
Utrecht University

Automatic software product features
extraction from software vendor documents

Author:
Alexandros Constantinou 2126974

1st supervisor:
Dr. Slinger Jansen

2nd supervisor:
Dr. Fabiano Dalpiaz

External daily supervisor:
Dr. Siamak Farshidi

06-12-2024

Statement on the Use of Large Language Models (LLMs)

This document was created using standard academic tools. I hereby acknowledge the additional support
from Large Language Models (LLMs), such as ChatGPT by OpenAI. The use of LLMs was limited to
the following tasks:

• Structuring and organizing sections of the document.

• Generating templates for figures, tables, and technical layouts.

• Providing concise summaries of referenced studies and background materials.

• Generating code snippets for standard functions.

The use of LLMs was limited to these tasks and did not involve generating original research, interpreting
results, or conducting analysis. All intellectual contributions, interpretations, and conclusions presented
in this thesis are the author’s own work.

2

Contents

Contents

1 Introduction 6
1.1 Problem statement 7
1.2 Scope and Limitations 7
1.3 Background 7
1.4 Research Questions 10
1.5 Baseline Pipeline 11

2 Research Approach 13
2.1 Research Methods 13
2.2 Literature study 13
2.3 Design science 15

3 Systematic Literature Review 16
3.1 Data Sources and Search Strategy 16
3.2 Search Process 16
3.3 Inclusion and Exclusion Criteria 17
3.4 Quality Assessment 17
3.5 Data Extraction 19

3.5.1 Models, Techniques & Algorithms 19
3.5.2 Tools, Libraries & Resources 19
3.5.3 Datasets 19
3.5.4 Research Annotations 20

3.6 Data Analysis and Synthesis 20
3.6.1 Component Analysis 20
3.6.2 Temporal Trends 21

3.7 Model Categories 22
3.7.1 Machine Learning Applications 23
3.7.2 Pertinent Application Fields 25

3.8 Learning Types 25
3.8.1 Implementation Features 26
3.8.2 Tools/ Libraries/ Resources 27
3.8.3 Datasets 28
3.8.4 Evaluation Methods 28
3.8.5 Evaluation Strategies for the Feature Extraction Artifact 30
3.8.6 Decision Making Process 30

4 Summary of Literature Review 33
4.1 General Observations 33
4.2 Threats to Validity 33

4.2.1 Construct Validity 33
4.2.2 Internal Validity 34
4.2.3 External Validity 34
4.2.4 Conclusion Validity 34

4.3 Ethical Considerations 34

5 Implementation 35
5.1 Existing Approaches 35
5.2 Knowledge Graph Generation Pipeline 38
5.3 Data Collection and Processing 39

5.3.1 Domain Selection 39
5.3.2 Data Sources 39
5.3.3 Data Processing 40

5.4 Domain Exploration 42
5.4.1 NIST Cloud Computing Reference Architecture 42
5.4.2 DBPedia 42

3

Contents

5.5 Noun Phrase Extraction 44
5.6 Phrase Embeddings 45
5.7 Clustering 45

5.7.1 Hierarchical Clustering 46
5.7.2 HDBSCAN 46
5.7.3 Principal Component Analysis 46
5.7.4 Parameter Selection 47
5.7.5 Clustering Results 47

5.8 Cluster Aggregation 48
5.8.1 N-grams 49
5.8.2 Examples of Cluster Aggregation 49

5.9 Dataset Creation 49
5.9.1 Feature Classification Dataset 50
5.9.2 Integrating Context into Classification 50
5.9.3 Match Quality Classification Dataset 51
5.9.4 DBPedia Context Integration 51

6 Classification 53
6.1 Overview of Experiments 53
6.2 NIST Labeled Data 53
6.3 Evaluation Metrics 54
6.4 Experiment 1: Supervised BERT Models 54

6.4.1 Experimental Setup 55
6.4.2 Results 55

6.5 Experiment 2: Gemini Classifier 55
6.5.1 Prompt Engineering 56
6.5.2 Example Prompts 56
6.5.3 Results 58
6.5.4 Summary of Results 59

7 Knowledge Graph Construction 60
7.1 Ontology Creation 60
7.2 Hierarchy Creation 61
7.3 Evaluation of the Knowledge Graph 63
7.4 Knowledge Graph Demonstration & Retrieval Examples 64

7.4.1 Neo4j Aura Setup 64
7.4.2 Graph Exploration and Retrieval 66

8 Discussion & Conclusion 69
8.1 Research Objectives 69
8.2 Main Contribution 70
8.3 Limitations & Future Work 70
8.4 Conclusion 71

References 73

Appendices 79

A Model Definitions 79

B Features 81

C Evaluation Measures 83

D Tools/ Libraries/ Resources 84

E Prompt Descriptions 85
E.1 Feature Classification Prompts 85
E.2 Match Quality Classification Prompts 91

4

Contents

F Cloud Service Feature Coverage 94

G Bill of Materials (BoM) 97

5

1 Introduction

In the rapidly evolving field of software engineering, making well-informed architectural decisions is
crucial for any software product to meet the system requirements. These requirements ensure the software
fulfills its intended purpose and satisfies both user and stakeholder needs. Software production is a
continuous decision-making process (Fitzgerald & Stol, 2014). Throughout the software development
lifecycle, practitioners make critical decisions, such as selecting technology stacks. Decision support
software has been developed across various fields, including software engineering (Rus et al., 2003) since
the creation of software products, systems, and services often leads to intricate decision models and
processes (Badampudi et al., 2018).
To facilitate better-informed decision-making in software development, extracting information on soft-
ware features is pivotal in terms of choosing the right software components for a system. A feature refers
to a trait or behavior of a software system that is noticeable to the end-user (Kang et al., 1990). Features
play a crucial role in defining and conveying the similarities and distinctions of products among stake-
holders. They also guide structure, reuse, and variation throughout the various stages of the software
development lifecycle (Apel et al., 2013). However, manually extracting these features and qualities from
vendor websites or review platforms is time-consuming and prone to errors. The reason behind this is
the exponential growth of the software industry, leading to many software products and various vendors
trying to differntiate themselves by introducing new features. This has resulted in a fiercely competitive
and varied market, posing significant challenges for organizations in making strategic and well-informed
software acquisition decisions.
Software products provided by vendors from various backgrounds are anticipated to have different
strengths and weaknesses (Wei & Wang, 2004). Selecting a suitable vendor requires skilled person-
nel (Rani et al., 2022). This requires assessing each vendor’s capabilities and aligning them with the
software’s architectural goals, which involves analyzing substantial qualitative data (Jadhav & Sonar,
2011).
A systematic framework is necessary to support decision-makers in analyzing and selecting software
vendors (Rani et al., 2022). Choosing a software provider depends on specific selection criteria and
the vendor’s capabilities, with a strong emphasis on the quality characteristics of the software to be
implemented (Chin & Fu, 2014). That is, apart from the specific behavior of a software product, the
choice also involves evaluating its quality characteristics, such as maintainability, performance efficiency,
compatibility, and security. Moreover, using quality models is a recognized method for assessing and
managing software product quality (Miguel et al., 2014). Hence, it is logical also to gather information
about the quality of each software product.
For information extraction from web sources, adapting to dynamic data is essential given the ever-
changing nature of online content (Sarawagi, 2008). This is particularly true with software-specific
information, as vendors update their services rapidly (Ma & Kauffman, 2014).
Even after collecting information on software features, integrating data from various heterogeneous
sources presents a challenge. This involves identifying semantically related information that describes
the same real-world concept in different ways (Bergamaschi et al., 2001). Several approaches have been
explored to address this issue, such as Data Linking, which can be defined as a process that takes two
sets of data as input and produces a collection of mappings between entities of the two sets as output
(Ferrara et al., 2011).
This research aims to automate and combine the above-mentioned processes, developing a tool for soft-
ware engineering, specifically in vendor selection, thereby aiding practitioners in their decision-making.

6

1 Introduction

1.1 Problem statement

In software engineering, making well-informed decisions concerning software product selection is piv-
otal. Obtaining structured information about software features and qualities from readily available data
sources, such as vendor documents or online reviews, can be helpful in terms of comparing different
software, choosing technology stacks, and possibly informing feature-specific design choices. Moreover, it
can simplify the distinction between the ever-increasing array of vendors with various functionalities and
specific behaviors. In addition, the rate at which software features and capabilities are being updated
or expanded introduces even more uncertainty if the information is manually extracted and the effort
required is not cost-effective. One must have a very good understanding of the market to make safe
comparisons between software products with similar characteristics. This requires an automatic way of
extracting and updating information about these features for design or comparison purposes.

A self-updating knowledge graph that can automatically collect data from heterogeneous sources,
standardize it for comparability, and properly extract and integrate the available information about
different software could be very impactful. The limited currently available literature that tackles this
challenge reveals the gaps in this area:

• Inefficiencies in Manual Extraction: Research by Fitzgerald & Stol (2014), Rus et al. (2003),
and Apel et al. (2013) demonstrates that manually extracting software characteristics and qualities
is a time-consuming process that is prone to mistakes, a situation worsened by the rapid growth of
the software industry.

• Lack of Comprehensive Tools: Research by Bakar et al. (2015) and Y. Li et al. (2017) indicates
a noticeable lack of support tools for automated feature extraction, which results in limited practical
use.

• Challenges in Data Integration: Studies by Haris et al. (2020), Davril et al. (2013), and Berga-
maschi et al. (2001) showcase the difficulties in semantically analyzing and integrating information
that sometimes may describe the same concept differently across sources.

• Need for Improved Automated Methods: As suggested by Miguel et al. (2014) and Bing et
al. (2016), there is a need for automated methods for feature extraction and quality assessment,
particularly methods that capture the semantic relationships and the dynamic nature of software
information.

This research aims to address these gaps by developing an artifact that combines NLP techniques for
data integration, standardization, and semantic linking to create a self-updating knowledge graph about
features of different software products. This tool will aid software practitioners in making more informed
decisions during vendor selection.

1.2 Scope and Limitations

This research focuses on automating the extraction of information related to software features and
qualities. Nevertheless, considering the scope and available resources, there are some constraints on the
extent to which this may be accomplished. The accuracy of the retrieved information will depend on
the quality and quantity of data obtained from online sources, considering data privacy. Moreover, using
unsupervised techniques might introduce inaccuracies and difficulty in assessing the results.

1.3 Background

Software feature extraction has been studied from a variety of perspectives. These can provide insights
to enhance our understanding of this field. This section examines relevant research, emphasizing its
methods and relevance to our research. The mentioned studies have been selected from both manual
search and the set of results from the initial search process described in section 2.2, in the scope of the
chosen literature study approach. These selections aim to paint the picture in terms of the previous
approaches to accomplish similar goals to automatically extracting information about software products.

Hybrid (involving both rule-based and machine learning) NLP techniques are widely used for feature
extraction in Software Product Lines Engineering (SPLE), according to a systematic literature review
(Bakar et al., 2015). This study showcased automated and semi-automatic feature clustering techniques
from information retrieval and data mining. However, a notable deficiency in public support tools
challenges the practical implementation of these approaches.

7

1.3 Background

Another systematic literature review (Y. Li et al., 2017) focuses on extracting features from natural
language documents. This work demonstrates how semantic analysis methods, including Latent Semantic
Analysis and Semantic Role Labelling, can enhance the overall precision and completeness of the feature
extraction procedure. Their examination of data sources shows that Software Requirements Specifications
(SRS) are the most commonly used data source. Since product descriptions are readily available and
include a wealth of information, they are also a widely used data source. However, as pointed out by
the authors, full automation can be challenging and not practical. This is because there are situations
where only manual communication of a particular degree of domain knowledge is possible.

The use of SRS documents is also supported by Haris et al. (2020). This study uses NLP approaches
to automatically identify and extract required sentences from SRS documents using Sequence Part-of-
Speech (POS) tagging patterns. Word dependency parsing rules are then used to extract features from
these phrases. To compare the extracted sentences with the real requirement sentences, their method
still depends on manual extraction.

In terms of using data from online community platforms, machine learning methods have been ex-
plored to identify software requirements from StackOverflow . According to a systematic review, topic
modelling using Latent Dirichlet Allocation (LDA) is frequently used for this (Ahmad et al., 2020). The
study highlights the difficulties in automatically extracting and classifying unstructured online text to
distinguish between functional and non-functional requirements. There is also a discussion of common
evaluation techniques, including recall and precision. Although machine learning has shown great poten-
tial, the research suggests issues that need to be worked out, like the requirement for common pre-labelled
datasets. Moreover, the requirements were not further processed using sentiment analysis to indicate
the degree to which they are satisfied by a particular software product, despite the fact that they are
generally identified with some degree of success.

An alternate method is provided by Bakar et al. (2016), which concentrates on publicly accessible
software descriptions such as product brochures and online software reviews. In this study, Feature Ex-
traction for Reuse of Natural Language Requirements (FENL), a semi-automated approach, is presented.
Using keyword occurrences from different noun-verb-adjective combinations, this approach involves find-
ing phrases that can be software features. The method includes the manual creation of a feature model
and is assessed using common metrics such as recall, accuracy, and F-Measure, demonstrating similar
performance with related works.

Feature Models (FMs) are a popular formalism for representing and analysing the similarities and
differences of software products, according to Davril et al. (2013). They use contrastive analysis to
automatically extract domain-specific phrases from textual documents that can be found on marketing
websites like SoftPedia1 and online product repositories. The authors classify these terms as either
common or variable features using a combination of linguistic features and machine learning classifiers,
based on their distribution in various vendor brochures. Resolving the semantic links between the
detected features is not mentioned, despite the fact that this research aims to automatically develop a
feature model.

The framework created in (Bing et al., 2016) maps popular features to associated product attributes
on the product description pages in addition to identifying these traits from customer reviews. A dis-
criminative graphical model based on hidden Conditional Random Fields (CRFs) is used in the paper
to overcome the lexical gap between customer reviews and product descriptions. The framework uses
unsupervised methods and is intended to be domain-agnostic, which means it may be applied to a variety
of different domains without the need for labelled training data. The available review content for each
product and the challenge of integrating the information that has been retrieved are the limiting factors
of this strategy.

A graphical model is also used by Wong et al. (2008), whose method tackles both extraction and
normalization of product attributes from text fragments found in web pages. The Dirichlet mixture
model used allows for an unlimited number of attributes to be discovered. The authors make use of both
content and layout information about the web pages structure. This introduces some limitations due to
the dependency on the layout format of web pages, which can vary significantly across various sites.

Finally, a more recent approach by Liu et al. (2018) proposes a hierarchical attention recurrent neural
network (RNN) as an end-to-end model for information extraction from the web. The advantage of
using an RNN is that context features are naturally incorporated. The authors suggest that this model
can be trained with only a few labeled pages, which reduces the manual annotation effort required.
This method encourages the effort of training a model without many training examples, however, the
information extracted in this case is concerned only with a limited number of specific record attributes.

1https://www.softpedia.com/

8

1 Introduction

As a result, the ability to generalize and adapt to varied datasets or domains could be limited, especially
if the number of attributes to be extracted is not pre-determined.

9

1.4 Research Questions

1.4 Research Questions

In response to the constraints outlined in the problem statement, a main research question (MRQ), was
formulated:

MRQ: How can software practitioners be supported in their technology selection process with automati-
cally updated knowledge regarding software products across different vendors?

This research question has been split up into six sub-research questions (RQs) to guide the research:

• RQ1: Which unsupervised machine learning methods have been explored for capturing and struc-
turing knowledge about software products from vendors’ online resources into a knowledge graph?

• RQ2: What are the key characteristics and capabilities of unsupervised machine learning methods
used to extract knowledge from software vendors’ resources?

• RQ3: How can the effectiveness and accuracy of unsupervised machine learning methods for ex-
tracting knowledge about software products be evaluated?

• RQ4: How can an automated system be designed to extract and structure knowledge about software
products from different vendors into a unified knowledge graph?

• RQ5: How can the performance and quality of a system for automatically generating a knowledge
graph from software vendors’ data be evaluated?

Research Questions 1 to 3 are answered using a systematic literature review (SLR) and are related
to the state-of-the-art information extraction methods described in the literature. This process involves
extracting and analyzing data to generate insights into existing models, their attributes, and the methods
used to evaluate them. Based on the findings from the literature review, Design Science methodology
will be employed to develop and evaluate an automated software feature extraction system, providing
answers to Research Questions 4 and 5. Additionally, experiments will be conducted to validate the
methods used.

10

1 Introduction

1.5 Baseline Pipeline

The ultimate objective of this research, which encompasses the development of an automated software
feature extraction system, is visually represented in a baseline pipeline as seen in Figure 1.1. This pipeline
was based on the approach proposed by (Farshidi & Zhao, 2022) and the current design incorporates two
parallel pipelines to address different aspects of software feature extraction. The Software Features
Extraction Pipeline focuses on extracting boolean feature information from vendor websites. The
Contextual Data Extraction Pipeline aims to gather contextual data from external software engi-
neering resources. The output from both pipelines is then integrated to form a comprehensive Knowledge
Graph, providing a more holistic view of software features and qualities.

Knowledge Graph Generation

 Contextual Data Extraction Pipeline (Domain Data)

Software Features Extraction Pipeline (Vendor Document Analysis)

Vendor
Documents
(Websites)

Software
Engineering
Repositories/

Domain
Taxonomies

Preprocessing
Language

Model

Training
Dataset

Mapping (JSON)
<Features,Vendors,Values>

Semantic
Linking

Data Extraction

Crawler

APIs

Data Extraction

Crawler

APIs

Mapping (JSON)
<Features,Descriptions>Preprocessing

Relevancy
Filter

Ontology
Creation

Knowledge
Graph

Figure 1.1: Baseline Pipeline of the Software Features Extraction Process

Vendor Documents is the primary data source for the Software Features Extraction Pipeline. It
consists of various vendor websites that provide detailed information about software features, capabilities,
and specifications. The content from these websites is scraped or accessed via APIs to serve as raw data
for feature extraction.
Software Engineering Repositories/ Domain Taxonomies serve as the data sources for the second
pipeline. It focuses on gathering contextual data from online software engineering resources. From such
resources, more information can be extracted regarding software features which might not be directly
accessible from vendors websites. This can aid the derivation of relationships between the identified
features and consequently the creation of a domain ontology.
Data Extraction is part of both pipelines and entails the use of web crawlers or application program-
ming interfaces (APIs) to systematically collect textual data, which is then stored in a structured format
to facilitate its analysis.
Preprocessing is essential in both pipelines for cleaning and structuring the raw data collected. It
focuses on preparing the textual data, removing redundant content, and converting it into a suitable
format for the specific learning approaches used in the respective pipelines. The goal is to create a
uniform dataset that can be effectively analyzed in the following stages.
The Training Dataset which is yet to be determined, serves as a resource for training and testing the
feature extraction model. The dataset is expected to include a categorized list of software technologies.
The listed features can also act as seed words for unsupervised learning methods like topic modeling,
guiding the extraction process and improving the quality of the newly identified features.
The Language Model component, often leveraging advanced architectures like BERT (Devlin et al.,
2019), serves as the core engine for feature extraction in the pipeline. It is trained to identify and extract
relevant software features from vendor websites. The model understands the contextual relevance of
words and phrases, enhancing its performance in various NLP tasks. This component is crucial for both
semi-supervised and unsupervised learning approaches, enabling the system to generalize well to new,
unseen data.
Mapping generates individual JSON files for each software vendor. These JSON instances serve as an
intermediate representation of the extracted data and list all the software vendors against a unified set

11

1.5 Baseline Pipeline

of features, along with the boolean values indicating which features are offered by each vendor. This
serves as the preamble knowledge based on which the knowledge graph will be constructed.
The Relevancy Filter is the component responsible to process the collected information and filter out
noise, to ensure that the data used in subsequent stages of the pipeline is relevant.
The Mapping in this pipeline is responsible for organizing the feature information into a structured
JSON format, where each feature will be listed along with descriptive information to provide a better
understanding of what each feature represents.
The Semantic Linking component is responsible for identifying and resolving features that are se-
mantically equivalent but may be expressed differently across various software-specific sources. This is
crucial for consistently aggregating data, ensuring that the same features are not treated as different due
to variations in terminology or phrasing.
Ontology Creation processes the outputs from both pipelines to create the domain ontology, based on
which the Knowledge Graph will be structured. The resultant knowledge graph stores all the collected
information, creating a comprehensive repository that intuitively displays the features offered by various
software vendors.

12

2 Research Approach

2 Research Approach

This section outlines the diverse research methodologies employed in this study, which aims to automate
the extraction of software features from vendor websites and review platforms. The research leverages a
multi-faceted approach that includes a comprehensive literature review, design science research (DSR)
for artifact creation, and data analysis.

2.1 Research Methods

The research questions outlined in Section 1.4 are tackled through a multi-faceted research strategy.
This blend of methodologies enriches our understanding of the issues at hand, thereby strengthening the
credibility and robustness of the findings. Our research leverages three primary methodologies: Literature
Study, the application of Design Science principles, and empirical Experiments. Figure 2.1 offers a
detailed breakdown of how each methodology contributes to answering our Main Research Question
(MRQ) and Research Questions 1 through 5. A marked “X” at the cross-section of a methodology and
a research question signifies that the methodology is employed to address that specific question.

Research Questions Research methods

Li
te

ra
tu

re
 s

tu
dy

D
es

ig
n

S
ci

en
ce

E
xp

er
im

en
ts

MRQ How can software practitioners be supported in their technology selection process with
automatically updated knowledge regarding software products across different vendors? X X X

RQ1
Which unsupervised machine learning methods have been explored for capturing and
structuring knowledge about software products from vendors’ online resources into a
knowledge graph?

X X

RQ2 What are the key characteristics and capabilities of unsupervised machine learning
methods used to extract knowledge from software vendors’ resources? X X

RQ3 How can the effectiveness and accuracy of unsupervised machine learning methods for
extracting knowledge about software products be evaluated? X X

RQ4 How can an automated system be designed to extract and structure knowledge about
software products from different vendors into a unified knowledge graph? X X

RQ5 How can the performance and quality of a system for automatically generating a
knowledge graph from software vendors' data be evaluated? X X

Figure 2.1: Research methods used to answer research questions

2.2 Literature study

The literature review serves as a foundational element of this research, focusing on the existing body
of work related to software feature extraction, unsupervised NLP techniques, and decision support in
software engineering. The aim is to identify gaps and opportunities in the current research landscape,
thereby shaping the primary research questions of this study. Criteria for the inclusion and exclusion of
academic papers have been established, focusing on their relevance to information extraction, knowledge
graph construction, recommendation systems, and other related areas. In order to conduct the literature
study, the protocol presented in (Farshidi et al., 2024) was followed.

The cornerstone of this research is the Systematic Literature Review (SLR), which serves to rigorously
investigate and synthesize existing studies in the realm of automatic software feature extraction and un-
supervised NLP techniques. The SLR is guided by a well-defined review protocol proposed by (Kitchen-
ham, 2004), which outlines the methodological approach to be followed and consists of eleven phases:
Problem formulation, research questions, review protocol (search strategy), search process, searching,
screening, inclusion/exclusion criteria, quality assessment, data extraction, data analysis and synthesis,
and reporting.

The problem formulation and research questions guiding this study are essential for a successful
SLR, and they were outlined in the first chapter to establish the scope and context of the research. Each

13

2.2 Literature study

of the subsequent stages was meticulously documented in separate spreadsheets to keep track of the
progress.

The SLR methodology for this study is outlined in the review protocol, which follows a five-step
approach based on the framework suggested by (Kitchenham, 2004). The initial step involves the search
and screening process; the second step sets and applies criteria for inclusion and exclusion; the third step
assesses the quality of the chosen papers; the fourth step gathers data from these papers; and the fifth
step involves the analysis and synthesis of the collected data. The results of the outlined methodology
can also be viewed in a spreadsheet, made available online2.

The initial search process stage involved a manual search for relevant academic papers in the chosen
field, guided by an initial hypothesis and understanding of the subject matter. An exploratory search was
conducted in the Scopus database3, based on initial hypotheses. These hypotheses were centered around
key themes such as “software feature extraction”, “unsupervised information extraction” and “decision
support in software engineering”. The initial set of assembled papers served as the basis for deriving
a search term for a more extensive, automated searching process. Armed with this search term, the
study then expanded its focus to four major digital libraries: IEEEXplore 4, Springer5, ACM DL6, and
ScienceDirect7. All the gathered papers were then exported into a CSV file and information on each
is thoroughly documented in a spreadsheet, capturing the following details: Title, Authors, Abstract,
Keywords, Venue, Venue Ranking or Quality as documented in Scimago Journal and Country Rank
(SJR)8 for academic journals and in the Computing Research & Education (CORE)9 Conference Portal
for conference papers, Citations count, Year of publication. During the screening phase, a preliminary
assessment of the gathered papers was conducted to determine their relevance to this research. This
assessment involved a quick examination of the papers’ abstracts, keywords, and any other pertinent
details. Hence, the Relevance was also recorded using ordinal values (None, Low, Medium, High) to
append to the aforementioned details.

Subsequent to this initial screening, inclusion and exclusion criteria were employed to separate rele-
vant papers from those that were not pertinent. Criteria for consideration included the paper’s language
(English), availability, relevance score, year of publication, citation count, and the prestige of the confer-
ence or journal where it was published. After considering these factors, each paper was assigned a score
and a predefined score threshold was then applied to finalize the selection of papers for inclusion in the
SLR.

Following the inclusion/exclusion process, a quality assessment of each chosen paper was carried out.
This assessment involved extracting relevant information from the papers, including details about the
research methodology (whether it constituted a literature study or an experimental study, the use of
qualitative or quantitative methods etc.), data collection approach, and the authors’ chosen evaluation
method. Moreover, it involved inspecting whether the paper presented a clear problem statement,
research questions, research challenges, findings, and real-world use cases. This additional set of standards
was established to evaluate each paper’s quality further and determine their incorporation in the study.

Papers that met these quality standards were then subject to data extraction, where key information
like utilized features, models, and evaluation methods were gathered. This data served as the basis for
understanding current best practices in the field.

The final stage involved data analysis and synthesis, aimed at understanding the collected infor-
mation, filtering out less popular models, and categorizing similar features under unified terms. The
culmination of this SLR is a comprehensive report detailing the findings, which is elaborated upon in
the third chapter of this study.

2https://zenodo.org/records/13899562
3https://www.scopus.com/home.uri
4https://ieeexplore.ieee.org/Xplore/home.jsp
5https://link.springer.com/
6https://dl.acm.org/
7https://www.sciencedirect.com/
8https://www.scimagojr.com/
9http://portal.core.edu.au/conf-ranks/

14

https://zenodo.org/records/13899562
https://www.scopus.com/home.uri
https://ieeexplore.ieee.org/Xplore/home.jsp
https://link.springer.com/
https://dl.acm.org/
https://www.sciencedirect.com/
https://www.scimagojr.com/
http://portal.core.edu.au/conf-ranks/

2 Research Approach

2.3 Design science

This research utilized a Design Science methodology, as outlined by (Hevner, 2002). Tailored to facilitate
inquiry in the Information Systems domain, the primary aim of Design Science research lies in the
development of innovative artifacts and the elucidation of methodologies for their creation, thereby
enhancing the existing environment. Within the scope of Information Systems, such artifacts may include
constructs, models, methods, implementation, and algorithms. Three fundamental cycles constitute the
framework of Design Science research. The initial cycle referred to as the Relevance Cycle, focuses on
the applicability of the research within its designated context. This cycle delineates both the research
prerequisites and the evaluation metrics, provoking essential queries regarding the artifact’s contribution
to environmental betterment and the quantification of such improvements.

Subsequently, the Rigor Cycle posits that a substantial knowledge base, comprising scientific theories
and engineering methods, underpins Design Science research. This foundational layer facilitates rigorous
exploration within the research domain. The knowledge base should incorporate state-of-the-art exper-
tise, prior experiences in the research field, and pre-existing artifacts and processes within the application
domain.

The final cycle, known as the Design Cycle, serves as the pivotal mechanism that governs the entire
process. Activities within this cycle center on the artifact’s creation and evaluation, with immediate
feedback guiding subsequent design refinements. Although this phase represents the research’s focal
point, a reasonable equilibrium between artifact development and its assessment is imperative.

Integration of these three cycles results in the creation of an artifact that maintains a robust standing
within the research area and endures scrutiny across both theoretical and practical dimensions of the
research domain. Figure 2.2 delineates the Design Science model, encapsulating the aforementioned
cycles.

Figure 2.2: Designed Science Model based on (Hevner, 2002)

15

3 Systematic Literature Review

This chapter presents the findings of the systematic literature review (SLR) outlined in Chapter 2. The
SLR aimed to acquire an in-depth understanding of automatic software feature extraction, focusing on
techniques and models employed. The review also sought to address specific research questions (RQ1-3)
pertaining to using unsupervised NLP techniques for extracting software features from vendor websites,
documentation, and review platforms. This includes the machine learning models, techniques, and
algorithms used in existing literature, as well as the sub-tasks and methods they employ, such as text
processing methods, language modeling, and other aspects of information retrieval. The collected data
serves as a foundation for designing and implementing the feature-extracting artifact proposed in this
research.
The SLR was conducted following the guidelines proposed by (Kitchenham, 2004). Additionally, the
systematic literature review performed by (Farshidi et al., 2020) served as a valuable reference for the
methodology and scope of this SLR. The subsequent sub-chapters will delve into the process, ratio-
nale, and key findings of the SLR. Each stage of the conducted literature study was documented in a
spreadsheet which is made publicly available (Constantinou, 2024).

3.1 Data Sources and Search Strategy

Chapter 2 outlined the methodology for the literature search, which was executed in two distinct phases:
initial hypothesis and automatic search. The initial hypothesis helped assemble an initial collection of
academic papers, the keywords of which were then synthesized into a search term for automated data
collection. Further details on this search mechanism will be discussed in the forthcoming section.
For this literature review, the main digital libraries used were the ACM Digital Library, Springer Publish-
ing, IEEE Xplore Digital Library, and ScienceDirect. These platforms were selected for their credibility
and the high academic standing of the papers they host, especially in the domain of interest.

3.2 Search Process

Figure 3.1 illustrates the sequence of actions taken and the cumulative count of papers obtained during
the entire literature search process. This includes both the initial hypothesis and the automatic search
stages. In the initial hypothesis stage, a set of papers was gathered based on existing domain-specific
knowledge and theoretical foundations. To align with the research questions, initial search queries were
formulated and executed in Scopus to retrieve pertinent academic papers, such as:

• “unsupervised feature extraction”

• “software documentation” AND (“text mining” OR “information extraction”)

• “websites” AND (“text mining” OR “information extraction”)

• “software engineering” AND (“decision-making” OR “technology selection”)

• “feature extraction” AND “language models”

• “information retrieval" AND “textual data”

The details of the 73 extracted papers, i.e., the Title, Authors, Abstract, Keywords, Venue, and Venue
Ranking, were documented, as detailed in Chapter 2. The keywords of these papers were then leveraged
to create the search term to be used in the automatic search. The utilized search term is presented
below:

(“software feature” OR “product feature” OR “requirements” OR “software selection” OR “knowledge”)
AND (“textual” OR “web” OR “text mining”) AND (“unsupervised”) AND (“extraction” OR “retrieval”)

The search term was designed to capture current methodologies and key terms in automatic software
feature extraction, thereby streamlining the acquisition of papers from the previously mentioned digital
libraries. The outcomes of this automatic search were saved in either CSV or Bibtex formats, offering a
streamlined approach for organizing and storing these documents. Subsequently, duplicate, incomplete,
or corrupted entries were eliminated. Notably, the focus was mainly on papers published after 2016,
although some older yet impactful papers were also included at different stages. The automatic search
phase yielded 2131 papers, resulting in a comprehensive collection of 2204 papers from manual and
automated search methods.

16

3 Systematic Literature Review

Initial Hypothesis

Scopus

Automatic Search

IEEE Explore

Springer

ACM DL

Science Direct

Search Process

Review topic area, titles, abstracts
and conclusions

Apply inclusion and exclusion criteria

Perform scanning and skimming

Conduct snowballing: scan the
references

Read the papers completely

Assess the quality of primary studies

Add primary studies to the
knowledge base

73

353

51

1029

698

2131

Knowledge Base

155
Primary Studies

Knowledge
Extraction

Figure 3.1: SLR Search Process based on (Farshidi et al., 2020)

Afterwards, a multi-step approach was employed to ensure comprehensive and quality data collection.
Initially, the topic area of the collected papers was reviewed, followed by a thorough examination of
titles, abstracts, and conclusions of potential papers. Inclusion and exclusion criteria were then applied
to filter the papers further. Scanning and skimming techniques were used for a quick assessment of the
content. The snowballing method was also implemented, wherein the references of selected papers were
scanned for additional relevant studies. Subsequently, the remaining papers were read to evaluate their
quality and relevance to the research questions. High-quality primary studies were then added to the
knowledge base for further analysis. The final count of papers subject to analysis and data extraction
was 155.

3.3 Inclusion and Exclusion Criteria

After completing both the manual and automated search phases, an assessment stage was initiated to
scrutinize the compiled literature, including papers obtained through the snowballing technique. In this
stage, the abstracts and keywords of each paper were meticulously examined to determine their relevance
to the study on automatic software feature extraction. Papers were then ranked on an ordinal scale with
four categories: None, Low, Medium, and High. A “None” ranking indicated that the paper had no
relevance to the study, essentially deeming it out of the review process, while a “High” ranking suggested
significant relevance.
Due to the emerging nature of the research field, fewer papers are highly relevant, making relevance
a more heavily weighted factor in the selection process. Citation count and venue ranking bore equal
weights, while the year of publication was used to prioritize more recent methods, which are more likely
to represent the current state of the art.
Assessing these factors for each study indicated their potential for inclusion in the next phase of literature
selection. Nevertheless, a definitive decision could not be made solely based on this score, as the initial
screening lacked sufficient information to determine relevance conclusively. It is essential also to note
that more recent studies may not have a high number of citations at the time of collection of papers, but
this is not always indicative of their practical value.

3.4 Quality Assessment

Following the inclusion and exclusion criteria implementation, a further quality assessment of the selected
papers was conducted. This assessment acted as a more in-depth extension of the initial criteria, offering
a thorough evaluation of each paper in the context of automatic software feature extraction. Each

17

3.4 Quality Assessment

paper underwent a structured review and annotation process, wherein quality assessment questions were
answered with binary outcomes: “Yes” or “No”. For example, if a paper had a clear problem statement,
the corresponding field in the evaluation data sheet was marked as “Yes” for that particular paper. Apart
from the problem statement, the evaluation criteria also included: Inclusion of research questions, clear
research challenges, clear statement of findings and finally, whether the results of the study had real-world
use cases or not.
As previously noted, a total of 155 studies were ultimately chosen for data extraction. Before exploring
the data extracted from these studies, it’s essential to consider the academic venues where they were
published. Figure 3.2 visually represents the distribution of these selected papers across various scholarly
journals. This visualization not only underscores the range of sources but also adds a layer of credibility
to the thoroughness of the literature review. It offers a quick overview of the academic settings that
contribute to the foundation of this research. Figure 3.3 indicates the count of journal papers and
conference papers and the distribution of scores assigned to them by the online platforms mentioned
in Chapter 2. These figures underscore the range of sources but also add a layer of credibility to the
thoroughness of the literature review.

