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1 Introduction

1.1 Topology in physics

Topology is the matematical fields that allows for the classification of shapes. Two shapes are topologi-
cally equivalent, i.e. belong in the same topological class, if they can be deformed into each other by
means of a continuous transformation such as stretching or twisting, but not making a cut or gluing.
Topological classes are labelled by a number, known as the topological invariant, which is left unchanged
by continuous transformations.
An intuitive example of topological groups is given by the number of holes in objects. Starting with
a ring, we can stretch it into a straw or –with a bit of skill– it can be deformed into a tea cup, but it
is impossible to obtain a pair of glassless glasses since that would require making an additional hole.
Hence the ring, straw and tea cup are in the topological group labelled by the topological invariant, that
is the number of holes, 1 and the glasses in the group labelled by a 2.
Nowadays topology has become a key tool in many fields of physics; from computational physics, which
uses topological data analysis to extract information on the shape of the data [1, 2] to biophysics, which
uses knot theory to characterise from a single protein to a whole chromosome [3].
Here we focus on the role of topology in condensed matter physics. Pioneered by David J. Thouless [4],
J. Michael Kosterlitz [5, 6, 7] and F. Duncan M. Haldane [8, 9], who received the Nobel prize in 2016 for
introducing topological concepts in condensed matter phyics. This allowed to gain a better understanding
of phase transitions [10], superconductivity [11] and a long long list of interesting phenomena that arise
when a system has a non-trivial topology1 [12]. The topological invariants in this case are the winding
number in real space, which counts how many times a closed curve goes around the origin, and the
Chern number in momentum space, which measures whether there is an obstruction to chosing a global
gauge.
A well known model with a non-trivial topology is the fermionic Kitaev chain (FKC), a toy model of
a p-wave superconductor with a winding number equal to one that exhibits a pair of Majorana zero
modes at both edges of the chain [13, 14]. The Majorana fermions are a kind of quasiparticle that satisfy
two conditions: they satisfy the Dirac equation and they are their own anti-particle [11].
The emergence of Majorana modes in the FKC is a consequence of its topological nature; the low
energy Hamiltonian of topological superconductors describes a linear dispersion that satisfies the Dirac
equation. Moreover, in the superconducting phase there is particle-hole symmetry, hence both the
conditions for the emergence of Majorana modes are satisfied [11, 15].

1.2 The Bosonic Kitaev chain

We now discuss some basic properties of the bosonic Kitaev chain (BKC) by following [16]. The BKC is
a chain of non-interacting bosonic cavities subject to nearest-neighbour parametric driving that defines
a model for a one-dimensional superconductor defined in analogy to the FKC. The BKC is defined in
such a way that it exhibits the non-trivial topology from the fermionic case as

ĤB =
1
2 ∑

j

(
itâ†

j+1 âj + i∆â†
j+1 â†

j + h.c.
)

, (1)

where t is the hopping parameter and ∆ is the driving amplitude. We now write the Hamiltonian in
momentum space by taking the Fourier transform âj = N−1/2 ∑j eikj âk yielding

ĤB =
1
2 ∑

k∈1BZ

ˆ⃗A†
k [⃗hB(k) · ˆ⃗σ] ˆ⃗Ak (2)

with ˆ⃗A†
k = (â†

k , â−k), ˆ⃗σ the vector of Pauli matrices and h⃗B(k) = (0,−∆ cos(k), t sin(k)). Figure 1
shows that the vector h⃗B(k) winds once around the origin thus the BKC has a winding number equal to

1A system has a trivial topology when the topological invariant is zero and a non-trivial topology when the invariant is
non-zero.
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one. Due to the non-trivial topology of the model, the BKC exhibits a number of interesting properties.

Figure 1: h⃗B(k) for ∆ = t/2 = 0.5. h⃗B winds once around the origin.

A more intuitive description of the BKC is obtained by defining it in terms of the Hermitian quadrature
operators on each site [17]

x̂j =
1√
2
(â†

j + âj), (3a)

p̂j =
i√
2
(â†

j − âj). (3b)

These operators –which satisfy the canonical commutation relation [x̂j, p̂j′ ] = iδj,j′– are used to describe
the state of monochromatic light in terms of its amplitude and phase, with the x̂ quadrature representing
the in-phase component of the light field, which describes the amplitude of the field. The p̂ quadrature
then represents the out-of-phase component of the field and thus describes the phase of the light field.
By writing Eq. (1) in terms of the quadratures the Hamiltonian becomes

ĤB =
1
2 ∑

j

(
−(t − ∆)x̂j+1 p̂j + (t + ∆) p̂j+1 x̂j

)
, (4)

and the asymmetry of our system is now obvious; the x-quadrature at site j is only coupled to the
p-quadrature at the neighbouring sites in an asymmetric manner. As a result of this asymmetry, the
BKC exhibits unusual propagation of excitations within the bulk which is not present in the FKC.

To see the consequences of the asymmetric coupling between the quadratures, we look at the
Heisenberg equations of motion

˙̂xj =
t + ∆

2
x̂j−1 −

t − ∆
2

x̂j+1, (5a)

˙̂pj =
t − ∆

2
p̂j−1 −

t + ∆
2

p̂j+1, (5b)

where we see that the dynamics of the x-quadrature is completely independent of the p-quadrature and
viceversa. Furthermore, each quadrature is forced in a spatially asymmetric fashion by its neighbours,
showing a complete asymmetry in the limiting case where t → ∆. In this limit, the x-quadratures are
only forced by their left neighbours, while the p-quadratures are only forced by their right neighbours,
meaning that the transport of a wave packet in our lattice will be directional with the direction of
propagation given by the phase of the wave packet. Moreover, an x-excitation will be amplified as it
propagates to the right and deamplified as it propagates to the left whereas a p-excitation will exhibit
the opposite behaviour, being amplified as it propagates to the left and deamplified as it propagates to
the right.
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Due to the directionality of our system, it is natural to ask whether or not our model is stable as it would
be unphysical to allow for an infinite amplification of the excitations. Consequently, when we consider
the case of periodic boundary conditions (PBC), our system would always be dynamically unstable
since in this case an excitation could propagate in a given direction indefinetly leading to an infinite
amplification.
In the case of open boundary conditions (OBC), by assuming t > ∆ > 0, the system is always
dynamically stable and can be mapped to a particle conserving tight-binding chain. In contrast with
PBC, the presence of edges in the chain ensures that the excitation cannot be indefinetly amplified.
When an excitation reaches the edge of the chain, it changes direction while mantaining the same phase
and is therefore deamplified.

1.3 This thesis

In this thesis, we aim to define a spin system such that its excitations propagate in the same way as
quadratures do in the photonic BKC. To do so, we start by defining a spin Hamiltonian in Section 2 and
determine its ground state (GS) in Section 3. The ground state corresponds to the stable configuration
around which excitations propagate. We then map the spin system to the photonic one through a linear
Holstein-Primakkof transformation in Section 4, by considering that the system is in its ground state and
allow for small fluctuations, which correspond to the bosons of the photonic system. By doing so, we
prove that in the ferromagnetic ground state, the system acts as the BKC with an additional constraint
that changes the regime of stability of the chain. Moreover, we prove that the same spin Hamiltonian,
gives rise to a new model when linearising around the non-collinear ground state in the absence of a
magnetic field. At last we study the dynamics of the magnonic BKC in Section 5 and the new model in
Section 6 by computing the equations of motion and dispersion relation.

2 Hamiltonian

As we will show in Section 4.1, the Hamiltonian that yields the BKC Eq. (1) when performing a
Holstein-Primakkof transformation is

Ĥ =
∆
2S ∑

j

(
Ŝx

j+1Ŝy
j + Ŝy

j+1Ŝx
j

)
− t

2S ∑
j

(
Ŝx

j+1Ŝy
j − Ŝy

j+1Ŝx
j

)
− Jz

2 ∑
j

Ŝz
j+1Ŝz

j − B
N

∑
j=1

Ŝz
j , (6a)

Ĥ =
1
2 ∑

j

(
−D⃗ · ( ˆ⃗Sj+1 × ˆ⃗Sj) +

ˆ⃗Sj+1Γ ˆ⃗Sj −
Jz

3
ˆ⃗Sj+1 · ˆ⃗Sj

)
− B

N

∑
j=1

Ŝz
j , (6b)

where we have defined

Γ =

Jz/3 ∆/S 0
∆/S Jz/3 0

0 0 −2Jz/3

 , (7a)

D⃗ =

(
0, 0,

t
S

)
. (7b)

The Hamiltonian can be saparated into two parts corresponding to the isotropic and the anisotropic
exchanges in addition to the magnetic field in the z-direction.
The isotropic exchange Ĥisotropic = −Jz/3 ∑⟨i,j⟩

ˆ⃗Si · ˆ⃗Sj, where we consider Jz > 0, favours the par-
allel alignment of spins in the z-direction and is usually the dominant term. This term together
with the magnetic field −B ∑j Ŝz

j will ensure the stability of the ground state around which we
will later linearize. The anisotropic exchange is separated into a symmetric and an antisymmetric
part, the antisymmetric anisotropic interaction or Dzyaloshinskii-Moryia interaction (DMI) given by
ĤDMI = −∑⟨i,j⟩ D⃗ · ( ˆ⃗Si × ˆ⃗Sj) with D⃗ the DM vector. The DMI arises from the mirror-reflection and
inversion symmetry breaking and that stabilizes chiral spin textures. It is relativistic in nature, thus
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its effect is usually weak. This interaction favours an alignment of spins that is neither parallel nor
antiparallel and depends on the shape of the DM vector. In our case, since the DM vector is in the
z-direction, the DMI favours the alignment of spins in the xy plane.

