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Abstract

The devastating February 2023 Turkey-Syria earthquakes, with magnitudes of 7.8and 7.5,
resulted in over 55, 000 death. While current technology cannot predict earthquakes, effi-
cient evacuation management can significantly reduce secondary casualties and optimize
resource allocation. This study explores the application of Call Detail Records (CDR) in
times of crisis, with a particular focus on the consequences of earthquakes. This study
focuses on two issues, namely, the prediction of population movements after earthquakes,
and the features influence post-earthquake evacuation behavior. We use machine learning
models with gravity transformed features to predict population movements immediately
after earthquake. The experiments show our model have good ability to predict evacuation
flow between different district. Our main findings are that population distribution and
earthquake intensity are the primary factors of evacuation patterns. The comparative analy-
sis between Turkish population and Syrian population shows the same feature importance
rankings but distinct pattern distributions. These results provide valuable insights for
emergency management authorities in resource allocation and evacuation planning, such

as the effect of social connectedness.
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1. Introduction

1.1 Problem statement

Natural disasters such as earthquakes can have a huge impact on people’s lives and lead to
large-scale population movements. In recent years, call detail records (CDR) have been
increasingly used as a unique data source for analysing post-disaster population movement
(Blumenstockl, |2011). In this thesis, we will use CDRs to construct a migration model to

predict the evacuation flow aftermath of an earthquake.

Traditional population survey methods such as census and face-to-face interviews show
obvious limitations during natural disasters. The limitations mainly are the timeliness of

data collection, data flexibility, and feasibility in emergencies.

Firstly, traditional population surveys are usually conducted every ten years. In emergen-
cies, policymakers and rescue teams need real-time data to develop effective evacuation
and rescue plans. Second, traditional survey methods tend to be relatively rigid in their
design, collecting mainly specific types of data. In emergencies such as earthquakes, the
type of information needed can change rapidly. For example, changes in population density
in the affected area after an earthquake are more important than information on education
levels. In addition, the damage caused by earthquakes and the potential for secondary
hazards such as aftershocks and fires increase the risk of conducting traditional population

surveys. These methods are hardly feasible in emergencies.

CDR provide a new perspective for monitoring and analysing population movement
patterns after earthquakes (Salah et al., 2019). CDR data contains information on the
time and duration of calls and the geographic location of senders and receivers, and their
collection does not depend on the infrastructure in the affected area. Mobile networks

usually maintain some functionality even if part of the infrastructure is damaged.

A major advantage of CDR data is that it can provide information on population movements
in almost real-time. This is critical for guiding emergency evacuation plans, optimising
the allocation of relief resources and mitigating the impact of disasters. In addition,
the flexibility of CDR data allows researchers and policymakers to conduct a variety of
analyses based on actual needs, whether it is analysing population movement patterns over

a specific period or tracking the movement of specific groups.



Another advantage is the wide coverage of CDR. The popularization of mobile phones
provides a wide and deep sample of the population for research. This ubiquity makes CDR
data a powerful tool for analysing and understanding population behaviour in disaster

situations such as earthquakes.

There are some challenges and limitations in using these data. It is important to ensure that
individual privacy is protected when processing CDR data, which requires strict security

measures at every stage of data collection, storage and analysis.

1.2 Research questions

RQ1: How can we use mobile phone data to supplement other data sources to predict

the movement of people inside the country after an earthquake?

The first research question explores how mobile phone data can be used to predict post-
earthquake movement. These data sources help to understand how populations move in
the immediate aftermath of an earthquake. And then this thesis will use machine learning

model with gravity transformed features to model the post-earthquake evacuation.

RQ2: Which features will influence post-earthquake evacuation behavior? Will
Turkish people and Syrian people respond to similar od different features in their

evacuation decisions?

The second research question explores various factors, including earthquake intensity,
geographical distance, building damage, and social connections. Understanding the relative
importance of these features is important for both theoretical disaster response modeling
and practical emergency management. By analyzing Turkish people and Syrian people
separately, we investigate whether factors such as social connections, distance preferences,

and destination choices vary between these groups.

1.3 Contribution of the thesis

This study helps to improve our understanding of post-earthquake evacuation patterns.
We analyzed post-earthquake evacuation patterns and found that approximately half of
all displacement flows occurred within the same city. Moreover, the vast majority of
evacuation destinations remained within earthquake-affected areas. Our city-level analysis
of Turkish and Syrian populations revealed distinct evacuation behaviors: Turkish evacuees
showed more dispersed destination choices, while Syrian evacuees demonstrated more

concentrated destination preferences.



Our supervised machine learning models demonstrated meaningful predictive capability
for post-earthquake evacuation flows. Though these models cannot predict evacuation
flows before disasters occur. Understanding how different features influence model predic-
tions allowed us to quantify the impact of various factors (such as earthquake intensity,

population, and social connectedness) on evacuation decisions.

Our experiments validated the applicability of gravity-transformed features in predicting
post-earthquake population movements, providing methodological guidance for future

research in this field.



2. Related work

2.1 Mobile phone location data for migration and mobility

2.1.1 Mobile phone call detail records
Call Detail Records (CDR) are data collected by mobile network operators when providing

the service. These records include call initiation time, duration, phone numbers of both
parties, call type, and possible device location information, etc [Letouzé et al.|(2015). CDR
plays a large role in counteracting and responding to the adverse effects of disasters (Sarker
et al., 2020). The information contained in the original CDR can be broadly categorised
into four groups: population dynamics, mobility, social networks, and socio-demographics
(Dujardin et al., 2020). The spatial trajectory of each user can be obtained based on the
original CDR. Furthermore, the night-time activity range can be used to infer the user’s
home location. User’s social networks may be built from the call and text message logs

that they send and receive.

Compared to traditional population surveys, CDR has advantages in dealing with human
mobility patterns for emergencies. A post-earthquake study in Nepal used CDR data to
rapidly assess mobility patterns after the earthquake, particularly the mass exodus from the
Kathmandu Valley (Wilson et al., 2016). This study shows how CDR can be used for quick
assessment, which is essential for responding to natural disasters. Users of social media,
email, and the web may not be economically representative of the general public (Tufekci,
2014). In comparison to CDR data , GPS data can potentially incur a higher selection bias
(Frias-Martinez and Virseda, 2013). Therefore, CDR data is more representative of the

general population than social media data and GPS data.

While CDR data has advantages, there still are some challenges and limitations. The
biggest limitation is the access to CDR. CDR is stored by telecommunications companies
and is not publicly available. Special arrangements and legal agreements are required for
governmental or non-governmental organisations to access anonymised and aggregated
versions of these valuable datasets. Privacy protection is a major challenge, with the need
to ensure anonymity and confidentiality of personal information during data analysis. In
addition, CDR also has possible bias. Especially in low-income area, only people who
own and use a SIM card are included in the dataset (Li et al.,[2019).

Ihttps://reliefweb.int/report/turkiye/undac-deployment-turkiye—06-march-2023|
Accessed 15 October 2024
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2.1.2 The applications of CDR in disaster management

Studies using mobile phone location data to study disasters are categorized into three main
categories (Yabe et al., 2022).

Population displacement and evacuation modeling

Lu et al. (2012) found that the destinations of people displaced after the earthquake were
highly correlated with their prior mobility patterns. This work revealed the potential to
predict post-disaster mobility patterns. |[Kargel et al.|(2016) quickly analyzed the behavioral
patterns of 12 million mobile phone users following the earthquake. This was the first time

that large-scale mobile location data significantly aided disaster relief.

Long-term recovery analyses

CDR can track user activity at high frequencies over long periods. This feature is very
useful for studying the long-term effects of disasters. |Yabe et al. (2020) used CDR data of
over 1.9 million users before and after five natural disasters for this approach. The study
showed that although the areas affected and the types of disasters varied, the population
recovery trends followed a similar pattern. After all five disasters, the majority of users
returned quickly within a few weeks of the disaster, with the remainder returning gradually
over a longer period. Therefore, data from the weeks following a disaster is most important
in a study to understand the pattern of population recovery after a disaster. This study will
investigate the population recovery patterns in the affected cities by analysing CDR data
for one and a half months after the 2023 Turkey earthquake.

Inverse inferences about damage to the built environment

Detecting anomalies in human behaviour and movement patterns allows for a rapid assess-
ment of damage to the built environment in the presence of data scarcity, with applications
to a variety of downstream tasks, including mapping real-time flood inundation and iden-
tifying the location of dysfunctional mobile phone towers (Yabe et al., 2022)). While the

application potential of these studies is promising, there are not many current applications.

