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Abstract
Early identification of patients at risk of diseases like pneumonia is partly enabled through structured 
reporting of disease symptoms in Electronic Health Records (EHRs). However, this structured data is 
not always complete. Automated extraction of symptoms from unstructured text present in EHRs 
allows these records to be more exact and complete, resulting in more precise diagnoses. This report 
assesses the performance of Large Language Models (LLMs) in extracting lower respiratory tract 
infections (LRTI) from free-text sections of Dutch EHRs. The investigation involves the informed 
selection and comparison of promising LLMs, considering factors like local applicability, language 
compatibility, and model architecture. A search of relevant models is first performed, after which 
RobBERT and MedRoBERTa.nl are selected and evaluated across differing amounts of training 
samples. These models are both trained as direct classifiers and separately fine-tuned for few-shot 
prompt-based classification, with the goal of exploring the efficacy of the model types relating to the 
training (or multi-shot) samples provided. By employing a structured methodology and leveraging the 
capabilities of LLMs, the investigation seeks insights into the optimal utilisation of LLMs for effective 
symptom extraction in the context of Dutch EHR data. To increase generalisability, multiple target 
variables are selected to be extracted from the free-text samples (fever, cough, and shortness of 
breath). The classification performance is measured systematically by calculating metrics like 
precision, recall and F1-score. While the directly classifying MedRoBERTa.nl achieved F1-scores up 
to 0.88 with RobBERT closely following, the prompt-based models underperformed, suggesting 
limitations in their current design for this task. 

Keywords
Large Language Models (LLMs) | Electronic Health Records (EHR) | NLP Applications | 
Multi-shot Classification | Symptom Extraction | Disease Prediction | Few-shot Learning | 
Clinical Text Analysis



Table of contents

Abstract...................................................................................................................................1
Keywords............................................................................................................................1

Table of contents....................................................................................................................2
1 Introduction......................................................................................................................... 3

1.1 Research Goals............................................................................................................4
2. Background........................................................................................................................ 5

2.1 Natural language processing........................................................................................5
2.2 Large Language Models...............................................................................................5
2.3 Information Extraction using Large Language Models.................................................8
2.4 Electronic Health Records............................................................................................9

3 Methodology...................................................................................................................... 11
3.1 Aims............................................................................................................................11
3.2 Data............................................................................................................................ 11
3.3 Target Variables..........................................................................................................13
3.4 Study Design.............................................................................................................. 14
3.5 Performance Measures.............................................................................................. 16
3.6 Computational Setup..................................................................................................16

4 Results............................................................................................................................... 17
4.1 Direct Classifier Loss..................................................................................................18
4.2 Classification Performance.........................................................................................21

5 Conclusions.......................................................................................................................25
5.1 Discussion.................................................................................................................. 26

6 Acknowledgements.......................................................................................................... 29
7 References.........................................................................................................................30
8 Planned Schedule............................................................................................................. 34
Appendix...............................................................................................................................36

A. Comparison of Models................................................................................................. 36
B. Table of Considered Models........................................................................................ 39
C. Table of Dataset Distribution........................................................................................41
D. Example input prompt..................................................................................................42
E. Optimal Amount of Training Epochs in Direct Classifiers............................................ 43
F. Amount of Parameters in Each Model..........................................................................43
G. Individual Loss Plots....................................................................................................44

Thesis Matthew Scheeres | Utrecht University 2024 2



1 Introduction
Over the last decade, Large Language Models (LLM) such as OpenAI’s Generative 
Pretrained Transformer (GPT) and Google’s Bard have shown promising potential in a 
plethora of language-oriented applications [1], [2], demonstrating performance close to 
task-specific systems in tasks ranging from prompt-based question answering to machine 
translation, without being specifically trained for that task [3].

One domain that could potentially benefit from the application of Large Language Models is 
the medical field, where massive amounts of relatively unstructured textual data are created 
daily in the form of digital clinical notes, or Electronic Health Records (EHRs).

An EHR contains medical data created and maintained by a medical professional like a 
General Practitioner or a surgeon. On a daily basis, large amounts of EHR entries are 
written and stored in secure databases. These records contain an abundance of information 
that could prove useful in research, but due to their unstructured format and strict privacy 
legislations, much of this information is not yet utilised to its fullest potential.

For this reason, over the past few decades, there has been research looking into the 
potential of Natural Language Processing (NLP) to extract structured information from these 
notes [4]. In the last few years, this research has largely focused on using 
Transformer-based Encoder models (e.g. Bidirectional Encoder Representations of 
Transformers, or BERT). Transformers differ from recurrent neural networks by, rather than 
using recurrence and convolutions to capture sequential information, solely relying on 
attention mechanisms to identify relational information between elements in a sequence [5].

While Transformer-based models hold great promise for NLP tasks, research specifically 
evaluating their effectiveness in extracting data from Dutch EHR data is currently relatively 
scarce. Many state of the art LLMs work via cloud services due to the large amounts of data 
and computational power needed to effectively run them. However, this reliance on cloud 
services raises privacy concerns especially since EHR data is privacy-sensitive by nature. 
Thus, locally applicable LLMs become more relevant in the context of this research. Besides 
this, as it is relatively expensive to create hand-labelled gold standard data, annotated EHR 
datasets to use for model training are rather scarce.

This report aims to address this by performing a domain search of locally applicable Large 
Language Models, after which these are applied to a LRTI symptom extraction task using 
labelled free-text notes from Dutch General Practitioner (GP) EHR data gathered through the 
Julius General Practitioners’ Network in the region of Utrecht. 

Following this, this report defines locally applicable models loosely as being a model that can 
reasonably be expected to successfully execute on consumer-available computers within an 
appropriate period of time. An important factor that this report aims to examine is the sample 
size needed for a local LLM to perform well, and how this number differs between LLMs that 
directly perform multiclass classification and LLMs that perform multi-shot classification 
through a prompt-based layer.
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1.1 Research Goals
To summarise, the main research question this report attempts to answer is RQ: "How do 
local LLMs perform when extracting LRTI-related symptoms from free-text Dutch GP clinical 
notes?". RQ will be answered through the following subquestions:

● SQ1. “What are promising small-scale LLMs that could be applied locally to extract 
symptoms from Dutch clinical notes data?”

● SQ2. "What is the classification performance of these models when extracting 
symptom presence from free-text clinical data, and how do their performances 
compare (precision, recall and F1-score)?"

● SQ3, “What is the impact of the sample size of available annotated data for model 
development or fine-tuning on the relative performance of the LMM approaches?”
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2. Background
This section provides a comprehensive overview of the current landscape of NLP with a 
specific focus on LLMs. It describes the current research into locally applicable LLMs in the 
healthcare sector, particularly in handling EHRs, and highlights the challenges and 
advancements associated with the application of LLMs both in general and in processing 
medical text data.

2.1 Natural language processing
Natural language processing is the subfield of Artificial Intelligence (AI) that focuses on 
enabling computers to process text from natural languages like English or Dutch - and 
interact with it in some analytically meaningful way. According to Liddy in 2001 [6], the goal 
of NLP is to create a full Natural Language Understanding (NLU) system that can 
‘accomplish human-like language processing’. Jurafsky and Martin define four base 
applications of NLP:

● Machine Translation: Using a computer to translate some text from one language to 
another;

● Question Answering and Information Retrieval: Answering questions by looking up 
information (Information Retrieval) or through knowledge and logical inference 
(knowledge-based);

● Chatbots and Dialogue Systems: Communicating with users in natural language, 
either to help them complete tasks or to mimic a human-like ‘chat’ for primarily 
entertainment-related purposes;

● Automatic Speech Recognition and Text-to-Speech: Recognising spoken language 
and being able to naturally reproduce it.

Nowadays, NLP techniques play a large role in many different industries, from 
speech-recognizing chatbots in consumer electronics - like Apple’s Siri [7] - to automatic 
market forecasting through social media text mining [8]. 

