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Abstract

The AdS-CFT correspondence has provided new opportunities to study dynamics in

strongly coupled theories. In particular, boost-invariant solutions allow us to model

heavy-ion collisions.

In this project I will give an overview of the duality, construct an holographic model

and study its thermodynamical structure and phase transitions. Then, I will consider

a boost-invariant plasma and study if its microscopic evolution, given holographi-

cally, is well described by hydrodynamics. Finally I ask whether phase transitions

can be probed in this context.
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1 INTRODUCTION

1 Introduction

One of the main hot topics in high energy physics is understanding heavy ion collisions,

and the expanding quark gluon plasma (QGP) resulting from them. Specifically there

is interest in understanding if this plasma can be well described by hydrodynamics, and

the phase transitions that occur during its cooling stages such as hadronization. One of

the main problems with doing this is that quantum chromodynamics (QCD) is a strongly

coupled QFT, and unlike in weakly coupled QFTs we cannot take a perturbative approach

and usual techniques such as Feynman diagrams no longer apply. Therefore we must use

new techniques such as lattice QCD or holography, and in this project we will be inter-

ested in the latter.

Holography was first proposed by Maldacena in 19998 [15] and it states that there is

a duality between a CFT living in d dimensions and a gravitational theory living in a

d+ 1 Anti-de Sitter spacetime. The CFT will reside in the boundary of the AdSd+1, and

we will call the AdSd+1 spacetime governed by gravity the bulk. It can be used for many

different settings, but we are interested in the case where it relates a strongly coupled

CFT such as QCD to a weakly coupled theory of gravity. This is really useful because

although we cannot directly study the CFT itself we can compute the properties and

evolution of the weakly coupled AdS space time through Einstein’s equations. Then by

studying how the space time behaves at the boundary we can obtain the evolution of the

strongly coupled theory.

This duality has been used to study many different CFTs, specially N = 4 super Yang

Mills theory (SYM), but we are interested in non conformal theories to study the behaviour

of hot QGP. This theory is almost conformal at really high energies, and although some

collisions can reach this conformal energy scale, as they cool they explore the non confor-

mal region of the theory and it must be studied. Indeed, as seen in [16] the bulk viscosity

plays an important role in the hydrodynamic description of the cooling of QGP, which

can only happen in non-conformal theories.

In this project we will study a simple holographic model with a scalar field to break

conformality, characterized by a source Λ. We will then compute its equilibrium solutions

to study the thermodynamic properties and the transport coefficients of this model as a
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1 INTRODUCTION

function the parameters of the scalar field potential. We will also see how for a certain

range of these parameters the system undergoes a second and a first order phase transi-

tion. Then we will study the hydrodynamics of a boost invariant plasma and compute the

hydrodynamic pressures as a function of energy. Finally we will implement a numerical

simulation to dynamically evolve our system, and study if it can be described by our hy-

drodynamic model as it cools down and how it behaves around the phase transition.

6



2 MODEL

2 Model

To explore the behaviour of this system we will develop a model for the bulk theory. Let

us start by writing the action for a scalar field coupled to gravity in five dimensions, which

will break conformality.

S =
2

κ25

∫
d5x

√
−G

[
1

4
R− 1

2
(∇ϕ)2 − V (ϕ)

]
(2.1)

Where the potential is given in terms of a superpotential characterized by two parameters

λ4 and λ6, chosen so that it leads to rich thermodynamics. It has been taken from

[11],[1]:

V (ϕ) = −4

3
W (ϕ)2 +

1

2
W ′(ϕ)2 (2.2)

LW (ϕ) = −3

2
− ϕ2

2
+ λ4ϕ

4 + λ6ϕ
6 (2.3)

This potential has a maximum at ϕ = 0 and for certain values of λ4 and λ6 it will also

have a minimum at ϕ = ϕ∗. We will be working with λ6 > 0, so this minimum will always

exist.

ϕ∗ =

√
1

2λ4 +
√
4λ24 + 6λ6

(2.4)

This maximum will correspond to the UV limit while the minimum will correspond to

the IR limit. Since they are extrema they will both correspond to CFTs. To explore the

UV limit we can expand the potential around ϕ = 0

L2V (ϕ) = −3− 3ϕ2

2
− ϕ4

3
+

(
8λ24 +

4λ4
3

− 2λ6

)
ϕ6 +O

(
ϕ7
)

(2.5)

This will correspond to a UV fixed point, and from the quadratic term in the potential it

can be seen that the field will have a mass of m2
UV = −3/L2. This means that the field

has a conformal dimension ∆UV = 3, found through m2
UV = ∆UV (∆UV − d). This means

that the scalar field will correspond to a relevant operator which will drive the RG flow

away from the fixed point.

Since at the IR limit ϕ → ϕ∗ there is a minimum m2
IR must be positive, and using

m2
IR = ∆IR(∆IR − d) this means that it will have a conformal dimension ∆IR > d. So at

the IR limit the scalar field will correspond to an irrelevant operator.

7



2 MODEL 2.1 Holographic renormalization

This action and potential yield the following equations of motion for the metric and

the scalar field:
1√
−G

∂N

[√
−GGMN∂Mϕ

]
= ∂ϕV (ϕ) (2.6)

RMN − 1

2
RGMN =

κ25
4
TMN (2.7)

Where the stress-energy tensor is given by:

TMN =
4

κ25

[
2∂Mϕ∂Nϕ−GMN

(
GAB∂Aϕ∂Bϕ+ 2V (ϕ)

)]
(2.8)

2.1 Holographic renormalization

Next we want to obtain the stress-energy tensor at the boundary to get the observables of

the QFT such as the energy or the pressures, but our stress-energy tensor diverges at the

boundary. To solve this we will use the well-known holographic renormalization procedure

from [6],[5]. Holographic renormalization is usually implemented using Fefferman Graham

(FG) coordinates for AdS5. Near the boundary the metric behaves as:

ds2 =
L2

z2
dz2 + gµνdx

µdxν (2.9)

with:

gµν = g(0)µν (t, x⃗) + g(2)µν (t, x⃗)z
2 + g(4)µν (t, x⃗)z

4 + · · · ; (2.10)

while the scalar decays as

ϕ = ϕ(0)(t, x⃗)z + ϕ(2)(t, x⃗)z3 + · · · . (2.11)

Higher order terms in the expansion are determined in terms of these.

In general g(i)µν and ϕ(i) depend on all the gauge theory coordinates, but in this project we

will restrict g(0)µν to the flat Minkowski metric, while ϕ(0)(t, x⃗) = ϕ0 = Λ is constant and

identified as the source of the operator dual that breaks conformal symmetry at the UV.