The symmetric anisotropic exchange, defined by Ĥanisotropic = ∑⟨i,j⟩
ˆ⃗SiΓ

ˆ⃗Sj, and as is the case of the
DMI, favours the missalignment of spins in the xy plane.

Throughout this thesis we consider nearest-neighbour interaction between the spins in the chain,
which has a total number of sites N. Moreover, we consider two kinds of boundary conditions: the PBC,
where we assume ˆ⃗SN+1 = ˆ⃗S1 and the OBC, where ˆ⃗S0 = ˆ⃗SN+1 = 0⃗. To simplify the notation, we define

N = ∑
<i,j>

1 =

{
N − 1 for OBC,
N for PBC.

(8)

3 Ground state

Since we want to study the propagation of magnons in the chain, we must first compute the classical
ground state of the system, which correspods to the lower energy state. The small fluctuations around
the ground state then correspond to the bosons in the BKC.

In order to determine the GS of the system, it is useful to make the Hamiltonian real by getting rid
of the π/2 phase through the gauge transformation Ŝ± = e±iπ j/2Ŝ± which yieds

Ĥ =
S
2 ∑

j
[(t + (−1)j∆)Ŝx

j Ŝx
j+1 + (t − (−1)j∆)Ŝy

j Ŝy
j+1]−

Jz

2 ∑
j

Ŝz
j Ŝz

j+1 − B
N

∑
j=1

Ŝz
j . (9)

Next, we define the spin in spherical coordinates as ˆ⃗Sj = S(sin θ cos χj, sin θ sin χj, cos θ), where

χj = φj −
π

2
j

is the gauged azimuthal angle. Then the Hamiltonian reads

Ĥ =
S
2

Φ sin2 θ − JzS2N
2

cos2 θ − BSN cos θ, (10)

where we assume2 homogeneity in θ, and where we defined the quantity

Φ = ∑
j
[(t + (−1)j∆) cos χj+1 cos χj + (t − (−1)j∆) sin χj+1 sin χj]. (11)

Since S sin2 θ ≥ 0 and Φ contains all the χj dependence of the Hamiltonian, the minima of Ĥ with
respect to χj corresponds to the minima of Φ, which is given by

dΦ
dχj

= −[(t + (−1)j∆) cos χj+1 + (t − (−1)j∆) cos χj−1] sin χj

+ [(t − (−1)j∆) sin χj+1 + (t + (−1)j∆) sin χj−1] cos χj = 0,
(12a)

2We are allowed to do that because we already know the answer and this section would be way too long otherwise since
we would not be able to use the compact notation Φ. Moreover, by noting that Eq. (9) corresponds to the Hamiltonian of the
XYZ-chain, we know that Jz > 0 corresponds to a ferromagnetic alignment of spins, which is homogeneous in θ. If you still
don’t trust me –fair enough– you can try it yourelf.
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d2Φ
dχ2

j

∣∣∣∣∣
χ0,j

= −[(t + (−1)j∆) cos χ0,j+1 + (t − (−1)j∆) cos χ0,j−1] cos χ0,j

− [(t − (−1)j∆) sin χ0,j+1 + (t + (−1)j∆) sin χ0,j−1] sin χ0,j > 0,

(12b)

Eq. (12a) allows for two solutions

cos χj = 0 ∀j ⇒ χ
(1)
0,j =

π

2
(2nj + 1), (13a)

sin χj = 0 ∀j ⇒ χ
(2)
0,j = πnj (13b)

where nj is an integer with a site dependence determined by Eq. (12b), that is

d2Φ
dχ2

j

∣∣∣∣∣
χ
(1)
0,j

= (−1)nj+1[(t − (−1)j∆)(−1)nj+1 + (t + (−1)j∆)(−1)nj−1 ] > 0, (14a)

d2Φ
dχ2

j

∣∣∣∣∣
χ
(2)
0,j

= (−1)nj+1[(t + (−1)j∆)(−1)nj+1 + (t − (−1)j∆)(−1)nj−1 ] > 0. (14b)

This imposes that nj + nj±1 = 2m + 1 for m ∈ Z, hence the nj’s must have alternating parity. In the
case of PBC, we have nN+1 = n1 thus nN and n1 must have opposite parities, which imposes that the
total number of spins in the chain N has to be even3.
The value of Φ at the minima is then given by

Φ(1)
0 := Φ|

χ
(1)
0,j

=


−(N − 1)t − ∆ for OBC with N even,
−(N − 1)t for OBC with N odd,
−Nt for PBC;

(15a)

Φ(2)
0 := Φ|

χ
(2)
0,j

=


−(N − 1)t + ∆ for N even,
−(N − 1)t for N odd,
−Nt for PBC.

(15b)

We note that when there is an even number of spacings, i.e. for PBC and OBC with an odd number of
sites, the GS is independent of the driving amplitude ∆.
Next we minimize the Hamiltonian with respect to θ by solving the system of equations

∂Ĥ
∂θ

= S (Φ + JzSN ) cos θ sin θ + BSN sin θ = 0, (16a)

∂2Ĥ
∂θ2

∣∣∣∣
θ0,χ0,j

= S (Φ0 + JzSN ) (cos2 θ0 − sin2 θ0) + BSN cos θ0 > 0, (16b)

where Φ0 := Φ|χ0,j
is strictly negative for any value of χ0,j. To find the minima with respect to θ, we

will consider two cases: first, we look at the case where there is no magnetic field applied to the lattice
and then we look at how the GS changes when a magnetic field in the z-direction is applied to the
system.

3As we see below, the GS is made of a pattern of four spins, and so in the case of PBC we consider that the number of sites
N is a multiple of four.
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3.1 Ground state in zero magnetic field

In the absence of magnetic field, Eq. (16a) allows for two solutions given by

cos θ = 0 ⇒ θ
(1)
0 =

π

2
(2n + 1), (17a)

sin θ = 0 ⇒ θ
(2)
0 = πn, (17b)

where n ∈ Z. Eq. (16b) now leads to the regime of validity of each of the minima:

∂2Ĥ
∂θ2

∣∣∣∣
θ
(1)
0 ,χ0,j

= −S (Φ0 + JzSN ) > 0 ⇒ JzSN < |Φ0|, (18a)

∂2Ĥ
∂θ2

∣∣∣∣
θ
(2)
0 ,χ0,j

= S (Φ0 + JzSN ) > 0 ⇒ JzSN > |Φ0|. (18b)

The GS energy of the system is then given by

(a) (b)

Figure 2: Ground state energy of the chain as a function of the isotropic exchange parameter JzS for
t = 1, ∆ = 0.5 and B = 0. We observe a first order phase transition with the phase of the system
determined by the dominant energy contribution. (a) Ground state energy for the chain with OBC in
the case of an even number of sites (N = 4) and an odd number of sites (N = 5). (b) Ground state
energy for the chain with PBC and N = 4.

Eeven
0,OBC =

{
− JzS2(N−1)

2 if JzS > t + ∆
N−1 ,

− S(N−1)t
2 − S∆

2 if JzS < t + ∆
N−1 ;

(19a)

Eodd
0,OBC =

{
− JzS2(N−1)

2 if JzS > t,
− S(N−1)t

2 if JzS < t;
(19b)

E0,PBC =

{
− JzS2 N

2 if JzS > t,
−NSt

2 if JzS < t.
(19c)

Hence, the ordering of the GS depends on the relative magnitude of the exchange interaction with
respect to the aniotropic interactions. In the regime where the anisotropic exchange dominates, the
lowest energy configuration corresponds to a periodic non collinear alignment of spins in the xy plane,
see Figure 3. This is a consequence of the DMI, the energy of which is minimized when ˆ⃗Si and ˆ⃗Sj –
where we consider i = j ± 1 – lie in the plane perpendicular to the DMI vector D⃗ given in Eq. (7b) and
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are perpendicular to one another. In contrast, when the isotropic exchange dominates, the GS is the
ferromagnetic (FM) state where all the spins are pointing in the z-direction as shown in Figure 4. Thus
the system exhibits a first order phase transition as shown in Figure 2.

Moreover, we note that in the regime where the anisotropic exchange dominates, both spiral states
(i.e. Figure 3) are degenerate in energy in the case of the chain with PBC and the chain with OBC and
an odd number of sites. This is not the case for the chain with OBC and an even number of sites, where
the state defined by φ

(2)
j , see Figure 3b has a higher energy than the one defined by φ

(1)
j , see Figure 3a.

(a) (b)

Figure 3: GS of the chain for B = 0 in the regime where the anisotropic exchange dominates. The spins
are situated in the xy plane forming a periodic spiral pattern with a period of four spins. The two states
are related by a phase of π/2 in the definition of the azimuthal angle leading to a translation of one site.
(a) GS of the chain with OBC for any number of sites and PBC. (b) GS of the chain with OBC and an
odd number of sites and PBC.

Figure 4: GS of the chain for B = 0 in the regime where the isotropic exchange dominates. Ferromagnetic
alignment of the spins in the z-direction.