2.2 Large Language Models 
Large Language Models (LLMs) are a type of deep learning model, being a relatively new 
advancement in the field of NLP. These models are deemed ‘large’ due to their massive 
amounts of parameters, often ranging in the billions when looking at the current state of the 
art. In essence, a language model is a probability distribution, taking as input some sample 
of natural text, and assigning to it a probability P(text|context). These models can be applied 
as text generators by determining the word with the highest probability (Pmax), given some 
context in the form of, for example, an incomplete sentence [9].
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Modern LLMs employ vast amounts of parameters and are trained on massive amounts of 
data, allowing for impressive performance in various tasks relating to natural language [3], 
[10]. However, due to their complexity, the models often prove to be very opaque [11]. 
Recently, innovations in computation have allowed models to be trained on extremely large 
datasets, sometimes containing trillions of words [12]. This has not only enabled LLMs to 
form more coherent responses, but recent models are also able to generate responses that 
are contextually relevant with regards to the input prompt. This enables these models to 
seemingly logically reason across a wide array of domains. Calling it reasoning is debatable, 
however, since the model does not directly apply domain knowledge or reasoning [13], [14], 
[15]. Rather, as mentioned, it simply functions as an extremely large probability model which, 
due to its extensive size, is able to respond in a manner that is generally deemed logical. 

With the recent onset of large-scale LLM applications through (mainly) prompt-based 
front-end interfaces, general-purpose models that have an extremely high amount of 
parameters (often > 100B) show much promise for solving tasks such as information 
extraction [16], [17]. Concerning the medical domain, preliminary research into this topic has 
shown that GPT-4 is able to convert free-text clinical radiology notes into error-free 
structured JSON files containing the notes’ key findings with relative satisfaction, 
outperforming state-of-the-art model medBERT.de in three out of four pathologic findings 
[18]. 

Early LLMs in 2019 and 2020 were mainly meant to be further developed using transfer 
learning for more specific tasks. With the introduction of GPT-3 by OpenAI, however, new 
methods have been explored that focus on general-purpose models, as its performance was 
already remarkable without fine-tuning [19]. 

Three general approaches of how LLMs could be applied are:

● Training from scratch involves completely designing the architecture of the LLM by 
oneself. Doing so allows for complete freedom in designing and altering the model, 
but comes at the cost of (generally) very high computational power needed and a 
need for an expansive dataset.

● Using a pretrained model is a simple approach when solving a problem using LLMs. 
As the name implies, this approach involves finding a model that has already been 
trained on either a general dataset or one related to the problem at hand, and directly 
applying it to said problem. This approach requires minimal effort and is the most 
straightforward, but the models used might consequently not perform optimally due to 
them not being optimised for the problem.

● Building upon a model involves using a pretrained model and fine-tuning it for the 
task at hand. This allows the model to adapt to the desired domain without the need 
for an extremely large dataset to train the model on. For these reasons, extending a 
pretrained model is often the first choice for LLM-related research in domain-specific 
appliances and has led to many models being built on top of already established 
language models, like BERT[20], [21].

To subsequently apply such a model to a specific task, like Information Extraction, the task is 
to be ‘preloaded’ in the input prompt, by writing e.g. “Using the input data, classify this 
sample to the most likely of the following classes: [cat, dog, hare]”. A base LLM can also be 
trained to function directly as a classifier, without the need of a prompt-based ‘layer’ in its 
training architecture.
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Besides the task description and the (in a classification problem) to-be-classified datapoint, it 
is also possible to include one or more examples, to give the model additional context to use 
when generating a response [19]. Doing so would turn the model from a zero-shot classifier 
into either a one- or multishot one. In Section 2.3, an explanation of these different ‘shots’ is 
provided.

One notable problem of LLMs is the occurrence of hallucinations in generated text [22]. 
Hallucinations occur when an AI system confidently responds with an answer that is not 
grounded in factual reality (or is not a product of its training data), which is, at the time of 
writing, still a major challenge in LLMs [23], [24]. While efforts to solve this issue have 
already been made [25], a perfect solution does not exist yet, nor one that does not add a 
need for significant additional computational power. The problem of hallucination is made 
even more complex due to the massive size of the training datasets for LLMs, which makes 
it even more difficult to find the cause of the hallucination. For many tasks involving question 
answering or conversational models, base LLMs are fine-tuned using a dataset consisting of 
pairs of input prompts and their corresponding responses, through, for example, 
reinforcement learning (the model gets a reward for generating a desired response) or 
supervised learning (the model is trained to predict the correct response for a given prompt).

However, as clinical notes generally contain privacy-sensitive, non-aggregated patient data, 
endeavouring to automatically extract data from them has proven rather difficult, since most 
large-scale models are closed-source and data used as input for the models is generally 
sent to an outside, nonlocal server. According to OpenAI, data such as chat history is saved 
by ChatGPT, for instance, for further training and improvement of its models. This data might 
even be subject to human review to improve OpenAI’s systems [6]. 

Current State of the Art in LLMs outside of Medicine
Since the start of 2022, a type of machine learning model that has received widespread 
attention is what Wornow et al. call Foundational Models (FM) [26]; machine learning models 
that have been trained on large and diverse datasets to solve general-purpose tasks rather 
than being trained and evaluated for one specific task or use-case, which has often been the 
case before the first Foundational Models.

Perhaps the most widely known FMs in Natural Language Processing are OpenAI’s GPT 
models, which have 176 billion and 1.7 trillion parameters respectively. This popularity is in 
large part due to ChatGPT: a general-purpose front-end application and API currently built 
on GPT3.5 and GPT4. In the first two months since its release, ChatGPT gained over 100 
million users [27], with other interested parties quickly creating similar applications based on 
their own LLMs or GPT models (Google with Bard [28], Microsoft with Bing Chat [29] and 
Meta with LLaMa [30] and LLaMa 2 [31]).

Over the past year, development in the field of Foundational LLM models has been done at 
an extremely fast pace, with both datasets and parameter counts in models increasing 
exponentially between iterations that rapidly succeed each other. In this current field, there 
are three large identifiable challenges identified in a LLM overview paper by Kaddour et al. 
[11].

Firstly, datasets used for pretraining LLMs have become unfathomably large, often requiring 
millions to trillions of tokens. Needless to say, it is impossible for such a large amount of data 
to be thoroughly checked manually. Heuristics to overcome this challenge are being 
implemented, but e.g. checking for near-duplicates on such a large scale remains an 
extremely difficult process, while they are reported to degrade model performance 
significantly [32].
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Secondly, pretraining such a large-scale LLM is computationally very taxing and thus 
requires extensive resources. The costs and time involved in pre-training one model can 
reach into the hundreds of thousands of compute hours, which can cost millions of dollars 
[33]. For both monetary and environmental reasons, the corresponding outcome of good 
results only being ‘bought’ by companies with the assets to do so is very unsustainable. This 
type of practice has been dubbed Red AI [34].

Thirdly, tokenizers used in training such LLMs introduce problems like computational 
overhead, language dependence and the handling of novel words. Efforts are being made 
towards reducing computational complexity, such as Byte-Pair Encoding[35], but the 
problem is far from resolved yet.

2.3 Information Extraction using Large Language Models
Large Language Models can be used to extract information from text in multiple manners. 
There are multiple forms of classification, described below. 

In the conventional approach to model training in neural networks (via empirical risk 
minimization), a model is ‘fit’ to multiple training samples - i.e. through stepwise training 
iterations -, and the model’s weights and biases are continuously updated, resulting in a 
trained model that uses its input data (here, a doctor’s note in natural language) to make 
classifications based on the labels provided in the training set (here, data pertaining to the 
presence of a symptom in the text). 

