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Abstract 

Background: Accurate and timely diagnosis is crucial in epilepsy treatment. Diagnostic delay in epilepsy 

results in unnecessary risk exposure to psychosocial distress, morbidity, or mortality. Language is an 

indispensable source of information for diagnosing epilepsy. Natural language processing, a branch of 

artificial intelligence, analyses language to extract information and identify patterns. This study assessed 

the diagnostic value of natural language processing to facilitate the early diagnosis of childhood 

epilepsy. 

Methods: A dataset of 1561 letters from first consultations was available from the University Medical 

Center Utrecht and Martini Hospital Groningen. Natural language processing was applied to analyse 

textual data and classify the letters as either 'epilepsy' or 'no epilepsy'. The Naïve Bayes model was 

employed for text classification. Data was divided into training and test sets to evaluate performance 

and generalisability. Training sets identified predictive features, consisting of keywords indicative of 

'epilepsy' or 'no epilepsy'. The model's output was compared to the clinician's final diagnosis (gold 

standard). 

Results: Model accuracy ranges from 0.66 to 0.68. Balanced accuracy varies from 0.67 to 0.72 for 

‘epilepsy’ and 0.68 to 0.73 for ‘no epilepsy’. F1 score varies from 0.50 to 0.57 for 'epilepsy' and 0.76 to 

0.80 for 'no epilepsy'. AUROC varies from 0.74 to 0.78 for ‘epilepsy’ and 0.73 to 0.77 for ‘no epilepsy’. 

AUPRC varies from 0.52 to 0.63 for ‘epilepsy’ and 0.79 to 0.81 for ‘no epilepsy’. 

Conclusion: All models demonstrated moderate to good performance, with better performance in 

diagnosing ‘no epilepsy’. Improvements are required to enhance accuracy and generalisability.  
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Introduction 

Epilepsy is one of the most common neurological disorders and one of the leading neurological causes 

of morbidity and mortality.1,2,3 Epilepsy affects 50-70 million people worldwide.4,5 In the Netherlands, 

approximately 211,800 people suffer from epilepsy.6 In Belgium, approximately 1 in 200 people are 

affected by epilepsy, which corresponds to around 60,000 individuals in Flanders.7,8,9 Individuals under 

the age of 16 constitute 40% of the population with epilepsy.9  
 

Epilepsy is defined as “two unprovoked seizures occurring more than 24 hours apart, a single 

unprovoked seizure with a high recurrence risk (>60% over the next 10 years), or a diagnosis of an 

epilepsy syndrome.”10 Epilepsy is characterised by a predisposition to generate epileptic seizures, which 

result from abnormal electrical discharges in the brain.10,11,12,13 
  

Epilepsy is associated with significant cognitive, psychiatric, and physical comorbidities.2,14 More than 

half of epilepsy patients experience additional medical conditions.15 Epilepsy also has harmful effects 

on social and psychological well-being including stigma and social isolation, anxiety, limitations on daily 

activities, cognitive dysfunction, and issues related to work, school, and relationships.13,16,17,18 According 

to the Global Burden of Disease study (2010), severe epilepsy ranked fourth among 220 health 

conditions regarding disability weight.13,19 Epilepsy increasingly contributes to global disability-adjusted 

life years and mortality.5,20,21,22 Epilepsy patients are at an increased risk of death, which may be related 

directly to seizures (through status epilepticus or ‘sudden unexpected death in epilepsy’) or indirectly to 

associated non-seizure factors (through injuries, drowning, or aspiration pneumonia).15,16,23 
 

Diagnosing epilepsy can be complex and demands considerable time and effort.15,24 Due to its 

polymorphic nature, epilepsy can manifest in various ways and has numerous mimics.15 Consequently, 

seizures are often incorrectly diagnosed and under-detected.25 Diagnostic delay is an increasingly 

recognised issue and may lead to undesired health conditions.22 Various studies have reported a 

significant diagnostic delay in epilepsy. Parviainen et al. demonstrated a median delay of 12 months for 

new-onset focal epilepsy.26 Similarly, 41% of children who experienced their first seizure before the age 

of three had diagnostic delays exceeding a month, with 13% extending beyond a year.27 Slinger et al. 

reported that 8.7% of children at a Dutch tertiary children’s hospital received their final diagnosis after 

12 months.28 Moreover, nearly half of the patients assessed for initial seizures were experiencing 

recurrent, undiagnosed seizures at the time of evaluation.25,29 Generally, diagnostic time is brief for 

clearly diagnosable epilepsy but can extend beyond a year for complex or ambiguous cases. Such 

diagnostic delays can result in impaired cognition, reduced quality of life, physical injuries, and increased 

risk of mortality.22,29,30,31,32,33,34 However, a false-positive diagnosis may result in the unnecessary 

administration of antiseizure medication, which can cause adverse effects, including neuropsychiatric 

symptoms.35,36,37 False-positive diagnoses are estimated to occur in up to 25% of patients.38,39 Xu et al. 

reported a wide range in the frequency of false-positive epilepsy misdiagnosis, from 2% to 71%, with 

syncope and psychogenic non-epileptic paroxysmal events being the most common mimics.35 

Nonetheless, an estimated 70% of epilepsy patients could be seizure-free with appropriate diagnosis 
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and treatment.4 Furthermore, a delayed or misdiagnosis incurs financial costs from unnecessary medical 

assessments and inappropriate treatments.22 
 

Language is widely recognised as an indispensable source of information for diagnosing epilepsy, 

evaluating treatment and managing patient care.40 Clinicians take history and distil relevant clinical 

information from a patient's narrative.40 Language serves as a rich and versatile medium for obtaining 

deep insight into the patient's condition, essential for a holistic approach to epilepsy care. Despite 

advancements in ancillary investigations (EEG, MRI, and genetic testing), clinical information from 

electronic health records remains indispensable for diagnosing and monitoring epilepsy.15,41,42 However, 

this wealth of information is often stored and collected in patient records in an unstructured manner, 

limiting its optimal utilisation in clinical decision-making.1,43  
 

The advent of natural language processing (NLP) to systematically process unstructured textual data 

presents an unprecedented opportunity to utilise this information source for clinical purposes.40 NLP is 

a form of artificial intelligence specialising in the computational analysis of spoken and written language 

to identify patterns and trends and extract relevant information.40 This involves converting unstructured 

text into a structured format. Computational algorithms are then applied to process and analyse these 

structured features, enabling the retrieval of the desired information that supports diagnosis or decision-

making.1 In the medical domain, NLP can be applied to electronic patient records, clinical notes, letters, 

patient messages, scientific articles, audio recordings, or medical guidelines, making a previously 

unexploited source of information available for clinical purposes.40,44,45 NLP has therefore acquired 

increasing popularity across various medical subfields. It has been demonstrated to be helpful for the 

early detection and classification of diverse health conditions and child abuse.46,47,48,49,50  
 