By analysing measures like call duration and mobility, CDR can also describe the social
response to a disaster (Moumni et al., 2013)). Phithakkitnukoon et al. (2011) found
changes in relationship strength before and after the move, particularly six months before
and one month after the move, and found that it took an average of seven to eight months
to rebuild social networks in the new place of residence after the move. Moumni et al.
(2013)) found the social response was characterised by an increase in the number of calls, a
reduction in the duration of calls, a moderate increase in the number of well-connected

citizens, and a moderate increase in mobility.

Different classes have different scopes of activity, phone top-up habits, and communication



costs. Therefore, mobile phone data can also be used to explore the impact of disasters on
different social classes (Myers et al., 2008} |Steele et al., 2017, 2021). People from the rich
class will pay more for each top-up, while the poor class will pay the opposite. The rich

will also have higher monthly bills.

2.1.3 Public datasets

The use of CDR for research has been increasingly popular within the last 10 years.
CDR datasets provide a rich data source for understanding human patterns at different
scales. However, due to commercial sensitivity and privacy considerations, the availability
of public CDR datasets is restricted. Despite this challenge, several initiatives have
successfully made CDR datasets available to the research community, facilitating a wide

range of studies.

The Orange “Data for Development” (D4D) challenge is one of the pioneering efforts
to make CDR data available for research. The first D4D Challenge in 2012 provided
anonymized CDR data from Orange’s operations in Cote d’Ivoire. This initiative has
sparked a wealth of research on topics ranging from epidemic modeling to urban planning
and socioeconomic analysis (Blondel et al.,[2015). Telecom Italia released a CDR dataset
as part of its 2014 Big Data Challenge. The dataset covers Milan and the Expo 2015
area. It offers insights into mobility patterns, urban dynamics, and the effects of events on
services and infrastructure in urban areas (Barlacchi et al., 2015) Turk Telekom established
the Data for Refugees (D4R) initiative. D4R offers CDR data to support studies aiming at
enhancing the living conditions of Syrian refugees in Turkey. This dataset has been used to
study integration patterns, mobility, and social cohesion among refugee populations (Salah
et al., [2019).

2.2 Processing CDR

2.2.1 Home and work location detection

Research on mobile data migration frequently focuses on fixed points in trajectories.
Changes in fixed point positions can well reflect the migration of the observed object.
Common fixed points include home address and work address. As highlighted by |Ahas
et al.| (2010), early efforts in this field mainly used frequency-based method for home
location assignment. This method determine users’ home location based on the most
common locations within a certain time range. And it often combined with rules related
to time of day or week to increase accuracy. But it is limited by reliance on fixed time
frames and the potential for inaccuracies due to the dynamic nature of human mobility. In
contrast, the segmentation-based method proposed by |Chi et al. (2020) marks a major

advance in this field. This method does not rely on equally divided time windows but rather



identifies dynamic "time periods" in which users are likely to reside in the same location.
This approach not only improves the accuracy of home detection but also filters out noise
in the data. So it provides a more insightful understanding of migration events, including
confidence scores for identified migrations. A more sophisticated approach described by
Yabe et al.|(2021)) involves using the concept of information entropy to identify a user’s

schedule to accurately determine when the user is likely to be at home or at work.

2.2.2 Using CDR to analyse mobility

Descriptive analysis focuses on the integration of data and the overview of attributes and
involves the statistical summarisation and graphical presentation of data. This type of
analysis presents the geographic and temporal distribution of population movements before
and after a disaster through visual tools such as graphs and charts. While this approach
provides a foundation for understanding the impacts of disasters, it is often insufficient to

explain the reasons behind them in depth.

Causal analysis aims to explore direct links between disasters and population movements.
This type of analysis tends to use advanced statistical or econometric techniques, such as
the use of multi-stage Markov chains to predict the future movement paths of individuals
based on past locations (Ghurye et al., 2016), which provide deeper causal reasoning that
can assist policymakers and disaster response teams to better understand and anticipate the

impacts of hazards on migration trends to formulate more robust responses.

The ex-ante analysis includes forecasting and simulations. Forecasting means anticipating
the population movements or destination of displaced people before the event. Forecasting
will help the Government and related NGOs to prepare enough shelter, food, and health
care for displaced people. Many methods have been used in forecasting, such as statistical
models (Martineau, 2010), agent-based models (Suleimenova et al.,|2017), and machine
learning models (Huynh and Basu, 2020; Nair et al., 2019). Simulations refer to simu-
lating the emergency evacuation after a natural disaster or other emergency. Agent-based
modelling, which represents the interactions between individuals and between individuals
and their environments, has become the main approach to simulate evacuation (Yin et al.,
2020).

2.3 Gravity model

After Ravenstein| (1885)) demonstrated that the amount of migration is inversely pro-
portional to distance, Stewart (1950) formally proposed to apply the law of gravity to
population movement between two locations. The Gravity model assumes that the number

of flow between two area decreases with distance, while the opportunity intervention model
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assumes that the interval between two area depends on the number of opportunities. The

basic equation is as follows
mg;-m;

T5; o<

— 2.1
Tty
where T;; is the amount of flow from area ¢ to area j, m; and m; are the population of the

two area respectively, 7;; is the distance between the two area.

This model assumes that the number of flow from area 7 is proportional to its population,
and the attractiveness of area j is also proportional to m;. And there is a cost effect with
respect to the distance travelled. These concepts can be summarised as the relationship
between

Ty; = K -m;-m;j - f(rij) (2.2)

where K is a constant, m; and m; are population of the two area, and f(r;;) is known as
the deterrence function, a decreasing function of distance. The distance function f(r;;) is
usually modelled as a power law or exponential (Barbosa et al., 2018))

f(riy) =a- ri_jﬁ el (2.3)

where o and 3 are adjustable exponents. Though it looks simple, the gravity model fits

internal migration data well (Poot et al.| 2016).

The Gravity model is well suited to exploring long-term migration patterns during or
after a disaster. [[saacman et al. (2018) simulated migration during the severe drought in
Guajira, Colombia, in 2014 using anonymised and aggregated CDR via Gravity model and
Radiation model. The results showed that the prediction had a success rate of about 60

percent for the total number of people who migrated and the locations where they migrated.

2.4 Ethical considerations

There are several things that researchers need to be aware of when using mobile data
from mobile phones for research. Firstly, CDR data are extremely sensitive because they
contain detailed personal information that can be used for a variety of purposes. Most of
the literature is based on carefully "anonymised" data, but this is insufficient to alleviate
the full range of privacy concerns. The possibility of de-anonymising and re-identifying
previously anonymised or aggregated datasets is well known. [Narayanan and Shmatikov
(2008)) applies de-anonymisation methods to the Netflix Price dataset. They used only a
little bit of information about a single subscriber to easily identify other records for that
subscriber in the dataset and to reveal the user’s political preferences and other sensitive

information. The researchers tried to inject "noise" into the CDR to make re-identification
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more difficult, (Becker et al., 2013)). But even that only meant that more data points were
needed to pick and choose which individuals to identify. In the future, the potential risks

associated with CDR analyses remain, and researchers will need to keep working on this.

In addition, data biases and limitations need to be taken into account. Talking lists typically
reflect the structural inequalities of any country:mobile phone ownership is strongly
correlated with economic status. Wesolowski et al.| (2013)) examined the daily movements
of nearly 15 million people in Kenya over a year by CDR and combined this analysis with
socio-economic status, mobile phone ownership, and usage patterns across the country.
Comparing these two data sources reveals that not only does mobile phone ownership
tend to favour wealthier individuals, but there is significant geographic heterogeneity in
levels of mobile phone ownership across the country. These biases hinder the validity of
CDR-based findings and could potentially exacerbate structural inequality. Therefore, this
study will analyse CDR in the context of local realities to reduce the bias introduced by
the data.

12



3. The Data

3.1 CDR data

On 6th February 2023, an earthquake with the moment magnitude (Mw) 7.8 and 7.7 struck
Kahramanmaras, Turkey, causing massive damages (Erdik et al., 2023)). There are more
than 84,000 buildings collapsed or severely damaged (Wang et al., 2023)), and more than
55,000 lives lost during the earthquake (Hussain et al., 2023)).

This study will use the fine grained dataset for a total of three months between 01/01/23-
31/03/23. The data are coming from the Hummingbird EU projectﬂ There are between
325,000 customers with varying data frequency. As shown in Table. (1} the dataset will
include timestamp of calls, base station site information, customer IDs and segment
information. Along the guidelines established by ethics committees in past endeavours,
the same anonymisation and aggregation methods are employed to remove all personal
information (Blondel et al., 2013} Salah et al., [2019). Customers will be sampled with
new random identifiers, so it is not possible to correlate customer records from different
time periods. Random identifiers may also match in two different periods for two different

customers. No personal information will be stored (Aydogdu et al., 2021)).