Another approach to this problem enabled by conversational LLMs is classification through 
pretrained prompt-based models. For these types of experiments, one of the following 
classification setup types can be applied [17]: 

● Zero-shot classification: Having the model classify based solely on a task description 
(e.g. “Classify whether the patient in this text has a fever or not”) and a prompt (e.g. 
“The individual shivers often and is feverish.”);

● One-shot classification: The same as zero-shot, but here one sample is provided 
(e.g. “While the patient coughs constantly, there is no sign of elevated temperature” 
=> “No fever”);

● Few-shot or multishot classification: Similar to one-shot, but in this case more than 
one sample is provided to the model.

In none of these last classification types backpropagation is done, and thus no gradient 
updates are performed, leaving the trained model itself unchanged. 

Using language models as x-shot classifiers has been proven to perform satisfactorily, 
especially when a model is pretrained or fine-tuned on relevant data, as exemplified by a 
study into suicide prevention by Varma et al.[36].
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2.4 Electronic Health Records
Electronic Health Records have become a cornerstone of modern healthcare, revolutionising 
the way patient information is documented and managed. While parts of an EHR - like 
demographics and medications - are stored in a structured, indexable manner, others - such 
as progress notes or problem lists - are nearly always noted down by the medical 
professional in the form of free text. This unstructured data generally makes up about 80% of 
total EHR data, which by itself is difficult to process in a meaningful way outside of its 
original use [37].

As such, much information about a patient is saved in a way that is non-indexable and 
therefore cannot directly be used for e.g. aggregated patient research. The main reason for 
this is the documentation burden [38]. Medical professionals who need to make multiple 
entries a day into EHRs generally find it much easier and faster to enter a short piece of 
freeform textual information into a document than to file each piece of information into 
separated, structured fields multiple times over the course of a day.

However, as usage of EHRs has increased massively over the past few decades, EHRs can 
now be deemed ‘Big Data’. The large amounts of information contained in them are now 
practically impossible to be studied by individual humans, but do contain patterns that could 
be exposed and used computationally [39]. Because of this, the need for automated 
information extraction from these EHRs arises, which is a challenge that has been 
addressed by NLP in multiple ways.

Extracting Medical Information from EHRs

When it comes to extracting information from EHRs, there are multiple types of NLP tasks 
that can be performed, like the extraction of important study variables. Data extraction from 
free text sections in EHRs could lead to large amounts of useful structured data becoming 
available, which could be used for e.g. (partially) automated patient risk prediction for a given 
disease. This directly impacts the healthcare field in that it can strongly affect clinical 
decision making (as part of it can be automated by using algorithms that consider many 
more factors than humans realistically could) [39] and decrease the costs associated with it. 

It goes without saying that EHRs contain very sensitive personal data. Research by Menger 
et al. shows how pattern matching can be applied to automatically anonymise or de-identify 
Dutch EHRs [40].

In as early as 2001, Aronsky et al. showed that combining probabilistic outcomes from a 
Bayesian Network with outcomes of a Natural Language Understanding System gathered 
using EHR data can significantly increase the performance of computerised decision support 
in predicting (or diagnosing) pneumonia [41]. The natural language understanding system in 
this research, created by Haug et al. [42], was made to work on radiological chest x-ray 
exams, and used a syntactical parser in combination with a rule-based approach to extract 
information from the texts.

Among more recent research, algorithms have been developed to extract data from EHRs to 
detect and identify different types of cancer and their symptoms [43], [44], [45], [46], derive 
lines of therapy for cancer treatment [47], identify suicidality in adolescents with autism [48], 
[49], [50], [51], and identify patient phenotypes [52].
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Applying Large Language Models to Dutch EHR Data
When attempting to extract information from free-text sections of EHRs, some challenges 
arise. Firstly, EHRs tend to be filled with medical shorthand and terminology specific to the 
field. Not only does this influence the words used in the texts, but it also often leads to 
grammatical rules being ignored because of the manner in which medical terminology is 
used [4], [53]. This difficulty is made twofold because this jargon is also largely 
language-specific or even physician-specific, and the research in this report focuses on 
Dutch-language data.

Efforts have been made to apply Large Language Models to Dutch EHRs as zero- or 
few-shot information extractors. An example of this, relevant to this report’s research, is 
MedRoBERTa.nl, created at Vrije Universiteit Amsterdam by Verkijk et al. [4]. This model 
was trained using the general Dutch RoBERTa model as a baseline, and training it using 
13GB of Dutch EHR data. Compared to currently established models (like GPT-4 and 
LLaMa-2), this model is relatively small, only consisting of 117 million parameters, whereas 
company-hosted cloud-based LLMs nowadays tend to span in the hundred billions to trillions 
of parameters range. This difference in size, while possibly affecting its performance 
negatively, does however allow the pretrained model to be run locally with relative ease.

Verkijk et al. show that training their model from scratch on the data outperforms 
non-medical Dutch language models on an odd-one-out similarity task involving sentences 
from (a held-out part of) the EHR data.
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3 Methodology
This section outlines the structure of the data, techniques and procedures used in the 
research of this report. This is done by first describing the aims of the experiments, followed 
by a description of the data and how it was used. Afterwards, a motivation of the target 
variables follows, together with the study design outlining the different experimental setups. 
Used performance measures are shortly described, and the computational setup of the 
experiments is named.

3.1 Aims
The experiments done in this paper aim to compare classification performance between 
direct classifiers and prompt-based models by looking at their behaviour when performing 
symptom extraction structured as multiclass classification across differing amounts of input 
training samples.

Furthermore, the goal of the rest of this report is to compare RobBERT and MedRoBERTa.nl 
(further explained in Section 3.4) and show how different training sample sizes result in 
different outcomes of direct classifiers and prompt-based classifiers respectively. This data 
allows for the second and third sub-questions (SQ2 & SQ3) to be answered, whereas the 
first (SQ1) has been answered in Comparison of Models (Appendix). 

Context of the research
In addition to being a standalone MSc Artificial Intelligence thesis report, the research done 
in this report is part of a larger prediction modelling project that aims to create a predictive 
model capable of reliably predicting hospital admission and mortality in patients diagnosed 
with lower respiratory tract infections (LRTI) [54].

3.2 Data
The dataset used in the experimentation of this report is a subset of the Julius General 
Practitioners’ Network (JGPN) dataset [55]. The complete JGPN dataset is made up of data 
covering approximately 450,000 patients of general practitioners based in the region of 
Utrecht, the Netherlands. 

As the symptom extraction task has been formulated as a supervised multiclass 
classification task, labelled data is needed to perform the experiments. This report will use 
the 1,000 labelled random samples created by Rijk et al. as a means of validating the 
symptoms extracted by the models [54]. The subset consists of EHR data of adult patients in 
primary care showing symptoms of LRTI. This dataset contains patients aged 40 years and 
older, who consulted their GP between 01/01/2016 and 31/12/2019 and for whom their GP 
recorded an International Classification of Primary Care (ICPC) code pertaining to 
subgroups of LRTI, such as acute bronchitis or pneumonia. 

These clinical GP notes follow the SOEP structure (Subjective, Objective, Evaluation and 
Plan). In this research only subjective (S) and objective (O) records were used.
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In the labelled data, two types of variables were hand-labelled, Signs and symptoms (ternary 
values that can be recorded as positive, recorded as negative or not reported in the text, e.g. 
shortness of breath) and Measurements (continuous values, e.g. heart rate). This report 
focuses solely on the extraction of data pertaining to fever, cough and shortness of breath, 
as mentioned in Section 3.3.

The distributions of all symptoms in the dataset are shown in Table 8 (Appendix). Figure 1 
below shows how the length of the labelled EHR entries is distributed over the dataset, in 
terms of tokens.

Figure 1. Distribution of tokens in labelled JGPN dataset entries

As can be seen, most entries have between 5 and 100 tokens, with a few outliers containing 
up to 240 tokens. The mean number of tokens present is 63. 