ACM Comput. Surv.

1,3%
World Wide Web

2,6%
Journal of Big Data

1,9%
ACM Trans. Web

1,3%
ACM Trans. Inf. Syst.

2,6%
ACM Trans. Softw. Eng. Methodol.

2,6%
IEEE/ACM Trans. Audio, Speech and Lang.

1,9%
Proc. VLDB Endow.

1,9%
ACM Trans. Knowl. Discov. Data

3,2%
ACM Trans. Manage. Inf. Syst.

1,3%

Data Mining and Knowledge Discovery

1,9%
Knowledge and Information Systems

3,2%

Neural Computing and Applications

7,1%

IEEE Access

5,8%

Information Processing & Management

9,0%
Information and Software Technology

0,6%
Applied Soft Computing

0,6%
Neurocomputing

0,6%
Computers

1,3%
Lecture Notes in Computer Science

1,3%
Expert Systems with Applications

1,9%

Knowledge-Based Systems

25,2%

Cognitive Computation

0,6%

Figure 3.2: Distribution of Publication Journals

Journal Papers Conference Papers
SJR Rank Count CORE Rank Count
Q1 129 A* 2
Q2 18 A* 3

B 1
N/A 2

147 8
Total = 155

Figure 3.3: Overview of the rankings of the selected studies

Apart from the academic venues in which they are published, the temporal distribution of the selected
studies also holds importance. The primary emphasis of this literature review has been directed towards
research articles published after 2016. This deliberate selection is based on the rationale that such papers
are more inclined to represent the current state of the art. This is reflected in Figure 3.4, which shows
the year-wise distribution of the selected papers. The data reveals that the predominant articles were
published in 2020 and 2021, amounting to 35 and 29 papers, respectively. In both 2022 and 2023, there
is a notable contribution of 22 papers. Although the inclusion criteria assigned a lower score to older

18

3 Systematic Literature Review

publications, several influential works dating back to 2009 have been included due to their enduring
significance in the area. This chart offers a detailed overview of the period covered by the literature that
serves as the foundation for this research.

Number of Publications

Ye
ar

 o
f P

ub
lic

at
io

n

2023

2022

2021

2020

2019

2018

2017

2016

2013

2011

2009

0 10 20 30 40

Figure 3.4: Yearly distribution of the selected publications

3.5 Data Extraction

After applying the inclusion and exclusion criteria and assessing the quality of the articles, a final selection
of papers suitable for data extraction was made. This marked the beginning of the data extraction phase.
The primary objective was to methodically gather and categorise relevant information from the chosen
articles to assist a thorough comprehension of automated software feature extraction.

3.5.1 Models, Techniques & Algorithms

The relevant data for this systematic literature review (SLR) encompassed the machine learning models,
methods, algorithms, and assessment approaches utilized. Distinctive attributes and qualities of diverse
implementations in different areas and applications were also documented. These characteristics define
other aspects of each implementation, covering essential components such as data representation and
pre-processing and more complex and specialised properties. These encompass various educational ap-
proaches and elements such as sentiment lexicons, complex analytical tasks, model-specific setups, and
other specialised methods. This material provides insights into the layered complexity of machine learn-
ing implementations, spanning from fundamental components to advanced features. It offers a structured
approach to comparing the diverse range of techniques and methods used in the literature.

3.5.2 Tools, Libraries & Resources

The various tools, libraries, and resources identified in the academic papers span multiple NLP and
machine-learning areas. These resources can be helpful in different aspects of the design. For instance,
some tools specialized in text processing and natural language understanding can aid the extraction of
pertinent information from the raw textual data, particularly identifying segments that contain informa-
tion related to software features.

3.5.3 Datasets

Numerous studies in the literature have utilized existing datasets for their research. The extraction of
these datasets could offer insights for developing the feature extraction artifact, specifically in terms of
the features and subtasks they encompass. While most identified datasets are not explicitly tailored

19

3.6 Data Analysis and Synthesis

for unsupervised software feature extraction, they could inform different aspects of the artifact’s design,
such as feature engineering, data pre-processing, and evaluation metrics. Moreover, these datasets cover
a multitude of NLP tasks, such as sentiment analysis and text classification, which could be incorporated
into the pipeline introduced in Chapter 2 to improve its robustness and versatility.

3.5.4 Research Annotations

In addition, administrative details were also collected, including the name provided to each approach by
the authors (if any), the type of research, the type of learning implemented (supervised, unsupervised,
etc), the domain category (such as text mining, classification), the specific application (such as sentiment
analysis, keyphrase extraction etc), the data collection method (manual or automatic), and any available
GitHub URLs or other platform URLs related to the approach.

3.6 Data Analysis and Synthesis

This section involves a comprehensive examination of the knowledge acquired from the SLR. The goal
serves a dual function: to guide the design decisions about the forthcoming feature extraction artifact
and to address the initial research questions. An exhaustive component analysis is conducted, examining
the occurrences of models and investigating temporal patterns in their utilization. In addition, this study
examines the relevant application areas and implementation characteristics that are important for the
artifact’s design. This comprehensive study is the foundation for comprehending the range of machine
learning models, techniques, and applications that might be included in our feature extraction system.
By linking these insights with potential evaluation methods, a holistic view is provided to guide the
creation and evaluation stages of the artifact.

3.6.1 Component Analysis

The component analysis is a crucial result of the SLR and establishes the foundation for the engineering
and design stages of the artifact. The requirements indicated in the conceptual pipeline will influence
the design of the feature extraction system. This research seeks to uncover opportunities for significant
contributions by analysing the methodologies utilised in state-of-the-art models and methods. The study
yields a strong quantitative knowledge foundation that addresses the primary research questions.
Initially, the component analysis started with pre-processing data to exclude models with a lower fre-
quency of occurrence in the literature. By explicitly considering models that appear four or more times,
the study was refined to include 51 models with a significant presence in academic research. This guar-
antees that the models chosen for further analysis are extensively researched and likely to be dependable
and efficient for various tasks. Table 3.5 provides a concise overview of this component analysis, empha-
sising the frequency of different models and possible combinations of methodologies documented in the
current body of research.
Before discussing the clustering of models, it is sound to mention a few notable co-occurrences. BERT
and BiLSTM appear together 17 times, as do GloVe and BiLSTM. The significant co-occurrence counts
suggest a synergistic association between these models, commonly used with intricate tasks in natural
language processing. Additional notable pairs include Word2Vec and Cosine Similarity, which have 11
co-occurrences, and CRF and BiLSTM, which have 10. These common pairings serve as a foundation
for future clustering studies to provide a more comprehensive knowledge of how models might be effi-
ciently matched or grouped for different tasks. Below, we will explore several noteworthy pairings of
co-occurrences.
(BERT, BiLSTM): The frequent co-occurrence of BERT (Devlin et al., 2019) and BiLSTM (Huang et
al., 2015) suggests a combination of pre-trained contextual embeddings (BERT) with sequential modeling
(BiLSTM). This pairing is particularly effective in tasks requiring contextual understanding of language
and sequence processing.
(GloVe, BiLSTM): The combination of GloVe (Pennington et al., 2014) word embeddings and BiLSTM
recurrent networks is often employed in tasks involving natural language understanding and generation.
This pair is effective for sentiment analysis (Pimpalkar & Raj R, 2022).
(Cross Entropy Loss, BiLSTM): Cross Entropy Loss (Mao et al., 2023) is a common loss function
used with BiLSTM and other Neural Network models in various classification and sequence-to-sequence
tasks, including machine translation (H. Li & Lu, 2021).
(Word2Vec, Cosine Similarity): Word2Vec (Mikolov, Chen, et al., 2013a) embeddings paired with
Cosine Similarity are widely used for measuring semantic similarity between words or documents. This

20

3 Systematic Literature Review

BiLSTM
BiLSTM 40 Cosine Similarity

Cosine Similarity 4 40 TF-IDF
TF-IDF 6 7 33 BERT
BERT 17 7 3 29 Word2Vec

Word2Vec 7 11 7 5 26 GloVe
GloVe 17 4 3 9 5 25 Cross Entropy Loss

Cross Entropy Loss 12 2 1 9 4 8 21 SVM
SVM 5 5 10 4 6 2 1 21 Knowledge Graph

Knowledge Graph 4 5 3 5 2 2 3 2 21 Adam
Adaptive Moment Optimization (Adam) 9 4 4 6 2 8 7 3 19 Logistic Regression

Logistic Regression 3 7 1 5 3 1 7 1 1 18 LDA
Latent Dirichlet Allocation (LDA) 2 8 5 1 4 2 1 3 1 2 18 CSI

Co-occurence Statistical Information (CSI) 3 4 5 4 3 2 2 2 1 3 2 17 Ontology
Ontology 2 6 5 3 4 1 2 4 3 1 3 3 1 17 Skip-gram

Skip-gram 6 7 3 1 8 3 2 4 2 2 2 2 4 2 16 CNN
CNN 8 1 5 3 4 5 3 3 1 3 1 1 1 4 15 CRF
CRF 10 1 2 6 3 4 4 6 1 3 2 2 1 3 3 15 Rule-based Algorithm

Rule-based Algorithm 4 3 2 3 1 4 3 1 3 3 3 3 12 RNN
RNN 7 1 4 2 4 3 2 4 1 1 1 2 3 7 3 3 12 PMI

Pointwise Mutual Information (PMI) 2 3 2 1 1 3 1 3 1 3 2 2 3 1 1 1 1 1 11 L2
Ridge Regularization (L2) 3 2 2 2 1 1 3 2 5 1 1 1 1 11 FCN

Fully Connected Network (FCN) 2 2 1 4 1 2 5 1 2 3 1 2 2 1 2 1 1 10 Random Forest
Random Forest 1 4 5 2 4 1 2 5 1 1 6 1 2 3 1 1 1 10 Decision Tree

Decision Tree 1 1 5 5 2 7 7 2 2 2 1 2 2 1 6 10 K-means
K-means 2 4 2 1 1 2 1 2 1 1 9 Dot-Product

Dot-Product 1 1 4 1 2 2 2 2 1 1 1 1 2 8 Gibbs sampling
Gibbs sampling 2 2 4 2 1 2 3 1 1 7 2 3 1 1 1 1 1 2 1 8 DNN

Deep Neural Network (DNN) 3 3 2 2 1 3 2 3 1 2 2 1 2 1 1 1 1 1 2 1 1 1 8 KNN
K Nearest Neighbours (KNN) 4 3 1 3 1 2 5 1 1 4 1 3 2 1 1 1 1 4 4 1 1 8 LSA

LSA 4 2 1 2 1 2 7 Naive Bayes
Naive Bayes 1 1 4 4 1 6 6 1 1 2 1 5 6 1 3 7 TextRank

TextRank 2 2 4 2 1 3 1 1 3 1 2 1 2 1 2 3 1 1 2 7 OSSC
ontology-based semantic similarity calculation (OSSC) 1 3 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 7 GNN

Graph Neural Network (GNN) 1 1 1 2 2 2 1 4 2 1 1 2 1 1 6 Jaccard Similarity
Jaccard Similarity 4 2 2 1 1 2 2 1 2 1 1 1 1 1 1 6 PageRank

PageRank 1 2 3 2 2 1 1 3 2 1 1 2 1 1 2 1 1 1 1 3 1 6 PCC
Pearson Correlation Coefficient (PCC) 4 1 2 1 1 1 1 1 1 1 1 6 GRU

Gated Recurrent Unit (GRU) 4 1 3 2 1 1 1 1 2 2 1 2 1 1 1 6 BIO tagging
BIO tagging 5 1 4 2 2 3 2 1 5 1 1 1 1 6 Association Rule Mining

Association Rule Mining 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 5 RoBERTa
RoBERTa 2 1 4 1 1 2 1 1 2 2 1 1 1 1 5 Silhouette Coefficient

 Silhouette Coefficient 2 1 1 1 1 3 1 2 1 2 2 1 1 3 1 1 5 Hamming Distance
Hamming Distance 2 1 1 1 1 1 3 2 1 5 Euclidean Distance
Euclidean Distance 2 1 1 1 1 1 1 1 1 1 1 5 SVD

SVD 2 2 1 1 1 2 3 4 FCM
Fuzzy C-Means (FCM) 3 3 1 1 1 1 4 GCN

Graph Convolutional Network (GCN) 2 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 4 CBOW
Continuous Bag of Words (CBOW) 1 1 2 2 1 1 2 1 2 2 1 1 1 1 1 4 DBN

DBN 1 4 1 3 1 1 2 1 1 2 1 3 1 1 2 1 1 2 2 1 1 4 PCA
Principal Component Analysis (PCA) 2 1 1 2 1 1 1 1 1 1 1 1 4 PPR

Personalised PageRank (PPR) 3 2 2 2 2 1 1 2 4

Figure 3.5: Model combinations occurrences found in literature

combination is foundational in information retrieval, recommendation systems, and document clustering,
which may also be applied in the knowledge graph generation.
(CRF, BiLSTM): Conditional Random Fields (CRF) (Sutton & McCallum, 2010) and BiLSTM often
co-occur in sequence labeling tasks (Huang et al., 2015). Such tasks include named entity recognition
(NER) and part-of-speech tagging (POS), which are also often tackled in information extraction pipelines.
K-Means clustering was employed to uncover patterns within these 51 models based on their co-occurrence
in the literature. The method is particularly useful for several reasons. Firstly, it highlights commonly
used models, offering insights into potential model compatibility for different functionalities in the fea-
ture extraction system. Secondly, it facilitates an understanding of the diversity of models available for
different tasks, thereby enriching the design possibilities for the artifact. The elbow method was used
to determine the optimal number of clusters, which is crucial for the interpretability and utility of the
clustering results. This method revealed that 4 clusters provide a balanced trade-off between explanatory
power and model complexity, however the first cluster was significantly larger than the others and was
therefore subdivided into smaller, more focused clusters. Figure 3.6 is a culmination of the previous
steps designed to uncover relationships between different machine learning models frequently employed
together. A provisional interpretation of the thematic focus of each cluster is also shown based on the
models it contains.

3.6.2 Temporal Trends

The subsequent research expands the investigation to temporal trends, examining the yearly distribution
of these models from 2016 to 2023, as shown in Figure 3.7. This data provides insight into both the
persistent significance of specific models and the changing patterns in their use over time. It is worth
mentioning that models like BiLSTM, Cosine Similarity, and TF-IDF (Das et al., 2023) are regularly
favored options, with BiLSTM appearing 39 times, Cosine Similarity showing 33 times, and TF-IDF ap-
pearing 31 times throughout the observed years. Conversely, models like Skip-gram (Mikolov, Sutskever,
et al., 2013), Decision Tree (Rokach & Maimon, 2005), Gate Recurrent Unit (GRU) (?), and Hamming
Distance (Bookstein et al., 2002) have declined usage, possibly reflecting shifts in technology or research

21

3.7 Model Categories

Cluster Models Interpretations
0 CRF, Dot-Product, GRU, BIO tagging, RoBERTa, GCN, CBOW Focused on sequence processing and tagging techniques.

1

Cross Entropy Loss, Knowledge Graph, Adam, Ontology, Skip-gram,
CNN, Rule-based Algorithm, PMI, L2, FCN, Gibbs sampling, DNN, GNN,
Association Rule Mining Geared towards optimization and semantic understanding through graph-based models.

2
LDA, K-means, LSA, Jaccard Similarity, PCC, Silhouette Coefficient,
Hamming Distance, Euclidean Distance, SVD, FCM, PCA Commonly used for topic modeling and clustering methods.

3 CSI, RNN, TextRank, OSSC, PageRank, DBN, PPR Primarily involves ranking and information retrieval algorithms.
4 BiLSTM, BERT, GloVe Focused on deep learning models for natural language understanding.
5 Cosine Similarity, Word2Vec Primarily involves similarity and distance measure techniques.

6
TF-IDF, SVM, Logistic Regression, Random Forest, Decision Tree, KNN,
Naive Bayes Geared towards text classification and feature extraction.

Figure 3.6: Results of K-Means Clustering on the models

focus. These temporal insights offer additional contextual depth, assisting in comprehending model
suitability and research trends.

B
iL

S
TM

C
os

in
e

S
im

ila
rit

y
TF

-ID
F

B
E

R
T

W
or

d2
Ve

c
G

lo
Ve

C
ro

ss
 E

nt
ro

py
 L

os
s

S
V

M
K

no
w

le
dg

e
G

ra
ph

A
da

m
Lo

gi
st

ic
 R

eg
re

ss
io

n
LD

A
C

S
I

O
nt

ol
og

y
S

ki
p-

gr
am

C
N

N
C

R
F

R
ul

e-
ba

se
d

A
lg

or
ith

m
R

N
N

P
M

I
L2 FC

N
R

an
do

m
 F

or
es

t
D

ec
is

io
n

Tr
ee

K
-m

ea
ns

D
ot

-P
ro

du
ct

G
ib

bs
 s

am
pl

in
g

D
N

N
K

N
N

LS
A

N
ai

ve
 B

ay
es

Te
xt

R
an

k
O

S
S

C
G

N
N

Ja
cc

ar
d

S
im

ila
rit

y
P

ag
eR

an
k

P
C

C
G

R
U

B
IO

 ta
gg

in
g

A
ss

oc
ia

tio
n

R
ul

e
M

in
in

g
R

oB
E

R
Ta

 S
ilh

ou
et

te
 C

oe
ffi

ci
en

t
H

am
m

in
g

D
is

ta
nc

e
E

uc
lid

ea
n

D
is

ta
nc

e
S

V
D

FC
M

G
C

N
C

B
O

W
D

B
N

P
C

A
P

P
R

2023 5 2 7 2 2 3 5 9 2 2 4 3 3 3 1 1 2 1 3 1 2 2 2 1 2 1 2 1 2

2022 6 3 5 2 4 3 2 8 2 1 3 2 3 2 2 2 3 1 2 2 1 1 2 4 1 1 2 1 1 1 2 1 1 1 1 2 3 1 1

2021 5 5 1 7 7 5 5 5 1 6 5 2 3 4 4 3 1 3 3 3 2 3 1 1 1 2 3 2 2 2 1 1 1 1 1 1 1 1 1 1

2020 12 11 8 3 5 5 4 5 1 4 3 4 3 4 6 2 2 4 4 1 1 1 1 3 1 2 2 3 1 1 1 2 1 4 2 3 3 2 1 1 1 2 2 1

2019 6 8 9 9 5 4 5 1 1 4 5 7 3 2 3 2 2 2 4 3 1 3 3 3 1 2 4 3 2 3 1 1 1 1 1 1 1 1 1 1

2018 5 1 1 4 2 2 1 1 1 3 2 2 1 3 1 1 1 3 1 1 1 1 1 1 2 1 1 1 1 1

2017 1 1 2 2 1 1 1 1 1 1 1 1 1 1

2016 2 1 1 1 1 1 1 1 1 1 1 1 1 1

39 33 31 26 25 21 21 21 20 19 18 18 17 16 16 15 15 12 12 11 10 10 10 9 9 8 8 8 8 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 4 4 4 4 4 4 3

Figure 3.7: The trend of models mentioned in the literature over publication years, highlighting the
popularity and emergence of various models

3.7 Model Categories

This section examines the often-mentioned types of machine learning models in the literature. Figure 3.8
categorizes these models into specific kinds, architectures, and architecture types. This categorization
enables a deeper comprehension of the fundamental techniques, features, and computational structures
that are often used in the field. These insights provide a detailed plan for making well-informed decisions
on the design and implementation of the feature extraction artifact.

By thoroughly examining prominent model categories, architectures, and types of architecture, several
significant observations arise. Models that quantify similarity or involve statistical reasoning are often
used, indicating their potential usefulness in comparing and rating software characteristics. Optimiza-
tion will likely be necessary in the artifact’s design, either for selecting features or tweaking parame-
ters. Language models have the potential to be highly beneficial in comprehending textual data, as the
data also indicates the presence of a scoring mechanism. Chosen architectures are predominantly neural
network-based solutions, highlighting the advantage of employing deep learning techniques for complex
data relationships (Schmidhuber, 2015). Embedding models are crucial for transforming textual input
into a format that is compatible with machine learning models. Graph-based techniques in architecture
emphasise the significance of capturing interconnections between features, which may originate from
phrase patterns and references to these features. The design of the feature extraction artifact matches
state-of-the-art practices well by utilising these widely used methodologies and structures.

22

3 Systematic Literature Review

B
iL

S
TM

C
os

in
e

S
im

ila
rit

y
TF

-ID
F

B
E

R
T

W
or

d2
Ve

c
G

lo
Ve

C
ro

ss
 E

nt
ro

py
 L

os
s

S
V

M
K

no
w

le
dg

e
G

ra
ph

A
da

m
Lo

gi
st

ic
 R

eg
re

ss
io

n
LD

A
C

S
I

O
nt

ol
og

y
S

ki
p-

gr
am

C
N

N
C

R
F

R
ul

e-
ba

se
d

A
lg

or
ith

m
R

N
N

P
M

I
L2 FC

N
R

an
do

m
 F

or
es

t
D

ec
is

io
n

Tr
ee

K
-m

ea
ns

D
ot

-P
ro

du
ct

G
ib

bs
 s

am
pl

in
g

D
N

N
K

N
N

LS
A

N
ai

ve
 B

ay
es

Te
xt

R
an

k
O

S
S

C
G

N
N

Ja
cc

ar
d

S
im

ila
rit

y
P

ag
eR

an
k

P
C

C
G

R
U

B
IO

 ta
gg

in
g

A
ss

oc
ia

tio
n

R
ul

e
M

in
in

g
R

oB
E

R
Ta

 S
ilh

ou
et

te
 C

oe
ffi

ci
en

t
H

am
m

in
g

D
is

ta
nc

e
E

uc
lid

ea
n

D
is

ta
nc

e
S

V
D

FC
M

G
C

N
C

B
O

W
D

B
N

P
C

A
P

P
R

Category

similarity measure x x x x x x 6
statistical model x x x x x x 6

optimisation technique x x x x 4
language model x x x 3

ranking algorithm x x x 3
knowledge representation x x 2

statistical measure x x 2
clustering algorithm x x 2

Architecture

neural network model x x x x x x x x x x x 11
embedding model x x x x 4

embedding model component x x x 3
neural network component x x x 3

recurrent neural network x x 2
convolutional neural network x x 2

Architecture
Type

graph-based x x x x x x x 7
rule-based x x x 3
tree-based x x 2
generative x x 2

transformer-based x x 2

Figure 3.8: Categorization of most common Models, Techniques and Algorithms

3.7.1 Machine Learning Applications

As described in Section 3.5.4, the retrieved administrative data provides a thorough overview of machine
learning applications in many domains and tasks. While these scholarly publications did not just con-
centrate on software feature extraction, they were chosen based on a specific set of relevant keywords
related to this domain. Hence, the data is a priceless asset for finding common machine-learning tasks
and models that might be adjusted for software feature extraction. This section thoroughly examines
the data to improve the choice of machine-learning algorithms at various phases of our feature extraction
process. Figure 3.9 displays the frequency of the most often used approaches mentioned in Section 3.6.1
together with their broader applications as described in the literature.

Field of Application B
iL

S
TM

C
os

in
e

S
im

ila
rit

y
TF

-ID
F

B
E

R
T

W
or

d2
Ve

c
G

lo
Ve

C
ro

ss
 E

nt
ro

py
 L

os
s

S
V

M
K

no
w

le
dg

e
G

ra
ph

A
da

m
Lo

gi
st

ic
 R

eg
re

ss
io

n
LD

A
C

S
I

O
nt

ol
og

y
S

ki
p-

gr
am

C
N

N
C

R
F

R
ul

e-
ba

se
d

A
lg

or
ith

m
R

N
N

P
M

I
L2 FC

N
R

an
do

m
 F

or
es

t
D

ec
is

io
n

Tr
ee

K
-m

ea
ns

D
ot

-P
ro

du
ct

G
ib

bs
 s

am
pl

in
g

D
N

N
K

N
N

LS
A

N
ai

ve
 B

ay
es

Te
xt

R
an

k
O

S
S

C
G

N
N

Ja
cc

ar
d

S
im

ila
rit

y
P

ag
eR

an
k

P
C

C
G

R
U

B
IO

 ta
gg

in
g

A
ss

oc
ia

tio
n

R
ul

e
M

in
in

g
R

oB
E

R
Ta

 S
ilh

ou
et

te
 C

oe
ffi

ci
en

t
H

am
m

in
g

D
is

ta
nc

e
E

uc
lid

ea
n

D
is

ta
nc

e
S

V
D

FC
M

G
C

N
C

B
O

W
D

B
N

P
C

A
P

P
R

RE 3 9 7 2 6 1 3 3 3 1 4 5 2 2 3 3 3 2 1 1 4 1 2 2 1 1 2 4 4 1 1 3 3 1 1 1 4 2 2 2 1 1 108

classification 8 5 7 5 5 4 1 6 2 5 6 5 3 2 4 2 3 1 2 2 2 1 2 3 2 2 1 1 1 2 1 1 1 1 99

keyphrase extraction 5 8 4 2 3 5 1 3 2 2 4 6 1 3 1 2 3 3 1 2 3 3 1 1 2 6 1 4 1 2 2 2 1 90

sentiment analysis 5 2 3 3 3 5 4 3 1 1 4 1 1 1 1 2 1 1 2 3 1 1 2 1 1 1 1 2 1 1 2 1 1 1 64

ABSA 8 1 2 5 1 5 7 5 1 1 2 1 1 4 1 1 1 2 1 1 1 52

recommendation 6 6 1 4 1 2 1 1 3 4 1 1 1 1 1 2 1 1 2 2 1 1 2 1 1 1 1 1 51

NER 5 1 4 2 1 4 2 1 1 1 2 2 5 1 1 1 1 1 1 1 1 1 2 1 2 45

text classification 2 3 2 2 3 1 2 1 3 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 40

ontology construction 1 2 2 1 1 1 2 2 2 6 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 37

information extraction 2 3 1 2 1 1 1 1 3 1 2 2 1 2 2 2 1 1 1 1 2 1 1 35

knowledge graph construction 1 2 3 2 2 1 1 5 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 34

document classification 3 4 2 1 2 1 1 2 1 3 3 1 1 2 1 1 2 31

tag recommendation 1 2 1 1 1 1 3 1 1 1 2 1 2 1 1 20

feature extraction 2 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 19

service discovery 5 2 1 1 3 1 2 1 1 1 18

feature selection 1 1 1 1 1 2 2 1 1 1 12

knowledge graph completion (KGC) 1 1 1 1 1 1 1 1 1 1 1 11

keyword extraction 2 1 1 2 1 1 2 10

extractive summarization 1 1 1 1 1 1 1 1 1 1 10

Figure 3.9: Model appearances in literature in conjunction with the broader application fields

The software feature extraction pipeline design involves several machine learning tasks that are of cru-
cial importance. At first, applications that use sequences, such as named entity recognition (NER)
and keyphrase extraction, might play a crucial role in organising the raw text or identifying the most

23

3.7 Model Categories

important parts of the text for extracting detailed features. Document classification is essential for ef-
fectively organising and categorising the vast amount of data collected. Deep learning systems, such
as Aspect-Based Sentiment Analysis (ABSA) (Hua et al., 2024), can provide contextual understanding
by identifying the sentiment toward particular features or software qualities, such as maintainability
and portability, as outlined in ISO 25010. A similar task is undertaken in (Liang et al., 2023), where
the authors use TextRank to extract keywords related to software quality attributes. Methods for con-
structing a knowledge graph might provide insights into how to organize the retrieved characteristics.
Incorporating these activities strategically into the design might lead to a stronger and more flexible
artifact.

24

3 Systematic Literature Review

3.7.2 Pertinent Application Fields

Although the literature study covers several application fields, some domains are particularly relevant
to the automated extraction of software features. Through the analysis of various areas, some models,
methods, or procedures that have not been regularly observed in the entire data may arise as potentially
valuable.

Service Discovery
The unsupervised method of using deep variational autoencoders (VAEs) (Kingma & Welling, 2019) for
service discovery, outlined in (Lizarralde et al., 2020), could be particularly useful in the feature extrac-
tion phase. Specifically, autoencoders could encode complex software features into a lower-dimensional
latent space, making it easier to identify and categorize features from vendor websites automatically.
Xin et al. (2021) employ knowledge graph embeddings and estimates the relevance between Mashup re-
quirements and existing services to generate an API recommendation list. N. Zhang et al. (2019) discuss
an approach to RESTful service discovery that leverages unsupervised learning techniques like K-Means
and topic models to group similar services based on textual features, which could be incorporated into
the feature extraction pipeline.

Tag Recommendation
Izadi et al. (2020) employ a multi-label classification approach to recommend tags for GitHub repositories,
where the input data consists of textual descriptions and README files. The paper treats the problem
of assigning existing topics to new repositories as a multi-label classification problem, which could be
adapted to assign multiple software features to a given software product. In the scenario where only
a small labeled dataset is available, a semi-supervised approach could be adopted by using the labeled
data to train an initial model and then applying it to the unlabeled data to make preliminary feature
assignments. These preliminary assignments could then be used to train the model further, iteratively
refining its ability to identify software features.
In the same manner, the authors of (J. Zhou et al., 2019) employ a semi-supervised method to address
the issue of recommending tags for Docker repositories. They accomplish this by incrementally creating
training data and expanding the vocabulary. More precisely, it utilises a logistic regression (LR) model
trained on manually annotated training data and a labeled LDA (L-LDA) model as the predictor, using a
tagged Docker repository collection. The modified L-LDA enables the integration of labelled data into the
topic modelling procedure, hence enabling the model to be directed towards specific software features. In
the case of recommending labels for GitHub problems, J. Wang et al. (2021) utilize pre-trained contextual
language representations, such as BERT, to tackle the problem of polysemy by employing contextual
embeddings. These embeddings can more accurately represent words based on the context in which
they appear, thereby effectively addressing the problem of polysemy. This is especially applicable to the
process of extracting software features, as a feature may be stated in several ways across different texts.

3.8 Learning Types

In the next segment of the analysis of the same data (section 3.5.4), the focus is redirected towards
the types of learning—unsupervised, semi-supervised, and supervised—utilized in the academic articles
from which the models were obtained. This aspect of the data is vital as it uncovers the learning
environments in which these models are most commonly employed. These insights might be crucial in
making well-informed decisions for the design of the feature extraction tool, especially considering the
project’s emphasis on unsupervised learning with the potential for including semi-supervised approaches.
Figure 3.10 indicates a strong inclination towards certain models in unsupervised learning scenarios.
Cosine Similarity and TF-IDF emerge as robust choices for tasks such as similarity measurements and
information retrieval. LDA shows promise for topic modeling and organization of extracted features. In-
terestingly, Knowledge Graphs and CSI also appear to be significant in unsupervised contexts, suggesting
their potential for complex relationship mapping and feature extraction. While the project focuses pri-
marily on unsupervised learning, the prevalence of language models in supervised contexts raises an
interesting possibility. These could be integrated semi-supervised, working in tandem with unsupervised
techniques to enrich the feature extraction process.

25

3.8 Learning Types

Type of Learning B
iL

S
TM

C
os

in
e

S
im

ila
rit

y

TF
-ID

F

B
E

R
T

W
or

d2
Ve

c

G
lo

Ve

C
ro

ss
 E

nt
ro

py
 L

os
s

S
V

M

K
no

w
le

dg
e

G
ra

ph

A
da

m

Lo
gi

st
ic

 R
eg

re
ss

io
n

LD
A

C
S

I

O
nt

ol
og

y

S
ki

p-
gr

am

C
N

N

C
R

F

R
ul

e-
ba

se
d

A
lg

or
ith

m

R
N

N

P
M

I

L2 FC
N

R
an

do
m

 F
or

es
t

D
ec

is
io

n
Tr

ee

K
-m

ea
ns

D
ot

-P
ro

du
ct

G
ib

bs
 s

am
pl

in
g

D
N

N

K
N

N

LS
A

N
ai

ve
 B

ay
es

Te
xt

R
an

k

O
S

S
C

G
N

N

Ja
cc

ar
d

S
im

ila
rit

y

P
ag

eR
an

k

P
C

C

G
R

U

B
IO

 ta
gg

in
g

A
ss

oc
ia

tio
n

R
ul

e
M

in
in

g

R
oB

E
R

Ta

 S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

H
am

m
in

g
D

is
ta

nc
e

E
uc

lid
ea

n
D

is
ta

nc
e

S
V

D

FC
M

G
C

N

C
B

O
W

D
B

N

P
C

A

P
P

R

Supervised learning 28 11 13 19 14 18 17 9 7 11 9 3 5 4 7 7 8 2 4 5 6 7 5 5 1 5 3 4 5 1 4 2 2 1 2 3 5 2 4 4 3 1 1 2 2 2 283

Unsupervised learning 5 24 13 6 7 4 2 11 4 3 11 10 8 4 3 2 5 2 4 4 1 1 1 8 2 3 2 1 5 2 4 1 5 3 2 1 3 1 1 2 3 1 2 3 190

Mixed Supervised/Unsupervised 3 3 5 2 4 1 9 1 1 4 1 1 3 4 3 4 4 5 2 2 4 4 1 1 2 3 4 1 2 1 1 1 1 1 1 4 1 95

Semi-supervised learning 2 2 1 1 1 3 2 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 34

Model-Free 1 2 1 1 1 1 1 8

Self learning 1 1 1 1 1 1 1 7

Active learning 1 1 1 3

Few-shot learning 1 1 2

Figure 3.10: Frequency of model occurrences across different learning contexts

3.8.1 Implementation Features

The next analysis shifts its attention from machine learning models to thoroughly examining the features
and functionalities that often come with these models. The data presented in Figure 3.11 has two main
objectives: firstly, to clarify the different elements and layers that contribute to the complexity and
effectiveness of machine learning implementations, and secondly, to provide an organised framework for
comparing a wide range of techniques and methods. The knowledge derived from this data can guide
the design choices for the artifact, encompassing data representation, pre-processing, learning methods,
and specialised techniques.