Table 1. Fine Grained Dataset Structure

Fields Explanations

TIMESTAMP | Day and Hour considered in format DD-MM-YYYY HH (24 h format)
Custmer ID Randomly assigned ID of the customer generated for 15 days period
Segment Callee | A value denoting the segment of the customer receiving the call
Segment Caller | A value denoting the segment of the customer giving the call

SITE ID Caller | The ID of the base station of the customer receiving the call

SITE ID Callee | The ID of the base station of the customer giving the call

This study will use the site ID with the highest call frequency for each consumer from 19:00
to 7:00 as the home location of that day. The home location with the highest frequency
each week will be regarded as the home location for that week, and the same applies to
each month. Each site id has a corresponding city and city district, so the city of each
month can be obtained from the home location of each month. We can see in Table. 2| that

the home location of most consumers in the data set has not changed in three months, so

"https://hummingbird-h2020.eu/publications, Accessed 15 October 2024
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they can be regarded as not migrating. Approximately 140, 750 people stayed in the same
city, and 15, 817 people displaced to another one during the three months.

Table 2. CDR Monthly O-D matrices

Month 1 | Month 2 | Month 3 | Count in pattern
City A |City A |City A | 140,750

City A |CityB |City A | 3404

City A |CityA |CityB |4540

City A |CityB |CityB | 6885

City A |CityB |[CityC | 988

3.2 Data for features

3.2.1 Census data

Census data comes from TurkStat ﬂ Population data is obtained from the records in the
National Adress Database of the General directorate of civil registration. This dataset
includes the total population of each city and each district in Turkey. This study will only
use the total population of the city and district. According to the statistical results, the total
population is 85, 372, 377.

Syrian populations in each city comes from the data released by the General Directorate
of Migration Management in 2023 ﬂ The Syrian population in Turkey is 3, 234, 000, and
the second most populous city of Syrian, Gaziantep, has 434, 045. The center of this
earthquake was in Gaziantep, so it had a particularly large impact on Syrians in Turkey.
There is no data on the Turkish population of each city in 2023 on the official website, so
the Turkish population of each city will be estimated by subtracting the Syrian population
of each city from the total population of each city.

3.2.2 Shake Intensity
The earthquake data were extracted from the USGS Earthquake Hazard Program ﬂ The

data coverage encompasses central and western Turkey, areas significantly affected by the
earthquake. The dataset includes parameters such as Well-Known Text(WKT), intensity,

Peak Ground Acceleration, Peak Ground Velocity, and Peak Spectral Acceleration.

Zhttps://data.tuik.qgov.tr/Kategori/GetKategori?p=
nufus-ve-demografi-109, Accessed 15 October 2024

Jhttps://multeciler.org.tr/eng/number-of-syrians—in—-turkey/, Accessed 15
October 2024

4https://earthquake.usgs.gov/earthquakes/eventpage/us6000j1llz/
shakemap/intensity) Accessed 15 October 2024
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The dataset delineates shake intensity in increments of 0.2, with the lowest level being 3.2.
In this study, the WKT of Turkey’s district map was compared with the WKT representing
intensity to determine the intensity range for each district. For districts spanning multiple
intensity ranges, the predominant intensity level based on areal coverage was assigned.
Eastern Turkey, which experienced less seismic impact with intensities below 3.2, lacked
data in the dataset; consequently, these areas were assigned an intensity value of 0. In
Figure [I] the distribution of seismic intensities becomes apparent. Considering the actual
damage in severely affected cities, areas with intensities above 4.5 were classified as
severely impacted zones, while those below 4.5 were designated as less severely impacted

Zones.

Table 3. Population of different Turkish cities and the sample sizes in the CDR dataset

City Population | Sample size in the CDR dataset | Percentage %
GAZIANTEP 2,164,131 | 25,427 1.175
SANLIURFA 2,213,964 | 19,144 0.865
HATAY 1,544,640 | 11,787 0.763
ADANA 2,270,298 | 9,570 0.422
KAHRAMANMARAS | 1,116,618 | 4,256 0.381
KAYSERI 1,445,683 | 151 0.0105
KILIS 155,179 4,979 3.209
OSMANIYE 557,666 1,324 0.238
MALATYA 742,725 4,044 0.545
ADIYAMAN 604,978 966 0.160
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Figure 1. District-level intensity map of the earthquake

The intensity for each city was derived by calculating the mean intensity of its constituent
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districts. The resulting city-level intensities are illustrated in the Figure. 2]
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Figure 2. City-level intensity map of the earthquake

3.2.3 Damaged buildings ratio

This study will use data on buildings damaged by earthquakes to assess the varying impacts
across different regions ﬂ This dataset includes the number of various types of buildings in
all districts (such as healthcare, industrial), the total number of buildings, and the number
of destroyed buildings. Damage to buildings is categorized into four distinct levels, ranging
from severe to minor. These categories are as follows: collapsed buildings, which have
suffered the most severe damage; heavily damaged buildings; buildings that need to be
demolished; and lightly damaged buildings. In order to reflect different degrees of damage,

the following formula will be used for weighting.

weighted total damaged buildings = collapsed buildings
+ 0.75 x heavily damaged buildings

3.1
+ 0.5 X needs demolished buildings
+ 0.25 x slightly damaged buildings
ighted total d d buildi
damaged buildings ratio = reighied foldl damaged HIangs (3.2)

all buildings

From Figure. 3| buildings damaged by the earthquake are predominantly located in major
cities near the earthquake’s epicenter. In contrast, cities situated farther from the epicenter
primarily report slight damage to buildings, with fewer instances of buildings experiencing

more severe levels of damage.

Shttps://sheltercluster.orqg/turkiye-earthquake-2023/pages/
damaged-buildings, Accessed 15 October 2024
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Figure 3. The map of district-level damaged buildings ratio

3.2.4 Relative Wealth Index
The Relative Wealth Index (RWI) was developed by the Center for Effective Global Action

at the University of California, Berkeley, in collaboration with Facebook’s Data for Good,
to accurately assess the economic status of low- and middle-income countries ﬁ The
RWTI is frequently used by nonprofit organizations to inform decisions on allocating cash
assistance. This study uses the RWI to evaluate the impact of each district’s economic
status on population mobility following the earthquake. As shown in Figure. ] the
RWI combines publicly available survey data with non-traditional predictive data. Non-
traditional predictive data includes high-resolution satellite imagery, topographic maps,
mobile network data, and connectivity data. A variety of geospatially tagged data can
aid in predicting relative wealth. For instance, satellite imagery can indicate population
density relative to roads, suggesting an increase or decrease in relative wealth based on
proximity. These two data sets were integrated to train a machine learning model capable
of predicting absolute and relative wealth for each 2.4 square kilometer grid cell across

135 countries (approximately 19.1 million grid cells).

Shttps://dataforgood. facebook.com/dfg/tools/relative-wealth—index, Ac-
cessed 15 October 2024
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3.2.5 Facebook connections data

This study will use Facebook connections data to assess the Social Connectedness Index
(SCI) between cities ﬂ SocialConnectedness; ; measures the relative likelihood that a
Facebook user in location 7 and a user in location j will add each other as Facebook friends
(Bailey et al.,[2018). The minimum value of SocialConnectedness; ; is 1. The higher the
value, the higher the possibility of people in the two places adding friends.

FB Connectedness; ;
FB Users; x FB Users;

Social Connectedness; ; = (3.3)
where F'BUsers; and F'BU sers; means the total amount of users from city ¢ and city j;
FBConnectedness; ; is the number of times users in city ¢ and city j add each other as

Facebook friends.

"https://dataforgood. facebook.com/dfg/tools/relative-wealth-index, Ac-
cessed 15 October 2024
8https://dataforgood.facebook.com/dfg/docs/methodoloqy—social—connectedness—index,
Accessed 15 October 2024
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4. Methodology

4.1 Transformed features

In this study, we use machine learning model to predict the evacuation flows one week
after an earthquake. We were inspired by (Hong and Frias-Martinez, 2020)’s approach.
They used gravity model-transformed features to predict post-hurricane evacuation flows.
We apply similar methodologies to predict post-earthquake evacuation patterns while
also exploring radiation-transformed features. All the features described in the previous
section, namely population, damaged buildings ratio, and RWI, are first processed through
a formula conversion. Compared to directly using the characteristics of any given two
cities to predict the evacuation flow between them, the formula in the form of the gravity
model takes into account the influence of the distance between the two cities, although the

radiation model does not directly use the distance.

Given a district D;, we represent the set of features of D; as,

Di :{di,ladi,Qa"'adLN)}a (41)

where ¢ indexes the district. For districts’ ¢ and j , the joint feature using a gravity-inspired

transformation as follows:
di,k * d ik

4.2
dZ’StiJ ( )

Gijk =

where d; . 1s the k-th feature of district 4, d; . is the k-th feature of district j, dist; ; is the
distance between district ¢ and district j, and g;; ;, 1s the k-th joint feature of district ¢ and
district j. The reason why we use gravity transformed features is that we believe that the
flow between districts depends on both the relationship between their features and the

distance between them.