Due to the RobBERT and MedRoBERTa.nl - chosen in A. Comparison of models (Appendix) 
- having a maximum input amount of 512 tokens, the maximum number of examples in 
evaluated prompts was chosen to be 3, in order to minimise the chance of overflow. This 
results in a mean prompt length of 310 tokens, leaving some room for longer samples. 
Should a prompt still overflow, then examples will be truncated evenly until the prompt fits 
within the acceptable input window.

Fine-tuning LLMs for Prompt-Based Tasks

To train RobBERT and MedRoBERTa.nl for prompt-based conversational abilities in Dutch, 
the HealthCareMagic-100k dataset is used. This dataset consists of a little over 100,000 
patient-doctor conversations, and was used due to its success in training the original 
ChatDoctor model, for which it was created [56]. Due to the necessity of 
sequence-to-sequence capabilities specifically in Dutch, however, this dataset was 
machine-translated from English to Dutch using the Google Translate API. While these 
translations are not perfect, research suggests that Google Translate-translated texts show 
high correlation with human-translated texts on multiple fronts [57]. Moreover, as there is 
only a need for the models to classify - instead of giving full answers in correct Dutch - an 
automatic translation seems adequate for our research.
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3.3 Target Variables
As mentioned before, Table 8 (Appendix) shows the full distribution of variables across the 
1,000 labelled samples. In terms of classification, this data creates a multiclass classification 
task.

For some given input text x, symptom y can either be recorded as negative (label 0), 
recorded as positive (label 1) or absent from the text (label 2). Generally, more balanced 
data is expected to yield better classifier performance than skewed data. Because of this, 
the ideal symptom has labels distributed equally, so each label is present in ± 33% of the 
samples.

The variable adhering to this the best is Fever (‘Koorts’), which is recorded in 54.1% of 
samples, of which 57.7% are positive reports of the symptom (Table 1). Because of this, 
Fever is used as the target variable in this report’s experiments. To ensure generalisability, 
Cough (‘Hoesten’) and Shortness of breath (‘Kortademigheid’) are also selected as target 
variables. These variables have been selected due to their high prevalence in the positive if 
recorded category (98.4% and 78.9% respectively) while also being comparatively prevalent 
in the overall category (76.6% and 52.2% respectively). Due to temporal and computational 
constraints, less prevalent symptoms were not used in the research.  

Table 2 shows a fictional example record of the dataset.

Recorded as positive Recorded as negative Not recorded

Cough 75.4 1.2 23.4

Fever 31.2 23.4 45.9

Shortness of Breath 37.7 15.5 46.8
Table 1. Distribution of target variables in dataset

Patnr start_epi start_icpc SOEPcode Koorts Hoesten Kortademigheid DEDUCE_omschrijving

100020 2018-02-27 R90 SO 1 2 0 “Pat heeft sterke 
verhoging, ademhaling 
goed”

Table 2. Example record of labelled JGPN EHR entry
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3.4 Study Design
The labelled data points used consist of individual Dutch free-text Electronic Health Record 
SOEP reports of patients’ first LRTI-related GP consultation, and are labelled according to 
whether they a) contain a positive mention of the target variable (e.g. coughing is a 
confirmed symptom in the patient), b) contain a negative mention of the target variable (e.g. 
coughing is confirmed not to be a symptom of the patient), or c) contain no mention of the 
target variable (e.g. coughing is not mentioned in the input text). These three classes 
structure the classification as a multiclass classification task. The chosen target variables 
and the motivation for choosing them have been described in Section 3.3, and consist of the 
symptoms fever, cough, and shortness of breath (Koorts, Hoesten, and Kortademigheid).

To determine which models to evaluate on the data, a search of available models was 
performed, which is described in A. Comparison of Models (Appendix). 

In total, four model setups will be evaluated on the three chosen symptoms, leading to 
twelve total setups as shown by Table 3. Two of each of the following types of models are 
used to perform classification.

Direct Classification
First, models that work as classifiers in the classic sense are applied: they are trained on a 
labelled training set using 5-fold cross-validation. As the BERT-based LLMs described in 
Final Selection (Appendix) are not prompt-based by themselves, they will be fine-tuned to 
function as direct classifiers. Fine-tuning involves retraining the models on the labelled 
dataset, on each examined symptom individually. Huggingface’s Trainer object ensures the 
final layer has the appropriate amount of weights, based on the amount of different labels 
present in the dataset.

The models to be compared here are MedRoBERTa.nl and RobBERT. Both of these models 
will be applied to differing training set sizes using 5-fold cross-validation (using fixed folds 
across each experiment, with the validation set always containing 200 samples), with the 
following training or sample set sizes: 1, 3, 6, 12, 25, 50, 100, 200, 400 and 800.

Prompt-Based Classification

The second type of model used is prompt-based: these models will perform prompt-based 
multi-shot classification, i.e. forcing multiclass classification through prompt-based task 
preloading in a multi-shot sense. The models to be evaluated from this category are 
MedRoBERTa.nl and RobBERT, which are also evaluated using 5-fold cross-validation. 
These models will be fine-tuned for a ‘conversational’ sequence-to-sequence generation by 
using the HealthCareMagic-100k dataset as used by ChatDoctor [56]. This dataset 
comprises over 100,000 doctor-patient question-answer pairs, which were 
machine-translated using python-translate [58].

MedRoBERTa.nl and RobBERT only contain an encoder structure. However, to enable the 
models to generate text, a decoder is necessary as well. To allow for this, the models are 
merged with the base multilingual BERT decoder using a HuggingFace Transformers 
EncoderDecoderModel. A layer to concatenate these models is randomly initiated, and its 
weights and biases are also updated during fine-tuning.
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A prompt is then used, describing the multiclass prediction task by instructing the model to 
classify the given sample based on some provided examples. The structure used for this 
prompt can be viewed under Example Input Prompt (Appendix).

As the maximum amount of input tokens for a prompt is limited to 512 for the BERT-based 
models, the maximum amount of input samples for these models is limited to 1, 2 and 3.

The used prompt-based models may not always generate one of the expected labels but 
instead answer the question in a completely different format, or not answer the question at 
all. To attempt to solve this issue, the predicted label is obtained by looking at the loss value 
gained by making a forward pass using the prompt as input for the model’s encoder, and the 
different labels as inputs for its decoder. Then, the label corresponding to the lowest loss 
value is chosen. The loss values should be proportional to the transition scores for a full 
sequence (i.e. the input label), because of which they can be used to predict the chosen 
label as well (which had to be done, as HuggingFace Transformers is not able to calculate 
transition scores for an arbitrary given sequence when using an EncoderDecoderModel).

Table 9 (Appendix) shows the number of parameters corresponding to each model.

Setup name Model type Model name Target variable

DC-MR-Koorts Direct Classifiers MedRoBERTa.nl Koorts

DC-MR-Hoesten Hoesten

DC-MR-Kortademigheid Kortademigheid

DC-RB-Koorts RobBERT Koorts

DC-RB-Hoesten Hoesten

DC-RB-Kortademigheid Kortademigheid

PB-MR-Koorts Prompt-Based 
Classifiers

MedRoBERTa.nl Koorts

PB-MR-Hoesten Hoesten

PB-MR-Kortademigheid Kortademigheid

PB-RB-Koorts RoBERT Koorts

PB-RB-Hoesten Hoesten

PB-RB-Kortademigheid Kortademigheid
Table 3. Setup names for each experimental scenario
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3.5 Performance Measures
This section briefly lists the performance measures that will be used to evaluate the models, 
as well as a short motivation for each one.