The universality of features such as text embeddings and tagging highlights the need for robust data
representation and initial text pre-processing operations. Similarly, the importance of POS tagging
and removing stop words emphasises the need for linguistic refinement in order to prepare the data
for further analysis. The emergence of named entity recognition as a significant feature suggests the
possibility of a more focused approach to extracting features and mapping relationships. The inclusion
of topic identification and clustering characteristics provides the opportunity to categorise comparable
software features, potentially streamlining the decision-making processes related to the artefact. The
use of seed words in domain-specific methodologies offers a distinct prospect. By utilising pre-existing
software features as initial inputs, the artifact can facilitate the extraction process, correlating with
previously discussed topic discovery techniques such as labeled LDA. Cosine Similarity, BiLSTM, and
BERT are widely recognised and commonly used models that demonstrate versatility and effectiveness in
several aspects of artifact design, making them universal options. Additional prominent characteristics,
such as the representation of data in a graph format and using measures to determine similarity, provide
various possibilities for designing the artifact. These possibilities include using graph-based learning
techniques or including recommendation capabilities.

26

3 Systematic Literature Review

Categories Features B
iL

S
TM

C
os

in
e

S
im

ila
rit

y
TF

-ID
F

B
E

R
T

W
or

d2
Ve

c
G

lo
Ve

C
ro

ss
 E

nt
ro

py
 L

os
s

S
V

M
K

no
w

le
dg

e
G

ra
ph

A
da

m
Lo

gi
st

ic
 R

eg
re

ss
io

n
LD

A
C

S
I

O
nt

ol
og

y
S

ki
p-

gr
am

C
N

N
C

R
F

R
ul

e-
ba

se
d

A
lg

or
ith

m
R

N
N

P
M

I
L2 FC

N
R

an
do

m
 F

or
es

t
D

ec
is

io
n

Tr
ee

K
-m

ea
ns

D
ot

-P
ro

du
ct

G
ib

bs
 s

am
pl

in
g

D
N

N
K

N
N

LS
A

N
ai

ve
 B

ay
es

Te
xt

R
an

k
O

S
S

C
G

N
N

Ja
cc

ar
d

S
im

ila
rit

y
P

ag
eR

an
k

P
C

C
G

R
U

B
IO

 ta
gg

in
g

A
ss

oc
ia

tio
n

R
ul

e
M

in
in

g
R

oB
E

R
Ta

 S
ilh

ou
et

te
 C

oe
ffi

ci
en

t
H

am
m

in
g

D
is

ta
nc

e
E

uc
lid

ea
n

D
is

ta
nc

e
S

V
D

FC
M

G
C

N
C

B
O

W
D

B
N

P
C

A
P

P
R

Po
pu

la
rit
y

Text Preprocessing
and Linguistic
Analysis

stop words 7 19 19 5 10 8 1 6 3 6 8 8 7 6 6 4 2 2 2 5 3 3 3 4 4 3 3 2 4 3 4 1 4 1 3 2 1 3 2 2 1 2 3 1 196

POS 13 12 12 9 7 7 3 8 7 2 6 7 9 7 8 3 6 9 5 2 1 3 4 2 3 4 2 1 2 2 5 3 1 2 3 2 2 2 3 2 1 2 1 2 3 2 1 203

lemmatization 5 11 12 5 8 5 5 5 1 8 5 5 5 4 3 3 2 2 2 5 5 2 4 3 2 2 3 4 3 2 1 1 1 2 1 2 1 1 1 2 144

stemming 4 11 12 2 6 2 6 2 2 5 4 3 5 2 1 2 2 3 3 2 2 1 2 1 2 3 2 2 1 2 2 1 2 102

chunking 4 4 6 1 1 1 4 3 1 2 2 3 2 1 2 3 3 3 1 2 1 1 2 1 5 1 3 1 2 66

tagging 12 13 13 9 7 7 3 8 8 2 8 8 9 10 7 2 5 9 5 4 1 3 5 2 3 4 2 1 2 2 6 3 1 2 4 2 1 1 3 3 1 2 1 2 4 2 1 213

N-gram 4 5 8 2 6 3 8 2 2 4 5 3 5 4 2 3 3 4 2 1 1 3 5 1 3 1 1 2 4 3 1 2 2 1 1 2 109

co-reference resolution 1 1 1 1 1 1 1 1 1 9

Entity and
Relationship
Analysis

named entity recognition 13 10 6 10 9 3 6 8 13 4 4 3 3 9 6 5 10 8 5 5 2 3 1 3 2 1 2 3 1 1 2 3 2 3 1 3 1 1 3 1 2 2 3 2 3 1 192

fine-grained entity recognition 4 1 2 2 2 2 1 1 1 1 1 2 2 22

entity linking 1 2 3 2 2 1 1 1 13

entity representation 1 1 2 2 1 2 3 1 1 2 1 1 2 1 1 2 1 3 1 1 1 1 1 33

entity sense disambiguation 2 4 1 1 1 1 3 1 2 1 1 1 1 1 1 2 1 1 1 1 1 29

relation extraction 7 5 3 7 5 2 3 3 9 2 2 2 6 5 4 6 6 3 2 1 2 3 1 2 1 1 1 1 1 2 1 2 3 2 2 1 1 110

syntactic dependency parsing 7 6 6 2 2 3 3 3 2 2 2 2 5 6 3 1 3 7 1 4 3 1 3 1 2 2 1 1 1 1 1 1 3 1 92

Text Representation
and Embeddings

text embeddings 28 22 14 22 20 21 17 8 11 11 8 5 7 6 11 8 7 2 5 5 6 7 4 4 3 6 2 5 4 1 3 3 2 4 2 1 2 3 6 3 5 1 3 1 1 2 3 1 1 327

vector representation 7 7 5 9 4 6 6 2 5 2 2 2 1 1 1 1 1 1 3 3 2 2 1 3 1 2 1 1 2 3 1 1 1 1 1 1 93

position embeddings 12 5 6 20 4 8 8 6 4 5 2 1 4 2 8 5 3 8 2 2 3 2 1 3 2 1 1 3 2 1 1 2 1 1 4 1 1 1 2 1 2 1 152

character embeddings 4 2 2 1 3 1 1 2 1 3 20

word co-occurence 3 4 4 4 3 2 1 2 1 2 2 16 1 4 1 2 1 1 1 2 2 1 3 2 1 1 3 1 1 2 1 1 1 2 79

adjacency matrix 2 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 32

term-document matrix 1 3 2 1 2 1 1 2 1 2 2 1 1 1 1 22

Advanced Text
Representations

graph representation 6 11 7 5 3 5 4 4 8 6 1 4 6 3 4 1 5 2 4 3 1 3 2 1 1 2 1 4 1 4 1 4 4 1 2 3 2 2 3 1 2 2 1 2 142

phrase representation 1 3 1 1 1 1 1 1 1 1 1 1 1 15

sentence representation 1 4 1 2 1 1 3 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 32

contextual representation 6 2 2 1 2 2 3 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 35

aspect-sensitive word embeddings 8 1 2 5 2 6 6 4 1 1 1 1 1 2 2 3 2 1 1 50

hierarchical representation 3 3 1 3 1 2 1 4 2 4 1 1 2 2 1 1 1 1 2 3 2 1 1 43

Classification and
Labeling
Techniques

multi-label classification 8 4 5 8 7 5 6 6 2 3 7 4 3 3 3 2 3 3 3 3 4 4 1 2 4 3 1 1 1 1 2 2 1 1 3 1 120

few-shot classification 2 2 1 1 2 1 2 2 3 1 1 2 2 1 4 1 28

classification 2 3 4 3 3 2 3 2 2 1 5 3 1 1 4 2 2 3 3 3 1 1 1 1 2 1 2 1 2 64

Information
Retrieval and
Ranking

similarity 6 22 11 5 7 7 3 6 7 6 4 4 8 9 6 1 2 1 3 3 2 4 3 3 2 3 5 4 2 1 6 2 1 2 4 4 1 2 3 1 2 3 2 1 1 1 3 189

ranking 3 5 3 2 4 2 1 2 1 1 2 4 2 4 2 3 1 1 2 2 2 1 4 4 1 1 1 2 3 66

scoring 3 5 4 2 3 2 1 4 2 1 4 2 1 1 1 2 2 1 1 3 4 1 2 1 3 2 4 1 1 1 1 1 67

keyphrase extraction 1 6 3 2 2 1 2 2 1 3 5 1 2 1 2 2 1 1 2 2 1 1 4 1 4 1 1 2 57

Graph and Network
Analysis

graph-based ranking 2 1 2 1 1 1 2 1 1 1 1 2 2 1 3 2 1 1 26

node centrality score 1 1 2 1 1 3 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 27

node embeddings 2 1 1 2 1 1 1 1 1 1 1 1 14

Generative and
Transformative
Models

language model 14 6 5 17 5 7 5 5 3 5 2 2 1 5 3 3 4 5 4 2 3 4 2 3 1 2 1 1 1 1 1 1 2 3 1 5 1 1 2 1 2 142

transformer 9 4 3 17 2 4 6 4 4 3 1 1 3 2 3 3 1 1 1 6 1 3 1 1 1 2 1 1 3 1 1 1 2 1 98

Text Grouping and
Topic Discovery

topic modeling 4 6 4 3 2 1 3 1 2 10 4 6 3 1 1 2 3 1 2 1 6 2 1 2 1 2 1 2 1 1 1 80

clustering 2 4 5 1 3 2 1 2 1 2 4 1 2 1 2 8 1 2 1 1 1 1 4 2 3 1 58

hierarchical clustering 1 3 1 1 1 1 2 1 1 2 2 1 2 2 1 1 2 1 26

latent variable 4 1 1 1 2 1 1 1 3 1 16

Sentiment and
Opinion Mining

sentiment analysis 7 2 4 4 2 6 2 3 2 3 5 1 3 1 1 2 2 3 3 3 1 2 2 3 1 2 1 2 2 1 1 1 2 1 1 1 1 1 85

sentiment lexicon 4 4 3 3 3 5 1 3 1 1 3 1 2 1 2 1 2 1 4 1 1 2 1 1 1 1 2 1 2 1 1 1 1 62

Domain-Specific
Techniques

domain information 5 3 3 2 2 1 2 7 1 2 2 3 4 2 1 1 1 1 1 1 1 2 1 3 1 1 1 1 3 1 1 1 2 64

taxonomy 2 5 4 2 3 1 2 4 3 1 3 2 1 15 2 1 1 3 2 3 1 1 3 2 1 2 2 2 1 1 1 2 2 1 2 2 2 88

seed words 2 3 1 2 1 1 1 3 1 3 1 2 2 2 1 1 1 1 2 31

Model Tuning and
Complexity Control

hyperparameter optimisation 1 1 1 1 1 1 1 1 8

dimensionality reduction 7 4 6 10 1 5 3 5 1 3 1 1 3 2 2 5 3 3 2 1 1 2 1 2 2 3 1 1 1 1 1 1 3 1 1 2 1 1 1 2 3 100

feature selection 6 3 5 2 3 2 2 3 2 1 1 2 3 3 8 3 2 3 2 1 1 3 4 1 1 1 1 1 1 1 3 2 1 1 2 81

regularization 1 1 1 1 4 2 1 1 1 1 1 4 1 1 1 1 2 1 1 27

Specialized
Techniques and
Methods

attention 19 6 4 19 7 12 11 3 6 8 2 1 2 3 5 4 4 3 2 2 7 1 5 2 1 4 1 1 4 1 3 1 1 1 2 1 1 160

ensemble learning 1 3 3 2 1 2 1 2 1 3 2 1 1 1 2 3 1 1 1 1 1 1 1 1 37

transfer learning 2 1 1 2 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 26

dimensionality reduction 7 4 6 10 1 5 3 5 1 3 1 1 3 2 2 5 3 3 2 1 1 2 1 2 2 3 1 1 1 1 1 1 3 1 1 2 1 1 1 2 3 100

web crawler 1 6 1 2 2 2 2 4 2 2 5 3 1 1 1 1 1 1 1 1 2 2 3 1 1 1 2 1 53

negative sampling 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27

term position weight 2 2 1 1 1 1 1 1 1 1 1 13

281 295 239 257 179 183 133 153 173 114 113 125 145 164 131 91 111 96 94 92 59 71 67 80 67 68 64 66 49 42 36 78 47 43 43 66 37 30 36 35 43 51 22 30 29 22 32 29 40 32 32

Figure 3.11: Mapping of features to models in the literature. The table presents the comprehensive
mapping of 60 distinct features to the corresponding models, grouped into 13 categories. For detailed
definitions and explanations of the features, please refer to Appendix B.

Overall, the data presented above offers indications about various aspects of the implementation that
should be considered. These include data pre-processing, input representation, different machine learning
techniques that can be used, potential output formats, domain-specific techniques, and optimisations.

3.8.2 Tools/ Libraries/ Resources

The literature highlights a wide range of tools, libraries, and resources, as seen in Figure 3.13a. These
can be roughly classified into several classes according to their main functionality. CoreNLP, NLTK, and

27

3.8 Learning Types

SpaCy are renowned for their extensive text processing and natural language comprehension capabilities.
They are particularly valuable for making initial data modifications and extracting features. Tools such
as Gensim and fastText and libraries like Sci-kit Learn are specifically designed for machine learning tasks
and may be highly useful for constructing and assessing models. WordNet, DBpedia, and Wikidata are
useful information bases that might assist with semantic analysis and contextual comprehension. The
presence of ProgrammableWeb, despite its deprecation, indicates the necessity for a thorough software
repository to assist in verifying or enhancing the feature extraction procedure. Investigating other options
instead of ProgrammableWeb might find similar advantages, resulting in a more comprehensive collection
of data sources for the artifact design. The abundance of these resources in the literature underscores
their dependability and effectiveness. The usage details of these tools, libraries, and libraries may be
found in Appendix D.

3.8.3 Datasets

The collected data on datasets and their yearly uses, presented in Figure 3.12 elucidates evolving research
interests and resource preferences in the field. Based on the yearly totals for each dataset, it appears
that their usage has been relatively consistent over the years, ranging from 2016 to 2023, without any
drastic changes.

S
em

E
va

l
20

 N
ew

sg
ro

up
s

Ye
lp

R
eu

te
rs

-2
1,

57
8

In
sp

ec
D

U
C

A
m

az
on

 re
vi

ew
s

IM
D

B
 R

ev
ie

w
s

P
ro

gr
am

m
ab

le
W

eb
B

B
C

 S
po

rt
/ B

B
C

O
H

S
U

M
E

D
A

m
az

on
 E

le
ct

ro
ni

cs
 R

ev
ie

w
s

O
H

S
U

M
E

D
P

ub
M

ed
-1

0K
TR

E
C

K
ra

pi
vi

n2
00

9
R

C
V

1-
V

2
A

m
az

on
 B

oo
ks

 R
ev

ie
w

s
G

en
ia

S
ta

nf
or

d
S

en
tim

en
t T

re
eb

an
k

N
Y

T
FB

15
K

C
oN

LL
P

U
bl

ic
 R

eq
ui

re
m

en
ts

(P
U

R
E

)
C

ro
ss

N
E

R
N

gu
ye

n2
00

7
Th

es
es

10
0

w
ik

i2
0

G
ith

ub
 R

ep
o

S
pa

m
ba

se
Io

no
sp

he
re

P
R

O
M

IS
E

 “N
FR

 d
at

as
et

.”
G

itH
ub

 re
po

si
to

rie
s

D
B

LP
C

or
a

C
ite

S
ee

r
JR

C
-A

C
Q

U
IS

E
nr

on
M

ul
ti-

D
om

ai
n

S
en

tim
en

t D
at

as
et

S
ta

ck
 O

ve
rfl

ow
M

ul
ti-

Le
ve

l E
ve

nt
 E

xt
ra

ct
io

n
(M

LE
E

)
A

C
L

 O
nt

ol
og

y
A

lig
nm

en
t E

va
lu

at
io

n
In

iti
at

iv
e

(O
A

E
I)

La
rg

e
M

ov
ie

 R
ev

ie
w

 d
at

as
et

S
tru

ct
ur

ed
 W

eb
 D

at
a

E
xt

ra
ct

io
n

D
at

as
et

 (S
W

D
E

)
C

om
m

on
 C

ra
w

l
W

eb
N

LG
Fe

w
R

el
W

N
ut

_1
7

B
oo

k
C

ro
ss

in
g

M
ov

ie
Le

ns

 M
ic

ro
so

ft
R

es
ea

rc
h

P
ar

ap
hr

as
e

C
or

pu
s

(M
R

P
C

)

A
pp

 R
ev

ie
w

s
/ D

es
cr

ip
tio

ns

S
en

tim
en

t1
40

S
TS

-G
ol

d

W
N

18

D
B

pe
di

a

M
A

G

G
ith

ub
 p

ro
je

ct
s

S
en

se
va

l

M
U

C

T-
R

ex

O
nt

oN
ot

es

2023 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 19

2022 9 2 1 1 2 1 1 1 1 1 1 21

2021 5 3 2 3 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 35

2020 5 4 3 2 2 2 2 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 39

2019 6 2 1 1 2 1 2 2 1 1 1 1 1 1 1 1 25

2018 1 2 1 2 3 1 1 1 1 1 1 1 2 1 1 1 1 1 23

2017 1 1 1 3

2016 0

27 12 11 9 6 6 6 5 5 4 4 4 4 3 3 2 2 2 2 2 2 2 2 1

URLhttps://github.com/LIAAD/KeywordExtractor-Datasetshttps://www.kaggle.com/datasets/crawford/20-newsgroupshttps://www.kaggle.com/datasets/yelp-dataset/yelp-datasethttps://paperswithcode.com/dataset/reuters-21578https://github.com/LIAAD/KeywordExtractor-Datasetshttps://huggingface.co/datasets/midas/duc2001http://jmcauley.ucsd.edu/data/amazon/https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviewshttps://github.com/ouniali/SerFinderhttp://mlg.ucd.ie/datasets/bbc.htmlhttps://huggingface.co/datasets/ohsumedhttps://www.kaggle.com/datasets/saurav9786/amazon-product-reviewshttps://github.com/stefano-marchesin/SAFIRhttps://github.com/LIAAD/KeywordExtractor-Datasets/tree/master/datasetshttps://databank.illinois.edu/datasets/IDB-9822674https://github.com/LIAAD/KeywordExtractor-Datasets/tree/master/datasetshttps://old.datahub.io/dataset/rcv1-v2-lyrl2004https://www.kaggle.com/datasets/mohamedbakhet/amazon-books-reviewshttps://metatext.io/datasets/genia; http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004https://www.kaggle.com/datasets/atulanandjha/stanford-sentiment-treebank-v2-sst2https://gitee.com/JingXatu/RoleAttrTE/tree/master/Datasetshttps://huggingface.co/datasets/KGraph/FB15k-237https://github.com/juand-r/entity-recognition-datasets/tree/master/data; https://conll.cemantix.org/2012/data.htmlhttps://zenodo.org/record/1414117https://paperswithcode.com/dataset/crossnerhttps://github.com/LIAAD/KeywordExtractor-Datasets/tree/master/datasetshttps://github.com/LIAAD/KeywordExtractor-Datasets/tree/master/datasetshttps://github.com/LIAAD/KeywordExtractor-Datasets/tree/master/datasetshttps://github.com/github/explore/tree/main/topicshttps://archive.ics.uci.edu/dataset/94/spambasehttps://archive.ics.uci.edu/dataset/52/ionospherehttps://github.com/tobhey/NoRBERT/tree/master/DatasetN/Ahttps://www.kaggle.com/datasets/dheerajmpai/dblp2023https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.Planetoidhttps://graphneural.network/datasets/#citationhttps://joint-research-centre.ec.europa.eu/language-technology-resources/jrc-acquis_enhttps://www.kaggle.com/datasets/wcukierski/enron-email-datasethttps://www.kaggle.com/datasets/jeromeblanchet/multidomain-sentiment-analysis-datasethttps://archive.org/download/stackexchangehttp://nactem.ac.uk/MLEE/#availabilityhttps://github.com/languagerecipes/the-acl-rd-techttp://oaei.ontologymatching.org/2019/conference/https://ai.stanford.edu/~amaas/data/sentiment/https://academictorrents.com/details/411576c7e80787e4b40452360f5f24acba9b5159https://commoncrawl.org/https://gitee.com/JingXatu/RoleAttrTE/tree/master/Datasetshttps://huggingface.co/datasets/few_relhttps://huggingface.co/datasets/wnut_17https://www.kaggle.com/datasets/somnambwl/bookcrossing-datasethttps://www.kaggle.com/datasets/prajitdatta/movielens-100k-datasethttps://huggingface.co/docs/datasets/v1.13.0/quickstart.htmlhttps://github.com/jsdabrowski/IS-22/https://www.kaggle.com/datasets/kazanova/sentiment140https://www.kaggle.com/datasets/divyansh22/stsgold-datasethttps://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.htmlhttps://github.com/dbpedia/https://www.microsoft.com/en-us/research/project/open-academic-graph/https://bitbucket.org/jstzwj/lms4githubissue/src/master/data_view.7zhttps://www.kaggle.com/datasets/nltkdata/sensevalhttps://github.com/juand-r/entity-recognition-datasets/tree/master/datahttps://old.datahub.io/dataset/t-rexhttps://huggingface.co/datasets/conll2012_ontonotesv5

Figure 3.12: Datasets commonly used in the literature. The table includes the names of the datasets
and their corresponding URLs.

The persistent utilisation of datasets over time indicates a steady interest in well-established NLP and
machine learning tasks. Significantly, datasets such as ‘SemEval,’ ‘20 Newsgroups,’ and ‘Yelp’ are partic-
ularly prominent in the literature due to their frequent usage. An example of a dataset often employed
for sentiment analysis and other semantic tasks is the ’SemEval’ dataset. This dataset might offer in-
structions on how to efficiently extract and analyse contextual information from textual input. The ’20
Newsgroups’ dataset, frequently employed in text classification tasks, has the potential to provide valu-
able insights for the organisation and categorization of extensive amounts of unstructured textual data.
The ‘Yelp’ dataset, mainly used for review analysis, might demonstrate the significance of user-generated
material as a data source for extracting features. The existence of information retrieval datasets implies
a requirement for sophisticated data querying and ranking capabilities inside the artifact. In addition, it
is worth noting that datasets such as ‘ProgrammableWeb,’ ‘GitHub Repositories,’ and ‘Stack Overflow’
may also be highly pertinent to the current work while being less commonly referenced. For example, the
website ’ProgrammableWeb’ may provide information about various software services and APIs, ’GitHub
Repositories’ could offer practical illustrations of software feature documentation, and ’Stack Overflow’
could provide user-generated material related to software development problems.

3.8.4 Evaluation Methods

Within the complex realm of machine learning research, evaluation metrics play a crucial role in verifying
and evaluating the performance of models. The literature study discovered a diverse range of measures,

28

3 Systematic Literature Review

the frequency of which is presented in Figure 3.13b. Recall and precision, frequently employed together,
are the most widely used metrics, with each of them appearing 107 times. The F1 Score closely trails after,
being referenced 102 times. This makes sense, considering that the F1 Score combines both precision
and recall into a single metric, providing a balance between the two. The frequent co-occurrence of
these three measures suggests their substantial impact on tasks like classification, keyphrase extraction,
and named entity recognition (NER), which are commonly studied areas of research. Classification,
in particular, appears to be a very significant task handled in 28 studies. Hit Ratio (HT) appears
eight times in the literature and is commonly associated with recommendation systems. This statistic
quantifies the frequency at which recommended items are deemed relevant or ’hits,’ providing a gauge
of the recommendation quality of a model. Since the suggested system may potentially be involved in
software recommendation, the Hit Ratio might be a suitable measure for analysing this aspect.

Tools/ Libraries/ Resources

33 CoreNLP Tool

22 WordNet

19 NLTK

8 SpaCy

6 Gensim

5 fastText

5 Sci-kit Learn

5 DBpedia

5 ProgrammableWeb

5 Freebase

5 Wikidata

4 SentiWordNet

3 Bing Liu Opinion Lexicon

3 Stanford OpenIE

2 SenticNet

2 BabelNet

2 Probase Knowledge Base

(a) Most utilised Tools, Libraries and Re-
sources

Evaluation Measures

107 Recall

107 Precision

102 F1 Score

43 Accuracy

14 Ablation Analysis

9 MAP

8 HT

8 NDCG

4 AUC

4 t-test

3 Chi-Square

3 ROC

3 ANOVA

2 Rouge-L

2 LRAP

2 MSE

2 RMSE

2 Perplexity

(b) Evaluation methods commonly used in
the literature

It is worth noting that the metrics discussed in the literature frequently appear in many forms. For
example, metrics such as precision, recall, and hit ratio can be computed using different approaches,
including micro, macro, and weighted averaging. They can also be defined at a certain cutoff point, such
as @N in recommendation tasks

• Micro-Averaging : This approach combines all instances of true positives, false positives, and false
negatives from several classes to calculate performance measures such as Precision and Recall. This
is especially advantageous when there is a class imbalance.

• Macro-Averaging : In this case, the metric is computed separately for each class, and subsequently,
the results are averaged. This approach ensures equal treatment of all classes, irrespective of
their sizes, and is well-suited for multi-class situations where the performance of each class has
significance.

• Weighted Averaging : This approach is a middle ground between micro and macro averaging, where
the metric for each individual class is calculated by taking the average, with the weight of each class
determined by the number of samples it contains. This is applicable in multi-class classification
problems with a somewhat skewed class distribution.

• Hit Ratio @N : Frequently employed in recommendation tasks, this metric quantifies the frequency

29

3.8 Learning Types

with which a recommended item is included in the top-N list of a user’s true preferences. This is
especially advantageous when suggestions must be constrained to a specific quantity of items.

• Precision@N and Recall@N : In certain situations, such as recommendation systems or search en-
gines, it is often more important to assess the quality and relevance of the top N outcomes rather
than examining all potential classifications or retrievals. Precision@N and Recall@N offer a tar-
geted assessment of the system’s performance at the highest positions in the list, which is typically
of utmost importance to users.

Specialized Metrics:

• Area Under the Curve (AUC): This metric evaluates the model’s ability to distinguish between
classes and is generally used in binary classification tasks.

• Normalized Discounted Cumulative Gain (NDCG): Often used in ranking and recommendation
systems, NDCG measures the quality of the ordered list of recommendations.

Ablation Analysis, referenced in 14 articles, is a specialised assessment approach employed to evaluate
the influence of various components on the overall performance of a model. It entails the methodical
elimination of various elements to assess their impact on the ultimate result. Due to the modular
structure of the proposed feature extraction artifact, Ablation Analysis can provide useful insights into
the components that are most essential for efficient feature extraction.

3.8.5 Evaluation Strategies for the Feature Extraction Artifact

Given the unsupervised nature of the proposed feature extraction system, conventional supervised eval-
uation metrics like Precision, Recall, and F1 Score may not be directly applicable. Nevertheless, using a
two-phase training strategy might be a feasible resolution:
Initial Supervised Training: Available datasets could be used for initial supervised training, focusing
on the multi-label classification of software features. In this phase, conventional metrics like Precision,
Recall, and F1 Score could serve as effective evaluation measures.
Unsupervised Phase: The second phase could leverage unsupervised methods to refine further and
extend the list of software features, guided by the initial model’s confidence scores and predictions.
Alternative evaluation metrics could include:

• Topic Coherence: To assess the quality and relevance of the generated software features.

• Silhouette Score: Useful for evaluating the quality of clustering of similar features.

3.8.6 Decision Making Process

A systematic approach to model selection is vital to ensure the most suitable models are used. To guide
this process, a decision meta-model is adopted which is situated within the multiple-criteria decision-
making (MCDM) field, based on (Farshidi et al., 2024). The decision model was adapted as depicted in
Figure 3.14 and offered a structured methodology for identifying the most appropriate combination of
models for software feature extraction. There are five steps for selecting a combination of models:

1. Models: An exhaustive list of potential models is compiled based on existing literature and tech-
nological considerations. Appendix A can be used to understand the definitions of models.

2. Feature Requirements Elicitation: Essential features for software feature extraction are iden-
tified, taking into account the specific requirements of the task. Appendix B can be used to
understand the definitions of features and model characteristics.

3. Finding Feasible Solutions: A list of feasible combinations of models and features is generated
based on the identified requirements. Figure 3.11 can be used to determine which models support
specific features.

4. Selecting Feasible Combinations: Suitable combinations are selected from the list of feasible
solutions, considering factors like performance, complexity, and alignment with the task. Figure
3.5 provides information on the combinability of models based on the reviewed articles.

30

3 Systematic Literature Review

5. Performance Analysis: Upon determining a set of possible combinations, suitable evaluation
measures should be chosen to analyze their performance and validate their efficacy in software
feature extraction. Figure 3.13b revealed the most common evaluation measures, while their defi-
nitions can be found in Appendix C.

modeling rationale

model selection

justifies

1..*

1..*

depends upon

0..*
0..*

concern

quality attribute

feature
requirement

pertains to

0..* 1..*

raises

0..* 0..*

design decision
affects

1..* 0..*

software features
extraction approach

expresses
1..*

applied model

applies

1..*

1..*
contains

1..*

impacts on

1..*

1..*

modeler
has

1..*

has

1..*

1..*

trend
affects

0..*

0..*

affects

0..*

0..*

features

has
1..*

1..*

model
1..*

considers

1..*

0..*
combination

evaluation
measure1..*

meets

1..*

1..*

Figure 3.14: The decision-making process employed in selecting software features extraction approaches
within the academic literature.

The decision-making process is based on the concepts outlined in the ISO/IEC/IEEE standard 4201010,
which offers a framework for conceptual modelling. Initially, research modellers establish the objectives
and considerations for the task, such as extracting software features. Subsequently, the process involves
identifying potential models and features that align with these objectives. After selecting a group of
models, a thorough study is carried out to evaluate each model’s suitability, advantages, and draw-
backs. The study considers several criteria, such as the complexity of the model, its interpretability,
and the practicality of integrating multiple models. This systematic procedure guarantees the efficient
identification of models that meet the precise requirements of software feature extraction. The decision
meta-model consists of the following components:

• Models: These are the various machine learning models, algorithms, or techniques under consid-
eration.

• Features: These are the attributes or functionalities that the models can support.

• Measures: These are the evaluation metrics used to assess the performance of the models.

• Qualities: These refer to the quality attributes of the models, such as interpretability or scalability.

• Concerns: The goals and objectives of the research, as well as any constraints. Features, Measures,
and Qualities constitute the concerns.

• Solutions: These are the optimal combinations of models that satisfy concerns.

• The formal expression of MCDM in this context can be represented as
MCDM: Models × Features × Concerns → Solutions.

10https://www.iso.org/standard/74393.html

31

3.8 Learning Types

With the adoption of this MCDM-based decision-making process, this research aims to have a methodical
and transparent approach to the selection of models, with the end goal of ensuring the development of
a software feature extraction solution that is both robust and effective.

32

4 Summary of Literature Review

4 Summary of Literature Review

4.1 General Observations

In the systematic review conducted for this thesis, it was noted that only 25 out of the 155 (16.1%)
surveyed papers made their code repositories publicly available. This lack of openness poses challenges
for replicating studies and advancing the field of automatic software feature extraction. Open-source
code is crucial for transparency and reproducibility in machine learning research (Haefliger et al., 2008).

Out of 207 models identified, a significant portion (122, 58.9%) were singletons, limiting the general-
izability and comparability of results. For the advancement of unsupervised NLP techniques in software
feature extraction and other domains, there is a need for adopting common models or evaluation stan-
dards, in order to be able to compare approaches more effectively (Amershi et al., 2019).

Additionally, some papers lacked clear explanations of how multiple models were integrated, making
it difficult to understand the methodology and evaluate its effectiveness. Detailed descriptions of model
combinations are essential for transparency and for extending the research further (Amershi et al., 2019).

The review also revealed a wide range of model variations, complicating comparisons and replication
efforts. The examination of the data showed a considerable variety in the models used, such as RoBERTa,
DistilBERT, DeBERTa, DistilRoBERTa, and SpanBERT. All of these are extensions or variations of the
well-known BERT language model (Devlin et al., 2019), which itself was featured in 32 of the surveyed
papers. A standardized categorization of these models could facilitate their reuse and understanding of
the different variations, thereby enhancing collaboration and progress in the field (Sarker, 2021).

BiLSTM was found to be a prevalent model, evidenced in Figure 3.5. The evolution of textual or
sequence processing machine learning models has seen a progression from traditional methods like rule-
based systems to statistical models, then to recurrent neural networks (RNNs) like LSTMs, and ul-
timately to transformer-based models like BERT, which have achieved state-of-the-art results across
various NLP tasks due to their ability to capture deep contextual information. While traditional models
offer ease of use and interpretability, modern models like BERT provide high performance across var-
ious tasks, thanks to advancements in computational resources and larger datasets, and are therefore
preferred (Ribeiro et al., 2016). However, the more modern approaches introduce increased complexity
and a trade-off between interpretability and performance. Analyzing the models and techniques used in
similar constituent tasks can direct the design process for the software feature extraction task.

Regarding datasets, less than two-thirds (97 out of 155) of the papers used publicly available datasets,
and a large number of these (41) were not reused in subsequent research. This lack of dataset sharing and
reuse hampers progress and raises questions about the generalizability and credibility of the research.
Encouraging open sharing of datasets could accelerate research and ensure more robust and credible
methods in the field.

The scarcity of accessible past datasets poses difficulties for researchers in verifying and replicating
published findings. This limitation hinders the objective assessment and comparison of various models,
obstructing the recognition of state-of-the-art methods and potential improvements (Pujol et al., 2020).
Additionally, the lack of diverse and publicly available datasets could lead to the development and
evaluation of models that are biased, thereby restricting their applicability in real-world settings and
among varied user groups (Bagdasaryan et al., 2019). This problem is further exacerbated by the
redundant efforts in gathering and preparing new datasets, which not only consumes precious resources
but also slows down research. To address these issues, it is crucial to encourage a more open and
collaborative environment within the research community.

4.2 Threats to Validity

Given the empirical nature of this study, addressing threats to validity is essential for ensuring the
integrity of the research findings. X. Zhou et al. (2016) extensively examined standard practices related
to Threats to Validity (TTVs) across 316 Systematic Literature Reviews (SLRs) within the field of
software engineering research. Consequently, they compiled a comprehensive list of common factors that
could impact validity, as depicted in Figure 4.1 . In this section, we examine the potential threats to
construct, internal, external, and conclusion validity that may affect this study’s outcomes.

4.2.1 Construct Validity

In the context of the Systematic Literature Review, construct validity refers to the process of accurately
identifying operational measures for the concepts that are being studied. It is possible that the construct

33

4.3 Ethical Considerations

Category Definition
Construct Validity Determine appropriate operational metrics for the concepts under investigation.

Internal Validity Strive to establish a cause-and-effect relationship in which specific conditions are
thought to result in other conditions, differentiating them from misleading associations.

External Validity Specify the scope within which the conclusions of a study can be applied.

Conclusion Validity Show that the processes involved in a study, such as the data collection method, can be
replicated, yielding consistent outcomes.