In epilepsy research, there is an increasing tendency towards applying NLP for patient identification, 

risk stratification, and prediction.51,52,53 In clinical settings, NLP can contribute to the early detection of 

medical conditions, thereby reducing the time to diagnosis and treatment.1 NLP algorithms are able to 

identify implicit textual patterns predictive of a medical condition.1 Despite the potential of NLP, the 

application of NLP for the early diagnosis of epilepsy based on medical documentation has not yet been 

explored in the literature. Therefore, this study aims to assess the diagnostic value of applying NLP to 

medical letters from the first consultation to facilitate the early diagnosis of childhood epilepsy. 
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Methodology  

Dataset 

The dataset consists of 1561 medical patient letters, with 1250 originating from University Medical 

Center Utrecht (UMCU) and 311 from Martini Hospital Groningen (MZG). Data were retrospectively 

collected from children (age < 18 years) who were referred to the First Seizure Clinic (FSC) between 

2008 and May 2022. Data were originally collected for previously published studies focusing on a 

prediction model development for childhood epilepsy and the clinical characteristics and diagnoses of 

children referred to an FSC.28,54 The letters were 

written by various paediatric neurologists. Patient 

characteristics included sex and age at first seizure. 

For each patient, the initial diagnosis (i.e., the 

diagnosis established at the end of the first FSC 

consultation) and the final diagnosis (i.e., the 

diagnosis reached through consensus among 

doctors and/or ancillary investigations at the latest 

follow-up, recorded within a two-year period) were 

added to the dataset. Follow-up occurred for children 

with inconclusive diagnoses at the first consultation 

and for those initially diagnosed with epilepsy. The 

initial and final diagnoses encompass the groups 

‘epilepsy’, ‘no epilepsy’, and ‘unclear’ (refer to Figure 

1 for the graphic representation of the diagnoses). 

Epilepsy diagnoses are established according to the 

International League Against Epilepsy definition of 

epilepsy.10 The initial diagnosis was considered 

‘unclear’ if ancillary investigations were assessed as 

necessary to confirm or reject the epilepsy 

diagnosis.28 The final diagnosis was classified as 

‘unclear’ if, despite further investigations, it remained 

uncertain whether the events were indeed related to 

epilepsy.28 

Study design  

A retrospective analysis was conducted on letters to assess the clinical application of NLP for the early 

diagnosis of childhood epilepsy. This was achieved through text classification, specifically by training 

classification models based on textual features and predicting the class of new texts. A classification 

model was developed on a training set and subsequently tested on a test set. The final diagnosis was 

considered the gold standard for evaluating the performance of the NLP model. Different analyses were 

performed. In Analysis 1A, data were randomly divided into a training and a test set, with a respective 

Figure 1. Flowchart illustrating the diagnostic pathway 

for children referred to the FSC. The flowchart outlines 

the process from the first FSC consultation to the final 

diagnosis, including follow-up procedures. The 

diagnoses are categorised as 'epilepsy', 'no epilepsy', or 

'unclear'.  
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ratio of 70% (1094 letters) and 30% (467 letters). To ensure a representative distribution of the final 

diagnosis in both sets, stratification was applied based on the final diagnosis groups. Analysis 1B utilised 

the training set previously established in Analysis 1A. The test set comprised all 400 cases from the 

‘unclear’ group, where the diagnosis was indeterminate after the first consultation (initial FSC diagnosis). 

This analysis attempts to determine whether the model can accurately classify patients with an unclear 

diagnosis at the first consultation as either having epilepsy or not. Analysis 2 assessed the 

generalisability (i.e. external validity). Therefore, the training set comprised data from UMCU (1250 

letters) and the test set comprised data from MZG (311 letters).  

NLP workflow 

The NLP workflow consists of three main phases: data preprocessing, data analysis, and classification. 

This workflow is illustrated in Figure 2. 

 

 

Figure 2. NLP workflow for classifying ‘epilepsy’ or ‘no epilepsy’ diagnosis based on unstructured letters from the first 

consultations. The process consists of three main stages: preprocessing, analysis, and application.  

Data preprocessing 

Data preprocessing encompasses several key steps including corpus creation, tokenisation, data 

cleaning, lowercasing, n-gram generation, and stop word removal. Prior to data preprocessing, the 

ancillary investigations, conclusion, treatment plan, and considerations were omitted from all letters to 

ensure the focus remained on the available information during the first consultation. This approach also 

prevents the model from depending on or being biased by conclusions or treatment plans, thereby 

reducing interpretative bias. Creating a corpus involves collecting and organising a substantial amount 

of textual data in a structured manner to facilitate systematic analysis and processing. The text was then 

divided into tokens (i.e., words) through tokenisation. Undesired characters, such as punctuation marks, 

symbols, URLs, and separators, were omitted. Lowercasing converted all characters in the text to 

lowercase letters, ensuring consistency across the tokens. Afterwards, n-grams were generated. N-

grams are sequences of consecutive words and will be used as features for the text classification model. 
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It was decided to generate unigrams (single words such as “trekkingen”) and bigrams (pairs of 

consecutive words such as “geen_trekkingen”). The final step involved removing stop words from the 

generated n-grams. Removing stop words after generating n-grams ensures that some meaningful 

bigrams are retained, even if they contain stop words (e.g., “geen_koorts” may be retained while “geen” 

and “koorts” may individually be stop words). Stop words contain common words including prepositions, 

personal pronouns, units, and auxiliary verbs that lack informativeness and may interfere with model 

development. A list of the removed stop words is provided in Table A1, in Appendix 1. 

Data analysis 

A document-feature matrix (DFM) was created. A DFM employs a matrix representation of the data, 

which allows for the structured analysis of text data by representing documents (letters) as rows and 

features (n-grams) as columns in the matrix.55 The values in the matrix represent the frequency of a 

feature in a letter.55 In this manner, a Bag-of-Words (BoW) model was created, where each text is 

represented as a collection of words, disregarding the order in which they appear.56  

The following analyses were performed: a word-frequency analysis, a term frequency-inverse document 

frequency (TF-IDF) analysis, and a comparative word-frequency analysis. Word-frequency analysis was 

conducted to identify the most common features within the dataset. TF-IDF analysis was conducted to 

identify the most significant features within the dataset based on their TF-IDF scores. TF-IDF was 

applied to weigh features based on their frequency in individual letters.TF-IDF reduces the influence of 

frequently occurring features and emphasises those features that are more informative for classification. 