This also fixes g(2)µν = −Λ2L2g
(0)
µν /3, making g(4)µν (t, x⃗) and ϕ(2)(t, x⃗) the only functions left

undetermined.
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2 MODEL 2.2 Homogeneous Setup

Since our boundary metric is conformally flat and we have a constant source for our scalar

field the expressions from ([6]) will be dramatically simplified. The vacuum expectation

value of the energy-momentum tensor reads ([2])

⟨Tµν⟩ =
2L3

κ25

[
g(4)µν (t, x⃗) + g(0)µν Λϕ

(3)(t, x⃗)− Λ4

18
+ λ4ϕ

4
1

]
. (2.12)

Similarly, the vacuum expectation value of the operator dual to ϕ is

⟨Oϕ⟩ =
2L3

κ25

[
−2ϕ(3)(t, x⃗)− 4λ4Λ

3
]

(2.13)

It is important to note that these expressions satisfy the Ward identity

〈
T µ

µ

〉
= −Λ ⟨O⟩ , (2.14)

2.2 Homogeneous Setup

We still have to implement some conditions on the boundary metric, which will dictate

how the theory behaves. The first case we want to study is one in which the system will

relax towards an equilibrium state. To do so we will force all observables to only depend

on time, making all solutions homogeneous. This will mean that there cannot be any

q ̸= 0 momentum modes and thus no hydrodynamic modes will be excited. This setup

can be useful to find equilibrium solutions or compute quasi-normal modes, as we will see

later.

Also the fact that all observables only depend on time means that the equations will

only depend on the holographic coordinate z and on t, simplifying the resolution.

2.3 Boost Invariant Setup

If we want to allow hydrodynamic modes to appear we must allow the plasma’s prop-

erties to depend not only on time but also one spatial direction, which we will call the

longitudinal coordinate xL. To do se we will work in new coordinates, where instead of
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2 MODEL 2.3 Boost Invariant Setup

using time t and xL we will use proper time τ and rapidity y. They are related as:

t = τ cosh(y) xL = τ sinh(y), (2.15)

and the metric reads:

ds2 = −dτ 2 + τ 2dy2 + dx2
T (2.16)

Figure 1: Diagram of the boost invariant setting. The thick black line
corresponds to τ = 0, where the energy density diverges. The dashed line
corresponds to τini where our simulation begins, and the dotted one corre-
sponds to τhydro when the system will hydrodynamize.

And we will require the metric and all properties of the plasma to only depend on τ and

be invariant on rapidity, hence the name. This was first proposed by Bjorken [7] more

than thirty years ago for a conformal case which can be solved analitically [14],[13]. We

will also study it numerically in the non conformal case.

The motivation for this assumption comes from heavy ion collisions. While no colli-

sion with finite energy can have a homogeneous rapidity distribution from −∞ to ∞, we

could expect that at high energies the stress-energy tensor of the fluid is independent of

y over some finite range, and this would mean that after hadronization the profile would

have a wide plateau. Then in high energy limit the plateau would become an homoge-

neous spectrum over y and we would be in the boost invariant regime. However it has

been found from heavy ion collisions at RHIC that the rapidity profile does not show a

plateau, but rather a gaussian distribution [17].

One can then wonder about the applicability of this model, but it will be useful as a

simple model to study how a system initially far from equilibrium can hydrodynamize as

it expands and cools.
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2 MODEL 2.3 Boost Invariant Setup

In this case energy density is not constant due to the plasma being forced to expand.

Also, at τ = 0 there is a coordinate singularity and the energy density diverges, which

means that all our simulations will start at some initial time τini. Then they will cool

down until the system becomes well described by hydrodynamics as seen in (Fig 1). Since

all functions only depend on τ we will again have equations of motion which will only de-

pend on two variables and we will solve them with a similar scheme as in the homogeneous

setup.
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3 THERMODYNAMICS AND TRANSPORT

3 Thermodynamics and transport

We now want to explore the thermodynamics and transport coefficients of the system,

and to do so we solve the equilibrium solutions of the metric (2.9).

3.1 Static solutions

We assume that the equilibrium state will be homogeneous, isotropic and static, and

therefore we propose the following ansatz:

ds2 =
L2

z2
(
−f(z)dt2 + g(z)dx2 + dz2

)
(3.1)

The boundary metric will be conformal to Minkowski, which will fix the boundary be-

haviour of the metric coefficients.

Next we can plug our metric ansatz into Einstein’s equations (2.6), which yields two

coupled second order differential equations for g(z) and ϕ(z) and a first order differential

equation for f(z).

z2g′′

g
− 3zg′

g
+
z2ϕ′2

6
+
L2V

3
= 0,

z2ϕ′′ −
[
1− zg′

g
− g(z2ϕ′2 − 2L2V )

6z3(g/z2)′

]
zϕ′ − L2∂ϕV = 0,

zf ′

f
+
zg′

g
− g(z2ϕ′2 − 2L2V )

3z3(g/z2)′
− 4 = 0.

(3.2)

What we will do to solve these equations is study how the functions must behave close to

the event horizon of the black hole, and numerically integrate outward towards the bound-

ary. From regularity conditions we can find that near the horizon the metric functions

must behave as:

f(z) = fH(z − zH)
2 +O(z − zH)

3

g(z) = gH +O(z − zH)

ϕ(z) = ϕH +O(z − zH)

(3.3)

Now we can do a series expansion of our field equations near the horizon, and solve them

order by order. Then we can express the expansion for the three functions in terms of fH ,
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3 THERMODYNAMICS AND TRANSPORT 3.1 Static solutions

gH and ϕH , and we get:

f(z) = fH(z − zH)
2 +

fH(z − zH)
3

zH
+
fH(z − zH)

4 (8L2V (ϕH)− 3)

36z2H
+O(z − zH)

5

g(z) = gH +
2gH(z − zH)

zH
− gH(z − zH)

2 (2L2V (ϕH)− 3)

3z2H
+O(z − zH)

3

ϕ(z) = ϕH +
L2(z − zH)

2V ′(ϕH)

4z2H
− L2(z − zH)

3V ′(ϕH)

4z3H
+O(z − zH)

4

(3.4)

And so it seems that our solutions will be parameterized by these three variables plus the

position of the horizon zH . But in the homogeneous case we expect the equilibrium state

to be determined only by one parameter, the energy. Later we will see how three of these

will get fixed, and thus the equilibrium solutions will be given by just one parameter ϕH

Next let us study how the metric must behave near the boundary z = 0. Since we

are dealing with a homogeneous plasma, the boundary metric should be conformal to

Minkowski. Imposing (3.1) to be Minkowski at the boundary means that the values for

f(z) and g(z) at z = 0 are f(0) = g(0) = 1. Looking at the near expansion of the scalar

field in (??) ϕ(z) should behave as ϕ(z) = zΛ+ z3ϕ2+O(z)4, where Λ is the source of the

scalar field and ϕ2 is a free parameter not given by the expansion. And if we then solve

the equations order by order near the boundary we find:

f(z) = 1− 1

3
z2Λ2 + f4z

4 +O
(
z5
)

g(z) = 1− 1

3
z2Λ2 +

1

27
z4

(
−9f4 + 2Λ4 − 18ϕ2Λ

)
+O

(
z5
)

ϕ(z) = zΛ+ z3ϕ2 +O
(
z5
) (3.5)

where we have two coefficients that are not determined by the equations f4, ϕ2. Now

we want to integrate the equations of motion (3.2) from the horizon up to the boundary

in order to find the whole profile of our fields. But we run into the problem that our

equations are singular at the horizon, and so we will use the near horizon expansion up

to sufficient high order to evaluate the equations at some small εIR close to the horizon.