Figure 4.1: Definitions of validity categories based on (X. Zhou et al., 2016)

validity might be compromised by a number of different reasons. One of these factors is the selection
of databases and sources, which may be restrictive if they do not completely cover all of the literature
that is pertinent to the analysis. In order to counteract this, the databases and platforms that were
utilised for the literature search are outlined in detail in Chapter 3. This ensures that a diverse variety
of publications is taken into consideration. Furthermore, the criteria for adding or excluding research
throughout each step of the SLR are rigorously specified in corresponding subsections, which reduces the
chance of making decisions that are inconsistent with the requirements of the study.

4.2.2 Internal Validity

When it comes to the concept of internal validity, there are a few aspects that need to be carefully
considered in order to guarantee that the findings of the study are accurate. The bias in model selection
is the first issue to consider. The natural language processing (NLP) models that were selected for this
study could be inherently more effective for certain kinds of software features than they are for others. For
the purpose of mitigating this issue, a variety of models will be examined in order to guarantee a feature
extraction process that is both balanced and complete. The second area of interest is concerned with
regard to the sources of data, . Relying only on the websites of vendors or on the reviews of customers
may result in a sort of selection bias due to the fact that various sources may place an emphasis on
distinct combinations of features. To solve this issue, the research will make use of a wide variety of
review sites and vendor websites in order to construct a dataset that is more representative of the whole.
The final point to consider is that the operational definition of "software feature" has the potential to
be a source of bias, either because it is too inclusive or exclusive. The criteria for what constitutes a
software feature have to be explicitly established and implemented in a methodical manner throughout
the entirety of the research in order to reduce the likelihood of this threat occurring.

4.2.3 External Validity

External validity refers to the extent to which the findings of a research may be applied or generalised
to a larger population or real-world situations. Considering the exclusive focus of this research on the
automated extraction of software features, the findings may not have direct relevance to other fields. In
order to improve the capacity to apply the findings to a wider context, the study should encompass a
wide variety of software categories and utilise models that have broad applicability.

4.2.4 Conclusion Validity

Conclusion validity pertains to the reliability and credibility of the study’s results. In order to guarantee
reproducibility, it is essential to meticulously record each stage of the approach. The software repository
and datasets will be publicly accessible, facilitating independent verification of the findings.

4.3 Ethical Considerations

In addition to the threats to validity, it is crucial to take into account the ethical implications of auto-
matically extracting features from vendor websites. To uphold the ethical integrity of the study, it is
imperative to tackle concerns such as data privacy, intellectual property, and any biases in the models.
This work attempts to maintain scientific rigour by diligently detecting and mitigating these threats, in
order to establish a reliable and effective approach.

34

5 Implementation

5 Implementation

The following sections focus on the implementation and evaluation details of the artifact, based on the
principles of design science. In order to make the explanation more cohesive and intuitive, the process
will be explained with respect to the chronological order of the steps taken by the final artifact, from
its input web data to the output knowledge graph. Existing approaches are explored in section 5.1,
to determine the specific design choices for the system pipeline presented in section 5.2. Section 5.3
discusses the data collection and analysis process, Chapter 6 explains the specific architectural decisions
concerning the transformation of the collected data into the desired structured and informative form
using classification techniques, followed by the experiments that were set up to evaluate the performance
of the techniques explored. Chapter 7 delves into the creation of the knowledge graph using the extracted
information and identified features. Finally, Chapter 8 discusses the findings of this research and the
extent to which the requirements of the proposed artifact are met, its feasibility analysis, and potential
enhancements that can be made in the future. The code used to implement the recommended system is
made available on Zenodo (Constantinou, 2024). A detailed Bill of Materials (Appendix G) lists all the
tools and resources used in this study.

5.1 Existing Approaches

Hofer et al. (2024) provide an overview of the main tasks for Knowledge Graph Construction with a
focus on (semi-)automatic and incremental solutions. The main tasks listed are:

• Data Collection and Preprocessing: Selection of relevant sources, retrieval and processing of
relevant source data.

• Metadata Management: Acquisition and management of metadata, for example structural
metadata, temporal information, quality reports or process logs.

• Ontology Management: Creation and incremental evolution of a KG ontology.

• Knowledge Extraction (KE): Derivation of structured information and knowledge from un-
structured or semi- structured data, using techniques for named entity recognition, entity linking
and relation extraction.

• Entity Resolution (ER) and Fusion: Identification of matching entities and their merging
within the KG.

• Quality Assurance (QA): Possible quality aspects, their identification, and repair strategies of
data quality problems in the KG.

• Knowledge Completion: Extending a given KG, by learning missing type information, predict-
ing new relations, enhancing domain-specific data, etc.

These steps are also presented in a generic pipeline in Figure 5.1. The construction pipeline does not
need to follow a strict order for each task, and certain steps may be optional depending on the specific
use case for the knowledge graph. These are generally the steps followed to create the type of knowledge
graphs typically presented in literature, therefore there needs to be some adjustment to tailor the design
requirements for this specific project.

35

5.1 Existing Approaches

Figure 5.1: Generic pipeline for incremental Knowledge Graph Construction (Hofer et al., 2024)

Generally, the design of KG construction frameworks can differ based on the type of knowledge being
processed and the intended application, however, there are two main approaches to developing knowledge
graphs: the top-down approach, which emphasizes knowledge schemas like domain ontologies, and the
bottom-up approach, which centers on knowledge instances, such as Linked Open Data (LOD) datasets
(Z. Zhao et al., 2018). In the top-down approach, which prioritizes well-defined domain ontologies, the
ontologies and their schema are established first, followed by the addition of knowledge instances into the
knowledge base. In contrast, the bottom-up approach focuses on extracting knowledge instances directly
from knowledge resources. In our case, there is not an existing well-defined and exhaustive domain
ontology, since the purpose is to create one consisting of newly identified software features. Hence, an
incremental bottom-up approach must be taken, which requires the identification of specific knowledge
instances in the form of software features, which may then be grouped together in a hierarchical structure.
L. Wang et al. (2023) conducted a systematic literature review on the application of knowledge graphs
specifically in the software engineering domain. Their findings can be summarized in the table below:

Author Technology Advantages Disadvantages
Wenpeng et al.
(2017)

Software knowledge ex-
traction, Entity associa-
tion extraction

Established linkages be-
tween software knowledge
entities in different types
of software resources

The content update mech-
anism of the chart needs
to be considered

F. Wang (2019) Identification and extrac-
tion of entities, concepts,
attributes, and interrela-
tionships

A degree of depth and
completeness, a high de-
gree of accuracy, and a rig-
orous and rich data model

Named entity recognition
model still needs improve-
ment

C. Zhou et al.
(2018)

Open-source software bug
identification methods

Highly capable of feature
fusion

Long training hours

H. Li et al. (2018) Co-citation resolution
techniques and heuristics

Avoid software warning
messages and be very ef-
ficient

Very specialized back-
ground knowledge re-
quired

Lemos et al. (2014) Self-constructed knowl-
edge graphs of code term
associations

Traceability links between
vulnerabilities and soft-
ware components can be
made more accurate

Small data or low-
dimensional data may not
be able to construct the
desired mapping effect

36

5 Implementation

Qin & Chow (2019) Using techniques such as
NLP to add extracted en-
tities as new knowledge
to the vulnerability knowl-
edge graph

Automated research into
vulnerabilities, with the
ability to perform vulner-
ability tracking

Candidate vulnerability
information CVE Chain
requires manual tagging
and is subjective in nature

D. Du et al. (2018) A random forest algo-
rithm was introduced to
connect the CVE version
of the project with the
Maven project version by
a matching method

The method works well
and allows a more accu-
rate tracing of the rela-
tionship between the vul-
nerability and the soft-
ware component

The ontology matching
approach for the three
types of resources is ana-
lyzed in isolation

J. Zhang et al.
(2020)

Capturing the semantic
information of bug reports
using LSTM, Using CNNs
to capture the semantic
information of the code

Better capture of keyword
information in source files
and bug reports

Handling of code and re-
ports in terms of seman-
tics only, relying on pa-
rameter definitions

The main areas for which knowledge graph construction is explored in this domain are:

• Network security analysis

• Development vulnerability mining

• Cloud products recommendation

• Bug locating and fixing

• API recommendation

In terms of data collection, researchers primarily focus on software repositories, version control systems,
API components, software vulnerability databases such as CWE and CVE, software non-functional
requirements, and various description documents. In this project, data will be collected in the form
of unstructured text from vendor websites. Some studies (F. Wang, 2019) construct the knowledge
representation model or ontology using software engineering experts, and then knowledge extraction of
the data is conducted according to the model or ontology.
Knowledge extraction typically consists of entity extraction, attribute extraction and relation extraction
(Z. Zhao et al., 2018). In existing research, entities and their associations are primarily identified using
rule-based, machine-learning-based, and deep learning-based methods (L. Wang et al., 2023). Some
researchers suggest software-specific NER techniques (Feng et al., 2018) while others employ conditional
random field (CRF) and bi-directional long and short-term memory (BiLSTM) neural networks for
named entity recognition (Nayak et al., 2020). However, this project primarily focuses on software
feature extraction. Even though some named entities may also be included in the intended knowledge
graph, such as specific product support (e.g. VMWare), the categories of software features that may
come up do not necessarily need to refer to specific entities, therefore a different approach was chosen
to locate these features from the unstructured text data. Specifically, a custom noun phrase extraction
(section 5.5) method will be used, which is expected to also detect frequently mentioned entities. Once
these are extracted, the construction of the knowledge graph boils down to classifying which of these
phrases represent pertinent software features. Then, as discussed in section 5.4.2, entity extraction and
linking will be handled indirectly by incorporating data from an existing, open-world knowledge graph,
namely DBPedia11, and associating the identified features with nodes of that knowledge graph. The
main challenge of existing approaches is their inherent need for large amounts of labeled data or manual
curation of rules for knowledge extraction, or labeled data for the classification of which entities to include
in the knowledge graph. This project attempts to mitigate these problems by utilizing recent techniques
for the classification of features and their associations. The pipeline used to generate the knowledge
graph is provided in the next section, followed by detailed explanations for each of its parts.

11https://www.dbpedia.org/

37

5.2 Knowledge Graph Generation Pipeline

5.2 Knowledge Graph Generation Pipeline

The following diagram presents the proposed system pipeline, split into two main parts. The first
part is responsible for collecting the required textual data from the cloud vendor’s web sources, as
well as domain-relevant information, to aid the second part in converting the collected data into the
intended structured form: a knowledge graph. Subsequent sections provide detailed explanations of each
component or process involved in the pipeline concerning the order of execution.

Data Collection Knowledge Extraction

Seed URLs

Web Crawler

Filtering

URL Pool

Source URLs

Web Crawler

Web Data (HTML)

Data Processing

Custom
Noun Phrase

Extraction

HDBSCAN
Clustering

Cloud Computing
URI (DBPedia)

Web Crawler
(Domain

Exploration)

Initial URI Pool

Clustered
Dataset

Aggregation
(N-gram)

DBPedia LOOKUP
(SPARQL)

Distance /
Cosine SImilarity

 Calculation

URI Database

Filtering

Filtering

NIST Reference
Architecture

Unlabeled
Dataset

Labeled
Dataset

Labeling

Knowledge Graph

Few-Shot Feature
Classification

Match Quality
Classification

Ontology Creation

Figure 5.2: The proposed system pipeline for the creation of the knowledge graph.

38

5 Implementation

5.3 Data Collection and Processing

The first step towards building an effective knowledge graph is to find the right data sources. The
collected raw text data make up the raw material that constitutes the building blocks of the output
graph, therefore the sources of this data should be chosen carefully.

5.3.1 Domain Selection

Originally, this project concerned general software feature extraction and subsequent knowledge extrac-
tion by organizing features hierarchically. However, it is generally a good approach to simplify a problem
into smaller, more manageable tasks to test its efficacy. In this specific scenario, narrowing down the
domain of the problem may also have practical benefits, considering the following assumptions:

• The enormous diversity of software products

• The variability in software descriptions across vendors

• The complexity of categorizing features into a universally applicable knowledge graph

Therefore, the potentially high entropy in data if software features from various domains and categories
were explored led to the decision to narrow the focus to cloud vendors and the services they offer in
hopes of a more reliable pattern detection and feature classification.

Moreover, if we consider the collected data a snapshot of what is currently advertised, a huge amount of
data would be required to adequately represent the features of any kind of software, which would render
its further processing and classification impractical and computationally intensive. The assumption here
is that if the system performs well for a specific domain, the same pipeline could be reused for different
domains as well.

5.3.2 Data Sources

Thirty vendors were selected (30 in total) from whose websites the data was collected. This set includes
well-known corporations that are not exclusively active in the cloud service market, such as Google or
Amazon, and smaller companies that specialize solely in cloud computing.

The data collection process is initialized using a seed URL for each vendor, which was selected to be
the home page of each vendor’s official website or the initial page concerned with cloud computing for
vendors who also offer different services.

The python library Selenium was used to extract the HTML content from each seed URL due to its
multiple browser supportability and the better handling of websites that utilize JavaScript to render
their content, especially when cookies handling interfaces are present. This is also the case with any
HTML rendering step involved in the data collection process. The robots.txt file was retrieved for each
website to adhere with their data collection guidelines.

From the extracted HTML content, all the links to other web pages that were present were located and
stored. A filtering function is applied to the retrieved URLs to ensure their relevance to the domain
of interest and exclude pages whose content may not be in the conventional prose text form (e.g., code
snippets). This filtering process involves parsing the path components of each URL (as shown in Figure
5.3). URLs potentially containing unsuitable content are excluded based on a pre-defined list of terms
commonly associated with such content. This list includes terms like “contact”, “docs”, “resources”, “blog”,
“manual”, “tutorial”, “case”, “community”, and “help”.

An example of a discarded URL and its corresponding path components is provided to illustrate the
filtering process:
URL: https://www.lumen.com/help/en-us/home.html
Parts: “help”, “en-us”, “home”
It is very common for vendor websites to include pages with an ancillary role, such as contact form pages,
blogs, and support pages, as opposed to product descriptions and advertisements, which are the target

39

5.3 Data Collection and Processing

Figure 5.3: URL path parts (source: https://www.geeksforgeeks.org/components-of-a-url/)

source of information. Another filter applied was to discard URLs of different domains to the seed URLs
to focus on the vendors’ commercial websites. The final number of URLs obtained for each vendor is
shown in table 2. After the filtering, the final list of the source URLs is determined, from where the
input data to the pipeline is found. The HTML content of each web page is retrieved, and then the data
is processed.

5.3.3 Data Processing

HTML (Hypertext Markup Language) is used to create web content. HTML documents are text files
that use tags to indicate different types of content and formatting. For example, the <p> tag is used
for paragraphs, <h1> to <h6> for headers and <a> for hyperlinks. All HTML elements in a webpage
have a nested structure that determines its layout. The larger an HTML document is, the more complex
the structure becomes, which is often the case with eCommerce sites that include nested menus, product
grids, interactive elements, etc. This introduces an enormous variety in the structure of HTML documents
across different vendors’ websites, which is enhanced by the various design choices of each website’s
creator. Processing an HMTL document to obtain its main content (in our case, product and service
descriptions) is a challenging task and an active research area, as the main content of a webpage is often
surrounded by other boilerplate elements related to the template (Alarte & Silva, 2021).

In this project, the same task was approached in a rather simplistic manner: The content was organized
into headers for indexing purposes and to guide the content collection process. The header tags are
collected and filtered (to exclude cookie content, header menus, footer content, etc.) to focus only on the
main content of each webpage, which is more likely to include feature-specific information. Then, for the
remaining headers, the text from all the HTML elements that follow the header is extracted as individual
’content items,’ where each item corresponds to the text enclosed in a specific HTML tag. These include
paragraphs, ordered or unordered lists, table rows, and more. This granular organization of the content
into distinct text segments serves an important purpose because specific tags (and content) are often
repeated across different web pages. It is common practice in web development to use templates for
adjacent linked pages within the same navigational branch of the website, which results in the repetition
of content. Content duplication could dilute relevant, feature-specific content and make feature detection
harder, which is mitigated by keeping unique copies of each header and its contents.

Table 2 breaks down the list of vendors for which data was collected, the seed URLs to their websites, the
total number of relevant URLs extracted, and finally, the total number of unique headers and contents

40

https://www.geeksforgeeks.org/components-of-a-url/

5 Implementation

items collected for each vendor.

Table 2: Vendor Web Sources Breakdown

Vendor Source Count
Unique URLs Unique Headers Total Contents

Alibaba Cloud 57 1232 5858
Amazon (AWS) 207 2177 9805
Atlantic.Net 74 1011 4433
Bit Refinery 3 25 65
Brightbox 7 76 331
CenturyLink 154 767 6032
CloudSigma 7 25 247
DigitalOcean 78 1065 3260
Fujitsu 109 1017 4304
GigeNET 17 106 372
Google Cloud 267 3239 19 187
Hyve 128 716 4776
IBM Cloud 15 84 865
Ionos 103 1609 7154
JoyentCloud 9 92 313
Leaseweb 73 668 5774
M5 Internet Hosting 29 183 1361
Microsoft Azure 580 5004 43 680
NTT Communications 119 1596 5407
Neterra 9 87 372
OVH 182 2617 10 875
Oracle Cloud 128 2121 10 701
Rackspace 132 1140 9415
Tilaa VPS 51 450 3312
VPS.NET 15 91 684
e24cloud 35 129 656
CloudScale365 9 157 505
exoscale 58 470 2085
sherWeb 48 446 1917
zettagrid 27 115 380

41

5.4 Domain Exploration

5.4 Domain Exploration

With the input data now available, the next step is to decide what patterns need to be identified in the
data, from which information will be extracted. Familiarizing yourself with common domain terminology
would be a reasonable way to grasp an idea of what a cloud service feature is.

5.4.1 NIST Cloud Computing Reference Architecture

An excellent place to start is the NIST Cloud Computing Reference Architecture document12, which is
also used in later stages of the pipeline, to label portions of the data.

The National Institute of Standards and Technology (NIST) is a well-known and established U.S. federal
agency that develops technology, metrics, and standards. It is known for its detailed publications that
provide clear standards and guidelines across various industries, including information technology and
cybersecurity. Therefore, the terminology presented in the document above is also expected to be present
in the collected data. The target artifact, or knowledge graph, should also represent the standard
knowledge and concepts in the domain of interest to be widely comprehensible and, as a result, useful in
practice. The document goes a step further, providing a cloud taxonomy (Figure 5.4) that lays out the
central elements of cloud computing in a hierarchical structure, which is closely related to the expected
structure of the resultant knowledge graph:

Figure 5.4: NIST Cloud Taxonomy (source: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication500-292.pdf)

5.4.2 DBPedia

DBpedia (“DB” for “database”) aims to extract structured content from the information created in
Wikipedia. This structured information is readily available on the World Wide Web and allows users
to query relationships and properties of Wikipedia resources semantically. Each Wikipedia resource has
its own URI (Uniform Resource Identifier), which is a unique identifier for entities within the DBpedia

12https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-292.pdf

42

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-292.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-292.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-292.pdf

5 Implementation

dataset. These relationships and properties are also associated with the structure of a knowledge graph,
as it mirrors a real-world ontology, organizing information in triplets of subjects, predicates, and objects.
A Resource Description Framework (RDF) structure is fundamental in semantic web technologies. Each
triplet forms a statement about a resource:

• Subject: Represents the entity/concept/thing for which the described property holds.

• Predicate: Describes the relationship or attribute of the subject.

• Object: Is the value or another entity that is linked to the subject through the predicate.

The most common relationship between Wikipedia resources is expressed through the “dbo:wikiPageWikiLink”
predicate and states that the object, a Wikipedia page for a specific term/ entity, is referenced in the
Wikipedia page of the subject term/ entity, via a hyperlink. This is a clear indication of the relevance
of the two terms, conceptually. Some other examples of predicates are:

• Web browser is the “Genre Of” Google Chrome.

• Software is the “Type Of” Google Chrome.

• Google is the “Developer Of” Google Chrome.

• Google Chrome is the “Disambiguate Of” Chrome.

In (Weikum et al., 2021), it is advised to initiate KG construction using extensive, curated "premium"
data sources like Wikipedia and other knowledge graphs such as DBpedia. Additional data sources should
then be identified and incorporated to capture more specific entities and their relationships. The potential
relevance and value of DBPedia as a source of information in this project is also supported by its presence
in the analysis of the most common tools, libraries, and resources found in the relevant literature during
the systematic literature review phase (3.8.2). The presence of abstracts for the majority of DBPedia
resources was also a decisive factor, as it provides textual descriptions of concepts and terminology that
may appear in the data but are not always explained in their context, which could limit the ability of the
artifact to interpret their relevance and eligibility to be included in the knowledge graph. An example
sentence from the data is: “Updated Linux kernels, user-mode software, and toolkits are provided”.
In this example, “Linux kernel” can be considered as a potential cloud service feature, however, its
mere mention in a sentence does not contain information on what it is, which makes its classification
challenging. The abstract of the DBPedia page concerning “Linux kernel”, states: “The Linux kernel
is a free and open-source, monolithic, modular, multitasking, Unix-like operating system kernel”. The
second use of DBPedia arises from its graphical structure and organization. In addition to the textual
description (abstracts), each DBPedia resource page lists relationships with other resource pages in the
form of triplets (subject—predicate—object).

The method used to explore the DBPedia resource in this project was to start from the central con-
cept in the domain. Cloud Computing has its resource page: https://dbpedia.org/resource/Cloud
_computing. and also has a concept page: https://dbpedia.org/page/Category:Cloud_computing
Concept pages in DBpedia are linked through the skos:broader predicate, which portrays a hierarchi-
cal relationship between wider and narrower concepts. So starting from the cloud computing concept,
narrower and narrower concepts were recursively collected, along with the resource pages linked to each
concept, through the dcterms:subject predicate (every resource page may or may not have a concept
page as a subject). This process resulted in the initial URI pool of DBPedia resources, which will later
be matched to the identified features and terminology in the data to derive associations between them
and provide textual descriptions to enhance their understanding. The “skos” and “dcterms” parts of the
predicates shown above reveal the namespace in which these relationships belong. Namespaces are part
of semantic web technologies used in RDF to provide structured ontologies and vocabularies, allowing
for more organized and interoperable data across different systems. The namespaces used in this project
are:

• dbo (DBpedia Ontology): provides structured classifications and properties that describe rela-
tionships and attributes of Wikipedia data.

43

https://dbpedia.org/resource/Cloud_computing
https://dbpedia.org/resource/Cloud_computing
https://dbpedia.org/page/Category:Cloud_computing

5.5 Noun Phrase Extraction

• dbp (DBpedia Property): used to assert information about DBpedia resources, often derived
directly from Wikipedia infobox data.

• dbr (DBpedia Resource): defines resources in DBpedia, where each resource corresponds to a
specific Wikipedia page or concept.

• dcterms (Dublin Core Terms): provides a broad range of descriptive properties for resources.

• skos (Simple Knowledge Organization System): used to build controlled vocabularies like
thesauri, classification schemes, and subject heading systems within the RDF framework.

These namespaces can be accessed using the rdflib python library. Information about its relationship
with other resources and other defined properties can be extracted when given a resource URI. The
SPARQLWrapper library was also used for more advanced queries for the same purpose.

5.5 Noun Phrase Extraction

The next step in the pipeline is to detect common mentions of phrases that could entail cloud service
features. The expression of a specific feature or functionality could vary across different sources, in terms
of syntax and choice of words, however, there should be semantic similarities and patterns that could be
recognized in order to classify a phrase as a feature.

Noun phrase extraction is a valuable technique in natural language processing that involves identifying
and extracting noun phrases (groups of words that function together as nouns) from unstructured text.
Its application in this context is that noun phrases often contain the core ideas or entities in a text. These
can include specific features, components, tools, or technologies. Looking at some of the terminology
and the central nodes found in the NIST cloud taxonomy also backs this claim. Some examples are:

• Service Orchestration

• Information Privacy

• Security Audit

• Hybrid Cloud

• Content Management

All these names are considered noun phrases, and the derivation of new features requires the detection of
commonly used phrases on different vendors’ websites. This is done through POS tagging and chunking,
which are already defined in Appendix B, as they also appeared in the Implementation Features analysis
(3.8.1). In their majority, shared NLP libraries such as SpaCy and NLTK provide out-of-the-box imple-
mentations of these techniques. Through carrying out the design cycle of the Design Science methodology
(2.3), these libraries were tested and found to be inadequate (despite their computational efficiency) for
this stage of the pipeline for several reasons. The first problem found was the inconsistency with which
POS tags are assigned to tokens, which tampered with the process of chunking noun phrases. Examples
of phrases that failed to get grouped because of their tags are:

• Load Balancing

• Auto Scaling

• Machine Learning

• Web Hosting

The problem with such terms is that they often include verbs, like the words “balancing” or “scaling”,
which causes the noun chunker to split them. The best-performing tool found for this purpose was
the Sequence Tagger from the flair13 library. Flair’s tagger utilizes a BiLSTM (Bidirectional Long
Short-Term Memory) network combined with CRF (Conditional Random Fields). BiLSTM handles the
input sequence in both forward and backward directions, ensuring that each word’s context is used for

13https://huggingface.co/flair/pos-english

44

5 Implementation

prediction, while the CRF layer is used on top of the LSTM outputs to predict the tags of the entire
sequence. This model achieved state-of-the-art performance on tasks like POS tagging and NER (Akbik
et al., 2019). After the input sequences are tagged, the chunking process should group the tagged tokens

together to best capture the syntactic nuances of the specific feature names found in the cloud computing
domain. For example, the cloud taxonomy that was introduced in includes the three most common cloud
service models: software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service
(IaaS). If a consumer is interested in a specific service model, it is expected that the knowledge graph
will also be able to categorize and display services under these service model categories or even identify
newly emerged categories. However, available noun chunkers will typically split such phrases, as well as
the following examples:

• denial of service (DDoS) attacks

• multiple platforms

• structured query language (SQL)

• Pay As You Go

• backup as a service

Such examples of phrases include sequences of not exclusively noun tags, but also adjectives, prepositions,
and more. Therefore, a custom Chunk Grammar (definition of patterns of part-of-speech tags that
determines how words should be grouped) was iteratively created and refined to capture these nuances
and effectively group the tokens into phrases commonly used in this domain. Although its application
could also be transferable to other software engineering domains. The phrases found for each vendor
were once again de-duplicated to form the dataset for the next pipeline stage, which is clustering similar
phrases together.

5.6 Phrase Embeddings

To assess the similarity of phrases, they must first be transformed into a numerical form that is eligible
for computation. Embeddings are numerical vectors representing textual data in a high-dimensional
space, allowing for the quantitative assessment of the similarity between texts (Mikolov, Chen, et al.,
2013b). Plenty of word embedding model categories are available that are suitable for this task. One
of the emergent architectures that revolutionized the field of NLP and produces very information-rich
representations is the transformer architecture, which utilizes the attention mechanism to consider the
entire context of a sentence or word sequence, computing the relevance of each word to the entirety of
the sequence and hence providing a better understanding of language in general.

One model based on this architecture is Google’s BERT (Bidirectional Encoder Representation from
Transformers). Even though newer models based on the same principle have been introduced since the
release of BERT, it still remains a widely used model due to its robustness and versatility in handling
context-rich embeddings (Devlin et al., 2019). There are a plethora of variations of BERT models
available to choose from, each of them specializing in the specific task they have been trained for. The
model used in this project is “paraphrase-TinyBERT-L6-v2” , a smaller and more efficient version
that, as the name suggests, was trained to recognise the semantic equivalence of paraphrased expressions
of the same sentence. This model is available from the sentence_transformers library. The intuition
behind this selection is that even when similar features are described differently, they will still be grouped
if they refer to the same thing.

5.7 Clustering

In order to automatically generate an ontology from text corpora, terms are first extracted as lexical
representations of concepts, which are then organized into a hierarchical structure using clustering tech-
niques (Meijer et al., 2014a). After extracting, refining, and vectorizing noun phrases, the goal is to
identify which phrases are semantically similar enough to represent the same concept or, in this case,
cloud service feature. Clustering is an essential and widely used technique in the field of NLP, also
evident in the implementation features analysis (3.8.1). Clustering enables the grouping of data points
into distinct groups, or clusters, based on their similarity. Especially in projects of this nature, where

45

5.7 Clustering

the goal is to organize and classify unstructured text data without predefined labels, this technique pro-
vides a method to extract meaningful patterns and structures from the data, which can then inform the
labeling process. Several popular clustering techniques have been widely utilized in various domains,
such as k-means, hierarchical clustering, DBSCAN, and Gaussian mixture models. The most common
one is K-means, which requires the manual curation of the number k, of clusters to be formed by the
algorithm. This parameter also affects the final size of the clusters to achieve the required number of
clusters. Since there is no way to predict the number of categories and the granularity of the features to
detect in the particular case of cloud computing, an alternative algorithm is needed.

5.7.1 Hierarchical Clustering

Hierarchical clustering is a technique that seeks to construct a hierarchy of clusters, with the flexibility of
not requiring to define the number of clusters beforehand. There are two types of hierarchical clustering:
Agglomerative (bottom-up) and Divisive (top-down) (Xu & jie Tian, 2015).
Agglomerative Clustering: Starts with each element as a separate cluster and merges them into
successively larger clusters.
Divisive Clustering: Starts with the entire dataset as a single cluster and splits it into progressively
smaller clusters.
Generally, the limitation of such algorithms is the handling of noisy datasets with varying densities and
outliers (Xu & jie Tian, 2015). Density refers to how closely the data points are situated in the data
space. In this context, this may be correlated to how the traditional cloud service features may appear
in tightly packed clusters in the vector space, with many data points close together. In contrast, new or
innovative features or features that are tailored for more specific use cases may appear in more spread
out clusters with fewer data points. One example of the former could be cloud security-related features,
and one example of the latter could be Artificial Intelligence functionalities, a recently rapidly evolving
field in any technology-related sector, prone to develop many new and diverse features.

5.7.2 HDBSCAN

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise) is a hierarchical
clustering algorithm that mostly aligns with agglomerative clustering algorithms in terms of their bottom-
up approach. A density-based clustering algorithm extends DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) by incorporating varying densities in the resultant clusters. As opposed
to agglomerative clustering, which starts with each point as its cluster and iteratively merges clusters,
primarily based on distance measures, HDBSCAN focuses on areas in the data space with different
densities, therefore allowing for more variety of clusters in that aspect (McInnes et al., 2017). Another
benefit of this technique is the management of noise and outliers, likely to appear in the noun phrase
dataset in large amounts, as nouns are core elements of any sentence. Finally, HDBSCAN handled
large datasets well, showcasing its scalability and computational efficiency. Consequently, this was the
clustering algorithm of choice.

5.7.3 Principal Component Analysis

The number of data points involved in the clustering process was 189016, while the embedding vector
for each data point had a size of 768. This results in a very high dimensionality of the input data to
the clustering process, which inevitably causes its computation time to increase significantly. Besides
the efficiency concerns, algorithms like HDBSCAN can operate more effectively in lower-dimensional
spaces because noise and excess variation in the data points can deceive the grouping process. PCA
(Principal Component Analysis) is a statistical dimensionality reduction technique that compresses the
number of dimensions of data into a smaller number of the most informative components, called principal
components, that explain the most variance in the data (Abdi & Williams, 2010). Also appearing in the
component analysis (3.6.1), PCA is a popular and useful tool, not only in NLP, but in other areas of AI
research where dimensionality reduction is necessary.

The number of dimensions to keep after the dimensionality reduction can be determined by fitting the
PCA model to the embeddings, which involves the calculation of eigenvectors for the covariance matrix
of the data that represent the directions of maximum variance (i.e. principal components) (Minka, 2000).
The PCA model used is available from the sklearn library tailored for machine learning. The results of
the above process are shown in figure 5.5.

46

5 Implementation

Variance
Explained

PCA Components

80% 116
85% 145
90% 191
95% 288

(a) Number of PCA Components to Explain
Different Percentages of Variance

Figure 5.5: PCA Variance Explained Plot

5.7.4 Parameter Selection

When using HDBSCAN for clustering, there are two critical parameters of the algorithm to set, which
greatly affect the clustering results:
min_cluster_size: The minimum number of data points required to form a cluster. Groupings smaller
than this size will be considered as noise.
min_samples: The number of samples in a neighborhood for a point to be considered as a core point.
This includes the point itself. This parameter influences the density requirement for a region to be
considered as a cluster.
These parameters primarily affect the granularity and stability of the clusters formed. Setting the values
too small could result in an excess number of small and potentially irrelevant clusters. In contrast,
higher values could decrease the granularity more than intended and simultaneously combine multiple
distinct cloud service features in the same clusters. The goal is to identify different groups of data points
where each group represents a specific type of service feature. After iterative refinement of the parameter
values and inspection of the clusters formed, this dataset’s selected values were min_cluster_size = 10,
min_samples = 5.

5.7.5 Clustering Results

Due to the large number of data points and the expected granularity of the results to capture the
high variety and specificity of features, a significant number of clusters and a large amount of noise
are expected. The number of clusters under the abovementioned parameters is 3203. The average size
of each cluster is 19, while 128173 out of the total 189016 data points were regarded as noise. The
distribution of the cluster sizes is shown in figure 5.6. We can consider each cluster as a data point in
the later stage of the pipeline and the classification of each cluster as a relevant cloud service feature
or category, eligible to be included in the knowledge graph. Considering that many clusters will not be
selected. In contrast, others can potentially be merged if they essentially refer to the same thing, the
size of the dataset appears to be sensible at first sight. It must also be noted that the clustering results
are not expected to provide definite and distinct groups of features, as the purpose of this process is

47

5.8 Cluster Aggregation

to observe patterns and common mentions of domain-specific terms in the text collected from different
vendor’s websites, facilitating the feature identification process. At this stage, no context is used for
each phrase involved in the clustering process, as the context is not always representative of what each
phrase means, especially when specific technical terms are merely mentioned and not explained, even in
the particular sentence they are found in.

Figure 5.6: Cluster Size Distribution

In order to justify the parameter selection with quantitative metrics, besides the qualitative manual
inspection of the consequent cluster, relevant numerical metrics may be employed. The most conventional
metric for the evaluation of clustering algorithms is the Silhouette Coefficient. It is calculated using the
mean intra-cluster distance and the mean nearest-cluster distance for each sample, to provide a measure
of how similar a data point is to the data points of the same cluster (cohesion), compared to the data
points of other clusters (separation). The value ranges from -1 to +1, where an average silhouette score
of over 0.7 is considered excellent, and values around 0.5 are satisfactory. In contrast, lower values show
weak cohesion and separation or are even poor for values lower than 0. With increasing dimensionality
of the data, high values are less achievable because of the curse of dimensionality, as the distances to
points of the same cluster become comparable to the distances to points in other clusters.

Another metric that also evaluates clustering quality, but from a slightly different angle, is the Davies-
Bouldin Index (DBI), defined as the average of the maximum ratios of the sum of intra-cluster (within
clusters) distances to the inter-cluster (between clusters) distance. The values for this index do not
have a specified range, but lower values indicate better cluster quality. Table 3 shows the calculated
values for both the Silhouette coefficient and DBI for three sets of values for the min_cluster_size
and min_sample parameters. The values are given in 3 s.f. The chosen values are (10, 5) and aim to
strike a healthy balance of feature granularity with cluster cohesion and stability.

