5.26: Shapiro-Wilk Test for Normality of Fine-Tuned Models

Qwen2.5 Model Shapiro-Wilk Statistic p-value

0.5B 0.75 < 0.001

0.5B-Instruct 0.75 < 0.001

1.5B 0.85 < 0.001

1.5B-Instruct 0.89 < 0.001

3B 0.92 < 0.001

3B-Instruct 0.94 < 0.001

7B 0.93 < 0.001

7B-Instruct 0.93 < 0.001

14B 0.87 < 0.001

14B-Instruct 0.97 < 0.001

Table 5.27: Levene’s Test for Differences in Energy Consumption for Fine-Tuned Models

Qwen2.5 Model Levene’s Test Statistic p-value

0.5B 2.19 0.14

1.5B 0.65 0.42

3B 0.26 0.61

7B 4.37 0.04

14B 57.78 < 0.001
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Table 5.28: Kruskal-Wallis Test for Differences in Energy Consumption for Fine-Tuned Models

Qwen2.5 Model Kruskal-Wallis Test Statistic p-value

0.5B 285.22 < 0.001

1.5B 87.38 < 0.001

3B 6.95 0.01

7B 19.23 < 0.001

14B 166.75 < 0.001

Table 5.29: Energy Consumption (kWh), Latency, Throughput, Pass@1, and Pass@kWh for Fine-
Tuned Models

Qwen2.5 Model Energy Con-
sumption
(kWh)

Latency (m) Throughput
(tokens / s)

Pass@1 Pass@kWh

0.5B 0.08 28.77 253.00 0.10 1.25

0.5B-Instruct 0.08 27.97 241.32 0.07 0.88

1.5B 0.21 56.52 126.62 0.23 1.10

1.5B-Instruct 0.21 57.72 124.58 0.22 1.05

3B 0.39 92.15 76.24 0.35 0.90

3B-Instruct 0.40 93.73 76.63 0.39 0.98

7B 0.87 191.68 37.00 0.31 0.36

7B-Instruct 0.82 180.82 38.95 0.45 0.55

14B 1.68 369.58 19.18 0.47 0.28

14B-Instruct 1.35 290.87 21.18 0.51 0.38
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Energy impact of Activation-aware Weight Quantization

Table 5.30: Estimated Computational Requirements for Activation-Aware Weight Quantization

Qwen2.5 Model Prefill
Compute

Decode
Compute

Prefill
Memory

Decode
Memory

TTFT
(ms)

TPOT
(ms)

TGT
(s)

VRAM
(GB)

0.5B-Instruct 0.66 0.001 0.001 0.001 0.003 0.001 0.77 1.00

0.5B-Instruct-AWQ 0.33 0.001 0.001 0.001 0.001 0.001 0.38 0.50

1.5B-Instruct 1.98 0.003 0.003 0.003 0.009 0.004 2.30 3.00

1.5B-Instruct-AWQ 0.99 0.002 0.002 0.002 0.003 0.002 1.15 1.50

3B-Instruct 3.96 0.006 0.006 0.006 0.018 0.007 4.60 6.00

3B-Instruct-AWQ 1.98 0.003 0.003 0.003 0.006 0.004 2.30 3.00

7B-Instruct 9.24 0.014 0.014 0.014 0.042 0.016 10.74 14.00

7B-Instruct-AWQ 4.62 0.007 0.007 0.007 0.014 0.008 5.36 7.00

14B-Instruct 18.48 0.028 0.028 0.028 0.084 0.033 21.47 28.00

14B-Instruct-AWQ 9.24 0.014 0.014 0.014 0.029 0.016 10.72 14.00
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Table 5.31: Shapiro-Wilk Test for Normality