In addition to the gravity model, for the same reason, we also use the following radiation-
inspired transformation to calculate the joint features. The joint feature using a radiation-

inspired transformation as

d; 1 Uj g
(dige +vije)(dig + djg + vijk)

4.3)

Tijh =

where d; . is the k-th feature of district 7, d; ;. is the k-th feature of district j, v;;  is the sum
of between district 7 and district j, and 75 is the k-th joint feature of district ¢ and district

J. Radiation-transformed features also consider the mutual influence between the features
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of the two districts. However, unlike gravity-transformed features, radiation-transformed
features uses the sum of the features of other districts between the two districts to reflect

the influence of other districts.

We do the same process for city-level features, and get city-level gravity-transformed
features and city-level radiation-transformed features for city pairs. Given a city z, we

represent the set of its features as:

Ci = {Ci,b Ci2y ey Ci,N)}, (44)

where ¢ indexes cities in Turkey. For each pair of cities, the gravity-transformed joint

feature is given as follows:
Cik *Cjk

R dZStiJ‘

4.5)
where d; , is the k-th feature of city 4, d; ;, is the k-th feature of city j, dist, ; is the distance
between city ¢ and city j, and G, ; is the k-th joint feature set of city ¢ and city j.
Similarly, the radiation-transformed joint feature for cities is defined as

Ci kCj k
(Cie + Vijr)(Cik + cjr+ Vijk)

Rijr = (4.6)
where d;, ;, is the k-th feature of district 7, d;;, is the k-th feature of district j, Vj; is the
sum of between district ¢ and district j, and R, is the k-th joint feature of district 7 and

district 7.

4.2 Machine Learning models

We use two supervised machine learning models: Random Forest and XGBoost. Random
Forest is an ensemble learning method that constructs multiple decision trees and aggregates
their results through voting or averaging (Breiman, 2001). XGBoost is an advanced
gradient boosting decision tree algorithm. It extends traditional Gradient Boosting Decision
Trees (GBDT) by incorporating second-order derivative information and introducing
regularization terms to control model complexity (Chen and Guestrin, 2016). Given
that our district-level dependent variable contains numerous zero values and exhibits
right-skewed distribution, we adopt Tweedie regression as the loss function. The Tweedie
distribution is a special case of the exponential dispersion family (Tweedie et al., 1984).
And it is particularly suitable for modeling non-negative continuous data with zeros.
Anyidoho et al.|(2023)) successfully applied Tweedie regression loss function in XGBoost
for hurricane evacuee prediction, achieving promising results. Here, we distinguish

between two XGBoost variants: the standard XGBoost with mean squared error loss
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function, denoted as XGBoost-MSE, and XGBoost with Tweedie regression loss function,
denoted as Tweedie XGBoost.

4.3 Modeling

Through the above method, we will get the corresponding joint features for any two cities
and districts in Turkey. At the district-level, this study aims to predict the evacuation flow
after an earthquake. We use joint features as the input variable of the predictive model,
and evacuation flow as the output variable to establish a supervised machine learning
model. We will use Support Vector Regression, Random Forest and XGBoost to train the
regression model. For the city-level, this study hopes to predict which city pairs will have
higher evacuation flow. We will use Support Vector Classification, Random Forest and

XGBoost to train the classification model.

We also build two baseline models, using original features at the city-level and district-level,
respectively. These models will serve as reference points for evaluating the effect of feature

transformation. The baseline models are built as follows:

m City-level baseline model: trained using the original features of the origin city and
destination city.
m District-level baseline model: trained using the original features of the origin district

and destination district.

These baseline models will be trained using the same machine learning algorithms as
the transformed feature models (such as support vector machines, random forests, and
XGBoost).

There are many city pairs that do not appear in the dataset. We should not ignore these cases.
Therefore, this study will use sub-sampling method to randomly extract some city pairs
that are not in the dataset and set the evacuation between them to 0. After sub-sampling,
there will be a large number of samples with evacuation flow of 0. In order to avoid poor
prediction results caused by sample imbalance, this study will use Stratified K-fold Cross-
Validation. According to the number of evacuation flows, the samples will be divided into
different layers. During cross-validation, samples are independently, randomly, and in a
specific proportion from different layers. This approach prevents an over representation of

a particular type of sample in any fold during K-fold Cross-Validation.
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4.4 Impact of features on prediction

We will use SHAP values to understand how the population, shake intensity, damaged
building ratio, RWI and CSI affect the prediction.

o= ¥ PRESA=Rgsom - e
SCN(i)

where ¢;(f) is the contribution of this feature to the prediction result of model f; S
represents the feature subset, and S C N \ {i} is the feature subset that does not contain
feature i; NV is the set of all features; | S| is the number of features in feature subset S; | V|
is the total number of features; f(.S) represents the prediction result of model f on feature
subset S; f(S U {i}) is the prediction result of model f after adding feature i to feature
subset S.
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5. Experimental Setup

5.1 Processing CDR data

5.1.1 Home location

In the fine-grained dataset, we already have a site id caller for each data point. Table. ]
presents a synthetic example of CDR data structure used in this study. For privacy
protection, all data shown are artificially generated and do not represent actual customer
records. And there are latitude and longitude of site id in clusters Voronoi dataset. In
clusters Voronoi dataset, the cell towers were clustered based on the proximity of their
locations using hierarchical clustering method called Ward’s method, and the distance
threshold was chosed as 5 km. We can locate the approximate location of the caller when

they making this call, and thus know the district where the call was made.

Table 4. An example call detail record (CDR)

date hour | customer id | segment caller | segment callee | site id caller | site id callee
12/01/2023 | 15 178938302 |1 NaN 17940 11644
10/01/2023 | 14 | 138832718 | 2 1 5956 7497
12/01/2023 | 22 | 116489436 | 1 1 13694 16653
12/01/2023 | 22 | 116489436 | 1 NaN 13694 16653

In this study, we want to predict the evacuation flow after an earthquake through regional
features. To know the evacuation flow, we must first know the district where the user’s
home address is located. The most commonly used method to detect home location is
to infer the location of night calls. We will select calls between 19:00 and 7:00, and the
location of the site id caller with the highest frequency during this period will be regarded
as the user’s red location. In order to be more accurate, we will use night calls during a
period of time to infer instead of every day. In the case shown in the Figure[5] we select
night calls throughout January to infer the user’s residence in January (to protect user’s

privacy, this case is adapted from a real case, not a real user trajectory.)
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Figure 5. Sankey diagram of flow from Hatay, Sanliurfa, Malatya and Adiyaman

Using the home location between November 2022 and January 2023, we assume 149, 579
users from our CDR dataset lived in affected districts. While census data tells us, the real
population of the affected districts is 16, 660, 931. So the sample we analyzed accounts for
about 0.90% of the total.

5.1.2 Identification of evacuation flows

The next question is how to define evacuation. This study will use the users’ trip within
one week to infer their mobility. If the first call and the last call of that week were fund to
be made in different districts, we will assume that is a trip. We will assume. For example if
the first call of user £ was made on district ¢, and the last call was made on district j, then
we infer that user £ move from district ¢ to district j in that week. Mobility flow before
earthquake will be recognized as normal flow, and mobility flow after earthquake will be

recognized evacuation flow.

Through the above method, we get the flow count of movement two weeks before the
earthquake (from 23-01-2023 to 05-02-2023) and the evacuation flow one week after the
earthquake (from 06-02-2023 to 13-02-2023). In order to highlight the impact of the
earthquake on the evacuation flow, we should eliminate the flow count of daily movement.
Therefore, we take the average of the flow counts two weeks before the earthquake as the
baseline flow. If the evacuation flow and the baseline flow have the same district pair (that
is, the same origin district and the same destination district). Then the final evacuation
flow will be the evacuation flow minus the baseline flow. If the evacuation flow and the
baseline flow do not have the same district pair, then the final evacuation flow of those city

pairs is the evacuation flow.

District-level evacuation flow

This study focuses on evacuation after an earthquake, so we will select the flow whose

origin district is the affected area (district with shake intensity greater than 4.5) from the
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final evacuation flow.

First, we show the evacuation flow of some districts, which will help us understand the
general situation of evacuation after the earthquake. After processing, there are 10,210

data in our data set, including 42, 118 flow counts.
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Figure 6. Sankey diagram of flow from Hatay, Sanliurfa, Malatya and Adiyaman

Most origin districts are located in Hatay, Gaziantep, Kilis, Adana Kahramanmaras and
Malatya. The flow counts from Hatay and Gaziantep are the highest, reaching 21.6% and
21.1% respectively. We use the data that the origin district belongs to Hatay, Sanliurfa,
Malatya and Adiyaman, and the flow count is greater than 50 as an example, to draw a

Sankey diagram to analyze the pattern of evacuation flow. In Figure[6] the flows of the
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same city in the origin district have the same color. From the flow from Hatay, we can see
that even if people leave their district, they often stay in the same city. The data shows that
flows within the same city account for 40.74% of all flows. For Hatay city, flows within the
city even reached 48.3%. This shows that after the earthquake, most people just evacuated

in the same city.