From there we can integrate upwards towards the boundary, but again the equations are

singular there so we will integrate up to a cut-off εUV close to the boundary. We have

also checked the stability of the solutions under changes of εIR and εUV . Now one would

think that the system is solved, but we do not know if the behave as we want around the
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3 THERMODYNAMICS AND TRANSPORT 3.1 Static solutions

boundary.

And indeed by integrating the equations with an arbitrary choice for the coefficient val-

ues at the horizon we find that they do not have the required boundary conditions. This

is clearly a problem, caused by having too many free parameters, fH , gH , zH and ϕH .

We can solve this by realising that Einstein’s equations are invariant under the following

changes:

f(z) → α f(z)

g(z) → β g(z)

z → γ z

(3.6)

This means that we have three conditions to fix on the boundary, f(0) = g(0) = 1 and

ϕ′(0) = 1 to measure everything in units if Λ. And so what we will do is start by inte-

grating from the horizon with some chosen values for fH = gH = zH = 1 and the desired

one for ϕH . We will get the values for these functions at the boundary, and from them

compute α = f(0)−1, β = g(0)−1 and γ = ϕ′(0). Finally using (3.6) we can compute the

new values for fH , gH , zH and again integrate to the boundary, where now the conditions

will be automatically satisfied.

Since the only value which remains unfixed is ϕH , this means that our equilibrium solu-

tions will only be given by one parameter, which will relate to the energy and temperature

of the system. As we said before the potential V (ϕ) has a maximum at ϕ = 0 and a min-

imum at ϕ∗, and our solutions will be given by ϕH ∈ (0, ϕ∗). ϕH → 0 will correspond to

the high energy limit while ϕH → ϕ∗ to the low energy limit.

14



3 THERMODYNAMICS AND TRANSPORT 3.2 Thermodynamics

(a) (b)

Figure 2: Profiles for g(z), f(z), ϕ(z), and ϕ′(z), before (a) and after (b) making the
transformation (3.6). As can be seen in the right picture all boundary conditions are satisfied.

3.2 Thermodynamics

For the case of our static metric with the expansions from (3.5) we get the following

expressions for energy and pressure from holographic renormalization (2.12).

ϵ ≡ T t
t = −f4 − λ4Λ

4 +
Λ4

18
− Λϕ2 (3.7)

P ≡ T x
x =

1

54

(
−18f4 + 54λ4Λ

4 + Λ4 + 18Λϕ2

)
(3.8)

Now that we have the energy and the pressure we need to get the other thermodynamic

variables, the temperature and entropy. They will both be obtained through black hole

thermodynamics.

3.2.1 Temperature

As proved by Stephen Hawking [12], in black hole thermodynamics temperature is usu-

ally described in terms of the surface gravity κ. Here though we will compute it using

imaginary time. If we focus only on the dz, dt part of the metric:

ds2 =
L2

z2
(
dz2 − f(z)dt2

)
(3.9)

Since the temperature is defined at the horizon we can make an expansion around zH ,

where we obtain:

ds2 =
L2

z2H

(
dz2 − fH(z − zH)

2dt2
)

(3.10)

15



3 THERMODYNAMICS AND TRANSPORT 3.2 Thermodynamics

And if we make a coordinate transformation z → ρ+ zH :

ds2 =
L2

z2H

(
dρ2 − fHρ

2dt2
)

(3.11)

Now we can go to imaginary time, a trick from statistical physics where we perform the

transformation t → −iτ that brings us to an euclidian metric. This new coordinate will

be periodic τ ∼ τ + β, where β is related to the temperature by β = 1
T
.

ds2 =
L2

z2H

(
dρ2 + fHρ

2dτ 2
)

(3.12)

We want to avoid conical singularities, which means we need the metric to be equivalent

to:

ds2 =
L2

z2H

(
dρ2 + ρ2dϕ2

)
(3.13)

with ϕ ∈ (0, 2π). Therefore fHβ2 = (2π)2, and the temperature can be expressed as:

T =

√
fH
2π

(3.14)

3.2.2 Entropy

On the other hand, the entropy density is given in terms of the area of the black hole by

the Bekenstein Hawking formula [4]:

S =
A

4G5

=
8πA

κ25
(3.15)

In this metric the space coordinates perpendicular to the event horizon xL,xT are not

compact, so the area itself will diverge. The timeslice perpendicular to the horizon will

be when dt = 0, dz = 0, so the resulting induced metric γij will be:

ds2 =
L2

z2
g(z)dx2 (3.16)

Since the area of the black hole diverges we will work with an area density and thus

compute the entropy density. This area density will be given by square root of the

16



3 THERMODYNAMICS AND TRANSPORT 3.3 Results

determinant of the spatial component of the metric,
√
Det(γij) =

L3

z3H
g3/2(z). Then this

finally means that the entropy density is given by:

s =
dS

dxLdx2T
=

8πL3g3/2(zH)

κ25z
3
H

(3.17)

Or expressing it the same units as in (2.12) we obtain:

s =
L3

2κ25

4πg
3/2
H

z3H
(3.18)

3.3 Results

And so now given a value for λ4 and λ6, which from now on we will set as λ6 = 1/10,

we can compute the full metric solutions for different values of ϕH ∈ (0, ϕ∗), and get the

thermodynamic structure of the system. For example we can plot the equation of state

of the system 3P/ϵ and the ratio s/T 3 as a function of temperature.

(a) (b)

Figure 3: Ratio of s/T 3 and equation of state as a function of temperature for different
values of λ4.

From these pictures we can indeed check that our theory tends to a CFT in the high and

low energy limits. In a CFT the energy momentum tensor is traceless, which immediately

implies the equation of state P (ϵ) = ϵ/3. Also since the ratio s/T 3 it will be constant

constant in a CFT, and looking at figure 3) we can see that at high energies they all tend

towards the same value, while at low values the ratio goes to different limits depending

17



3 THERMODYNAMICS AND TRANSPORT 3.4 Phase Diagram

on λ4.

As explained in [2], the ratio s/T 3 is related to the effective degrees of freedom of the

theory, which means that at the UV all theories converge to the same CFT, which makes

sense since there ϕ → 0. On the other hand in the IR they flow to CFTs with different

effective degrees of freedom.

But we want to make sure our results are correct, so we will make one numerical check.

Given the thermodynamical identity s = −df
dT

, we can compare the results for the entropy

obtained from the free energy to those obtained through black hole thermodynamics

(3.18).

Figure 4: Comparison between the derivative of the pressure with respect to the temperature
and the entropy, which as can be seen overlap.