Comparative word-frequency analysis was performed to identify features that are significantly more 

frequent in one group compared to another.  

Feature selection was achieved through Recursive Feature Elimination (RFE) with 5-fold cross-

validation. RFE identified the top 300 features that were most informative for the model’s performance. 

A selection of 300 features was based on theoretical and practical reasons. Firstly, we wanted to follow 

the rule of thumb that recommends one feature per ten cases to minimise overfitting and optimise model 

performance. As the dataset is of medium size, we adjusted this rule to one feature per five cases, 

resulting in the selection of 300 features. Secondly, the literature supports this selection, as studies 

frequently use between 200 and 300 features to capture significant patterns while minimising noise, 

thereby enhancing the robustness and generalisability of the model. Thirdly, fewer features improve 

computational efficiency, making the model more practical for implementation. Moreover, fewer features 

improve the model's interpretability and transparency, facilitating a better understanding of which 

variables contribute to its predictions.  

Classification 

The Naïve Bayes classification was implemented, with the DFM as input. The Naïve Bayes classifier 

was selected due to its simplicity and effectiveness in text classification. This probabilistic model applies 

Bayes' theorem “with strong (naive) independence assumptions between features”.57 As a 

hyperparameter for the Naive Bayes model, the smoothing parameter (α) was added to prevent zero 
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probabilities. To address class imbalance, class weights were applied, reducing the impact of the 

predominant group ‘no epilepsy’ and improving performance in underrepresented groups. 

Performance evaluation 

A confusion matrix evaluated the classification model’s performance by comparing actual and predicted 

classifications employing decision statistics from contingency tables. Performance metrics include 

accuracy, recall (sensitivity), precision (positive predictive value), AUROC (Area Under the Receiver 

Operating Characteristic Curve), AUPRC (Area Under the Precision-Recall Curve), and F1 score (i.e., 

“the harmonic mean of the precision and recall”).58 All analyses were performed with R software, version 

4.4.0.59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

Results 

Data characteristics 

The median age at the first seizure was 4.5 years (95%CI: 4.0-4.9). The maximum age recorded was 

17.8 years (95%CI: 17.3-17.8), while the minimum age was 0 years (95%CI: 0.0-0.0). The majority of 

patients were male, comprising 853 individuals (54.6%). After the first consultation, 366 diagnoses were 

classified as ‘epilepsy’, 795 as ‘no epilepsy’, and 400 as ‘unclear’. According to the final diagnoses, 514 

diagnoses were classified as ‘epilepsy’ (413 from UMCU and 101 from MZG), 958 as ‘no epilepsy’ (767 

from UMCU and 191 from MZG), and 89 as ‘unclear’ (70 from UMCU and 19 from MZG). The data 

characteristics are presented in Table A2, in Appendix 2. 

Most important features 

The most important features, including all figures, are presented in Appendix 3. 

Classification model performance 

Analyse 1A 

The training set demonstrated an overall accuracy of 0.77 (95%CI: 0.7388-0.7899). 'No epilepsy' 

demonstrated higher balanced accuracy, recall, precision, F1-scores, AUROC and AUPRC values 

compared to 'epilepsy'. The test set demonstrated an overall accuracy of 0.66 (95%CI: 0.6102-0.6983). 

In contrast, ‘epilepsy’ demonstrated higher balanced accuracy and AUROC value compared to ‘no 

epilepsy’. However, ‘no epilepsy’ demonstrated higher recall, precision, F1-score, and AUPRC values 

compared to ‘epilepsy’. Table 1 provides the performance metrics of the NLP model on the training and 

test sets. 
 

Table 1. Class-specific performance metrics for epilepsy diagnosis: training and test sets, analysis 1A. 
 

Analysis set Class 
Balanced 

accuracy 
F1-score Recall  Precision  AUROC AUPRC 

Training set Epilepsy 0.76 0.67 0.70 0.64 0.84 0.75 

 
No 

Epilepsy 
0.79 0.84 0.83 0.84 0.85 0.89 

Test set Epilepsy 0.70 0.57 0.62 0.53 0.78 0.63 

 
No 

Epilepsy 
0.68 0.76 0.74 0.78 0.73 0.80 
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The table presents the balanced accuracy, F1-score, recall (sensitivity), precision (positive predictive value), AUROC, and AUPRC 

for the 'epilepsy' and 'no epilepsy' classes. These metrics provide a comprehensive overview of the NLP model’s performance in 

classifying the diagnosis groups within the training and test sets.  

Analyse 1B 

The test set demonstrated an overall accuracy of 0.66 (95%CI: 0.6087-0.7039). Table 2 provides the 

performance metrics of the NLP model on the test set. 'Epilepsy' and 'no epilepsy' exhibited similar 

AUROC values, but 'no epilepsy' achieved higher balanced accuracy, recall, precision, and F1 score 

compared to 'epilepsy'. The lower F1-score for 'epilepsy' emphasises the difficulties associated with 

accurately classifying this condition. 
 

Table 2. Class-specific performance metrics for epilepsy diagnosis: test set, analysis 1B. 
 

Analysis set Class 
Balanced 

accuracy 
F1-score Recall  Precision  AUROC AUPRC 

Test set Epilepsy 0.67 0.50 0.49 0.50 0.77 0.52 

 
No 

Epilepsy 
0.72 0.76 0.72 0.79 0.77 0.79 

 

The table presents the balanced accuracy, F1-score, recall (sensitivity), precision (positive predictive value), AUROC, and AUPRC 

for the 'epilepsy' and 'no epilepsy' classes. These metrics provide a comprehensive overview of the NLP model’s performance in 

classifying the diagnosis groups within the training and test sets.  

Analyse 2 

The training set demonstrated an overall accuracy of 0.74 (95%CI: 0.7164-0.7657). Balanced accuracy 

was consistent between the two classes. However, recall, precision, F1-score, AUROC and AUPRC 

values were slightly lower compared to analysis 1, indicating a potential reduction in the model's 

robustness in this analysis. The test set demonstrated an overall accuracy of 0.68 (95%CI: 0.6267-

0.7331). Balanced accuracy was also relatively consistent between the two classes but 'no epilepsy' 

demonstrated superior performance metrics across all measures. Table 3 provides the performance 

metrics of the NLP model on the training and test sets. 
 