Parameter Set Davies-Bouldin Index Silhouette Score
(10, 5) 0.978 0.505
(20, 15) 0.939 0.483
(30, 20) 1.011 0.441

Table 3: Evaluation Metrics for Different Clustering Parameters (min_cluster_size, min_sample)

5.8 Cluster Aggregation

Each phrase cluster should represent a single potential cloud service feature. At the same time, it is
possible that clusters are not entirely uniform and free from noise or data points that may have been

48

5 Implementation

wrongly included in specific groups due to subtleties and slight variations in technical terms. Therefore,
a method is required to aggregate each cluster into a single name, most representative of the phrases
constituting the cluster. In addition to representation, the derived names of clusters are essential for a
more straightforward classification of features and indexing, presentation, and retrieval purposes from
the resultant knowledge graph.

5.8.1 N-grams

Generally, an n-gram is defined as a collection of n successive terms in a piece of text. Clustered phrases
may describe similar concepts expressed in different ways. For instance, the phrases “data backup
services” and “services for data backup” obviously refer to the same feature: “data backup”, which also
happens to be the common n-gram (where n = 2) between these phrases. By analyzing the frequency
of n-grams within each cluster, for different values of n, common patterns can be identified that capture
the core of the cluster semantically.
The logic for selecting the most representative n-gram involved the following steps:

• Pre-process the phrases set to normalize the nuances, such as capitalization and punctuation. For
example, ensuring equivalence between “open-source software” and “Open Source Software”.

• Compute the frequency of all n-grams in the set of phrases of each cluster for values of n of 1 up
to 7.

• Calculate the proportion of vendors that mention each n-gram out of the set of vendors associated
with the cluster, applying a threshold to ensure that at least half the vendors use that n-gram in
their vocabulary for a specific feature.

• Starting from the shortest and most common n-gram found, move up levels in terms of the n value
to extend the result to a longer n-gram without losing relevancy, i.e., check for eligibility of the
newly introduced words based on the vendor coverage metric introduced in the previous step. If
no longer n-gram is eligible, the search ends with the current result.

This procedure considers the statistical significance of phrase occurrences and the required representation
across the vendor inputs that form each cluster.

5.8.2 Examples of Cluster Aggregation

The following examples of clusters and their corresponding derived names showcase the effectiveness of
the method described above.

Cluster: [“fault tolerance of the system”, “inherent fault tolerance”, “fault tolerance”, “built-in fault tol-
erance”, “Fault tolerance”, “Fault Tolerance”, “fault tolerance”, “stronger fault tolerance”, “fault tolerance”,
“FAULT TOLERANT”, “fault tolerance”, “best fault tolerance”, “high fault tolerance”, “fault tolerance
against downtime”, “Fault Tolerance”, “high fault tolerance”, “fault tolerance and durability”, “level of
fault tolerance”]
Derived Name: “fault tolerance”
Cluster: [“SSO to AWS applications and resources”, “SSIS”, “SSI”, “SSIS”, “SSO”, “SSO”, “SSO”, “SSO”,
“SSO organization connect for Exoscale”, “SSO applications”]
Derived Name: “SSO”

In the second example, the term “SSO” refers to single sign-on, an authentication scheme. The red-
highlighted phrases are examples of noise within the cluster.

5.9 Dataset Creation

After the clustering process, the core of the dataset used to classify cloud service features and create
the knowledge graph is formed. Besides the feature classification task, an additional classification task,
called Match Quality Classification, is carried out to match the identified features to DBPedia resources,
enabling the enhancement of the knowledge graph in a multitude of ways:

• Provide concrete explanations for specific features through the DBPedia abstracts in any matched
resources.

49

5.9 Dataset Creation

• Coreference Resolution: merge clusters that are matched onto the same resources (i.e. potentially
refer to the same concept/ feature), into single feature nodes in the graph.

• Implicit knowledge extension: by incorporating the DBPedia resources in the knowledge graph,
additional information can be directly accessed for each feature regarding its categorization and
relationship to other concepts through the RDF framework of the semantic web.

• Ontology Creation: the creation of the final hierarchical structure of the knowledge graph can be
informed by taking advantage of already existing relationships between the graph nodes through
the DBPedia Ontology namespace.

The match quality classification succeeds the feature classification in the conceptual pipeline. This is
because no information from DBPedia is intended to be used in the initial identification of features to
prevent potential mismatches from altering the performance in the first task. Only the data directly
extracted from the vendors’ web sources is used.

5.9.1 Feature Classification Dataset

This is the primary classification task involved in the pipeline. As previously mentioned, each phrase
cluster can be considered a potential cloud service feature and, therefore, a member of the relevant
dataset for this task. At this point, it is reasonable to loosely set the standards for what a feature is.
The goal is to identify terms that can be considered useful and informative in the context of vendor/
service selection, as well as their categorization in the hierarchical structure of the knowledge graph. For
example, the following content items are found in the content list of a particular cluster:

‘Fully managed service that helps secure remote access to your virtual machines.’
‘Gain unified, remote access with single sign-on across on-premises, infrastructure as a service and
software-as-a-service-applications.’
‘VPN options are available for remote access.’
‘As remote access needs grow, organizations are increasingly shifting away from traditional VPN imple-
mentations and toward more secure and performant remote access solutions.’

The derived name of this specific cluster is “remote access”, which is a somewhat general term that can
be found in various contexts in the field of cloud computing since the “cloud” is generally considered a
network of remote servers that are accessed over the internet. Therefore, the term “remote access” does
not satisfy the criteria above to be included in the knowledge graph. On the other hand, the last two of
the listed sentences also mention the term “VPN”, short for Virtual Private Network, a common offering
of most cloud vendors which entails a more specific aspect of remote access services and could potentially
be eligible for inclusion.

5.9.2 Integrating Context into Classification

Looking back at the last content item, it can be deduced from the provided context that VPNs are a
remote access solution. This is just an example of how the context in which a term is used can drastically
influence the interpretation of its meaning and relevance. It also mitigates the effects of linguistic nuances
such as polysemy, i.e., when a word can have multiple meanings depending on its context. For predictive
models, this provides a better representation of the data, resulting in more accurate predictions. Given
the variability in terms of specificity and relevance across phrases found in cluster content items, it is
essential to incorporate content items directly into the input of the chosen classification algorithm.

A challenge presented in doing this is handling the volume of context information efficiently. With an
average cluster size of 19, it would be computationally intensive to include all the content items in which
the phrases of each cluster are found. It could also dilute the focus from the term being classified,
especially when, in some cases, they are surrounded by multiple other terms, and the context does not
necessarily explain the term of interest. Thirdly, as previously seen, some of the members of each cluster
are noisy and do not allude to the same thing as the rest of the cluster. Consequently, a strategy must
be employed to select a subset of the content items. The following criteria were considered to choose two

50

5 Implementation

content items for each cluster and form the input data point to the feature classifier by concatenating
the selected context to the derived name of each cluster.

Criteria for Selection:

1. Frequency: Preference should be given to the context of phrases that appear frequently across the
cluster, indicating their prominence and acceptance. This is already enforced through the cluster
aggregation method described in 5.8 by choosing sentences that contain the derived name of the
cluster since it embodies the most common n-gram found in the cluster. This also eliminates the
possibility that a context of some noise phrase will be selected.

2. Simplicity and Focus: Content items containing fewer noun phrases besides the clustered phrase
are prioritized to select sentences that are more straightforward and focused on the target phrase.
This approach is based on the assumption that such sentences would provide a more direct context
for the phrase without as many additional and potentially distracting terms.

3. Computational Intensity: When processing large datasets or implementing models where com-
plexity significantly impacts performance, shorter sentences are expected to reduce the computa-
tional load and because of the simplicity of the inputs.

It must be noted that this approach also entails the risk of oversimplification and loss of contextual
information. There is room for modifications and improvement of the context selection strategy. However,
in this project’s scope, where the focus is on examining the feasibility of the recommended system, even
with limited computational resources, more gravity was given to keeping the input complexity at a lower
level. Furthermore, the quality of the available context from the web sources used to collect the data is
not a controlled variable, so the system’s functionality under this circumstance further demonstrates the
robustness of its proposed architecture.

5.9.3 Match Quality Classification Dataset

The curation of the dataset for this second classification task involves the selection of DBPedia resource
URIs as potential matches to each phrase cluster, where each cluster may potentially match with none,
one, or more than one DBPedia entry. The list of the candidate URIs for each cluster is formed using a
manifold method.

Initially, the URIs stored from the process described in section 5.4.2 are considered, referred to as
the original DBPedia vocabulary. The same embedding model used to encode the phrases before the
clustering process is also used to encode the URIs’ labels (or names). The most similar data point involved
in the clustering is found by computing the cosine similarities between the two sets of embeddings. The
purpose is to identify which cluster, if any, best suits each of the URIs without re-clustering. The
URIs that pair with clustered phrases instead of phrases regarded as noise indicate which DBPedia
entries align better with the patterns found in the data. Thus, they are used to expand the vocabulary
by collecting information on all the DBPedia resources linked from their Wikipedia pages through the
“dbo:wikiPageWikiLink” predicate.

The expanded list of DBPedia resources is again checked for similarity with the clusters; this time,
however, against all the phrases constituting them. If the average cosine similarity with the phrases of
each cluster exceeds a specified threshold, the URI is added to the list of potential matches for that
specific cluster.

The final way that candidate DBPedia resources are collected for each cluster is through the DBPedia
API14, where the derived name of each cluster can be used as a keyword to search for relevant entries.
The names of the returned resources are once again encoded, compared to the embeddings of the cluster
phrases. The resource with the highest average similarity is added to the dataset, given its similarity
exceeds the same threshold applied before.

5.9.4 DBPedia Context Integration

The second classification task is an example of entity resolution, where the goal is to identify whether
different textual representations describe the same feature, concept, or entity. To achieve this, we need

14http://lookup.dbpedia.org/api/search

51

http://lookup.dbpedia.org/api/search

5.9 Dataset Creation

to utilize and compare the context from both the web and DBPedia sources to assess their similarity. For
each cluster, the context used in feature classification, which includes the most representative content
items, is leveraged again for the match quality classification, along with the derived name of the cluster
from DBPedia, not only the name of but also the first sentence of the abstract of each entry is used,
which typically provides a compact definition or description, making it a computationally efficient choice
to grasp the essence of the entry. This will allow the classifier of choice to make more informed and
accurate decisions.

52

6 Classification

6 Classification

One of the objectives of this project was to showcase the feasibility of automatically identifying software
features using unsupervised techniques, which require no manual labor or data labeling. While supervised
learning heavily relies on labeled data to train models, unsupervised learning operates without such labels,
making it a challenging approach.

Clustering algorithms are considered essential tools for unsupervised data labeling and enable the group-
ing of data points into distinct categories based on their similarity, as also implemented in the system
architecture described so far. Beyond this point, however, the classification of the data points in each
group to more practical and structured representations of real-world concepts, as in a knowledge graph,
is usually a labor-intensive task.

Text classification is a task that has been extensively researched in recent years, as it has been tackled with
unprecedented success due to the rise of Large Language Models (LLMs) like BERT, GPT (Generative
Pre-trained Transformer) and many other variants (Minaee et al., 2021). This is also evident by the
prevalence of such models in the analysis given in 3.6.1. These models are particularly proficient at
comprehending human language since they are extensively pre-trained on numerous corpora of text,
enhancing their contextual understanding of words and how they are used in various domains. Usually,
pre-trained models are used in transfer learning scenarios, where they are fine-tuned on task-specific
datasets and exploit their general knowledge about language to optimize for those tasks, such as text
classification.

Without labeled data, classification models are trained under different learning setups. An example is
active learning, which involves selecting the most informative instances from the unlabeled dataset to
be labeled by expert annotators in an iterative feedback loop where the model trains on an expanding
labeled dataset, requests from the human annotator to label the data for which it made the least confident
predictions, and retrains with more labeled data each in each iteration (Schröder & Niekler, 2020).

Another learning method, which does not require any manual intervention, is few-shot learning, which
involves training models with a small amount of labeled data, with the prerequisite that the model
can generalize sufficiently well with just a few examples per category or label. A more extreme case of
this method is zero-shot learning, where models are trained on various tasks and expected to generalize
well to new tasks without using any labeled data. While research on zero-shot and few-shot learning
is progressing steadily to unburden developers of AI systems from the inefficient requirement of manual
data labeling, these methods typically do not yet achieve the same level of performance as supervised
learning, given adequate labeled data is available (Y. Wang et al., 2020). However, with the recent
scale-up in the size of language models, their ability to perform classification with only a few examples
emerged (Kaplan et al., 2020), with practical implications in scenarios where labeled data is scarce or
expensive.

6.1 Overview of Experiments

The experiments that will be carried out for this project will test, compare, and present the capabilities
of language models for the classification tasks and prepared datasets described in the previous chapter.
Two scenarios will be used to assess the practicality of keeping manual intervention as low as possible.
In the first, different variations of the BERT model will be trained in a supervised fashion to provide
a preliminary benchmark for the classification performance using supervised learning. Note that no
expert annotation is employed for what the expected predictions and consequent list of cloud service
features should be, along with their matched DBPedia entries, due to the limited scope and resources of
the project. The second approach is to use a generative LLM, specifically Google’s Gemini, along with
prompt engineering, to implement a few-shot direct prediction of the labels for both classification tasks,
allowing the comparison of this method with the set benchmark.

6.2 NIST Labeled Data

For the few-shot classification method mentioned above, a small amount of labeled data is required to
guide the process, as a few examples must be provided to the generative language model through the
composed prompts to allow it to understand the task at hand better, the expected output, as well as the
targeted nature of features that need to be classified, in regards the feature classification task. The NIST

53

6.3 Evaluation Metrics

document introduced in 5.4.1 can be considered a concrete, reliable source for such examples since it
contains terminology that can be mapped to a portion of the clusters, hence labeling them as relevant. At
the same time, the concepts described in the document are also organized in the provided cloud taxonomy,
which enables us to kickstart the ontology creation following the identification of the relevant features
by manually adding in the features associated with the labeled clusters and their proposed parent-child
relationships. A total of 201 clusters were ultimately labeled and excluded from the classification process,
as well as their matched DBPedia resources.

6.3 Evaluation Metrics

The standard evaluation metrics for classification tasks, such as Precision, Recall, Accuracy, and F1 score,
will be used throughout the experiments. To compensate for the class imbalance (i.e., the disparity in
the number of true labels and false labels in a given set of data samples) during both the training and
testing phases, the weighted average of the precision, recall, and F1 scores are calculated so that the
contribution of each of the labels to the overall metrics is proportional to their number of instances in
the selected dataset.

Precision is defined as the proportion of predicted positive instances that are indeed positive:

Precision =
True Positives

True Positives + False Positives
(1)

Recall is slightly different, calculating the proportion of true positives with respect to the total of true
positive instances:

Recall =
True Positives

True Positives + False Negatives
(2)

The F1 Score combines both the precision and recall metrics to compensate for the imbalance in the
number of true positive and true negative instances:

F1 Score = 2× Precision× Recall
Precision + Recall

(3)

Finally, the Accuracy metric is the proportion of correct predictions out of the total predictions made:

Accuracy =

(
Number of Correct Predictions
Total Number of Predictions

)
× 100 (4)

6.4 Experiment 1: Supervised BERT Models

A total of 5 BERT models were trained on the two classification tasks. The selected models are:

• BERT-base-uncased and BERT-large-uncased: BERT-base is a broadly used BERT model
with 12 transformer layers and 110 million parameters. It offers a good starting point for text
classification, striking a balance between performance and resource requirements. On the other
hand, BERT-Large has 24 transformer layers and 340 million parameters, enabling it to capture
more complex contextual information, although it requires significant computational resources for
training and inference.

• RoBERTa-base and RoBERTa-large: robustly optimized versions of BERT built with modified
key hyperparameters and allegedly better pretraining techniques. These models have demonstrated
better performance in tasks requiring determining the relationship between two sentences, which
may be useful for the match quality classification.

• distilBERT-base-uncased: a distilled version of BERT, which offers a good baseline comparable
to the full BERT model while being smaller and faster. This model is ideal for limited resource
environments.

The use of both base and large versions of models aims to display the effect of model size on performance.
The base models offer a standard comparison point, while the large models test the benefits of increased
complexity and number of parameters on classification accuracy.

54

6 Classification

6.4.1 Experimental Setup

The dataset was split into a train set and a validation set, with the ratio 80:20, a standard practice
in machine learning to balance the availability of data to train while having sufficient data to test the
performance of the models. Due to the small size of the datasets, three training epochs were found
adequate to reach peak performance. More significant numbers were also tested, specifically 5 and 10,
which led to decreased performance on the validation set, indicating the effect of overfitting. The batch
size was set to 16, as smaller batches can provide better generalization when the dataset is small. The
typical loss function for binary classification tasks was used, i.e., binary cross-entropy (BCE), which
quantifies the difference between the predicted probability distribution and the true distribution of the
labels and can be mathematically expressed as:

BCE(y, ŷ) = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

where:

yi is the true label for the i-th sample.
ŷi is the predicted probability for the i-th sample.
N is the total number of samples.

6.4.2 Results

Table 4 shows the classification performance metrics for the five models, where P stands for Precision, R
for Recall, and A for Accuracy. As demonstrated by the performance of the distilBERT-base model in
the feature classification task, compared to larger models, bigger numbers of trainable parameters of a
model do not always result in better results. The small dataset size might impose this, as larger models
require more data to capture the underlying patterns in the data effectively. At the same time, they are
more prone to overfit the training data if the right regularization and optimization techniques are not
applied, causing a drop in performance for the validation data.

Even though the goal of this experiment is not to optimize the classification performance, as stated
in 6.1, the interpretation of the results depends on the emphasis given to specific requirements of the
system. For example, if the system is required to collect as much valuable information (or features) as
possible, recall indicates whether most of the features are identified. This might entail including many
insignificant features, however, if the precision is not very high. The F1 score may indicate a healthy
balance between the two.

Table 4: Classification Metrics for Supervised Learning

Feature Classification Match Quality Classification

P R F1 A P R F1 A

BERT-base 0.82 0.81 0.81 0.81 0.87 0.86 0.86 0.86
BERT-large 0.79 0.74 0.74 0.74 0.87 0.87 0.87 0.87
RoBERTa-base 0.74 0.74 0.74 0.74 0.75 0.76 0.73 0.76
RoBERTa-large 0.83 0.81 0.81 0.81 0.82 0.81 0.79 0.81
distilBERT-base 0.82 0.81 0.82 0.81 0.85 0.85 0.85 0.85

6.5 Experiment 2: Gemini Classifier

Google’s Gemini is the generative language model used in the experiment, mostly because of its easy
accessibility through the Google Cloud API. A comprehensive list of alternative generative models and
their features is found in the spreadsheet called “LLMs” from the general SLR documentation spreadsheet
(Constantinou, 2024). Gemini’s core utilizes a transformer-based architecture, making it suitable for

55

6.5 Experiment 2: Gemini Classifier

tasks that require an advanced understanding of language and contextual information, such as few-
shot classification. The method of prompt engineering was employed to iteratively improve Gemini’s
performance in the two classification tasks.

6.5.1 Prompt Engineering

Prompt engineering is designing and refining textual inputs to generative language models that direct it
to generate the desired output in content and format. It can also be applied for text classification, where
the input text to be classified is included in the prompt, along with a description of the task and a few
examples to inform the model, using examples, about the target labels and what sort of input maps to
each label (Brown et al., 2020). The examples should, therefore, be as broad and representative of the
whole dataset as possible, but keeping the prompt clear and specific is also essential.

6.5.2 Example Prompts

The following prompts are the primary prompts used to test the performance of this technique. By
checking the accuracy of the model’s responses, two parts of the prompt were iteratively refined: the
description and the examples. In the first task’s prompts, the variable “term” is replaced by the derived
cluster name as computed using the n-gram technique, while “contexts” are the sentences chosen to
represent the web context in which the term appears. For the second task, “term2” and “contexts” take
the same values, while “term1” and “abst_sent” are the DBPedia resource name and the first sentence
of its abstract, respectively. The results in the following section convey the gradual improvement in the
classification performance by refining the input prompts.

Feature Classification Prompt 1

Considering cloud service selection and the few-shot examples below,
classify Term, as seen in Context: Relevant (True/False)?

example: CRM
Context: Choose a CRM implementation partner that continues to grow
and adapt with you, helping you stand out from the rest. / This CRM
was designed for small business.
Relevant: True

example: audit logs
Context: Likewise, you can store audit logs for accessing the
Kubernetes API in an S3 bucket you define. / With Cloud Audit Logs
integration, every interaction with Secret Manager generates an audit log.
Relevant: True

example: resources
Context: Distribute traffic across resources / All resources are priced
on an hourly basis, so you’ll only pay for what you need, when you need it.
Relevant: False

example: scratch
Context: Create custom solutions without starting from scratch. / No
need to start from scratch.
Relevant: False

Term: {term}
Context: {" / ".join(contexts)}
Relevant? Answer with one word

56

6 Classification

Match Quality Classification Prompt 1

Given two terms and the context they appear in, classify if they refer
to the same thing/ concept.

Examples:
* Term 1: Scratch (programming language)

Context 1: Scratch is a high-level block-based visual programming
language and website aimed primarily at children as an educational
tool for programming, with a target audience of ages 8 to 16.
Term 2: scratch
Context 2: Create custom solutions without starting from scratch. /
No need to start from scratch.
Answer: False

* Term 1: CRM software
Context 1: Customer relationship management (CRM) is a process in
which a business or other organization administers its interactions
with customers, typically using data analysis to study large amounts
of information.
Term 2: CRM
Context 2: Choose a CRM implementation partner that continues to grow
and adapt with you, helping you stand out from the rest. / This CRM
was designed for small business.
Answer: True

* Term 1: Hypervisor
Context 1: A hypervisor (also known as a virtual machine monitor,
VMM, or virtualizer) is a type of computer software, firmware or
hardware that creates and runs virtual machines.
Term 2: hypervisor
Context 2: Regardless of which hypervisor you choose, we manage and
support your virtualized configuration, 24x7x365. / Hypervisor :
KVM on Linux
Answer: True

* Term 1: Integrity
Context 2: Integrity is the practice of being honest and showing
a consistent and uncompromising adherence to strong moral and
ethical principles and values.
Term 2: integrity
Context 2: With business data scattered across the enterprise
and value chain, managing and maintaining its integrity can be
difficult. / Ensuring your data and environments are properly
segmented from other machines is extremely important for the
integrity of your data.
Answer: False (data integrity is not exactly the same with general
integrity described above)

Term 1: {term1}
Context 1: {abst_sent}
Term 2: {term2}
Context: {" / ".join(contexts)}

Answer? Provide single wordedly with True or False

57

6.5 Experiment 2: Gemini Classifier

6.5.3 Results

The following tables (Table 5 and Table 6) present the classification metrics for the few-shot prompting
technique applied to the two classification tasks: Feature Classification and Match Quality Classification.
For each prompt, metrics are displayed in two sets: the first set, on the left-hand side, shows the computed
metrics on the validation set used for the supervised learning models, enabling a direct comparison. The
second set, on the right-hand side, lists the metrics computed across the entire datasets for both tasks,
providing a comprehensive assessment of the model’s overall performance. The assessed prompts are
fully displayed in appendix E.

Table 5: Few-Shot Prompting for Feature Classification

Validation Set Entire Dataset

P R F1 A P R F1 A

Prompt 1 0.60 0.61 0.57 0.61 0.59 0.61 0.57 0.61
Prompt 2 0.83 0.82 0.82 0.82 0.82 0.81 0.81 0.81
Prompt 3 0.83 0.77 0.77 0.77 0.82 0.76 0.76 0.76
Prompt 4 0.81 0.70 0.69 0.70 0.81 0.70 0.69 0.70
Prompt 5 0.82 0.79 0.79 0.79 0.77 0.74 0.75 0.74
Prompt 6 0.91 0.91 0.91 0.91 0.81 0.80 0.81 0.80

Table 6: Few-Shot Prompting for Match Quality Classification

Validation Set Entire Dataset

P R F1 A P R F1 A

Prompt 1 0.73 0.72 0.72 0.72 0.72 0.71 0.71 0.71
Prompt 2 0.82 0.68 0.69 0.68 0.82 0.68 0.69 0.68
Prompt 3 0.83 0.73 0.74 0.73 0.82 0.73 0.74 0.73

Overall, the results indicate that the performance of the few-shot prompting technique on the Feature
Classification task is comparable to that of supervised learning models, such as the BERT variants. This
suggests that the Gemini model’s enhanced contextual understanding can be effectively leveraged in
scenarios where the task description is sufficiently specific and detailed, allowing the model to exploit its
pre-trained knowledge. In contrast, the Match Quality Classification task demonstrated less promising
results with the few-shot technique, performing below the level of the BERT models.

A plausible interpretation of these outcomes is that the Feature Classification task inherently benefits
from the contextual understanding of the Gemini model, particularly when the task is explicitly de-
scribed and supplemented with clear examples. BERT models, constrained by the limited training data
available, may struggle to encode such complex contextual information into their weights. Conversely,
the Match Quality Classification task, which primarily involves semantic similarity determination, is
more straightforward and does not extensively capitalize on the advanced contextual capabilities of the
generative model, thereby favoring the more direct training approach of the BERT models.

Notable Observations

Several key factors were observed to influence the effectiveness of the few-shot prompting technique:

• Importance of Example Quantity and Quality: The number and quality of examples sig-
nificantly affect the model’s performance. For instance, providing opposing examples, such as
differentiating between "Bytes" and "Storage Capacity," helps the model better understand the
distinctions between related concepts.

• Balance of Positive and Negative Examples: A balanced representation of positive and
negative examples within the prompt is crucial to avoid model bias and ensure a more robust
understanding of both relevant and irrelevant classifications.

58

6 Classification

• Complexity and Specificity of Instructions: The complexity of the prompt instructions must
strike a balance between being sufficiently explanatory to guide the model effectively and avoiding
unnecessary details that may introduce confusion. Instructions should be clear, concise, and directly
relevant to the classification task at hand.

The importance of carefully designed prompts in leveraging the potential of few-shot learning is under-
lined by the above observations, especially in tasks requiring intricate understanding and interpretation.
Prompt design could be optimized further to enhance the classification performance of generative models
in future work.

6.5.4 Summary of Results

The experimental results in this section showcase the comparative effectiveness of two approaches: su-
pervised learning and few-shot classification. In the supervised learning experiment, BERT models were
trained on a limited amount of labeled data demonstrated good classification performance for the fea-
ture classification task, with a bottleneck of F1-score at around 0.82. This suggests that with adequate
labeled data, supervised methods can effectively capture the nuances of cloud service features, leading
to reliable categorization. However, this approach’s dependence on labeled data limits its scalability in
contexts where labeling resources are scarce.
The few-shot classification experiment offered promising results, showing that models could adapt to new
examples with minimal labeled data. On the same validation set, this method achieved incrementally
better results as the prompts are refined, reaching an even better classification performance (F1-score
of 0.91), underscoring the flexibility and potential of this method for handling evolving feature sets in
cloud services. These findings point to the utility of few-shot learning for domains with limited labeled
data or rapidly changing categories, where supervised learning may struggle to maintain relevance.
It is important to note that both of these methods have potential for even better performance. Both
BERT and Gemini are LLMs that have not been pretrained on domain-specific text. An intermediate
pretraining step on a corpus of cloud-related documents (e.g., cloud service descriptions) could increase
their classification performance (Gururangan et al., 2020). This involves training on unlabeled cloud
service texts using masked language modeling (MLM), which requires no labeled data. Domain-adaptive
pretraining adjusts the model’s language understanding closer to the vocabulary and context specific
to cloud services, or any other software domain for which the artifact is used for. However, there is
additional uncertainty in terms of where these text resources can be found for any domain, as well as
their reliability and sufficiency, which can impact the generalizability of this method.

59

7 Knowledge Graph Construction

The final stage of the pipeline outlined in section 5.2 entails the creation of the knowledge graph, defined
as a structured representation of knowledge in the form of nodes and edges, where nodes represent
distinct entities/ concepts and the edges represent their relationships. In our case, the knowledge graph
will be populated by the information obtained from the web sources regarding the identified cloud
service features (nodes) from the preceding classification phase. The targeted structure of the knowledge
graph is hierarchical, where feature categories are organized into broader parent categories and narrower
subcategories, reflecting their relationships and dependencies. This hierarchical arrangement aims to
provide a clear and intuitive representation of cloud service features, allowing for easy navigation and
retrieval of relevant information. It is important to note here that the inclusion of a vendor in any of the
derived feature nodes does not itself claim the supportability of that specific feature by the vendor, but
rather the mere mention of that feature in one of their web pages, which contributed to the formation
of the cluster that was classified as a feature.

7.1 Ontology Creation

To construct high-quality ontologies, a substantial amount of knowledge is necessary (T. C. Du et al.,
2009). The collected knowledge is the source from which the term extraction occurs to determine the
building blocks of the ontology, referred to as nodes. Even when the needed knowledge is accessible,
correctly organizing many concepts is still labor-intensive. Thus, finding methods to automate the
ontology creation process is highly desirable (Tam, 1993). As mentioned in 5.4.1, the taxonomy included
in the NIST Cloud Service Reference Architecture document was used as a blueprint to manually create
the foundation of the ontology upon which the knowledge graph is built. A similar approach was taken
in (Alfazi et al., 2015), where NIST Cloud Computing standards were interpreted to derive concepts,
with “is a” as the primary relationship type and starting with "cloud computing" as the root node. Since
the central root concepts are already present, an iterative approach may be taken to find appropriate
parent nodes for each newly identified concept or feature by introducing novel parent-child relationships.

Several intricate methods have been researched to infer such relationships, for example, Formal Concept
Analysis (Cimiano et al., 2005), which groups objects based on their attributes. An alternative is
the subsumption method, which constructs broader–narrower relations based on the co-occurrence of
concepts (Meijer et al., 2014b). Classification methods have been suggested for adding concepts to
existing hierarchies, such as the tree-descending algorithm, where a term is inserted by descending from
the root to the leaf and is added as a child of the leaf node on the path with the highest cumulative
similarity to the new concept (Pekar & Staab, 2002).

Prior to determining the concept relationships, one of the key tasks involved in ontology creation is
Coreference Resolution (Kertkeidkachorn & Ichise, 2017), which ensures all mentions referring to the
same entity are identified and grouped together. This is also essential in this scenario where clusters
represent the same concept and, therefore, need to be aggregated into a single node, for example:

• Single Sign On with SSO

• Identity and Access Management with IAM

Some of the information made available from the previous stages in the pipeline was used for this specific
purpose, such as when the clusters associated with the same feature match the same DBPedia resource
or another resource name that redirects to it, thus handling linguistic nuances such as abbreviations.
Moreover, some clusters were similar despite being separated in the clustering process. Using different
density values, the HDBSCAN algorithm enabled further merging of clusters to be associated with the
same node in the knowledge graph. This process resulted in the final set of nodes in the graph. As
previously mentioned, the next step is to organize these nodes in a hierarchical structure by expanding
the NIST-based taxonomy. The contextual information from both the web text, in which the terms
are found, and the textual descriptions of concepts available from DBPedia in the form of abstracts
were exploited to complete this task. Specifically, the average cosine similarity of the text embeddings
corresponding to the clusters associated with each node was computed to iteratively add child nodes to
the existing nodes in the taxonomy, as explained in the following section.

60

7 Knowledge Graph Construction

7.2 Hierarchy Creation

The following steps were taken to determine the hierarchy of nodes in the knowledge graph and summarize
the algorithm in Figure 1:

• Initialization:

– Nchild: Set of current child nodes already having a parent node in the hierarchy.

– Norphan: Set of orphan nodes that do not have a parent node in the hierarchy, excluding the
central node of Cloud Computing.

• Similarity Calculation:

– For each child node nc in Nchild, the algorithm retrieves its associated clusters Cnc
and cor-

responding embeddings Enc .

– It then computes cosine similarity scores between the embeddings of each child node Enc and
those of each orphan node Eno

to determine their closeness.

• Parent-Child Matching:

– The algorithm identifies the orphan node n∗
o with the highest similarity score snc,no for each

child node nc and stores this pair in S.

– The top matches T are selected based on the highest similarity scores, and potential parents
are determined based on these matches.

• Hierarchy Update:

– The hierarchy H is updated iteratively by adding new parent-child pairs until all orphan nodes
are assigned a parent.

– The sets Nchild and Norphan are recalculated after each iteration to reflect the updated hier-
archy.

61

7.2 Hierarchy Creation

Algorithm 1 Iterative Assignm ent of Parent Nodes to Orphan Nodes in a Hierarchical Knowledge
Graph
Require: Cluster data for each feature Cf , current hierarchical relationships H, and feature embeddings

Ef

Ensure: Updated hierarchical relationships H
1: Initialize current child nodes Nchild ← {n | n ∈ N ∧ n ∈ Hchild}
2: Initialize orphan nodes Norphan ← {n | n ∈ N ∧ n /∈ Hchild}
3: while Norphan ̸= ∅ do
4: Initialize similarity scores S ← ∅
5: for each node nc ∈ Nchild do
6: Retrieve clusters Cnc

for node nc

7: Retrieve embeddings Enc
for clusters Cnc

8: if Enc = ∅ then
9: Continue to next node nc

10: end if
11: for each orphan node no ∈ Norphan do
12: Retrieve clusters Cno

for orphan node no

13: Retrieve embeddings Eno
for clusters Cno

14: if Eno ̸= ∅ then
15: Compute cosine similarities between Enc and Eno

16: Calculate average similarity score snc,no

17: else
18: Set similarity score snc,no

= 0
19: end if
20: end for
21: Identify orphan node n∗

o with highest similarity score snc,no

22: Store pair and score (nc, n
∗
o, snc,n∗

o
) in S

23: end for
24: Select top matches T ⊆ S with highest scores
25: for each match (np, nc, s) ∈ T do
26: Determine best parent node np for child node nc based on hierarchy depth
27: Update potential parent set P with chosen pairs (np, nc)
28: end for
29: for each orphan node nc ∈ P do
30: Update hierarchical structure H with new relationship (np, nc)
31: end for
32: Recalculate Nchild and Norphan based on updated hierarchy H
33: end while

62

7 Knowledge Graph Construction

7.3 Evaluation of the Knowledge Graph

A standard approach for assessing automatically generated ontologies involves a golden standard evalu-
ation, where the constructed ontology is compared against a predefined benchmark ontology. However,
in cases where no benchmark ontology exists for a particular domain, an alternative method is to have
several domain experts’ manual evaluation of the constructed ontology (Meijer et al., 2014b).