3.4 Phase Diagram

The superpotential (2.3) has some thermodynamic richness we have yet to study, since so

far we have only looked at the solutions when λ4 > 0. If we study the free energy f as

a function of temperature we find that for certain values of λ4 the free energy is multi-

valued, signaling the presence of a first order phase transition. We can also clearly see it

when plotting energy as a function of temperature where the characteristic "s" shape of

a first order phase transition appears.
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3 THERMODYNAMICS AND TRANSPORT 3.4 Phase Diagram

(a) (b)

Figure 5: Free energy (a) and energy (b) as a function of temperature for different values
of λ4. As the value of λ4 decreases a first order phase transition starts appearing.

And so what we find is that for λ4 ∈ (−∞, λc) there is a first order phase transition

characterised by the free energy being multivalued with two unstable branches, and with

the critical temperature Tc being at the point where these branches meet. At λ4 = λc

the free energy stops being multivalued but its derivative is still discontinuous, so we find

ourselves at a second order phase transition. For values of λ4 closer to zero the free energy

goes through a smooth crossover, and there is no longer a phase transition.

To find the critical temperature we study the free energy and find when the first branch

ends and where the second one begins, characterized by the two flips in the sign of T ′(ϵ).

We then interpolate both branches numerically and see where they both meet. This will

be the critical temperature Tc. We can do this for various values of λ4 until we see that

the free energy is no longer multivalued. We can make more fine changes to λ4 around

that region to find the value λc that separates the two behaviours, which will correspond

to the second order phase transition.
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3 THERMODYNAMICS AND TRANSPORT 3.4 Phase Diagram

Figure 6: Critical temperature as a function of the parameter λ4.

The value found for the critical parameter is λc ≈ 0.212 ± 0.001, which is in agreement

with [11] where they find λc ≈ 0.21123.

It is also interesting to study the speed of sound cs = s
T

dT
ds

along this phase transition,

which dictates the stability of the system. When c2s < 0 instabilities will be amplified and

the system will be unstable, and as can be seen in figure 7 the region corresponding to

the spinodal branch is unstable. We will talk more about this and its implications when

we run the dynamical evolutions.

Figure 7: Speed of sound cs as a function of temperature
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3 THERMODYNAMICS AND TRANSPORT 3.5 Transport coefficients

3.5 Transport coefficients

Later we will want to study the hydrodynamic behaviour of the plasma, and to do that we

will need to compute the shear and bulk viscosities η and ζ. Let us start with the shear

viscosity. all theories with a two derivative gravity dual obey η/s = 1/4π [8], both in the

conformal and non-conformal case. This makes it easy to compute, since we already know

the expression for the entropy.

The bulk viscosity on the other hand is obtained from the variation of the entropy with

respect to the value of the field at the horizon ϕH [10]:

ζ

η
= 4

(
d log s

dϕH

)−2

(3.19)

η

s
=

1

4π
(3.20)

λc ≈ 0.212 (3.21)

Figure 8: Ratio of bulk and shear viscosity as a function of temperature. As can be seen
at high and low energies the ratio approaches 0, since in a CFT ζ is negligible compared to
other magnitudes.

21



4 HYDRODYNAMICS

4 Hydrodynamics

Out of equilibrium systems can be hard to describe, but hydrodynamics gives us a tool

to compute the evolution of its near equilibrium properties. Whenever the evolution of a

system is slow in time and space compared to a certain microscopic scale, hydrodynamics

applies. We will use relativistic hydrodynamics, which is useful for astrophysics, heavy

ion collisions and cosmology.

The fields we will use to describe our system are the energy density ϵ and the local

four velocity of the fluid uµ. We will also be working in the boost invariant setup we have

described before, where the four velocity is uµ = (1, 0, 0, 0) and the metric is

ds2 = −dτ 2 + τ 2dy2 + dx2
T . (4.1)

We are using this setup since we want to describe heavy ion collisions, and generalise the

Bjorken flow to non-conformal theories. If we work up to first order in the hydrodynamic

expansion, the stress energy tensor has the following form [3]:

T µν = ϵuµuν + p∆µν − ησµν − ζ∆µν∇αu
α. (4.2)

Where ∆µν = gµν + uµuν is the projector onto the space transverse to the local velocity,

uµ∆
µν = 0. The shear tensor is

σµν = ∆µα∆νβ(∇αuβ +∇βuα)−
2

3
∆µν∇λu

λ. (4.3)

It is defined in this way such that it is traceless and transverse, σµ
µ = 0, uµσµν = 0.

If we now plug the expression for uµ into the stress energy tensor (4.2) we find that the

energy momentum tensor will have three independent non-vanishing components:

ϵ ≡ −T τ
τ

PL ≡ T y
y = P − 1

3τ
(4η + 3ζ)

PT ≡ T xT
xT

= P +
1

3τ
(2η − 3ζ)

(4.4)
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4 HYDRODYNAMICS 4.1 Bjorken Flow

which we will refer to as energy, longitudinal pressure and transverse pressure respectively.

But to obtain how these values evolve over time we must use the conservation equation

∇µT
µν = 0 and the equation of state P (ϵ).

4.1 Bjorken Flow

Let us start with finding the time evolution of the system for the conformal case where

the trace of the energy momentum tensor vanishes, T µ
µ = 0. This means that:

P (ϵ) =
ϵ

3
(4.5)

ζ(ϵ) = 0 (4.6)

Using the conservation equation and allowing for the shear viscosity to depend on time

we obtain:

−P (τ) + 4η(τ)

3τ
− τϵ′(τ)− ϵ(τ) = 0 (4.7)

At late times the term belonging to η(t) will be negligible, so the equation will be:

τϵ′(τ)− 4

3
ϵ(τ) +O(τ−1) = 0 (4.8)

And has a simple solution for the energy density, ϵ(τ) = Cτ−4/3, where C is a integration

constant that determines the energy scale. To include the viscous terms and go to second

order we need to know how η scales with energy, and as we explained earlier η/s = 1/4.

According to [3] we can express it as:

η(ϵ) = Cη0

( ϵ
C

)3/4

, (4.9)

with η0 = 1
3π

. Now we can solve the whole differential equation, obtaining:

ϵ(τ) = C

(
1

τ 4/3
− 2η0

τ 2

)
(4.10)

And the pressures behave as follows:

PL =
C

3τ 4/3
− 2Cη0

τ 2

PT =
C

3τ 4/3

(4.11)
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4 HYDRODYNAMICS 4.2 Non Conformal Flow

Since at low energies our theory flows into a CFT, we expect that at late times the energy

and pressures will behave in this way.

4.2 Non Conformal Flow

But our system has a scalar field that breaks conformality, so the Bjorken flow will only

apply at very late times when we are in the IR limit. In the general non-conformal case

the equation of state is analitically unknown, so we will not be able to solve the conser-

vation equations as before.

To get the equation of state we will use our static solutions code, where we find a re-

lation P (ϵ) = ω(ϵ)ϵ. We have also computed numerical expressions for the transport

coefficients η(ϵ) and ζ(ϵ), and from (4.11) we have a prediction for PL(τ, ϵ) and PT (τ, ϵ),

which we can compare to a dynamical simulation.