Table 3. Class-specific performance metrics for epilepsy diagnosis: training and test sets, analysis 2. 
 

Analysis set Class 
Balanced 

accuracy 
F1-score Recall  Precision  AUROC AUPRC 

Training set Epilepsy 0.76 0.67 0.69 0.64 0.83 0.73 

 
No 

Epilepsy 
0.76 0.81 0.82 0.81 0.83 0.87 
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Test set Epilepsy 0.72 0.52 0.68 0.43 0.74 0.58 

 
No 

Epilepsy 
0.73 0.80 0.76 0.84 0.77 0.81 

 

The table presents the balanced accuracy, F1-score, recall (sensitivity), precision (positive predictive value), AUROC, and AUPRC 

for the 'epilepsy' and 'no epilepsy' classes. These metrics provide a comprehensive overview of the NLP model’s performance in 

classifying the diagnosis groups within the training and test sets.  
 

Confusion matrices, AUROC and AUPRC curves for each analysis are provided in Appendix 4 (Figures 

A12-A14 for Analysis 1A, A15-A17 for Analysis 1B, and A18-A20 for Analysis 2). 
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Discussion 

Principal findings 

This study aimed to assess the diagnostic value of applying NLP to medical letters from the first 

consultation to facilitate the early diagnosis of childhood epilepsy. The results demonstrate that the NLP 

model achieves superior performance in classifying cases as ‘no epilepsy’ compared to those with 

epilepsy. This is particularly evident from the consistently higher F1-scores, precision, and AUPRC 

values observed for 'no epilepsy'. However, the variability in performance, especially across the test 

sets, emphasises the challenges the model encounters in generalising to new data. In a clinical context, 

these findings indicate that the model is proficient at diagnosing no epilepsy, essential for minimising 

unnecessary diagnostic procedures and focusing on appropriate treatments. Nevertheless, the 

variability in performance illustrates the difficulties in achieving consistent accuracy. Additionally, the 

model is less effective at diagnosing epilepsy, which may impact the model's clinical utility. These results 

emphasise the necessity for continuous refinement and validation of NLP tools to improve their 

diagnostic accuracy and reliability, thereby facilitating more accurate and timely diagnoses of childhood 

epilepsy. 

Comparison with prior work 

Comparing results with prior studies contextualises the NLP model performance in diagnosing childhood 

epilepsy. Several studies provide valuable insights into similar NLP applications. Chase et al. 

investigated the application of NLP for the early recognition of multiple sclerosis by analysing electronic 

health records. The Naïve Bayes model was employed. They reported an AUROC of 0.94, with a 

sensitivity of 81% and a specificity of 87% for classifying diagnosed multiple sclerosis patients. 

Additionally, the model identified 40% of multiple sclerosis patients before the official diagnosis.46 

Fernandes et al. investigated automated electronic health record phenotyping for identifying patients 

with epilepsy. They employed logistic regression and extreme gradient boosting models. The model 

achieved a macro average AUROC and AUPRC of 1.00 on the test set.51 Shahi et al. employed a 

Bidirectional Encoder Representations from Transformers (BERT) model to detect child physical abuse. 

The model had an accuracy of 86%, an F1 score of 0.86, and an AUROC of 0.86.50 Importantly, these 

studies involved different populations, feature selection methods, and models. For instance, Chase et 

al. and Fernandes et al. focused on adult populations.46,51 Chase et al. and Shahi et al. applied NLP to 

facilitate the early detection of specific conditions.46,50 In contrast, Fernandes et al. aimed to identify 

patients with a confirmed diagnosis of epilepsy.51 This objective differs significantly, although there are 

similarities in the condition-specific features. However, Fernandes et al. also incorporated features from 

ancillary investigations (EEG and MRI) and treatment plans into the model. They utilised 286 features, 

with feature selection performed by L1 regularisation (Lasso regression).51 Chase et al. did not specify 

the number of features but relied on predefined word lists relevant to multiple sclerosis, including 

commonly associated medical terminology and symptoms.46 Shahi et al. employed a BERT model, 

which does not require feature selection.50 Instead, BERT utilises a transformer architecture to learn 

contextual word relationships and automatically determine the most important features. Fernandes et 
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al. and Shahi et al. employed more advanced models, resulting in improved performance metrics 

compared to the Naïve Bayes model.50,51  

Strengths and limitations 

This study is pioneering in its application of NLP for the early diagnosis of childhood epilepsy. While 

NLP has been explored for diagnosing other conditions and achieving various objectives, this study 

specifically addresses the early diagnosis of epilepsy in a paediatric population. This approach bridges 

a significant gap in the existing research. The study benefits from a diverse dataset comprising 1561 

medical patient letters from two hospitals. The substantial size and diversity of the dataset contribute to 

the robustness of the study’s findings and enhance the generalizability of the results across various 

clinical settings. The study also utilised well-defined diagnostic categories, including ‘epilepsy’, ‘no 

epilepsy’, and ‘unclear’. The model’s performance was evaluated through various metrics, thoroughly 

assessing its effectiveness in distinguishing between the diagnostic groups. ROC curves demonstrate 

superior performance compared to other metrics. The ROC curve and AUROC provide a comprehensive 

assessment of model performance by analysing the trade-off between true positives and false positives 

across all possible thresholds. This makes them particularly valuable for evaluating a model’s overall 

discriminatory capability.  

Performance was significantly higher on the training sets compared to the test sets, indicating potential 

overfitting. Overfitting occurs when the model learns the textual details and noise in the training data, 

which impairs its generalisability to new data.60 This can result from excessive noise, an excessive 

number of features, irrelevant features, or insufficient training data. Despite applying class weights, the 

model may experience difficulties correctly integrating these weights into the learning algorithm. 

Additionally, imbalanced data can still challenge the model's ability to accurately learn the complexity of 

the minority class. Models such as Naïve Bayes have an inherent bias towards the majority class, as 

they assume conditional independence between features. Potential solutions include dataset balancing 

through oversampling the minority class or undersampling the majority class. In cases of uneven class 

distributions, overall accuracy can be misleading as it reflects the percentage of correctly classified 

cases without accounting for class distribution. In such situations, balanced accuracy, which considers 

performance across both classes by calculating the average recall, provides a more equitable 

assessment. Furthermore, the Naive Bayes model is relatively simplistic and limited in its capacity to 

learn complex relationships. More advanced models, such as BERT, provide a viable alternative. 