Flow from the Antakya district of Hatay is the largest among the origin districts, with
a total of 2152, accounting for 5.1% of the total. The Figure [6] only shows flows with
an origin district of Antakya exceeding 50, with a total of 1136. Antakya’s destination
districts are very diverse, flowing to multiple districts under cities such as Adana, Mersin,
Hatay and Kilis. Many of these districts also belong to the affected area (districts with
intensity greater than 4.5). Overall, flows from evacuation to affected areas account for
77.76% of all flows. In other words, most people did not leave the affected area, but may
have gone to relatively less affected areas.

It can also be seen from Figure [6] that people tend to move to adjacent cities in addition
to moving within the city. In Figure [6] the flows from Sanliurfa not only flow to other

districts in the city, but also flow to the districts under the adjacent city of Gaziantep.

Among the destination districts that are not part of the affected area, the Mezitli, Erfemli,
Toroslar districts of Mersin, the Selcuklu district of Konya, and the Cankaya district of
Ankara occupy the top five flow count. The total flow to them is between 600 and 200.
These districts are also very close to the affected area. Therefore, distance plays a big role
in influencing population evacuation after the earthquake. Most people who choose to

move only move within the same city or move to adjacent cities.

City-level evacuation flow

In analyzing the distinct evacuation patterns between Turkish and Syrian populations,
we used segment identification in the original data, where segment 1 represents Turkish
population and segment 2 represents Syrian population. We established baselines using
flow counts from two weeks prior to the earthquake for both populations. The earthquake-
induced flow was calculated by subtracting these baselines from the flow counts during the
first week post-earthquake. Flows were then aggregated based on origin and destination
districts’ corresponding cities. Cities were classified as "affected" if their average district-

level intensity exceeded 4.5.
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Figure 7. Sankey diagram of Turkish evacuation flow

Post-processing revealed Syrian flow counts of 28, 879, slightly lower than Turkish flow
counts of 42, 011. We visualize of flows exceeding 100 count revealed distinct evacuation
patterns in Figure[§|and Figure[7] Both populations show similar primary origin cities, with
Hatay, Gaziantep, and Sanliurfa being the top three. However, notable differences emerged
in destination city patterns. Mersin city, despite having some districts with intensity above
4.5, was classified as unaffected due to its average intensity being below 4.5. Its proximity
to Adana and Hatay made it the most popular unaffected destination for both populations,
with flow counts around 2,000. Among unaffected cities, Turkish citizens showed a
preference for Ankara (flow count:1, 106) as their second choice, while Syrians favored
Istanbul (flow count: 976). Antalya ranked third for Turkish population (flow count: 725)

but did not appear among the top five unaffected destinations for Syrians.

27



HATAY (inflow: 4752.0)

MALATYA (inflow: 293.0) ==

c =3
RN (@uitilsme EEEDL) DIYARBAKIR (inflow: 322.0) B

MERSIN (inflow: 1735.0)'

MALATYA (outflow: 293.0)

DIYARBAKIR (outflow: 322.0)
ADANA (inflow: 3890.0)

ADANA (outflow: 3068.0)

KONYA (inflow: 283.0) mm

KILIS (inflow: 1941.0)
KILIS (outflow: 2061.0)

ANKARA (inflow: 299.0) mm
ISTANBUL (inflow: 522.0) |l

GAZIANTEP (outflow: 5600.0) GAZIANTEP (inflow: 3544.0)

OSMANIYE (inflow: 132.0) we==
BURSA (inflow: 115.0) —

KAHRAMANMARAS (outflow: 1979.0) KAHRAMANMARAS (inflow: 1551.0) I

SANLIURFA (outflow: 4240.0) SANTIDREANnHowERE22650)

KAYSERI (outflow: 162.0) KAYSERI (inflow: 500.0) [l

Figure 8. The Sankey Diagram of Syrian evacuation flows

Both populations generally showed significant intra-city movement across different districts
within their origin cities, with Gaziantep’s Syrian population being a notable exception,
where only one-fifth remained within the city. Syrian population demonstrated a more
concentrated flow pattern, primarily focusing on major cities like Adana, Hatay, and
Mersin. In contrast, Turkish citizens exhibited a more dispersed pattern with a more
complex network involving multiple cities. The more concentrated pattern observed
among Syrian population suggests potential constraints in their mobility or preferences for

areas with established Syrian communities.
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5.2 District-level model

In this subsection, we elaborate on the experimental setup of our study. First, we select
appropriate normalization methods based on feature distributions. We then explore different
approaches using either actual distances or categorized distances for processing. Finally, we
discuss the configuration of crucial parameters, such as the sampling size in sub-sampling.

5.2.1 Normalization
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Figure 9. Features Distribution Histogram

As introduced in Section @.1] we utilize five features for prediction. These features
exhibit varying scales, with population typically exceeding tens of thousands and damaged
building ratio ranging from O to 1. Therefore, feature normalization is necessary to facilitate
meaningful comparisons. Rather than arbitrarily selecting a normalization method, we base
our choice on the distributional characteristics of the features. As illustrated in Figure 9]
these features demonstrate right-skewed and long-tailed distributions. Consequently,
logistic z-score normalization becomes the most suitable approach. The formula of logistic

z-score 1s:
Li — M

01 (5.1

1+4e %

where 2; is the Z-score of the feature value, x; is the original feature value, u is the mean

Zi =

logistic z-score(z;) =

of the feature values, and o is the standard deviation of the feature values. In logistic
z-score normalization, feature values are initially transformed to their z-scores, then passed

through the standard logistic function to yield values within the [0,1] interval.
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We proceed to examine the specifics of constructing gravity-transformed features. While we
hypothesize that inter-location distances influence feature interactions between locations,
the precise nature of this influence remains uncertain. Therefore, we investigate multiple

scenarios:

m district-level features : Gravity transformed district-level features without distance.

m district-level features km 1: Gravity transformed district-level features based on raw
physical distance.

m district-level features km 2: Gravity transformed district-level features based on raw
physical distance square.

m district-level features category 1: Gravity transformed district-level features based
on categorical distance.

m district-level features category 2: Gravity transformed district-level features based

on categorical distance square.

The relationship between categorical distance and raw physical distance is illustrated in
Table[5] A value of 42 represents the average distance between adjacent districts, while a

value of 146 represents the average distance between adjacent cities.

Table 5. Categorical distance of districts

Physical Distance [0,42) | [42,146) | [146,4+00 )

Categorical Distance | 1 2 3

Radiation-transformed features do not directly incorporate distance division. Instead, they
utilize a circular area centered at district ¢+ with radius equal to the distance between districts
¢ and district j. The sum of feature values from other districts within this range represents

the distance effect, requiring no additional processing.

Upon implementing these features through Random Forest, XGBoost, and Tweedie XG-
Boost model, we obtain the results shown in Figure. The results indicate superior
performance of Tweedie XGBoost model. Tweedie XGBoost combined with feature km3
achieves optimal performance with a score of 0.563, leading us to select this for further

optimization.
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Figure 10. R-Square of Features

5.2.2 Hyperparameter

Sample number of sub-sampling is a very important hyperparameter in this study, because
many city pairs are absent in the dataset. We conduct sub-sampling to deal with sample
imbalance problem. We consider districts with an intensity greater than 4.5 as origin
districts and form city pairs with other districts across Turkey. Excluding the more than
10, 000 city pairs already present in the samples, we have over 36, 000 additional city pairs.
The flow counts for these pairs will be set to zero. From this pool, we will randomly select
n samples to create a new dataset to evaluate potential improvements in the model. When
n = 0, it signifies that only data existing in the original dataset is chosen. We select n
from [0, 5000, 10000, 15000, 20000, 25000, 30000, 35000]. From Figure ] the results
indicate that when n = 10000 the model shows significant improvements.

In addition to varying the sub-sample size, we also optimized the following pa-
rameters using grid search with cross validation (GridSearchCV): maximum tree
depth (5,6,7,8,9,10); number of estimators (100,200, 300,400,500); learning rate
(0,0.1,0.2,0.3,0.4); alpha values of (0,0.1,0.5, 1), lambda values of (0,0.1,0.5,1), and
gamma values of (0,0.1,0.5, 1). Each experiment was conducted using 5-fold stratified
cross-validation, with the best results determined by selecting the highest R? value. The
final optimized parameters were: maximum tree depth of 10; number of estimators of 300;

learning rate of 0.2; alpha of 1; lambda of 1; and gamma of 0.1.
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5.2.3 Baseline model

To compare the results of the machine learning model with transformed feature, we added

the following two baseline models.

m Baseline model 1: Gravity model

m Baseline model 2: Machine Learning model using untransformed features
Baseline model 1 is a gravity model that only uses population and distance as features.