● Accuracy (A): While not very useful when dealing with imbalanced classes, accuracy 
is included in results for completeness. Is shows the proportion of correctly predicted 
classes, and is calculated by ;𝐴 =  𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

● Precision (P): Precision measures the ratio of True Positive predictions to the total 
amount of positive predictions (a combination of True Positives (TP) and False 
Positives (FP)), i.e. the relative amount of correctly predicted positive samples, and is 
calculated by ;𝑃 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

● Recall (R): Recall measures how well the model is able to identify positive cases, i.e. 
all cases where a symptom is present in the text. Recall is calculated using the 
formula ;𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

● F1-score (F1): The F1-score provides a harmonic mean of precision and recall, 
leading to it being used as a balanced measure of the factors measured by the two. 
This is particularly useful when there is an inherent tradeoff present between 
precision and recall, since precision and recall measure ‘false alarms’ and ‘missed 
symptoms’ respectively. A high-precision model might predict only few positive cases 
but ensure few false positives are present, while a high recall might do the opposite 
by predicting many positive cases but including relatively many that are not actually 
positive. The F1-score is measured using the formula .𝐹1 = 2 𝑃 × 𝑅

𝑃 + 𝑅

These metrics should, together, provide useful insight in the performance of each tested 
model across the different predicted variables outlined in Section 3.3.

Accuracy was originally also intended to be used as an evaluation metric, but was eventually 
omitted, since it does not show useful scores when dealing with an imbalanced dataset - 
which is the case with the used data, see Table 8 (Appendix).

3.6 Computational Setup
The experiments in this research will be run inside a virtual computer with 32 GB of RAM, an 
Intel(R) Xeon(R) Platinum 8272CL CPU without a GPU. The virtual computer uses Windows 
10 as its Operating System, and pretrained models are evaluated and analysed within 
Python files, which make use of Python v3.11.5.
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4 Results
This section contains an overview of the results gained from the experiments discussed in 
Section 3, along with visualisations showing the mentioned prediction metrics in the 
evaluated models and how they fluctuate with differing amounts of training samples in both 
the direct classifiers and prompt-based models. As the amount of experimental scenarios 
totals 120, an effort has been made to show the most relevant data, while an exhaustive 
overview of all results can be found in the Appendix. Since each experiment has been 
performed using five-fold cross validation, results in the graphs show the average of these 
five runs.

First, to enable a comparison to be made between the training processes,  a selection of 
relevant loss plots for the directly classifying models are shown, depicting how the calculated 
loss of the models changes over the epochs. These values are then shown grouped by 
model and symptom.

Secondly, barplots are created for each combination of (prediction metric, symptom), 
showing on a per-model basis how these values differ when using different amounts of 
training samples. Besides this, the values of these metrics for individual scenarios are 
shown.

Each experiment is trained for five epochs on the full dataset of 1000 samples, as testing 
has shown that the models start overfitting shortly after this number - see Figure 6 
(Appendix). 
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4.1 Direct Classifier Loss
Figure 2 below shows cross-entropy validation loss over the five epochs for each 
combination of model (RobBERT, MedRoBERTa.nl) and target variable (Koorts, Hoesten, 
Kortademigheid).

Figure 2. Validation loss of direct classifier experiments, using 5-fold cross-validation

Based on the graphs in this figure, the use of 800 samples seems to reliably lead to the 
lowest loss value in every model, for each target variable. Models classifying the symptom 
‘Hoesten’ generally have the best performance in terms of loss, which is likely due to this 
symptom being the most evenly distributed in the dataset. 

Below in Figure 3, the cross-entropy loss value is visualised per epoch for each combination 
of model and symptom. These values represent the models when trained on the full dataset 
of 800 samples (excluding a validation set of 200).

Thesis Matthew Scheeres | Utrecht University 2024 18



Figure 3. Training and validation loss of direct classifiers trained on 800 samples, using 5-fold cross-validation
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As can be seen in the loss plots, the training and validation loss always follow each other 
relatively closely, indicating that the models are not strongly overfitting. Both models seem to 
converge relatively reliably around five epochs of training. Table 4 displays the lowest and 
final loss values for each of these setups.

Table 4. Lowest and Final validation loss of direct classifiers trained on 800 samples, using 5-fold 
cross-validation

Table 4 shows that MedRoBERTa.nl reaches lower validation loss for each examined 
symptom than RobBERT in the direct classification symptom extraction task. The lowest loss 
value is reached for ‘Hoesten’ in both models, with MedRoBERTa.nl achieving the lowest 
overall value with the ‘Hoesten’ symptom.
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Hoesten Koorts Kortademigheid

Lowest validation loss

RobBERT 0.360 0.628 0.503

MedRoBERTa.nl 0.338 0.417 0.485

Final validation loss

RobBERT 0.492 0.628 0.535

MedRoBERTa.nl 0.375 0.423 0.507



4.2 Classification Performance
This subsection shows accuracy, precision, recall and F1-score for each run of both the 
prompt-based and direct classifier models. Below, Figure 4 visualises the results of 
experiments corresponding to the former.

Figure 4. Prediction metrics of prompt-based model experiments, using 5-fold cross-validation

Figure 4 shows metrics varying by symptom, with Fever (‘Koorts’) showing the highest 
performance with F1-scores of 0.329 for RobBERT and 0.312 for MedRoBERTa.nl. While 
precision for this symptom is higher for RobBERT as well, MedRoBERTa.nl outperforms 
RobBERT in accuracy and recall by 0.108 in both metrics. Besides this, adding more 
samples does not seem to lead to a visible change in any of the tested samples.
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Figure 5 shows the same classification metrics, but corresponding to the experiments 
performed on the direct classifier models versions of MedRoBERTa.nl and RobBERT. To 
make the image more clear, the x-axes of subplots in this figure have been scaled 
logarithmically for equidistant distribution of bars.

Figure 5. Prediction metrics of direct classifier experiments, using 5-fold cross-validation

Looking at the largest dataset size consisting of 800 samples, MedRoBERTa.nl outperforms 
RobBERT on all measured prediction metrics independent of the symptom. For F1-score, 
MedRoBERTa.nl scores 4.2%, 14.0% and 2.9% better than RobBERT in ‘Hoesten’, ‘Koorts’ 
and ‘Kortademigheid’ respectively. Concerning the other dataset sizes, the results vary more 
per symptom. In general, RobBERT outperforms MedRoBERTa.nl in ‘Hoesten’ and 
‘Kortademigheid’. The most equally distributed variable, however, ‘Koorts’ is still predicted 
most accurately by MedRoBERTa.nl. 
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Table 5 below shows the different prediction metrics for each setup type, using the optimal 
amount of samples found by the loss plots. Setup names correspond to Table 3, located in 
Study Design.

Setup name # of samples Accuracy Precision Recall F1-score
(macro)

DC-MR-Koorts 800 0.877 0.878 0.877 0.877

DC-MR-Hoesten 800 0.898 0.887 0.898 0.890

DC-MR-Kortademigheid 800 0.832 0.845 0.832 0.830

DC-RB-Koorts 800 0.780 0.792 0.780 0.770

DC-RB-Hoesten 800 0.874 0.864 0.874 0.854

DC-RB-Kortademigheid 800 0.817 0.840 0.817 0.807

PB-MR-Koorts 1 0.486 0.237 0.486 0.318

PB-MR-Hoesten 1 0.012 0.000 0.012 0.000

PB-MR-Kortademigheid 1 0.155 0.246 0.155 0.042

PB-RB-Koorts 1 0.374 0.307 0.374 0.329

PB-RB-Hoesten 1 0.027 0.038 0.027 0.024

PB-RB-Kortademigheid 1 0.155 0.025 0.155 0.042

Table 5. Prediction metrics for experiments using optimal training set size, using 5-fold 
cross-validation

Looking at this table, it is again observed that utilising the full dataset reliably leads to 
optimal classification performance in both RobBERT and MedRoBERTa.nl when examining 
direct classification.. 