Moreover, the Naive Bayes model does not consider word order. For instance, in a list such as “geen 

koorts, trekkingen, tongbeet, bewustzijnsverlies”, it may only recognise “geen_koorts”. Similarly, 

“geen_trekkingen” could be misinterpreted as “trekkingen”. N-grams do not always effectively recognise 

negations either. For example, in the sentence “het is geen insult”, “geen_insult” might be incorrectly 

processed as “is_geen”. This can be addressed by employing transformer models or expanding n-grams 

to include sequences such as four consecutive words. Additionally, confounding factors like 

typographical errors, abbreviations, double negations, and letters written by multiple authors can 

adversely affect the classification process. Furthermore, RFE was applied to a subset of the top 8000 

features due to computational constraints, possibly excluding relevant features. A general limitation of 
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feature selection is the possible omission of rare but significant features, particularly in the context of 

rare diseases or syndromes. Moreover, lemmatisation was not implemented during preprocessing for 

simplicity. Lemmatisation reduces words to their lemma, the base form of the word. Instead of working 

with various inflected forms of a word, such as plural forms or verb conjugations, all these variations are 

consolidated into the base form. For example, the words “smakt”, “smakte”, and “smakken” will all be 

reduced to “smakken”. Lastly, in Analysis 1B, the same training set was utilised as in Analysis 1A, which 

could lead to an overlap between the training and test sets of Analysis 1B. This overlap may result in an 

overestimation of precision in Analysis 1B. 

Future directions 

This study is retrospective, which is less optimal for evaluating diagnostic methods. Prospective studies 

provide better control over variables, reduce data noise, and allow for the direct capture of real-time 

language, rather than relying on historical records that may be incomplete or biased. Collecting data 

contemporaneously minimises data contamination and provides a more reliable assessment of NLP 

models. Future research should incorporate a prospective design to explore the clinical applicability of 

NLP. Several strategies should be considered to enhance model performance. Preprocessing could be 

improved by incorporating lemmatisation and expanding n-grams. Refined feature selection, applied to 

the entire dataset, can help focus on the most relevant features while excluding irrelevant ones. 

Implementing model validation methods, such as cross-validation, is important for evaluating 

performance and mitigating overfitting. Addressing data imbalance is essential for improving 

classification performance across all groups. Increasing the dataset size will provide a more robust 

foundation for training, thereby enhancing model reliability. Exploring advanced models, such as deep 

learning approaches, may yield improvements in predictive accuracy. Moreover, future research should 

assess the model's generalisability by evaluating its performance across datasets from multiple 

hospitals to ensure broader applicability and effectiveness. Additionally, the model could be integrated 

with other medical data sources, including notes from electronic health records, patient questionnaires, 

and ancillary investigation reports. Combining the classification model with a predictive epilepsy model, 

such as the one developed by Van Diessen et al., could also be explored.54 Another future direction is 

real-time monitoring, where a clinician receives real-time feedback from the NLP model regarding the 

history taking while documenting clinical information from the patient.1 Once the clinician completes the 

data entry, the NLP model promptly generates a probability of epilepsy based on the clinical notes.1 This 

can improve treatment strategies and patient counselling. This study focused on written text. However, 

NLP can also be applied to spoken text. For instance, Pevy et al. investigated the feasibility of employing 

automated analysis of formulation effort in patients’ spoken seizure descriptions for differential diagnosis 

of epileptic and non-epileptic seizures.61 The study demonstrated promise in distinguishing between 

epileptic and non-epileptic seizures by analysing spoken language.61  Analysing spoken language allows 

for incorporating emotional tone and sentiment, providing deeper insights into the patient’s experience. 

Furthermore, ethical considerations play a role in applying NLP to medical data, particularly regarding 

patient privacy and data protection. Strict adherence to data protection regulations is essential to ensure 

confidentiality and security. 
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Conclusion 

The application of NLP for the early diagnosis of epilepsy demonstrates moderate to good diagnostic 

value, with better model performance in detecting ‘no epilepsy’ cases. Despite the potential of NLP, 

significant improvements are required to improve the accuracy and generalisability of the classification 

model. This study provides new perspectives on integrating NLP into medical diagnostics and 

establishes a foundation for further research and development in this domain. 
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Appendix 

Appendix 1: removed stop words 

Table A1. List of removed stop words. 
 

Removed stop words  

'de', 'het', 'een', 'van', 'naar', 'op', 'in', 'voor', 'met', 'uit', 'over', 'tot', 'door', 'aan', 'na', 'per', 'sinds', 'bij', 

'boven', 'onder', 'om', 'via', 'ons', 'u', 'we', 'mij', 'me', 'zij', 'ze', 'hij', 'hem', 'haar', 'jullie', 'je', 'jezelf', 'jouw', 

'hun', 'hen', 'wij', 'onze', 'zich', 'iemand', 'niemand', 'patient', 'patiënt', 'pt', 'zichzelf', 'zijn', 'ben', 'bent', 

'is', 'was', 'waren', 'wezen', 'worden', 'word', 'wordt', 'werd', 'werden', 'geworden', 'doen', 'doet', 'deden', 

'deed', 'gedaan', 'maken', 'maakt', 'maakte', 'maakten', 'gemaakt', 'zullen', 'zal', 'zult', 'zou', 'zouden', 

'moeten', 'moet', 'gemoeten', 'moest', 'willen', 'wil', 'wilt', 'wilde', 'wilden', 'wou', 'wouden', 'mogen', 

'mag', 'mocht', 'mochten', 'hebben', 'heb', 'hebt', 'heeft', 'had', 'hadden', 'gehad', 'kan', 'kunt', 'kunnen', 

'kon', 'konden', 'gekund', 'gaan', 'ga', 'gaat', 'ging', 'gingen', 'gegaan', 'kom', 'komt', 'komen', 'kwam', 

'kwamen', 'gekomen', 'en', 'dat', 'die', 'maar', 'als', 'dan', 'ook', 'of', 'dus', 'omdat', 'indien', 'echter', 

'alsook', 'evenals', 'eveneens', 'mede', 'bovendien', 'terwijl', 'er', 'hier', 'daar', 'te', 'nog', 'dus', 'hoe', 

'welke', 'hierdoor', 'hiermee', 'waardoor', 'waarvoor', 'waarom', 'waarbij', 'daarom', 'vervolgens', 

'daarnaast', 'daarna', 'tevens', 'eens', ' reeds', 'toch', 'al', 'opnieuw', 'nogmaals', 'meer', 'minder', 'veel', 

'weinig', 'zeer', 'vaak', 'soms', 'zelden', 'altijd', 'nooit', 'alleen', 'hierna', 'ooit', 'toen', 'nimmer', 'januari', 