But it is important to note that this does not tell us how energy will evolve with time,

to do that we need to solve the equation for the conservation of the energy momentum

tensor. To do that we need to use the conservation equation ∇µT
µν = 0, which can be

expressed as

−P (ϵ(τ)) + 4η(ϵ(τ)) + ζ(ϵ(τ))

3τ
− τϵ′(τ)− ϵ(τ) = 0 (4.12)

This equation can now be solved numerically to obtain a profile for ϵ(τ), and consequently

for the shear and bulk viscosities and the longitudinal and transverse pressures. What

should be done is start at a late time and low energy state when we expect hydrodynamics

to be a good description of the system, and integrate the equation backwards to get a

profile of ϵ(τ) which should match the simulation up to a certain τ where hydrodynamics

no longer applies. However this was outside the scope of this project, and would be

interesting to compute it in the future.
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5 DYNAMICAL EVOLUTION

5 Dynamical Evolution

5.1 Eddington Finkelstein Coordinates

To solve the numerical evolution we will be working with a metric ansatz for AdS5 in

Eddington Finkelstein coordinates (EF).

ds2 = 2drdt− A(r, t)dt2 + S(r, t)2e−2B(r,t)dx2L + S(r, t)2eB(r,t)dx2
T (5.1)

In this metric r is the radial holographic coordinate, where now the boundary is at r = ∞,

and xL and xT are the longitudinal and transversal coordinates respectively. They are

called so because the collisions and expansions of the plasma will be along the longitudinal

coordinate. The boundary of the AdS5 is at r → ∞, and there we will impose a boundary

metric depending on the kind of setup we want to use.

We are using this metric because as we will see later it will let us work along null in-

going geodesics, allowing us to solve Einstein’s equations.

5.1.1 Gauge Symmetry

The metric in Eddington Finkelstein coordinates has a gauge symmetry which will become

really important later on. If we perform the change of coordinates r → r+ξ(t) the metric

transforms as:

ds2 = 2drdt+ 2∂tξ(t)dt
2 − Ā(r, t)dt2 + S̄(r, t)2e−2B̄(r,t)dx2L + S̄(r, t)2eB̄(r,t)dx2

T , (5.2)

And if the metric coefficients transform asA→ Ā = A+2∂tξ, S → S̄ = S andB → B̄ = B

the metric will remain invariant. This means that the metric will be free under shifts of

the holographic radial coordinate without affecting any of the physics or the observables.

Later we will explain how to fix this gauge symmetry.

5.2 Characteristic Einstein Equations

The advantage of using EF coordinates (5.1) is that the evolution equations can be written

in a nested form by changing the time derivatives into derivatives along null ingoing
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5 DYNAMICAL EVOLUTION 5.2 Characteristic Einstein Equations

geodesics and using derivatives along the holographic radial direction. [9]

ḟ = ∂tf +
1

2
A∂rf (5.3)

f ′ = ∂rf (5.4)

By doing so we obtain:

S ′′ = −1

6
S
(
3 (B′)

2
+ 4 (ϕ′)

2
)

SṠ ′ = −2

3

(
S2V (ϕ) + 3ṠS ′

)
2SḂ′ = −3

(
ṠB′ + ḂS ′

)
2Sϕ̇′ = S∂ϕV (ϕ)− 3

(
ϕ̇S ′ + Ṡϕ′

)
S2A′′ = S2

(
−3ḂB′ +

4V (ϕ)

3
− 4ϕ̇ϕ′

)
+ 12ṠS ′

∂tṠ =
1

6

(
3ṠA′ − S

(
3Ḃ2 + 4ϕ̇2

))

(5.5)

These equations have a clearly nested structure, and by having the initial profiles for

B(z, ti) and ϕ(z, ti), they all become first or second order ordinary differential equations

that can be easily solved to find S, Ṡ, Ḃ, ϕ̇, A and ∂tṠ. The last equation is a constraint

equation and thus should always vanish, but its deviations from zero will tell us about

the precision of our numerics.

One difficulty with these equations is that as it will be seen in the next subsection the

functions A and S both diverge at the boundary r = ∞, which means that all the

equations will diverge too. Thus we will have to redefine our fields to work with finite

variables.

5.2.1 Near Boundary Expansion

We want to study how the functions behave near the boundary at r = ∞, which is where

divergences will appear. Since we fix the boundary metric to be conformal to Minkowski,

we can find how the metric functions should behave. By performing a Taylor expansion of

these functions in r around the boundary, we can solve the equations of motion order by

order in r and get the values of these coefficients. We will start by describing the procedure

for the homogeneous case, and then we will tackle the boost invariant case.

Now we will perform a Taylor expansion of these functions in r, A(r, t) =
∑

n=0An(t)r
2−n.
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5 DYNAMICAL EVOLUTION 5.2 Characteristic Einstein Equations

If we solve the equations of motion order by order in r, we can get the values of these

coefficients.

A(r, t) = r2 + rA1(t) +

(
−A′

1(t) +
1

4
A1(t)

2 − 2Λ2

3

)
+
a4(t)

r2
+O

(
1

r

)3

B(r, t) =
b4(t)

r4
+O

(
1

r

)5

S(r, t) = r +
A1(t)

2
− Λ2

3r
+
Λ2A1(t)

6r2
+
Λ4 − 18Λϕ2(t)

54r3
+O

(
1

r

)4

ϕ(r, t) =
Λ

r
− ΛA1(t)

2r2
+
ϕ2(t)

r3
+O

(
1

r

)4

(5.6)

As we can see some parameters a4(t), Λ, ϕ2(t) and A1(t) and b4(t) are left undetermined

by this expansion. As we mentioned before Λ corresponds to the source of the scalar

field, and the rest will depend on the initial conditions. But from the previous section

we know that under the transformation r → r + ξ(t), S and B remain unchanged while

A→ A+ 2∂tξ. To satisfy this we find that A1(t) = 2ξ(t).

From now on we will use the radial coordinate z = 1/r, for which the boundary lies

at z = 0. This is useful since we are interested in the behaviour at the boundary, and we

need the radial coordinate to be finite to run the numeric evolution.

So, to avoid running into singularities in our numerical procedure we will define some

new functions which are finite at the boundary, and we will solve the equations of motion

with respect to these new variables:

B(z, t) = z4Bf(z, t)

ϕ(z, t) = z3ϕf(z, t)− 1

2
Λz(zξ(t)− 2)

S(z, t) = z2Sf(z, t) +
ξ(t)

2
− Λ2z

3
+

1

z

Ṡ(z, t) = z2Ṡf(z, t) +
3(zξ(t) + 2)2 − 4Λ2z2

24z2

Ḃ(z, t) = z3Ḃf(z, t)

ϕ̇(z, t) = z2ϕ̇f(z, t)− Λ

2

A(z, t) = z2Af(z, t)− 2Λ2

3
− ξ′(t) +

(zξ(t) + 2)2

4z2

(5.7)
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5 DYNAMICAL EVOLUTION 5.2 Characteristic Einstein Equations

We will also need to set the boundary conditions for the differential equations, which

come from comparing (5.7) with (5.6).