3.2 Ground state in an applied magnetic field

When a non-zero magnetic field parallel to the z-axis is added to the system, the lowest energy configu-
ration is given by θ = nπ, where n is an integer whose sign depends on the direction of the magnetic
field and the relative magnitude between the exchange interactions. Eq. (16b) leads to the condition

(−1)n+sB N|B| > |Φ0| − JzSN , (20)

where we defined

sB =

{
0 if B > 0,
1 if B < 0.

(21)
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When the isotropic exchange dominates, Eq. (20) is satisfied when n + sB even, i.e. the spins are parallel
to the magnetic field, and when n + sB is odd and JzSN − N|B| > |Φ0|. Hence, even if the magnetic
field is antiparallel to the spin, the state is stable as long as the magnitude of the field is small enough,
however this situation has a higher energy than the one where the field is parallel to the spins.
When the anisotropic exchange dominates, we require both the spins to be parallel to the magnetic field
(i.e. n + sB even) and JzSN + N|B| > |Φ0|. This means that for the system to be stable, the magnetic
field must be strong enough to overcome the anisotropic exchange’s tendency to put the spins in the xy
plane. Therefore, the system no longer exhibits a phase transition in the presence of a magnetic field.

Figure 5: Ground state of the model when a magnetic field in the z direction is applied. The GS is unique
and given by the ferromagnetic alignment of the spins with a direction determined by the direction of
the magnetic field and the relative magnitude of the exchange interactions.

(a) (b)

Figure 6: Ground state energy of the chain as a function of the isotropic exchange parameter JzS for
t = 1, ∆ = 0.5 and different values of the magnetic field B. (a) Ground state energy for the chain with
OBC in the case of an even number of sites (N = 4) and an odd number of sites (N = 5). (b) Ground
state energy for the chain with PBC and N = 4.

The GS corresponds to the FM state illustrated in Figure 5 and has energy

Eeven
0,OBC = − JzS2(N − 1)

2
− BSN if JzS(N − 1) + BN > (N − 1)t + ∆, (22a)

Eodd
0,OBC = − JzS2(N − 1)

2
− BSN if JzS(N − 1) + BN > (N − 1)t, (22b)

E0,PBC − JzS2N
2

− BSN if JzS + B > t. (22c)
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Figure 6 shows the ground state energy as a function of the isotropic exchange parameter JzS, and

Figure 7: Phase diagram in the (JzS/|Φ0|, B/|Φ0|) plane with Φ0 the value of the anisotropic exchange
given in Eq. (15). For B = 0, there are two possible GS: the non-collinear ground state (red) and the FM
state (blue and orange). When B ̸= 0, the GS corresponds to the FM state; the direction of the spins
depends on the value of the magnetic field. The blue region corresponds to the FM alignment in the +z
direction and the orange region to the alignment in the −z direction. We also see that there is a region
in which both FM alignments are stable. The white area indicates the regime in which the system is
unstable.

represents that for a given value of the exchange parameters, a higher value of the magnetic field B
lowers the energy of the system.

We have seen in Section 3.1 that when no magnetic field is applied, the system exhibits a phase
transition with respect to JzS. Figure 7 shows that in the regime where the anisotropic exchange
dominates, the model also exhibits a phase transition with respect to the magnetic field (B). When
B = 0, the system is in the non-collinear state illustrated in Figure 3. Once the magnetic field is added,
the system becomes unstable4 until JzSN + NB > |Φ0| in which case the system is in the FM state
shown in Figure 6.
Having found the ground states of the model, we now look at the dynamics of the excitations in the
chain. To do so, we use a linearized Holstein-Primakhoff transformation.

4 Holstein-Primakhoff transformation

The Holstein-Primakhoff transformation (HPT) is a map between the bosonic creation and annihilation
operators (â†, â) and the spin operators ( ˆ⃗S). It was first introduced in 1940 by T. Holstein and H.
Primakhoff [18] in order to study spin waves in ferromagnets. The HPT relies on the fact that the spin
ladder operators act on spin states in a similar way as the bosonic creation and annihilation operators
do in Fock space.
In this mapping, we consider that the vacuum has spin +S in the direction Ω⃗j of the GS, and each HP
boson represents a perturbation from the classical GS.

4The white region in Figure 7 corresponds to a regime where the Hamiltonian cannot be minimized: The first derivative
vanishes for θ = nπ, however the second derivative is negative, which corresponds to a state of maxima energy.
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By defining the rotated local coordinate system
ê(1)j

ê(2)j

ê(3)j

 =

cos θ cos φj cos θ sin φj − sin θ
− sin φj cos φj 0

sin θ cos φj sin θ sin φj cos θ

x̂
ŷ
ẑ

 (23)

with ê(3)j = Ω⃗j the direction of the GS, the generic HPT is given by [19]

ˆ⃗Sj · Ω⃗j = S − â†
j âj, (24a)

Ŝ+
j = ˆ⃗Sj · ê(1)j + i ˆ⃗Sj · ê(2)j =

√
2S − â†

j âj âj, (24b)

Ŝ−
j = ˆ⃗Sj · ê(1)j − i ˆ⃗Sj · ê(2)j = â†

j

√
2S − â†

j âj, (24c)

where the prefactor
√

2S − â†
j âj in the definition of the spin ladder operators ensures that the maximum

number of spins in a given site is 2S.

Since we are interested in studying the behaviour of the system near its GS, we take a linear
approximation, where we only allow for small perturbations around the GS by assuming that ⟨â†

j âj⟩ ≪ S.

By expanding the prefactor to its lowest order we obtain
√

2S − â†
j âj ≃

√
2S + ..., thus the linear

Holstein-Primakhoff transformation (LHPT) reads

ˆ⃗Sj · Ω⃗j = S − â†
j âj, (25a)

Ŝ+
j = ˆ⃗Sj · ê(1)j + i ˆ⃗Sj · ê(2)j ≃

√
2Sâj, (25b)

Ŝ−
j = ˆ⃗Sj · ê(1)j − i ˆ⃗Sj · ê(2)j ≃

√
2Sâ†

j . (25c)

4.1 Linearisation around the ferromagnetic state: The BKC

In the regime where the isotropic exchange dominates, i.e. JzSN + N|B| > |Φ0|, the GS of the system
is given by the FM state. This is the state defined by θ = nπ (n ∈ Z) where all the spins are pointing in
the z-direction. Without loss of generality we can chose n = 0, that is Ω⃗j = ẑ to obtain the usual LHPT

Ŝz
j = S − â†

j âj, (26a)

Ŝ+
j = Ŝx

j + iŜy
j ≃

√
2Sâj, (26b)

Ŝ−
j = Ŝx

j − iŜy
j ≃

√
2Sâ†

j , (26c)

which can be rearranged to yield
Ŝx

j ≃
√

2Sx̂j, (27a)

Ŝy
j ≃

√
2Sp̂j. (27b)

Thus for the magnonic BKC, the x and y components of the spin act as the x̂ and p̂ quadratures
respectively. Moreover, we remark that due to the linear approximation the algebra of the spin operators
is no longer that of the Lie group but is now given by

[Ŝ+
j , Ŝ−

j′ ] = 2Sδj,j′ (28a)

[Ŝz
j , Ŝ±

j′ ] = ±Ŝ±
j δj,j′ (28b)

11



[Ŝx
j , Ŝy

j′ ] = iSδj,j′ (28c)

[Ŝz
j , Ŝx

j′ ] = iŜy
j δj,j′ (28d)

[Ŝy
j , Ŝz

j′ ] = iŜx
j δj,j′ (28e)

instead (see Appendix A for derivation). By applying the LHPT Eq. (27) to the spin Hamiltonian Eq. (6),
we obtain the linearized Hamiltonian

Ĥ =
1
2 ∑

j

(
it(â†

j+1 âj − â†
j âj+1) + i∆(â†

j+1 â†
j − âj âj+1)

)
+

JzS
2 ∑

j
(â†

j âj + â†
j+1 âj+1)

+ B ∑
j

â†
j âj −

JzS2N
2

− BSN,
(29a)

Ĥ =
1
2 ∑

j

(
−(t − ∆)x̂j+1 p̂j + (t + ∆) p̂j+1 x̂j

)
+

JzS
4 ∑

j
(x̂2

j + p̂2
j + x̂2

j+1 + p̂2
j+1)

+
B
2 ∑

j
(x̂2

j + p̂2
j )− JzS2N − 2BSN,

(29b)

where we used Eq. (3) to obtain the Hamiltonian in terms of the quadratures.
We see that this Hamiltonian contains two parts; the first part, which arises from the anisotropic
exchange, corresponds to the Hamiltonian of the BKC Eq. (1). The second part, which arises from both
the isotropic exchange and the magnetic field, contains a constant term and a part proportional to
the number operator. Figure 8 shows that this additional term, which arises from the addition of the
isotropic exchange and the magnetic field, breaks the asymmetry in the coupling between x̂j and p̂j±1
and couples the quadratures to themselves, leading to different dynamics which we study in Section 5.
Hence, we have managed the goal of the thesis; in the regime where the isotropic exchange dominates

(a) (b)

Figure 8: Schematic representation of the coupling between quadratures in the BKC. (a) Coupling
between quadratures in the photonic BKC. (b) Coupling between quadratures in the magnonic BKC. In
the magnonic case (b), the quadratures couple to themselves, breaking the asymmetry of the photonic
case (a).

and the spins are aligned in the FM state, Eq. (6) defines the magnonic BKC.