'februari', 'maart', 'april', 'mei', 'juni', 'juli', 'augustus', 'september', 'oktober', 'november', 'december', 

'maandag', 'dinsdag', 'woensdag', 'donderdag', 'vrijdag', 'zaterdag', 'zondag', 'reden', 

'reden_van_komst', 'reden_van_verwijzing', 'anamnese', 'lichamelijk_onderzoek', 'beleid', 'conclusie', 

'andere', 'anderen', 'ander', 'anders', 'deze', 'dit', 'iets', 'niets', 'wie', 'wat', 'men', 'alles', 'alle', 'sommige', 

'sommigen', 'mg', 'cg', 'dg', 'g', 'kg', 'ml', 'cl', 'dl', 'l', 'mm', 'cm', 'dm', 'm', 'km', 'ja', 'nee', 'niet', 'wel', 

'geen', 'want', 'hoewel', 'mits', 'tenzij', 'aangezien', 'voordat', 'nadat', 'tijdens', 'zodra', 'ofschoon', 

'alhoewel', 'nu', 'op_de', 'in_de', 'aan_de', 'naar_de', 'over_de', 'op_het', 'in_het', 'aan_het', 'naar_het', 

'over_het', 'op_een', 'in_een', 'aan_een', 'naar_een', 'over_een', 'van_de', 'van_het', 'van_een', 

'met_de', 'met_het', 'met_een', 'voor_de', 'voor_het', 'voor_een', 'na_de', 'na_het', 'na_een', 'bij_een', 

'bij_de', 'bij_het', 'is_er', 'er_is' 
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Appendix 2: baseline table 

Table A2. Baseline characteristics of the data. 
 

Characteristics  Total, N (%) 

Medical letters after the first consultation  

UMCU 1250 (80.1) 

MZG 311 (19.9) 

Sex  

Female 708 (45.4) 

Male 853 (54.6) 

Age  

Median 4,5 

Mean 5,9 

Highest age 17.8 

Lowest age 0 

Epilepsy diagnosis after first consultation  

Epilepsy 366 (23.5) 

No epilepsy 795 (50.9) 

Unclear 400 (25.6) 

Epilepsy diagnosis after two years of follow-up  

Epilepsy 514 (32.9) 

No epilepsy 958 (61.4) 

Unclear 89 (5.7) 

Epilepsy diagnosis after two years of follow-up from UMCU  

Epilepsy 413 (33.0) 

No epilepsy 767 (61.4) 

Unclear 70 (5.6) 

Epilepsy diagnosis after two years of follow-up from MZG  

Epilepsy 101 (32.5) 

No epilepsy 191 (61.4) 

Unclear 19 (6.1) 

Abbreviations: N = total number, UMCU = University Medical Center Utrecht, MZG = Martini Hospital Groningen. 
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Appendix 3: analyses of the most important features 

Word-frequency analysis  

Word-frequency analysis was conducted to identify the most common features within the dataset. The 

top 50 most frequently occurring features are presented in Figure A1. 

 

Figure A1. The top 50 most frequently occurring features in the dataset. Feature = the word or term identified in the dataset, 

frequency = the total number of occurrences of the feature across all documents, rank = the rank of the feature based on its 

frequency, Docfreq = the number of documents in which the feature appears, group = the category or class to which the feature 

belongs (in this case ‘epilepsy’ and ‘no epilepsy). "Moeder" is the most frequently occurring feature in the dataset, appearing 

4,992 times. 
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TF-IDF frequency analysis 

TI-IDF frequency analysis of the training set identified several key features based on their TF-IDF scores 

across the letters. TF-IDF is a statistical measure that indicates the importance of a term in a letter 

relative to the collection of letters.62 It combines term frequency (TF), how often a term appears in a 

specific letter, and inverse document frequency (IDF), which is how rare or common the feature is across 

the letters.62 In Analysis 1, the most significant features are “aanval ”, “school”, “schokken”, “links”, and 

“ongeveer”, each demonstrating high frequencies and indicating their importance in the dataset (as 

illustrated in Figure A1). For instance, the feature “aanval“ has the highest frequency of 416.8640 and 

appears in 600 letters, underscoring its significance. This high TF-IDF score suggests that “aanval” is a 

key feature in the letters where it frequently appears, although it is not present in all letters, contributing 

to its high score. The top 30 most frequently occurring features are presented in Figure A2. 
 

 

Figure A2. Frequency analysis on the TF-IDF DFM of the training set. The word-frequency analysis applying TF-IDF to the DFM 

demonstrates the most important features based on their adjusted frequency across letters. Feature = the word or term being 

analysed, frequency = the TF-IDF adjusted frequency of the feature, rank = the rank of the feature based on its frequency, docfreq 

= the number of letters in which the feature appears, group = the group to which the feature belongs (“all” indicating the entire 

training set). 

 

 

 

 

 

Figure A3. The top 30 most frequently occurring 

features. The figure presents the top 30 features 

from the corpus ranked based on their TF-IFD 

frequency. TF-IDF is a statistical measure that 

quantifies the importance of a feature in a letter 

relative to a collection of letters.62 The higher the 

TF-IDF frequency, the more significant the 

feature is within the context of the letters. 

“aanval” is the most frequent feature with the 

highest TF-IDF frequency. “school” is the 

second most frequent feature. “schokken”, 

“links”, “ongeveer” are other significant features, 

ranked in descending order of TF-IDF 

frequency. Each bar represents a feature and 

the length of the bar corresponds to the TF-IDF 

frequency of that feature.  
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In Analysis 2, the most significant features are  “aanval ”, “school”, “schokken”, “links”, and “een_aanval”, 

each demonstrating high frequencies and indicating their importance in the dataset (as illustrated in 

Figure A4). For instance, the feature “aanval“ has the highest TF-IDF score of 489.7944 and appears in 

679 letters, underscoring its relevance. This high TF-IDF score suggests that “aanval” is a key feature 

in the letters where it frequently appears, although it is not present in all letters, contributing to its high 

score. The top 30 most frequently occurring features are presented in Figure A5. 
 