Sf(z, t)|z=0 =
1

6
Λ2ξ(t)

Ṡf(z, t)|z=0 =
1

72

(
36a4(t)− 10Λ4 − 9Λ2ξ(t)2 + 36Λϕ2(t)

)
Ḃf(z, t)|z=0 = −2b4(t)

ϕ̇f(z, t)|z=0 =
1

24

(
8Λ3 + 9Λξ(t)2 − 36ϕ2(t)

)
Af(z, t)|z=0 = a4(t)

(5.8)

From this near boundary expansion we also find a constraint for a4(t), which obeys:

∂ta4 =
2

3
Λ (Λξ(t)ξ′(t)− 2ϕ′

2(t)) (5.9)

Now we will do it for the boost invariant setup. Here the spatial coordinates are y and

xT , and insted of time t we will be working with proper time. Since we want the metric at

the boundary to be conformal to Minkowsi in these boost invariant coordinates the near

boundary expansions are:

A(r, τ) = r2 + rAc1(τ) +
(
−Ac′1(τ) +

1

4
Ac1(τ)2 −

2j21
3

)
+

Ac4(τ)
r2

+O
(
1

r

)3

B(r, τ) = −2 log(τ)

3
− 2

3rτ
+
τAc1(t) + 1

3r2τ 2
+ ...+

Bc4(τ)
r4

+O
(
1

r

)5

S(r, τ) = rτ 1/3 +
3τAc1(τ) + 2

6τ 2/3
− 3j21τ

2 + 1

9rτ 5/3
+

3j21τ
2 (9tAc1(τ)− 2) + 9tAc1(τ) + 10

162r2τ 8/3
+O

(
1

r

)3

ϕ(r, τ) =
j1
r
− j1Ac1(τ)

2r2
+
ϕc3(τ)
r3

+O
(
1

r

)4

(5.10)
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5 DYNAMICAL EVOLUTION 5.3 Gauge fixing and apparent horizon

And the finite functions will be:

B(z, τ) = z4Bf(z, τ)− 6 (6τ 3 log(τ) + z (6τ 2 − 3τz + 2z2)) + τz2 (8Λ2τz + 9ξ(τ)(τzξ(τ)− 2τ + 2z))

54τ 3

ϕ(z, τ) = z3ϕf(z, τ)− 1

2
Λz(zξ(τ)− 2)

S(z, τ) = z2Sf(z, τ) +
9τ 2ξ(τ)− 6Λ2τ 2z + 18τ2

z
+ 6τ − 2z

18τ 5/3

Ḃ(z, τ) = z3Ḃf(z, τ)− 2 (τ 2 − τz + z2) + τz2ξ(τ)

6τ 3

ϕ̇(z, τ) = z2ϕ̇f(z, τ)− Λ

2

A(z, τ) = z2Af(z, τ)− 2Λ2

3
− ξ′(τ) +

(zξ(τ) + 2)2

4z2

(5.11)

5.3 Gauge fixing and apparent horizon

One of the main problems we are facing now is that our numerical grid in the z direction

cannot span the whole bulk. That would usually be a problem, since we would be miss-

ing some of the dynamics and our simulation would start accumulating numerical errors

coming from the part we are not simulating. But there is a black hole inside the bulk

cloaked by an event horizon, so we do not need to simulate anything inside this horizon

since it will be causally disconnected from the boundary. Thus we only need to make sure

our grid encapsulates the event horizon at all times.

We still have not fixed the gauge freedom r → r + ξ which shifts the whole system,

so we can use it to move the horizon at will and make sure it is placed inside our grid.

But the event horizon is a global concept and cannot be found until we have computed

the full evolution and the system has reached equilibrium. Therefore we will compute the

apparent horizon, which is local and can be computed numerically at every timestep. It is

defined as the outermost trapped surface, that is, the outermost region in which geodesics

pointing outward do not expand. This horizon is always inside the event horizon until

the system reaches equilibrium, when both horizons will be the same. For our metric the

apparent horizon is located at the value of z for which Ṡ(z, t) = 0.

We will treat ξ(t) as a dynamical variable and evolve it by requiring that the appar-

ent horizon lies at a fixed radial coordinate z = zh. At the beginning of the simulation

we will compute the current value of the horizon z∗H by finding the zero of the function
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5 DYNAMICAL EVOLUTION 5.4 Evolution scheme

Ṡ(z, t). Then we can perform a gauge transformation with ξ = 1/z∗H − 1/zH , which will

move the apparent horizon from z∗H to our desired value zH .

Next we want our horizon to stay fixed, so we should impose ∂tṠ(z, t) = 0, but there

is no mechanism to bring it back to the desired value in case numerical instabilities move

it away. So we will use the following equation taken from [1]:

(
∂tṠ(z, t) + κṠ(z, t)

)∣∣∣
z=zh

= 0 (5.12)

Where κ parameterizes the "strength" with which we pull the horizon back to its desired

place. With the expression for ∂tṠ taken from (5.5), this can be expressed as a differential

equation for ∂tξ(t), and thus we will be able to extract the time evolution of the gauge

parameter ξ(t) from requiring the horizon to always lie at z = zH .

5.4 Evolution scheme

Now that we have properly defined the evolution equations and the finite variables we

can define the evolution algorithm we will use:

1. Start with the profiles for ϕ(z, ti) and B(z, ti) at a certain time step ti and the

values of a4(ti) and ξ(ti). From there we extract the profiles for the finite functions

ϕf(z, ti) and Bf(z, ti).

2. Solve the Einstein equations (5.5) one by one to find the finite functions Sf , Ṡf ,

Ḃf , ϕ̇f and finally Af . Use the boundary conditions from (5.8).

3. Compute the value of ∂tṠ from numerical derivatives using previous timesteps, and

compare this to the value from the last equation in (5.5). As explained before, store

this to compute the numerical error.

4. From the profiles obtained for ϕ̇(z, ti) and Ḃ(z, ti) get the profiles for ∂tϕ(z, ti) and

∂tB(z, ti) using (5.3). Compute the values for ∂tξ(t) and ∂ta4(t) from (5.9) and

(5.12).
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5 DYNAMICAL EVOLUTION 5.5 Expectation values

5. From these time derivatives advance the profiles and values to the next timestep

using the Adam-Bashforth method or similar. With the profiles for ϕ(z, ti+1),

B(z, ti+1), a4(ti+1), ξ(ti+1), go back to 1 and perform the next timestep.

So by giving initial conditions for a4(ti), B(ti, z) and ϕ(ti, z) and choosing an initial ξ(ti)

such that the horizon lies at zH as explained in the previous section, we can repeat these

steps to get the evolution of all the observables and metric coefficients. To perform the

discretization of our equations we will use a uniform time grid, and a Chebyshev grid for

the radial coordinate z. This consists of N + 1 points placed on:

Xi = cos

(
πi

N

)
i = (0, 1, ..., N), (5.13)

which we can transform to our desired grid starting at z = 0 and ending at z = zf

using:

Zi =
Xi + 1

2
zf (5.14)

And from it we have computed the corresponding differentiation matrix to obtain the

derivatives of the functions. On the other hand, since time derivatives are computed from

a uniform grid we can use the well known Adams-Bashforth multistep methods.