4.2 Linearisation around the non collinear state

We now linearise the Hamiltonian around the non-collinear states Figure 3, for which we consider the
Hamiltonian Eq. (6) with no magnetic field, i.e. B = 0, in the regime where the anisotropic exchange
dominates, that is |Φ0| > JzSN . This GS is characterized by both the polar and azimuthal angles and

12



are related by a π/2 phase in the azimuthal angle (φ(1)
0,j = φ

(2)
0,j + π/2) or by a translation of one site.

Since the Hamiltonian has a period equal to π, the two GS lead to different Hamiltonians5. Moreover,
since the choice of the integers n and nj is only restricted to the condition nj + nj±1 odd, we can set
n = 0 and nj = j without loss of generality.

4.2.1 Linearisation around the spin spiral state 1

The GS of the spin spiral state 1 is defined by φ
(1)
0,j = 3π

2 j + π
2 and θ

(1)
0 = π

2 hence the GS vector is
Ω⃗j = − sin 3π

2 j · x̂ + cos 3π
2 j · ŷ. We introduce it into Eq. (24) to obtain the LHPT

−Ŝx
j sin

3π

2
j + Ŝy

j cos
3π

2
j = S − â†

j âj, (30a)

−iŜx
j cos

3π

2
j − iŜy

j sin
3π

2
j − Ŝz

j ≃
√

2Sâj, (30b)

iŜx
j cos

3π

2
j + iŜy

j sin
3π

2
j − Ŝz

j ≃
√

2Sâ†
j . (30c)

We now rearrange it as

Ŝx
j ≃ −(S − â†

j âj) sin
3π

2
j +

√
2S

2i
(â†

j − âj) cos
3π

2
j;

= −(S − â†
j âj) sin

3π

2
j +

√
2Sp̂j cos

3π

2
j,

(31a)

Ŝy
j ≃ (S − â†

j âj) cos
3π

2
j +

√
2S

2i
(â†

j − âj) sin
3π

2
j;

= (S − â†
j âj) cos

3π

2
j +

√
2Sp̂j sin

3π

2
j,

(31b)

Ŝz
j ≃ −

√
2S
2

(â†
j + âj);

= −
√

2Sx̂j,
(31c)

where the algebra of the spin operators is now given by

[Ŝx
j , Ŝy

j′ ] = iŜz
j δj,j′ , (32a)

[Ŝz
j , Ŝx

j′ ] = i
(

S cos
3π

2
j + Ŝy sin2 3π

2
j
)

δj,j′ , (32b)

[Ŝy
j , Ŝz

j′ ] = i
(
−S sin

3π

2
j + Ŝx cos2 3π

2
j
)

δj,j′ . (32c)

We see that while the z component of the spin always maps to the x quadrature, both the x and y
components of the spin act as the p quadrature. This is due to the non-collinear nature of the GS (see
Figure 3a) and the fact that the excitations propagate in the plane perpendicular to the ground state, as
we further explain in Section 6.1. At odd sites, the spins of the GS are in the x direction, hence it is the y
component of the spin Ŝy that acts as the p-quadrature. Then, at even sites, the spins of the GS are in

5A phase π corresponds to a translation by two spins, which may sound wrong since the pattern obviously contains fours
spins. However, as for the FM case with no magnetic field added, where the state with all spins pointing up and the one with
all spins pointing down are virtually the same, when there are no further constrictions (such as a magnetic field in the x or y
direction), the states related by a translation of two spins are basically the same.
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the y direction, meaning that the x component of the spin corresponds to the p quadrature.
By plugging Eq. (31) into the Hamiltonian Eq. (6) we obtain

Ĥ1 =
1
2 ∑

j

(
−(t − (−1)j∆)(S − (n̂j+1 + n̂j)) +

1
2
(t + (−1)j∆)(â†

j+1 − âj+1)(â†
j − âj)

)
− JzS

4 ∑
j
(â†

j+1 + âj+1)(â†
j + âj);

(33a)

ĤOBC
1 =

−(S + 1)
2 ∑

j
(t − (−1)j∆) +

1
4
((t + ∆)(x̂2

1 + p̂2
1) + (t − (−1)N∆)(x̂2

N + p̂2
N))+

1
2

N−1

∑
j=2

(
t(x̂2

j + p̂2
j )− (t + (−1)j∆) p̂j+1 p̂j − JzS x̂j+1 x̂j

)
;

(33b)

ĤPBC
1 =

−N(S + 1)t
2

+
1
2

N

∑
j=1

(
t(x̂2

j + p̂2
j )− (t + (−1)j∆) p̂j+1 p̂j − JzS x̂j+1 x̂j

)
, (33c)

where we have used Eq. (3) to write the Hamiltonian in terms of quadratures.

Figure 9b shows the coupling of the quadratures in the chain, where the blue circles represent the odd
sites (the sites where Ŝy acts as the p quadrature) and the pink circles correspond to the even sites (where
Ŝx acts as the p quadrature). We note that contrary to the photonic BKC, where the quadratures only
couple to each other, in this case, the quadratures only couple to themselves, either at a neighbouring
site or at the same site.

4.2.2 Linearisation around the spin spiral state 2

The GS is now defined by φ
(2)
0,j = 3π

2 j and θ
(1)
0 = π

2 hence the GS vector is Ω⃗j = cos 3π
2 j · x̂ + sin 3π

2 j · ŷ.
We introduce it into Eq. (24) to obtain the LHPT

Ŝx
j cos

3π

2
j + Ŝy

j sin
3π

2
j = S − â†

j âj, (34a)

−iŜx
j sin

3π

2
j + iŜy

j cos
3π

2
j − Ŝz

j ≃
√

2Sâj, (34b)

iŜx
j sin

3π

2
j − iŜy

j cos
3π

2
j − Ŝz

j ≃
√

2Sâ†
j , (34c)

which can be rearranged as

Ŝx
j ≃ (S − â†

j âj) cos
3π

2
j +

√
2Sp̂j sin

3π

2
j, (35a)

Ŝy
j ≃ (S − â†

j âj) sin
3π

2
j −

√
2Sp̂j cos

3π

2
j, (35b)

Ŝz
j ≃ −

√
2Sx̂j. (35c)

In this case the algebra of the spin operators is given by

[Ŝx
j , Ŝy

j′ ] = iŜz
j δj,j′ , (36a)

[Ŝz
j , Ŝx

j′ ] = i
(

S sin
3π

2
j + Ŝy cos2 3π

2
j
)

δj,j′ , (36b)

[Ŝy
j , Ŝz

j′ ] = i
(

S cos
3π

2
j + Ŝx sin2 3π

2
j
)

δj,j′ . (36c)
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As for the spin spiral 1, the z component of the spin maps to the x quadrature, while the x and y
component act as the p quadrature on alternating sites. However, we see in Figure 3b that in this case, it
is the x component that acts as the p quadrature in odd sites and the y component in the even sites. This
is to be expected since the two states are related by a phase π/2, corresponding to a translation by one
site.
By plugging it into the Hamiltonian Eq. (6) we obtain

Ĥ2 =
1
2 ∑

j

(
−(t + (−1)j∆)(S − (n̂j+1 + n̂j)) +

1
2
(t − (−1)j∆)(â†

j+1 − âj+1)(â†
j − âj)

)
− JzS

4 ∑
j
(â†

j+1 + âj+1)(â†
j + âj),

(37a)

= C +
1
2 ∑

j

(
(t + (−1)j∆)

2
(x̂2

j+1 + p̂2
j+1 + x̂2

j + p̂2
j )− (t − (−1)j∆) p̂j+1 p̂j − JzS x̂j+1 x̂j

)
, (37b)

with C := −(S + 1)/2 ∑j(t + (−1)j∆) a constant that depends on the number of sites and boundary
conditions.
As illustrated in Figure 9b, where the pink and blue circles now correspond to the odd sites and the
even sites, respectively, the quadratures only couple to themselves. We remark that in the case of OBC

(a) (b)

Figure 9: Schematic representation of the coupling between quadratures. (a) Coupling between quadra-
tures in the photonic BKC. The quadratures only couple to each other in a spatially asymmetric manner
[16]. (b) Coupling between quadratures in the spin spiral chain for PBC and the bulk part of the chain
with OBC. For the spiral chain 1 (defined in Section 4.2.1), the blue sites correspond to j odd and the
pink sites correspond to j even. The opposite is true for the spiral chain 2 (defined in Section 4.2.2); the
blue sites correspond to j even and the pink sites to j odd.

the coupling between the x quadratures at neighbouring sites is uniform at the bulk of the chain but is
different for the first and last spin due to the lack of one of their neighbours.

5 Properties of the spin implementation of the bosonic Kitaev chain

We now focus on the spin version of the BKC described by Eq. (29) to see how it differs from the photonic
BKC Eq. (1) [16]. Throughout this section, we consider the regime where JzSN + NB > |Φ0| to ensure
the stability of the ground state.
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5.1 Winding number

As the photonic BKC, the magnonic BKC has a non-trivial topology with a winding number of one. This
can be seen by Fourier transforming Eq. (29) to write it in the momentum space as

Ĥ =
1
2 ∑

k∈1BZ

ˆ⃗A†
k [⃗hB(k) · ˆ⃗σ] ˆ⃗Ak +

1
2 ∑

k∈1BZ

ˆ⃗A†
k [(J

zS + B) · 12]
ˆ⃗Ak −

JzS2N
2

− BSN,

where 12 is the 2 × 2 identity matrix and the first term corresponds to Eq. (2). By defining the Pauli
4-vector σ = (12, ˆ⃗σ) and h(k) = (JzS + B, h⃗B(k)), the Hamiltonian reads

Ĥ =
1
2 ∑

k∈1BZ

ˆ⃗A†
k [h(k) · σ] ˆ⃗Ak −

JzS2N
2

− BSN. (38)

Figure 10: h(k) and h⃗B(k) for t = JzS + B = 1 and ∆ = 0.5. The isotropic exchange and magnetic field
shift the vector h⃗B(k) to h(k) which winds once around the origin.