MedRoBERTa.nl performs the best overall on each symptom, when fine-tuned as a direct 
classifier. A difference in F1-score averaging ~7% is observed when comparing this model to 
RobBERT applied as a direct classifier. 
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Results for Hoesten and Kortademigheid are shown to be much lower than Koorts for the 
prompt-based models. This might, again, be due to large parts of the prompt remaining 
unchanged independently of given samples, while still influencing the outcome, leading to 
one class being predicted disproportionately often.
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5 Conclusions
This study has investigated the performance of locally applicable direct classifiers and 
prompt-based LLMs, for the task of multiclass symptom extraction from Dutch Electronic 
Health Records. The findings show that small-scale fine-tuned LLMs, such as 
MedRoBERTa.nl, are able to achieve good performance on this task, with F1-scores up to 
0.89, provided enough data is used to fine-tune the model. 

The fact that MedRoBERTa.nl reliably outperforms RobBERT when trained as a direct 
classifier shows that fine-tuning a model on Dutch EHR data has a positive effect on its 
predictive capabilities in symptom extraction.

From the data shown in Figure 4, it can be gathered that adding more samples to the 
prompt-based setups does not reliably lead to better results. Prediction metrics do not seem 
to change with added samples. A likely explanation for this is that about two-thirds of the 
input prompt does not change. As these local models are relatively limited in their 
capabilities, due to comparatively small vocabulary sizes, their inherent language reasoning 
capabilities are equally restricted.

The used prompt-based MedRoBERTa.nl and RobBERT models, though interesting 
conceptually, have shown limited effectiveness in their current state. Compared to the same 
models fine-tuned to classify directly, the prompt-based models performed markedly worse, 
which might be a consequence of their limited size compared to current state of the art 
prompt-based LLMs, the manner in which they were constructed or fine-tuned, or the fact 
that these models were not trained as an encoder-decoder model from the ground up. 

Concerning the subquestions of the main research question RQ, the first, “What are 
promising small-scale LLMs that could be applied locally to extract symptoms from Dutch 
clinical notes data?” has been answered through the model search covered in Section A of 
the Appendix. The models used in this research are MedRoBERTa.nl and RobBERT, and the 
results show that MedRoBERTa.nl shows optimal performance when applied as a direct 
classifier to our subset of the JGPN dataset.

Subquestion 2, "What is the current classification performance of these models when 
extracting symptom presence from free-text clinical data, and how do their performances 
compare (Precision, Recall and F1-Score)?" is answered in the same manner: while 
prompt-based methods applied in our experiments do not show results that could be 
deemed adequate, both MedRoBERTa.nl and RobBERT achieve desirable results when 
fine-tuned on (part of) the dataset using five-fold cross-validation.

Next, subquestion 3, “What is the impact of the sample size of available annotated data for 
model development or fine-tuning on the relative performance of the LMM approaches?” is 
answered. In our approach of prompt-based few-shot classification, changing the amount of 
samples provided in the input prompt did not seem to influence the classification 
performance of the models. As mentioned previously, this might be due to the models’ 
limited size and tendency to assign labels to one class due to the prompt’s structure always 
being the same. This would render the models as they are applied in this thesis incapable of 
interpreting the prompt effectively.
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Concluding, RQ "How do local LLMs perform when extracting LRTI-related symptoms from 
free-text Dutch GP clinical notes?" is answered as follows. The experiments performed in 
this research have pointed out the following: A larger dataset size leads to better predictive 
classification performance when the tested local LLMs are used as direct classifiers in the 
task of symptom extraction from Dutch EHR data, as taken from the labelled subset of the 
JGPN dataset. This increase might halt at some larger amount of used training data, but due 
to the limited amount of labelled data, confirming this remains out of scope for this research.

When the models are made to classify in a prompt-based few-shot setting where the training 
set is expressed as samples in the prompt, this increase in performance is not directly 
visible. However, the limited size and fine-tuning of the prompt-based models might be 
creating an upper ceiling for the classification performance of these models. 

Lastly, fine-tuning LLMs on medical data before they are trained as direct classifiers might 
lead to higher classification performance, as suggested by the increase of ~7% on average 
when comparing MedRoBERTa.nl to RobBERT.

5.1 Discussion
While other research into symptom extraction through either direct classification or 
prompt-based methods using MedRoBERTa.nl were not found, the original MedRoBERTa.nl 
paper by Verkijk et al. does fine-tune the model to perform direct classification of EHR data 
on ICF categories [4]. Micro-level F1-scores in this task ranged from 0.40 to 0.69, compared 
to the (macro-level) range of 0.77 to 0.89 found in direct classifier experiments pertaining to 
this report. 

A direct comparison between these experiments cannot be made however, as both datasets 
and target variables differ. No published works on clinical variable extraction or classification 
have been found using RobBERT as a base model.

Compared to the wealth of research done in English clinical NLP, the field of Dutch clinical 
NLP is decidedly smaller, especially when narrowing it further down to research focusing on 
LLMs. This disparity might partly be attributed to most state-of-the-art LLMs being 
closed-source, cloud-based and thus not privacy-friendly [59], [60]. Additionally, issues 
associated with the lack of readily available and high-quality EHR datasets, especially in 
Dutch, might further complicate this issue [54], [61], [62]. 
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(Ethical) Implications and Considerations

This subsection contains a summation of implications and considerations of this report’s 
research and outcomes, both concerning ethical standards and other relevant ones.

The first and main concern of the research done in this paper is the used EHR data being 
highly privacy-sensitive. While data is in large part de-identified [54], the risk of 
re-identification attacks (i.e. recombining different data to re-identify an individual based on a 
dataset) should always be considered when using privacy-sensitive data.

Moreover, a factor that should be considered when applying models trained on this dataset 
is the risk of bias. For instance, the geographic locations of general practitioners recording 
the data might influence the variety of patient demographics and socioeconomic groups 
present in the dataset, potentially reducing generalisability. 

Thirdly, due to the complexity arising from the used models’ architectures, these models are 
opaque, providing a largely black-box solution to the problem. This makes the reasoning 
behind the models’ results much more difficult to explain, even when resorting to algorithms 
developed for this reason.

One final consideration in terms of replicability is the fact that the used training data is not 
publicly available. This makes replicating the experiments of this thesis near impossible by 
any group or individual who is not affiliated with the research institution this thesis was 
completed at (University Medical Center Utrecht).

Limitations and Future Iterations

This subsection will concern itself with limitations of the research carried out, as well as what 
could have been added or done differently.

As has already been mentioned, the main limiting factors of this research are the availability 
of only a small dataset of 1,000 labelled instances, bundled with the limited computational 
resources available in the virtual environment the experiments were executed in. Even 
though the data is anonymised [54], it was still not allowed to leave the secure digital 
environment, severely limiting the relevant and applicable models to a small subset of 
smaller, older and thus not optimally performing models.

Future iterations should address this issue. Additionally, larger and newer models should be 
applied, as they are expected to provide much more adequate results, given the recent 
success of LLMs in both online and offline settings. A higher classification performance on 
prompt-based few-shot symptom extraction can likely be reached using larger, 
state-of-the-art models, some of which could also be applied locally, given more 
computational resources outside of a virtual environment. This would have the additional 
benefit of allowing for larger sample sizes in prompt-based model testing, as the maximum 
prompt length generally increases with the amount of parameters and/or vocabulary a model 
has.
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Besides this, a more thorough data preparation stage could also increase results. For 
instance, creating a mapping of domain-specific terminology and abbreviations to more 
widely known terms might allow for a larger proportion of the text being present in the 
models’ vocabularies.

In a future iteration of this research, less prevalent symptoms could be addressed as target 
variables as well. Due to both the duration and computational limitations, the selection of 
target variables was kept to three symptoms in this research.