5.5 Expectation values

Next we can compute the expectation values for the energy tensor components using the

expressions obtained from holographic renormalization (2.12). By plugging in the near

boundary expressions (5.6) into the expansions for gµν and ϕ we obtain:

ϵ̃ =
L3

2κ25

[
−3a4(t)

4
− λ4Λ

4 +
7Λ4

36
+

1

4
Λ2ξ(t)2 − Λϕ2(t)

]
P̃L =

L3

2κ25

[
−a4(t)

4
− 2b4(t) + λ4Λ

4 − 5Λ4

108
− 1

12
Λ2ξ(t)2 +

1

3
Λϕ2(t)

]
P̃T =

L3

2κ25

[
−a4(t)

4
+ b4(t) + λ4Λ

4 − 5Λ4

108
− 1

12
Λ2ξ(t)2 +

1

3
Λϕ2(t)

] (5.15)

We give them a tilde to distinguish them from the hydrodynamic variables in (4.4). Also,

using black hole thermodynamics and following a similar approach to the one done for

the static solutions metric we can find expressions for entropy and temperature.

For the entropy we can compute again the determinant of the metric of the boundary

31



5 DYNAMICAL EVOLUTION 5.6 Numerical Checks

of the black hole,
√
Det(γij) = S3(z, t), which means that the entropy density is:

s =
L3

2κ25

4πS3(zH , t)

L3
(5.16)

To compute the temperature we must do a similar procedure as before. By performing the

change dt→ dv + 1
A
dr we get rid of the cross term 2drdt, and the metric becomes:

ds2 =
1

A(r, v)
dr2 − A(r, v)dv2 + S(r, v)2e−2B(r,v)dx2L + S(r, v)2eB(r,v)dx2

T (5.17)

Again we only focus on the dv2 and dr2 terms. Since the temperature is defined at the

horizon we can make an expansion around rH , where A(rH , (r, v)) = A1(r−rH , v)+O(r−
rH)

2. Defining a new coordinate ρ2 = r − rH we get:

ds2 =
4

A1

dρ2 − A1ρ
2dv2 (5.18)

Now we can go to imaginary time τ and the metric becomes:

ds2 =
4

A1

dρ2 + A1ρ
2dτ 2 (5.19)

We want to avoid conical singularities, so we will change the coordinates to dρ →
√
A1

2
dρ̃:

ds2 = dρ̃2 +
A2

1

4
ρ̃2dϕ2 (5.20)

This means, that to avoid conical singularities we find:

T =
A1

4π
=
∂rA(r, t)|rH

4π
(5.21)

Or in the coordinate z:

T = −z
2∂zA(z, t)|zH

4π
(5.22)

5.6 Numerical Checks

We want to make sure our code works well, so we will perform some simulations and see

if the observables evolve as expected. We will start with the computation of the apparent

horizon and the null geodesics.
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In this metric outgoing radial null geodesics satisfy the following equation:

dr

dt
=
A(r, t)

2
(5.23)

dz

dt
= −z2A(z, t)

2
(5.24)

So now we can study the geodesics to see if they make sense. For example, we expect that

close to the boundary the geodesics will behave as straight lines, since from the behaviour

of A(z, t) close to the boundary we get dz
dt

≈ −1/2.

Figure 9: Congruence of outgoing radial null geodesics. The dashed line
is the apparent horizon, and the thick black line is the event horizon. The
background plot corresponds to A(z, t).

As we expected in figure 9 the geodesics close to the boundary behave as straight lines

with a slope of −1
2
. Also, we can see that some geodesics plunge into the bulk while some

escape, and they are separated by a geodesic that does neither, the event horizon colored

in black. As we mentioned earlier the event horizon cannot be found locally until the

metric has reached equilibrium, since future behaviour of the metric will dictate whether

geodesics escape or not.

Next we want to make sure that the simulations are running smoothly and the numerical

error is not too large, so we will study how the number of points in our grid affects the
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accumulated error in our simulation. To do that we will first study how well energy-

momentum conservation is satisfied and how the constraint behaves.

With energy-momentum conservation, for the homogeneous setting is as simple as en-

ergy density being constant, but for the boost invariant case it needs to satisfy

−τ d
dτ
Tττ − Tττ +

1

τ 2
Tyy = 0 (5.25)

Or expressing it in terms of energy density and pressures,

τ
dϵ

dτ
+ ϵ+ PL = 0 (5.26)

(a) (b)

Figure 10: Energy momentum conservation as a function of time for different values of the
number of grid points N in the boost invariant setting (a) and the homogeneous setting (b).

As we increase the number of points in our grid the error associated to energy momentum

decreases, and also the error change when going from 30 to 40 points is much smaller than

the one going from 20 to 30.

We will also check if our dynamical simulations match the results of the static solu-

tions. If we run different simulations on the homogeneous case we expect the system to

relax towards the values found in static solutions and as seen in Figure 11 we can see they

do.
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Figure 11: Results obtained from static solutions for 3P (ϵ)/ϵ for λ4 = 1/4 compared to
different dynamical evolutions with different initial energies. They both match.

5.7 Quasi-normal Modes

Another interesting test we can run is studying what happens to the system when we

bring it away from equilibrium. To do it we will introduce perturbations to the black

brane solutions we have found before in the homogeneous setting and study how they re-

lax to their equilibrium state. This will tell us whether our system is stable with respect

to perturbations, and will also help us to compare tabulated results and check if we are

getting the correct results.

The relaxation back to equilibrium will be dictated by an infinite set of damped oscilla-

tory modes called quasi-normal modes. We will study the different channels for relaxation

and how their frequencies depend on temperature. We are restricting ourselves to the ho-

mogeneous setting because we only want to study the k = 0 modes. Also, in the boost

invariant setting frequencies would change with temperature and thus with time, making

it not a suitable setup.

If we denote the metric inside the bulk in Eddington Finkelstein coordinates as G, a

general perturbation from equilibrium will be:

GMN → GMN + hMN , ϕ→ ϕ+ φ. (5.27)
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There will be two distinct channels for this excitations to relax, the anisotropy and the

bulk channels. The former will control variations in the anisotropy of the metric, given

in our coordinates by B(z, t). These oscillations only affect the difference between lon-

gitudinal and transversal pressures, without changing the expectation value of the scalar

field, the trace of the stress energy tensor or the average pressure.

The latter will be a non-conformal mode that will change the trace of the stress-tensor,

the scalar field and the mean pressure, all without changing the anisotropy of the system.

These two channels will be completely independent.

5.7.1 Numerical procedure

To find these modes we will start a simulation slightly out of equilibrium, and evolve the

system letting it relax towards it. For the anisotropy channel we will study the behaviour

of b4(t), since it does not contribute to the trace of Tµν and controls the anisotropy of the

system. For the bulk channel we will study the behaviour of ϕ2(t) because it does con-

tribute to the trace but has nothing to do with anisotropy or difference between pressures.