Figure 10 shows that the term proportional to the identity which arises from the isotropic exchange
and the magnetic field corresponds to a shift in the vector h⃗B while leaving the winding number
unchanged.
To see the consequences of the non-trivial topology of the model, we now examine the dynamics of the
excitations in the chain by looking at the equations of motion.

5.2 Equations of motion

To study the dynamics of a spin wave excitation in the chain, we start by considering that the system is
in the FM state with all the spins pointing in the positive z-direction6 and allowing for small fluctuations
δ ˆ⃗Sj = (δŜx

j , δŜy
j , S) – with δ ˆSx/y

j ≪ S– around the GS. The linearised Heisenberg equations of motion
are given by

δ ˙̂Sx
j =

t + ∆
2

δŜx
j−1 −

t − ∆
2

δŜx
j+1 + (JzS + B)δŜy

j , (39a)

δ ˙̂Sy
j =

t − ∆
2

δŜy
j−1 −

t + ∆
2

δŜy
j+1 − (JzS + B)δŜx

j , (39b)

6This is fair to assume since the result would be the same if we were to consider the state where all the spins are pointing
to the negative z-direction.
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˙̂Sz
j = 0, (39c)

where we used the algebra defined in Eq. (28). Equivalently, the equations of motion in terms of the
spin ladder operators read

δ ˙̂S+
j = − t

2
(δŜ+

j+1 − δŜ+
j−1) +

∆
2
(δŜ−

j+1 + δŜ−
j−1)− i(JzS + B)δŜ+

j , (40a)

δ ˙̂S−
j = − t

2
(δŜ−

j+1 − δŜ−
j−1) +

∆
2
(δŜ+

j+1 + δŜ+
j−1) + i(JzS + B)δŜ−

j . (40b)

We note that the first two terms of Eq. (39) show a remarkable similarity to the equations of motion
of the BKC Eq. (5); for JzS + B = 0, we have the directional transport of magnons with a direction
depending on the phase of the excitation. In this limit, the x and y components of the spin are forced
by its neighbours in a spatially asymmetric way; if we focus on Eq. (39a) ( Eq. (39b) respectively), we
see that there is an increase in amplitude as the wave propagates from left to right (right to left), and a
decrease in amplitude when it propagates in the opposite direction. This means that the spin wave is
amplified in one direction and deamplified in the opposite one.

This asymmetry is broken when JzS + B ̸= 0; the x and y components are no longer dynamically
decoupled; as the excitation propagates through the chain, the isotropic exchange and magnetic field
change the phase of the spin wave. In the case where an x-excitation is propagating in the chain, the
first two terms of Eq. (39a) cause the excitation to be amplified as it propagates from left to right and to
be deamplified as it propagates from right to left, respectively. The last term however changes the phase
of the excitation, turning part of the x-excitation into a y-excitation. In turn, Eq. (39b) shows that the
y-excitation exhibits the opposite behaviour; it is amplified when it propagates from the right to the left
and deamplified from the left to the right. As before, the phase of the y-excitation then changes as a
consequence of the isotropic exchange and the magnetic field.

The Heisenberg equations of motion corresponding to Eq. (29) are given by

˙̂xj =
t + ∆

2
x̂j−1 −

t − ∆
2

x̂j+1 + (JzS + B) p̂j, (41a)

˙̂pj =
t − ∆

2
p̂j−1 −

t + ∆
2

p̂j+1 − (JzS + B)x̂j. (41b)

They exhibit the same structure as Eq. (39). This is in accordance with the LHPT Eq. (27), which shows
that the x and y components of the spin in the magnonic BKC take the role of the quadratures in the
photonic BKC. Therefore, by adding a term of the form E ∑j â†

j âj to the photonic BKC, the quadratures
are no longer dynamically decoupled.
Consequently, the regime of stability of the magnonic BKC is different to that of the photonic BKC. In
order to see these changes, we now compute the dispersion relation of the system in the case of PBC
and OBC.

5.3 Dispersion relation

5.3.1 Periodic boundary conditions

In the case of PBC, the Hamiltonian is diagonal in the basis of plane waves

δŜx,y
j = Ax,yei(kj−ωτ), (42)

where Ax,y is the amplitude of the wave, k denotes the wave vector, ω is the dispersion, and τ indicates
the time. By plugging it into Eq. (39), we obtain the matrix equation M(ω) · A = 0, i.e.(

(∆ cos(k)− it sin(k)) + iω JzS + B
−(JzS + B) −(∆ cos(k) + it sin(k)) + iω

)(
Ax
Ay

)
=

(
0
0

)
, (43)
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where M(ω) is the dynamical matrix of the system. The dispersion relation is then obtained by solving
det(M(ω)) = 0, which yields

ω±(k) = t sin k ±
√
(JzS + B)2 − ∆2 cos2 k. (44)

We can easily see that the dispersion is real for any value of the wave vector k as long as JzS+ B ≥ ∆.
Since we are in the regime where JzS + B > t, the system with PBC is always dynamically stable when
t > ∆. This is in contrast with the photonic BKC, where the system is always dynamically unstable due
to the decoupling of the quadratures. Since the dynamics of the x and y components are independent of
one another in the photonic BKC, an x- (y-) excitation is amplified as it propagates from left to right
(right to left). In the case of PBC, the excitation would be able to keep propagating in a given direction ,
which would lead to an indefinite amplification. This is unphysical and would lead to instabilities in the
system.

In the case of the magnonic BKC, when an x- (y-) excitation propagates from left to right (right to
left), the amplification resulting from the symmetric anisotropic exchange is damped by the isotropic
exchange and the magnetic field, coupling the two components. Thus. the system is dynamically stable
since there is no amplification.

Figure 11: Dispersion relation of the magnonic BKC with PBC for JzS + B = 1 and different values of
the hopping parameter and the driving amplitude.

Figure 11 shows the dispersion relation of the system Eq. (44) in the regime where t ≥ ∆. In it we see
that the system has two bands which touch in the limit where JzS + B = ∆ forming the characteristic
shape of the Weyl cone at the center and edeges of the first Brillouin zone (i.e. at k = 0 and k = ±π).
These Weyl nodes, which arise from the broken mirror and time-reversal symmetries, correspond to a
type-I node for the red and green curves (t < 1), and to a node at the horizon for the blue curve (t = 1)
[20].
In order for the excitation to be amplified as it propagates through the chain, the driving amplitude must
be large enough to overcome the damping, i.e. ∆ > JzS + B. Eq. (22c) shows that the FM state is stable
as long as the isotropic exchange and the magnetic field dominate over the DM interaction. By setting
∆ > JzS + B > t, the magnonic BKC with PBC is well defined and allows for amplification. Figure 12
shows that the system is dynamically unstable in this regime; Eq. (44) has a non-zero imaginary part
for |cos k| > (JzS + B)/∆. The origin of this instability is the same as that of the photonic BKC: the
directional amplification of excitations together with the chiral nature of the chain lead to indefinite
amplification in the case of PBC, causing the system to be unstable.
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Figure 12: Imaginary part of the dispersion relation of the magnonic BKC as a function of the wavevector
k for JzS + B = 1, t = 0.5(JzS + B) and different values of the driving amplitude.

5.3.2 Open boundary conditions

When considering the system with open boundary conditions, the situation is remarkably different
due to the presence of the edges of the chain. In the limit where JzS + B = 07, the system is always
dynamically stable for t > ∆ since the finite size of the chain prevents for the excitations to be indefinetly
amplified. This is not necessarily the case any longer when we add the isotropic exchange and magnetic
field to the system. In reference [16] it is shown that the addition of on-site perturbations of the form
ωj â†

j âj may cause instabilities even when t > ∆ since such term changes the pase of the excitation. Due
to the chirality of the chain, changing the phase of the excitation may lead to indefinite amplification,
causing instabilities.
We will prove that contrary to the photonic case, due to the addition of the isotropic exchange and the
magnetic field, the magnonic BKC can be stable even in the regime where ∆ > t since these additional
terms damp the amplification of the excitations.