In this project, the chosen method for evaluating the knowledge graph’s structure is by comparing the
resultant set of nodes and their associated vendors with the findings of a previous study by (Bieger,
2023). In this study, the authors have collected data on the coverage of different cloud vendors regarding
a predefined set of features. These include common cloud service features such as Disaster Recovery
and Virtual Machines, various types of SLAs (Service-level Agreements) like Cost Management and
Optimisation, Identity and Access Management (IAM), specific data center locations, Operating Systems,
Programming Languages support, and more.

By manually matching these features to the final node list in the knowledge graph, we assess whether
the graph can accurately retrieve information about each feature. The main purpose of the proposed
system is to retrieve information about these features while identifying emerging ones. Additionally, as an
extension to the proposed pipeline, determining whether a vendor actually offers a feature mentioned on
their website could be explored further through the semantic classification of the content items containing
the feature of interest.

The complete list of features used for comparison is categorized in Appendix F, with those identified by
the few-shot classification technique marked with a checkmark. The results (summarized in Table 7) show
that most cloud services, SLAs, database support, and data center locations are correctly retrieved. In
contrast, to their full extent, the system exhibits some weaknesses in identifying more technical features,
such as programming languages, APIs, and operating system support.

Category Percentage Covered
Cloud Services 77.7%
SLAs 68.4%
Bring your own License (BYOL) 26.3%
Supported APIs 30.8%
Programming Language Support 40.7%
Databases (out of box) 90.9%
Compliance 36.0%
Service costs (Forecasting) 66.6%
Container orchestration 42.9%
Operating Systems 32.3%
Data Center Locations 51.1%

Table 7: Feature Categories and Percentage Coverage

In the following analysis, the features successfully identified were used to make naive predictions about
their support by the vendors included in both studies. Specifically, a feature mentioned on a vendor’s
webpage is assumed to indicate that the feature is supported. These predictions are compared to the true
labels found in the previous study, resulting in the metrics presented in table 8. Additionally, the number
of unique URLs crawled for each vendor is reported (found in table 2), to examine the impact of the
variety and volume of sources on classification performance. There appears to be a positive correlation
between the number of URLs and classification performance, suggesting that the range of discoverable
features is significantly influenced by the quantity and quality of textual data collected from the web,
highlighting the critical role of data collection.

63

7.4 Knowledge Graph Demonstration & Retrieval Examples

Table 8: Information Retrieval Metrics

P R F1 A Unique URLs

IBM Cloud 0.93 0.17 0.29 0.44 15
Alibaba Cloud 0.87 0.49 0.63 0.56 57
Leaseweb 0.43 0.41 0.42 0.65 73
DigitalOcean 0.69 0.62 0.65 0.68 78
Oracle Cloud 0.80 0.61 0.70 0.60 128
Rackspace 0.67 0.59 0.63 0.65 132
OVH 0.62 0.71 0.66 0.61 182
Amazon (AWS) 0.91 0.73 0.81 0.71 207
Google Cloud 0.81 0.70 0.76 0.62 267
Microsoft Azure 0.90 0.75 0.82 0.70 580

7.4 Knowledge Graph Demonstration & Retrieval Examples

In this section, the functionality of the artifact output by the proposed pipeline is demonstrated. The
demonstration is performed through Neo4j AuraDB15, an automated graph database that is provided as
a cloud service, selected for its efficiency, reliability, and scalability. The data visualisation and querying
capabilities that come with it offer a suitable environment to showcase the knowledge graph’s practicality.

7.4.1 Neo4j Aura Setup

The nodes of the knowledge graph are categorized based on their roles/ types using node labels, making
it easier to organize, query, and manage data within the graph. The node labels used in this case are
shown in Figure 7.1

Figure 7.1: The node labels used in the knowledge graph

Each node label is associated with a CSV file, imported into the graph database and contains a row of
attributed values for each instance of the defined node category. As is common practice with relational
databases, these CSV files typically include a unique identifier for each node, ensuring that each entity can
be uniquely identified within the graph. This unique identifier (the primary key in relational databases) is
essential for establishing relationships between nodes accurately and consistently. The “building blocks”
of the knowledge graph are the node instances associated with the Info Point node label. These represent

15https://neo4j.com/product/auradb/

64

https://neo4j.com/product/auradb/

7 Knowledge Graph Construction

the content items collected from each vendor’s web pages, as described in section 5.3.3, which comprise
the data points involved in clustering and subsequent feature identification through the classification
process. As previously explained, more than one cluster may be associated with the same feature node,
which is also the case for the collected DBPedia entries (URI node label). The hierarchy among feature
nodes is established through the HAS_CHILD relationship between specific instances. The querying
capability described in the following section allows for the retrieval and display of any number of node
instances in the graph.

65

7.4 Knowledge Graph Demonstration & Retrieval Examples

7.4.2 Graph Exploration and Retrieval

Similarly to relational databases, graph databases also support their own query languages to facilitate the
efficient retrieval of information from database instances. The query language used in AuraDB is Cypher,
which is similar in style to SQL but optimized for querying large, interconnected datasets, leveraging the
graph structure for efficient traversal and retrieval. The following Cypher query return the central node
of the graph (can also be used for any other feature node or other node labels), representing the cloud
computing concept:

MATCH (cc:Feature {Name: "Cloud computing"})
RETURN cc;

Each node can be expanded to view its connections with any other node in the graph. Figure 7.2 partly
displays the hierarchical structure of the graph up to the 3rd level down the hierarchy from the central
node:

Figure 7.2: Partial view of the hierarchical structure of the graph

The nodes returned by running each query can be explored further by double-clicking to expand each
node, displaying its relationship with any other node label instance found in the graph. In the following
example (Figure 7.3), the node named “VMWare” is expanded to show its parent node “virtual machines”
in pink, the associated URIs in orange, the clusters that have formed the node in green, and the individual
mentions of that phrases from different vendors in light blue. All the properties stored for each node are
accessible. Each Info Point node can be expanded to reveal the URL of the webpage from which it was
extracted, as well as the specific content item with the text containing the term of interest (Figure 7.4).

Alternatively, the graph can be explored concerning specific vendors to display their associated feature
categories based on the extracted web data. The following rather more complex Cypher query serves
this exact purpose:

MATCH (v:Vendor)<-[:SUPPLIED_BY]-(ip:"Info Point")<-[:HAS_INFO_POINT]-(c:Cluster)<-[:HAS_CLUSTER]-(f:Feature)
WHERE v.name CONTAINS "Amazon"
WITH f, v
MATCH path=(f)<-[:HAS_CHILD*]-(parent:Feature) // Traversing up the hierarchy
RETURN f, v, path

66

7 Knowledge Graph Construction

Figure 7.3: Expanded view of the “VMWare” node.

Figure 7.4: Expanded view of an Info Point node.

In synopsis, this query locates a vendor node by its name, computes all the feature nodes for which there
is a connected path via the node labels and relationships presented in Figure 7.1, and returns the vendor
along with the feature nodes satisfying this condition. In this example, the hierarchy of feature nodes is
traversed up to the root node to display the broader categories of the detected features. The output is
shown below in both narrow and wide views:

67

7.4 Knowledge Graph Demonstration & Retrieval Examples

Figure 7.5: Amazon Web Services (AWS) features narrow view

Figure 7.6: Amazon Web Services (AWS) features wide view

68

8 Discussion & Conclusion

8 Discussion & Conclusion

The conclusion of this research aims to address the research questions outlined in section 1.4, discuss the
extent to which they have been resolved, and discuss the implications and limitations of this project.

8.1 Research Objectives

Addressing the individual research sub-questions listed can provide a more comprehensive perspective
on assessing the overall contribution to the main research objective.

RQ1: Which unsupervised machine learning methods have been explored for capturing and structuring
knowledge about software products from vendors’ online resources into a knowledge graph?
The systematic literature review process described in chapter 3 revealed numerous ways to tackle the
knowledge extraction task. Knowledge extraction typically consists of entity extraction, attribute extrac-
tion and relation extraction (Z. Zhao et al., 2018). In existing research, entities and their associations are
primarily identified using rule-based, machine-learning-based, and deep learning-based methods (L. Wang
et al., 2023). Some researchers suggest software-specific NER techniques (Feng et al., 2018) while others
employ conditional random field (CRF) and bi-directional long and short-term memory (BiLSTM) neu-
ral networks for named entity recognition (Nayak et al., 2020). A general observation that can be made
is that most studies focus extracting software-specific entities, where a pre-defined set of categories is
defined. This approach can be counter-productive in terms of deriving newly emerged features, consid-
ering the pace at which innovation in technological domains takes place and the labor-intensive nature
of manual data labeling.

Unsupervised techniques such as clustering, topic modeling, Formal Concept Analysis (FCA) - (Cimi-
ano et al., 2005), and others are usually employed to discover hidden patterns, group similar items, or
identify latent topics and rising trends within large corpora of text data. However, the challenge with
these approaches lies in their interpretability and conversion into structured knowledge, which often
requires domain experts to convey and validate the results.

RQ2: What are the key characteristics and capabilities of unsupervised machine learning methods used
to extract knowledge from software vendors’ resources?
The literature also revealed a myriad of methods used for different natural language processing appli-
cations. In terms of data processing and representation, there are common techniques such as Part of
Speech (POS) tagging, N-grams, stemming and lemmatization etc, which are essential to standardize and
clean textural data, enhancing its quality for subsequent processing. Additionally, various vectorization
methods are employed to transform textual data into numerical representations that machine learning
algorithms can work with.

For the representation and understanding of language for more advanced tasks such as classification,
there is an apparent rise in the use of language models due to the innovative exploitation of the trans-
former architecture and its ability to capture complex patterns, contextual relationships, and semantic
meanings within text, as outlined in section 6. This allowed for the extensive unsupervised training of
large language models (LLMs) on myriads of texts from different domains, enabling these models to
leverage their inherent knowledge in diverse downstream tasks (Minaee et al., 2021). Nonetheless, this
usually entails the need for labeled datasets to fine-tune these models for these tasks. Moreover, these
models are computationally intensive, and there are concerns about their interpretability and reasoning
process. Despite the challenges, the use of LLMS continuously grows as researchers and practitioners
adopt strategies like transfer learning and few-shot learning to mitigate the need for large amounts of
labeled data (Kaplan et al., 2020). However, limited research exists on the exploitation of LLMs in
automating KG construction (Hur et al., 2021).

RQ3: How can the effectiveness and accuracy of unsupervised machine learning methods for extracting
knowledge about software products be evaluated?
Depending on the specific task, a range of metrics can be applied to evaluate the performance of different
NLP methods. The metrics that seem to stand out in the literature are classification metrics because
of the dominance of this task in the design and development of NLP systems. However, these classifi-
cation metrics may not be directly applicable in more complex evaluations, such as those required for a
knowledge graph, where additional metrics may be utilized, such as coverage (the extent to which the
graph captures the relevant domain knowledge) and path analysis (evaluating the validity and relevance
of paths between entities). Expert validation is usually required to qualitatively asses the accuracy and

69

8.2 Main Contribution

practicality of such artifacts.

RQ4: How can an automated system be designed to extract and structure knowledge about software
products from different vendors into a unified knowledge graph?
The proposed architecture described in chapter 5 demonstrates the feasibility of creating systems that
can automatically acquire knowledge regarding different cloud service vendors, which can be potentially
generalised for use in other domains. The pipeline design was guided by the principles of the design
science cycle, which proved to be highly effective when aligned with the findings from the systematic
literature review, as many of the models and techniques identified in the review were instrumental during
the implementation process.

RQ5: How can the performance and quality of a system for automatically generating a knowledge graph
from software vendors’ data be evaluated?
Following the previous remarks, the evaluation of the proposed system utilized different metrics to
assess individual pipeline components, from the clustering quality to the classification performance and
the overall coverage and information retrieval capabilities of the eventual knowledge graph. There is
undoubtedly room for improvement in the evaluation process since the contribution of a cloud domain
expert in the data labeling process, and the qualitative assessment of the knowledge graph would solidify
the effectiveness of the system and the techniques employed by it.

8.2 Main Contribution

The analyses given above (RQ1 & RQ2) indicate the current state of the art in terms of knowledge
graph construction for specific domains. As presented in (Abu-Salih, 2021), the current approaches fall
under two main categories: (1)Knowledge-based: methods that mainly involve domain experts and
human crafted rules to incorporate domain knowledge, and (2)Learning-based: methods that employ
(un)supervised learning for entities recognition and relations extraction.

These methods limit the scope of knowledge graphs to entity-based representations, whereas the pro-
posed approach aims to extend this by constructing knowledge graphs tailored specifically to software
features. Despite the limitations mentioned above, this project shows the feasibility of automating this
process. Each component of the artifact can be individually optimized further using state-of-the-art
techniques for each of the tasks involved. However, the design of the proposed artifact is novel in its
integration of these components into a cohesive pipeline, different from the standard approach presented
in (Hofer et al., 2024). It is demonstrated that LLMs can be leveraged to construct knowledge graphs
with limited intervention, providing a framework that is original in concept.

8.3 Limitations & Future Work

Following are some of the identified limitations of this study:

• Broader Applicability and Generalizability of the Artifact: One of the primary limitations of this
study lies in the analysis of the artifact’s broader applicability. The current design and implemen-
tation were evaluated within a specific software domain, that of cloud computing. Other software
domains can vary significantly in terms of their technical terms and functionalities. This variability
introduces challenges in generalizing the artifact to other domains without further adaptation. For
example, differences between enterprise software, consumer applications, and specialized domains
(e.g., healthcare or finance) may affect how accurately features can be extracted and interpreted.
Moreover, the artifact as is utilizes an existing domain ontology as a blueprint for the output
knowledge graph’s structure, upon which it extends to accommodate more feature categories. Such
resources may not be available in other domains and may need to be curated manually by domain
experts.

• Data Diversity and Bias in Feature Extraction: Another limitation relates to data diversity and
potential biases in the feature extraction process. Since the artifact relies on textual data from ven-
dor websites, the content may exhibit biases depending on the data sources selected, such as biased
terminology, varying levels of technical specificity, and marketing-driven language. Furthermore,
vendor-provided information may emphasize some feature s while omitting others, leading to an
incomplete or skewed representation of the software’s capabilities. These biases may compromise
the accuracy and completeness of extracted features, particularly when applied to software types
not well-represented in the initial data. To mitigate this, future work could incorporate data from

70

8 Discussion & Conclusion

additional sources and incorporate techniques to detect and adjust for data bias. One possible
extension could be to incorporate sentiment analysis of user reviews for specific aspects of the
software from each vendor (ABSA), a technique that was also discussed in section 3.7.1.

• Need for Qualitative Assessment from End-Users: Finally, a significant limitation is the absence
of a qualitative assessment from end-users who would interact with the artifact in a practical set-
ting. While quantitative metrics provide an initial understanding of the artifact’s performance,
they do not fully capture the usability, interpretability, or value of the extracted features from
a user’s perspective. Feedback from domain experts and end-users, such as software engineers,
product managers, or analysts, would provide valuable insights into the artifact’s practical util-
ity, highlighting any gaps in feature relevance, ease of interpretation, or integration with existing
workflows. This feedback could also help identify areas for improvement, ultimately guiding future
iterations of the artifact to better meet the needs of its intended audience.

• LLM Selection: Benchmarking the proposed approach against general-purpose LLMs, such as
ChatGPT, can provide means to evaluate their capacity for classification tasks in this domain.
While this project utilized Gemini as the primary LLM for classification, comparing its performance
with other models could provide valuable insights into the strengths and limitations of different
architectures. This investigation would not only help determine the most suitable model for the
task but also shed light on the adaptability of general-purpose LLMs in handling domain-specific
classification challenges. Such a benchmarking study would contribute to a deeper understanding
of how different models perform in knowledge extraction.

To address the aforementioned limitations, future work can be dedicated in examining specific use cases
of the system through case studies and real-world scenario evaluation by practitioners and organizations
that apply methods in which such a system can be utilized, such as the technology selection process.
The scope of this evaluation could be extended to other product domains. The requirement for applying
automatic knowledge extraction about products is the adequate availability of textual data from web
sources and product listing pages for the unsupervised techniques to take effect. As mentioned in section
7.3, the data collection is crucial. Certainly, it requires further refinement to ensure the best quality
possible for the input data and to produce more accurate knowledge graphs that sufficiently represent
the current state of a market.

8.4 Conclusion

The main research question, reiterated below, has been investigated from different angles.

MRQ: How can software practitioners be supported in their technology selection process with automati-
cally updated knowledge regarding software products across different vendors?

One of the main challenges identified through this project is the scarce availability of labeled data for
training models to extract knowledge from software vendor documents. Traditionally, domain experts
have been employed to manually annotate data, ensuring high accuracy and relevance. However, this
approach introduces several limitations. It is prone to bias, as the data reflects the individuals involved’
subjective understanding of any domain. An alternative solution to this has been explored, by utilising
few-shot classification techniques instead, like few-shot prompting. While using the same individual for
both the annotation and prompt engineering may limit the objectivity of the assessment of this technique,
it may also enhance the likelihood that the designed prompts closely reflect the expected outcomes to
the person overtaking the labeling process. This may lead to the conclusion that instead of utilizing
expert personnel and resources to manually label vast amounts of data, their direct corporation, using
unsupervised techniques (e.g. prompt engineering or active learning) with intently trained and informed
language models can produce similar results.

Integrating LLMs with knowledge graphs may offer a scalable and adaptable solution for automating
the annotation process and maintaining an up-to-date knowledge base. It becomes possible to create
continuously self-updating systems that capture new trends and innovations in real-time. LLMs can
handle vast amounts of data efficiently, ensuring annotation consistency and reducing the risk of sub-
jective bias. Additionally, they can learn from new data through retraining or dynamic online learning
approaches; knowledge graphs, in turn, serve as a structured foundation for organizing and verifying the
knowledge generated, with human experts providing oversight to ensure its accuracy.

71

8.4 Conclusion

Future work could refine the data collection processes, further exploring use cases across different
product domains. Furthermore, enhancing the integration of domain-specific ontologies and exploring
more sophisticated ways to construct the domain ontology used to structure the knowledge graph are
critical areas for further examination. The proposed system can be improved by addressing these topics
to provide even more robust decision support tools.

Overall, this research indicates the potential to automate knowledge graph construction to support
software practitioners in technology selection. The proposed system addresses the challenges of keeping
pace with rapid technological changes by automating the extraction and organization of knowledge from
software vendor documents and reducing the dependency on manual data annotation.

72

References

References

Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics, 2 (4),
433-459. Retrieved from https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
doi: https://doi.org/10.1002/wics.101

Abu-Salih, B. (2021). Domain-specific knowledge graphs: A survey. Retrieved from https://arxiv.org/
abs/2011.00235

Ahmad, A., Feng, C., Khan, M., Khan, A., Ullah, A., Nazir, S., & Tahir, A. (2020, 07). A systematic
literature review on using machine learning algorithms for software requirements identification on stack
overflow. Security and Communication Networks, 2020 , 19. doi: 10.1155/2020/8830683

Akbik, A., Bergmann, T., & Vollgraf, R. (2019, June). Pooled contextualized embeddings for named
entity recognition. In J. Burstein, C. Doran, & T. Solorio (Eds.), Proceedings of the 2019 confer-
ence of the north American chapter of the association for computational linguistics: Human language
technologies, volume 1 (long and short papers) (pp. 724–728). Minneapolis, Minnesota: Associa-
tion for Computational Linguistics. Retrieved from https://aclanthology.org/N19-1078 doi:
10.18653/v1/N19-1078

Alarte, J., & Silva, J. (2021, 06). Page-level main content extraction from heterogeneous webpages.
ACM Transactions on Knowledge Discovery from Data, 15 , 1-105. doi: 10.1145/3451168

Alfazi, A., Sheng, Q. Z., Qin, Y., & Noor, T. H. (2015). Ontology-based automatic cloud service cate-
gorization for enhancing cloud service discovery. In 2015 ieee 19th international enterprise distributed
object computing conference (p. 151-158). doi: 10.1109/EDOC.2015.30

Amershi, S., Begel, A., Bird, C., Deline, R., Gall, H., Kamar, E., . . . Zimmermann, T. (2019, 05).
Software engineering for machine learning: A case study. In (p. 291-300). doi: 10.1109/ICSE-SEIP
.2019.00042

Apel, S., Batory, D., Kästner, C., & Saake, G. (2013). Feature-oriented software product lines. doi:
10.1007/978-3-642-37521-7

Badampudi, D., Wnuk, K., Wohlin, C., Franke, U., Smite, D., & Cicchetti, A. (2018). A decision-
making process-line for selection of software asset origins and components. Journal of Systems and
Software, 135 , 88-104. Retrieved from https://www.sciencedirect.com/science/article/pii/
S0164121217302182 doi: https://doi.org/10.1016/j.jss.2017.09.033

Bagdasaryan, E., Poursaeed, O., & Shmatikov, V. (2019). Differential privacy has disparate impact on
model accuracy. In Proceedings of the 33rd international conference on neural information processing
systems. Red Hook, NY, USA: Curran Associates Inc.

Bakar, N. H., Kasirun, Z. M., & Salleh, N. (2015). Feature extraction approaches from natural language
requirements for reuse in software product lines: A systematic literature review. Journal of Systems
and Software, 106 , 132-149. Retrieved from https://www.sciencedirect.com/science/article/
pii/S0164121215001004 doi: https://doi.org/10.1016/j.jss.2015.05.006

Bakar, N. H., Kasirun, Z. M., Salleh, N., & Jalab, H. A. (2016). Extracting features from online software
reviews to aid requirements reuse. Applied Soft Computing , 49 , 1297-1315. Retrieved from https://
www.sciencedirect.com/science/article/pii/S1568494616303830 doi: https://doi.org/10.1016/
j.asoc.2016.07.048

Belsis, P., Koutoumanos, A., & Sgouropoulou, C. (2013, 05). Pburc: A patterns-based, unsupervised
requirements clustering framework for distributed agile software development. Requirements Engineer-
ing . doi: 10.1007/s00766-013-0172-9

Bergamaschi, S., Castano, S., Vincini, M., & Beneventano, D. (2001). Semantic integration of het-
erogeneous information sources. Data & Knowledge Engineering , 36 (3), 215-249. Retrieved from
https://www.sciencedirect.com/science/article/pii/S0169023X00000471 (Heterogeneous In-
formation Resources Need Semantic Access) doi: https://doi.org/10.1016/S0169-023X(00)00047-1

Bieger, V. (2023). A decision support framework for multi-cloud service composition (Unpublished
master’s thesis).

73

https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
https://arxiv.org/abs/2011.00235
https://arxiv.org/abs/2011.00235
https://aclanthology.org/N19-1078
https://www.sciencedirect.com/science/article/pii/S0164121217302182
https://www.sciencedirect.com/science/article/pii/S0164121217302182
https://www.sciencedirect.com/science/article/pii/S0164121215001004
https://www.sciencedirect.com/science/article/pii/S0164121215001004
https://www.sciencedirect.com/science/article/pii/S1568494616303830
https://www.sciencedirect.com/science/article/pii/S1568494616303830
https://www.sciencedirect.com/science/article/pii/S0169023X00000471

References

Bing, L., Wong, T.-L., & Lam, W. (2016, 04). Unsupervised extraction of popular product attributes from
e-commerce web sites by considering customer reviews. ACM Transactions on Internet Technology ,
16 , 1-17. doi: 10.1145/2857054

Bookstein, A., Kulyukin, V., & Raita, T. (2002, 10). Generalized hamming distance. Information
Retrieval , 5 . doi: 10.1023/A:1020499411651

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., . . . Amodei, D. (2020).
Language models are few-shot learners. Retrieved from https://arxiv.org/abs/2005.14165

Chin, K.-S., & Fu, C. (2014). Integrated evidential reasoning approach in the presence of cardinal
and ordinal preferences and its applications in software selection. Expert Systems with Applica-
tions, 41 (15), 6718-6727. Retrieved from https://www.sciencedirect.com/science/article/pii/
S0957417414002693 doi: https://doi.org/10.1016/j.eswa.2014.04.046

Cimiano, P., Hotho, A., & Staab, S. (2005, August). Learning concept hierarchies from text corpora
using formal concept analysis. Journal of Artificial Intelligence Research, 24 , 305–339. Retrieved from
http://dx.doi.org/10.1613/jair.1648 doi: 10.1613/jair.1648

Constantinou, A. (2024, October). Automatic software product features extraction from software vendor
documents. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.13899562 doi: 10.5281/
zenodo.13899562

Das, M., K., S., & Alphonse, P. J. A. (2023). A comparative study on tf-idf feature weighting method
and its analysis using unstructured dataset. Retrieved from https://arxiv.org/abs/2308.04037

Davril, J.-M., Delfosse, E., Hariri, N., Acher, M., Cleland-Huang, J., & Heymans, P. (2013, 08). Feature
model extraction from large collections of informal product descriptions. ESEC/FSE . doi: 10.1145/
2491411.2491455

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional
transformers for language understanding. Retrieved from https://arxiv.org/abs/1810.04805

Du, D., Ren, X., Wu, Y., Chen, J., Ye, W., Sun, J., . . . Zhang, S. (2018). Refining traceability links
between vulnerability and software component in a vulnerability knowledge graph. In T. Mikkonen,
R. Klamma, & J. Hernández (Eds.), Web engineering (pp. 33–49). Cham: Springer International
Publishing.

Du, T. C., Li, F., & King, I. (2009). Managing knowledge on the web – extracting ontology from html
web. Decision Support Systems, 47 (4), 319-331. Retrieved from https://www.sciencedirect.com/
science/article/pii/S0167923609000542 (Smart Business Networks: Concepts and Empirical
Evidence) doi: https://doi.org/10.1016/j.dss.2009.02.011

Farshidi, S. (2020). Multi-criteria decision-making in software production (Unpublished doctoral disser-
tation).

Farshidi, S., Jansen, S., & van der Werf, J. M. (2020). Capturing software architecture knowledge
for pattern-driven design. Journal of Systems and Software, 169 , 110714. Retrieved from https://
www.sciencedirect.com/science/article/pii/S0164121220301552 doi: https://doi.org/10.1016/
j.jss.2020.110714

Farshidi, S., Rezaee, K., Mazaheri, S., Rahimi, A. H., Dadashzadeh, A., Ziabakhsh, M., . . . Jansen, S.
(2024). Understanding user intent modeling for conversational recommender systems: a systematic
literature review. User Modeling and User-Adapted Interaction, 1–64.

Farshidi, S., & Zhao, Z. (2022, 05). An adaptable indexing pipeline for enriching meta information of
datasets from heterogeneous repositories. In (p. 472-484). doi: 10.1007/978-3-031-05936-0_37

Feng, X., Li, Q., Wang, H., & Sun, L. (2018, 08). Acquisitional rule-based engine for discovering
internet-of-thing devices..

Ferrara, A., Nikolov, A., & Scharffe, F. (2011). Data linking for the semantic web. Int. J. Semantic Web
Inf. Syst., 7 , 46-76. Retrieved from https://api.semanticscholar.org/CorpusID:15886037

74

https://arxiv.org/abs/2005.14165
https://www.sciencedirect.com/science/article/pii/S0957417414002693
https://www.sciencedirect.com/science/article/pii/S0957417414002693
http://dx.doi.org/10.1613/jair.1648
https://doi.org/10.5281/zenodo.13899562
https://arxiv.org/abs/2308.04037
https://arxiv.org/abs/1810.04805
https://www.sciencedirect.com/science/article/pii/S0167923609000542
https://www.sciencedirect.com/science/article/pii/S0167923609000542
https://www.sciencedirect.com/science/article/pii/S0164121220301552
https://www.sciencedirect.com/science/article/pii/S0164121220301552
https://api.semanticscholar.org/CorpusID:15886037

References

Fitzgerald, B., & Stol, K.-J. (2014, 06). Continuous software engineering and beyond: Trends and
challenges.. doi: 10.1145/2593812.2593813

F. Wang, B. L., J.P. Liu. (2019). Survey on construction of code knowledge graph and intelligent software
development. Journal of Software, 31 (1), 47–66.

Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D., & Smith, N. A.
(2020). Don’t stop pretraining: Adapt language models to domains and tasks. Retrieved from https://
arxiv.org/abs/2004.10964

Haefliger, S., von Krogh, G., & Spaeth, S. (2008). Code reuse in open source software. Management
Science, 54 (1), 180–193. Retrieved 2023-10-16, from http://www.jstor.org/stable/20122369

Haris, M. S., Kurniawan, T., & Ramdani, F. (2020, 12). Automated features extraction from software
requirements specification (srs) documents as the basis of software product line (spl) engineering.
Journal of Information Technology and Computer Science, 5 , 279. doi: 10.25126/jitecs.202053219

Hevner, A. R. (2002). Design science research in information systems.. Retrieved from https://
api.semanticscholar.org/CorpusID:10086156

Hofer, M., Obraczka, D., Saeedi, A., Köpcke, H., & Rahm, E. (2024, August). Construction of knowledge
graphs: Current state and challenges. Information, 15 (8), 509. Retrieved from http://dx.doi.org/
10.3390/info15080509 doi: 10.3390/info15080509

Hua, Y. C., Denny, P., Wicker, J., & Taskova, K. (2024, September). A systematic review of aspect-based
sentiment analysis: domains, methods, and trends. Artificial Intelligence Review , 57 (11). Retrieved
from http://dx.doi.org/10.1007/s10462-024-10906-z doi: 10.1007/s10462-024-10906-z

Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional lstm-crf models for sequence tagging. Retrieved from
https://arxiv.org/abs/1508.01991

Hur, A., Janjua, N., & Ahmed, M. (2021). A survey on state-of-the-art techniques for knowledge graphs
construction and challenges ahead. Retrieved from https://arxiv.org/abs/2110.08012

Izadi, M., Ganji, S., Heydarnoori, A., & Gousios, G. (2020, 10). Topic recommendation for software
repositories using multi-label classification algorithms.

Jadhav, A. S., & Sonar, R. M. (2011). Framework for evaluation and selection of the software packages:
A hybrid knowledge based system approach. Journal of Systems and Software, 84 (8), 1394-1407.
Retrieved from https://www.sciencedirect.com/science/article/pii/S016412121100077X doi:
https://doi.org/10.1016/j.jss.2011.03.034

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, A. (1990, 01). Feature-oriented domain analysis
(foda) feasibility study.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., . . . Amodei, D. (2020).
Scaling laws for neural language models. Retrieved from https://arxiv.org/abs/2001.08361

Kertkeidkachorn, N., & Ichise, R. (2017). T2kg: An end-to-end system for creating knowledge graph
from unstructured text. In Aaai workshops. Retrieved from https://api.semanticscholar.org/
CorpusID:53279967

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations
and Trends® in Machine Learning , 12 (4), 307–392. Retrieved from http://dx.doi.org/10.1561/
2200000056 doi: 10.1561/2200000056

Kitchenham, B. (2004, 08). Procedures for performing systematic reviews. Keele, UK, Keele Univ., 33 .

Kuwajima, H., Yasuoka, H., & Nakae, T. (2020, 05). Engineering problems in machine learning systems.
Machine Learning , 109 . doi: 10.1007/s10994-020-05872-w

Lemos, O. A. L., de Paula, A. C., Zanichelli, F. C., & Lopes, C. V. (2014). Thesaurus-based automatic
query expansion for interface-driven code search. In Proceedings of the 11th working conference on
mining software repositories (p. 212–221). New York, NY, USA: Association for Computing Machinery.
Retrieved from https://doi.org/10.1145/2597073.2597087 doi: 10.1145/2597073.2597087

75

https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2004.10964
http://www.jstor.org/stable/20122369
https://api.semanticscholar.org/CorpusID:10086156
https://api.semanticscholar.org/CorpusID:10086156
http://dx.doi.org/10.3390/info15080509
http://dx.doi.org/10.3390/info15080509
http://dx.doi.org/10.1007/s10462-024-10906-z
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/2110.08012
https://www.sciencedirect.com/science/article/pii/S016412121100077X
https://arxiv.org/abs/2001.08361
https://api.semanticscholar.org/CorpusID:53279967
https://api.semanticscholar.org/CorpusID:53279967
http://dx.doi.org/10.1561/2200000056
http://dx.doi.org/10.1561/2200000056
https://doi.org/10.1145/2597073.2597087

References

Li, H., Li, S., Sun, J., Xing, Z., Peng, X., Liu, M., & Zhao, X. (2018). Improving api caveats accessibility
by mining api caveats knowledge graph. In 2018 ieee international conference on software maintenance
and evolution (icsme) (p. 183-193). doi: 10.1109/ICSME.2018.00028

Li, H., & Lu, W. (2021). Mixed cross entropy loss for neural machine translation. Retrieved from
https://arxiv.org/abs/2106.15880

Li, Y., Schulze, S., & Saake, G. (2017, 09). Reverse engineering variability from natural language
documents: A systematic literature review. In (p. 133-142). doi: 10.1145/3106195.3106207

Liang, F., Hou, F., Farshidi, S., Jansen, S., et al. (2023). Sentiment analysis for software quality
assessment. In Ceur workshop proceedings (Vol. 3567, pp. 17–24).

Liu, S., Li, Y., & Fan, B. (2018, 01). Hierarchical rnn for few-shot information extraction learning:
4th international conference of pioneering computer scientists, engineers and educators, icpcsee 2018,
zhengzhou, china, september 21-23, 2018, proceedings, part ii. In (p. 227-239). doi: 10.1007/978-981
-13-2206-8_20

Lizarralde, I., Mateos, C., Zunino, A., Majchrzak, T. A., & Grønli, T.-M. (2020). Discovering web ser-
vices in social web service repositories using deep variational autoencoders. Information Processing &
Management , 57 (4), 102231. Retrieved from https://www.sciencedirect.com/science/article/
pii/S0306457319310878 doi: https://doi.org/10.1016/j.ipm.2020.102231

Ma, D., & Kauffman, R. (2014, 11). Competition between software-as-a-service vendors. IEEE Trans-
actions on Engineering Management , 61 , 717-729. doi: 10.1109/TEM.2014.2332633

Mao, A., Mohri, M., & Zhong, Y. (2023). Cross-entropy loss functions: Theoretical analysis and
applications. Retrieved from https://arxiv.org/abs/2304.07288

McInnes, L., Healy, J., & Astels, S. (2017, 03). hdbscan: Hierarchical density based clustering. The
Journal of Open Source Software, 2 . doi: 10.21105/joss.00205

Meijer, K., Frasincar, F., & Hogenboom, F. (2014a). A semantic approach for extracting domain tax-
onomies from text. Decision Support Systems, 62 , 78-93. Retrieved from https://www.sciencedirect
.com/science/article/pii/S0167923614001031 doi: https://doi.org/10.1016/j.dss.2014.03.006

Meijer, K., Frasincar, F., & Hogenboom, F. (2014b). A semantic approach for extracting domain tax-
onomies from text. Decision Support Systems, 62 , 78-93. Retrieved from https://www.sciencedirect
.com/science/article/pii/S0167923614001031 doi: https://doi.org/10.1016/j.dss.2014.03.006

Miguel, J., Mauricio, D., & Rodriguez, G. (2014, 11). A review of software quality models for the
evaluation of software products. International journal of Software Engineering & Applications, 5 ,
31-54. doi: 10.5121/ijsea.2014.5603

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in
vector space. Retrieved from https://arxiv.org/abs/1301.3781

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013b, 01). Efficient estimation of word representations
in vector space. Proceedings of Workshop at ICLR, 2013 .