Finally, different types of prompts could be tested through prompt-tuning in order to examine 
what constitutes an ‘optimal’ prompt. As prompt-based models are not fine-tuned for the 
classification task themselves but instead perform classification based on their inherent 
linguistic capabilities, the main influence that is easy to manipulate and iterate on without 
large amounts of data and computational power needed is the prompt that is used, and its 
structure. Optimising the prompt might lead to better results.
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8 Planned Schedule
The schedule in Table 6 provides an overview of the tasks and objectives on a per-week 
basis. It mainly serves an illustrative purpose, as the actual progress of individual tasks and 
objectives happened less linearly than the table would make it seem, and smaller tasks were 
excluded from it.

Week Task / Objective

50 (11/12/2023 - 17/12/2023)
Process comments on proposal;
Create example visualisations

51 (18/12/2023 - 24/12/2023)
Step-by-step / roadmap of experiments;
Presentation of step-by-step

52 (25/12/2023 - 31/12/2023) Christmas Holiday

1 (01/01/2024 - 07/01/2024) Christmas Holiday

2 (08/01/2024 - 14/01/2024) Determining what LLMs to use

3 (15/01/2024 - 21/01/2024) Determining what LLMs to use

4 (22/01/2024 - 28/01/2024) Setting up scripts for usage of LLMs

5 (29/01/2024 - 04/02/2024) Finding HealthCareMagic dataset

6 (05/02/2024 - 11/02/2024)
Preparing machine-translation script for 
HealthCareMagic dataset

7 (12/02/2024 - 18/02/2024)
fine-tuning prompt-based models using translated 
HealthCareMagic dataset

8 (19/02/2024 - 25/02/2024)
fine-tuning prompt-based models using translated 
HealthCareMagic dataset

9 (26/02/2024 - 03/03/2024) Evaluating models on fake data

10 (04/03/2024 - 10/03/2024) Accessing data via anDREa

11 (11/03/2024 - 17/03/2024) Data exploration and preparation

12 (18/03/2024 - 24/03/2024) Data exploration and preparation

13 (25/03/2024 - 31/03/2024) Setup direct classifier experiments

14 (01/04/2024 - 07/04/2024) Running direct classifier experiments

15 (08/04/2024 - 14/04/2024) Running direct classifier experiments

16 (15/04/2024 - 21/04/2024) Setup prompt-based experiments

17 (22/04/2024 - 28/04/2024) Running prompt-based experiments

18 (29/04/2024 - 05/05/2024) Running prompt-based experiments

19 (06/05/2024 - 12/05/2024) Update report based on experiment changes

20 (13/05/2024 - 19/05/2024) Rerunning direct classifier experiments

21 (20/05/2024 - 26/05/2024) Results generation

22 (27/05/2024 - 02/06/2024) Visualisation of results

23 (03/06/2024 - 09/06/2024) Visualisation of results

24 (10/06/2024 - 16/06/2024)
Write Results and Conclusion;
Hand in draft for proofreading

25 (17/06/2024 - 23/06/2024) Create final version of report

26 (24/06/2024 - 30/06/2024) Final Thesis Report
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27 (01/07/2024 - 07/07/2024) Thesis Defence (Preliminary)

Table 6. Schedule of most important tasks per week
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Appendix
A. Comparison of Models
To address the first research question (RQ1), a selection of viable Large Language Models 
(LLMs) had to be made. These selections are made based on what local models are 
available at the time of writing. 

Model Search

To find a list of relevant models, a search of relevant literature was combined with a direct 
search for models on the HuggingFace website. These websites provide comprehensive 
filtering options, enabling us to find models that can be run offline rather easily. 

Relevant models were located using both relevant literature and search engines present on 
the HuggingFace website. This website provides comprehensive filtering options, enabling 
the user to find models that can be run offline with relative ease. One difficult measure is 
determining when a model will be truly available to be run locally, as exact hardware 
requirements are generally not specified on HuggingFace. In this search, lighter (i.e. less 
computationally intense) models with good performance are preferred over heavy models 
with extremely good performance.

In the context of this research, the search of models has been kept limited to LLMs that 
show promise in classification tasks. Classification can be orchestrated in multiple ways. For 
example, a conversational LLM is also able to classify when correct instructions are 
provided, which is what experiments in this paper also focus on.

Selection Criteria
Before commencing the search for these models, however, some important aspects 
considering what would make a model viable for this research had to be formulated. This 
resulted in the following set of factors (must-haves are underlined, other factors are 
nice-to-haves):

● Local Execution Capability: As mentioned in Background, clinical notes contain a 
multitude of sensitive data points that can be used to identify individuals. Therefore, it 
is mandatory that the model is able to completely execute on local hardware, as no 
EHR data is allowed to be transmitted from the machine it is stored on. For this 
reason, in this research the decision was made to only utilise open-source, locally 
applicable LLMs in an effort to minimise the probability of a data leak. 

● Availability of a pre-trained model: The model must be pretrained, as this report’s 
research mainly looks into the efficacy of LLMs as zero-shot, one-shot and few-shot 
classifiers;

● Parameter count of a model: The amount of parameters in a model represents the 
size and complexity of a model and thus correlates with the computational power 
required to run it. As computational power is a limiting factor due to the dataset’s 
privacy regulations, it is of utmost importance to strike a balance between having 
enough parameters to get suitable results, while not having so many that the model 
cannot run on the virtual desktop; 

● Dutch language competency: It is vital for the model to be able to handle Dutch 
language data, whether that be through optimization for the Dutch language or it 
being completely trained on a Dutch dataset;
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● Medical text familiarity: Models trained or fine-tuned on medical texts are more likely 
to be able to correctly process domain-specific knowledge and jargon, and are thus 
preferred. 

As models that adhere to all of these factors to a good standard are very specific to the 
problem at hand, they are expected to perform rather well, but are likely few and far between 
for the same reason. 

To find the models via HuggingFace, the following filters were applied during a search 
performed on 18/10/2023:

● Tasks: Text Classification, Zero-Shot Classification, Conversational, Text Generation, 
Fill-Mask 

● Libraries: PyTorch, TensorFlow, Transformers, Sentence Transformers, Adapter 
Transformers, 

● Datasets: Not specified

● Languages: Dutch

● Licences: Not specified

● Other: Not specified

In the context of this research, the search of models has been kept limited to LLMs that 
show promise in classification tasks. Classification can be orchestrated in multiple ways, e.g. 
by directly training the model to classify data using a labelled dataset, or by providing 
instructions to a prompt-based conversational LLM. The experiments performed in this paper 
focus on both of these options, and compare them across different sample sizes.

Final Selection
Through a search of available models, the following models are selected as the most 
relevant. These models have been found by using both relevant literature and searching on 
GitHub and Huggingface, basing the searches on the factors mentioned at the start of A: 
Comparison of Models (Appendix). As mentioned there, it is not a must-have for a model to 
be (partly) trained on medical data, although there is a preference for models that are; they 
are ranked higher in the chosen list.

Table 7 shows all considered models and a comparison of their relevant features, resulting in 
the following selection. Below is a list of the four models chosen for experimentation, 
together with a short description and motivation on why they are expected to provide 
interesting results.

1. MedRoBERTa.nl (117M)

● Description: A Dutch medical model created by researchers at Vrije 
Universiteit Amsterdam, who used 13GB of text data from Dutch hospital 
notes to train an altered version of the RoBERTa model. This model has 
shown to perform better on this data in odd-one-out tasks when compared to 
general Dutch LLMs, and is thus likely to perform well in our research.

Thesis Matthew Scheeres | Utrecht University 2024 37



● Motivation: Of all chosen models, MedRoBERTa.nl is the only one directly 
trained on Dutch medical data. Consequently, this model is expected to 
perform very well on the dataset. One limitation is that the parameter count of 
the model is rather low by modern standards, which, while being a positive 
factor in terms of computational efficiency, might reduce the quality of its 
responses.