In this section, we examine both situations and show that the model is diagonalized by a position
dependent squeezing transformation (see Appendix B for derivation)

ÛŜ+
j Û† = ˆ̃S+

j cosh(r(j − j0)) + ˆ̃S−
j sinh(r(j − j0)), (45a)

ÛŜ−
j Û† = ˆ̃S+

j sinh(r(j − j0)) + ˆ̃S−
j cosh(r(j − j0)), (45b)

ÛŜz
j Û† = − 1

4S
( ˆ̃S+

j
ˆ̃S−

j + ˆ̃S−
j

ˆ̃S+
j ) cosh(2r(j − j0))−

1
4S

(( ˆ̃S+
j )

2 + ( ˆ̃S−
j )

2) sinh(2r(j − j0)), (45c)

where j0 is an arbitrary lattice site and r is the squeezing parameter the definition of which depends
on the regime. Moreover, we look at the stability regime that arises from the addition of the Gilbert
damping

˙⃗̂
Sj

∣∣∣∣
GD

=
˙⃗̂

Sj − α ˆ⃗Sj ×
˙⃗̂

Sj (46a)

˙̂S+
j

∣∣∣
GD

=

(
− t

2
(δŜ+

j+1 − δŜ+
j−1) +

∆
2
(δŜ−

j+1 + δŜ−
j−1)− i(JzS + B)δŜ+

j

)
(1 − iαS),

= (1 − iαS) ˙̂S+
j ,

(46b)

7This limit corresponds to the x and y components being dynamically decoupled.
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˙̂S−
j

∣∣∣
GD

=

(
− t

2
(δŜ−

j+1 − δŜ−
j−1) +

∆
2
(δŜ+

j+1 + δŜ+
j−1) + i(JzS + B)δŜ−

j

)
(1 + iαS),

= (1 + iαS) ˙̂S−
j ,

(46c)

where the dimensionless variable α > 0 is the damping parameter. The addition of this term stabilizes
the system, which goes to its ground state, and it will allow us to determine the regime of stability in
each case.

t > ∆

In the regime where the hopping parameter is larger than the driving amplitude, the squeezing
parameter r is defined by

e2r =
t + ∆
t − ∆

. (47)

By applying the squeezing transformation Eq. (45) together with the gauge transformation

δŜ±
j = e±iπ j/2δŜ±

j (48)

to the linearised equations of motion Eq. (40), we obtain

˙̃̂S+
j = − it̃

2
(δ ˆ̃S+

j+1 + δ ˆ̃S+
j−1)− i(JzS+ B)(δ ˆ̃S+

j cosh(2r(j − j0)) + (−1)jδ ˆ̃S−
j sinh(2r(j − j0))), (49a)

˙̃̂S−
j =

it̃
2
(δ ˆ̃S−

j+1 + δ ˆ̃S−
j−1) + i(JzS + B)(δ ˆ̃S−

j cosh(2r(j − j0)) + (−1)jδ ˆ̃S+
j sinh(2r(j − j0))). (49b)

Since we consider the system with OBC, the eigenvectors are no longer given by plane waves but
rather standing waves of the form

δ ˆ̃S±
j = A±e−iωτ sin(kn j), (50)

where kn = nπ/(N + 1) is the wave vector and n is an integer. The equations of motion yield

ωA+ = (t̃ cos kn + (JzS + B) cosh(2r(j − j0))) A+ + (JzS + B) sinh(2r(j − j0))A−, (51a)

−ωA− = (t̃ cos kn + (JzS + B) cosh(2r(j − j0))) A− + (JzS + B) sinh(2r(j − j0))A+. (51b)

In order to write the matrix equation leading to the dispersion relation, we need to get rid of the j
dependence that is left in the hyperbolic functions by requiring r ≪ 1, that is ∆ ≪ t. In particular, in
Appendix C.1 we show that by chosing ∆ = o(tN−ν) with ν > 1, the approximation holds even in the
large N limit. By doing so we obtain

ωA+ = (t̃ cos kn + (JzS + B)) A+, (52a)

−ωA− = (t̃ cos kn + (JzS + B)) A−, (52b)

which can be rewritten in matrix form as(
t̃ cos(kn) + (JzS + B)− ω 0

0 −t̃ cos(kn)− (JzS + B)− ω

)(
A+

A−

)
=

(
0
0

)
. (53)

By taking det(M(ω)) = 0 and solving for ω, we obtain the dispersion

ωn = (JzS + B) + t̃ cos kn. (54)

Hence, in the case of OBC, the addition of the magnetic field and isotropic exchange increases the
energy of the system by a factor of JzS + B. As we consider the regime in which the isotropic exchange
dominates, and the amplitude of the dispersion is given by t̃ =

√
t2 − ∆2 < JzS + B, the dispersion is
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(a) (b)

Figure 13: Dispersion relation for the system with open boundary conditions. (a) Dispersion relation of
the magnonic BKC for different values of t̃ =

√
t2 − ∆2 and JzS + B = 1. We observe the characteristic

dispersion of a squeezed state; the uncertainty is maximal at when the wave vector k is an integer multiple
of π and minimal when it is a half-integer multiple of π. (b) Comparison between the dispersions of
the magnonic and photonic BKC for t̃ = 0.5 and JzS + B = 1. The addition of the magnetic field and
isotropic exchange shift the dispersion of the magnonic BKC which is always positive. This is in contrast
to the photonic case, whose dispersion crosses zero.

now positive for any value of the wave vector kn in contrast with the photonic case, where the dispersion
is centered around zero as illustrated in Figure 13b.

Due to this shift in the dispersion relation, the excitations are no longer amplified as they propagate
through the chain. As in the case of PBC, excitations propagate in the xy plane meaning that amplification
–if there– takes place in the xy plane. The dominant energy terms correspond to the isotropic exchange
and the magnetic field, which favour the alignment in the z direction and thus prevent the excitations
from being amplified.
In order for the excitations to be amplified, we require the dispersion to become negative, that is
JzS + B < t̃. To determine whether or not this regime is stable, we add the Gilbert damping. Note that
the new equations of motion, Eq. (46), have the same structure as Eq. (40) and thus require the same
transformations. We now apply the squeezing transformation Eq. (45), the gauge transformation Eq.
(48) and the standing wave ansatz Eq. (50) in the limit ∆ = o(tN−ν) with ν > 1 to obtain the matrix
equation(
(t̃ cos(kn) + (JzS + B))(1 − iαS)− ω 0

0 −(t̃ cos(kn) + (JzS + B))(1 + iαS)− ω

)(
A+

A−

)
=

(
0
0

)
.

(55)
We take the determinant of the dynamical matrix to zero and solve for ω to obtain

ωGD = (JzS + B + t̃ cos kn)

(
−iαS ±

√
1 − (αS)2

)
; (56)

≃ −iαS(JzS + B + t̃ cos kn), (57)

where we used the fact that α is small to obtain the second line. The system is dynamically stable for
Im(ωGD) < 0, that is JzS + B > t̃ =

√
t2 − ∆2, therefore in the regime where the hopping parameter

is larger than the driving amplitude, the excitations are not amplified.

t < ∆

In the regime where the driving amplitude is larger than the hopping parameter, the squeezing
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parameter is

e2r =
∆ + t
∆ − t

. (58)

By applying the squeezing transformation Eq. (45) to the linearised equations of motion Eq. (40) we
obtain

˙̃̂S+
j =

∆̃
2
(δ ˆ̃S−

j+1 + δ ˆ̃S−
j−1)− i(JzS + B)(δ ˆ̃S+

j cosh(2r(j − j0)) + δ ˆ̃S−
j sinh(2r(j − j0))), (59a)

˙̃̂S−
j =

∆̃
2
(δ ˆ̃S+

j+1 + δ ˆ̃S+
j−1) + i(JzS + B)(δ ˆ̃S+

j sinh(2r(j − j0)) + (−1)jδ ˆ̃S−
j cosh(2r(j − j0))), (59b)

where ∆̃ =
√

∆2 − t2. We now consider the limit of t = o(∆N−µ) with µ > 1 (see Appendix C.2) and
apply the standing wave ansatz Eq. (50) to get the matrix equation(

−i(ω − (JzS + B)) −∆̃ cos kn
−∆̃ cos kn −i(ω + (JzS + B))

)(
A+

A−

)
=

(
0
0

)
. (60)

We now take the determinant of the dynamical matrix to zero and solve for ω to obtain the dispersion
relation of the system

ω±(kn) = ±
√
(JzS + B)2 − ∆̃2 cos2 kn, (61)

which is equivalent to Eq. (44) for t = 0. As so, Figure 14 shows that there are two energy bands which
touch in the limit JzS + B = ∆̃ where we observe type-I Weyl nodes at the center and edges of the first
Brillouin zone [20].
Next, we add the Gilbert damping to determine the regime of stability. To do so, we apply the squeezing

Figure 14: Dispersion relation of the system with OBC for JzS + B = 1 and different values of ∆̃.

transformation with parameter r defined in Eq. (58) and the standing wave ansatz Eq. (50) to the damped
equations of motion Eq. (46). By writting the transformed equations of motion in matrix form we get(

i(JzS + B)(1 − iαS)− iω −∆̃ cos kn(1 − iαS)
−∆̃ cos kn(1 + iαS) −i(JzS + B)(1 + iαS)− iω

)(
A+

A−

)
=

(
0
0

)
. (62)

We take the determinant to zero, and we have

ωGD
± (kn) = −iαS(JzS + B)±

√
(JzS + B)2 − ∆̃2 cos2 kn(1 + (αS)2). (63)

The system is dynamically stable when Im(ωGD
± ) < 0. Although this is always true for the negative root,

Im(ωGD
+ ) < 0 requires JzS + B > ∆̃, meaning that for the system to be stable, the isotropic exchange

and the magnetic field must be the dominant terms.
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6 The spin spiral chain

We now study the dynamics of the spin waves in the spin spiral chain Figure 3. To do so, we consider
the regime where the anisotropic exchange dominates and no magnetic field is added to the system. We
then compute the equations of motion and dispersion relation for the chain with PBC to compare the
exitations’ dynamics to these in the BKC.