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of
words and phrases and their compositionality. Retrieved from https://arxiv.org/abs/1310.4546

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2021, apr). Deep
learning–based text classification: A comprehensive review. ACM Comput. Surv., 54 (3). Retrieved
from https://doi.org/10.1145/3439726 doi: 10.1145/3439726

Minka, T. (2000). Automatic choice of dimensionality for pca. In T. Leen, T. Di-
etterich, & V. Tresp (Eds.), Advances in neural information processing systems (Vol. 13).
MIT Press. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2000/file/
7503cfacd12053d309b6bed5c89de212-Paper.pdf

Nayak, A., Kesri, V., & Dubey, R. (2020, 01). Knowledge graph based automated generation of test
cases in software engineering. In (p. 289-295). doi: 10.1145/3371158.3371202

76

https://arxiv.org/abs/2106.15880
https://www.sciencedirect.com/science/article/pii/S0306457319310878
https://www.sciencedirect.com/science/article/pii/S0306457319310878
https://arxiv.org/abs/2304.07288
https://www.sciencedirect.com/science/article/pii/S0167923614001031
https://www.sciencedirect.com/science/article/pii/S0167923614001031
https://www.sciencedirect.com/science/article/pii/S0167923614001031
https://www.sciencedirect.com/science/article/pii/S0167923614001031
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1310.4546
https://doi.org/10.1145/3439726
https://proceedings.neurips.cc/paper_files/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf

References

Pekar, V., & Staab, S. (2002). Taxonomy learning - factoring the structure of a taxonomy into a
semantic classification decision. In COLING 2002: The 19th international conference on computational
linguistics. Retrieved from https://aclanthology.org/C02-1090

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation.
In Conference on empirical methods in natural language processing. Retrieved from https://api
.semanticscholar.org/CorpusID:1957433

Pimpalkar, A., & Raj R, J. R. (2022). Mbilstmglove: Embedding glove knowledge into the corpus
using multi-layer bilstm deep learning model for social media sentiment analysis. Expert Systems with
Applications, 203 , 117581. Retrieved from https://www.sciencedirect.com/science/article/
pii/S0957417422008946 doi: https://doi.org/10.1016/j.eswa.2022.117581

Pujol, D., McKenna, R., Kuppam, S., Hay, M., Machanavajjhala, A., & Miklau, G. (2020). Fair decision
making using privacy-protected data. In Proceedings of the 2020 conference on fairness, accountability,
and transparency (p. 189–199). New York, NY, USA: Association for Computing Machinery. Retrieved
from https://doi.org/10.1145/3351095.3372872 doi: 10.1145/3351095.3372872

Qin, S., & Chow, K. P. (2019). Automatic analysis and reasoning based on vulnerability knowledge
graph. In H. Ning (Ed.), Cyberspace data and intelligence, and cyber-living, syndrome, and health (pp.
3–19). Singapore: Springer Singapore.

Quirchmayr, T., Paech, B., Kohl, R., & Karey, H. (2017, 02). Semi-automatic software feature-relevant
information extraction from natural language user manuals. In (Vol. 10153, p. 255-272). doi: 10.1007/
978-3-319-54045-0_19

Rani, A., Mishra, D., & Omerovic, A. (2022). Multi-vendor software ecosystem: Challenges from
company’ perspective. In A. Rocha, H. Adeli, G. Dzemyda, & F. Moreira (Eds.), Information systems
and technologies (pp. 382–393). Cham: Springer International Publishing.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "why should i trust you?": Explaining the predictions
of any classifier. In Proceedings of the 22nd acm sigkdd international conference on knowledge discov-
ery and data mining (p. 1135–1144). New York, NY, USA: Association for Computing Machinery.
Retrieved from https://doi.org/10.1145/2939672.2939778 doi: 10.1145/2939672.2939778

Rokach, L., & Maimon, O. (2005). Decision trees. In O. Maimon & L. Rokach (Eds.), Data mining and
knowledge discovery handbook (pp. 165–192). Boston, MA: Springer US. Retrieved from https://
doi.org/10.1007/0-387-25465-X_9 doi: 10.1007/0-387-25465-X_9

Rus, I., Halling, M., & Biffl, S. (2003, 10). Supporting decision-making in software engineering with
process simulation and empirical studies. International Journal of Software Engineering and Knowledge
Engineering , 13 , 531-545. doi: 10.1142/S0218194003001391

Sarawagi, S. (2008, 01). Information extraction. Foundations and Trends in Databases, 1 , 261-377. doi:
10.1561/1500000003

Sarker, I. (2021, 03). Machine learning: Algorithms, real-world applications and research directions. SN
Computer Science, 2 . doi: 10.1007/s42979-021-00592-x

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61 , 85-117.
Retrieved from https://www.sciencedirect.com/science/article/pii/S0893608014002135 doi:
https://doi.org/10.1016/j.neunet.2014.09.003

Schröder, C., & Niekler, A. (2020). A survey of active learning for text classification using deep neural
networks. Retrieved from https://arxiv.org/abs/2008.07267

Shang, W., & Huang, X. (2024). A survey of large language models on generative graph analytics: Query,
learning, and applications. Retrieved from https://arxiv.org/abs/2404.14809

Sommerville, I. (1985). Software engineering (2nd ed.). USA: Addison-Wesley Longman Publishing Co.,
Inc.

Sutton, C., & McCallum, A. (2010). An introduction to conditional random fields. Retrieved from
https://arxiv.org/abs/1011.4088

77

https://aclanthology.org/C02-1090
https://api.semanticscholar.org/CorpusID:1957433
https://api.semanticscholar.org/CorpusID:1957433
https://www.sciencedirect.com/science/article/pii/S0957417422008946
https://www.sciencedirect.com/science/article/pii/S0957417422008946
https://doi.org/10.1145/3351095.3372872
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/0-387-25465-X_9
https://doi.org/10.1007/0-387-25465-X_9
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://arxiv.org/abs/2008.07267
https://arxiv.org/abs/2404.14809
https://arxiv.org/abs/1011.4088

References

Tam, K. Y. (1993). Applying conceptual clustering to knowledge-bases construction. Decision Support
Systems, 10 (2), 173-198. Retrieved from https://www.sciencedirect.com/science/article/pii/
0167923693900374 doi: https://doi.org/10.1016/0167-9236(93)90037-4

Wang, J., Zhang, X., & Chen, L. (2021). How well do pre-trained contextual language representations
recommend labels for github issues? Knowledge-Based Systems, 232 , 107476. Retrieved from https://
www.sciencedirect.com/science/article/pii/S0950705121007383 doi: https://doi.org/10.1016/
j.knosys.2021.107476

Wang, L., Sun, C., Zhang, C., Nie, W., & Huang, K. (2023). Application of knowledge graph in software
engineering field: A systematic literature review. Information and Software Technology , 164 , 107327.
Retrieved from https://www.sciencedirect.com/science/article/pii/S0950584923001829 doi:
https://doi.org/10.1016/j.infsof.2023.107327

Wang, Y., Yao, Q., Kwok, J., & Ni, L. M. (2020). Generalizing from a few examples: A survey on
few-shot learning. Retrieved from https://arxiv.org/abs/1904.05046

Wei, C.-C., & Wang, M.-J. J. (2004). A comprehensive framework for selecting an erp sys-
tem. International Journal of Project Management , 22 (2), 161-169. Retrieved from https://
www.sciencedirect.com/science/article/pii/S0263786302000649 doi: https://doi.org/10.1016/
S0263-7863(02)00064-9

Weikum, G., Dong, L., Razniewski, S., & Suchanek, F. (2021). Machine knowledge: Creation and
curation of comprehensive knowledge bases. Retrieved from https://arxiv.org/abs/2009.11564

Wenpeng, L., Jianbin, W., Zeqi, L., Junfeng, Z., Yanzhen, Z., & Bing, X. (2017). Software knowl-
edge graph building method for open source project. Journal of Frontiers of Computer Science &
Technology , 11 (6), 851.

Wong, T.-L., Lam, W., & Wong, T.-S. (2008, 07). An unsupervised framework for extracting and
normalizing product attributes from multiple web sites. In (p. 35-42). doi: 10.1145/1390334.1390343

Xin, W., Liu, X., Liu, J., Chen, X., & Wu, H. (2021, 05). A novel knowledge graph embedding
based api recommendation method for mashup development. World Wide Web, 24 . doi: 10.1007/
s11280-021-00894-3

Xu, D., & jie Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of Data Science,
2 , 165 - 193. Retrieved from https://api.semanticscholar.org/CorpusID:54134680

Zhang, J., Xie, R., Ye, W., Zhang, Y., & Zhang, S. (2020). Exploiting code knowledge graph for bug
localization via bi-directional attention. In 2020 ieee/acm 28th international conference on program
comprehension (icpc) (p. 219-229). doi: 10.1145/3387904.3389281

Zhang, N., Wang, J., He, K., Li, Z., & Huang, Y. (2019, 03). Mining and clustering service goals for
restful service discovery. Knowledge and Information Systems, 58 . doi: 10.1007/s10115-018-1171-4

Zhao, X., Xing, Z., Kabir, M. A., Sawada, N., Li, J., & Lin, S.-W. (2017). Hdskg: Harvesting domain
specific knowledge graph from content of webpages. In 2017 ieee 24th international conference on
software analysis, evolution and reengineering (saner) (p. 56-67). doi: 10.1109/SANER.2017.7884609

Zhao, Z., Han, S.-K., & So, I.-M. (2018). Architecture of knowledge graph construction techniques..
Retrieved from https://api.semanticscholar.org/CorpusID:207900787

Zhou, C., Li, B., Sun, X., & Guo, H. (2018). Recognizing software bug-specific named entity in software
bug repository. In Proceedings of the 26th conference on program comprehension (p. 108–119). New
York, NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/
3196321.3196335 doi: 10.1145/3196321.3196335

Zhou, J., Chen, W., Wu, G., & Wei, J. (2019, 06). Semitagrec: A semi-supervised learning based tag
recommendation approach for docker repositories. In (p. 132-148). doi: 10.1007/978-3-030-22888-0
_10

Zhou, X., Jin, Y., Zhang, H., Li, S., & Huang, X. (2016). A map of threats to validity of systematic
literature reviews in software engineering. In 2016 23rd asia-pacific software engineering conference
(apsec) (p. 153-160). doi: 10.1109/APSEC.2016.031

78

https://www.sciencedirect.com/science/article/pii/0167923693900374
https://www.sciencedirect.com/science/article/pii/0167923693900374
https://www.sciencedirect.com/science/article/pii/S0950705121007383
https://www.sciencedirect.com/science/article/pii/S0950705121007383
https://www.sciencedirect.com/science/article/pii/S0950584923001829
https://arxiv.org/abs/1904.05046
https://www.sciencedirect.com/science/article/pii/S0263786302000649
https://www.sciencedirect.com/science/article/pii/S0263786302000649
https://arxiv.org/abs/2009.11564
https://api.semanticscholar.org/CorpusID:54134680
https://api.semanticscholar.org/CorpusID:207900787
https://doi.org/10.1145/3196321.3196335
https://doi.org/10.1145/3196321.3196335

Name Definition

Adaptive Moment Optimization (Adam) an extension of the stochastic gradient descent (SGD) optimization algorithm. It adaptively adjusts the learning rate for each parameter based on the estimates of both the first-order moments (mean) and second-order moments (variance) of the gradients.

Association Rule Mining
a data mining technique that aims to discover interesting relationships, associations, and dependencies between items in large datasets. It involves identifying frequently occurring itemsets and deriving association rules that express relationships between
items based on their co-occurrence patterns.

Bidirectional Encoder Representations from Transformers (BERT)
an NLP model that was introduced by Google in 2018. BERT is based on the Transformer architecture, which is a deep learning model architecture that utilizes self-attention mechanisms to capture relationships between words in a sequence. BERT is pre-
trained on massive amounts of text data, learning to predict missing words in sentences and can be fine-tuned for specific NLP tasks like text classification, named entity recognition, and more with relatively small amounts of task-specific data.

Bidirectional Long Short-Term Memory (BiLSTM)
a type of recurrent neural network (RNN) architecture that is capable of processing sequential data in both forward and backward directions. Widely used in NLP tasks, such as text classification, named entity recognition, sentiment analysis, and machine
translation. The bidirectional processing helps the model to better understand the dependencies and patterns in the sequence, leading to improved performance in tasks that require capturing long-range dependencies.

BIO tagging a labeling scheme commonly used in named entity recognition (NER) tasks. Used to annotate words or tokens in a sequence with labels that indicate the boundaries: (B)eginning, (I)nside, (O)utside of a named entity, followed by its type.

Co-occurence Statistical Information (CSI)
a measurement of the frequency and patterns of co-occurrence between elements or events in a dataset. Frequently used in text analysis and NLP to analyze the occurrence patterns of words, phrases, or concepts in a corpus of text, helping to uncover
associations, collocations, semantic relationships, and contextual dependencies.

Conditional Random Field (CRF)
a probabilistic graphical model used for structured prediction tasks, particularly in sequence labeling problems such as part-of-speech tagging, named entity recognition, and syntactic parsing. Training often involves optimization algorithms such as maximum
likelihood estimation or gradient-based methods.

Continuous Bag of Words (CBOW)
a shallow neural network model that aims to learn distributed representations (word embeddings) of words based on their context within a given window of surrounding words. CBOW is particularly useful for generating word embeddings when the contextual
information surrounding a word is important. It is computationally efficient compared to other models such as RNNs or tranformers, however, it may not capture long-range dependencies as effectively.

Convolutional Neural Network (CNN)
a type of deep learning neural network architecture that is particularly effective for processing grid-like data, such as images, videos, and sequential data like time series or text. The ability of CNNs to automatically learn hierarchical representations of data
and capture local and spatial dependencies makes them powerful tools for extracting meaningful features from complex data.

Cosine Similarity
a measure of similarity between two vectors in a vector space. It is commonly used in various domains, including NLP, information retrieval, and recommendation systems, to compare the similarity between documents, sentences, or any other objects
represented as vectors. Ranges between -1 and 1, where values close to 1 indicate high similarity, values close to 0 indicate no strong similarity or dissimilarity, and values close to -1 indicate high dissimilarity.

Cross Entropy Loss a commonly used loss function in machine learning, particularly in classification tasks. It measures the dissimilarity between predicted probability distributions and true probability distributions.

Decision Tree
a supervised machine learning algorithm used for both classification and regression tasks. It is a flowchart-like model that makes decisions based on the features or attributes of the input data. The decision tree algorithm creates a tree-like structure where
each internal node represents a test on a feature, each branch corresponds to an outcome of the test, and each leaf node represents a class label or a numerical value.

Deep Belief Network (DBN)
a type of generative deep learning model composed of multiple layers of restricted Boltzmann machines (RBMs). It is designed to learn hierarchical representations of data in an unsupervised manner and has been widely used in NLP and recommendation
systems. Typically trained in a layer-wise, bottom-up manner where each layer is pretrained as an RBM, which is an unsupervised generative model that learns to reconstruct the input data and capture underlying dependencies.

Deep Neural Network (DNN)
a type of artificial neural network that consists of multiple layers of interconnected nodes or neurons. It is designed to learn and represent complex patterns and features of data by successively transforming the input through multiple layers of nonlinear
transformations. DNNs are typically trained using gradient-based optimization methods, like backpropagation, to minimize the difference between predicted and actual outputs and require a large amount of data and significant computational resources.

Dot-Product
(also known as the scalar product) an operation that takes two equal-length sequences of numbers (usually coordinate vectors) and returns a single number. The operation is performed by multiplying corresponding entries and then summing those products.
In a geometric context, the dot product of two vectors captures the cosine of the angle between them and their magnitudes, and it's a key operation in linear algebra and vector calculus.

Euclidean Distance
a measure of the straight-line distance between two points in Euclidean space. While it is widely used in numerical and geometric contexts, its direct application in NLP is limited due to the discrete and high-dimensional nature of textual data. However,
Euclidean distance can still be utilized in specific scenarios in NLP, particularly when working with numerical or vector representations of text.

Fully Connected Network (FCN)
a neural network that consists of layers of fully connected (dense) nodes where each node in one layer is connected to every node in the next layer. These networks process text data in fixed-length vector representation form that serve as input to the fully
connected layers, which learn patterns and relationships between the input features and the task-specific output.

Fuzzy C-Means (FCM) an extension of the K-means clustering algorithm that incorporates fuzzy logic principles. FCM is used for partitioning data into clusters with soft boundaries, allowing data points to belong to multiple clusters to varying degrees of membership.

Gated Recurrent Unit (GRU)
a type of recurrent neural network (RNN) architecture designed to capture long-term dependencies and patterns in sequential data. It is an extension of the traditional RNN model that addresses the vanishing gradient problem and allows for more effective
modeling of sequential data.

Gibbs sampling an algorithm used for approximate inference and sampling from complex probability distributions.

Global Vectors for Word Representation (GloVe) a word embedding model used in NLP tasks. It is designed to learn dense vector representations (embeddings) for words based on their co-occurrence statistics in a large corpus of text data.

Graph Convolutional Network (GCN)
a type of neural network designed to process data represented as graphs. The key idea of GCNs is to define a localized convolution operation on each node, taking into account the information from its neighbors in the graph. This enables GCNs to learn
node representations that capture both the node's attributes and the information from its neighborhood.

Graph Neural Network (GNN)
a type of network that uses a graph structure where nodes represent entities and edges represent the relationships between these entities. It allows the processing of data structured in graphs, enabling the capture of complex patterns within the data. It's
extensively used for social network analysis, molecule structure analysis, recommendation systems, and many other applications.

Hamming Distance
a metric used to measure the dissimilarity between two binary strings or vectors of equal length. In the context of label vectors in machine learning or classification tasks, the Hamming distance can be used to assess the disagreement or dissimilarity between
the predicted labels and the true labels.

Jaccard Similarity
a measure used to determine the similarity or overlap between two sets. It is often employed in information retrieval, data mining, and text analysis tasks to measure the similarity between two sets of words, such as words in two documents. The Jaccard
Similarity is defined as the size of the intersection of the sets divided by the size of their union. It is calculated using the following formula: J(A, B) = |A ∩ B| / |A ∪ B|

K Nearest Neighbours (KNN) a supervised classification algorithm used for making predictions based on the similarities between feature vectors. It assigns a class label to a data point based on the majority vote of its K nearest neighbors in the feature space.

K-means
an unsupervised machine learning algorithm used for clustering and partitioning data points into distinct groups or clusters based on their similarity. It aims to minimize the intra-cluster variance and maximize the inter-cluster variance. Centroids of each
cluster are iteratively recalculated by taking the mean of all data points assigned to that cluster. This moves the centroids to the center of their respective clusters.

Knowledge Graph a structured representation of knowledge that captures entities, their attributes, and the relationships between them. Capturing and representing semantic knowledge to enhance language understanding and reasoning.

Latent Dirichlet Allocation (LDA) a generative statistical model used for topic modeling, a technique that uncovers latent topics in a collection of documents. LDA assumes that documents are probabilistic mixtures of topics, and topics are distributions over words.

Latent Semantic Analysis (LSA)
 a technique used in NLP and information retrieval to analyze and extract the underlying latent semantic structure of a collection of texts. LSA applies a mathematical method called Singular Value Decomposition (SVD) to a term-document matrix, and by
reducing the dimensionality of the matrix, LSA uncovers hidden patterns and associations between terms and documents, allowing for tasks such as document similarity, information retrieval, and text classification.

Logistic Regression
a statistical model for binary classification. It is a variant of linear regression that predicts the probability of an instance belonging to a particular class based on its features. Logistic Regression models the relationship between the input features and the binary
outcome using the logistic function (also known as the sigmoid function).

Naive Bayes
a probabilistic classifier based on Bayes' theorem with an assumption of independence between features. It is widely used in various machine learning and NLP tasks, particularly for text classification and sentiment analysis. Naive Bayes assumes that the
features used for classification are conditionally independent of each other, given the class label.

Ontology
a formal representation of knowledge in a specific domain or a structured framework that defines the concepts, entities, relationships, and properties within that domain. In the context of NLP, ontologies are used to capture and model the semantic
relationships between words, entities, and concepts in text. They serve as a knowledge base or a domain-specific vocabulary that helps in understanding and analyzing natural language data.

Ontology-based Semantic Similarity Calculation (OSSC) a process of determining the degree of similarity between two entities (words, phrases, concepts) based on their semantic meanings and relationships in an ontology.

PageRank
an algorithm developed by Larry Page and Sergey Brin, assigns a numerical score to web pages based on their importance within a network of interlinked pages, such as the World Wide Web. The algorithm considers incoming links from other pages as
votes of confidence, suggesting that pages with more high-quality incoming links are more important.

Pearson Correlation Coefficient (PCC) a measure of the linear relationship between two variables. It quantifies the strength and direction of the linear association between two continuous variables.

Personalised PageRank (PPR) a variant of PageRank, assigns a biased jump probability to each node and ranks graph nodes based on the graph structure. Therefore, it is able to reflect the keyterm frequency by assigning the jump probability according to the keyterm frequency.

Pointwise Mutual Information (PMI)
a statistical measure used to quantify the association between two discrete random variables or events. PMI is often employed in NLP and information retrieval tasks to determine the strength of the relationship between words or terms in a corpus.
PMI(x, y) = log(P(x, y) / (P(x) * P(y))) where P(x, y) is the joint probability of events x and y co-occurring, and P(x) and P(y) are their individual probabilities.

Principal Component Analysis (PCA)
a dimensionality reduction technique commonly used in data analysis and machine learning. It aims to transform a high-dimensional dataset into a lower-dimensional space while retaining as much of the original information as possible. PCA achieves this by
identifying the principal components, which are linear combinations of the original features that capture the most significant variability in the data.

Random Forest
a supervised machine learning algorithm that combines the predictions of multiple decision trees to make more accurate predictions. It is widely used for classification and regression tasks due to its simplicity, robustness, and ability to handle high-
dimensional data.

Recurrent Neural Network (RNN)
a type of artificial neural network designed to process sequential and temporal data. RNNs have a unique architecture that allows them to retain and utilize information from previous time steps, making them effective in tasks involving sequential data such as
NLP, speech recognition, and time series analysis.

Appendices
A Model Definitions

Ridge Regularization (L2)
a regularization technique that adds a penalty proportional to the squared magnitudes of the model's parameter weights. It encourages smaller but non-zero values for all parameter weights and is effective in reducing the impact of large weight values and
makes the model more robust to noise in the data.

Robustly Optimized BERT Approach (RoBERTa)
a language representation model based on the Transformer architecture. Unlike BERT, RoBERTa is pretrained using only the left-to-right (or right-to-left) context, rather than a bidirectional approach, to better leverage the context and avoid the mismatch in
pretraining and fine-tuning settings. RoBERTa benefits from larger-scale training compared to BERT, using more data and training for more iterations to capture more diverse and robust representations of language.

Rule-based Algorithm
a type of algorithm that makes decisions based on a set of predefined rules or heuristics. These rules are often expressed in the form of if-then statements. For instance, an email spam filter might be rule-based and could use rules like: "If an email contains
the words 'prize' and 'free' and 'click here', then mark it as spam."

Silhouette Coefficient
a metric used to evaluate the quality of clustering results. It measures how well each sample fits within its assigned cluster and how distinct the clusters are from each other. The Silhouette Coefficient ranges from -1 to 1, with higher values indicating better
clustering quality.

Singular Value Decomposition (SVD)
a matrix factorization technique widely used in linear algebra and data analysis. SVD decomposes a matrix into three separate matrices, which allows for dimensionality reduction, noise reduction, and the extraction of underlying patterns or structures in the
data.

Skip-gram
an algorithm used in NLP and word embedding techniques, similar to Continuous Bag of Words (CBOW). It is a shallow neural network model that aims to learn distributed representations (word embeddings) of words by predicting the context words given a
target word.

Support Vector Machine (SVM)
a supervised machine learning algorithm used for classification and regression tasks. SVMs are known for their ability to handle complex datasets, especially those with clear margin-based separation. SVMs use a subset of the training data called support
vectors. These are the data points closest to the decision boundary and have the most influence on the hyperplane. SVMs can handle non-linearities through the kernel trick.

Term Frequency-Inverse Document Frequency (TF-IDF) a statistical measure used to evaluate how important a word is to a document in a corpus. The importance increases proportionally to the number of times a word appears in the document but is offset by the frequency of the word in the corpus.

TextRank
an algorithm for keyword extraction and text summarization. It is based on the concept of graph-based ranking and is inspired by Google's PageRank algorithm. TextRank represents a document as a graph and assigns importance scores to words or phrases
based on their connectivity and centrality within the graph.

Word2Vec a neural network-based technique for generating word embeddings, which are dense vector representations of words in a high-dimensional space.

Name Definition

adjacency matrix
adjacency matrix is a square matrix that represents the relationships between elements in a graph. In the context of NLP, the graph typically represents linguistic entities (e.g., words, sentences, documents) and their relationships, such as co-occurrence or
semantic connections. The elements of the adjacency matrix indicate the presence or strength of connections between the nodes in the graph.

aspect-sensitive word embeddings specialized word embeddings that capture the aspect-specific meanings and semantic relationships of words in the context of a specific aspect or domain

attention attention mechanisms are designed to capture the dependencies between different parts of a sequence, and multi-head attention extends this idea by applying attention multiple times in parallel.

character embeddings
unlike traditional word embeddings that represent words as dense vectors, character embeddings represent words as sequences of characters or subword units. The character embeddings capture the morphological and subword-level information of words,
allowing the model to learn representations for words that are not seen in the training data.

chunking dividing a text into syntactically correlated parts of words, like noun phrases, verb phrases, or adjective phrases. It's essentially a way of extracting short phrases from the text without needing to analyze the complete sentence structure.

classification categorizing data points into predefined classes or categories based on their features or characteristics. In the context of NLP, classification typically involves assigning labels or categories to text documents, sentences, or individual words.

clustering technique used to group similar data points together based on their inherent patterns or similarities

co-reference resolution identifying and linking mentions of the same entity or concept within a text. It aims to resolve ambiguous pronouns or noun phrases by determining which other phrases in the text they refer to.

contextual representation representation of words or phrases in a manner that takes into account their context, or the words and phrases that surround them

dimensionality reduction process of reducing the number of features (dimensions) in the data while preserving as much relevant information as possible. NLP datasets often have a high-dimensional feature space due to the large vocabulary and sparse representations of text.

domain information knowledge, concepts, and terminology specific to a particular subject area or industry

ensemble learning
machine learning technique that combines the predictions of multiple individual models to make more accurate and robust predictions. It involves creating an ensemble or a group of models that work together to improve overall predictive performance.
Homogeneous ensembles consist of multiple instances of the same base learning algorithm, but with different parameters or subsets of data, whereas heterogeneous ensembles combine different types of models.

entity linking
task of predicting missing or potential links between entities in a network or graph. It is commonly applied in social network analysis, recommendation systems, and information retrieval. The goal is to infer or predict connections or relationships that are likely
to exist but are not explicitly stated in the available data.

entity representation
representation of the semantic meaning, context, and relationships associated with entities. This can involve encoding entities as numerical vectors or embedding them into a high-dimensional space. Various approaches can be used, such as pre-trained
word embeddings, entity embeddings, or contextualized embeddings generated by models like BERT or ELMO.

entity sense disambiguation (ESD) task of determining the correct sense or meaning of an ambiguous entity mention in a given context

feature selection
process of selecting a subset of relevant and informative features from the raw text data to use in building machine learning models. The goal is to reduce the dimensionality of the data while retaining the most important information, which can lead to
improved model performance, faster training times, and enhanced interpretability. In NLP, the features typically represent words, n-grams (groups of adjacent words), or other linguistic patterns that are extracted from the text data.

few-shot classification
task of classifying data into classes that were not seen during training, (zero-shot) or only a limited number of labeled examples per class (few-shot). This is achieved by leveraging additional information such as class descriptions, attributes, or semantic
embeddings to generalize to unseen classes.

fine-grained entity recognition
identifying and categorizing specific, specialized entities within a text. Unlike general named entity recognition (NER), which focuses on identifying broad categories like person names, organizations, and locations, fine-grained entity recognition aims to
identify more specific types of entities within these categories.

graph representation structuring data as a set of nodes and edges

graph-based ranking
assigns importance or relevance scores to nodes in a graph. It involves representing the information or data as a graph, where nodes represent entities (e.g., documents, web pages, or words) and edges represent relationships or connections between the
entities.In graph-based ranking, the importance of a node is determined by considering its connections to other nodes in the graph

hierarchical clustering algorithm used to group similar data points into nested clusters or a hierarchical structure. It builds a tree-like structure known as a dendrogram, which represents the relationships and distances between data points.

hierarchical representation representation of data in a way that reflects hierarchical relationships between different units of text, entities, concepts

hyperparameter optimisation
the process of finding the best values for the hyperparameters, external settings that define the behavior and configuration of a machine learning model to improve its performance and generalization on new data. This is achieved through techniques like grid
search, random search, or Bayesian optimization.

keyphrase extraction (KE)
task of identifying and extracting key terms or phrases from a body of text. These keyphrases serve to summarize the content and topic of the text, and they can be used for a variety of applications, such as information retrieval, text summarization, and
document clustering

language model type of artificial intelligence (AI) model that is used to generate likely sequences of words, to score sequences of words, and to embed words and sentences in continuous vector spaces

latent variable
underlying, unobservable variable that is not directly measured or observed but is inferred from the available data. Latent variables are used to represent concepts, factors, or attributes that cannot be directly measured but play a crucial role in explaining the
observed relationships among variables. Instead of directly observing the latent variable, researchers or models estimate its value based on the observed data and assumptions about the relationships among variables.

lemmatization reducing words to their base or dictionary form, known as the lemma. The lemma represents the canonical or morphological root of a word, and lemmatization aims to normalize different inflected forms of a word to its base form.

multi-label classification
type of classification problem where each instance in the dataset can be associated with multiple labels or classes simultaneously. In contrast to traditional single-label classification, where each instance is assigned to only one class, multi-label classification
allows for more complex and flexible predictions.

N-gram refers to a contiguous sequence of n items, where an item can be a word, character, or any other unit of text.Used to capture the local or contextual information within a text by considering sequences of words or characters.

named entity recognition (NER) task of identifying and classifying named entities in text into predefined categories such as person names, organizations, locations

negative sampling used to address the problem of imbalanced datasets where the number of negative examples significantly outweighs the number of positive examples (e.g. in binary classification, word embeddings)

node centrality score measure used in network analysis to quantify the importance or centrality of a node (vertex) in a graph. It aims to identify nodes that play critical roles in the overall structure and functioning of the network.

node embeddings vectorized representations of nodes in a graph

part-of-speech (POS)
task of labeling the words in a text according to their grammatical role or part of speech. This includes categories such as noun, verb, adjective, adverb, pronoun, preposition, conjunction, interjection. POS tagging is often a crucial preliminary step in NLP
pipelines, as it can provide valuable syntactic information that can improve performance on tasks such as Named Entity Recognition (NER), parsing, machine translation, and sentiment analysis.

phrase representation representation typically in the form of vectors (lists of numbers) that capture the semantic meaning of the phrase

position embeddings
vector representations that encode the positional information of elements in a sequence. They are widely used in NLP models to capture the ordering or relative positions of words or tokens within a sentence or document. Position embeddings enable the
models to consider the sequential nature of text data and capture dependencies between words based on their positions.

ranking assigning a rank or ordering to a set of items, usually based on some criteria or measure of importance or relevance

regularization technique used in machine learning to prevent overfitting and improve the generalization performance of a model. Overfitting occurs when a model learns the training data too well and fails to generalize well to unseen data.

relation extraction (RE) task of identifying and categorizing semantic relationships between entities in a text. These entities are usually identified beforehand by a Named Entity Recognition (NER) system.

scoring assigning a numerical value or "score" to a piece of data (like a word, sentence, or document) based on some criteria. This score is typically used to rank or order data, make decisions, or evaluate performance

seed words
initial example words used to bootstrap various NLP tasks such as text classification, named entity recognition, sentiment analysis, topic modeling, and more. They guide model learning by providing representative words for specific categories, sentiments, or
topics.

sentence representation representation typically in the form of vectors (lists of numbers) that capture the semantic meaning of the sentence

sentiment analysis technique used to determine the sentiment or subjective information expressed in a piece of text. It involves automatically analyzing and classifying text data to identify the overall sentiment as positive, negative, or neutral.

sentiment lexicon resource that associates words or phrases with sentiment information, indicating the positive, negative, or neutral sentiment of terms. It serves as a lookup table for sentiment analysis tasks to determine the sentiment orientation of text data.

similarity degree to which two pieces of text are alike in terms of their meaning or semantic content

stemming process of removing prefixes, suffixes, or inflections from words to obtain a common root form, often resulting in truncated but non-linguistically meaningful words, in contrast to lemmatization which produces valid and meaningful base forms.

B Features

stop words commonly used words in a language that are considered to be uninformative or irrelevant in the context of text analysis and NLP

syntactic dependency parsing
technique that analyzes the grammatical structure of a sentence by identifying the syntactic relationships between words. It aims to determine how words in a sentence are connected to each other and how they depend on one another to form meaningful
phrases or clauses. The output of syntactic dependency parsing is a dependency tree or graph that represents the syntactic structure of the sentence.

tagging associating pieces of text, such as words, sentences, or documents, with informative labels, or "tags". These tags can represent a wide range of information, depending on the task at hand.

taxonomy hierarchical classification of entities, concepts, or things, which are organized in parent-child relationships (typically a tree structure), where each parent can have multiple children, but each child has only one parent

term position weight
concept used in information retrieval and text analysis to assign higher weights or importance to terms based on their positions or proximity within a document. It aims to capture the notion that terms occurring closer to each other are likely to be more relevant
or have stronger semantic relationships.

term-document matrix illustrates the frequency of terms that occur in a collection of documents. In a term-document matrix, rows correspond to terms (words or phrases) in the corpus, while columns correspond to documents

text embeddings
type of representation used in NLP where words or phrases from the vocabulary are mapped to vectors of real numbers. These vectors capture the semantic meaning of the words or phrases in a dense, low-dimensional space (typically a few hundred
dimensions), as opposed to sparse, high-dimensional spaces (like one-hot encoding or Bag-of-Words representations)

topic modeling task of discovering latent themes or topics in a collection of text documents. It allows us to extract high-level, abstract representations of the main subjects or ideas present in the text data.

transfer learning
machine learning technique where knowledge learned from one task or domain is leveraged to improve the performance on a different but related task or domain. The idea behind transfer learning is to transfer knowledge from a source task with abundant
labeled data to a target task that has limited labeled data or is a different but related problem.

transformer
neural network architecture based on the self-attention mechanism, which allows it to capture relationships between different words in a sequence.Unlike recurrent neural networks (RNNs) that process sequential data sequentially, the transformer processes
the entire sequence in parallel, making it highly efficientv

vector representation numerical representation of input (image/ text/ etc) so that it can be processed by machine learning algorithms.

web crawler automated software program used to browse and gather information from websites on the internet. It systematically visits web pages, follows hyperlinks, and extracts data for various purposes, such as indexing web content for search engines, data mining, or website monitoring.

word co-occurence frequency or occurrence of words appearing together in a given text or corpus. It is a measure of how often two or more words co-occur in close proximity within a specified context window

Name Definition

Ablation Analysis
(also known as sensitivity analysis or feature importance analysis) technique used to understand the contribution or importance of individual components or factors in a model or system. It involves systematically removing or modifying specific components
and observing the resulting impact on the overall performance or behavior.