 

Figure A4. Frequency analysis on the TF-IDF DFM of the training set. The word-frequency analysis applying TF-IDF to the DFM 

demonstrates the most important features based on their adjusted frequency across the letters. Feature = the word or term being 

analysed, frequency = the TF-IDF adjusted frequency of the feature, rank = the rank of the feature based on its frequency, docfreq 

= the number of letters in which the feature appears, group = the group to which the feature belongs (“all” indicating the entire 

training set). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A5. The top 30 most frequently occurring 

features. The figure presents the top 30 features 

from the text corpus ranked based on their TF-

IFD frequency. TF-IDF is a statistical measure 

that quantifies the importance of a feature in a 

letter relative to a collection of letters.62 The 

higher the TF-IDF frequency, the more 

significant the feature is within the context of the 

letters. “aanval” is the most frequent feature with 

the highest TF-IDF frequency. “school” is the 

second most frequent feature. “schokken”, 

“links”, “een_aanval” are other significant 

features, ranked in descending order of TF-IDF 

frequency. Each bar represents a feature and 

the length of the bar corresponds to the TF-IDF 

frequency of that feature.  
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Comparative word-frequency analysis 

Comparative word-frequency analysis identified several features that significantly differ in frequency 

between the ‘yes’ group (epilepsy) and the ‘no’ group (no epilepsy). The Chi-squared statistic measures 

how much the observed frequency of the feature differs from the expected frequency under the null 

hypothesis of no difference between groups.63 Higher Chi-squared values indicate a greater difference 

from what would be expected if there was no association between the feature and the groups.63 A high 

Chi-squared value does not necessarily mean that the difference in feature frequency between groups 

is large, it only indicates that the observed frequencies are significantly different from the expected 

frequencies. Features with the highest Chi-squared value in Analysis 1 included “aanval”, “insult”, 

“midazolam”, “de_aanval”, and “een_aanval”. The high Chi-squared values indicate their importance in 

differentiating the two groups (as illustrated in Figure A6). For instance, the feature “aanval” appears 

766 times in the ‘yes’ group (target group) compared to 832 times in the ‘no’ group (reference group), 

with a Chi-squared value of 161.88267, demonstrating a significant disparity.  
 

 

Figure A6.  Comparative word-frequency analysis of the training set. The comparative word-frequency analysis identifies the 

features that significantly differ in frequency between the target group (‘yes’-group or ‘epilepsy’) and the reference group (‘no’-

group or ‘no epilepsy’). Feature = the word or term being analysed, n_target = the frequency of the feature in the target group, 

n_reference = the frequency of the feature in the reference group. 

In Analysis 2, features with the highest Chi-squared value included “aanval”, “insult”, “de_aanval”, 

“midazolam”, and “mond”. The high Chi-squared values indicate their importance in differentiating the 

two groups (as illustrated in Figure A7). For instance, the feature “aanval” appears 921 times in the ‘yes’ 

group (target group) compared to 927 times in the ‘no’ group (reference group), with a Chi-squared 

value of 224.09850, demonstrating a significant disparity.  
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Figure A7.  Comparative word-frequency analysis of the training set. The comparative word-frequency analysis identifies the 

features that significantly differ in frequency between the target group (‘yes’-group or ‘epilepsy’) and the reference group (‘no’-

group or ‘no epilepsy’). Feature = the word or term being analysed, n_target = the frequency of the feature in the target group, 

n_reference = the frequency of the feature in the reference group. 
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Key features for classification  

Analysis 1 

The top 30 features considered most important by the model for classification are demonstrated in 

Figures A8 and A9. Features contributing to the classification of a diagnosis of ‘epilepsy’ included 

“en_ogen”, “eerste_insult”, “speeksel”, “komt_eerst” and, “112_gebeld” (Figure A8). Features 

contributing to the classification of a diagnosis of ‘no epilepsy’ included “wegrakingen”, “half_uur”, 

“flauwvallen”, “oorzaak”, and “klachten”  (Figure A9). 

 

 

Figure A8. The top 30 key features for the classification of epilepsy. The figure presents the top 30 features of epilepsy, ranked 

by their relative importance scores. The importance score quantifies the relevance of each feature in distinguishing epilepsy from 

no epilepsy. “en_ogen” is the most important feature, indicating its strong association with epilepsy. “eerste_insult”, “speeksel” 

are other significant features, listed in descending order of importance. Each bar represents a feature and the length of the bar 

corresponds to its importance score, demonstrating how important each feature is in the context of epilepsy. The colour gradient 

further highlights the importance, with darker shades indicating higher importance. 
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Figure A9. The top 30 key features for the classification of ‘no epilepsy’. The figure presents the top 30 features of no epilepsy, 

ranked by their relative importance scores. The importance score quantifies the relevance of each feature in distinguishing no 

epilepsy from epilepsy. “wegrakingen” is the most important feature, indicating its strong association with no epilepsy. “half_uur”, 

“flauwvallen” are other significant features, listed in descending order of importance. Each bar represents a feature and the length 

of the bar corresponds to its importance score, demonstrating how important each feature is in the context of no epilepsy. The 

colour gradient further highlights the importance, with darker shades indicating higher importance. 

Analysis 2 

The top 30 features considered most important by the model for classification are demonstrated in 

Figures A10 and A11. Features contributing to the classification of a diagnosis of ‘epilepsy’ included 

“komst_eerste”, “eerste_insult”, “speeksel”, “werd_wakker” and, “112_gebeld” (Figure A10). Features 

contributing to the classification of a diagnosis of ‘no epilepsy’ included “flauwvallen”, “klachten”, 

“wegrakingen”, “oorzaak”, and “migraine”  (Figure A11). 
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Figure A10. The top 30 key features for the classification of epilepsy. The figure presents the top 30 features of epilepsy, ranked 

by their relative importance scores. The importance score quantifies the relevance of each feature in distinguishing epilepsy from 

no epilepsy. “komst_eerste” is the most important feature, indicating its strong association with epilepsy. “eerste_insult”, “speeksel” 

are other significant features, listed in descending order of importance. Each bar represents a feature and the length of the bar 

corresponds to its importance score, demonstrating how important each feature is in the context of epilepsy. The colour gradient 

further highlights the importance, with darker shades indicating higher importance. 
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Figure A11. The top 30 key features for the classification of ‘no epilepsy’. The figure presents the top 30 features of no epilepsy, 

ranked by their relative importance scores. The importance score quantifies the relevance of each feature in distinguishing no 

epilepsy from epilepsy. “flauwvallen” is the most important feature, indicating its strong association with no epilepsy. “klachten”, 

“wegrakingen” are other significant features, listed in descending order of importance. Each bar represents a feature and the 

length of the bar corresponds to its importance score, demonstrating how important each feature is in the context of no epilepsy. 