6.1 Equations of motion

Since the two Hamiltonians differ only by a phase of π/2, the dynamics of the two models are the
same. We thus start by computing the equations of motion in both situations and then examine them
simultaneously.

6.1.1 Spin spiral chain 1

The Heisenberg equations of motion for the spin spiral chain 1 (Figure 3a) are given by

˙̂Sx
j =

t + ∆
2S

Ŝz
j Ŝx

j−1 −
t − ∆

2S
Ŝx

j+1Ŝz
j +

Jz

2
(Ŝz

j+1 + Ŝz
j−1)

(
S cos

3π

2
j + Ŝy

j sin2 3π

2
j
)

, (64a)

˙̂Sy
j =

t − ∆
2S

Ŝz
j Ŝy

j−1 −
t + ∆

2S
Ŝy

j+1Ŝz
j −

Jz

2
(Ŝz

j+1 + Ŝz
j−1)

(
−S sin

3π

2
j + Ŝx

j cos2 3π

2
j
)

, (64b)

˙̂Sz
j =

1
2S

((t + ∆)Ŝy
j+1 − (t − ∆)Ŝy

j−1)

(
S cos

3π

2
j + Ŝy

j sin2 3π

2
j
)
+

1
2S

((t − ∆)Ŝx
j+1 − (t + ∆)Ŝx

j−1)

(
−S sin

3π

2
j + Ŝx

j cos2 3π

2
j
)

,
(64c)

where we used the algebra defined in Eq. (32). Since the GS is stable and therefore does not change in
time, Eq. (30a) gives the condition

− ˙̂Sx
j sin

3π

2
j + ˙̂Sy

j cos
3π

2
j = 0, (65)

that is
˙̂Sx
j = 0 for j odd, (66a)

˙̂Sy
j = 0 for j even. (66b)

In order to compare the motion of the two models, it is useful to rewrite the equations of motion in
terms of quadratures. Using the LHPT Eq. (31) we first obtain the equations of motion for the creation
and annihilation operators

˙̂aj = −itâj −
i
4

(
(t + (−1)j∆)(â†

j+1 − âj+1) + (t − (−1)j∆)(â†
j−1 − âj−1)

)
+

iJzS
4

(â†
j−1 + âj+1 + â†

j−1 + âj−1),
(67a)

˙̂a†
j = itâ†

j −
i
4

(
(t + (−1)j∆)(â†

j+1 − âj+1) + (t − (−1)j∆)(â†
j−1 − âj−1)

)
− iJzS

4
(â†

j−1 + âj+1 + â†
j−1 + âj−1).

(67b)

We then use Eq. (3) to obtain

˙̂xj = tp̂j −
1
2
[(t + (−1)j∆) p̂j+1 + (t − (−1)j∆) p̂j−1], (68a)

˙̂pj = −tx̂j +
JzS
2
[x̂j+1 + x̂j−1]. (68b)
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6.1.2 Spin spiral chain 2

In the case of the spiral chain 2 Figure 3b, the Heisenberg equations of motion are

˙̂Sx
j =

t + ∆
2S

Ŝz
j Ŝx

j−1 −
t − ∆

2S
Ŝx

j+1Ŝz
j +

Jz

2
(Ŝz

j+1 + Ŝz
j−1)

(
S sin

3π

2
j + Ŝy

j cos2 3π

2
j
)

, (69a)

˙̂Sy
j =

t − ∆
2S

Ŝz
j Ŝy

j−1 −
t + ∆

2S
Ŝy

j+1Ŝz
j −

Jz

2
(Ŝz

j+1 + Ŝz
j−1)

(
S cos

3π

2
j + Ŝx

j sin2 3π

2
j
)

, (69b)

˙̂Sz
j =

1
2S

((t + ∆)Ŝy
j+1 − (t − ∆)Ŝy

j−1)

(
S sin

3π

2
j + Ŝy

j cos2 3π

2
j
)

+
1

2S
((t − ∆)Ŝx

j+1 − (t + ∆)Ŝx
j−1)

(
S cos

3π

2
j + Ŝx

j sin2 3π

2
j
)

.
(69c)

The GS corresponding to Eq. (34a) yields the condition

˙̂Sx
j cos

3π

2
j + ˙̂Sy

j sin
3π

2
j = 0 (70)

which can be rewriten as
˙̂Sx
j = 0 for j even, (71a)

˙̂Sy
j = 0 for j odd. (71b)

Using Eq. (35) and Eq. (3) we get the equations of motion for the quadratures:

˙̂xj = tp̂j −
1
2
[(t − (−1)j∆) p̂j+1 + (t + (−1)j∆) p̂j−1], (72a)

˙̂pj = −tx̂j +
JzS
2
[x̂j+1 + x̂j−1]. (72b)

6.1.3 Motion in the spin spiral chain

To see how the excitations propagate in the spiral chain 1 (respectively 2), let us start by considering
the case where there is no isotropic exchange, i.e. Jz = 0. In this case, the equations of motion of the
x and y components of the spin take a similar shape to those of the quadratures in the BKC. The two
components are dynamically decoupled and they are forced in a spatially asymmetric manner by its
neighbours. However, contrary to the BKC, the GS is in the xy plane, and therefore the z component of
the spin is not constant, and the dynamics of both the x and y components depend on it.
From Eq. (66) (Eq. (71)) we see that the excitations do not propagate in a given plane but alternate
between the xz and yz planes instead. At odd (even) sites, the spins in the ground state are in the
x-direction, thus the excitations propagate in the yz plane. The dynamics of the y-component only
depend on the z-component at the same site. The z-component, however, is not only coupled to the
y-component, but is also forced by the x-component of the neighbouring spins as well; the left neighbour
amplifies the excitation, and the right one deamplifies it.
Similarly, at even (odd) sites, the spins of the ground state are in the y-direction, therefore the excitation
is in the xz plane. In this case, the x-component cuples to the z-component, which in turn is forced by
the y-component of the neighbouring spins. Here, the left neighbour deamplifies the excitation while
the right one amplifies it.
By dividing the chain into the two sublattices

Λx = {j : ˙̂Sx
j = 0},

Λy = {j : ˙̂Sy
j = 0},
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what we see is that while an excitation on Λx is amplified as it propagates from left to right and deam-
plified in the opposite direction, an excitation on Λy exhibits the opposite behaviour; it is amplified as it
propagates from right to left and deamplified when propagating from left to right. The amplification is
compensated by the deamplification, meaning that the net amplification is zero.
When the isotropic exchange is added, Eq. (66) (Eq. (71)) still holds, hence the excitation propagates
alternating between the xz and yz planes. The dynamics of the z-component of the spin are unchanged,
however, as is the case for the BKC, the addition of the isotropic exchange dynamically couples the x
and y components of the spin. By doing so, the x and y components are now forced by the z-component
of the neighbouring spins in a spatially symmetric way.

Contrary to the BKC, where for Jz = 0 the x and y quadratures are dynamically decoupled (see
Eq. (5)), in the spiral chain Eq. (68) (Eq. (72)) shows that even when there is no isotropic exchange
added, the two quadratures are always dynamically coupled. Moreover, we see that the dynamics of the
x quadrature only depends on the p quadrature and viceversa.
By looking at the dynamics of the x-quadrature, i.e. Eq. (68a) and Eq. (72a), we see that an excitation
will be amplified and then deamplified when going through two sites independently of the direction of
propagation.
To further understand the dynamics of the model, we now compute the dispersion relation focussing on
the system with PBC.

6.2 Dispersion relation for periodic boundary conditions

For PBC, the two spiral GS, see Figure 3, are the same since the choice of the first spin is arbitrary.
Hence, the two spiral chains are the same.
To compute the dispersion relation, we start by applying the Fourier transform

âj =
1√
N

∑
k

eikj âk (73)

to the Hamiltonian Eq. (33a) to obtain it in the momentum space

Ĥ = ∑
k

(
t − 1

2
(t + JzS) cos k

)
â†

k âk +
1
4
(t − JzS)∑

k
(eik â†

−k â†
k + e−ik â−k âk)+ (74)

∆
4 ∑

k
(ei(k−π)(â†

−k+π â†
k − â†

k âk−π) + e−i(k+π)(â−k−π âk − â†
k+π âk)),

= ∑
k

α⃗†H⃗α,

where we defined the vector α⃗† = (â†
k+π, â†

k , â†
−k−π, â†

−k, â†
−k+π, âk+π, âk, â−k−π, â−k, â−k+π), and the

matrix

H =



0 −∆
4 e−i(k+π) 0 0 0 0 0 0 0 0 0 0

0 t − t+JzS
2 cos k −∆

4 ei(k−π) 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 t−JzS

4 eik 0 0 0 0
0 0 0 0 0 0 0 ∆

4 ei(k−π) 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 ∆

4 e−i(k+π) 0 0 0 0 0 0 0 0 0 0
0 t−JzS

4 e−ik 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



.
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Next, we consider the matrix

Γ =

(
16 0
0 −16

)
. (75)

to obtain the dynamical matrix M(ω) = H− ω(k)Γ [21]. The dispersion relation is then obtained by
taking the determinant of the dynamical matrix to zero and solving for ω, which yields

ω(k) = t − 1
2
(t + JzS) cos k. (76)

We remark that the dispersion is independent of the driving amplitude ∆, which reflects the fact that
when an excitation propagates through the chain, any amplification is compensated with deamplification.
Thus, the excitation does not feel the effect of the symmetric anisotropic exchange. Moreover, since ω is
always real, the system is always dynamically stable. Figure 15 shows the dispersion relation of the

Figure 15: Dispersion relation as a function of the wavevector k for different values of the isotropic
exchange parameter and t = 1.

system for different values of JzS. We recognise the characteristic shape of the dispersion relation of a
squeezed state[22, 23]. This corresponds to a two-mode squeezed state with squeezing parameter to be
determined.