2. RobBERT (117M)

● Description: RobBERT is a model built upon the foundation of BERT, serving 
as the core architecture. BERT was released as a multilingual model, and 
RobBERT was fine-tuned as a language-specific model as research points 
out that doing so generally results in higher performance.[63], [64], [65] 

● Motivation: RobBERT’s strong performance on various NLP tasks and proven 
ability to handle Dutch text make it a suitable candidate for our 
investigation.[66]

These models will be used for the experiments described in Methodology. While other viable 
models were also experimented with, most had to be kept out of consideration due to 
computational and temporal limitations. Consequently, using this list of chosen models, SQ1 
“What are promising small-scale Large Language Models that can be evaluated locally to 
medical data?” is answered
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B. Table of Considered Models
Below, Table 7 is shown, depicting all models that were taken into consideration for the comparison made in this report’s research.

Model Base 
Model

#Parameters Prompt-based 
model available

Local? Pretrained? Dutch? Medical? Open-source? Relevant 
paper

Model link Suitable?

BERTje BERT 109M No Yes Yes Yes No Yes Link GH | HF Yes

GPT-2 
(recycle
d for 
Dutch)

GPT-2 129M or 369M No Yes Yes Yes No Yes Link HF small, 
medium

Yes

GPT-2 
XL

GPT-2 1.5B No Yes Yes Multiling
ual

No Yes Link HF Yes

DistilBE
RT-nl

BERT 69M No Yes Yes Yes No Yes Link HF Yes

GPT-3.5
/4

GPT-3.
5/4

154B / 1.76T Yes No Yes Multiling
ual

No No Link3.5 / 
Link4

NA No

Legal 
BERT

BERT 295M No Yes Yes Yes No Yes Link HF No

medroB
ERTa.nl

BERT 117M Yes Yes No (possibly 
via contact)

Yes Yes Yes Link GH Yes

Google 
Bard

Lamb
da

137B Yes No Yes Multilin
gual

No No NA NA No
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Model Base 
Model

#Parameters Prompt-based 
model available

Local? Pretrained? Dutch? Medical? Open-source? Relevant 
paper

Model link Suitable?

LLaMa LLaM
a

65B Yes Yes Yes Multilin
gual

No No Link HF Yes

LLaMa 
2

LLaM
a2

7B to 70B Yes Yes Yes Multilin
gual

No No Link HF Yes

ChatDo
ctor

LLaM
a-7B

7B Yes Yes No Multilin
gual

Yes No Link GH Yes

RoBER
Ta

BERT 355M Yes Yes Yes Multilin
gual

No Yes Link HF Yes

RobBE
RT-202
3

BERT 117M Yes Yes Yes Yes No Yes Link HF Yes

DialoG
PT

None 117M, 345M 
or 762M

Yes Yes Yes Multilin
gual

No Yes Link GH Yes, but 
not used

Table 7. Overview of all considered LLMs
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C. Table of Dataset Distribution
Below, Table 8 shows the complete distribution of different ‘Signs and symptoms’ variables present in our labelled EHR dataset. Information 
present in this table was taken from Rijk et al. [54].

Pneumonia Acute Bronchitis Overall Recorded as pos. 
(and [overall])

Recorded as neg. 
(and [overall])

Not recorded

Patient reported

Cough 71.9 82.6 76.6 98.4 [75.4] 1.6 [1.2] 23.4

Fever 57.0 50.3 54.1 57.7 [31.2] 43.3 [23.4] 45.9

Shortness of Breath 54.4 51.7 53.2 70.9 [37.7] 29.1 [15.5] 46.8

Sputum 26.1 30.7 28.1 91.1 [25.6] 8.9 [2.5] 79.9

Chest pain 22.9 13.5 18.8 78.7 [14.8] 21.3 [4.0] 81.2

Chills 5.7 2.7 4.4 95.5 [4.2] 4.5 [0.2] 95.6

Patient/GP reported

Confusion 5.3 1.1 3.5 17.1 [0.6] 82.9 [2.9] 96.5

GP reported

Crackles (auscultation) 83.7 89.2 86.1 26.6 [22.9] 75.4 [64.9] 13.9

Ill appearance 39.1 24.7 32.8 39.3 [12.9] 60.7 [19.9] 67.2
Table 8. Distribution of signs and symptoms in labelled JGPN dataset
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D. Example input prompt
“
Classificeer de volgende teksten op basis van de aanwezigheid van het symptoom 'hoesten' als volgt:

Als 'hoesten' wordt vermeld als voorkomend bij de patiënt, label het als 'Aanwezig.'
Als 'hoesten' wordt vermeld als niet voorkomend bij de patiënt, label het als 'Niet aanwezig.'
Als 'hoesten' helemaal niet wordt vermeld in de tekst, label het als 'Niet vermeld.'

Print exclusief het label bijbehorende aan de volgende tekst:
<insert to-be-classified text here>
“

“
Classificeer de volgende teksten op basis van de aanwezigheid van het symptoom 'hoesten' als volgt:

Als 'hoesten' wordt vermeld als voorkomend bij de patiënt, label het als 'Aanwezig.'
Als 'hoesten' wordt vermeld als niet voorkomend bij de patiënt, label het als 'Niet aanwezig.'
Als 'hoesten' helemaal niet wordt vermeld in de tekst, label het als 'Niet vermeld.'

Voorbeeld:
<insert samples here>

Print exclusief het label bijbehorende aan de volgende tekst:
<insert to-be-classified text here>
”
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E. Optimal Amount of Training Epochs in Direct Classifiers
To maximise the amount of experiments to be run within the timeframe of the thesis, 
MedRoBERTa.nl was trained for 10 epochs. As can be seen by its loss values shown in 
Figure 6, the model starts overfitting - validation loss rising while training loss continues to 
decrease - after around epoch five. For this reason, five epochs were chosen as the amount 
of training epochs for the direct classifier models.

Figure 6. Loss of MedRoBERTa.nl when training for 10 epochs on the full dataset

F. Amount of Parameters in Each Model
Table 9 shows the number of parameters for each model used in this report’s research. 
Prompt-based models show an increase in parameters due to extra layers being added by 
the EncoderDecoder model (with the base multilingual BERT model as decoder).

Model name Model type Number of parameters

RobBERT Direct classifier 116,764,419

MedRoBERTa.nl 125,980,419

RobBERT Prompt-based 254,643,258

MedRoBERTa.nl 263,859,258
Table 9. Parameter counts for each model
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G. Individual Loss Plots
Below, a graph is shown for every individual experimental scenario, ordered by increasing 
training set size, then symptom. Due to the cross-entropy loss not being calculated by 
HuggingFace Transformers Trainer objects at epoch 0, it might look like some lines 
represent the model not learning over the epochs (especially the more flat lines, shown in 
the first few graphs). However, these values likely start higher as the model is initialised, and 
do improve between epoch zero and one.
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One Sample

Figure 7. Training and validation loss of direct classifiers trained on one sample, using 5-fold cross-validation
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Three Samples

Figure 8. Training and validation loss of direct classifiers trained on three samples, using 5-fold cross-validation
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Six Samples

Figure 9. Training and validation loss of direct classifiers trained on six samples, using 5-fold cross-validation
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Twelve Samples

Figure 10. Training and validation loss of direct classifiers trained on twelve samples, using 5-fold cross-validation
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25 Samples

Figure 11. Training and validation loss of direct classifiers trained on 25 samples, using 5-fold cross-validation
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50 samples

Figure 12. Training and validation loss of direct classifiers trained on 50 samples, using 5-fold cross-validation
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100 samples

Figure 13. Training and validation loss of direct classifiers trained on 100 samples, using 5-fold cross-validation
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200 samples

Figure 14. Training and validation loss of direct classifiers trained on 200 samples, using 5-fold cross-validation
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400 samples

Figure 15. Training and validation loss of direct classifiers trained on 400 samples, using 5-fold cross-validation
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800 samples

Figure 16. Training and validation loss of direct classifiers trained on 800 samples, using 5-fold cross-validation
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