Qwen2.5 Model Shapiro-Wilk
Statistic

p-value

0.5B-Instruct 0.75 < 0.001

0.5B-Instruct-AWQ 0.61 < 0.001

1.5B-Instruct 0.89 < 0.001

1.5B-Instruct-AWQ 0.64 < 0.001

3B-Instruct 0.94 < 0.001

3B-Instruct-AWQ 0.79 < 0.001

7B-Instruct 0.93 < 0.001

7B-Instruct-AWQ 0.91 < 0.001

14B-Instruct 0.97 < 0.001

14B-Instruct-AWQ 0.74 < 0.001

Table 5.32: Levene’s Test for Differences in Energy Consumption for Model Sizes

Qwen2.5 Model Levene’s Test Statistic p-value

0.5B 33.98 < 0.001

1.5B 34.82 < 0.001

3B 375.75 < 0.001

7B 428.93 < 0.001

14B 4.46 0.03
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Table 5.33: Kruskal-Wallis Test for Differences in Energy Consumption for Model Sizes

Qwen2.5 Model Kruskal-Wallis Test Statistic p-value

0.5B 312.53 < 0.001

1.5B 1123.57 < 0.001

3B 1455.62 < 0.001

7B 1643.12 < 0.001

14B 742.95 < 0.001

Table 5.34: Energy Consumption (kWh), Latency, Throughput, Pass@1, and Pass@kWh for LLMs
with and without AWQ

Qwen2.5 Model Energy Con-
sumption
(kWh)

Latency (m) Throughput
(tokens / s)

Pass@1 Pass@kWh

0.5B-Instruct 0.08 28.77 253.00 0.07 0.88

0.5B-Instruct-AWQ 0.08 35.50 185.27 0.01 0.13

1.5B-Instruct 0.21 56.52 126.62 0.22 1.05

1.5B-Instruct-AWQ 0.10 33.92 163.23 0.07 0.70

3B-Instruct 0.40 92.15 76.24 0.39 0.98

3B-Instruct-AWQ 0.14 43.18 139.00 0.26 1.86

7B-Instruct 0.82 191.68 37.00 0.45 0.55

7B-Instruct-AWQ 0.27 68.87 94.99 0.41 1.52

14B-Instruct 1.35 369.58 19.18 0.51 0.38

14B-Instruct-AWQ 0.66 141.25 49.66 0.27 0.41
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Energy impact of GPTQ

Table 5.35: GPTQ

Qwen2.5 Model Prefill
Compute

Decode
Compute

Prefill
Memory

Decode
Memory

TTFT
(ms)

TPOT
(ms)

TGT
(s)

VRAM
(GB)

0.5B-Instruct 0.66 0.001 0.001 0.001 0.003 0.001 0.77 1.00

0.5B-Instruct-GPTQ-Int4 0.17 0.0003 0.0003 0.0003 0.0005 0.0003 0.19 0.25

0.5B-Instruct-GPTQ-Int8 0.33 0.0005 0.0005 0.0005 0.0010 0.0006 0.38 0.50

1.5B-Instruct 1.98 0.003 0.003 0.003 0.009 0.004 2.30 3.00

1.5B-Instruct-GPTQ-Int4 0.50 0.0008 0.0008 0.0008 0.0015 0.0009 0.57 0.75

1.5B-Instruct-GPTQ-Int8 0.99 0.0015 0.0015 0.0015 0.0031 0.0017 1.15 1.50

3B-Instruct 3.96 0.006 0.006 0.006 0.018 0.007 4.60 6.00

3B-Instruct-GPTQ-Int4 0.99 0.0015 0.0015 0.0015 0.0031 0.0017 1.15 1.50

3B-Instruct-GPTQ-Int8 1.98 0.003 0.003 0.003 0.0062 0.0035 2.30 3.00

7B-Instruct 9.24 0.014 0.014 0.014 0.0417 0.0162 10.74 14.00

7B-Instruct-GPTQ-Int4 2.31 0.0035 0.0035 0.0035 0.0072 0.0041 2.68 3.50

7B-Instruct-GPTQ-Int8 4.62 0.0070 0.0070 0.0070 0.0144 0.0081 5.36 7.00

14B-Instruct 18.48 0.028 0.028 0.028 0.0835 0.0325 21.47 28.00

14B-Instruct-GPTQ-Int4 4.62 0.007 0.007 0.007 0.0144 0.0081 5.36 7.00

14B-Instruct-GPTQ-Int8 9.24 0.014 0.014 0.014 0.0288 0.0162 10.72 14.00
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Table 5.36: Shapiro-Wilk Test for Normality