The colour gradient further highlights the importance, with darker shades indicating higher importance. 
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Appendix 4: confusion matrices and graphical representations of results 

Analysis 1A 

 Predicted class 

Actual class No Unclear Yes 

No 566 12 93 

Unclear 16 41 6 

Yes 99 31 230 

 

Figure A12. The confusion matrix of the training set (left) and the test set (right). The confusion matrices represent the 

classification model’s performance based on actual and predicted classes. The rows represent the actual classes and the columns 

represent the predicted classes. For the training set, the model correctly classified 566 cases as ‘no’ and 230 cases as ‘yes’. 

Erroneously, 93 cases that were actually ‘no’ were classified as ‘yes’, and 99 cases that were actually ‘yes’ were classified as ‘no’. 

Additionally, 16 cases that were actually ‘unclear’ were classified as ‘no’, 41 cases that were actually ‘unclear’ were classified as 

‘unclear’, and 6 cases that were actually ‘unclear’ were classified as ‘yes’. The positive predictive value for the ‘yes’ group is 0.64 

and the negative predictive value is 0.87. The positive predictive value for the ‘no’ group is 0.84 and the negative predictive value 

is 0.73. For the test set, the model correctly classified 223 cases as ‘no’ and 81 cases as ‘yes’. Erroneously, 43 cases that were 

actually ‘no’ were classified as ‘yes’, and 61 cases that were actually ‘yes’ were classified as ‘no’. Additionally, 17 cases that were 

actually ‘unclear’ were classified as ‘no’, 2 cases that were actually ‘unclear’ were classified as ‘unclear’, and 7 cases that were 

actually ‘unclear’ were classified as ‘yes’. The positive predictive value for the ‘yes’ group is 0.53 and the negative predictive value 

is 0.84. The positive predictive value for the ‘no’ group is 0.78 and the negative predictive value is 0.57. 

 

 Predicted class 

Actual class No Unclear Yes 

No 223 21 43 

Unclear 17 2 7 

Yes 61 12 81 
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Figure A13. ROC curves of the classification model. The top row presents the performance for predicting 'epilepsy' in the training 

set (left) and the test set (right). The bottom row presents the performance for predicting 'no epilepsy' in the training set (left) and 

test set (right). The AUROC values represent the model’s predictive accuracy, with higher values indicating better performance.  

 

 

  

Figure A14. Precision-Recall Curves of the classification model. The top row demonstrates the performance for predicting 

'epilepsy' in the training set (left) and the test set (right). The bottom row demonstrates the performance for predicting 'no epilepsy' 

in the training set (left) and the test set (right). The AUPRC values represent the trade-off between precision and recall, with higher 

values indicating better performance. The colour gradient represents different threshold values. 
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Analysis 1B 

 Predicted class 

Actual class No Unclear Yes 

No 173 7 39 

Unclear 32 41 11 

Yes 34 14 49 

 

Figure A15. The confusion matrix of the training set (left) and the test set (right). The confusion matrices represent the 

classification model’s performance based on actual and predicted classes. The rows represent the actual classes and the columns 

represent the predicted classes. For the test set, the model correctly classified 173 unclear cases as ‘no’ and 49 unclear cases 

as ‘yes’. Erroneously, 39 unclear cases that were finally ‘no’ were classified as ‘yes’, and 34 unclear cases that were finally ‘yes’ 

were classified as ‘no’. Additionally, 32 cases that were finally still ‘unclear’ were classified as ‘no’, 41 cases that were finally still 

‘unclear’ were classified as ‘unclear’, and 11 cases that were finally still ‘unclear’ were classified as ‘yes’. The positive predictive 

value for the ‘yes’ group is 0.51 and the negative predictive value is 0.84. The positive predictive value for the ‘no’ group is 0.80 

and the negative predictive value is 0.64. 

 

Figure A16. ROC curves of the classification model. The curves present the performance for predicting ‘epilepsy’ and 'no epilepsy' 

in the test set. The AUROC values represent the model’s predictive accuracy, with higher values indicating better performance. 

 

Figure A17. Precision-Recall Curves of the classification model. The curves present the performance for predicting 'epilepsy' and 

‘no epilepsy’ in the test set. The AUPRC values represent the trade-off between precision and recall, with higher values indicating 

better performance. The colour gradient represents different threshold values. 



35 
 

Analysis 2 

 Predicted class 

Actual class No Unclear Yes 

No 622 33 112 

Unclear 23 39 8 

Yes 116 31 266 

 

Figure A18. The confusion matrix of the training set (left) and the test set (right). The confusion matrices represent the 

classification model's performance based on actual and predicted classes. The rows represent the actual classes and the columns 

represent the predicted classes. For the training set, the model correctly classified 622 cases as ‘no’ and 266 cases as ‘yes’. 

Erroneously, 112 cases that were actually ‘no’ were classified as ‘yes’, and 116 cases that were actually ‘yes’ were classified as 

‘no’. Additionally, 23 cases that were actually ‘unclear’ were classified as ‘no’, 39 cases that were actually ‘unclear’ were classified 

as ‘unclear’, and 8 cases that were actually ‘unclear’ were classified as ‘yes’. The positive predictive value for the ‘yes’ group is 

0.64 and the negative predictive value is 0.86. The positive predictive value for the ‘no’ group is 0.81 and the negative predictive 

value is 0.71. For the test set, the model correctly classified 161 cases as ‘no’ and 43 cases as ‘yes’. Erroneously, 17 cases that 

were actually ‘no’ were classified as ‘yes’, and 43 cases that were actually ‘yes’ were classified as ‘no’. Additionally, 8 cases that 

were actually ‘unclear’ were classified as ‘no’, 8 cases that were actually ‘unclear’ were classified as ‘unclear’, and 3 cases that 

were actually ‘unclear’ were classified as ‘yes’. The positive predictive value for the ‘yes’ group is 0.43 and the negative predictive 

value is 0.90. The positive predictive value for the ‘no’ group is 0.84 and the negative predictive value is 0.58. 

 

 

 Predicted class 

Actual class No Unclear Yes 

No 161 13 17 

Unclear 8 8 3 

Yes 43 15 43 
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Figure A19. ROC curves of the classification model. The top row presents the performance for predicting 'epilepsy' in the training 

set (left) and the test set (right). The bottom row presents the performance for predicting 'no epilepsy' in the training set (left) and 

test set (right). The AUROC values represent the model’s predictive accuracy, with higher values indicating better performance. 

 

 

Figure A20. Precision-Recall Curves of the classification model. The top row demonstrates the performance for predicting 

'epilepsy' in the training set (left) and the test set (right). The bottom row demonstrates the performance for predicting 'no epilepsy' 

in the training set (left) and the test set (right). The AUPRC values represent the trade-off between precision and recall, with higher 

values indicating better performance. The colour gradient represents different threshold values. 

 