Baseline model 2 is a machine learning model that directly uses the features and distance

of the two cities as features for each city pair.
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Figure 12. City-level flow counts(Left: Turkish, Right: Syrian)

The distribution of city-level flow count differs significantly from the distribution of district-
level flow count. As shown in Fig. approximately 6% of city-level flow counts for both
Turks and Syrians exceed 100, with some reaching thousands. Meanwhile, about 75% of
flow counts fall between 0 and 10. Consequently, regression models for city-level flow
counts would yield very high RMSE and MAE values, failing to achieve the desired results.
Therefore, this study decided to develop classification models for city-level flow counts
using random forest and XGBoost algorithms. In the classification models, city pairs with
relatively high flow counts are considered positive (flow count > 10), while those with

lower counts are negative (flow count <10).

We processed city-level features similarly to district-level features, using both actual

physical distance and categorized distance to obtain the following features:

m city-level features : Gravity transformed city-level features without distance.

m city-level features km 1: Gravity transformed city-level features based on raw
physical distance.

m city-level features km 2: Gravity transformed city-level features based on raw
physical distance square.

m city-level features category 1: Gravity transformed city-level features based on
categorical distance.

m city-level features category 2: Gravity transformed city-level features based on

categorical distance square.

In this model, false negatives represent city pairs with actually high flow counts being
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classified as low flow count pairs. This may lead to cities needing more assistance being
incorrectly identified as not requiring help. Therefore, considering accuracy, precision, and
recall, we chose the random forest model with city-level features category 1 for further

optimization.

We considered using GridSearchCV to select these hyperparameters: n estimators:
(50,100, 200), max depth: (None, 10,20, 30), min samples split: (2,5, 10), min samples
leaf: (1,2,4), bootstrap: (True, False). The results showed that for Turks, these hyperpa-
rameters were optimal: bootstrap: True, max depth: 10, min samples leaf: 1, min samples
split: 2, n estimators: 50. While for Syrian, these hyperparameters were best: bootstrap:

True, max depth: None, min samples leaf: 2, min samples split: 10, n estimators: 50.
In feature selection, all five features were important for Turks. For Syrians, removing

the damaged building ratio had no significant impact on prediction results, so only the

remaining four features were used.
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6. Experimental Results

6.1 City-level evacuation flows

6.1.1 Results of classification model

In this section, we present the results of classification machine learning models for predict-
ing city-level evacuation flow. Given the extreme distribution of city-level evacuation flow,
with approximately three-quarters ranging from 0 to 9, one-quarter exceeding 10, and a
small portion above 100, we opted for classification models to predict cities with higher
flow counts. Flow counts greater than or equal to 10 were classified as "high flow count’

(positive).

We used two models, Random Forest and XGBoost, with five feature sets. Based on
precision, accuracy, and recall metrics, the Random Forest model with feature category 1
shows superior performance, leading to parameter optimization and feature selection. For
both Turkish and Syrian populations, SCI shows minimal impact on results. Consequently,
the final model incorporated only four features: RWI, population of Turks or Syrians,

damaged building ratio, and intensity.

Table 6. Results of City-level Model

Accuracy Precision Recall F1 Score Confusion Matrix

562 74
Turks 0.866 0.817 0.610  0.721

35 144

389 41
Syrian  0.883 0.818 0.748 0.779

26 117

As shown in Table. ??, both Turkish and Syrian models exhibited high and similar accuracy
and precision scores. Regarding recall, the Syrian model (0.748) significantly outperformed
the Turkish model (0.610). Recall represents the proportion of actual high flow counts
successfully identified by the model. The Syrian model’s higher recall rate indicates
superior detection of actual evacuation behavior with fewer instances of unidentified
evacuation cases. This disparity might suggest that Syrian evacuation patterns are more

predictable.

35



ROC Curve - Random Forest - Turks

1.0 -1
-~
r
-~
~
”
”
0.8 - R
-
s
”
g R
@ R
L 0.6 _ -~
2 Py
3 -~
”
o #
o ”
S 0.4 - -~
= e
-~
’
-
’
,I
0.2 P
-’
-
R
Pt ROC curve (area = 0.91)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 13. Receiver Operating Characteristic for Turkish population

ROC Curve - Random Forest - Syrian
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Figure 14. Receiver Operating Characteristic for Syrian population

From Figure [[4]and Figure. [[3] ROC curve analysis demonstrated excellent classification
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capabilities for both models, with AUC values of 0.91 for the Turkish model and 0.90 for

the Syrian model.

6.1.2 Interpretation of the features
After demonstrated the effective predictive performance of classification models for both
Turkish and Syrian populations, we now use SHAP metrics to examine the differential

impacts of various features on these two populations.

Figure.[16]and [I5]illustrate the SHAP values (impact magnitude) of different features on
evacuation prediction models for Turkish and Syrian populations. Positive SHAP values
means the feature tends to increase the prediction value. The analysis reveals that for most
features, red points typically correspond to positive SHAP values, indicating that higher

feature values between city pairs are more likely to correlate with high flow counts.
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Figure 15. SHAP values of features for Turkish Model

For both populations, their respective population sizes emerge as the most significant pre-
dictive factors, suggesting that evacuation behavior largely depends on existing population
distribution. Intensity ranks as the second most important factor for both groups, which
is logical as higher intensity areas would likely generate more evacuees. However, the
impact pattern is more dispersed for the Turkish population. This potentially indicates
more diverse responses to earthquake intensity. RWI shows a slightly stronger influence
on the Turkish population compared to Syrians. This possibly reflects that urban economic

conditions have a greater impact on Turkish evacuation decisions.
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Figure 16. SHAP vaules of features for Syrian Model

The damaged buildings ratio shows relatively minor influence on both groups. Because
it provides similar information to intensity, but intensity offers more comprehensive
information. Additionally, many cities report a damaged buildings ratio of zero, resulting
in numerous zero values when applying gravity transformation to damaged buildings ratios

between different city pairs.

6.2 District-level evacuation flows

6.2.1 Results of regression model
In this section, we present prediction results for district-level flows. As discussed in Section
[5.2] the final results were obtained using a Tweedie XGBoost model with feature km 2,

selecting population, SCI, intensity, and RWI from the five features.

Additionally, we established two baseline models to evaluate whether machine learning
with gravity transformation improves post-earthquake evacuation flow prediction. Baseline
model 1 represents the traditional gravity model, utilizing only distance and population
features. After estimation, baseline model 1 is:

4.616 - m01%0 . 135

T, = ! (6.1)

0.300

where m; is the population of district ¢, m; is the population of district j, r;; is the distance

bewteen district ¢ and district j.

Baseline model 2 is a machine learning model with untransformed features. Specifically,
for district ¢ as the origin district and district j as the destination district, it uses the distance
between districts ¢ and j, along with their five characteristics, totaling 11 features for

prediction.
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Table 7. Prediction results for models across evaluation metrics

Model R2 RMSE | MAE
Final model 0.601 | 6.921 | 1.257
Baseline model 1 | 0.148 | 15.950 | 4.487
Baseline model 2 | 0.063 | 16.487 | 3.662

The evaluation results for the final and baseline models are presented in the table. Results
indicate that the machine learning model with gravity transformed features (final model)
significantly outperforms both baseline models 1 and 2. The final model achieves an
R-square of 0.601, explaining approximately 60.1% of data variance. Both RMSE and
MAE metrics are relatively small for the final model. The baseline models’ R-square
values of 0.148 and 0.063 indicate weak predictive power. So machine learning with

gravity transformed features substantially improves predictive capability.
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Figure 17. Boxplot of Predicted Values for True Value from O to 10

The box plot illustrates the final model’s predictive performance for actual values from 0
to 10. Figure. [I7)shows increasing median predicted values as actual values increase from
left to right, indicating the model captures the basic data trend. For smaller actual values

(0 to 4), the boxes are compact, suggesting concentrated predictions.

Overall, while the model accurately reflects the general trend of increasing flow, the
median values falling below actual values suggest potential underestimation. The model

performs more accurately for small flows, possibly due to their higher representation in
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the dataset enabling better feature learning. Conversely, predictions for larger flows show
higher uncertainty. For flow counts of 0, despite boxes being very close to 0, numerous
outliers exist, potentially due to the sub-sampling process introducing 1.5 times the original

dataset’s zero flow count city pairs.