7 Conclusion

In this thesis, we have defined a spin Hamiltonian with a non-trivial topology that has two stable
phases, which depend on the dominant energy contribution and the presence or lack of a magnetic
field in the z-direction. After determining the ground state, we have used a linear Holstein-Primakkof
transformation to determine the dynamics of the excitations in the system. In the regime where the
isotropic exchange dominates, the spins are aligned in the z-direction, and the system behaves as the
BKC. Hence, in this regime the spin Hamiltonian Eq. (6) defines the magnonic BKC. Then, in the regime
where the anisotropic exchange dominates and no magnetic field is added to the system, the ground
state is given by a periodic, non-collinear missalignment of the spins in the xy plane.
Although we have defined a magnonic BKC, this does not show any amplification of spin waves. The spin
waves propagate in the xy plane while the equilibrium configuration corresponds to the ferromagnetic
alignment of spins in the z-direction. In order for the system to be in the equilibrium state, the isotropic
exchange must dominate over the anisotropic one, meaning that any amplification will be damped by
the isotropic exchange.
In order to obtain amplification, we should require that the magnetic field cancels out the effect of the
isotropic exchange, i.e. B = −JzS. However in this case, the system becomes dynamically unstable.
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A Algebra

[Ŝ+
j , Ŝ−

j′ ] = [
√

2Sâj,
√

2Sâ†
j′ ], (77)

= 2S[âj, â†
j′ ], (78)

= 2Sδj,j′ . (79)

[Ŝz
j , Ŝ+

j′ ] = [S − â†
j âj,

√
2Sâj′ ], (80)

= −
√

2S[â†
j âj, âj′ ], (81)

=
√

2Sâjδj,j′ , (82)

= Ŝ+
j δj,j′ . (83)

[Ŝz
j , Ŝ−

j′ ] = [S − â†
j âj,

√
2Sâ†

j′ ], (84)

= −
√

2S[â†
j âj, â†

j′ ], (85)

= −
√

2Sâ†
j δj,j′, (86)

= −Ŝ−
j δj,j′ . (87)

B Squeeze operator

In order to compute the dispersion relation of our system, we first need to define the spin squeeze
operator and its action on the spin components, which can be done in analogy to the squeze operator of
the one-dimensional harmonic oscillator [24]. In the case of the photonic BKC, the squeeze operator is
given by

Û(r) = er(j−j0)((âj)
2−(â†

j )
2), (88)

where r is characterized by Eq. (47) and j0 is an arbitrary real number. Since the second quantiza-
tion operators are related to the bosonic spin ladder operators through the linear Holstein-Primakoff
transformation Eq. (26), it is easy to see that we can approximate the squeeze operator by

Ûj(r) = exp
(
−r(j − j0)

4S
((Ŝ−

j )
2 − (Ŝ+

j )
2)

)
. (89)

In general, it is not easy to define the action of the squeeze operator due to the algebra of the spins,
however, due to the ”simplified” algebra that arises from the LHPT, we will show that the spin squeeze
operator acts in analogy to the photonic one when acting on the x and y components of the spin.
First let us look at the following commutators:

[(Ŝ−
j )

2 − (Ŝ+
j )

2, Ŝ+
j′ ] = −4SŜ−

j δj,j′ , (90)

[(Ŝ−
j )

2 − (Ŝ+
j )

2, Ŝ−
j′ ] = −4SŜ+

j δj,j′ , (91)

[(Ŝ−
j )

2 − (Ŝ+
j )

2, Ŝz
j′ ] = 2S((Ŝ−

j )
2 + (Ŝ+

j )
2)δj,j′ , (92)

[(Ŝ−
j )

2 − (Ŝ+
j )

2, [(Ŝ−
j′ )

2 − (Ŝ+
j′ )

2, Ŝz
j′ ]] = −16S(Ŝ+

j Ŝ−
j + Ŝ−

j Ŝ+
j )δj,j′ . (93)

We now apply the commutator k times:

[ξ j((Ŝ−
j )

2 − (Ŝ+
j )

2), [ξ j((Ŝ−
j )

2 − (Ŝ+
j )

2), ..., [ξ j((Ŝ−
j )

2 − (Ŝ+
j )

2), Ŝ+
j ]...]] =

{
(4Sξ j)

kŜ+
j for k even,

−(4Sξ j)
kŜ−

j for k odd,
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[ξ j((Ŝ−
j )

2 − (Ŝ+
j )

2), [ξ j((Ŝ−
j )

2 − (Ŝ+
j )

2), ..., [ξ j((Ŝ−
j )

2 − (Ŝ+
j )

2), Ŝ−
j ]...]] =

{
(4Sξ j)

kŜ−
j for k even,

−(4Sξ j)
kŜ+

j for k odd,

[ξ j((Ŝ−
j )

2 − (Ŝ+
j )

2), ..., [ξ j((Ŝ−
j )

2 − (Ŝ+
j )

2), Ŝz
j ]...]] =

{
−(4S)k−1(2ξ j)

k(Ŝ+
j Ŝ−

j + Ŝ−
j Ŝ+

j ) for k even,

(4S)k−1(2ξ j)
k((Ŝ−

j )
2 + (Ŝ+

j )
2) for k odd,

where ξ j := r(j − j0)/4S.

C Limits

C.1 Limit ∆ ≪ t

In order to be able to perform the Taylor expansion that allow us to get rid of the site-dependence in
Eq. (49), we require 2r(j − j0) ≪ 1 for any j0 and j. In particular, since both cosh(x) and sinh(x) are
increasing functions of x, we require max

j∈[1,N]
{2r(j − j0)} = 2r(N − j0) ≪ 1 for any j0. We have e2r =

t+∆
t−∆ ≈ 1 when ∆ ≪ t, so we define ∆ = t/Nν leading to 2r(N − j0) = (N − j0) ln(1 + 2/(Nν − 1)).
Since we want to look at the limit of N going to infinity we have N − j0 ≈ N, and for ν ≥ 1,
Nν − 1 ≈ Nν. By defining x = 1/N we obtain

lim
x→0

1
x

ln(1 + 2xν) =
0
0

, (95)

= lim
x→0

2νxν−1

1 + 2xν
= 0 for ν > 1. (96)

We conclude that ∀j, j0 ∈ [1, N], cosh(2r(j − j0)) ≈ 1 and sinh(2r(j − j0)) ≈ 0 hold for ∆ = o(t/Nν)
with ν > 1.

C.2 Limit t ≪ ∆

As in the case where the hopping parameter is large in front of the driving amplitude, in order to
determine the dispersion relation of the system we must have max

j∈[1,N]
{2r(j − j0)} = 2r(N − j0) ≪ 1

for any j0. We have e2r = ∆+t
∆−t ≈ 1 when t ≪ ∆, so we define t = ∆/Nµ leading to 2r(N − j0) =

(N − j0) ln(1 + 2/(Nµ − 1)).
Since we want to look at the limit of N going to infinity we have N − j0 ≈ N, and for µ ≥ 1,
Nµ − 1 ≈ Nµ. By defining x = 1/N we obtain

lim
x→0

1
x

ln(1 + 2xµ) =
0
0

, (97)

= lim
x→0

2µxµ−1

1 + 2xµ
= 0 for µ > 1. (98)

Hence, ∀j, j0 ∈ [1, N], cosh(2r(j − j0)) ≈ 1 and sinh(2r(j − j0)) ≈ 0 hold for t = o(∆/Nµ) with
µ > 1.

D Second order HPT around the FM GS

If we now consider the second order terms in the LHPT around the FM ground state, Eq. (26) now
becomes

Ŝz
j = S − â†

j âj, (99a)
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Ŝ+
j = Ŝx

j + iŜy
j ≃

√
2S

(
1 −

â†
j âj

4S

)
âj, (99b)

Ŝ−
j = Ŝx

j − iŜy
j ≃

√
2Sâ†

j

(
1 −

â†
j âj

4S

)
. (99c)

By plugging it into the spin Hamiltonian Eq. (6), we obtain

Ĥ = Ĥ0 +
it
8S ∑

j
(2â†

j+1 âj + â†
j+1 âj+1(âj+1 â†

j − â†
j+1 âj) + (âj+1 â†

j − â†
j+1 âj)â†

j âj)

− i∆
8S ∑

j
(âj+1 âj − â†

j+1 â†
j + â†

j+1 âj+1(â†
j+1 â†

j − âj+1 âj) + (â†
j+1 â†

j − âj+1 âj)â†
j âj)

− Jz

2
â†

j+1 âj+1 â†
j âj,

(100)

where Ĥ0 denotes the lowest order Hamiltonian defined in Eq. (29). We see that in this case the
excitations no longer behave as the excitations of the BKC. At second order we lose the asymmetry that
characterizes the BKC even in the limit JzS + B = 0.
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