Qwen2.5 Model Shapiro-Wilk
Statistic

p-value

0.5B-Instruct 0.75 < 0.001

0.5B-Instruct-GPTQ-Int8 0.67 < 0.001

0.5B-Instruct-GPTQ-Int4 0.59 < 0.001

1.5B-Instruct 0.89 < 0.001

1.5B-Instruct-GPTQ-Int8 0.85 < 0.001

1.5B-Instruct-GPTQ-Int4 0.79 < 0.001

3B-Instruct 0.94 < 0.001

3B-Instruct-GPTQ-Int8 0.92 < 0.001

3B-Instruct-GPTQ-Int4 0.87 < 0.001

7B-Instruct 0.93 < 0.001

7B-Instruct-GPTQ-Int8 0.93 < 0.001

7B-Instruct-GPTQ-Int4 0.91 < 0.001

14B-Instruct 0.97 < 0.001

14B-Instruct-GPTQ-Int8 0.94 < 0.001

14B-Instruct-GPTQ-Int4 0.96 < 0.001

Table 5.37: Levene’s Test for Differences in Energy Consumption for Model Sizes

Qwen2.5 Model Levene’s Test Statistic p-value

0.5B 1.61 0.20

1.5B 82.73 < 0.001

3B 196.52 < 0.001

7B 244.59 < 0.001

14B 355.67 < 0.001
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Table 5.38: Kruskal-Wallis Test for Differences in Energy Consumption for Model Sizes

Qwen2.5 Model Kruskal-Wallis Test Statistic p-value

0.5B 794.81 < 0.001

1.5B 1415.38 < 0.001

3B 1890.48 < 0.001

7B 2236.10 < 0.001

14B 2354.20 < 0.001

Table 5.39: Dunn’s Post-Hoc Test with Adjusted p-values for GPTQ Models

Comparison of Qwen2.5
models

Instruct (p-value) Instruct-GPTQ-
Int8 (p-value)

Instruct-GPTQ-
Int4 (p-value)

0.5B-Instruct 1.00 < 0.001 < 0.001

0.5B-Instruct-GPTQ-Int8 < 0.001 1.00 < 0.001

0.5B-Instruct-GPTQ-Int4 < 0.001 < 0.001 1.00

1.5B-Instruct 1.00 < 0.001 < 0.001

1.5B-Instruct-GPTQ-Int8 < 0.001 1.00 < 0.001

1.5B-Instruct-GPTQ-Int4 < 0.001 < 0.001 1.00

3B-Instruct 1.00 < 0.001 < 0.001

3B-Instruct-GPTQ-Int8 < 0.001 1.00 < 0.001

3B-Instruct-GPTQ-Int4 < 0.001 < 0.001 1.00

7B-Instruct 1.00 < 0.001 < 0.001

7B-Instruct-GPTQ-Int8 < 0.001 1.00 < 0.001

7B-Instruct-GPTQ-Int4 < 0.001 < 0.001 1.00

14B-Instruct 1.00 < 0.001 < 0.001

14B-Instruct-GPTQ-Int8 < 0.001 1.00 < 0.001

14B-Instruct-GPTQ-Int4 < 0.001 < 0.001 1.00
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Table 5.40: Energy Consumption (kWh), Latency, Throughput, Pass@1, and Pass@kWh for GPTQ-
Int8 and GPTQ-Int4

Qwen2.5 Model and Quan-
tization Type

Energy Con-
sumption
(kWh)

Latency
(m)

Throughput
(tokens / s)