Accuracy
metric used to evaluate the performance of classification models. It measures the proportion of correct predictions made by the model out of the total number of predictions. Accuracy is calculated by dividing the number of correctly classified instances by the
total number of instances: Accuracy = (Number of Correct Predictions / Total Number of Predictions) * 100

Analysis of Variance (ANOVA) Statistical technique used to analyze and compare the means of two or more groups or populations. It determines whether there are statistically significant differences among the group means based on the variance observed in the data.

Area Under Curve (AUC)
metric to evaluate the performance of binary classification models, particularly in situations where the class distribution is imbalanced. It measures the overall quality of the model's predictions across different discrimination thresholds. The AUC represents the
area under the Receiver Operating Characteristic (ROC) curve. The ROC curve is created by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR) at various classification thresholds.

Bilingual Evaluation Understudy (BLEU)
metric used to evaluate the quality of machine-generated translations by comparing them to reference translations. It measures the degree of overlap between the generated translation and the reference translations in terms of n-grams (contiguous
sequences of words). It has been adapted and used in other text generation tasks as well. It can potentially be used to compare two pieces of text in situations where a reference or ground truth is available for evaluation.

Chi-Square statistical measure used to assess the association between a candidate keyphrase and the documents in which it appears. It helps identify which terms or phrases are more likely to be important and informative within a specific document collection.

Clustering Accuracy (Purity)
measure used to evaluate the performance of clustering algorithms. It assesses how well a clustering solution assigns data points to their correct clusters based on known ground truth or reference labels. Purity ranges from 0 to 1, where higher values
indicate better clustering performance. limitations: assumes that the number of clusters is equal to the number of true classes

Expansion Ratio
metric evaluates how effectively an aspect extraction system expands from the initial seed terms to accurately identify related terms that belong to the same aspect. Measures the ratio of correctly extracted terms over seed terms.
Expansion Ratio= (Number of Correctly Extracted Terms / Number of Seed Terms) ×100

F1 Score
metric that provides a single measure that balances both precision and recall in situations where both are equally important. It is especially useful in situations where the data set is imbalanced, i.e., the number of 'positive' samples is very different than the
number of 'negative' samples. F1 = 2 * (precision * recall) / (precision + recall)

FPR (False Positive Rate)
metric used to evaluate the performance of a binary classification model. It measures the proportion of falsely predicted positive instances among all the instances that are actually negative.
FPR = False Positives / (True Negatives + False Positives)

Harvest Rate (HR) ratio of the number of retrieved relevant webpages over the total number of retrieved webpages, which measures how well the crawler doing at rejecting irrelevant webpages

Hit Ratio (HT)
evaluation metric commonly used in recommendation systems to measure the effectiveness of the recommendation algorithm in predicting or suggesting relevant items to users. It assesses whether the ground truth or desired item is included in the top-k
recommendations provided to the user.

Jaccard Index
metric used to evaluate the overlap between predicted and true labels in multi-label classification, indicating how well the predicted labels match the actual labels for a given instance. Particularly useful when dealing with imbalanced classes and when you
want to measure the overlap between predicted labels and true labels. For a single example, the Jaccard index is calculated as the size of the intersection of the predicted labels and the true labels divided by the size of their union.

Logarithmic Loss commonly used metric for evaluating the performance of probabilistic classification models. It measures the accuracy of a model's predicted probabilities by comparing them to the true class labels.

Label Ranking Average Precision (LRAP) metric used to evaluate the performance of multi-label classification tasks. It measures the precision of correctly ranked labels for each instance, taking into account the order of the predicted labels.

Mean Absolute Error (MAE) metric used to evaluate the performance of a regression model. It measures the average absolute difference between the predicted values and the actual values in a dataset. The lower the MAE, the better the model's predictions.

Mean Average Precision (MAP)
metric commonly used to evaluate the performance of information retrieval systems, such as search engines or recommender systems. It assesses the quality of the ranked results by considering both precision and recall. MAP calculates the average
precision (AP) for each query or user, and then takes the mean of these average precision values across all queries or users. It measures how well the system retrieves relevant items and ranks them higher.

Mean Reciprocal Rank (MRR) evaluation metric commonly used in information retrieval and ranking tasks. It measures the effectiveness of a system in ranking items based on their relevance to a given query.

Mean Squared Error (MSE)
metric used to measure the average squared difference between predicted values and the actual values in a regression task. It provides a measure of how well a regression model fits the observed data by quantifying the average magnitude of the prediction
errors. The MSE is calculated by taking the average of the squared differences between the predicted values (y_pred) and the actual values (y_true) for a set of data points: MSE = (1/n) * Σ(y_pred - y_true)²

Normalised Discounted Cumulative Gain (NDCG)
metric commonly used to evaluate the effectiveness or ranking quality of search engines, recommendation systems, or information retrieval systems. It measures the quality of the ranked list of items or documents based on their relevance to a given query or
user.

Normalized Mutual Information (NMI)
evaluation metric used to assess the quality of a clustering solution by comparing it to a set of ground truth or reference labels. NMI measures the mutual information between the clustering assignments and the true labels, normalized to take into account the
sizes of the clusters and the true classes.

Partial Matching
evaluation metric used to assess the similarity or overlap between two sequences or sets. It allows for partial credit or partial matching of elements, taking into account partial similarities or partial matches instead of requiring an exact match. Examples of
partial matching metrics include the Jaccard similarity, Sørensen-Dice coefficient, cosine similarity, and the Fuzzy matching algorithms like Levenshtein distance or Jaro-Winkler distance.

Perplexity
measure commonly used to evaluate the performance of language models, including topic models. It quantifies how well a language model predicts a given sequence of words or documents. Lower perplexity values indicate better performance, meaning the
language model is more accurate and has a better understanding of the data. = exponential average negative log probability of the corpus under the model

Precision
(also known as positive predictive value) metric used in statistics and machine learning to measure the effectiveness of a classification model. In the context of a binary classification problem (where instances are classified as either positive or negative),
precision is defined as the proportion of predicted positive instances that are actually positive. Precision = True Positives / (True Positives + False Positives)

Recall (also known as sensitivity, hit rate, or true positive rate (TPR)) metric used in statistics and machine learning to measure the effectiveness of a classification model. Recall = True Positives / (True Positives + False Negatives)

Recall-Oriented Understudy for Gisting Evaluation (Rouge-L)
metric used to evaluate the quality of automatic text summaries or machine-generated text by comparing them to reference summaries. It measures the similarity between the generated summary and one or more reference summaries by considering the
longest common subsequence (LCS) between them.

Receiver Operating Characteristic (ROC)
graphical representation used to evaluate the performance of binary classification models or classifiers. It plots the true positive rate (TPR) against the false positive rate (FPR) at various classification thresholds. A classifier with a higher AUC (area under
curve) generally indicates better performance in distinguishing between positive and negative instances.

Residual MEan Square Error (RMSE)
metric to evaluate the accuracy of regression models. It measures the average magnitude of the differences between the predicted values and the actual values (residuals) in a regression task. RMSE is calculated by taking the square root of the mean of the
squared differences between the predicted values (y_pred) and the actual values (y_true) for a set of data points: RMSE = sqrt((1/n) * Σ(y_pred - y_true)²)

Shortest Path Kernel score (SP Kernel) similarity measure used in taxonomy comparison or hierarchical structure analysis. It quantifies the similarity between two taxonomies or hierarchical structures based on the concept of shortest paths.

Specificity
(also known as true negative rate) metric used to evaluate the performance of a binary classification model, particularly in situations where the negative class is of interest. It measures the proportion of correctly classified negative instances (true negatives)
out of all the actual negative instances. Specificity = True Negatives / (True Negatives + False Positives)

Support metric that quantifies the frequency or occurrence of an itemset or rule in a given dataset. It provides an indication of how often the class/ label appears in the dataset relative to the total number of data points.

t-test
statistical test used to determine whether there is a significant difference between the means of two groups or samples. It is commonly used when comparing the means of two independent groups or when comparing the mean of a single group to a known
population mean.

Weisfeiler-Lehman Kernel score (WL Kernel) similarity measure used in graph comparison and graph classification tasks. It quantifies the similarity between two graphs by considering their structural properties and neighborhood information.

C Evaluation Measures

Name Definition

CoreNLP Tool
a software suite provided by Stanford that provides a set of natural language analysis tools. It can perform tasks such as part-of-speech (POS) tagging, named entity recognition (NER), parsing (both dependency and constituency parsing), co-reference
resolution, and sentiment analysis, among others. It's designed to be highly flexible and extensible, with the ability to add custom processing modules or annotation types. It can be used via an API in a Java program, or run as a standalone web service.

WordNet
a lexical database of English words, which groups words into sets of synonyms called synsets, provides short definitions, and records the various semantic relationships between these synonym sets. The goal of WordNet is to build a useful representation of
semantic memory, similar to how humans remember and use words and their meanings.

NLTK
an open-source library in Python that provides tools and resources for working with human language data. NLTK offers a wide range of functionalities for tasks such as text preprocessing, tokenization, stemming, lemmatization, part-of-speech tagging,
syntactic parsing, named entity recognition, sentiment analysis, machine translation, and more.

SpaCy an open-source software library for advanced NLP, written in Python. It's designed to help you perform a variety of NLP tasks such as part-of-speech tagging, named entity recognition, and dependency parsing, among others.

Gensim
an open-source python library specifically designed for topic modeling, document similarity analysis, and NLP tasks. Gensim provides support for word embeddings, which are vector representations of words that capture semantic and syntactic relationships.
It allows you to train your own word embeddings using algorithms like Word2Vec and FastText or load pre-trained word embeddings such as Word2Vec, GloVe, or FastText models.

fastText
an open-source library that provides efficient tools for word embedding and text classification. It uses a skip-gram model with character n-grams to learn continuous representations for words, even for rare or out-of-vocabulary words. It employs a bag-of-
words approach and learns a classifier using the word embeddings as input features. The classification model can handle multi-class and multi-label classification, and it supports hierarchical classification as well.

Sci-kit Learn
an open-source python library for machine learning. It provides a comprehensive collection of tools and functionalities for various stages of the machine learning workflow, including data preprocessing, feature selection, model training, evaluation, and
deployment. Designed to work well with other Python libraries for data analysis and scientific computing, such as NumPy and pandas. It also provides interoperability with libraries like TensorFlow and PyTorch for deep learning.

DBpedia
a community-driven project that extracts structured data from Wikipedia and makes it available as Linked Data. It aims to transform the unstructured information in Wikipedia into a structured and machine-readable format, which can be easily queried and
linked to other datasets on the web.

ProgrammableWeb
a popular online directory and platform that provides information, resources, and services related to web APIs (Application Programming Interfaces). It serves as a comprehensive source for developers, businesses, and enthusiasts seeking APIs for building
web and mobile applications, integrating services, and accessing data from various platforms. *On February 3, 2023 Mulesoft announced that after 17 years in operation, it had shut down Programmable Web

Freebase
a collaborative knowledge graph and database.structured and comprehensive collection of information about entities, such as people, places, organizations, and more. Freebase allowed users to contribute and edit information, and it served as a source of
data for various applications and services. In 2014, Freebase was deprecated and replaced by Wikidata

Wikidata a collaborative and multilingual knowledge base that serves as a central repository of structured data for Wikimedia projects

 SentiWordNet
a lexical resource for sentiment analysis and opinion mining in natural language processing. Serving as an extension of WordNet, it assigns sentiment scores to words in WordNet based on their positivity, negativity, and neutrality. Each word in SentiWordNet
is associated with a set of three scores, representing its positive, negative, and objective (neutral) polarities. These scores indicate the degree of sentiment expressed by the word.

Bing Liu Opinion Lexicon a lexicon or dictionary that contains a collection of words or phrases along with their associated sentiment polarity.

Stanford OpenIE
a module that performs Open Information Extraction, extracting relations from text using a set of pre-defined patterns and linguistic analysis. The OpenIE module in Stanford CoreNLP is designed to extract relations and generate triples in the form of (subject,
relation, object) from sentences or documents.

SenticNet
a knowledge base that provides more detailed and multi-faceted sentiment information at the concept level, not just at the word level. For each concept, SenticNet provides a polarity value, includes semantic information about related concepts, and
represents concepts as groups of related words, providing a more context-rich representation of sentiment.

BabelNet al arge-scale, multilingual encyclopedic dictionary and semantic network where synsets (main meaning units) are connected via semantic relations.

Probase Knowledge Base
a large-scale probabilistic knowledge base that contains information about concepts, their attributes, and their relationships. It is designed to capture general knowledge in a structured manner and serves as a valuable resource for various NLP and machine
learning tasks.

D Tools/ Libraries/ Resources

E Prompt Descriptions

E Prompt Descriptions

E.1 Feature Classification Prompts

Prompt 1

Table 9: Prompt 1: Feature Classification

Considering cloud service selection and the few-shot examples below,
classify Term, as seen in Context: Relevant (True/False)?
example: CRM
Context: Choose a CRM implementation partner that continues to grow
and adapt with you, helping you stand out from the rest. / This CRM
was designed for small business.
Relevant: True
example: audit logs
Context: Likewise, you can store audit logs for accessing the
Kubernetes API in an S3 bucket you define. / With Cloud Audit Logs
integration, every interaction with Secret Manager generates an audit
log.
Relevant: True
example: resources
Context: Distribute traffic across resources / All resources are
priced on an hourly basis, so you’ll only pay for what you need, when
you need it.
Relevant: False
example: scratch
Context: Create custom solutions without starting from scratch. /
No need to start from scratch.
Relevant: False
Term: {term}
Context: {" / ".join(contexts)}
Relevant? Answer with one word

85

E.1 Feature Classification Prompts

Prompt 2

Table 10: Prompt 2: Feature Classification

Considering cloud service selection and the NIST Cloud Reference
Architecture, classify Term, as a **standalone term**, given Context.
Is it a **cloud-specific** service feature, category, supported
software, certification or process (True/False)?
Examples:
* True : CRM (Customer Relationship Management) - Software
specifically designed for managing customer data in the cloud.
* True : Audit Logs - Feature for tracking activity within a cloud
service.
* True : backup as a service - cloud service.
* True : Linux - supported operating system.
* False : algorithms - Finite sequence of rigorous instructions, too
general.
* False : public internet access - Related, but not cloud-specific.
* False : queue - Ambiguous as standalone.
* False : execution - Ambiguous as standalone.
Term: {term}
Context: {" / ".join(contexts)}
Classification? Answer with one word (True/False)

86

E Prompt Descriptions

Prompt 3

Table 11: Prompt 3: Feature Classification

Considering cloud service vendor selection and the NIST Cloud
Reference Architecture, classify Term, as a **standalone term**,
given Context. Is it a cloud feature, category, supported
software or language, functionality, certification or process of a
vendor, that a potential customer would be interested in knowing
(True/False)? If the term is not meaningful/ query-able by itself,
return False. The provided context is not always representative, do
not base the answer on it (avoid over-classification)
Examples:
* True : CRM (Customer Relationship Management) - Software
specifically designed for managing customer data in the cloud.
* True : Audit Logs - Feature for tracking activity within a cloud
service.
* True : backup as a service - cloud service.
* True : Linux - supported operating system.
* False : algorithms - Finite sequence of rigorous instructions, too
general.
* False : public internet access - Related, but not cloud-specific.
* False : execution - Ambiguous as standalone.
* False : cloud / cloud service / application / customer - too
general. Even though they appear in the Reference Architecture,
we are interested in narrower categories.
* True: Security / False: cyberattack (not a vendor feature)
* False: Intelligence / True: Business Intelligence
* False: GPU / True: Parallel Processing
* False: Performance / True: Performance Metric or peak performance
etc.
Term: {term}
Context: {" / ".join(contexts)}
Classification? Answer with one word (True/False)

87

E.1 Feature Classification Prompts

Prompt 4

Table 12: Prompt 4: Feature Classification

Considering cloud service vendor selection and the NIST Cloud
Reference Architecture, classify Term, as a **standalone term**,
given Context. Is it a cloud feature, category, supported
software or language, functionality, certification or process of a
vendor, that a potential customer would be interested in knowing
(True/False)? If the term is not query-able and you would not
include it in a Knowledge Graph, return False. The provided context
is not always representative, do not base the answer on it (avoid
over-classification).
Examples:
* True : CRM (Customer Relationship Management) - Software
specifically designed for managing customer data in the cloud.
* True : Audit Logs - Feature for tracking activity within a cloud
service.
* True : Linux - supported operating system.
* False : public internet access - not a cloud provider feature
* False : execution / algorithm / CPU / Bytes / India : not
meaningful as standalone
* True : Parallel execution / Computing resources / Storage Capacity
/ Region Coverage
* False : Cyber attack / Intelligence
* True: Cyber Security / Business Intelligence
* False : cloud / cloud service / application / customer : in the
Reference Architecture, but we are interested in specific features
Term: {term}
Context: {" / ".join(contexts)}
Classification? Answer with True or False

88

E Prompt Descriptions

Prompt 5

Table 13: Prompt 5: Feature Classification

Considering cloud service vendor selection, classify Term, as a
standalone term, given Context. Is it a cloud service feature,
category, supported software or programming language, certification
or other notable characteristic of a vendor (True/False)?. The term
should be domain-specific and meaningful by itself. The provided
context is not exhaustive, do not base the answer on it. Avoid
overclassification and focus on technical terms.
Examples:
* True : CRM (Customer Relationship Management) - Software
specifically designed for managing customer data in the cloud.
* True : Audit Logs - Feature for tracking activity within a cloud
service.
* True : Linux - supported operating system.
* False : public internet access - not a cloud provider feature
* False : execution / algorithm / CPU / Bytes / India : not
meaningful as standalone
* True : parallel execution / machine learning algorithm / Computing
resources / Storage Capacity / Region Coverage
* True: Cyber Security / Business Intelligence
* False : cloud / cloud service / cloud application / cloud customer
: too general, looking for specific features
Term: {term}
Context: {" / ".join(contexts)}
Classification? Answer with True or False

89

E.1 Feature Classification Prompts

Prompt 6

Table 14: Prompt 6: Feature Classification

Considering cloud service vendor selection, classify Term, as a
standalone term, given Context. Is it a cloud service feature,
category, supported software or programming language, certification
or other notable characteristic of a vendor (True/False)?. The term
should be domain-specific, technical, meaningful by itself, convey
cloud-specific implementations and not common web service practices.
The provided context is not exhaustive, do not base the answer on it.
Examples:
* True : CRM (Customer Relationship Management) - Software
specifically designed for managing customer data in the cloud.
* True : Audit Logs - Feature for tracking activity within a cloud
service.
* True : Linux - supported operating system.
* False : public internet access - not a cloud provider feature
* False : execution / algorithm / CPU / Bytes / India : not
meaningful as standalone
* True : parallel execution / machine learning algorithm / Computing
resources / Storage Capacity
* True: Cyber Security / Business Intelligence
* False : cloud / cloud service / cloud application / cloud customer
: too general, looking for specific features
* False : HTTP / port / HTML / CSS/ template : domain relevant, but
common practices
Term: {term}
Context: {" / ".join(contexts)}
Classification? Answer single wordedly with True or False

90

E Prompt Descriptions

E.2 Match Quality Classification Prompts

Prompt 1

Table 15: Prompt 1: Match Quality Classification

Given two terms and the context they appear in, classify if they refer to
the same thing/ concept.
Examples:
* Term 1: Scratch (programming language)
Context 1: Scratch is a high-level block-based visual programming

language and website aimed primarily at children as an educational tool for
programming, with a target audience of ages 8 to 16.
Term 2: scratch
Context 2: Create custom solutions without starting from scratch. / No

need to start from scratch.
Answer: False

* Term 1: CRM software
Context 1: Customer relationship management (CRM) is a process in which a

business or other organization administers its interactions with customers,
typically using data analysis to study large amounts of information.
Term 2: CRM
Context 2: Choose a CRM implementation partner that continues to grow

and adapt with you, helping you stand out from the rest. / This CRM was
designed for small business.
Answer: True

* Term 1: Hypervisor
Context 1: A hypervisor (also known as a virtual machine monitor, VMM,

or virtualizer) is a type of computer software, firmware or hardware that
creates and runs virtual machines.
Term 2: hypervisor
Context 2: Regardless of which hypervisor you choose, we manage and

support your virtualized configuration, 24x7x365. / Hypervisor : KVM on
Linux
Answer: True

* Term 1: Integrity
Context 1: Integrity is the practice of being honest and showing a

consistent and uncompromising adherence to strong moral and ethical
principles and values.
Term 2: integrity
Context 2: With business data scattered across the enterprise and value

chain, managing and maintaining its integrity can be difficult. / Ensuring
your data and environments are properly segmented from other machines is
extremely important for the integrity of your data.
Answer: False (data integrity is not exactly the same with general

integirty described above)
Term 1: {term1}
Context 1: {abst_sent}
Term 2: {term2}
Context: {" / ".join(contexts)}
Answer? provide single wordedly with True or False

91

E.2 Match Quality Classification Prompts

Prompt 2

Table 16: Prompt 2: Match Quality Classification

Given two terms and the context they appear in, classify if they could
possibly refer to the same, or related thing/ concept/ entity/ process.
Examples:
* Term 1: Scratch (programming language)
Context 1: Scratch is a high-level block-based visual programming

language and website aimed primarily at children as an educational tool for
programming, with a target audience of ages 8 to 16.
Term 2: scratch
Context 2: Create custom solutions without starting from scratch. / No

need to start from scratch.
Answer: False

* Term 1: CRM software
Context 1: Customer relationship management (CRM) is a process in which a

business or other organization administers its interactions with customers,
typically using data analysis to study large amounts of information.
Term 2: CRM
Context 2: Choose a CRM implementation partner that continues to grow

and adapt with you, helping you stand out from the rest. / This CRM was
designed for small business.
Answer: True

* Term 1: Hypervisor
Context 1: A hypervisor (also known as a virtual machine monitor, VMM,

or virtualizer) is a type of computer software, firmware or hardware that
creates and runs virtual machines.
Term 2: hypervisor
Context 2: Regardless of which hypervisor you choose, we manage and

support your virtualized configuration, 24x7x365. / Hypervisor : KVM on
Linux
Answer: True

* Term 1: Integrity
Context 1: Integrity is the practice of being honest and showing a

consistent and uncompromising adherence to strong moral and ethical
principles and values.
Term 2: integrity
Context 2: With business data scattered across the enterprise and value

chain, managing and maintaining its integrity can be difficult. / Ensuring
your data and environments are properly segmented from other machines is
extremely important for the integrity of your data.
Answer: False (data integrity is not exactly the same with general

integirty described above)
* Term 1: Global Namespace
Context 1: A Global Namespace (GNS) is a heterogeneous, enterprise-wide

abstraction of all file information, open to dynamic customization based on
user-defined parameters.
Term 2: namespace
Context 2: Administer Role-Based Access Control (RBAC) and oversee

namespace management. / Aggregated namespace bringing together multiple
file sources
Answer: True (even though the first term is more specific, the phrase

’aggregated namespace’ suggests the same concept)
Term 1: {term1}
Context 1: {abst_sent}
Term 2: {term2}
Context: {" / ".join(contexts)}
Answer? provide single wordedly with True or False

92

E Prompt Descriptions

Prompt 3

Table 17: Prompt 3: Match Quality Classification

Given two terms and the context they appear in, classify if they refer to
the same, or directly related thing/ concept/ entity/ process. Ideally, the
first term should provide context/ explanation for the second term, and not
be more specific.
Examples:
* Term 1: Scratch (programming language)
Context 1: Scratch is a high-level block-based visual programming

language and website aimed primarily at children as an educational tool for
programming, with a target audience of ages 8 to 16.
Term 2: scratch
Context 2: Create custom solutions without starting from scratch. / No

need to start from scratch.
Answer: False

* Term 1: CRM software
Context 1: Customer relationship management (CRM) is a process in which a

business or other organization administers its interactions with customers,
typically using data analysis to study large amounts of information.
Term 2: CRM
Context 2: Choose a CRM implementation partner that continues to grow

and adapt with you, helping you stand out from the rest. / This CRM was
designed for small business.
Answer: True

* Term 1: Hypervisor
Context 1: A hypervisor (also known as a virtual machine monitor, VMM,

or virtualizer) is a type of computer software, firmware or hardware that
creates and runs virtual machines.
Term 2: hypervisor
Context 2: Regardless of which hypervisor you choose, we manage and

support your virtualized configuration, 24x7x365. / Hypervisor : KVM on
Linux
Answer: True

* Term 1: Mac OS X Tiger
Context 1: Mac OS X Tiger (version 10.4) is the 5th major release of

macOS, Apple’s desktop and server operating system for Mac computers.
Term 2: Mac OS
Context 2: Compatible with Windows, macOS and Linux / HiDrive software is

also available for MacOS.
Answer: False (first term is more specific than the second term)

* Term 1: Global Namespace
Context 1: A Global Namespace (GNS) is a heterogeneous, enterprise-wide

abstraction of all file information, open to dynamic customization based on
user-defined parameters.
Term 2: namespace
Context 2: Administer Role-Based Access Control (RBAC) and oversee

namespace management. / Aggregated namespace bringing together multiple
file sources
Answer: True (even though the first term is more specific, the phrase

’aggregated namespace’ suggests the same concept)
Term 1: {term1}
Context 1: {abst_sent}
Term 2: {term2}
Context: {" / ".join(contexts)}
Answer? provide single wordedly with True or False

93

F Cloud Service Feature Coverage

Cloud Services Presence
Data management ✓
Analytics and BI ✓
Database ✓
Blockchain ✓
Data lakes ✓
Disaster recovery ✓
Infrastructure ✓
Network & content delivery ✓
Webhosting ✓
Virtual machines ✓
Virtual desktop ✓
Load balancers ✓
Domain name systems (DNS) ✓
Developer tools ✓
Commandline interface (CLI) ✓
Low-code applications X
DevOps ✓
Business applications ✓
Mobile ✓
Mobile applications ✓
Web applications ✓
Internet of things (IoT) ✓
IoT analytics X
IoT security X
IoT device management ✓
IoT applications X
Machine Learning and AI X
Open AI ✓
Document/video/text reader X
Chat bots ✓
Digital assistant X
Running and deploying models X
Management & Governance ✓
Cost management ✓
Monitoring ✓
Platform building X
Media Services X
Migration and transfer ✓
Data migration ✓
Application integration ✓
Security, Identity and Compli-
ance

✓

Identity & Access management ✓
Security management ✓
Firewall management ✓
Serverless ✓

SLAs Presence
Availability ✓
Access management ✓
PaaS ranking ✓
AI developer services X
Analytics and business intelli-
gence platforms

✓

Application performance moni-
toring and observability

✓

Cloud for ERP ✓
Data management systems ✓
Field service management X
Procure-to-Pay Suites X
Network firewalls ✓
Security information and event
management

✓

Low-code application platforms X
Cost management & optimiza-
tion

✓

Public Cloud Container Plat-
forms

X

API management ✓
Cloud development and infras-
tructure platforms

X

Identity & access management ✓
Public cloud IaaS ✓
Bring your own license
(BYOL)

Presence

SQL Server ✓
Windows Server ✓
BizTalk X
Microsoft Dynamics X
SharePoint ✓
SPLA X
Skype X
Exchange ✓
System Center X
Remote Desktop Services ✓
MSDN X
Team Foundation Server X
Project Server X
Ubuntu X
RHEL X
RHEL SAP X
SUSE X
Oracle Database X
IBM X

94

F Cloud Service Feature Coverage

Supported APIs Presence
HTTPs API ✓
REST API ✓
Websocket API ✓
OpenAPI ✓
SOAP API X
GraphQl API X
gRPC X
Bulk API X
Pub/Sub API X
ODATA X
CORS X
Apigee API X
OAuth X
Programming Language
Support

Presence

Ruby ✓
C X
C# X
Swift ✓
Kotlin X
PHP ✓
C++ X
node.js ✓
JavaScript ✓
Java ✓
smalltalk X
PowerShell ✓
visual studio/WCF Abap X
curl X
Python ✓
TypeScript X
Go ✓
Rust X
iOS ✓
Haskell X
perl X
Scala X
Clojure X
postman X
Jboss/xPaaS X
.NET ✓
GraalVM X

Databases (out of box) Presence
mysql ✓
SQL Server ✓
IBM DB2 X
oracle ✓
Redis ✓
Postgres ✓
Apache Kafka ✓
nosql ✓
apache cassandra ✓
mongodb ✓
mariadb ✓
Compliance Presence
GDPR ✓
CSA ✓
CIS benchmark C5 ✓
GSMA SAS-SM X
HECVAT X
CyberGRX X
CyberVadis X
ISO 9001 ✓
ISO 10012 X
ISO 14001 X
ISO 20000-1 X
ISO 22301 X
ISO 20243 X
ISO 27001 ✓
ISO 27110 X
ISO 27701 X
ISO 27017 ✓
ISO 27018 X
ISO 29151 X
ISO 31000 X
ISO 45001v ISO 50001 X
VPAT(WCAG) X
SOC 1 ✓
SOC 2 ✓
SOC 3 ✓
Service costs (Forecasting) Presence
Pay per use ✓
Pay per hour X
Pay per month X
TCO calculator ✓
Cost optimisation ✓
Free trial ✓

95

Container orchestration Presence
kubernetes ✓
Docker Swarm ✓
openshift ✓
cloud foundry X
Apache Mesos X
nomad X
kontena X
Operating Systems Presence
Container-optimized OS X
Solaris X
IBM AIX X
Hp-UX X
Windows ✓
Linux ✓
Oracle linux X
Red Hat Enterprise Linux
(RHEL)

✓

openSUSE X
SUSE Linux Enterprise Server ✓
Clearlinux X
VMware esx X
Arch linux X
asianux X
Fedora CoreOS X
Fedora ✓
Ubuntu ✓
linux mint X
Fortinet X
anolis OS X
FreeBSD ✓
CoreOS X
Rocky linux X
Alma linux X
kali X
CentOS ✓
centOS Stream X
Bottlerocket X
Debian ✓
MacOS ✓
Raspberry pi OS X

Data Center Locations Presence
North America ✓
United States ✓
Canada ✓
Mexico X
South America ✓
Chile X
Brazil ✓
Asia ✓
Russia X
Israel X
Qatar X
Saudi Arabia ✓
Saudi Emirates X
Taiwan X
India ✓
Thailand X
Singapore ✓
Indonesia X
Philippines X
South Korea ✓
Malaysia X
Japan ✓
China ✓
Oceania X
Australia ✓
New Zealand X
Africa ✓
South Africa X
Europe ✓
Netherlands ✓
Belgium X
Denmark X
Finland ✓
Germany ✓
France ✓
Spain X
Greece X
Italy X
United Kingdom ✓
Poland ✓
Ireland ✓
Austria X
Switzerland ✓
Norway X
Sweden X

96

G Bill of Materials (BoM)

G Bill of Materials (BoM)

This Bill of Materials outlines the resources and tools used in the development of this thesis.
Item No. Component / Resource Purpose / Notes

1 SLR document Step-wise documenation of the
literature review, availble at
https://doi.org/10.5281/
zenodo.13899562

2 GitHub repository The code implementation,
accessible at https://
github.com/ac56/auto_kg

97

https://doi.org/10.5281/zenodo.13899562
https://doi.org/10.5281/zenodo.13899562
https://github.com/ac56/auto_kg
https://github.com/ac56/auto_kg

	Introduction
	Problem statement
	Scope and Limitations
	Background
	Research Questions
	Baseline Pipeline

	Research Approach
	Research Methods
	Literature study
	Design science

	Systematic Literature Review
	Data Sources and Search Strategy
	Search Process
	Inclusion and Exclusion Criteria
	Quality Assessment
	Data Extraction
	Models, Techniques & Algorithms
	Tools, Libraries & Resources
	Datasets
	Research Annotations

	Data Analysis and Synthesis
	Component Analysis
	Temporal Trends

	Model Categories
	Machine Learning Applications
	Pertinent Application Fields

	Learning Types
	Implementation Features
	Tools/ Libraries/ Resources
	Datasets
	Evaluation Methods
	Evaluation Strategies for the Feature Extraction Artifact
	Decision Making Process

	Summary of Literature Review
	General Observations
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Ethical Considerations

	Implementation
	Existing Approaches
	Knowledge Graph Generation Pipeline
	Data Collection and Processing
	Domain Selection
	Data Sources
	Data Processing

	Domain Exploration
	NIST Cloud Computing Reference Architecture
	DBPedia

	Noun Phrase Extraction
	Phrase Embeddings
	Clustering
	Hierarchical Clustering
	HDBSCAN
	Principal Component Analysis
	Parameter Selection
	Clustering Results

	Cluster Aggregation
	N-grams
	Examples of Cluster Aggregation

	Dataset Creation
	Feature Classification Dataset
	Integrating Context into Classification
	Match Quality Classification Dataset
	DBPedia Context Integration

	Classification
	Overview of Experiments
	NIST Labeled Data
	Evaluation Metrics
	Experiment 1: Supervised BERT Models
	Experimental Setup
	Results

	Experiment 2: Gemini Classifier
	Prompt Engineering
	Example Prompts
	Results
	Summary of Results

	Knowledge Graph Construction
	Ontology Creation
	Hierarchy Creation
	Evaluation of the Knowledge Graph
	Knowledge Graph Demonstration & Retrieval Examples
	Neo4j Aura Setup
	Graph Exploration and Retrieval

	Discussion & Conclusion
	Research Objectives
	Main Contribution
	Limitations & Future Work
	Conclusion

	References
	Appendices
	Model Definitions
	Features
	Evaluation Measures
	Tools/ Libraries/ Resources
	Prompt Descriptions
	Feature Classification Prompts
	Match Quality Classification Prompts

	Cloud Service Feature Coverage
	Bill of Materials (BoM)