The behaviour of these variables should be given by an infinite tower of dampened os-

cillatory modes, but for this project we will only focus on the leading quasinormal mode

which is the one our numerics are sensitive to. To find it we will try to fit them with the

following function:

f(t) = C0 + A cos(ωrt+ ψ)e−ωit, (5.28)

where C0 is an offset that will only be present for the bulk channel, since in equilibrium

there is no anisotropy and thus the value will oscillate around zero. At early times the

perturbation might be too large and thus the system would not be in the linear regime,

rendering our approximation incorrect. So we will perform a series of fits, each starting

at a later time. Then we will obtain the parameters of the fit, and compute the limiting

value as we go to later times.

If we wanted to find the higher order quasi-normal modes we would subtract the ex-

pression for the first quasi-normal mode from the data, and repeat the procedure to find

the new frequencies. We could find all the modes independently because the amplitude

of each mode is a few orders of magnitude smaller than the last one.
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To get an idea of how these modes look, here are the profiles for b4(t) and ϕ2(t) for

λ4 = 1/4, λ6 = 1/10: But it is hard to see if they are well described by our function

(a) (b)

Figure 12: Evolution profiles for (a) ϕ2(t) and (b) b4(t) with their respective numerical fits.
As expected they both oscillate around an equilibrium value with a dampened motion. b4
will always oscillate around 0.

(5.28), so let us plot the function together with the fit in a logarithmic plot (Fig 13). As

(a) (b)

Figure 13: Evolution profiles for (a) ϕ2(t) and (b) b4(t) with their respective numerical fits
in a log plot.

expected for earlier times the system is too far out of equilibrium, and so the system is

not in the linear regime and the relaxation is not according to these modes. But for later

times the fit reproduces the behaviour properly.

Then we can compute the frequencies of these modes as a function of temperature, which

in the case of the anisotropy channel yields:

It follows that these frequencies grow approximately linearly with temperature. Although

the plot for the bulk channel frequencies seem to behave in a different way at low temper-

atures we believe that it is due it still not being close to the CFT, where the assumption
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(a) (b)

Figure 14: Real and imaginary frequencies for the anisotropy (a) and bulk (b) channels as
a function of temperature for λ4 = 1/4.

ω ∝ T should apply. which means that the cooler the system is the longer it will take for

it to relax towards equilibrium, which might be worrying, because if for some reason we

are driven out of equilibrium at late times then the expansion might be driving it away

too fast from equilibrium for the system to go back towards it. For this to happen the rate

of expansion 1/τ would have to be faster than the quasinormal frequencies. Since at late

times in the boost invariant we will be at the IR limit and thus in a CFT, the temperature

goes as T ∼ ϵ1/4 ∼ τ−1/3. That means that the ratio of frequencies to expansion goes

as:
ω

1/τ
≈ T

τ−1
≈ τ−1/3

τ−1
≈ τ 2/3 (5.29)

So the relaxation rate will grow faster than the expansion rate, and we will not be thrown

away from equilibrium.

5.8 Results

Now that we have a code to perform dynamical evolutions and we are confident it works,

we can start studying the behaviour of the plasma. First we will study if hydrodynamics

is a good approximation to our system for late times. To do this we will run a dynamical

evolution and obtain the profile for ϵ(τ). Then, using our static solutions and this profile

we will be able to find the values for η(τ) and ζ(τ) and P (τ), which will allow us to

compute PL(τ) and PT (τ) from (4.11) and compare them to the measured results. If we

do so we find:
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Figure 15: Transverse and longitudinal pressures as a function of time with their respective
first order hydrodynamic fits for λ4 = 1/4.

And if we study how the relative error associated with the fit evolves over time, we can

clearly see that as the system relaxes towards equilibrium the hydrodynamic approxima-

tion gets better.

Figure 16: Relative error of the hydrodynamic pressures as a function of time

Now let us study the generality of these results, since we want to avoid having results that

depend on finely tuned initial conditions. We have run 8 simulations with different initial

conditions but the same initial energy, and studied how the system hydrodynamizes. In

figure 17 can again see that for all different initial conditions the system tends towards

the same band and a similar behaviour that is well described by hydrodynamics.
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(a) (b)

Figure 17: Numerical simulations for the longitudinal and transverse pressures for one
simulation of the plasma expansion, together with a zero and first order hydrodynamic ap-
proximations.

Next we will study what happens to the system when undergoing the phase transition

we studied at the beginning of this thesis. Usually we would expect that as soon as the

system enters the spinodal branch it will become unstable and the system will sponta-

neously separate into two phases. Then as it cools down even more the proportion of

phases in coexistence will change until we only have the phase with less energy and the

system leaves the spinodal branch.

But in our microscopic simulation we will not find this phase separation, since our sys-

tem does not have spatial dependencies and it cannot present inhomogeneities. This will

mean that no phase separation can occur and thus it will be able to run along the spinodal

branch unimpeded. If we run the simulation for different initial conditions we see that

this is true, and the system performs the characteristic "s" shape. As can be seen the dy-

namic curve followed by the simulations is separated from the one obtained through static

solutions, and that separation is given by the hydrodynamic corrections. By starting the

simulation at different times we can make these corrections larger or smaller.
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Figure 18: Numerical simulations for λ4 = −1/4 with 8 different initial conditions but the
same initial energy, compared to the results obtained from static solutions.
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6 Discussion

In this project we built an holographic model to describe the properties of QCD. We have

computed its equilibrium as well as the dynamic solutions, and studied its thermodynamic

structure revealing a second order phase transition for some values of the parameters char-

acterizing the scalar field potential potential.

We then studied the dynamical evolution of the system in the boost invariant setting,

which models the expansion of quark gluon plasma resulting from a high energy heavy

ion collision. We compared it to the predicted values for longitudinal and transverse pres-

sure and saw that it was well described by it at some relatively early time.

While this model is able to study the properties of the phase transition by computing

static solutions it is not able to properly describe how the system undergoes this transi-

tion as it is cooling down. Since we do not allow for inhomogeneities the system is not able

to undergo the phase transition at the critical temperature and will explore the unstable

spinodal branch.

This leaves many questions open that would interesting to study. The first one and

the simplest is to perform the evolutions in the phase transition regime as in figure 18

but starting at different initial times. If the simulation starts at a later time then the

hydrodynamic corrections are smaller and thus the system would be closer to the static

curve and it should follow the "s" shape more closely. But if the simulation starts at ear-

lier times then viscous corrections would be more significant and the system would evolve

far from the static curve. It would be interesting to see if the system would undergo this

phase transition or since it is so far away from it it would just go towards the stable phase

in a smooth manner.

Also it would be interesting to relax our ansatz for the EF coordinates (5.1) and al-

low for inhomogeneities in the plasma. This would allow for phase separation to happen

and we might get the expected behaviour of a second order phase transition.
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