Pass@1 Pass@kWh

0.5B-Instruct 0.08 28.77 253.00 0.07 0.88

0.5B-Instruct-GPTQ-Int8 0.07 28.72 232.46 0.07 1.00

0.5B-Instruct-GPTQ-Int4 0.07 30.77 211.77 0.04 0.57

1.5B-Instruct 0.21 56.52 126.62 0.22 1.05

1.5B-Instruct-GPTQ-Int8 0.14 44.58 162.31 0.24 1.71

1.5B-Instruct-GPTQ-Int4 0.11 37.17 196.85 0.20 1.82

3B-Instruct 0.40 92.15 76.24 0.39 0.98

3B-Instruct-GPTQ-Int8 0.24 65.80 109.43 0.39 1.63

3B-Instruct-GPTQ-Int4 0.16 49.72 146.09 0.34 2.13

7B-Instruct 0.82 191.68 37.00 0.45 0.55

7B-Instruct-GPTQ-Int8 0.49 109.55 63.99 0.46 0.94

7B-Instruct-GPTQ-Int4 0.30 72.62 97.13 0.44 1.47

14B-Instruct 1.35 369.58 19.18 0.51 0.38

14B-Instruct-GPTQ-Int8 0.79 168.13 36.69 0.52 0.66

14B-Instruct-GPTQ-Int4 0.46 102.23 58.47 0.49 1.07
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[38] Emilia Hansson and Oliwer Ellréus. Code Correctness and Quality in the Era of AI Code

Generation: Examining ChatGPT and GitHub Copilot. 2023.

https://doi.org/10.48550/arXiv.2403.20306
https://doi.org/10.48550/arXiv.2403.20306
http://arxiv.org/abs/2403.20306
https://doi.org/10.1109/NEWCAS.2008.4606339
https://doi.org/10.1109/NEWCAS.2008.4606339
https://ieeexplore.ieee.org/abstract/document/4606339
https://ieeexplore.ieee.org/abstract/document/4606339


BIBLIOGRAPHY 105

[39] Jiawei Liu et al. “Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation

of Large Language Models for Code Generation”. en. In: Advances in Neural Information

Processing Systems 36 (Dec. 2023), pp. 21558–21572. URL: https://proceedings.

neurips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-

Abstract-Conference.html (visited on 05/30/2024).

[40] Elias Frantar et al. “Gptq: Accurate post-training quantization for generative pre-trained

transformers”. In: arXiv preprint arXiv:2210.17323 (2022).

[41] Ji Lin et al. “AWQ: Activation-aware Weight Quantization for On-Device LLM Compres-

sion and Acceleration”. In: Proceedings of Machine Learning and Systems 6 (2024), pp. 87–

100.

[42] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “A review of energy measurement

approaches”. In: ACM SIGOPS Operating Systems Review 47.3 (2013), pp. 42–49.

[43] Achim Guldner et al. “Energy consumption and hardware utilization of standard software:

Methods and measurements for software sustainability”. In: From Science to Society: New

Trends in Environmental Informatics. Springer. 2018, pp. 251–261.

[44] Philipp Hurni et al. “On the accuracy of software-based energy estimation techniques”. In:

Wireless Sensor Networks: 8th European Conference, EWSN 2011, Bonn, Germany, Febru-

ary 23-25, 2011. Proceedings 8. Springer. 2011, pp. 49–64.

[45] Qingqing Cao, Aruna Balasubramanian, and Niranjan Balasubramanian. “Towards accurate

and reliable energy measurement of NLP models”. In: arXiv preprint arXiv:2010.05248

(2020).

[46] Tina Vartziotis et al. Learn to Code Sustainably: An Empirical Study on LLM-based Green

Code Generation. arXiv:2403.03344 [cs]. Mar. 2024. DOI: 10.48550/arXiv.2403.

03344. URL: http://arxiv.org/abs/2403.03344 (visited on 05/30/2024).

[47] Vlad-Andrei Cursaru et al. “A Controlled Experiment on the Energy Efficiency of the

Source Code Generated by Code Llama”. In: arXiv preprint arXiv:2405.03616 (2024).

[48] Alycia Lee, Brando Miranda, and Sanmi Koyejo. “Beyond scale: the diversity coefficient as

a data quality metric demonstrates llms are pre-trained on formally diverse data”. In: arXiv

preprint arXiv:2306.13840 (2023).
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