6.2.2 Interpretation of the features

The R-square value indicates that the final model demonstrates reasonable predictive
capability for post-earthquake evacuation flows. We now examine the selected features
in detail. Figure. [I8|presents the correlation matrix of the five processed features: RWI,
SCI, population, intensity, and damaged building ratio. The highest correlation coefficient
(0.64) occurs between intensity and SCI, which is likely coincidental. The second highest
correlation (0.58) is between intensity and damaged building ratio, which is logical as areas
with higher intensity typically experience greater building damage. All other correlation

coefficients are below 0.5.
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Figure 18. Correlation matrix of the transformed variables used for modeling

During feature selection, we observed that removing the damaged building ratio had
minimal impact on prediction metrics (R-square, RMSE, MAE), possibly because it
conveyed similar information to intensity. Consequently, the final model incorporated the

remaining four features. We used SHAP values to demonstrate these features’ impact on the
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model. Additionally, all features discussed in this section are gravity transformed features.
So the influence of geographical distance has been incorporated into their calculations.
This transformation applies the gravity model concept, where the impact of each feature is
weighted by the distance between districts. For example, when we discuss population’s
strong positive influence, we are actually examining the combined effect of population and

distance rather than only population.
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Figure 19. SHAP value for final model

Figure [I9]shows the features’ influence in descending order: population, SCI, RWI, and
intensity. Population and intensity display high values (red dots) concentrated on the right,
indicating positive effects on model predictions. Conversely, high SCI values cluster on

the left, suggesting that higher SCI values actually decrease model predictions.

Population demonstrates the strongest influence, with SHAP values ranging approximately
from —10 to 6. This aligns with traditional gravity models, where population and distance

serve as the principal feature.

SCI (Social Connectedness Index) is calculated from Facebook friendship frequencies.
Counter to expectations, higher SCI values negatively impact model predictions. This
might be attributed to other features being at the district-level, while SCI is initially at
the city-level. By assigning identical values to flows with the same origin and destination
cities, SCI may fail to capture district-level flow nuances. Although inter-city SCI values
are high, these might primarily reflect intra-district user connections, whereas our model

analyzes inter-district flows, potentially rendering high SCI values less informative.

RWI (Relative Wealth Index), is calculated from survey data and satellite image through
machine learning method. The high values showing positive but less pronounced ef-
fects compared to population and intensity. This suggests that district wealth variations

moderately influence post-earthquake evacuation patterns.
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Intensity with high values clustered on the right side. This aligns with our expectations:

high-intensity areas suffer greater damage, motivating stronger evacuation responses.
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7. Discussion

7.1 Model implications

Our models are supervised machine learning models requiring labels. Therefore, these
models cannot be used to predict evacuation flows before or immediately after an earth-
quake. Nevertheless, this research provides valuable insights for future studies in this
field.

First, we analyzed how features influence post-earthquake population movements. They
can guide future researchers in designing pre-earthquake evacuation flow models. For
instance, our district-level model indicates that the damaged building ratio conveys similar
information to intensity measures. Removing the damaged building ratio has minimal
impact on model predictions. Intensity data can be obtained more conveniently than
damaged building ratio data. To our surprise, higher SCI values decreased predictive
accuracy. This counter-intuitive finding may stem from data granularity issues. City-level
SCI data might not accurately reflect district-level social connection patterns, particularly
regarding connections between different districts within the same city. While SCI provided
the second most significant influence in the district-level model for the overall population,
it offered minimal predictive value in the city-level models analyzing Turkish and Syrian
populations separately. This might be because Turkish and Syrian communities have

distinct social networks that cannot be captured by aggregate SCI measures.

7.2 Limitations in long-term migration prediction

In the beginning, this study also planned to analyze long-term post-earthquake migration
patterns. We first estimated users’ home locations using CDR data from the three months
preceding the earthquake, then compared these with their home locations during June, July,
and August after the earthquake. A change in home location between these periods was

classified as long-term migration.

Initially, we planned to follow an approach similar to our short-term migration analysis by
first developing reliable regression models using our features, then analyzing how different
features influenced post-earthquake long-term migration. However the models yielded
R-square values lower than zero, indicating worse performance even than mean-value
predictions. The poor performance might due to several factors. The first reason may be

the methodological differences in processing long-term versus short-term migration data.
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Short-term migration was determined by the earliest and latest phone signals within a
week, while long-term migration was identified through changes in home locations. These
distinct processing methods may cause models suitable for short-term migration not be
applicable to long-term patterns. Secondly, mobility may be influenced by more complex
set of factors as time progresses. The five datasets employed in this study may not provide

sufficient information to capture long-term migration characteristics.
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8. Conclusions

To conclude, in this study we have investigated post-earthquake evacuation patterns
and their predictive factors. Through the implementation of machine learning gravity-

transformed features, we have developed models capable of predicting evacuation flows.

Several features have been identified as important features for post-earthquake evacuation
analysis. At the district level, population distribution is the primary factors, followed
by earthquake intensity. Social connectedness index and relative wealth index showed
moderate influence. The gravity-transformed features demonstrated strong predictive
power, while our exploration of radiation-transformed features, although not optimal in the

final model, provided valuable insights for future research.

Our comparative analysis of Turkish population and Syrian population revealed identical
feature importance rankings but distinct pattern distributions. This suggests varying
degrees of factor influence on evacuation decisions. Unfortunately, we were constrained
by the limited availability of district-level population data for both Turkish and Syrian
populations. This limitation lead us to classification approach rather than regression. The
classification model focus on identifying features that predict higher flow counts. Despite
these limitations, we have identified patterns in evacuation behaviors and established the
effectiveness of gravity-transformed features in predicting population movements. The
strong predictive power demonstrated by our classification models for both population

groups suggests the viability of our approach for practical applications.

Therefore, our models validated the applicability of gravity-transformed features in study-
ing post-earthquake evacuation flows, providing useful tools in the field of post-earthquake
analysis. And the important features we fund provide valuable reference for other re-

searchers studying post-disaster migration.

45



Bibliography

Ahas, R., Silm, S., Jirv, O., Saluveer, E., and Tiru, M. (2010). Using mobile positioning
data to model locations meaningful to users of mobile phones. Journal of urban
technology, 17(1):3-217.

Anyidoho, P. K., Ju, X., Davidson, R. A., and Nozick, L. K. (2023). A machine learning
approach for predicting hurricane evacuee destination location using smartphone

location data. Computational Urban Science, 3(1):30.

Aydogdu, B., Salah, A. A., Ones, O., and Gurbuz, B. (2021). Description of the mobile cdr
database. HumMingBird Project Deliverable, 6(1).

Bailey, M., Cao, R., Kuchler, T., Stroebel, J., and Wong, A. (2018). Social connectedness:
Measurement, determinants, and effects. Journal of Economic Perspectives, 32(3):259-
280.

Barbosa, H., Barthelemy, M., Ghoshal, G., James, C. R., Lenormand, M., Loualil, T.,
Menezes, R., Ramasco, J. J., Simini, F., and Tomasini, M. (2018). Human mobility:

Models and applications. Physics Reports, 734:1-74.

Barlacchi, G., De Nadai, M., Larcher, R., Casella, A., Chitic, C., Torrisi, G., Antonelli, F.,
Vespignani, A., Pentland, A., and Lepri, B. (2015). A multi-source dataset of urban

life in the city of milan and the province of trentino. Scientific data, 2(1):1-15.

Becker, R., Caceres, R., Hanson, K., Isaacman, S., Loh, J. M., Martonosi, M., Rowland, J.,
Urbanek, S., Varshavsky, A., and Volinsky, C. (2013). Human mobility characteriza-
tion from cellular network data. Communications of the ACM, 56(1):74-82.

Blondel, V., De Cordes, N., Decuyper, A., Deville, P., Raguenez, J., and Smoreda, Z.
(2013). Mobile phone data for development-analysis of mobile phone datasets for the

development of ivory coast. Orange D4D challenge.

Blondel, V. D., Decuyper, A., and Krings, G. (2015). A survey of results on mobile phone
datasets analysis. EPJ data science, 4:1-55.

Blumenstock, J. E. (2011). Using mobile phone data to measure the ties between nations.
In Proceedings of the 2011 IConference, pages 195-202.

Breiman, L. (2001). Random forests. Machine learning, 45:5-32.

46



Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data

mining, pages 785-794.

Chi, G., Lin, F,, Chi, G., and Blumenstock, J. (2020). A general approach to detecting
migration events in digital trace data. PloS one, 15(10):€0239408.

Dujardin, S., Jacques, D., Steele, J., and Linard, C. (2020). Mobile phone data for urban
climate change adaptation: Reviewing applications, opportunities and key challenges.
Sustainability, 12(4):1501.

Erdik, M., Tiimsa, M., Pinar, A., Altunel, E., and Ziilfikar, A. (2023). A preliminary report
on the February 6, 2023 earthquakes in Tiirkiye. Research Briefs.

Frias-Martinez, V. and Virseda, J. (2013). Cell phone analytics: Scaling human behavior
studies into the millions. Information Technologies & International Development,

9(2):pp-35.

Ghurye, J., Krings, G., and Frias-Martinez, V. (2016). A framework to model human
behavior at large scale during natural disasters. In 2016 [7th IEEE International
Conference on Mobile Data Management (MDM), volume 1, pages 18-27. IEEE.

Hong, L. and Frias-Martinez, V. (2020). Modeling and predicting evacuation flows during
hurricane Irma. EPJ Data Science, 9(1):29.

Hussain, E., Kalaycioglu, S., Milliner, C. W., and Cakir, Z. (2023). Preconditioning
the 2023 Kahramanmaras (Tiirkiye) earthquake disaster. Nature Reviews Earth &

Environment, pages 1-3.

Huynh, B. Q. and Basu, S. (2020). Forecasting internally displaced population migration
patterns in Syria and Yemen. Disaster medicine and public health preparedness,
14(3):302-307.

Isaacman, S., Frias-Martinez, V., and Frias-Martinez, E. (2018). Modeling human migra-
tion patterns during drought conditions in La Guajira, Colombia. In Proceedings of

the 1st ACM SIGCAS conference on computing and sustainable societies, pages 1-9.

Kargel, J. S., Leonard, G. J., Shugar, D. H., Haritashya, U. K., Bevington, A., Fielding,
E. J., Fujita, K., Geertsema, M., Miles, E., Steiner, J., et al. (2016). Geomorphic

and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake.
Science, 351(6269):aac8353.

Letouzé, E., Vinck, P., and Kammourieh, L. (2015). The law, politics and ethics of cell
phone data analytics. Data-Pop Alliance.

47



Li, T., Dejby, J., Albert, M., Bengtsson, L., and Lefebvre, V. (2019). Detecting individual
internal displacements following a sudden-onset disaster using time series analysis of
call detail records. arXiv preprint arXiv:1908.02377.

Lu, X., Bengtsson, L., and Holme, P. (2012). Predictability of population displacement
after the 2010 Haiti earthquake. Proceedings of the National Academy of Sciences,
109(29):11576-11581.

Martineau, J. S. (2010). Red flags: A model for the early warning of refugee outflows.
Journal of Immigrant & Refugee Studies, 8(2):135-157.

Moumni, B., Frias-Martinez, V., and Frias-Martinez, E. (2013). Characterizing social
response to urban earthquakes using cell-phone network data: the 2012 Oaxaca
earthquake. In Proceedings of the 2013 ACM conference on Pervasive and ubiquitous
computing adjunct publication, pages 1199-1208.

Myers, C. A., Slack, T., and Singelmann, J. (2008). Social vulnerability and migration
in the wake of disaster: the case of hurricanes Katrina and Rita. Population and
Environment, 29:271-291.

Nair, R., Madsen, B. S., Lassen, H., Baduk, S., Nagarajan, S., Mogensen, L. H., Novack,
R., Curzon, R., Paraszczak, J., and Urbak, S. (2019). A machine learning approach to

scenario analysis and forecasting of mixed migration. IBM Journal of Research and
Development, 64(1/2):7-1.

Narayanan, A. and Shmatikov, V. (2008). Robust de-anonymization of large sparse datasets.
In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages 111-125. IEEE.

Phithakkitnukoon, S., Calabrese, F., Smoreda, Z., and Ratti, C. (2011). Out of sight out
of mind—how our mobile social network changes during migration. In 2011 IEEE
third international conference on privacy, security, risk and trust and 2011 IEEE third

international conference on social computing, pages 515-520. IEEE.

Poot, J., Alimi, O., Cameron, M. P., and Maré, D. C. (2016). The gravity model of

migration: the successful comeback of an ageing superstar in regional science.
Ravenstein, E. G. (1885). The laws of migration. Royal Statistical Society.

Salah, A. A., Pentland, A., Lepri, B., Letouzé, E., De Montjoye, Y., Dong, X., and Vinck,

P. (2019). Guide to mobile data analytics in refugee scenarios. Springer.

Sarker, M. N. L., Peng, Y., Yiran, C., and Shouse, R. C. (2020). Disaster resilience through
big data: Way to environmental sustainability. International Journal of Disaster Risk
Reduction, 51:101769.

48



Steele, J. E., Pezzulo, C., Albert, M., Brooks, C. J., zu Erbach-Schoenberg, E., O’Connor,
S. B., Sundsgy, P. R., Engg-Monsen, K., Nilsen, K., Graupe, B., et al. (2021). Mobility
and phone call behavior explain patterns in poverty at high-resolution across multiple

settings. Humanities and Social Sciences Communications, 8(1):1-12.

Steele, J. E., Sundsgy, P. R., Pezzulo, C., Alegana, V. A., Bird, T. J., Blumenstock, J.,
Bjelland, J., Engg-Monsen, K., De Montjoye, Y.-A., Igbal, A. M., et al. (2017).
Mapping poverty using mobile phone and satellite data. Journal of The Royal Society
Interface, 14(127):20160690.

Stewart, J. Q. (1950). The development of social physics. American Journal of Physics,
18(5):239-253.

Suleimenova, D., Bell, D., and Groen, D. (2017). A generalized simulation development

approach for predicting refugee destinations. Scientific reports, 7(1):13377.

Tufekci, Z. (2014). Big questions for social media big data: Representativeness, validity
and other methodological pitfalls. In Proceedings of the international AAAI conference

on web and social media, volume 8, pages 505-514.

Tweedie, M. C. et al. (1984). An index which distinguishes between some important
exponential families. In Statistics: Applications and new directions: Proc. Indian

statistical institute golden Jubilee International conference, volume 579, pages 579—
604.

Wang, T., Chen, J., Zhou, Y., Wang, X., Lin, X., Wang, X., and Shang, Q. (2023).
Preliminary investigation of building damage in Hatay under February 6, 2023 Turkey
earthquakes. Earthquake Engineering and Engineering Vibration, 22(4):853—-866.

Wesolowski, A., Eagle, N., Noor, A. M., Snow, R. W., and Buckee, C. O. (2013). The
impact of biases in mobile phone ownership on estimates of human mobility. Journal
of the Royal Society Interface, 10(81):20120986.

Wilson, R., zu Erbach-Schoenberg, E., Albert, M., Power, D., Tudge, S., Gonzalez, M.,
Gauthrie, S., Chamberlain, H., Brooks, C., Hughes, C., et al. (2016). Rapid and near
real-time assessments of population displacement using mobile phone data following
disasters: The 2015 Nepal earthquake. PLoS currents, 8.

Yabe, T., Jones, N. K., Lozano-Gracia, N., Khan, M. F., Ukkusuri, S. V., Fraiberger, S., and
Montfort, A. (2021). Location data reveals disproportionate disaster impact amongst
the poor: A case study of the 2017 Puebla earthquake using Mobilkit. arXiv preprint
arXiv:2107.13590.

49



Yabe, T., Jones, N. K., Rao, P. S. C., Gonzalez, M. C., and Ukkusuri, S. V. (2022). Mobile
phone location data for disasters: A review from natural hazards and epidemics.

Computers, Environment and Urban Systems, 94:101777.

Yabe, T., Tsubouchi, K., Fujiwara, N., Sekimoto, Y., and Ukkusuri, S. V. (2020). Un-

derstanding post-disaster population recovery patterns. Journal of the Royal Society
Interface, 17(163):20190532.

Yin, L., Chen, J., Zhang, H., Yang, Z., Wan, Q., Ning, L., Hu, J., and Yu, Q. (2020). Improv-
ing emergency evacuation planning with mobile phone location data. Environment
and Planning B: Urban Analytics and City Science, 47(6):964-980.

50



	Introduction
	Problem statement
	Research questions
	Contribution of the thesis

	Related work
	Mobile phone location data for migration and mobility
	Mobile phone call detail records
	The applications of CDR in disaster management
	Public datasets

	Processing CDR
	Home and work location detection
	Using CDR to analyse mobility

	Gravity model
	Ethical considerations

	The Data
	CDR data
	Data for features
	Census data
	Shake Intensity
	Damaged buildings ratio
	Relative Wealth Index
	Facebook connections data


	Methodology
	Transformed features
	Machine Learning models
	Modeling
	Impact of features on prediction

	Experimental Setup
	Processing CDR data
	Home location
	Identification of evacuation flows

	District-level model
	Normalization
	Hyperparameter
	Baseline model

	City-level model

	Experimental Results
	City-level evacuation flows
	Results of classification model
	Interpretation of the features

	District-level evacuation flows
	Results of regression model
	Interpretation of the features


	Discussion
	Model implications
	Limitations in long-term migration prediction

	Conclusions

